1
|
Botella Lucena P, Heneka MT. Inflammatory aspects of Alzheimer's disease. Acta Neuropathol 2024; 148:31. [PMID: 39196440 DOI: 10.1007/s00401-024-02790-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 08/29/2024]
Abstract
Alzheimer´s disease (AD) stands out as the most common chronic neurodegenerative disorder. AD is characterized by progressive cognitive decline and memory loss, with neurodegeneration as its primary pathological feature. The role of neuroinflammation in the disease course has become a focus of intense research. While microglia, the brain's resident macrophages, have been pivotal to study central immune inflammation, recent evidence underscores the contributions of other cellular entities to the neuroinflammatory process. In this article, we review the inflammatory role of microglia and astrocytes, focusing on their interactions with AD's core pathologies, amyloid beta deposition, and tau tangle formation. Additionally, we also discuss how different modes of regulated cell death in AD may impact the chronic neuroinflammatory environment. This review aims to highlight the evolving landscape of neuroinflammatory research in AD and underscores the importance of considering multiple cellular contributors when developing new therapeutic strategies.
Collapse
Affiliation(s)
- Pablo Botella Lucena
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 6, Avenue du Swing, Belvaux, L-4367, Esch-Belval, Luxembourg
| | - Michael T Heneka
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 6, Avenue du Swing, Belvaux, L-4367, Esch-Belval, Luxembourg.
- Department of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
2
|
Xue H, Chen J, Zeng L, Fan W. Causal relationship between circulating immune cells and the risk of Alzheimer's disease: A Mendelian randomization study. Exp Gerontol 2024; 187:112371. [PMID: 38301877 DOI: 10.1016/j.exger.2024.112371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/23/2024] [Accepted: 01/26/2024] [Indexed: 02/03/2024]
Abstract
BACKGROUND Increasing evidence has shown a link between immune cells and Alzheimer's disease (AD). Comprehensive two-sample Mendelian randomization (MR) analysis was performed to determine the causal association between 731 immune cell signatures and AD in this study. METHODS We extracted genetic variants of 731 immune cell traits and AD from the publicly available GWAS dataset. The immune features included median fluorescence intensity (MFI), relative cellular (RC), absolute cellular (AC) and morphological parameters (MP). The inverse variance weighted (IVW) method was the main MR analysis method, and sensitivity analyses were used to validate the robustness, heterogeneity and horizontal pleiotropy of the results. RESULTS After FDR adjustment, seven immune phenotypes were found to be associated significantly with AD risk: HLA DR on CD33-HLA DR+ (OR = 0.938, PFDR = 0.001), Secreting Treg %CD4 (OR = 0.972, PFDR = 0.021), HLA DR+T cell AC (OR = 0.928, PFDR = 0.041), Activated & resting Treg % CD4 Treg (OR = 1.031, PFDR = 0.002), CD33 on CD33dim HLA DR+CD11b+ (OR = 1.025, PFDR = 0.025), CD33 on CD14+monocyte (OR = 1.026, PFDR = 0.027) and CD33 on CD66b++myeloid cell (OR = 1.027, PFDR = 0.036). CONCLUSIONS These findings demonstrated seven immune phenotypes were significantly associated with AD risk. This may provide researchers with a new perspective in exploring the biological mechanisms of AD and may lead to the exploration of earlier treatment.
Collapse
Affiliation(s)
- Hua Xue
- Department of Neurology, Sichuan Taikang Hospital, Chengdu, Sichuan, China.
| | - Jiajia Chen
- College of Chemical Engineering, Sichuan University of Science & Engineering, Zigong, China
| | - Li Zeng
- Department of Respiratory, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | - Wenhui Fan
- Department of Neurology, Sichuan Taikang Hospital, Chengdu, Sichuan, China.
| |
Collapse
|
3
|
Al-Khazaleh AK, Zhou X, Bhuyan DJ, Münch GW, Al-Dalabeeh EA, Jaye K, Chang D. The Neurotherapeutic Arsenal in Cannabis sativa: Insights into Anti-Neuroinflammatory and Neuroprotective Activity and Potential Entourage Effects. Molecules 2024; 29:410. [PMID: 38257323 PMCID: PMC10821245 DOI: 10.3390/molecules29020410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/09/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
Cannabis, renowned for its historical medicinal use, harbours various bioactive compounds-cannabinoids, terpenes, and flavonoids. While major cannabinoids like delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD) have received extensive scrutiny for their pharmacological properties, emerging evidence underscores the collaborative interactions among these constituents, suggesting a collective therapeutic potential. This comprehensive review explores the intricate relationships and synergies between cannabinoids, terpenes, and flavonoids in cannabis. Cannabinoids, pivotal in cannabis's bioactivity, exhibit well-documented analgesic, anti-inflammatory, and neuroprotective effects. Terpenes, aromatic compounds imbuing distinct flavours, not only contribute to cannabis's sensory profile but also modulate cannabinoid effects through diverse molecular mechanisms. Flavonoids, another cannabis component, demonstrate anti-inflammatory, antioxidant, and neuroprotective properties, particularly relevant to neuroinflammation. The entourage hypothesis posits that combined cannabinoid, terpene, and flavonoid action yields synergistic or additive effects, surpassing individual compound efficacy. Recognizing the nuanced interactions is crucial for unravelling cannabis's complete therapeutic potential. Tailoring treatments based on the holistic composition of cannabis strains allows optimization of therapeutic outcomes while minimizing potential side effects. This review underscores the imperative to delve into the intricate roles of cannabinoids, terpenes, and flavonoids, offering promising prospects for innovative therapeutic interventions and advocating continued research to unlock cannabis's full therapeutic potential within the realm of natural plant-based medicine.
Collapse
Affiliation(s)
- Ahmad K. Al-Khazaleh
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia; (X.Z.); (D.J.B.); (G.W.M.); (K.J.)
| | - Xian Zhou
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia; (X.Z.); (D.J.B.); (G.W.M.); (K.J.)
| | - Deep Jyoti Bhuyan
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia; (X.Z.); (D.J.B.); (G.W.M.); (K.J.)
- School of Science, Western Sydney University, Penrith, NSW 2751, Australia
| | - Gerald W. Münch
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia; (X.Z.); (D.J.B.); (G.W.M.); (K.J.)
- Pharmacology Unit, School of Medicine, Western Sydney University, Penrith, NSW 2751, Australia
| | - Elaf Adel Al-Dalabeeh
- Department of Biological Sciences, School of Science, University of Jordan, Amman 11942, Jordan;
| | - Kayla Jaye
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia; (X.Z.); (D.J.B.); (G.W.M.); (K.J.)
| | - Dennis Chang
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia; (X.Z.); (D.J.B.); (G.W.M.); (K.J.)
