1
|
Maldonado N, López-Hernández I, López-Cortés LE, Martínez Pérez-Crespo PM, Retamar-Gentil P, García-Montaner A, De la Rosa Riestra S, Sousa-Domínguez A, Goikoetxea J, Pulido-Navazo Á, Del Valle Ortíz M, Natera-Kindelán C, Jover-Sáenz A, Arco-Jiménez AD, Armiñanzas-Castillo C, Aller-García AI, Fernández-Suárez J, Marrodán-Ciordia T, Boix-Palop L, Smithson-Amat A, Reguera-Iglesias JM, Galán-Sánchez F, Bahamonde A, Sánchez-Calvo JM, Gea-Lázaro I, Pérez-Camacho I, Reyes-Bertos A, Becerril-Carral B, Pascual Á, Rodríguez-Baño J. Association of microbiological factors with mortality in Escherichia coli bacteraemia presenting with sepsis/septic shock: a prospective cohort study. Clin Microbiol Infect 2024; 30:1035-1041. [PMID: 38599464 DOI: 10.1016/j.cmi.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/27/2024] [Accepted: 04/02/2024] [Indexed: 04/12/2024]
Abstract
OBJECTIVES This study aimed to determine the association of Escherichia coli microbiological factors with 30-day mortality in patients with bloodstream infection (BSI) presenting with a dysregulated response to infection (i.e. sepsis or septic shock). METHODS Whole-genome sequencing was performed on 224 E coli isolates of patients with sepsis/septic shock, from 22 Spanish hospitals. Phylogroup, sequence type, virulence, antibiotic resistance, and pathogenicity islands were assessed. A multivariable model for 30-day mortality including clinical and epidemiological variables was built, to which microbiological variables were hierarchically added. The predictive capacity of the models was estimated by the area under the receiver operating characteristic curve (AUROC) with 95% confidence intervals (CI). RESULTS Mortality at day 30 was 31% (69 patients). The clinical model for mortality included (adjusted OR; 95% CI) age (1.04; 1.02-1.07), Charlson index ≥3 (1.78; 0.95-3.32), urinary BSI source (0.30; 0.16-0.57), and active empirical treatment (0.36; 0.11-1.14) with an AUROC of 0.73 (95% CI, 0.67-0.80). Addition of microbiological factors selected clone ST95 (3.64; 0.94-14.04), eilA gene (2.62; 1.14-6.02), and astA gene (2.39; 0.87-6.59) as associated with mortality, with an AUROC of 0.76 (0.69-0.82). DISCUSSION Despite having a modest overall contribution, some microbiological factors were associated with increased odds of death and deserve to be studied as potential therapeutic or preventive targets.
Collapse
Affiliation(s)
- Natalia Maldonado
- Unidad Clínica de Enfermedades Infecciosas y Microbiología, Hospital Universitario Virgen Macarena, Sevilla, Spain; Departamentos de Medicina y Microbiología, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain; Instituto de Biomedicina de Sevilla (IBiS)/CSIC, Sevilla, Spain
| | - Inmaculada López-Hernández
- Unidad Clínica de Enfermedades Infecciosas y Microbiología, Hospital Universitario Virgen Macarena, Sevilla, Spain; Departamentos de Medicina y Microbiología, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain; Instituto de Biomedicina de Sevilla (IBiS)/CSIC, Sevilla, Spain; Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Luis Eduardo López-Cortés
- Unidad Clínica de Enfermedades Infecciosas y Microbiología, Hospital Universitario Virgen Macarena, Sevilla, Spain; Departamentos de Medicina y Microbiología, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain; Instituto de Biomedicina de Sevilla (IBiS)/CSIC, Sevilla, Spain; Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Pilar Retamar-Gentil
- Unidad Clínica de Enfermedades Infecciosas y Microbiología, Hospital Universitario Virgen Macarena, Sevilla, Spain; Departamentos de Medicina y Microbiología, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain; Instituto de Biomedicina de Sevilla (IBiS)/CSIC, Sevilla, Spain; Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Andrea García-Montaner
- Unidad Clínica de Enfermedades Infecciosas y Microbiología, Hospital Universitario Virgen Macarena, Sevilla, Spain; Departamentos de Medicina y Microbiología, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain; Instituto de Biomedicina de Sevilla (IBiS)/CSIC, Sevilla, Spain
| | - Sandra De la Rosa Riestra
- Unidad Clínica de Enfermedades Infecciosas y Microbiología, Hospital Universitario Virgen Macarena, Sevilla, Spain; Departamentos de Medicina y Microbiología, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain; Instituto de Biomedicina de Sevilla (IBiS)/CSIC, Sevilla, Spain
| | - Adrián Sousa-Domínguez
- Unidad de Enfermedades Infecciosas, Departamento de Medicina Interna, Complejo Hospitalario Universitario de Vigo, Spain
| | - Josune Goikoetxea
- Unidad de Enfermedades Infecciosas, Hospital Universitario de Cruces, Baracaldo, Spain
| | | | | | - Clara Natera-Kindelán
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain; Unidad de Gestión Clínica de Enfermedades Infecciosas, Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Alfredo Jover-Sáenz
- Unidad de Enfermedades Infecciosas, Hospital Universitario Arnau de Vilanova, Lleida, Spain
| | | | - Carlos Armiñanzas-Castillo
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain; Unidad de Enfermedades Infecciosas, Hospital Universitario de Marqués de Valdecilla-IDIVAL, Santander, Spain
| | - Ana Isabel Aller-García
- Unidad de Enfermedades Infecciosas y Microbiología, Hospital Universitario Virgen de Valme, Sevilla, Spain
| | - Jonathan Fernández-Suárez
- Servicio de Microbiología, Hospital Universitario Central de Asturias. Oviedo, Spain. Área de Microbiología y Patología Infecciosa, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA). Oviedo, Spain
| | | | - Lucía Boix-Palop
- Departamento de Enfermedades Infecciosas, Hospital Universitario Mutua Terrassa, Terrassa, Spain
| | | | - José María Reguera-Iglesias
- Unidad de Gestión Clínica de Enfermedades Infecciosas, Hospital Regional Universitario de Málaga. Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA Plataforma BIONAND), Málaga, Spain
| | | | - Alberto Bahamonde
- Departamento de Medicina Interna, Hospital Universitario El Bierzo, Ponferrada, Spain
| | - Juan Manuel Sánchez-Calvo
- Unidad de Gestión Clínica de Enfermedades Infecciosas y Microbiología Clínica, Hospital Universitario de Jerez. Departamento de Biomedicina, Biotecnología y Salud Pública, Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Jerez de la Frontera, Spain
| | - Isabel Gea-Lázaro
- Unidad de Enfermedades Infecciosas, Hospital Universitario de Jaén, Jaén, Spain
| | - Inés Pérez-Camacho
- Unidad de Medicina Tropical, Hospital Universitario Poniente-El Ejido, Almería, Spain
| | - Armando Reyes-Bertos
- Servicio de Microbiología, Unidad de Gestión Clínica de Laboratorio, Hospital Universitario Torrecárdenas, Almería, Spain
| | - Berta Becerril-Carral
- Unidad Clínica de Enfermedades Infecciosas y Microbiología, Hospital Universitario Punta de Europa, Algeciras, Spain
| | - Álvaro Pascual
- Unidad Clínica de Enfermedades Infecciosas y Microbiología, Hospital Universitario Virgen Macarena, Sevilla, Spain; Departamentos de Medicina y Microbiología, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain; Instituto de Biomedicina de Sevilla (IBiS)/CSIC, Sevilla, Spain; Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Jesús Rodríguez-Baño
- Unidad Clínica de Enfermedades Infecciosas y Microbiología, Hospital Universitario Virgen Macarena, Sevilla, Spain; Departamentos de Medicina y Microbiología, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain; Instituto de Biomedicina de Sevilla (IBiS)/CSIC, Sevilla, Spain; Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
2
|
Wu S, Cui L, Han Y, Lin F, Huang J, Song M, Lan Z, Sun S. Characteristics, Whole-Genome Sequencing and Pathogenicity Analysis of Escherichia coli from a White Feather Broiler Farm. Microorganisms 2023; 11:2939. [PMID: 38138083 PMCID: PMC10745608 DOI: 10.3390/microorganisms11122939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/24/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Avian colibacillosis, caused by avian Escherichia coli (E. coli), has historically been one of the most prevalent infectious diseases in large-scale poultry production, causing growth delays and mortality in chickens, resulting in huge economic losses. In recent years, the widespread use of antibiotics has led to the emergence of multidrug resistance in E. coli as a significant global problem and long-term challenge. Resistant E. coli can be transmitted to humans through animal products or the environment, which presents significant public health concerns and food safety issues. In this study, we analyzed the features of 135 E. coli strains obtained from a white feather broiler farm in Shandong, China, including antimicrobial susceptibility tests, detection of class 1 integrons, drug resistance genes, virulence genes, and phylogenetic subgroups. It is particularly worrying that all 135 E. coli strains were resistant to at least five antibiotic agents, and 100% of them were multidrug-resistant (MDR). Notably, the resistance genes of blaTEM, blaCTX-M, qnrS, aaC4, tetA, and tetB exhibited a high prevalence of carriage among the tested resistance genes. However, mcr-2~mcr-9 were not detected, while the prevalence of mcr-1 was found to be 2.96%. The most common virulence genes detected were EAST1 (14.07%, encoding enterotoxins) and fyuA (14.81%, encoding biofilm formation). Phylogenetic subgroup analysis revealed that E. coli belonging to groups B2 and D, which are commonly associated with high virulence, constituted 2.22% and 11.11%, respectively. The positive rate of class 1 integrons was 31.1%. Whole-genome sequencing (WGS) and animal experiments were performed on a unique isolated strain called 21EC78 with an extremely strong membrane-forming capacity. The WGS results showed that 21EC78 carried 11 drug resistance genes and 16 virulence genes. Animal experiments showed that intraperitoneal injection with 2 × 105 CFU could cause the death of one-day-old SPF chickens in 3 days. However, the mortality of Luhua chickens was comparatively lower than that of SPF chickens. This study reports the isolation of multidrug-resistant E. coli strains in poultry, which may pose a potential threat to human health via the food chain. Furthermore, the findings of this study enhance our comprehension of the frequency and characteristics of multidrug-resistant E. coli in poultry farms, emphasizing the urgent need for improved and effective continuous surveillance to control its dissemination.
Collapse
Affiliation(s)
- Shaopeng Wu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an 271000, China; (S.W.); (L.C.); (Y.H.); (F.L.); (J.H.); (M.S.)
| | - Lulu Cui
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an 271000, China; (S.W.); (L.C.); (Y.H.); (F.L.); (J.H.); (M.S.)
| | - Yu Han
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an 271000, China; (S.W.); (L.C.); (Y.H.); (F.L.); (J.H.); (M.S.)
| | - Fang Lin
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an 271000, China; (S.W.); (L.C.); (Y.H.); (F.L.); (J.H.); (M.S.)
| | - Jiaqi Huang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an 271000, China; (S.W.); (L.C.); (Y.H.); (F.L.); (J.H.); (M.S.)
| | - Mengze Song
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an 271000, China; (S.W.); (L.C.); (Y.H.); (F.L.); (J.H.); (M.S.)
| | - Zouran Lan
- Shandong Provincial Center for Animal Disease Control, Jinan 250000, China
| | - Shuhong Sun
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an 271000, China; (S.W.); (L.C.); (Y.H.); (F.L.); (J.H.); (M.S.)
| |
Collapse
|
3
|
Orsi H, Guimarães FF, Leite DS, Guerra ST, Joaquim SF, Pantoja JCF, Hernandes RT, Lucheis SB, Ribeiro MG, Langoni H, Rall VLM. Characterization of mammary pathogenic Escherichia coli reveals the diversity of Escherichia coli isolates associated with bovine clinical mastitis in Brazil. J Dairy Sci 2023; 106:1403-1413. [PMID: 36567244 DOI: 10.3168/jds.2022-22126] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 09/21/2022] [Indexed: 12/24/2022]
Abstract
Mammary pathogenic Escherichia coli (MPEC) is one of the most common pathogens associated with clinical mastitis. We analyzed isolates obtained from milk samples of cows with clinical mastitis, collected from 10 farms in Brazil, to verify molecular and phenotypic characteristics. A total of 192 (4.5%) mammary pathogenic E. coli isolates were obtained from 4,275 milk samples analyzed, but we tested 161. We assigned most of these isolates to E. coli phylogroups B1 (52.8%) and A (36.6%), although phylogroups B2, C, D, E, and unknown also occurred. All isolates were assessed for the presence of several genes encoding virulence factors, such as adhesins (sfaDE, papC, afaBC III, ecpA, fimH, papA, and iha), toxins (hlyA, cnf1, sat, vat, and cdt), siderophores (iroN, irp2, iucD, ireA, and sitA), an invasion protein (ibeA), and serum resistance proteins (traT, KpsMTII, and ompT), and isolates from phylogroups B1, B2, and E showed up to 8 genes. Two isolates harbored the locus of enterocyte effacement (escN+) and lack the bundle-forming pilus (bfpB-) operon, which corresponds to a molecular profile of a subgroup of diarrheagenic E. coli (aEPEC), thus being classified as hybrid MPEC/aEPEC isolates. These isolates displayed a localized adherence-like pattern of adherence in HeLa cells and were able to promote F-actin polymerization underneath adherent bacteria. Based on the pulsed-field gel electrophoresis analyses, considerable genetic variability was observed. A low index of antimicrobial resistance was observed and 2 extended-spectrum β-lactamase-producing E. coli were identified, both harboring blaCTX-M15 gene, and were classified as ST10 and ST993 using multilocus sequence typing. A total of 148 (91.2%) isolates were weak biofilm producers or formed no biofilm. Because raw milk is still frequently consumed in Brazil, the occurrence of virulence factor-encoding genes from extraintestinal or diarrheagenic E. coli added to the presence of extended-spectrum β-lactamase-producing isolates can turn this veterinary medicine problem into a public health concern.