| |
Collapse
|
4
|
Hao W, Luo Q, Tomic I, Quan W, Hartmann T, Menger MD, Fassbender K, Liu Y. Modulation of Alzheimer's disease brain pathology in mice by gut bacterial depletion: the role of IL-17a. Gut Microbes 2024; 16:2363014. [PMID: 38904096 PMCID: PMC11195493 DOI: 10.1080/19490976.2024.2363014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 05/29/2024] [Indexed: 06/22/2024] Open
Abstract
Gut bacteria regulate brain pathology of Alzheimer's disease (AD) patients and animal models; however, the underlying mechanism remains unclear. In this study, 3-month-old APP-transgenic female mice with and without knock-out of Il-17a gene were treated with antibiotics-supplemented or normal drinking water for 2 months. The antibiotic treatment eradicated almost all intestinal bacteria, which led to a reduction in Il-17a-expressing CD4-positive T lymphocytes in the spleen and gut, and to a decrease in bacterial DNA in brain tissue. Depletion of gut bacteria inhibited inflammatory activation in both brain tissue and microglia, lowered cerebral Aβ levels, and promoted transcription of Arc gene in the brain of APP-transgenic mice, all of which effects were abolished by deficiency of Il-17a. As possible mechanisms regulating Aβ pathology, depletion of gut bacteria inhibited β-secretase activity and increased the expression of Abcb1 and Lrp1 in the brain or at the blood-brain barrier, which were also reversed by the absence of Il-17a. Interestingly, a crossbreeding experiment between APP-transgenic mice and Il-17a knockout mice further showed that deficiency of Il-17a had already increased Abcb1 and Lrp1 expression at the blood-brain barrier. Thus, depletion of gut bacteria attenuates inflammatory activation and amyloid pathology in APP-transgenic mice via Il-17a-involved signaling pathways. Our study contributes to a better understanding of the gut-brain axis in AD pathophysiology and highlights the therapeutic potential of Il-17a inhibition or specific depletion of gut bacteria that stimulate the development of Il-17a-expressing T cells.
Collapse
Affiliation(s)
- Wenlin Hao
- Department of Neurology, Saarland University, Homburg/Saar, Germany
- German Institute for Dementia Prevention (DIDP), Saarland University, Homburg/Saar, Germany
| | - Qinghua Luo
- Department of Neurology, Saarland University, Homburg/Saar, Germany
- German Institute for Dementia Prevention (DIDP), Saarland University, Homburg/Saar, Germany
- Department of Neurology, The second affiliated hospital of Nanchang University, Nanchang, China
| | - Inge Tomic
- Department of Neurology, Saarland University, Homburg/Saar, Germany
- German Institute for Dementia Prevention (DIDP), Saarland University, Homburg/Saar, Germany
| | - Wenqiang Quan
- Department of Neurology, Saarland University, Homburg/Saar, Germany
- German Institute for Dementia Prevention (DIDP), Saarland University, Homburg/Saar, Germany
- Department of Clinical Laboratory, Tongji Hospital, Tongji University Medical School, Shanghai, China
| | - Tobias Hartmann
- German Institute for Dementia Prevention (DIDP), Saarland University, Homburg/Saar, Germany
- Department of Experimental Neurology, Saarland University, Homburg/Saar, Germany
| | - Michael D. Menger
- Department of Experimental Surgery, Saarland University, Homburg/Saar, Germany
| | - Klaus Fassbender
- Department of Neurology, Saarland University, Homburg/Saar, Germany
- German Institute for Dementia Prevention (DIDP), Saarland University, Homburg/Saar, Germany
| | - Yang Liu
- Department of Neurology, Saarland University, Homburg/Saar, Germany
- German Institute for Dementia Prevention (DIDP), Saarland University, Homburg/Saar, Germany
| |
Collapse
|
5
|
Yonemoto K, Fujii F, Taira R, Ohgidani M, Eguchi K, Okuzono S, Ichimiya Y, Sonoda Y, Chong PF, Goto H, Kanemasa H, Motomura Y, Ishimura M, Koga Y, Tsujimura K, Hashiguchi T, Torisu H, Kira R, Kato TA, Sakai Y, Ohga S. Heterogeneity and mitochondrial vulnerability configurate the divergent immunoreactivity of human induced microglia-like cells. Clin Immunol 2023; 255:109756. [PMID: 37678717 DOI: 10.1016/j.clim.2023.109756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/02/2023] [Indexed: 09/09/2023]
Abstract
Microglia play versatile roles in progression of and protection against neuroinflammatory diseases. Little is known, however, about the mechanisms underlying the diverse reactivity of microglia to inflammatory conditions. We investigated how human induced microglia-like (iMG) cells respond to innate immune ligands. Quantitative PCR showed that poly-I:C and lipopolysaccharide (LPS) activated the expression of IL1B and TNF. Immunoreactivity of iMG did not differ between controls (n = 11) and patients with neuroinflammatory diseases (n = 24). Flow cytometry revealed that CD14high cells expressed interleukin (IL) -1β after LPS treatment. Immunoblotting showed that poly-I:C and LPS differentially activated inflammatory pathways but commonly induced mitochondrial instability and the expression of pyruvate kinase isoform M2 (PKM2). Furthermore, a potent stimulator of PKM2 (DASA-58) alleviated IL-1β production after LPS treatment. These data indicate that heterogeneous cell populations and mitochondrial stability underlie the divergent immunoreactivity of human iMG in environments.
Collapse
Affiliation(s)
- Kousuke Yonemoto
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Fumihiko Fujii
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Ryoji Taira
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masahiro Ohgidani
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Department of Functional Anatomy and Neuroscience, Asahikawa Medical University, Hokkaido, Japan
| | - Katsuhide Eguchi
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Sayaka Okuzono
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Section of Pediatrics, Department of Medicine, Fukuoka Dental College, Fukuoka, Japan
| | - Yuko Ichimiya
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuri Sonoda
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Pin Fee Chong
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hironori Goto
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hikaru Kanemasa
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshitomo Motomura
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masataka Ishimura
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuhki Koga
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Keita Tsujimura
- Group of Brain Function and Development, Neuroscience Institute of the Graduate School of Science, Nagoya University, Aichi, Japan; Research Unit for Developmental Disorders, Institute for Advanced Research, Nagoya University, Aichi, Japan
| | - Takao Hashiguchi
- Laboratory of Medical Virology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Hiroyuki Torisu
- Section of Pediatrics, Department of Medicine, Fukuoka Dental College, Fukuoka, Japan
| | - Ryutaro Kira
- Department of Pediatric Neurology, Fukuoka Children's Hospital, Fukuoka, Japan
| | - Takahiro A Kato
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yasunari Sakai
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Shouichi Ohga
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
6
|
Fan J, Ma Z, Zheng Y, Zhang M, Huang L, Liu H. Folate Deficiency Increased Microglial Amyloid-β Phagocytosis via the RAGE Receptor in Chronic Unpredictable Mild-Stress Rat and BV2 Cells. Nutrients 2023; 15:3501. [PMID: 37630692 PMCID: PMC10457913 DOI: 10.3390/nu15163501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/31/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Depression is often considered one of the prevalent neuropsychiatric symptoms of Alzheimer's disease (AD). β-amyloid (Aβ) metabolism disorders and impaired microglia phagocytosis are potential pathological mechanisms between depression and AD. Folate deficiency (FD) is a risk factor for depression and AD. In this study, we used a chronic unpredictable mild stress (CUMS) rat model and a model of Aβ phagocytosis by BV2 cells to explore the potential mechanisms by which FD affects depression and AD. The results revealed that FD exacerbated depressive behavior and activated microglia in CUMS rats, leading to an increase in intracellular Aβ and phagocytosis-related receptors for advanced glycation end products (RAGE). Then, in vitro results showed that the expression of the RAGE receptor and M2 phenotype marker (CD206) were upregulated by FD treatment in BV2 cells, leading to an increase in Aβ phagocytosis. However, there was no significant difference in the expression of toll-like receptor 4 (TLR4) and clathrin heavy chain (CHC). Furthermore, when using the RAGE-specific inhibitor FPS-ZM1, there was no significant difference in Aβ uptake between folate-normal (FN) and FD BV2 cell groups. In conclusion, these findings suggest FD may promote microglia phagocytosis Aβ via regulating the expression of RAGE or microglia phenotype under Aβ treatment.
Collapse
Affiliation(s)
- Junting Fan
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin 300070, China
- Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin 300070, China
| | - Zewei Ma
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin 300070, China
- Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin 300070, China
| | - Yunqin Zheng
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin 300070, China
- Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin 300070, China
| | - Meilin Zhang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin 300070, China
- Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin 300070, China
| | - Li Huang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin 300070, China
- Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin 300070, China
| | - Huan Liu
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin 300070, China
- Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin 300070, China
| |
Collapse
|
7
|
Marsland P, Vore AS, DaPrano E, Paluch JM, Blackwell AA, Varlinskaya EI, Deak T. Sex-specific effects of ethanol consumption in older Fischer 344 rats on microglial dynamics and Aβ (1-42) accumulation. Alcohol 2023; 107:108-118. [PMID: 36155778 PMCID: PMC10251491 DOI: 10.1016/j.alcohol.2022.08.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/23/2022] [Accepted: 08/23/2022] [Indexed: 11/15/2022]
Abstract
Chronic alcohol consumption, Alzheimer's disease (AD), and vascular dementia are all associated with cognitive decline later in life, raising questions about whether their underlying neuropathology may share some common features. Indeed, recent evidence suggests that ethanol exposure during adolescence or intermittent drinking in young adulthood increased neuropathological markers of AD, including both tau phosphorylation and beta-amyloid (Aβ) accumulation. The goal of the present study was to determine whether alcohol consumption later in life, a time when microglia and other neuroimmune processes tend to become overactive, would influence microglial clearance of Aβ(1-42), focusing specifically on microglia in close proximity to the neurovasculature. To do this, male and female Fischer 344 rats were exposed to a combination of voluntary and involuntary ethanol consumption from ∼10 months of age through ∼14 months of age. Immunofluorescence revealed profound sex differences in microglial co-localization, with Aβ(1-42) showing that aged female rats with a history of ethanol consumption had a higher number of iba1+ cells and marginally reduced expression of Aβ(1-42), suggesting greater phagocytic activity of Aβ(1-42) among females after chronic ethanol consumption later in life. Interestingly, these effects were most prominent in Iba1+ cells near neurovasculature that was stained with tomato lectin. In contrast, no significant effects of ethanol consumption were observed on any markers in males. These findings are among the first reports of a sex-specific increase in microglia-mediated phagocytosis of Aβ(1-42) by perivascular microglia in aged, ethanol-consuming rats, and may have important implications for understanding mechanisms of cognitive decline associated with chronic drinking.
Collapse
Affiliation(s)
- Paige Marsland
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY 13902-6000, United States
| | - Andrew S Vore
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY 13902-6000, United States
| | - Evan DaPrano
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY 13902-6000, United States
| | - Joanna M Paluch
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY 13902-6000, United States
| | - Ashley A Blackwell
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY 13902-6000, United States
| | - Elena I Varlinskaya
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY 13902-6000, United States
| | - Terrence Deak
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY 13902-6000, United States.
| |
Collapse
|
8
|
Alomar HA, Nadeem A, Ansari MA, Attia SM, Bakheet SA, Al-Mazroua HA, Alhazzani K, Assiri MA, Alqinyah M, Almudimeegh S, Ahmad SF. Mitogen-activated protein kinase inhibitor PD98059 improves neuroimmune dysfunction in experimental autoimmune encephalomyelitis in SJL/J mice through the inhibition of nuclear factor-kappa B signaling in B cells. Brain Res Bull 2023; 194:45-53. [PMID: 36646144 DOI: 10.1016/j.brainresbull.2023.01.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 12/20/2022] [Accepted: 01/12/2023] [Indexed: 01/15/2023]
Abstract
Multiple sclerosis (MS) is a severe autoimmune disease leading to demyelination, followed by consequent axonal degeneration, causing sensory, motor, cognitive, and visual symptoms. Experimental autoimmune encephalomyelitis (EAE) is the most well-studied animal model of MS. Most current MS treatments are not completely effective, and severe side effects remain a great challenge. In this study, we report the therapeutic efficacy of PD98059, a potent mitogen-activated protein kinase inhibitor, on proteolipid protein (PLP)139-151-induced EAE in SJL/J mice. Following the induction of EAE, mice were intraperitoneally treated with PD98059 (5 mg/kg for 14 days) daily from day 14 to day 28. This study investigated the effects of PD98059 on C-C motif chemokine receptor 6 (CCR6), CD14, NF-κB p65, IκBα, GM-CSF, iNOS, IL-6, TNF-α in CD45R+ B lymphocytes using flow cytometry. Furthermore, we analyzed the effect of PD98059 on CCR6, CD14, NF-κB p65, GM-CSF, iNOS, IL-6, and TNF-α mRNA and protein expression levels using qRT-PCR analysis in brain tissues. Mechanistic investigations revealed that PD98059-treated in mice with EAE had reduced CD45R+CCR6+, CD45R+CD14+, CD45R+NF-κB p65+, CD45R+GM-CSF+, CD45R+iNOS+, CD45R+IL-6+, and CD45R+TNF-α+ cells and increased CD45R+IκBα+ cells compared with vehicle-treated control mice in the spleen. Moreover, downregulation of CCR6, CD14, NF-κB p65, GM-CSF, iNOS, IL-6, and TNF-α mRNA expression level was observed in PD98059-treated mice with EAE compared with vehicle-treated control mice in the brain tissue. The results of this study demonstrate that PD98059 modulates inflammatory mediators through multiple cellular mechanisms. The results of this study suggest that PD98059 may be pursued as a therapeutic agent for the treatment of MS.
Collapse
Affiliation(s)
- Hatun A Alomar
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mushtaq A Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sabry M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saleh A Bakheet
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Haneen A Al-Mazroua
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Khalid Alhazzani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed A Assiri
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed Alqinyah
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sultan Almudimeegh
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sheikh F Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
9
|
Busch L, Eggert S, Endres K, Bufe B. The Hidden Role of Non-Canonical Amyloid β Isoforms in Alzheimer's Disease. Cells 2022; 11:3421. [PMID: 36359817 PMCID: PMC9654995 DOI: 10.3390/cells11213421] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 09/08/2024] Open
Abstract
Recent advances have placed the pro-inflammatory activity of amyloid β (Aβ) on microglia cells as the focus of research on Alzheimer's Disease (AD). Researchers are confronted with an astonishing spectrum of over 100 different Aβ variants with variable length and chemical modifications. With the exception of Aβ1-42 and Aβ1-40, the biological significance of most peptides for AD is as yet insufficiently understood. We therefore aim to provide a comprehensive overview of the contributions of these neglected Aβ variants to microglia activation. First, the impact of Aβ receptors, signaling cascades, scavenger mechanisms, and genetic variations on the physiological responses towards various Aβ species is described. Furthermore, we discuss the importance of different types of amyloid precursor protein processing for the generation of these Aβ variants in microglia, astrocytes, oligodendrocytes, and neurons, and highlight how alterations in secondary structures and oligomerization affect Aβ neurotoxicity. In sum, the data indicate that gene polymorphisms in Aβ-driven signaling pathways in combination with the production and activity of different Aβ variants might be crucial factors for the initiation and progression of different forms of AD. A deeper assessment of their interplay with glial cells may pave the way towards novel therapeutic strategies for individualized medicine.