Collapse
Affiliation(s)
- Henrique Orsi
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University, Botucatu, SP 18618 689, Brazil
| | - Felipe F Guimarães
- Department of Animal Production and Preventive Veterinary Medicine, School of Veterinary Medicine and Animal Sciences, São Paulo State University, Botucatu, SP 18618 681, Brazil
| | - Domingos S Leite
- Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas, SP 13083 970, Brazil
| | - Simony T Guerra
- Department of Animal Production and Preventive Veterinary Medicine, School of Veterinary Medicine and Animal Sciences, São Paulo State University, Botucatu, SP 18618 681, Brazil
| | - Sâmea F Joaquim
- Department of Animal Production and Preventive Veterinary Medicine, School of Veterinary Medicine and Animal Sciences, São Paulo State University, Botucatu, SP 18618 681, Brazil
| | - Jose C F Pantoja
- Department of Animal Production and Preventive Veterinary Medicine, School of Veterinary Medicine and Animal Sciences, São Paulo State University, Botucatu, SP 18618 681, Brazil
| | - Rodrigo T Hernandes
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University, Botucatu, SP 18618 689, Brazil
| | - Simone B Lucheis
- Paulista Agency of Agribusiness Technology, Bauru, SP 17030 000, Brazil
| | - Márcio G Ribeiro
- Department of Animal Production and Preventive Veterinary Medicine, School of Veterinary Medicine and Animal Sciences, São Paulo State University, Botucatu, SP 18618 681, Brazil
| | - Helio Langoni
- Department of Animal Production and Preventive Veterinary Medicine, School of Veterinary Medicine and Animal Sciences, São Paulo State University, Botucatu, SP 18618 681, Brazil
| | - Vera L M Rall
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University, Botucatu, SP 18618 689, Brazil.
| |
Collapse
|
4
|
Pokharel P, Dhakal S, Dozois CM. The Diversity of Escherichia coli Pathotypes and Vaccination Strategies against This Versatile Bacterial Pathogen. Microorganisms 2023; 11:344. [PMID: 36838308 PMCID: PMC9965155 DOI: 10.3390/microorganisms11020344] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 02/03/2023] Open
Abstract
Escherichia coli (E. coli) is a gram-negative bacillus and resident of the normal intestinal microbiota. However, some E. coli strains can cause diseases in humans, other mammals and birds ranging from intestinal infections, for example, diarrhea and dysentery, to extraintestinal infections, such as urinary tract infections, respiratory tract infections, meningitis, and sepsis. In terms of morbidity and mortality, pathogenic E. coli has a great impact on public health, with an economic cost of several billion dollars annually worldwide. Antibiotics are not usually used as first-line treatment for diarrheal illness caused by E. coli and in the case of bloody diarrhea, antibiotics are avoided due to the increased risk of hemolytic uremic syndrome. On the other hand, extraintestinal infections are treated with various antibiotics depending on the site of infection and susceptibility testing. Several alarming papers concerning the rising antibiotic resistance rates in E. coli strains have been published. The silent pandemic of multidrug-resistant bacteria including pathogenic E. coli that have become more difficult to treat favored prophylactic approaches such as E. coli vaccines. This review provides an overview of the pathogenesis of different pathotypes of E. coli, the virulence factors involved and updates on the major aspects of vaccine development against different E. coli pathotypes.
Collapse
Affiliation(s)
- Pravil Pokharel
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), 531 Boul des Prairies, Laval, QC H7V 1B7, Canada
- Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Faculté de Médecine Vétérinaire, Université de Montréal Saint-Hyacinthe, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Sabin Dhakal
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), 531 Boul des Prairies, Laval, QC H7V 1B7, Canada
- Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Faculté de Médecine Vétérinaire, Université de Montréal Saint-Hyacinthe, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Charles M. Dozois
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), 531 Boul des Prairies, Laval, QC H7V 1B7, Canada
- Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Faculté de Médecine Vétérinaire, Université de Montréal Saint-Hyacinthe, Saint-Hyacinthe, QC J2S 2M2, Canada
- Pasteur Network, Laval, QC H7V 1B7, Canada
| |
Collapse
|
5
|
Genetic and Antimicrobial Resistance Profiles of Mammary Pathogenic E. coli (MPEC) Isolates from Bovine Clinical Mastitis. Pathogens 2022; 11:pathogens11121435. [PMID: 36558768 PMCID: PMC9781227 DOI: 10.3390/pathogens11121435] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 12/02/2022] Open
Abstract
Mammary pathogenic E. coli (MPEC) is one of the main pathogens of environmental origin responsible for causing clinical mastitis worldwide. Even though E. coli are strongly associated with transient or persistent mastitis and the economic impacts of this disease, the virulence factors involved in the pathogenesis of MPEC remain unknown. Our aim was to characterize 110 MPEC isolates obtained from the milk of cows with clinical mastitis, regarding the virulence factor-encoding genes present, adherence patterns on HeLa cells, and antimicrobial resistance profile. The MPEC isolates were classified mainly in phylogroups A (50.9%) and B1 (38.2%). None of the isolates harbored genes used for diarrheagenic E. coli classification, but 26 (23.6%) and 4 (3.6%) isolates produced the aggregative or diffuse adherence pattern, respectively. Among the 22 genes investigated, encoding virulence factors associated with extraintestinal pathogenic E. coli pathogenesis, fimH (93.6%) was the most frequent, followed by traT (77.3%) and ompT (68.2%). Pulsed-field gel electrophoresis analysis revealed six pulse-types with isolates obtained over time, thus indicating persistent intramammary infections. The genes encoding beta-lactamases detected were as follows: blaTEM (35/31.8%); blaCTX-M-2/blaCTX-M-8 (2/1.8%); blaCTX-M-15 and blaCMY-2 (1/0.9%); five isolates were classified as extended spectrum beta-lactamase (ESBL) producers. As far as we know, papA, shf, ireA, sat and blaCTX-M-8 were detected for the first time in MPEC. In summary, the genetic profile of the MPEC studied was highly heterogeneous, making it impossible to establish a common genetic profile useful for molecular MPEC classification. Moreover, the detection of ESBL-producing isolates is a serious public health concern.
Collapse
|
6
|
Yamani LZ, Elhadi N. Virulence Characteristics, Antibiotic Resistance Patterns and Molecular Typing of Enteropathogenic Producing Escherichia coli (EPEC) Isolates in Eastern Province of Saudi Arabia: 2013–2014. Infect Drug Resist 2022; 15:6763-6772. [DOI: 10.2147/idr.s388956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/15/2022] [Indexed: 11/24/2022] Open
|
7
|
Idland L, Bø-Granquist EG, Aspholm M, Lindbäck T. The Ability of Shiga Toxin-Producing Escherichia coli to Grow in Raw Cow's Milk Stored at Low Temperatures. Foods 2022; 11:3411. [PMID: 36360022 PMCID: PMC9656703 DOI: 10.3390/foods11213411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/19/2022] [Accepted: 10/22/2022] [Indexed: 11/16/2022] Open
Abstract
Despite the lack of scientific evidence, some consumers assert that raw milk is a natural food with nutritional and immunological properties superior to pasteurized milk. This has led to the increased popularity of unpasteurized cow milk (UPM) and disregard for the risks of being exposed to zoonotic infections. Dairy cattle are healthy carriers of Shiga toxin (Stx)-producing E. coli (STEC), and contaminated UPM has caused STEC outbreaks worldwide. The association between STEC, carrying the eae (E. coli attachment effacement) gene, and severe diseases is well-established. We have previously isolated four eae positive STEC isolates from two neighboring dairy farms in the Southeast of Norway. A whole genome analysis revealed that isolates from different farms exhibited nearly identical genetic profiles. To explore the risks associated with drinking UPM, we examined the ability of the isolates to produce Stx and their growth in UPM at different temperatures. All the isolates produced Stx and one of the isolates was able to propagate in UPM at 8 °C (p < 0.02). Altogether, these results highlight the risk for STEC infections associated with the consumption of UPM.
Collapse
Affiliation(s)
- Lene Idland
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 1432 Ås, Norway
| | - Erik G. Bø-Granquist
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 1432 Ås, Norway
| | - Marina Aspholm
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 1432 Ås, Norway
| | - Toril Lindbäck
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 1432 Ås, Norway
| |
Collapse
|
8
|
On the Infectious Causes of Neonatal Piglet Diarrhoea—A Review. Vet Sci 2022; 9:vetsci9080422. [PMID: 36006337 PMCID: PMC9414921 DOI: 10.3390/vetsci9080422] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/05/2022] [Accepted: 08/08/2022] [Indexed: 11/17/2022] Open
Abstract
The aim of this paper is to review current knowledge on the relationship between presumptive infectious agents and neonatal porcine diarrhoea (NPD). The literature provides information on the rationale for this causation, including the first mention, main understandings gained with respect to, e.g., pathogenesis, and the knowledge to date on the specific relationships. Further, surveys on the presence and relative importance of these pathogens in NPD are included and the methodology used to identify the causation are discussed.
Collapse
|
9
|
Ohmura-Hoshino M, Miyaki Y, Yashima S. A one-step multiplex PCR-based assay for simultaneous detection and classification of virulence factors to identify five diarrheagenic E. coli pathotypes. Heliyon 2022; 8:e10231. [PMID: 36046532 PMCID: PMC9421181 DOI: 10.1016/j.heliyon.2022.e10231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 03/22/2022] [Accepted: 08/04/2022] [Indexed: 12/02/2022] Open
Abstract
Human diarrhea-causing strains of Escherichia coli are referred to as diarrheagenic E. coli (DEC). DEC can be divided into five main categories based on distinct epidemiological and clinical features, specific virulence determinants, and association with certain serotypes. In the present study, a simple and rapid one-step single reaction multiplex PCR (mPCR) assay was developed for the simultaneous identification and differentiation of five currently established DEC pathotypes causing gastrointestinal diseases. The mPCR incorporated 10 primer pairs to amplify 10 virulence genes specific to the different pathotypes (i.e., stx1 and stx2 for EHEC, elt and sth for ETEC, eaeA and bfpA for EPEC, aggR and astA for EAEC, and ipaH and invE for EIEC) and to generate DNA fragments of sufficiently different sizes to be unequivocally resolved. All strains were detected at concentrations ranging from 104 to 107 CFU/mL. To demonstrate the utility of the mPCR assay, 236 clinically isolated strains of DEC from two hospitals were successfully categorized. One-step mPCR technique reduced the cost and effort involved in the identification of various virulence factors in DEC. Thus, we demonstrated that the newly developed mPCR assay has the potential to be introduced as a diagnostic tool that can be utilized for the detection of DEC as an additional check in clinical laboratories and for confirmation in health and environment institutes, health centers, and reference laboratories. We developed a one-step single reaction mPCR to detect DEC strains. 10 prominently expressed genes characteristic to the five pathotypes were assayed. All the strains were detected at concentrations ranging from 104 to 107 CFU/mL. We show cost- and time-effective detection of DEC in clinical cultured samples.
Collapse
Affiliation(s)
- Mari Ohmura-Hoshino
- Department of Medical Technology, School of Nursing and Medical Care, Yokkaichi Nursing and Medical Care University, Yokkaichi, Japan
| | | | | |
Collapse
|
10
|
Molecular Epidemiology of Enteroaggregative Escherichia coli (EAEC) Isolates of Hospitalized Children from Bolivia Reveal High Heterogeneity and Multidrug-Resistance. Int J Mol Sci 2020; 21:ijms21249543. [PMID: 33334000 PMCID: PMC7765457 DOI: 10.3390/ijms21249543] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/10/2020] [Accepted: 12/12/2020] [Indexed: 12/16/2022] Open
Abstract
Enteroaggregative Escherichia coli (EAEC) is an emerging pathogen frequently associated with acute diarrhea in children and travelers to endemic regions. EAEC was found the most prevalent bacterial diarrheal pathogen from hospitalized Bolivian children less than five years of age with acute diarrhea from 2007 to 2010. Here, we further characterized the epidemiology of EAEC infection, virulence genes, and antimicrobial susceptibility of EAEC isolated from 414 diarrheal and 74 non-diarrheal cases. EAEC isolates were collected and subjected to a PCR-based virulence gene screening of seven virulence genes and a phenotypic resistance test to nine different antimicrobials. Our results showed that atypical EAEC (a-EAEC, AggR-negative) was significantly associated with diarrhea (OR, 1.62, 95% CI, 1.25 to 2.09, p < 0.001) in contrast to typical EAEC (t-EAEC, AggR-positive). EAEC infection was most prevalent among children between 7–12 months of age. The number of cases exhibited a biannual cycle with a major peak during the transition from warm to cold (April–June). Both typical and a-EAEC infections were graded as equally severe; however, t-EAEC harbored more virulence genes. aap, irp2 and pic were the most prevalent genes. Surprisingly, we detected 60% and 52.6% of multidrug resistance (MDR) EAEC among diarrheal and non-diarrheal cases. Resistance to ampicillin, sulfonamides, and tetracyclines was most common, being the corresponding antibiotics, the ones that are frequently used in Bolivia. Our work is the first study that provides comprehensive information on the high heterogenicity of virulence genes in t-EAEC and a- EAEC and the large prevalence of MDR EAEC in Bolivia.