Collapse
Affiliation(s)
- Lukas Busch
- Department of Informatics and Microsystems Technology, University of Applied Sciences Kaiserslautern, D-66482 Zweibruecken, Germany
| | - Simone Eggert
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, D-37075 Goettingen, Germany
| | - Kristina Endres
- Department of Psychiatry and Psychotherapy, University Medical Centre of the Johannes Gutenberg University, D-55131 Mainz, Germany
| | - Bernd Bufe
- Department of Informatics and Microsystems Technology, University of Applied Sciences Kaiserslautern, D-66482 Zweibruecken, Germany
| |
Collapse
|
10
|
Slater O, Dhami KB, Shrestha G, Kontoyianni M, Nichols MR, Demchenko AV. Development of a Simple and Effective Lipid-A Antagonist Based on Computational Prediction. ACS Infect Dis 2022; 8:1171-1178. [PMID: 35612826 DOI: 10.1021/acsinfecdis.2c00125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Sepsis is a serious medical condition characterized by bacterial infection and a subsequent massive systemic inflammatory response. In an effort to identify compounds that block lipopolysaccharide (LPS)-induced inflammation reported herein is the development of simple Lipid-A analogues that lack a disaccharide core yet still possess potent antagonistic activity against LPS. The structure of the new lead compound was developed based on predictive computational experiments. LPS antagonism by the lead compound was not straightforward, and a biphasic effect was observed suggesting a possibility of more than one binding site. An IC50 value of 13 nM for the new compound was determined for the possible high affinity site. The combination of computational, synthetic, and biological studies revealed new structural determinants of these simplified analogues. It is expected that the acquired information will aid future design of LPS targeting glycopharmaceuticals.
Collapse
Affiliation(s)
- Olivia Slater
- Department of Pharmaceutical Sciences, School of Pharmacy, Southern Illinois University Edwardsville, Edwardsville, Illinois 62026, United States
| | - Kapur B. Dhami
- Department of Chemistry and Biochemistry, University of Missouri─St. Louis, One University Boulevard, St. Louis, Missouri 63121, United States
| | - Ganesh Shrestha
- Department of Chemistry and Biochemistry, University of Missouri─St. Louis, One University Boulevard, St. Louis, Missouri 63121, United States
| | - Maria Kontoyianni
- Department of Pharmaceutical Sciences, School of Pharmacy, Southern Illinois University Edwardsville, Edwardsville, Illinois 62026, United States
| | - Michael R. Nichols
- Department of Chemistry and Biochemistry, University of Missouri─St. Louis, One University Boulevard, St. Louis, Missouri 63121, United States
| | - Alexei V. Demchenko
- Department of Chemistry and Biochemistry, University of Missouri─St. Louis, One University Boulevard, St. Louis, Missouri 63121, United States
- Department of Chemistry, Saint Louis University, 3501 Laclede Ave, St. Louis, Missouri 63103, United States
| |
Collapse
|
11
|
Wiatrak B, Balon K, Jawień P, Bednarz D, Jęśkowiak I, Szeląg A. The Role of the Microbiota-Gut-Brain Axis in the Development of Alzheimer's Disease. Int J Mol Sci 2022; 23:ijms23094862. [PMID: 35563253 PMCID: PMC9104401 DOI: 10.3390/ijms23094862] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/16/2022] [Accepted: 04/21/2022] [Indexed: 02/06/2023] Open
Abstract
Along with the increase in life expectancy in the populations of developed and developing countries resulting from better access and improved health care, the number of patients with dementia, including Alzheimer’s disease (AD), is growing. The disease was first diagnosed and described at the beginning of the 20th century. However, to this day, there is no effective causal therapy, and symptomatic treatment often improves patients’ quality of life only for a short time. The current pharmacological therapies are based mainly on the oldest hypotheses of the disease—cholinergic (drugs affecting the cholinergic system are available), the hypothesis of amyloid-β aggregation (an anti-amyloid drug was conditionally approved by the FDA in 2020), and one drug is an N-methyl-D-aspartate receptor (NMDAR) antagonist (memantine). Hypotheses about AD pathogenesis focus on the nervous system and the brain. As research progresses, it has become known that AD can be caused by diseases that have been experienced over the course of a lifetime, which could also affect other organs. In this review, we focus on the potential association of AD with the digestive system, primarily the gut microbiota. The role of diet quality in preventing and alleviating Alzheimer’s disease is also discussed. The problem of neuroinflammation, which may be the result of microbiota disorders, is also described. An important aspect of the work is the chapter on the treatment strategies for changing the microbiota, potentially protecting against the disease and alleviating its course in the initial stages.
Collapse
Affiliation(s)
- Benita Wiatrak
- Department of Pharmacology, Wroclaw Medical University, Mikulicza-Radeckiego 2, 50-345 Wroclaw, Poland; (D.B.); (I.J.); (A.S.)
- Correspondence: (B.W.); (P.J.)
| | - Katarzyna Balon
- Laboratory of Genomics & Bioinformatics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland;
| | - Paulina Jawień
- Department of Biostructure and Animal Physiology, Wroclaw University of Environmental and Life Sciences, Norwida 25/27, 50-375 Wroclaw, Poland
- Correspondence: (B.W.); (P.J.)
| | - Dominika Bednarz
- Department of Pharmacology, Wroclaw Medical University, Mikulicza-Radeckiego 2, 50-345 Wroclaw, Poland; (D.B.); (I.J.); (A.S.)
| | - Izabela Jęśkowiak
- Department of Pharmacology, Wroclaw Medical University, Mikulicza-Radeckiego 2, 50-345 Wroclaw, Poland; (D.B.); (I.J.); (A.S.)
| | - Adam Szeląg
- Department of Pharmacology, Wroclaw Medical University, Mikulicza-Radeckiego 2, 50-345 Wroclaw, Poland; (D.B.); (I.J.); (A.S.)
| |
Collapse
|
12
|
Poudel P, Park S. Recent Advances in the Treatment of Alzheimer's Disease Using Nanoparticle-Based Drug Delivery Systems. Pharmaceutics 2022; 14:835. [PMID: 35456671 PMCID: PMC9026997 DOI: 10.3390/pharmaceutics14040835] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/29/2022] [Accepted: 04/08/2022] [Indexed: 01/05/2023] Open
Abstract
Alzheimer's disease (AD) is an irreversible and progressive neurodegenerative disorder. Most existing treatments only provide symptomatic solutions. Here, we introduce currently available commercial drugs and new therapeutics, including repositioned drugs, to treat AD. Despite tremendous efforts, treatments targeting the hallmarks of AD show limited efficacy. Challenges in treating AD are partly caused by difficulties in penetrating the blood-brain barrier (BBB). Recently, nanoparticle (NP)-based systems have shown promising potential as precision medicines that can effectively penetrate the BBB and enhance the targeting ability of numerous drugs. Here, we describe how NPs enter the brain by crossing, avoiding, or disrupting the BBB. In addition, we provide an overview of the action of NPs in the microenvironment of the brain for the treatment of AD. Diverse systems, including liposomes, micelles, polymeric NPs, solid-lipid NPs, and inorganic NPs, have been investigated for NP drug loading to relieve AD symptoms, target AD hallmarks, and target moieties to diagnose AD. We also highlight NP-based immunotherapy, which has recently gained special attention as a potential treatment option to disrupt AD progression. Overall, this review focuses on recently investigated NP systems that represent innovative strategies to understand AD pathogenesis and suggests treatment and diagnostic modalities to cure AD.
Collapse
|
13
|
Kos MZ, Puppala S, Cruz D, Neary JL, Kumar A, Dalan E, Li C, Nathanielsz P, Carless MA. Blood-Based miRNA Biomarkers as Correlates of Brain-Based miRNA Expression. Front Mol Neurosci 2022; 15:817290. [PMID: 35392269 PMCID: PMC8981579 DOI: 10.3389/fnmol.2022.817290] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/18/2022] [Indexed: 01/08/2023] Open
Abstract
The use of easily accessible peripheral samples, such as blood or saliva, to investigate neurological and neuropsychiatric disorders is well-established in genetic and epigenetic research, but the pathological implications of such biomarkers are not easily discerned. To better understand the relationship between peripheral blood- and brain-based epigenetic activity, we conducted a pilot study on captive baboons (Papio hamadryas) to investigate correlations between miRNA expression in peripheral blood mononuclear cells (PBMCs) and 14 different cortical and subcortical brain regions, represented by two study groups comprised of 4 and 6 animals. Using next-generation sequencing, we identified 362 miRNAs expressed at ≥ 10 read counts in 80% or more of the brain samples analyzed. Nominally significant pairwise correlations (one-sided P < 0.05) between peripheral blood and mean brain expression levels of individual miRNAs were observed for 39 and 44 miRNAs in each group. When miRNA expression levels were averaged for tissue type across animals within the groups, Spearman's rank correlations between PBMCs and the brain regions are all highly significant (r s = 0.47-0.57; P < 2.2 × 10-16), although pairwise correlations among the brain regions are markedly stronger (r s = 0.86-0.99). Principal component analysis revealed differentiation in miRNA expression between peripheral blood and the brain regions for the first component (accounting for ∼75% of variance). Linear mixed effects modeling attributed most of the variance in expression to differences between miRNAs (>70%), with non-significant 7.5% and 13.1% assigned to differences between blood and brain-based samples in the two study groups. Hierarchical UPGMA clustering revealed a major co-expression branch in both study groups, comprised of miRNAs globally upregulated in blood relative to the brain samples, exhibiting an enrichment of miRNAs expressed in immune cells (CD14+, CD15+, CD19+, CD3+, and CD56 + leukocytes) among the top blood-brain correlates, with the gene MYC, encoding a master transcription factor that regulates angiogenesis and neural stem cell activation, representing the most prevalent miRNA target. Although some differentiation was observed between tissue types, these preliminary findings reveal wider correlated patterns between blood- and brain-expressed miRNAs, suggesting the potential utility of blood-based miRNA profiling for investigating by proxy certain miRNA activity in the brain, with implications for neuroinflammatory and c-Myc-mediated processes.
Collapse
Affiliation(s)
- Mark Z. Kos
- Department of Human Genetics, South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Edinburg, TX, United States
| | - Sobha Puppala
- Department of Internal Medicine-Section of Molecular Medicine, Wake Forest Baptist Medical Center, Winston-Salem, NC, United States
| | - Dianne Cruz
- Duke University School of Medicine, Durham, NC, United States
| | - Jennifer L. Neary
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Ashish Kumar
- Department of Internal Medicine-Section of Molecular Medicine, Wake Forest Baptist Medical Center, Winston-Salem, NC, United States
| | - Emma Dalan
- Department of Biology, University of Texas at San Antonio, San Antonio, TX, United States
| | - Cun Li
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, United States,Department of Animal Science, University of Wyoming, Laramie, WY, United States
| | - Peter Nathanielsz
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, United States,Department of Animal Science, University of Wyoming, Laramie, WY, United States
| | - Melanie A. Carless
- Department of Biology, University of Texas at San Antonio, San Antonio, TX, United States,Population Health, Texas Biomedical Research Institute, San Antonio, TX, United States,*Correspondence: Melanie A. Carless,
| |
Collapse
|
14
|
Epishina I, Budanova E. A role of human microbiota in the development of neurodegenerative diseases. Zh Nevrol Psikhiatr Im S S Korsakova 2022; 122:57-65. [DOI: 10.17116/jnevro202212210157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
15
|
Mishra A, Bandopadhyay R, Singh PK, Mishra PS, Sharma N, Khurana N. Neuroinflammation in neurological disorders: pharmacotherapeutic targets from bench to bedside. Metab Brain Dis 2021; 36:1591-1626. [PMID: 34387831 DOI: 10.1007/s11011-021-00806-4] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 07/22/2021] [Indexed: 02/07/2023]
Abstract
Neuroinflammation is one of the host defensive mechanisms through which the nervous system protects itself from pathogenic and or infectious insults. Moreover, neuroinflammation occurs as one of the most common pathological outcomes in various neurological disorders, makes it the promising target. The present review focuses on elaborating the recent advancement in understanding molecular mechanisms of neuroinflammation and its role in the etiopathogenesis of various neurological disorders, especially Alzheimer's disease (AD), Parkinson's disease (PD), and Epilepsy. Furthermore, the current status of anti-inflammatory agents in neurological diseases has been summarized in light of different preclinical and clinical studies. Finally, possible limitations and future directions for the effective use of anti-inflammatory agents in neurological disorders have been discussed.
Collapse
Affiliation(s)
- Awanish Mishra
- Department of Pharmacology, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, India.
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, 781101, India.
| | - Ritam Bandopadhyay
- Department of Pharmacology, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, India
| | - Prabhakar Kumar Singh
- Department of Pharmacology, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, India
| | - Pragya Shakti Mishra
- Department of Nuclear Medicine, Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGIMS), Raebareli Road, Lucknow, 226014, India
| | - Neha Sharma
- Department of Pharmacology, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, India
| | - Navneet Khurana
- Department of Pharmacology, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, India
| |
Collapse
|
16
|
Muzio L, Viotti A, Martino G. Microglia in Neuroinflammation and Neurodegeneration: From Understanding to Therapy. Front Neurosci 2021; 15:742065. [PMID: 34630027 PMCID: PMC8497816 DOI: 10.3389/fnins.2021.742065] [Citation(s) in RCA: 217] [Impact Index Per Article: 72.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 08/25/2021] [Indexed: 12/19/2022] Open
Abstract
Microglia are the resident macrophages of the central nervous system (CNS) acting as the first line of defense in the brain by phagocytosing harmful pathogens and cellular debris. Microglia emerge from early erythromyeloid progenitors of the yolk sac and enter the developing brain before the establishment of a fully mature blood-brain barrier. In physiological conditions, during brain development, microglia contribute to CNS homeostasis by supporting cell proliferation of neural precursors. In post-natal life, such cells contribute to preserving the integrity of neuronal circuits by sculpting synapses. After a CNS injury, microglia change their morphology and down-regulate those genes supporting homeostatic functions. However, it is still unclear whether such changes are accompanied by molecular and functional modifications that might contribute to the pathological process. While comprehensive transcriptome analyses at the single-cell level have identified specific gene perturbations occurring in the "pathological" microglia, still the precise protective/detrimental role of microglia in neurological disorders is far from being fully elucidated. In this review, the results so far obtained regarding the role of microglia in neurodegenerative disorders will be discussed. There is solid and sound evidence suggesting that regulating microglia functions during disease pathology might represent a strategy to develop future therapies aimed at counteracting brain degeneration in multiple sclerosis, Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Luca Muzio
- Neuroimmunology Unit, Division of Neuroscience, IRCCS San Raffaele Hospital, Vita-Salute San Raffaele University, Milan, Italy
| | | | | |
Collapse
|
17
|
Gadhave K, Kumar D, Uversky VN, Giri R. A multitude of signaling pathways associated with Alzheimer's disease and their roles in AD pathogenesis and therapy. Med Res Rev 2021; 41:2689-2745. [PMID: 32783388 PMCID: PMC7876169 DOI: 10.1002/med.21719] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/13/2020] [Accepted: 07/29/2020] [Indexed: 02/06/2023]
Abstract
The exact molecular mechanisms associated with Alzheimer's disease (AD) pathology continue to represent a mystery. In the past decades, comprehensive data were generated on the involvement of different signaling pathways in the AD pathogenesis. However, the utilization of signaling pathways as potential targets for the development of drugs against AD is rather limited due to the immense complexity of the brain and intricate molecular links between these pathways. Therefore, finding a correlation and cross-talk between these signaling pathways and establishing different therapeutic targets within and between those pathways are needed for better understanding of the biological events responsible for the AD-related neurodegeneration. For example, autophagy is a conservative cellular process that shows link with many other AD-related pathways and is crucial for maintenance of the correct cellular balance by degrading AD-associated pathogenic proteins. Considering the central role of autophagy in AD and its interplay with many other pathways, the finest therapeutic strategy to fight against AD is the use of autophagy as a target. As an essential step in this direction, this comprehensive review represents recent findings on the individual AD-related signaling pathways, describes key features of these pathways and their cross-talk with autophagy, represents current drug development, and introduces some of the multitarget beneficial approaches and strategies for the therapeutic intervention of AD.