Collapse
|
11
|
Modgil V, Mahindroo J, Narayan C, Kalia M, Yousuf M, Shahi V, Koundal M, Chaudhary P, Jain R, Sandha KS, Tanwar S, Gupta P, Thakur K, Singh D, Gautam N, Kakkar M, Bharti B, Mohan B, Taneja N. Comparative analysis of virulence determinants, phylogroups, and antibiotic susceptibility patterns of typical versus atypical Enteroaggregative E. coli in India. PLoS Negl Trop Dis 2020; 14:e0008769. [PMID: 33206643 PMCID: PMC7673547 DOI: 10.1371/journal.pntd.0008769] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 09/01/2020] [Indexed: 11/30/2022] Open
Abstract
Enteroaggregative Escherichia coli (EAEC) is an evolving enteric pathogen that causes acute and chronic diarrhea in developed and industrialized nations in children. EAEC epidemiology and the importance of atypical EAEC (aEAEC) isolation in childhood diarrhea are not well documented in the Indian setting. A comparative analysis was undertaken to evaluate virulence, phylogeny, and antibiotic sensitivity among typical tEAEC versus aEAEC. A total of 171 EAEC isolates were extracted from a broad surveillance sample of diarrheal (N = 1210) and healthy children (N = 550) across North India. Polymerase chain reaction (PCR) for the aggR gene (master regulator gene) was conducted to differentiate tEAEC and aEAEC. For 21 virulence genes, we used multiplex PCR to classify possible virulence factors among these strains. Phylogenetic classes were identified by a multiplex PCR for chuA, yjaA, and a cryptic DNA fragment, TspE4C2. Antibiotic susceptibility was conducted by the disc diffusion method as per CLSI guidelines. EAEC was associated with moderate to severe diarrhea in children. The prevalence of EAEC infection (11.4%) was higher than any other DEC group (p = 0.002). tEAEC occurrence in the diarrheal group was higher than in the control group (p = 0.0001). tEAEC strain harbored more virulence genes than aEAEC. astA, aap, and aggR genes were most frequently found in the EAEC from the diarrheal population. Within tEAEC, this gene combination was present in more than 50% of strains. Also, 75.8% of EAEC strains were multidrug-resistant (MDR). Phylogroup D (43.9%) and B1 (39.4%) were most prevalent in the diarrheal and control group, respectively. Genetic analysis revealed EAEC variability; the comparison of tEAEC and aEAEC allowed us to better understand the EAEC virulence repertoire. Further microbiological and epidemiological research is required to examine the pathogenicity of not only typical but also atypical EAEC. Enteroaggregative E. coli (EAEC) are an increasingly important cause of diarrhea. E. coli belonging to this category cause watery diarrhea, which is often persistent and can be inflammatory. It is also associated with traveler’s diarrhea in children and adults in middle and high-income countries. EAEC are defined by their ability to adhere to epithelial cells in a characteristic stacked brick-like pattern. However, the identification of these pathogenic strains remains elusive because of its heterogeneous nature. Genes that could contribute to the pathogenicity of EAEC encode adhesions, toxins, and other factors. Due to the heterogeneity of EAEC strains and differing host immune responses, not all EAEC infections are symptomatic. A critical factor in both recognizing EAEC pathogenesis and defining typical EAEC (tEAEC) strains is AggR, a transcriptional control for many EAEC virulence genes. The central role of aggR in virulence confers a strong priority to understand its pathogenicity. To identify EAEC, the CVD432 probe has been used. The CVD432 is a DNA probe from pAA plasmid of EAEC, has been reported to be specific for the detection of EAEC. The lack of sensitivity comes from the genetic heterogeneity of the EAEC strains and the wide geographic dispersal of strains. In our study, we performed a large surveillance of EAEC from North India among the pediatric population. Samples were collected by the microbiology staff at the Postgraduate Institute of Medical Education and Research (PGIMER) and referral system labs in Chandigarh (Manimajra), Punjab (Ludhiana), Haryana (Panchkula and Ambala Cantt), Himachal Pradesh (Hamirpur, Shimla, and Tanda), and Uttarakhand (Rishikesh, Rudrapur, and Haridwar)]. PGIMER is the largest tertiary care hospital in North India and serves patients from across Punjab, Jammu and Kashmir, Himachal Pradesh and Haryana. EAEC infections were detected using molecular methods. In our finding, astA, aap, and aggR genes were most frequently found in the EAEC from the diarrheal population. Within tEAEC, this gene combination is present in more than 50% of strains and helps to differentiate tEAEC from aEAEC. Our collection of EAEC strains helps in finding an appropriate marker for the early detection of EAEC. Our signature sequence (astA, aap, and aggR) will be ideal as focus genes for EAEC identification, as well as tEAEC and aEAEC. The multidrug resistance (MDR) was observed in 75.8% of the EAEC strains. tEAEC exhibits resistance to a greater number of antibiotics with respect to aEAEC. The phylogenetic analysis revealed that EAEC phylogeny is diverse and dispersed in all the phylogroups.
Collapse
Affiliation(s)
- Vinay Modgil
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Jaspreet Mahindroo
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Chandradeo Narayan
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Manmohit Kalia
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Md Yousuf
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Varun Shahi
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Meenakshi Koundal
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Pankaj Chaudhary
- Department of Pediatrics Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh (PGIMER), India
| | - Ruby Jain
- Civil Hospital Manimajra, Chandigarh, India
| | | | | | - Pratima Gupta
- Department of Microbiology, All India Institute of Medical Sciences (AIIMS), Rishikesh, Uttarakhand, India
| | - Kamlesh Thakur
- Department of Microbiology, Dr. Rajendra Prasad Government Medical College Kangra (RPGMC), Himachal Pradesh, India
| | - Digvijay Singh
- Department of Microbiology, Indira Gandhi Medical college (IGMC), Shimla, Himachal Pradesh, India
| | - Neha Gautam
- Department of Microbiology, Indira Gandhi Medical college (IGMC), Shimla, Himachal Pradesh, India
| | | | - Bhavneet Bharti
- Department of Pediatrics Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh (PGIMER), India
| | - Balvinder Mohan
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Neelam Taneja
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
- * E-mail:
| |
Collapse
|
12
|
Antimicrobial Resistance Profiles and Characterization of Escherichia coli Strains from Cases of Neonatal Diarrhea in Spanish Pig Farms. Vet Sci 2020; 7:vetsci7020048. [PMID: 32326282 PMCID: PMC7357114 DOI: 10.3390/vetsci7020048] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/14/2020] [Accepted: 04/17/2020] [Indexed: 02/07/2023] Open
Abstract
Escherichia coli is considered one of the most common agents associated with neonatal diarrhea in piglets. The aim of this work was to characterize the pathogenic and antimicrobial resistance (AMR) profiles of 122 E. coli strains isolated from pigs suffering diarrhea (n = 94) and pigs without diarrhea (n = 28) of 24 farms in Spain. Virulence factors, toxins and AMR (ESBL and colistin) genes and AMR phenotypes of E. coli isolates were analyzed. Low prevalence of pathogenic E. coli strains (26%) was found in both groups. However, ETEC and VTEC strains were more frequently isolated from diarrheic piglets. Irrespectively of diarrhea occurrence, 97.5% of the strains showed a multidrug-resistance (MDR) profile to aminopenicillins, sulfonamides and tetracyclines. It was found that 22% of E. coli was CTX-M+, with CTX-M-14 being the principal allelic variant. Remarkably, 81.5% of CTX-M+ strains were isolated from diarrheic animals and presented an extended MDR profile to aminopenicillins, quinolones and aminoglycosides. Finally, low frequencies of colistin resistance genes mcr-1 (4/122) and mcr-4 (1/122) were found. MDR E. coli strains are circulating in pig farms of Spain, representing a serious threat to animal and public health. More appropriate diagnostic approaches (genetic and AMR phenotypic analysis) should be implemented in animal health to optimize antibiotic treatments.
Collapse
|
13
|
Antibiotic resistance and virulence patterns of pathogenic Escherichia coli strains associated with acute gastroenteritis among children in Qatar. BMC Microbiol 2020; 20:54. [PMID: 32143566 PMCID: PMC7060563 DOI: 10.1186/s12866-020-01732-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 02/21/2020] [Indexed: 12/29/2022] Open
Abstract
Background The treatment of Enterobacteriaceae family including diarrheagenic E. coli (DEC) has been increasingly complicated due to the emergence of resistant strains. Here we report on the phenotypic resistance profiles and ESBL genotype and virulence profiles of Enteroaggregative E. coli (EAEC) and Enteropathogenic E. coli (EPEC) isolated from children hospitalized with acute gastroenteritis in Qatar (AGE). Results E. coli were isolated and characterized from 76 diarrheagenic stool positive samples, collected from hospitalized children less than 10 years old. Isolates were tested for antibiotic susceptibility against eighteen clinically relevant antibiotics using E-test method. Conventional PCR was performed to detect genes encoding ESBL and virulence factors. Chi-square test was performed to compare the individual antibiotic resistance between EPEC and EAEC. A significant percentage (73.7%) of isolates were resistant to at least one antibiotic. Overall, high resistance (70%) was reported to the first-line antibiotics such as ampicillin, tetracycline (46.4%), and sulfamethoxazole-trimethoprim (42.9%). Further, 39.5% of the isolates were multidrug resistant (MDR), with 22.4% being ESBL producers. On the other hand, all isolates were susceptible to carbapenem, fosfomycin, amikacin and colistin. The incidences of resistance to the 18 antibiotics between EPEC and EAEC were not significantly different by Pearson chi -square test (P > 0.05). Genetic analysis revealed that 88.23% of ESBL production was blaCTX-M-G1 (blaCTX-M-15, blaCTX-M-3) - encoded. Several different combinations of virulence markers were observed, however, there was no specific trend among the isolates apart from absence of the bundle-forming pilus (bfpA) gene, which encodes the type IV fimbriae in EPEC adherence factor (EAF) plasmid (pEAF), among all EPEC (atypical). 15% of the EAEC strains were positive for a combination of astA, aap & capU, while 10% were positive for three different combinations. The aap, aatA, capU and aggR virulence genes showed the highest frequency of 65, 60, 55 and 55% respectively. Others genes, east, astA, and aai, showed frequencies of 35, 30 and 20% respectively. Conclusions Atypical EPEC and EAEC were the primary etiological agents of diarrhea in children among DEC pathotypes. Our results indicated high rate of antimicrobial resistance pattern of DEC strains, which necessities the development of regulatory programs and reporting systems of antimicrobial resistance in DEC and other AGE-associated bacteria to insure effective control of diarrheal diseases. Results from this study demand a further research on identifying the phenotypic and genotypic profiles of more DEC pathotypes in various clinical samples.
Collapse
|
14
|
Montealegre MC, Talavera Rodríguez A, Roy S, Hossain MI, Islam MA, Lanza VF, Julian TR. High Genomic Diversity and Heterogenous Origins of Pathogenic and Antibiotic-Resistant Escherichia coli in Household Settings Represent a Challenge to Reducing Transmission in Low-Income Settings. mSphere 2020; 5:e00704-19. [PMID: 31941809 PMCID: PMC6968650 DOI: 10.1128/msphere.00704-19] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 12/14/2019] [Indexed: 11/25/2022] Open
Abstract
Escherichia coli is present in multiple hosts and environmental compartments as a normal inhabitant, temporary or persistent colonizer, and as a pathogen. Transmission of E. coli between hosts and with the environment is considered to occur more often in areas with poor sanitation. We performed whole-genome comparative analyses on 60 E. coli isolates from soils and fecal sources (cattle, chickens, and humans) in households in rural Bangladesh. Isolates from household soils were in multiple branches of the reconstructed phylogeny, intermixed with isolates from fecal sources. Pairwise differences between all strain pairs were large (minimum, 189 single nucleotide polymorphisms [SNPs]), suggesting high diversity and heterogeneous origins of the isolates. The presence of multiple virulence and antibiotic resistance genes is indicative of the risk that E. coli from soil and feces represent for the transmission of variants that pose potential harm to people. Analysis of the accessory genomes of the Bangladeshi E. coli relative to E. coli genomes available in NCBI identified a common pool of accessory genes shared among E. coli isolates in this geographic area. Together, these findings indicate that in rural Bangladesh, a high level of E. coli in soil is likely driven by contributions from multiple and diverse E. coli sources (human and animal) that share an accessory gene pool relatively unique to previously published E. coli genomes. Thus, interventions to reduce environmental pathogen or antimicrobial resistance transmission should adopt integrated One Health approaches that consider heterogeneous origins and high diversity to improve effectiveness and reduce prevalence and transmission.IMPORTANCEEscherichia coli is reported in high levels in household soil in low-income settings. When E. coli reaches a soil environment, different mechanisms, including survival, clonal expansion, and genetic exchange, have the potential to either maintain or generate E. coli variants with capabilities of causing harm to people. In this study, we used whole-genome sequencing to identify that E. coli isolates collected from rural Bangladeshi household soils, including pathogenic and antibiotic-resistant variants, are diverse and likely originated from multiple diverse sources. In addition, we observed specialization of the accessory genome of this Bangladeshi E. coli compared to E. coli genomes available in current sequence databases. Thus, to address the high level of pathogenic and antibiotic-resistant E. coli transmission in low-income settings, interventions should focus on addressing the heterogeneous origins and high diversity.