Collapse
Affiliation(s)
- Kundlik Gadhave
- School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Himachal Pradesh, 175005, India
| | - Deepak Kumar
- School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Himachal Pradesh, 175005, India
| | - Vladimir N. Uversky
- Department of Molecular Medicine and Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
- Laboratory of New Methods in Biology, Institute for Biological Instrumentation, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - Rajanish Giri
- School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Himachal Pradesh, 175005, India
| |
Collapse
|
18
|
Uddin MS, Kabir MT, Jalouli M, Rahman MA, Jeandet P, Behl T, Alexiou A, Albadrani GM, Abdel-Daim MM, Perveen A, Ashraf GM. Neuroinflammatory Signaling in the Pathogenesis of Alzheimer's Disease. Curr Neuropharmacol 2021; 20:126-146. [PMID: 34525932 PMCID: PMC9199559 DOI: 10.2174/1570159x19666210826130210] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 04/16/2021] [Accepted: 05/10/2021] [Indexed: 11/22/2022] Open
Abstract
Alzheimer’s disease (AD) is a chronic neurodegenerative disease characterized by the formation of intracellular neurofibrillary tangles (NFTs) and extracellular amyloid plaques. Growing evidence has suggested that AD pathogenesis is not only limited to the neuronal compartment but also strongly interacts with immunological processes in the brain. On the other hand, aggregated and misfolded proteins can bind with pattern recognition receptors located on astroglia and microglia and can, in turn, induce an innate immune response, characterized by the release of inflammatory mediators, ultimately playing a role in both the severity and the progression of the disease. It has been reported by genome-wide analysis that several genes which elevate the risk for sporadic AD encode for factors controlling the inflammatory response and glial clearance of misfolded proteins. Obesity and systemic inflammation are examples of external factors which may interfere with the immunological mechanisms of the brain and can induce disease progression. In this review, we discussed the mechanisms and essential role of inflammatory signaling pathways in AD pathogenesis. Indeed, interfering with immune processes and modulation of risk factors may lead to future therapeutic or preventive AD approaches.
Collapse
Affiliation(s)
- Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka. Bangladesh
| | | | - Maroua Jalouli
- College of Science, King Saud University, P.O. Box 2455, Riyadh 11451. Saudi Arabia
| | - Md Ataur Rahman
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology, Seoul. Korea
| | - Philippe Jeandet
- Research Unit "Induced Resistance and Plant Bioprotection", EA 4707, SFR Condorcet FR CNRS 3417, Faculty of Sciences, University of Reims Champagne-Ardenne, PO Box 1039, 51687 Reims Cedex 2. France
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab. India
| | - Athanasios Alexiou
- Novel Global Community Educational Foundation, 2770 Hebersham. Australia
| | - Ghadeer M Albadrani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11474. Saudi Arabia
| | - Mohamed M Abdel-Daim
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522. Egypt
| | - Asma Perveen
- Glocal School of Life Sciences, Glocal University, Saharanpur. India
| | - Ghulam Md Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah. Saudi Arabia
| |
Collapse
|
19
|
Mcgill RB, Steyn FJ, Ngo ST, Thorpe KA, Heggie S, Henderson RD, Mccombe PA, Woodruff TM. Monocyte CD14 and HLA-DR expression increases with disease duration and severity in amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener 2021; 23:430-437. [PMID: 34396845 DOI: 10.1080/21678421.2021.1964531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Objective: To investigate changes in immune markers and frequencies throughout disease progression in patients with amyotrophic lateral sclerosis (ALS). Methods: In this longitudinal study, serial blood samples were collected from 21 patients with ALS over a time period of up to 16 months. Flow cytometry was used to quantitate CD14, HLA-DR, and CD16 marker expression on monocyte subpopulations and neutrophils, as well as their cell population frequencies. A Generalized Estimating Equation model was used to assess the association between changes in these immune parameters and disease duration and the Revised Amyotrophic Lateral Sclerosis Functional Rating Scale (ALSFRS-R). Results: CD14 expression on monocyte subpopulations increased with both disease duration and a decrease in ALSFRS-R score in patients with ALS. HLA-DR expression on monocyte subpopulations also increased with disease severity and/or duration. The expression of CD16 did not change relative to disease duration or ALSFRS-R. Finally, patients had a reduction in non-classical monocytes and an increase in the classical to non-classical monocyte ratio throughout disease duration. Conclusion: The progressive immunological changes observed in this study provide further support that monocytes are implicated in ALS pathology. Monocytic CD14 and HLA-DR surface proteins may serve as a therapeutic target or criteria for the recruitment of patients with ALS into clinical trials for immunomodulatory therapies.