Collapse
Affiliation(s)
| | | | - Subarna Roy
- Food Microbiology Laboratory, Laboratory Sciences and Services Division, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Muhammed Iqbal Hossain
- Food Microbiology Laboratory, Laboratory Sciences and Services Division, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Mohammad Aminul Islam
- Food Microbiology Laboratory, Laboratory Sciences and Services Division, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, Washington, USA
| | - Val F Lanza
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal (IRYCIS), Madrid, Spain
| | - Timothy R Julian
- Eawag, Swiss Federal Institute of Science and Technology, Dübendorf, Switzerland
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| |
Collapse
|
15
|
Dubreuil JD. EAST1 toxin: An enigmatic molecule associated with sporadic episodes of diarrhea in humans and animals. J Microbiol 2019; 57:541-549. [PMID: 31016564 DOI: 10.1007/s12275-019-8651-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/10/2019] [Accepted: 02/07/2019] [Indexed: 11/27/2022]
Abstract
EAST1 is produced by a subset of enteroaggregative Escherichia coli strains. This toxin is a 38-amino acid peptide of 4100 Da. It shares 50% homology with the enterotoxic domain of STa and interacts with the same receptor. The mechanism of action of EAST1is proposed to be identical to that of STa eliciting a cGMP increase. EAST1 is associated with diarrheal disease in Man and various animal species including cattle and swine. Nevertheless, as EAST1-positive strains as well as culture supernatants did not provoke unequivocally diarrhea either in animal models or in human volunteers, the role of this toxin in disease is today still debated. This review intent is to examine the role of EAST1 toxin in diarrheal illnesses.
Collapse
Affiliation(s)
- J Daniel Dubreuil
- Faculté de médecine vétérinaire, Université de Montréal, Montréal, Québec, J2S 2M2, Canada.
| |
Collapse
|
16
|
Hebbelstrup Jensen B, Poulsen A, Hebbelstrup Rye Rasmussen S, Struve C, Engberg JH, Friis-Møller A, Boisen N, Jønsson R, Petersen RF, Petersen AM, Krogfelt KA. Genetic Virulence Profile of Enteroaggregative Escherichia coli Strains Isolated from Danish Children with Either Acute or Persistent Diarrhea. Front Cell Infect Microbiol 2017; 7:230. [PMID: 28611957 PMCID: PMC5447714 DOI: 10.3389/fcimb.2017.00230] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Accepted: 05/17/2017] [Indexed: 11/13/2022] Open
Abstract
Enteroaggregative Escherichia coli (EAEC) is frequently found in diarrheal stools worldwide. It has been associated with persistent diarrhea, weight loss, and failure to thrive in children living in developing countries. A number of important EAEC virulence genes are identified; however, their roles in acute and persistent diarrhea have not been previously investigated. The aim of this study was to identify specific EAEC virulence genes associated with duration and type of diarrhea in Danish children. We aimed to improve the current diagnostics of EAEC and enable targeting of strains with an expected severe disease course. Questionnaires answered by parents provided information regarding duration of diarrhea and presence of blood or mucus. A total of 295 EAEC strains were collected from children with acute (≤7 days) and persistent diarrhea (≥14 days) and were compared by using multiplex PCR targeting the genes sat, sepA, pic, sigA, pet, astA, aatA, aggR, aaiC, aap, agg3/4C, ORF3, aafA, aggA, agg3A, agg4A, and agg5A. Furthermore, the distribution of EAEC genes in strains collected from cases of bloody, mucoid, and watery diarrhea was investigated. The classification and regression tree analysis (CART) was applied to investigate the relationship between EAEC virulence genes and diarrheal duration and type. Persistent diarrhea was associated with strains lacking the pic gene (p = 0.002) and with the combination of the genes pic, sat, and absence of the aggA gene (p = 0.05). Prolonged diarrhea was associated with the combination of the genes aatA and astA (p = 0.03). Non-mucoid diarrhea was associated with strains lacking the aatA gene (p = 0.004). Acute diarrhea was associated with the genes aggR, aap, and aggA by individual odds ratios. Resistance toward gentamicin and ciprofloxacin was observed in 7.5 and 3% of strains, respectively. Multi-drug resistance was observed in 38% of strains. Genetic host factors have been associated with an increased risk of EAEC-associated disease. Therefore, we investigated a panel of risk factors in two groups of children—EAEC-positive and EAEC-negative—to identify additional factors predisposing to disease. The duration of breastfeeding was positively correlated with the likelihood of belonging to the EAEC-negative group of children.
Collapse
Affiliation(s)
| | - Anja Poulsen
- Department of Gastroenterology, Copenhagen University Hospital HvidovreCopenhagen, Denmark
| | | | - Carsten Struve
- Department of Bacteria, Parasites and Fungi, Statens Serum InstitutCopenhagen, Denmark
| | - Jørgen H Engberg
- Department of Clinical Microbiology, Slagelse HospitalSlagelse, Denmark
| | - Alice Friis-Møller
- Department of Clinical Microbiology, Copenhagen University Hospital HvidovreCopenhagen, Denmark
| | - Nadia Boisen
- Department of Bacteria, Parasites and Fungi, Statens Serum InstitutCopenhagen, Denmark
| | - Rie Jønsson
- Department of Bacteria, Parasites and Fungi, Statens Serum InstitutCopenhagen, Denmark
| | - Randi F Petersen
- Department of Bacteria, Parasites and Fungi, Statens Serum InstitutCopenhagen, Denmark
| | - Andreas M Petersen
- Department of Bacteria, Parasites and Fungi, Statens Serum InstitutCopenhagen, Denmark.,Department of Gastroenterology, Copenhagen University Hospital HvidovreCopenhagen, Denmark.,Department of Clinical Microbiology, Copenhagen University Hospital HvidovreCopenhagen, Denmark
| | - Karen A Krogfelt
- Department of Bacteria, Parasites and Fungi, Statens Serum InstitutCopenhagen, Denmark
| |
Collapse
|
17
|
Seo DJ, Choi S, Jeon SB, Jeong S, Park H, Lee BH, Kim GB, Yang SJ, Nishikawa Y, Choi C. Comparative sequence analysis of enteroaggregative Escherichia coli heat-stable enterotoxin 1 identified in Korean and Japanese Escherichia coli strains. Int J Food Microbiol 2017; 243:1-8. [DOI: 10.1016/j.ijfoodmicro.2016.11.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 11/07/2016] [Accepted: 11/19/2016] [Indexed: 12/11/2022]
|
18
|
Ochi S, Shah M, Odoyo E, Bundi M, Miringu G, Guyo S, Wandera E, Kathiiko C, Kariuki S, Karama M, Tsuji T, Ichinose Y. An Outbreak of Diarrhea in Mandera, Kenya, Due to Escherichia coli Serogroup O-Nontypable Strain That Had a Coding Gene for Enteroaggregative E. coli Heat-Stable Enterotoxin 1. Am J Trop Med Hyg 2016; 96:457-464. [PMID: 27994101 DOI: 10.4269/ajtmh.16-0310] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 11/07/2016] [Indexed: 11/07/2022] Open
Abstract
In an outbreak of gastroenteritis in December 2009, in Mandera, Kenya, Escherichia coli O-nontypable (ONT) strain was isolated from stool specimens of patients (18/24, 75%). The E. coli ONT organisms could not be assigned to any of the recognized diarrheagenic groups of E. coli However, they possessed the enteroaggregative E. coli heat-stable enterotoxin-1 gene. The cell-free culture filtrates of the E. coli ONT strain isolated from the outbreak cases induced considerable amount of fluid accumulation in suckling mouse intestine, indicating production of an enterotoxic factor(s). These results identify E. coli that did not have any diarrheagenic characteristics except astA as the etiological agent of the diarrheal outbreak in Mandera. It is however considered necessary to characterize the fluid accumulation factor(s) to determine whether any novel toxins were responsible for the fluid accumulation. Moreover, it is important to study dissemination of strains producing the enterotoxic factor(s) to assess their public health significance distribution in the environment.
Collapse
Affiliation(s)
| | - Mohammad Shah
- Nagasaki University Institute of Tropical Medicine, Kenya Research Station, Nairobi, Kenya
| | - Erick Odoyo
- Nagasaki University Institute of Tropical Medicine, Kenya Research Station, Nairobi, Kenya
| | - Martin Bundi
- Nagasaki University Institute of Tropical Medicine, Kenya Research Station, Nairobi, Kenya
| | - Gabriel Miringu
- Nagasaki University Institute of Tropical Medicine, Kenya Research Station, Nairobi, Kenya
| | - Sora Guyo
- Kenya Medical Research Institute, Nairobi, Kenya
| | - Ernest Wandera
- Nagasaki University Institute of Tropical Medicine, Kenya Research Station, Nairobi, Kenya
| | - Cyrus Kathiiko
- Nagasaki University Institute of Tropical Medicine, Kenya Research Station, Nairobi, Kenya
| | | | | | - Takao Tsuji
- Nagasaki University Institute of Tropical Medicine, Kenya Research Station, Nairobi, Kenya
| | - Yoshio Ichinose
- Nagasaki University Institute of Tropical Medicine, Kenya Research Station, Nairobi, Kenya.
| |
Collapse
|
19
|
Dubreuil JD, Isaacson RE, Schifferli DM. Animal Enterotoxigenic Escherichia coli. EcoSal Plus 2016; 7:10.1128/ecosalplus.ESP-0006-2016. [PMID: 27735786 PMCID: PMC5123703 DOI: 10.1128/ecosalplus.esp-0006-2016] [Citation(s) in RCA: 187] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Indexed: 12/13/2022]
Abstract
Enterotoxigenic Escherichia coli (ETEC) is the most common cause of E. coli diarrhea in farm animals. ETEC are characterized by the ability to produce two types of virulence factors: adhesins that promote binding to specific enterocyte receptors for intestinal colonization and enterotoxins responsible for fluid secretion. The best-characterized adhesins are expressed in the context of fimbriae, such as the F4 (also designated K88), F5 (K99), F6 (987P), F17, and F18 fimbriae. Once established in the animal small intestine, ETEC produce enterotoxin(s) that lead to diarrhea. The enterotoxins belong to two major classes: heat-labile toxins that consist of one active and five binding subunits (LT), and heat-stable toxins that are small polypeptides (STa, STb, and EAST1). This review describes the disease and pathogenesis of animal ETEC, the corresponding virulence genes and protein products of these bacteria, their regulation and targets in animal hosts, as well as mechanisms of action. Furthermore, vaccines, inhibitors, probiotics, and the identification of potential new targets by genomics are presented in the context of animal ETEC.
Collapse
Affiliation(s)
- J Daniel Dubreuil
- Faculté de Médecine Vétérinaire, Université de Montréal, Québec J2S 7C6, Canada
| | - Richard E Isaacson
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN 55108
| | - Dieter M Schifferli
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
20
|
Hamm K, Barth SA, Stalb S, Geue L, Liebler-Tenorio E, Teifke JP, Lange E, Tauscher K, Kotterba G, Bielaszewska M, Karch H, Menge C. Experimental Infection of Calves with Escherichia coli O104:H4 outbreak strain. Sci Rep 2016; 6:32812. [PMID: 27600997 PMCID: PMC5013450 DOI: 10.1038/srep32812] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 08/15/2016] [Indexed: 11/22/2022] Open
Abstract
In 2011, a severe outbreak of hemolytic-uremic syndrome was caused by an unusual, highly virulent enterohemorrhagic E. coli (EHEC) O104:H4 strain, which possessed EHEC virulence traits in the genetic background of human-adapted enteroaggregative E. coli. To determine magnitude of fecal shedding and site of colonization of EHEC O104:H4 in a livestock host, 30 (ten/strain) weaned calves were inoculated with 1010 CFU of EHEC O104:H4, EHEC O157:H7 (positive control) or E. coli strain 123 (negative control) and necropsied (4 or 28 d.p.i.). E. coli O157:H7 was recovered until 28 d.p.i. and O104:H4 until 24 d.p.i. At 4 d.p.i., EHEC O104:H4 was isolated from intestinal content and detected associated with the intestinal mucosa. These results are the first evidence that cattle, the most important EHEC reservoir, can also carry unusual EHEC strains at least transiently, questioning our current understanding of the molecular basis of host adaptation of this important E. coli pathovar.