Collapse
Affiliation(s)
- R B Mcgill
- School of Biomedical Sciences, The University of Queensland, Brisbane, Australia
| | - F J Steyn
- School of Biomedical Sciences, The University of Queensland, Brisbane, Australia.,Wesley Medical Research, The Wesley Hospital, Brisbane, Australia.,University of Queensland Centre for Clinical Research, The University of Queensland, Brisbane, Australia.,Department of Neurology, Royal Brisbane & Women's Hospital, Brisbane, Australia
| | - S T Ngo
- Wesley Medical Research, The Wesley Hospital, Brisbane, Australia.,University of Queensland Centre for Clinical Research, The University of Queensland, Brisbane, Australia.,Department of Neurology, Royal Brisbane & Women's Hospital, Brisbane, Australia.,Queensland Brain Institute, The University of Queensland, Brisbane, Australia, and.,Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Australia
| | - K A Thorpe
- Department of Neurology, Royal Brisbane & Women's Hospital, Brisbane, Australia
| | - S Heggie
- Department of Neurology, Royal Brisbane & Women's Hospital, Brisbane, Australia
| | - R D Henderson
- University of Queensland Centre for Clinical Research, The University of Queensland, Brisbane, Australia.,Department of Neurology, Royal Brisbane & Women's Hospital, Brisbane, Australia
| | - P A Mccombe
- University of Queensland Centre for Clinical Research, The University of Queensland, Brisbane, Australia.,Department of Neurology, Royal Brisbane & Women's Hospital, Brisbane, Australia
| | - T M Woodruff
- School of Biomedical Sciences, The University of Queensland, Brisbane, Australia.,Wesley Medical Research, The Wesley Hospital, Brisbane, Australia.,Queensland Brain Institute, The University of Queensland, Brisbane, Australia, and
| |
Collapse
|
20
|
Weston LL, Jiang S, Chisholm D, Jantzie LL, Bhaskar K. Interleukin-10 deficiency exacerbates inflammation-induced tau pathology. J Neuroinflammation 2021; 18:161. [PMID: 34275478 PMCID: PMC8286621 DOI: 10.1186/s12974-021-02211-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 07/04/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND The presence of hyperphosphorylated microtubule-associated protein tau is strongly correlated with cognitive decline and neuroinflammation in Alzheimer's disease and related tauopathies. However, the role of inflammation and anti-inflammatory interventions in tauopathies is unclear. Our goal was to determine if removing anti-inflammatory interleukin-10 (IL-10) during an acute inflammatory challenge has any effect on neuronal tau pathology. METHODS We induce systemic inflammation in Il10-deficient (Il10-/-) versus Il10+/+ (Non-Tg) control mice using a single intraperitoneal (i.p.) injection of lipopolysaccharide (LPS) to examine microglial activation and abnormal hyperphosphorylation of endogenous mouse tau protein. Tau phosphorylation was quantified by Western blotting and immunohistochemistry. Microglial morphology was quantified by skeleton analysis. Cytokine expression was determined by multiplex electro chemiluminescent immunoassay (MECI) from Meso Scale Discovery (MSD). RESULTS Our findings show that genetic deletion of Il10 promotes enhanced neuroinflammation and tau phosphorylation. First, LPS-induced tau hyperphosphorylation was significantly increased in Il10-/- mice compared to controls. Second, LPS-treated Il10-/- mice showed signs of neurodegeneration. Third, LPS-treated Il10-/- mice showed robust IL-6 upregulation and direct treatment of primary neurons with IL-6 resulted in tau hyperphosphorylation on Ser396/Ser404 site. CONCLUSIONS These data support that loss of IL-10 activates microglia, enhances IL-6, and leads to hyperphosphorylation of tau on AD-relevant epitopes in response to acute systemic inflammation.
Collapse
Affiliation(s)
- Lea L Weston
- Department of Molecular Genetics and Microbiology, University of New Mexico, MSC08 4660, 1 University of New Mexico, Albuquerque, NM, 87131, USA
| | - Shanya Jiang
- Department of Molecular Genetics and Microbiology, University of New Mexico, MSC08 4660, 1 University of New Mexico, Albuquerque, NM, 87131, USA
| | - Devon Chisholm
- Department of Molecular Genetics and Microbiology, University of New Mexico, MSC08 4660, 1 University of New Mexico, Albuquerque, NM, 87131, USA
| | - Lauren L Jantzie
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Kiran Bhaskar
- Department of Molecular Genetics and Microbiology, University of New Mexico, MSC08 4660, 1 University of New Mexico, Albuquerque, NM, 87131, USA.
- Department of Neurology, University of New Mexico, 1 University of New Mexico, Albuquerque, NM, 87131, USA.
| |
Collapse
|
21
|
Trichka J, Zou WQ. Modulation of Neuroinflammation by the Gut Microbiota in Prion and Prion-Like Diseases. Pathogens 2021; 10:887. [PMID: 34358037 PMCID: PMC8308761 DOI: 10.3390/pathogens10070887] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 06/30/2021] [Accepted: 07/10/2021] [Indexed: 12/29/2022] Open
Abstract
The process of neuroinflammation contributes to the pathogenic mechanism of many neurodegenerative diseases. The deleterious attributes of neuroinflammation involve aberrant and uncontrolled activation of glia, which can result in damage to proximal brain parenchyma. Failure to distinguish self from non-self, as well as leukocyte reaction to aggregation and accumulation of proteins in the CNS, are the primary mechanisms by which neuroinflammation is initiated. While processes local to the CNS may instigate neurodegenerative disease, the existence or dysregulation of systemic homeostasis can also serve to improve or worsen CNS pathologies, respectively. One fundamental component of systemic homeostasis is the gut microbiota, which communicates with the CNS via microbial metabolite production, the peripheral nervous system, and regulation of tryptophan metabolism. Over the past 10-15 years, research focused on the microbiota-gut-brain axis has culminated in the discovery that dysbiosis, or an imbalance between commensal and pathogenic gut bacteria, can promote CNS pathologies. Conversely, a properly regulated and well-balanced microbiome supports CNS homeostasis and reduces the incidence and extent of pathogenic neuroinflammation. This review will discuss the role of the gut microbiota in exacerbating or alleviating neuroinflammation in neurodegenerative diseases, and potential microbiota-based therapeutic approaches to reduce pathology in diseased states.
Collapse
Affiliation(s)
| | - Wen-Quan Zou
- Department of Pathology, Case Western Reserve University, 2103 Cornell Rd, Cleveland, OH 44106, USA;
| |
Collapse
|
22
|
Svob Strac D, Konjevod M, Sagud M, Nikolac Perkovic M, Nedic Erjavec G, Vuic B, Simic G, Vukic V, Mimica N, Pivac N. Personalizing the Care and Treatment of Alzheimer's Disease: An Overview. Pharmgenomics Pers Med 2021; 14:631-653. [PMID: 34093032 PMCID: PMC8169052 DOI: 10.2147/pgpm.s284615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 05/05/2021] [Indexed: 11/23/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive, complex, and multifactorial neurodegenerative disorder, still without effective and stable therapeutic strategies. Currently, available medications for AD are based on symptomatic therapy, which include acetylcholinesterase (AChE) inhibitors and N-methyl-D-aspartate (NMDA) receptor antagonist. Additionally, medications such as antipsychotic drugs, antidepressants, sedative, and hypnotic agents, and mood stabilizers are used for the management of behavioral and psychological symptoms of dementia (BPSD). Clinical research has been extensively investigated treatments focusing on the hallmark pathology of AD, including the amyloid deposition, tau hyperphosphorylation, neuroinflammation, and vascular changes; however, so far without success, as all new potential drugs failed to show significant clinical benefit. The underlying heterogeneous etiology and diverse symptoms of AD suggest that a precision medicine strategy is required, which would take into account the complex genetic, epigenetic, and environmental landscape of each AD patient. The article provides a comprehensive overview of the literature on AD, the current and potential therapy of both cognitive symptoms as well as BPSD, with a special focus on gut microbiota and epigenetic modifications as new emerging drug targets. Their specific patterns could represent the basis for novel individually tailored approaches aimed to optimize precision medicine strategies for AD prevention and treatment. However, the successful application of precision medicine to AD demands a further extensive research of underlying pathological processes, as well as clinical and biological complexity of this multifactorial neurodegenerative disorder.