Collapse
Affiliation(s)
- K Hamm
- Friedrich-Loeffler-Institut, Institute of Molecular Pathogenesis, Naumburger Str. 96a, 07743 Jena, Germany
| | - S A Barth
- Friedrich-Loeffler-Institut, Institute of Molecular Pathogenesis, Naumburger Str. 96a, 07743 Jena, Germany
| | - S Stalb
- Friedrich-Loeffler-Institut, Institute of Molecular Pathogenesis, Naumburger Str. 96a, 07743 Jena, Germany
| | - L Geue
- Friedrich-Loeffler-Institut, Institute of Molecular Pathogenesis, Naumburger Str. 96a, 07743 Jena, Germany
| | - E Liebler-Tenorio
- Friedrich-Loeffler-Institut, Institute of Molecular Pathogenesis, Naumburger Str. 96a, 07743 Jena, Germany
| | - J P Teifke
- Friedrich-Loeffler-Institut, Department of Experimental Animal Facilities and Biorisk Management, Südufer 10, 17493 Greifswald - Insel Riems, Germany
| | - E Lange
- Friedrich-Loeffler-Institut, Department of Experimental Animal Facilities and Biorisk Management, Südufer 10, 17493 Greifswald - Insel Riems, Germany
| | - K Tauscher
- Friedrich-Loeffler-Institut, Department of Experimental Animal Facilities and Biorisk Management, Südufer 10, 17493 Greifswald - Insel Riems, Germany
| | - G Kotterba
- Friedrich-Loeffler-Institut, Institute of Infectology, Südufer 10, 17493 Greifswald - Insel Riems, Germany
| | - M Bielaszewska
- Institute of Hygiene, University of Münster, Robert-Koch-Straße 41, 48149 Münster, Germany
| | - H Karch
- Institute of Hygiene, University of Münster, Robert-Koch-Straße 41, 48149 Münster, Germany
| | - C Menge
- Friedrich-Loeffler-Institut, Institute of Molecular Pathogenesis, Naumburger Str. 96a, 07743 Jena, Germany
| |
Collapse
|
21
|
Pathogen-induced secretory diarrhea and its prevention. Eur J Clin Microbiol Infect Dis 2016; 35:1721-1739. [DOI: 10.1007/s10096-016-2726-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 07/05/2016] [Indexed: 12/19/2022]
|
22
|
Keane OM. Genetic diversity, the virulence gene profile and antimicrobial resistance of clinical mastitis-associated Escherichia coli. Res Microbiol 2016; 167:678-684. [PMID: 27404459 DOI: 10.1016/j.resmic.2016.06.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 06/27/2016] [Accepted: 06/29/2016] [Indexed: 12/27/2022]
Abstract
Escherichia coli is a common cause of bovine mastitis, particularly around parturition and early lactation when the host is immunosuppressed. Isolates (n = 37) recovered from cases of clinical mastitis in Ireland were characterised with respect to genotypic diversity, phylogenetic group, virulence gene profile and antimicrobial susceptibility. The isolates were genotypically diverse, belonging to 19 different sequence types. However, the majority (86%) belonged to phylogenetic groups A or B1, groups commonly associated with commensal E. coli. The isolates encoded few virulence genes with iss (increased serum survival, 41%), lpfA (long polar fimbriae, 19%) and astA (enteroaggregative heat-stable toxin, 14%) among the most common virulence genes detected. The only virulence gene to differ in frequency between the phylogenetic groups was lpfA, found exclusively in B1. Resistance to at least one antimicrobial was detected in 16% of isolates. Three isolates were multidrug-resistant, with one resistant to seven antibiotics. There was no relationship between antimicrobial resistance and phylogenetic group. These results indicate that many cases of clinical E. coli mastitis in Ireland may be caused by opportunistic commensal organisms lacking specific virulence genes. However, the organisms represent a reservoir of antimicrobial resistance determinants with the potential to disseminate determinants to other organisms.
Collapse
Affiliation(s)
- Orla M Keane
- Animal & Bioscience Research Department, Teagasc, Grange, Dunsany, Co. Meath, Ireland.
| |
Collapse
|
23
|
Peresi JTM, Almeida IAZCD, Vaz TMI, Hernandes RT, Teixeira ISDC, Silva SIDLE, Graciano RAS, Pinheiro SR, dos Santos LF. Search for diarrheagenic Escherichia coli in raw kibbe samples reveals the presence of Shiga toxin-producing strains. Food Control 2016. [DOI: 10.1016/j.foodcont.2015.11.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
24
|
Paniagua-Contreras GL, Monroy-Pérez E, Rodríguez-Moctezuma JR, Domínguez-Trejo P, Vaca-Paniagua F, Vaca S. Virulence factors, antibiotic resistance phenotypes and O-serogroups of Escherichia coli strains isolated from community-acquired urinary tract infection patients in Mexico. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2015; 50:478-485. [PMID: 26433755 DOI: 10.1016/j.jmii.2015.08.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 06/24/2015] [Accepted: 08/31/2015] [Indexed: 11/30/2022]
Abstract
BACKGROUND/PURPOSE Uropathogenic Escherichia coli (UPEC) strains isolated from patients with community-acquired urinary tract infections (UTIs) were assessed to determine the prevalence of virulence genes, antibiotic resistance, and the O-serogroup of the strains. METHODS Consenting patients with community-acquired UTI were enrolled at Unidad Médica Familiar Number 64 (Instituto Mexicano del Seguro Social, Estado de Mexico, Mexico) and 321 urine samples were collected. Polymerase chain reaction (PCR) was used to assess 24 virulence genes and 14 O-serogroups. The Kirby-Bauer method was used to evaluate the antibiotic susceptibility of the isolated strains to 12 commonly used antibiotics. RESULTS A total of 194 strains were identified as E. coli using standard biochemical tests, followed by PCR amplification of 16S ribosomal RNA gene. Only 58.2% of the strains belonged to the assessed 14 O-serogroups. The serogroups O25, O15, O8, and O75 were present in 20.6%, 17%, 6.1%, and 4.6% of strains, respectively. The most frequently occurring virulence genes among UPEC strains included kpsMT (92.2% strains), usp (87.1%), irp2 (79.3%), iha (64.9%), fim (61.3%), set (36%), astA (33.5%), pap (24.7%), and papGII (21.1%). In addition, 97% of the strains were multi-drug resistant (coresistance to 3-11 antibiotics). CONCLUSION The isolated UPEC strains predominantly belonged to three serogroups (O25, O15, and O8), harboured numerous virulence genes, and are multiresistant to antibiotics. The findings of this study could be used to orient UTI treatment strategies and in epidemiological studies in Mexico.
Collapse
Affiliation(s)
| | - Eric Monroy-Pérez
- FES Iztacala, Universidad Nacional Autónoma de México, Estado de Mexico, Mexico
| | | | - Pablo Domínguez-Trejo
- Unidad Médica Familiar Number 64, Instituto Mexicano del Seguro Social, Juárez, Mexico
| | | | - Sergio Vaca
- FES Iztacala, Universidad Nacional Autónoma de México, Estado de Mexico, Mexico.
| |
Collapse
|
25
|
Akiyama Y, Saito E, Futai H, Ogita K, Sakae H, Fukunaga M, Tsuji H, Chikahira M, Mimura M. Comprehensive Study of Pathogenic Genes Distributed in Escherichia coli Isolated from Cattle. Food Hygiene and Safety Science (Shokuhin Eiseigaku Zasshi) 2015; 56:118-22. [PMID: 26156168 DOI: 10.3358/shokueishi.56.118] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Pathogenic genes such as stx1, stx2, STh gene, STp gene, LT gene, invE, eae, aggR, afaD, astA, cdt and cnf were investigated in Escherichia coli isolated from cattle during Nov. 2012 and Aug. 2013. Plural pathogenic genes were concurrently detected by multiplex PCR, and screen-positive genes were confirmed and sub-classified by PCR. Among 100 cattle investigated, 180 E. coli strains with diarrheic genes (DEC) were detected in 79 cattle, and 45 of them, isolated from 32 cattle, were Shiga toxin-producing E. coli (STEC). More than 30% of cattle carried astA, cdt, cnf and stx2 in descending order. STh gene, LT gene, invE, aggR and afaD were not detected in this study. Both stx1 and stx2 were concurrently detected from 6 of 45 STEC strains and stx2 alone was detected from 19. Seventeen STEC strains carried STp gene, astA, or cdt along with stx1 or stx2. Additionally, 135 remaining DEC were classified into 18 enterotoxigenic E. coli with STp gene, 25 enteropathogenic E. coli with eae, and 92 other DEC with astA, cdt and cnf. Both O and H serotypes were identified in 48 strains, including O157 : H7, O1H7 and so on. O157 : H7 were identified in 3 strains that carried stx2 and eae together, as found in human pathogenic strains isolated from patients with gastroenteritis and hemolytic-uremic syndrome.
Collapse
Affiliation(s)
- Yumi Akiyama
- Public Health Science Research Center, Hyogo Prefectural Institute of Public Health and Consumer Sciences
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Epidemiology and clinical manifestations of enteroaggregative Escherichia coli. Clin Microbiol Rev 2015; 27:614-30. [PMID: 24982324 DOI: 10.1128/cmr.00112-13] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Enteroaggregative Escherichia coli (EAEC) represents a heterogeneous group of E. coli strains. The pathogenicity and clinical relevance of these bacteria are still controversial. In this review, we describe the clinical significance of EAEC regarding patterns of infection in humans, transmission, reservoirs, and symptoms. Manifestations associated with EAEC infection include watery diarrhea, mucoid diarrhea, low-grade fever, nausea, tenesmus, and borborygmi. In early studies, EAEC was considered to be an opportunistic pathogen associated with diarrhea in HIV patients and in malnourished children in developing countries. In recent studies, associations with traveler's diarrhea, the occurrence of diarrhea cases in industrialized countries, and outbreaks of diarrhea in Europe and Asia have been reported. In the spring of 2011, a large outbreak of hemolytic-uremic syndrome (HUS) and hemorrhagic colitis occurred in Germany due to an EAEC O104:H4 strain, causing 54 deaths and 855 cases of HUS. This strain produces the potent Shiga toxin along with the aggregative fimbriae. An outbreak of urinary tract infection associated with EAEC in Copenhagen, Denmark, occurred in 1991; this involved extensive production of biofilm, an important characteristic of the pathogenicity of EAEC. However, the heterogeneity of EAEC continues to complicate diagnostics and also our understanding of pathogenicity.
Collapse
|
27
|
Shin J, Oh SS, Oh KH, Park JH, Jang EJ, Chung GT, Yoo CK, Bae GR, Cho SH. An Outbreak of Foodborne Illness Caused by Enteroaggregative Escherichia coli in a High School in South Korea. Jpn J Infect Dis 2015; 68:514-9. [DOI: 10.7883/yoken.jjid.2014.460] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Jaeseung Shin
- Division of Epidemic Intelligence Service, Korea Centers for Disease Control and Prevention
| | - Sung-Suk Oh
- Division of Microbiology, Incheon Research Institute of Public Health and Environment
| | - Kyung-Hwan Oh
- Division of Enteric Diseases, Center for Infectious Diseases, Korea National Institute of Health
| | - Ji-Hyuk Park
- Department of Preventive Medicine, Dongguk University College of Medicine
| | - Eun Jung Jang
- Division of Epidemic Intelligence Service, Korea Centers for Disease Control and Prevention
| | - Gyung Tae Chung
- Division of Enteric Diseases, Center for Infectious Diseases, Korea National Institute of Health
| | - Cheon-Kwon Yoo
- Division of Enteric Diseases, Center for Infectious Diseases, Korea National Institute of Health
| | - Geun-Ryang Bae
- Division of Epidemic Intelligence Service, Korea Centers for Disease Control and Prevention
| | - Seung-Hak Cho
- Division of Enteric Diseases, Center for Infectious Diseases, Korea National Institute of Health
| |
Collapse
|
28
|
Nassour H, Dubreuil JD. Escherichia coli STb enterotoxin dislodges claudin-1 from epithelial tight junctions. PLoS One 2014; 9:e113273. [PMID: 25409315 PMCID: PMC4237405 DOI: 10.1371/journal.pone.0113273] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 10/25/2014] [Indexed: 12/26/2022] Open
Abstract
Enterotoxigenic Escherichia coli produce various heat-labile and heat-stable enterotoxins. STb is a low molecular weight heat-resistant toxin responsible for diarrhea in farm animals, mainly young pigs. A previous study demonstrated that cells having internalized STb toxin induce epithelial barrier dysfunction through changes in tight junction (TJ) proteins. These modifications contribute probably to the diarrhea observed. To gain insight into the mechanism of increased intestinal permeability following STb exposure we treated human colon cells (T84) with purified STb toxin after which cells were harvested and proteins extracted. Using a 1% Nonidet P-40-containing solution we investigated the distribution of claudin-1, a major structural and functional TJ protein responsible for the epithelium impermeability, between membrane (NP40-insoluble) and the cytoplasmic (NP-40 soluble) location. Using immunoblot and confocal microscopy, we observed that treatment of T84 cell monolayers with STb induced redistribution of claudin-1. After 24 h, cells grown in Ca++-free medium treated with STb showed about 40% more claudin-1 in the cytoplasm compare to the control. Switching from Ca++-free to Ca++-enriched medium (1.8 mM) increased the dislodgement rate of claudin-1 as comparable quantitative delocalization was observed after only 6 h. Medium supplemented with the same concentration of Mg++ or Zn++ did not affect the dislodgement rate compared to the Ca++-free medium. Using anti-phosphoserine and anti-phosphothreonine antibodies, we observed that the loss of membrane claudin-1 was accompanied by dephosphorylation of this TJ protein. Overall, our findings showed an important redistribution of claudin-1 in cells treated with STb toxin. The loss of phosphorylated TJ membrane claudin-1 is likely to be involved in the increased permeability observed. The mechanisms by which these changes are brought about remain to be elucidated.
Collapse
Affiliation(s)
- Hassan Nassour
- GREMIP, Faculty of Veterinary Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - J Daniel Dubreuil
- GREMIP, Faculty of Veterinary Medicine, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
29
|
Silva LEP, Souza TB, Silva NP, Scaletsky ICA. Detection and genetic analysis of the enteroaggregative Escherichia coli heat-stable enterotoxin (EAST1) gene in clinical isolates of enteropathogenic Escherichia coli (EPEC) strains. BMC Microbiol 2014; 14:135. [PMID: 24884767 PMCID: PMC4047432 DOI: 10.1186/1471-2180-14-135] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 05/23/2014] [Indexed: 01/22/2023] Open
Abstract
Background The enteroaggregative E. coli heat-stable enterotoxin 1 (EAST1) encoded by astA gene has been found in enteropathogenic E. coli (EPEC) strains. However, it is not sufficient to simply probe strains with an astA gene probe due to the existence of astA mutants (type 1 and type 2 SHEAST) and EAST1 variants (EAST1 v1-4). In this study, 222 EPEC (70 typical and 152 atypical) isolates were tested for the presence of the astA gene sequence by PCR and sequencing. Results The astA gene was amplified from 54 strains, 11 typical and 43 atypical. Sequence analysis of the PCR products showed that 25 strains, 7 typical and 18 atypical, had an intact astA gene. A subgroup of 7 atypical strains had a variant type of the astA gene sequence, with four non-synonymous nucleotide substitutions. The remaining 22 strains had mutated astA gene with nucleotide deletions or substitutions in the first 8 codons. The RT-PCR results showed that the astA gene was transcribed only by the strains carrying either the intact or the variant type of the astA gene sequence. Southern blot analysis indicated that astA is located in EAF plasmid in typical strains, and in plasmids of similar size in atypical strains. Strains carrying intact astA genes were more frequently found in diarrheic children than in non-diarrheic children (p < 0.05). Conclusion In conclusion, our data suggest that the presence of an intact astA gene may represent an additional virulence determinant in both EPEC groups.
Collapse
Affiliation(s)
| | | | | | - Isabel C A Scaletsky
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, Rua Botucatu, 862, 3 andar, 04023-062 São Paulo, Brazil.
| |
Collapse
|
30
|
Bibbal D, Kérourédan M, Loukiadis E, Scheutz F, Oswald E, Brugère H. Slaughterhouse effluent discharges into rivers not responsible for environmental occurrence of enteroaggregative Escherichia coli. Vet Microbiol 2013; 168:451-4. [PMID: 24388632 DOI: 10.1016/j.vetmic.2013.11.042] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 11/18/2013] [Accepted: 11/30/2013] [Indexed: 10/25/2022]
Abstract
Enteroaggregative Shiga-toxin-producing Escherichia coli strains were responsible for a massive outbreak in Europe in 2011, and had been previously isolated from French patients. The objective of this study was to investigate the presence of enteroaggregative E. coli (EAEC) in slaughterhouse effluents (wastewater, slurry, sludge and effluents), and in river waters near these slaughterhouses. A total of 10,618 E. coli isolates were screened by PCR for the presence of EAEC-associated genetic markers (aggR, aap and aatA). None of these markers was detected in E. coli isolated from slaughterhouse samples. A unique enteroaggregative E. coli (EAEC) O126:H8 was detected in river water sampled upstream from slaughterhouse effluent discharge. These results confirmed that animals might not be reservoirs of EAEC, and that further studies are required to evaluate the role of the environment in the transmission of EAEC to humans.
Collapse
Affiliation(s)
- Delphine Bibbal
- INSERM UMR1043, INRA USC1360, Université de Toulouse, INPT, ENVT, Toulouse, France.
| | - Monique Kérourédan
- INSERM UMR1043, INRA USC1360, Université de Toulouse, INPT, ENVT, Toulouse, France
| | - Estelle Loukiadis
- Université de Lyon, VetAgro Sup, LMAP Laboratory, National Reference Laboratory for Escherichia coli including VTEC, Marcy l'Etoile, France
| | - Flemming Scheutz
- WHO Collaborating Centre for Reference and Research on Escherichia and Klebsiella, Statens Serum Institut (SSI), Copenhagen, Denmark
| | - Eric Oswald
- INSERM UMR1043, INRA USC1360, CHU de Toulouse, Hôpital Purpan, Toulouse, France
| | - Hubert Brugère
- INSERM UMR1043, INRA USC1360, Université de Toulouse, INPT, ENVT, Toulouse, France
| |
Collapse
|
31
|
Characterization of Escherichia coli isolates from hospital inpatients or outpatients with urinary tract infection. J Clin Microbiol 2013; 52:407-18. [PMID: 24478469 DOI: 10.1128/jcm.02069-13] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Uropathogenic Escherichia coli (UPEC) is the most common cause of community- and hospital-acquired urinary tract infections (UTIs). Isolates from uncomplicated community-acquired UTIs express a variety of virulence traits that promote the efficient colonization of the urinary tract. In contrast, nosocomial UTIs can be caused by E. coli strains that differ in their virulence traits from the community-acquired UTI isolates. UPEC virulence markers are used to distinguish these facultative extraintestinal pathogens, which belong to the intestinal flora of many healthy individuals, from intestinal pathogenic E. coli (IPEC). IPEC is a diarrheagenic pathogen with a characteristic virulence gene set that is absent in UPEC. Here, we characterized 265 isolates from patients with UTIs during inpatient or outpatient treatment at a hospital regarding their phylogenies and IPEC or UPEC virulence traits. Interestingly, 28 of these isolates (10.6%) carried typical IPEC virulence genes that are characteristic of enteroaggregative E. coli (EAEC), Shiga toxin-producing E. coli (STEC), and atypical enteropathogenic E. coli (aEPEC), although IPEC is not considered a uropathogen. Twenty-three isolates harbored the astA gene coding for the EAEC heat-stable enterotoxin 1 (EAST1), and most of them carried virulence genes that are characteristic of UPEC and/or EAEC. Our results indicate that UPEC isolates from hospital patients differ from archetypal community-acquired isolates from uncomplicated UTIs by their spectrum of virulence traits. They represent a diverse group, including EAEC, as well as other IPEC pathotypes, which in addition contain typical UPEC virulence genes. The combination of typical extraintestinal pathogenic E. coli (ExPEC) and IPEC virulence determinants in some isolates demonstrates the marked genome plasticity of E. coli and calls for a reevaluation of the strict pathotype classification of EAEC.
Collapse
|
32
|
Croxen MA, Law RJ, Scholz R, Keeney KM, Wlodarska M, Finlay BB. Recent advances in understanding enteric pathogenic Escherichia coli. Clin Microbiol Rev 2013; 26:822-80. [PMID: 24092857 PMCID: PMC3811233 DOI: 10.1128/cmr.00022-13] [Citation(s) in RCA: 861] [Impact Index Per Article: 71.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Although Escherichia coli can be an innocuous resident of the gastrointestinal tract, it also has the pathogenic capacity to cause significant diarrheal and extraintestinal diseases. Pathogenic variants of E. coli (pathovars or pathotypes) cause much morbidity and mortality worldwide. Consequently, pathogenic E. coli is widely studied in humans, animals, food, and the environment. While there are many common features that these pathotypes employ to colonize the intestinal mucosa and cause disease, the course, onset, and complications vary significantly. Outbreaks are common in developed and developing countries, and they sometimes have fatal consequences. Many of these pathotypes are a major public health concern as they have low infectious doses and are transmitted through ubiquitous mediums, including food and water. The seriousness of pathogenic E. coli is exemplified by dedicated national and international surveillance programs that monitor and track outbreaks; unfortunately, this surveillance is often lacking in developing countries. While not all pathotypes carry the same public health profile, they all carry an enormous potential to cause disease and continue to present challenges to human health. This comprehensive review highlights recent advances in our understanding of the intestinal pathotypes of E. coli.
Collapse
|
33
|
Philipson CW, Bassaganya-Riera J, Hontecillas R. Animal models of enteroaggregative Escherichia coli infection. Gut Microbes 2013; 4:281-91. [PMID: 23680797 PMCID: PMC3744513 DOI: 10.4161/gmic.24826] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Enteroaggregative Escherichia coli (EAEC) has been acknowledged as an emerging cause of gastroenteritis worldwide for over two decades. Epidemiologists are revealing the role of EAEC in diarrheal outbreaks as a more common occurrence than ever suggested before. EAEC induced diarrhea is most commonly associated with travelers, children and immunocompromised individuals however its afflictions are not limited to any particular demographic. Many attributes have been discovered and characterized surrounding the capability of EAEC to provoke a potent pro-inflammatory immune response, however cellular and molecular mechanisms underlying initiation, progression and outcomes are largely unknown. This limited understanding can be attributed to heterogeneity in strains and the lack of adequate animal models. This review aims to summarize current knowledge about EAEC etiology, pathogenesis and clinical manifestation. Additionally, current animal models and their limitations will be discussed along with the value of applying systems-wide approaches such as computational modeling to study host-EAEC interactions.
Collapse
Affiliation(s)
- Casandra W. Philipson
- Nutritional Immunology and Molecular Medicine Laboratory; Virginia Bioinformatics Institute; Virginia Tech; Blacksburg, VA USA,Center for Modeling Immunity to Enteric Pathogens; Virginia Bioinformatics Institute; Virginia Tech; Blacksburg, VA USA
| | - Josep Bassaganya-Riera
- Nutritional Immunology and Molecular Medicine Laboratory; Virginia Bioinformatics Institute; Virginia Tech; Blacksburg, VA USA,Center for Modeling Immunity to Enteric Pathogens; Virginia Bioinformatics Institute; Virginia Tech; Blacksburg, VA USA,Department of Biomedical Sciences and Pathobiology; VA-MD Regional College of Veterinary Medicine; Virginia Tech; Blacksburg, VA USA
| | - Raquel Hontecillas
- Nutritional Immunology and Molecular Medicine Laboratory; Virginia Bioinformatics Institute; Virginia Tech; Blacksburg, VA USA,Center for Modeling Immunity to Enteric Pathogens; Virginia Bioinformatics Institute; Virginia Tech; Blacksburg, VA USA,Correspondence to: Raquel Hontecillas,
| |
Collapse
|
34
|
Chandra M, Cheng P, Rondeau G, Porwollik S, McClelland M. A single step multiplex PCR for identification of six diarrheagenic E. coli pathotypes and Salmonella. Int J Med Microbiol 2013; 303:210-6. [PMID: 23562277 DOI: 10.1016/j.ijmm.2013.02.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 02/01/2013] [Accepted: 02/03/2013] [Indexed: 11/19/2022] Open
Abstract
E. coli is generally a commensal but includes some highly pathogenic strains carrying additional genes in plasmids and/or the chromosome. Based on these genes the pathogenic strains are divided into pathotypes including enteropathogenic (EPEC), enterohemorrhagic (EHEC), enterotoxigenic (ETEC), enteroaggregative (EAEC), enteroinvasive (EIEC) and diffusely adherent (DAEC) E. coli. Here, previously developed multiplex PCR strategies for these strains were integrated into one single step multiplex that differentiates all these E. coli pathotypes, usually based on multiple characteristic PCR products. This multiplex PCR works reliably for colony PCR. Two additional markers were added: one to detect most Enterobacteriacea, which acts as a positive control for successful PCR, and one to distinguish Salmonella. The multiplex correctly classified a set of 45 reference strains by colony PCR and 71 (45+26) strains by in silico PCR. It was then used to interrogate 44 clinical strains from bovine hosts resulting in detection of EAEC and DAEC determinants.
Collapse
Affiliation(s)
- Mudit Chandra
- Department of Veterinary Microbiology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| | | | | | | | | |
Collapse
|
35
|
Lima IFN, Quetz JDS, Guerrant RL, Nataro JP, Houpt ER, Lima AAM, Havt A. Enteroaggregative Escherichia coli quantification in children stool samples using quantitative PCR. APMIS 2012; 121:643-51. [PMID: 23216208 DOI: 10.1111/apm.12032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 10/25/2012] [Indexed: 12/15/2022]
Abstract
Enteroaggregative Escherichia coli (EAEC) is a common cause of infectious diarrhea, especially in children living in poor-resource countries. In this article, we present a SYBR Green-based real-time polymerase chain reaction (qPCR) method for quantitative detection of EAEC in DNA directly extracted from human stool samples. To test the proposed qPCR system, we examined specificity, sensitivity, repeatability, and also the degree of DNA extraction efficiency using EAEC strain 042 spiked into EAEC-free stool sample. The specificity of this assay was proved using six strains of EAEC, seven strains of other E. coli types, and one strain of Shigella. The detection limit of qPCR was 67 CFU/reaction. In naturally infected stool samples, we found EAEC in quantities varying from 6.7 × 10(5) to 2 × 10(9 ) CFU/g of feces. We could not detect any reduction after stool DNA extraction for the amounts of 10(7) and 10(6) CFU/mL of spiked EAEC. This qPCR assay is simple, rapid, reproducible, sensitive, specific, and allows rapid EAEC quantification to be used in a variety of further EAEC studies. This new quantitative method provides a relatively simple means to quantify EAEC, which will likely be key to understanding the pathophysiology and impact of EAEC infection.
Collapse
Affiliation(s)
- Ila Fernanda Nunes Lima
- Institute of Biomedicine for Brazilian Semi-Arid (IBISAB) & Clinical Research Unit, Federal University of Ceara, Fortaleza, Ceara, Brazil
| | | | | | | | | | | | | |
Collapse
|
36
|
Occurrence of virulence genes associated with Diarrheagenic pathotypes in Escherichia coli isolates from surface water. Appl Environ Microbiol 2012; 79:328-35. [PMID: 23124225 DOI: 10.1128/aem.02888-12] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Escherichia coli isolates (n = 300) collected from six sites in subtropical Brisbane, Australia, prior to and after storm events were tested for the presence of 11 virulence genes (VGs) specific to diarrheagenic pathotypes. The presence of eaeA, stx(1), stx(2), and ehxA genes specific for the enterohemorrhagic E. coli (EHEC) pathotype was detected in 56%, 6%, 10%, and 13% of isolates, respectively. The VGs astA (69%) and aggR (29%), carried by enteroaggregative (EAEC) pathotypes, were frequently detected in E. coli isolates. The enteropathogenic E. coli (EPEC) gene bfp was detected in 24% of isolates. In addition, enteroinvasive E. coli (EIEC) VG ipaH was also detected in 14% of isolates. During dry periods, isolates belonging to the EAEC pathotype were most commonly detected (23%), followed by EHEC (11%) and EPEC (11%). Conversely, a more uniform prevalence of pathotypes, EPEC (14%), EAEC (12%), EIEC (10%), EHEC (7%), and ETEC (7%), was observed after the storm events. The results of this study highlight the widespread occurrence of potentially diarrheagenic pathotypes in the urban aquatic ecosystems. While the presence of VGs in E. coli isolates alone is insufficient to determine pathogenicity, the presence of diarrheagenic E. coli pathotypes in high frequency after the storm events could lead to increased health risks if untreated storm water were to be used for nonpotable purposes and recreational activities.
Collapse
|
37
|
Zajacova ZS, Faldyna M, Kulich P, Kummer V, Maskova J, Alexa P. Experimental infection of gnotobiotic piglets with Escherichia coli strains positive for EAST1 and AIDA. Vet Immunol Immunopathol 2012; 152:176-82. [PMID: 23068274 DOI: 10.1016/j.vetimm.2012.09.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The virulence factors EAST1 and AIDA are often detected in ETEC/VTEC strains isolated from pigs and their role in diarrhoeal infections is discussed. In order to elucidate the pathogenesis of AIDA, the colonisation patterns of F4 positive and AIDA positive strains were investigated. Two wild-type Escherichia coli strains AIDA/EAST1 and F4/EAST1 isolated from diarrhoeal piglets were used for animal experiment to evaluate the ability of the EAST1 toxin to be involved in induction of diarrhoea. Gnotobiotic piglets were supplemented with normal porcine serum and orally inoculated with the strains. Faecal bacterial shedding of the challenge strains was observed during the experiment. Light microscopy and scanning electron microscopy were used to detect the colonisation pattern of both challenge strains. Although bacterial isolation demonstrated shedding of the challenge strains until the end of the experiment, diarrhoea did not develop in any piglet. Based on histological examination, piglets were more heavily colonised in the case of infection with E. coli O149/F4/EAST1 strain. Scanning electron microscopy showed bacterial cells of F4/EAST1 E. coli adhering to enterocytes, in contrast to AIDA/EAST1 which were poorly present on the intestinal surface. The EAST1 toxin alone was not able to induce diarrhoea in animals. Therefore our results demonstrate that the function/role of EAST1 and AIDA in colibacillosis of pigs remains to be elucidated.
Collapse
|
38
|
Ruan X, Crupper SS, Schultz BD, Robertson DC, Zhang W. Escherichia coli expressing EAST1 toxin did not cause an increase of cAMP or cGMP levels in cells, and no diarrhea in 5-day old gnotobiotic pigs. PLoS One 2012; 7:e43203. [PMID: 22905235 PMCID: PMC3419656 DOI: 10.1371/journal.pone.0043203] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 07/18/2012] [Indexed: 01/15/2023] Open
Abstract
Background Enterotoxigenic Escherichia coli (ETEC) strains are the leading bacterial cause of diarrhea to humans and farm animals. These ETEC strains produce heat-labile toxin (LT) and/or heat-stable toxins that include type I (STa), type II (STb), and enteroaggregative heat-stable toxin 1 (EAST1). LT, STa, and STb (in pigs) are proven the virulence determinants in ETEC diarrhea. However, significance of EAST1 in ETEC-associated diarrheal has not been determined, even though EAST1 is highly prevalent among ETEC strains. Methodology/Principal Findings In this study, we constructed E. coli strains to express EAST1 toxin as the only toxin and studied them in cell lines and five-day old gnotobiotic piglets to determine significance of EAST1 toxin. Data from in vitro studies indicated that EAST1 did not stimulate an increase of intracellular cyclic AMP or GMP levels in T-84 cells or porcine cell line IPEC-J2, nor did it enhance LT or STa toxin of ETEC strains in stimulation of cAMP or cGMP in T-84 cells. In addition, 5-day old gnotobiotic pigs challenged with E. coli strains expressing EAST1 as the only toxin did not developed diarrhea or signs of clinical disease during 72 h post-inoculation. Conclusion/Significance Results from this study indicated that EAST1 alone is not sufficient to cause diarrhea in five-day old gnotobiotic pigs, and suggest that EAST1 likely is not a virulence determinant in ETEC-associated diarrhea.
Collapse
Affiliation(s)
- Xiaosai Ruan
- Veterinary and Biomedical Sciences Department/The Center for Infectious Disease Research and Vaccinology, South Dakota State University, Brookings, South Dakota, United States of America
| | | | | | | | | |
Collapse
|
39
|
Konno T, Yatsuyanagi J, Saito S. Virulence gene profiling of enteroaggregative Escherichia coli heat-stable enterotoxin 1-harboring E. coli (EAST1EC) derived from sporadic diarrheal patients. ACTA ACUST UNITED AC 2011; 64:314-20. [PMID: 22106844 DOI: 10.1111/j.1574-695x.2011.00913.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 10/24/2011] [Accepted: 11/08/2011] [Indexed: 11/27/2022]
Abstract
Between 2007 and 2009, a total of 2168 Escherichia coli strains derived from diarrheal patients, defined as putative diarrheagenic E. coli (DEC), were collected from medical institutions in Akita prefecture, Japan. Thirty five of the strains lacked typical pathogenic determinants of DEC other than astA, which encodes enteroaggregative E. coli (EAggEC) heat-stable enterotoxin 1 (EAST1). These E. coli strains are referred to as EAST1EC. Several studies have suggested a role of EAST1 in diarrhea; however, the correlation between diarrhea and the presence of astA remains inconclusive. To investigate whether EAST1EC strains derived from diarrheal patients shared pathogenic factors other than EAST1, virulence gene profiling of 12 virulence genes - iha, lpfA, ldaG, pilS, pic, pet, irp2, daa, aah, aid, cdtB and hlyA - was carried out. PCR analysis revealed that four of the 35 EAST1EC strains harbored only astA, 24 harbored genes associated with adhesins and intestinal colonization, three strains harbored the gene for α-hemolysin, and 24 strains harbored the gene for a siderophore. These results indicated that some EAST1EC strains harbor various virulence genes associated with distinct E. coli pathotypes, primarily enterohemorrhagic E. coli and EAggEC, which may represent additional pathogenic determinants of EAST1EC.
Collapse
Affiliation(s)
- Takayuki Konno
- Health and Hygiene Division, Akita Prefectural Research Center for Public Health and Environment, Akita, Japan.
| | | | | |
Collapse
|
40
|
A combination vaccine consisting of three live attenuated enterotoxigenic Escherichia coli strains expressing a range of colonization factors and heat-labile toxin subunit B is well tolerated and immunogenic in a placebo-controlled double-blind phase I trial in healthy adults. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2011; 18:2118-27. [PMID: 21994354 DOI: 10.1128/cvi.05342-11] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Immune responses against colonization factors (CFs) and the nontoxic B component of the enterotoxigenic Escherichia coli (ETEC) heat-labile toxin (LTB) are considered to be important for immunity against diarrhea caused by ETEC. Individual live attenuated ETEC derivatives that have had their toxin genes removed and whose aroC, ompC, and ompF genes are deleted have shown promise as vaccines against ETEC. The development of such strains has culminated in the testing of a three-strain-combination live attenuated vaccine known as ACE527, comprised of strains ACAM2025 expressing colonization factor antigen I (CFA/I) and LTB; ACAM2022, expressing CS5, CS6, and LTB; and ACAM2027, expressing CS1, CS2, CS3, and LTB. The recombinant CF and LTB genes expressed in the three strains were inserted into the bacterial chromosome to ensure their stable inheritance and expression without the requirement for any selection. ACE527 has been tested in a randomized placebo-controlled, double-blind, phase I safety and immunogenicity study in healthy adult volunteers and proved to be well tolerated and immunogenic at dose levels of 10(10) and 10(11) total CFU. There was no indication of strain interference on the basis of fecal shedding patterns, with all three being detected in the feces of 50% and 83% of low- and high-dose vaccine recipients, respectively. Similarly, strong immune responses to LTB and to CFs expressed on all three constituent strains were induced, with at least 50% of subjects in the high-dose group responding to LTB, CFA/I, CS3, and CS6.
Collapse
|
41
|
Generation and characterization of a live attenuated enterotoxigenic Escherichia coli combination vaccine expressing six colonization factors and heat-labile toxin subunit B. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2011; 18:2128-35. [PMID: 21994355 DOI: 10.1128/cvi.05345-11] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Live attenuated oral enterotoxigenic Escherichia coli (ETEC) vaccines have been demonstrated to be safe and immunogenic in human volunteers and to provide a viable approach to provide protection against this important pathogen. This report describes the construction of new ETEC vaccine candidate strains from recent clinical isolates and their characterization. All known genes for ETEC toxins were removed, and attenuating deletion mutations were made in the aroC, ompC, and ompF chromosomal genes. An isolate expressing coli surface antigen 2 (CS2), CS3, heat-labile toxin (LT), heat-stable toxin (ST), and enteroaggregative Escherichia coli heat-stable toxin 1 (EAST1) was attenuated to generate ACAM2007. The subsequent insertion of the operon encoding CS1 created ACAM2017, and this was further modified by the addition of an expression cassette containing the eltB gene, encoding a pentamer of B subunits of LT (LTB), to generate ACAM2027. Another isolate expressing CS5, CS6, LT, ST, and EAST1 was attenuated to generate ACAM2006, from which a lysogenic prophage was deleted to create ACAM2012 and an LTB gene was introduced to form ACAM2022. Finally, a previously described vaccine strain, ACAM2010, had the eltB gene incorporated to generate ACAM2025. All recombinant genes were incorporated into the chromosomal sites of the attenuating mutations to ensure maximal genetic stability. The expression of the recombinant antigens and the changes in plasmids accompanying the deletion of toxin genes are described. Strains ACAM2025, ACAM2022, and ACAM2027 have been combined to create the ETEC vaccine formulation ACE527, which has recently successfully completed a randomized, double-blind, placebo-controlled phase I trial and is currently undergoing a randomized, double-blind placebo-controlled phase II challenge trial, both in healthy adult volunteers.
Collapse
|
42
|
Zajacova ZS, Konstantinova L, Alexa P. Detection of virulence factors of Escherichia coli focused on prevalence of EAST1 toxin in stool of diarrheic and non-diarrheic piglets and presence of adhesion involving virulence factors in astA positive strains. Vet Microbiol 2011; 154:369-75. [PMID: 21864997 DOI: 10.1016/j.vetmic.2011.07.029] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 07/20/2011] [Accepted: 07/26/2011] [Indexed: 11/15/2022]
Abstract
Between 2005 and 2009, a total of 800 Escherichia coli strains isolated from piglets with diarrhea were tested for the presence of enteroaggregative heat-stable enterotoxin EAST1, heat-labile (LT) and heat-stable enterotoxins (STa) and shigatoxin (Stx2e) by PCR with the purpose of investigating the present distribution of virulence factors on swine farms in the Czech Republic. The isolates were analyzed for their O-serogroup, fimbrial (K88, K99, 987P, F41, F18) and nonfimbrial adhesins (adhesin involved in diffuse adherence AIDA and porcine attaching and effacing-associated factor PAA). The detection rates of ETEC and STEC isolates were 36.5% and 7.75%, respectively, which implies that ETEC play the major role in E. coli infections in Czech herds. Generally, the most common serotype was O149:K88 which possessed genetic determinants for LT and EAST1. None of the tested E. coli isolates was positive for genes K99, 987P and F41. It was shown that out of 800 E. coli strains isolated from pigs, 277 were EAST1 positive and 74% from the latter were identified as ETEC. Of the fimbrial adhesins, K88 and F18 were commonly detected. Over 80% of K88/EAST1 positive strains possessed the gene for paa. We detected no EAE isolate positive for fimbrial adhesins or PAA and AIDA. The AIDA was more often associated with F18 than with K88. The gene astA was also identified among E. coli isolates of non-diarrheic piglets. We tested rectal swab samples collected from apparently healthy piglets on three farms. On all farms, E. coli astA positive strains (26.66%, 90.00% and 46.66% astA positive animals) were isolated. Our results showed a significantly higher prevalence of astA positive E. coli isolates among apparently healthy piglets in comparison with diarrheic piglets. The question remains as to what is the role of the astA gene in the pathogenesis of porcine colibacillosis and as a virulence factor.
Collapse
|
43
|
Rajendran P, Ajjampur SSR, Chidambaram D, Chandrabose G, Thangaraj B, Sarkar R, Samuel P, Rajan DP, Kang G. Pathotypes of diarrheagenic Escherichia coli in children attending a tertiary care hospital in South India. Diagn Microbiol Infect Dis 2011; 68:117-22. [PMID: 20846583 DOI: 10.1016/j.diagmicrobio.2010.06.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Revised: 05/29/2010] [Accepted: 06/05/2010] [Indexed: 11/19/2022]
Abstract
The prevalence of diarrheagenic Escherichia coli (DEC) in children under 5 years was studied in children with diarrhea and controls in South India. Four polymerase chain reaction (PCR) "schemes" were used to detect genes of the 6 pathotypes of DEC. In 394 children with diarrhea, 203 (52%) DEC infections were found. Among the 198 controls, 126 (63%) DEC infections were found. Enteroaggregative E. coli was the most common pathotype by multiplex PCR both in cases (58, 14.7%) and controls (47, 23.7%), followed by enteropathogenic E. coli seen in 10% cases and 8% of controls. Enterotoxigenic E. coli (ETEC), enterohemorrhagic E. coli (EHEC), enteroinvasive E. coli (EIEC), and diffusely adherent E. coli (DAEC) were found in 4.1%, 2.0%, 1.0%, and 0.5% of cases, respectively. ETEC was found in 2.5% of controls, but EHEC, EIEC, and DAEC were not detected. Overall, no single assay worked well, but by discounting genes with a pathogenicity index of less than 1, it was possible to use the PCR assays to identify DEC in 75/394 (19%) cases and 12/198 (6.1%) controls, while mixed infection could be identified in 8/394 (2%) cases and 2/198 (1%) controls.
Collapse
Affiliation(s)
- Priya Rajendran
- Department of Gastrointestinal Sciences, Christian Medical College, Vellore, India
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Aslani MM, Alikhani MY, Zavari A, Yousefi R, Zamani AR. Characterization of enteroaggregative Escherichia coli (EAEC) clinical isolates and their antibiotic resistance pattern. Int J Infect Dis 2010; 15:e136-9. [PMID: 21130676 DOI: 10.1016/j.ijid.2010.10.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2010] [Revised: 09/25/2010] [Accepted: 10/04/2010] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVES Enteroaggregative Escherichia coli (EAEC) strains are an emerging type of diarrheagenic E. coli. The aim of this study was to investigate the frequency of EAEC in children with diarrhea by polymerase chain reaction (PCR) method targeting the pCVD432 gene. The presence of virulence genes including aggR, aggA, aafA, aap, and astA was also investigated by PCR, for the differentiation of typical and atypical EAEC strains. We also sought to determine the antibiotic resistance pattern of the isolated strains. METHODS Stool samples were collected from 140 children with diarrhea at Besat Hospital, Hamadan, Iran, from July 2007 to May 2008. The specimens were cultured for E. coli, which was identified using standard methods. E. coli strains were screened for EAEC by PCR and HeLa cell line adherence methods. For each sample, five single colonies (700 E. coli strains) from original MacConkey plates were examined for pCVD432, aggR, aggA, aafA, aap, and astA genes using PCR. The EAEC adherence patterns were examined by HeLa cell adherence method. Antimicrobial susceptibility testing was performed as the Clinical and Laboratory Standards Institute (CLSI) guidelines. RESULTS Overall, 15 (10.7%) EAEC strains were identified in 140 diarrhea cases by PCR. Out of these isolates, EAEC were detected in 13 (86.7%) by the HeLa cell assay. The aggR regulon was present in 11 (73.3%) strains. Several different combinations of the virulence markers were found among the EAEC isolates. The most prevalent (20%) combination was aggR-aap-astA. The EAEC isolates exhibited resistance to ampicillin (100%), erythromycin (100%), cephalothin (78.6%), co-trimoxazole (71.4%), tetracycline (64.3%), and nalidixic acid (57.1%) and reduced resistance to ciprofloxacin (42.9%) and norfloxacin (7.1%). CONCLUSIONS EAEC is a diarrheal pathogen of emerging importance. Correlation between pCVD432 PCR and the HeLa cell line assay was confirmed in children with diarrhea. In comparison to the assay for aggregative adherence, the EAEC PCR has been found to be simple and specific in many epidemiological studies. The typical EAEC (73.3%) strains (with pCVD432 and aggR genes) identified in this study were heterogeneous with respect to virulence genes. This study also showed that EAEC isolates were highly resistant to tetracycline, co-trimoxazole, and ampicillin, which are the most commonly used antibiotics in our area.
Collapse
|
45
|
Telli M, Guiral E, Martínez JA, Almela M, Bosch J, Vila J, Soto SM. Prevalence of enterotoxins among Escherichia coli isolates causing bacteraemia. FEMS Microbiol Lett 2010; 306:117-21. [PMID: 20529132 DOI: 10.1111/j.1574-6968.2010.01945.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The most frequent cause of bacteraemia among Gram-negative bacteria is Escherichia coli. Analysis of the genes encoding the Shigella enterotoxin 1 (ShET-1), ShET-2, enteroaggregative heat stable toxin 1 (EAST-1) toxins and AggR factor in E. coli strains causing bacteraemia revealed that set1 genes were presented significantly more frequently among quinolone-susceptible strains (P<0.0001), in phylogenetic group B2 (P=0.0004) and in biofilm strains (P=0.02). In contrast, sen genes were significantly more frequent among nalidixic acid-resistant isolates (15% vs. 6%, P=0.046) and in phylogenetic group B1 (P=0.0001). This is the first study in which ShET1, ShET2 and EAST-1 have been found in E. coli collected from blood.
Collapse
Affiliation(s)
- Murat Telli
- Department of Microbiology and Clinical Microbiology, Adnan Menderes University, Aydin, Turkey
| | | | | | | | | | | | | |
Collapse
|
46
|
Avelino F, Saldaña Z, Islam S, Monteiro-Neto V, Dall'Agnol M, Eslava CA, Girón JA. The majority of enteroaggregative Escherichia coli strains produce the E. coli common pilus when adhering to cultured epithelial cells. Int J Med Microbiol 2010; 300:440-8. [PMID: 20452276 DOI: 10.1016/j.ijmm.2010.02.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2009] [Revised: 01/22/2010] [Accepted: 02/20/2010] [Indexed: 11/29/2022] Open
Abstract
Enteroaggregative Escherichia coli (EAEC) have emerged as a significant worldwide cause of chronic diarrhea in the pediatric population and in HIV patients. The vast majority of EAEC strains do not produce the aggregative adherence fimbriae I-III (AAFs) so far reported and thus, what adherence factors are present in these strains remains unknown. Here, we investigated the prevalence of the chromosomal E. coli common pilus (ECP) genes and ECP production amongst 130 EAEC strains of diverse origin as well as the role of ECP in EAEC adherence. Through multiplex PCR analysis we found that 96% of EAEC strains contained the ecpA structural pilin gene whereas only 3.1% and 5.4% were positive for AAF fimbrial genes aggA or aafA, respectively. Among the ecpA(+) strains, 63% produced ECP when adhering to cultured epithelial cells. An ecpA mutant derived from prototypic strain 042 (AAF/II(+)) was not altered in adherence suggesting that the AAF/II, and not ECP, plays a major role in this strain. In contrast, strain 278-1 (AAF(-)) deleted of the ecpA gene was significantly reduced in adherence to cultured epithelial cells. In all, these data indicate a potential role of ECP in adherence for EAEC strains lacking the known AAFs and that in association with other adhesive determinants, ECP may contribute to their survival and persistence within the host and in the environment.
Collapse
Affiliation(s)
- Fabiola Avelino
- Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, Pue 72000, Mexico
| | | | | | | | | | | | | |
Collapse
|
47
|
Hidaka A, Hokyo T, Arikawa K, Fujihara S, Ogasawara J, Hase A, Hara-Kudo Y, Nishikawa Y. Multiplex real-time PCR for exhaustive detection of diarrhoeagenic Escherichia coli. J Appl Microbiol 2010; 106:410-20. [PMID: 19200309 DOI: 10.1111/j.1365-2672.2008.04043.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIMS The source and routes of diarrhoeagenic Escherichia coli (DEC) have not been clarified because it is difficult to detect these organisms in samples with numerous coliform bacteria. We have developed multiplex real-time PCR assays for exhaustive detection of DEC. METHODS AND RESULTS Primers and TaqMan probes were designed to amplify and quantify one gene (eae, stx1, stx2, elt, est, virB, aggR, astA, and afaB) from each of seven pathotypes of DEC, in duplex or triplex reactions under the same PCR cycling conditions. Specificity was confirmed using 860 strains including 88 DEC strains. The fluorescence threshold cycle and DNA concentrations correlated with decision coefficients of more than 0.99. Subsequently, meat samples and enrichment broths were spiked with DEC and the assays used to detect the genes. The detection limits varied from 7.1 x 10(2) to 1.1 x 10(4) CFU ml(-1), depending on the target genes. All meat samples spiked with a variety of DEC (more than 10 CFU 10 g(-1)) were found to be positive by the method. CONCLUSIONS The present system allows for the efficient and simultaneous determination of various DEC pathotypes. SIGNIFICANCE AND IMPACT OF THE STUDY This system makes epidemiological investigations for DEC sensitive and quick, and is a useful tool to clarify the source and routes of DEC.
Collapse
Affiliation(s)
- A Hidaka
- Graduate School of Human Life Science, Osaka City University, Osaka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Hussain MI, Wani SA, Nagamani K, Fayaz I, Mir MA, Nabi A, Qureshi K, Khan MA, Nishikawa Y. Isolation and characterization of enteroaggregative, enterotoxigenic, diffusely adherent Escherichia coli and Salmonella Worthington from human diarrhoeic faecal samples in Kashmir and Secunderabad, India. World J Microbiol Biotechnol 2010. [DOI: 10.1007/s11274-010-0370-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
49
|
Monteiro BT, Campos LC, Sircili MP, Franzolin MR, Bevilacqua LF, Nataro JP, Elias WP. The dispersin-encoding gene (aap) is not restricted to enteroaggregative Escherichia coli. Diagn Microbiol Infect Dis 2009; 65:81-4. [PMID: 19679242 DOI: 10.1016/j.diagmicrobio.2009.05.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Revised: 05/02/2009] [Accepted: 05/10/2009] [Indexed: 10/20/2022]
Abstract
The presence of the enteroaggregative Escherichia coli (EAEC) virulence genes aatA, aap, and aggR was assayed in strains of different diarrheagenic E. coli pathotypes and nonpathogenic E. coli. The dispersin-encoding gene (aap) was detected in EAEC, diffusely adherent E. coli, and nonpathogenic E. coli, demonstrating that molecular diagnostics of EAEC based on aap detection may identify non-EAEC strains.
Collapse
Affiliation(s)
- Bianca T Monteiro
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo, SP, 05503-900, Brazil
| | | | | | | | | | | | | |
Collapse
|
50
|
Prevalence of the set-1B and astA genes encoding enterotoxins in uropathogenic Escherichia coli clinical isolates. Microb Pathog 2009; 47:305-7. [PMID: 19755142 DOI: 10.1016/j.micpath.2009.09.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Revised: 09/07/2009] [Accepted: 09/09/2009] [Indexed: 11/22/2022]
Abstract
One hundred seventy human uropathogenic Escherichia coli (UPEC) clinical isolates were compared with 35 E. coli strains isolated from feces of a control group to determine the presence of the set1, sen and astA genes encoding the ShET-1, ShET-2, and EAST toxins, respectively. Overall, 27 (16%), 8 (8%) and 0 UPEC isolates presented the set1B, the astA, and the sen genes, respectively. This is the first time the set gene has been found in UPEC clinical isolates.
Collapse
|