Collapse
Affiliation(s)
- Dubravka Svob Strac
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Marcela Konjevod
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Marina Sagud
- Department of Psychiatry, Clinical Hospital Centre Zagreb, Zagreb, Croatia
- University of Zagreb Medical School, Zagreb, Croatia
| | - Matea Nikolac Perkovic
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Gordana Nedic Erjavec
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Barbara Vuic
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Goran Simic
- Department of Neuroscience, Croatian Institute for Brain Research, Zagreb, Croatia
| | - Vana Vukic
- Department of Neuroscience, Croatian Institute for Brain Research, Zagreb, Croatia
| | | | - Nela Pivac
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, Zagreb, Croatia
| |
Collapse
|
23
|
Uddin MS, Hasana S, Ahmad J, Hossain MF, Rahman MM, Behl T, Rauf A, Ahmad A, Hafeez A, Perveen A, Ashraf GM. Anti-Neuroinflammatory Potential of Polyphenols by Inhibiting NF-κB to Halt Alzheimer's Disease. Curr Pharm Des 2021; 27:402-414. [PMID: 33213314 DOI: 10.2174/1381612826666201118092422] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 10/01/2020] [Indexed: 11/22/2022]
Abstract
Alzheimer's disease (AD) is an irrevocable chronic brain disorder featured by neuronal loss, microglial accumulation, and progressive cognitive impairment. The proper pathophysiology of this life-threatening disorder is not completely understood and no exact remedies have been found yet. Over the last few decades, research on AD has mainly highlighted pathomechanisms linked to a couple of the major pathological hallmarks, including extracellular senile plaques made of amyloid-β (Aβ) peptides, and intracellular neurofibrillary tangles (NFTs) made of tau proteins. Aβ can induce apoptosis, trigger an inflammatory response, and inhibit the synaptic plasticity of the hippocampus, which ultimately contributes to reducing cognitive functions and memory impairment. Recently, a third disease hallmark, the neuroinflammatory reaction that is mediated by cerebral innate immune cells, has become a spotlight in the current research area, assured by pre-clinical, clinical, and genetic investigations. Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), a cytokine producer, is significantly associated with physiological inflammatory proceedings and thus shows a promising candidate for inflammation- based AD therapy. Recent data reveal that phytochemicals, mainly polyphenol compounds, exhibit potential neuroprotective functions and these may be considered as a vital resource for discovering several drug candidates against AD. Interestingly, phytochemicals can easily interfere with the signaling pathway of NF-κB. This review represents the anti-neuroinflammatory potential of polyphenols as inhibitors of NF-κB to combat AD pathogenesis.
Collapse
Affiliation(s)
- Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh
| | - Sharifa Hasana
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh
| | - Jamil Ahmad
- Department of Human Nutrition, The University of Agriculture Peshawar, Khyber Pakhtunkhwa, Pakistan
| | | | | | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Swabi, Anbar, Khyber Pakhtunkhwa, Pakistan
| | - Ausaf Ahmad
- Amity Institute of Biotechnology, Amity University Uttar Pradesh Lucknow Campus, Uttar Pradesh, India
| | - Abdul Hafeez
- Glocal School of Pharmacy, Glocal University, Saharanpur, India
| | - Asma Perveen
- Glocal School of Life Sciences, Glocal University, Saharanpur, India
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
24
|
Casali BT, Reed-Geaghan EG. Microglial Function and Regulation during Development, Homeostasis and Alzheimer's Disease. Cells 2021; 10:957. [PMID: 33924200 PMCID: PMC8074610 DOI: 10.3390/cells10040957] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/15/2021] [Accepted: 04/19/2021] [Indexed: 12/22/2022] Open
Abstract
Microglia are the resident immune cells of the brain, deriving from yolk sac progenitors that populate the brain parenchyma during development. During development and homeostasis, microglia play critical roles in synaptogenesis and synaptic plasticity, in addition to their primary role as immune sentinels. In aging and neurodegenerative diseases generally, and Alzheimer's disease (AD) specifically, microglial function is altered in ways that significantly diverge from their homeostatic state, inducing a more detrimental inflammatory environment. In this review, we discuss the receptors, signaling, regulation and gene expression patterns of microglia that mediate their phenotype and function contributing to the inflammatory milieu of the AD brain, as well as strategies that target microglia to ameliorate the onset, progression and symptoms of AD.
Collapse
Affiliation(s)
| | - Erin G. Reed-Geaghan
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA;
| |
Collapse
|
25
|
Öberg M, Fabrik I, Fabrikova D, Zehetner N, Härtlova A. The role of innate immunity and inflammation in Parkinson´s disease. Scand J Immunol 2021; 93:e13022. [PMID: 33471378 DOI: 10.1111/sji.13022] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 11/08/2020] [Accepted: 01/17/2021] [Indexed: 01/09/2023]
Abstract
For many years, it was postulated that the brain is the organ behind the barrier with an autonomous need for its maintenance. This view has been changed by the concept that the central nervous system is sensitive to the immune processes occurring in the periphery as well as to the infiltration of peripheral immune cells. However, how the immune system might contribute to the development of neurodegenerative diseases, such as Parkinson's disease (PD), remains unclear. PD is a chronic neurodegenerative disorder that affects motor and cognitive functions. Although the precise cause of PD is unknown, studies in both mice and human suggest that alterations in the innate immunity may play a critical role in modulating PD progression. Here, we review recent advancements in our understanding of inflammation and the innate immune mechanisms in PD pathology.
Collapse
Affiliation(s)
- Maria Öberg
- Wallenberg Centre for Molecular and Translational Medicine, Department of Microbiology and Immunology at Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Ivo Fabrik
- Wallenberg Centre for Molecular and Translational Medicine, Department of Microbiology and Immunology at Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Daniela Fabrikova
- Wallenberg Centre for Molecular and Translational Medicine, Department of Microbiology and Immunology at Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Nina Zehetner
- Wallenberg Centre for Molecular and Translational Medicine, Department of Microbiology and Immunology at Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Anetta Härtlova
- Wallenberg Centre for Molecular and Translational Medicine, Department of Microbiology and Immunology at Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
26
|
Lindsay A, Hickman D, Srinivasan M. A nuclear factor-kappa B inhibiting peptide suppresses innate immune receptors and gliosis in a transgenic mouse model of Alzheimer's disease. Biomed Pharmacother 2021; 138:111405. [PMID: 33756153 DOI: 10.1016/j.biopha.2021.111405] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 02/05/2021] [Accepted: 02/10/2021] [Indexed: 12/17/2022] Open
Abstract
A disproportionate increase in activated nuclear factor-kappa B (NF-κB) has been shown to drive the Aβ deposition, neuroinflammation and neurodegeneration in Alzheimer's disease (AD). Hence, selective targeting of activated p65 represents an attractive therapeutic approach for AD. Glucocorticoid induced leucine zipper (GILZ) is a NF-κB interactant that binds and sequesters the activated p65 in the cytoplasm. The p65 binding domain of GILZ adopts a polyproline type II helical conformation, a motif that acts as an adaptable glove in the interface with the binding partner and constitutes an excellent template for drug design. Previously, peptide analogs of the p65 binding domain of GILZ, referred to as GA have been shown to suppress pathology in the lipopolysaccharide induced model of neuroinflammation. In this study, we investigated the CNS delivery of labeled GA administered intraperitoneally in adult mice for a period of upto 24 h. Further, we evaluated the suppressive potential of GA in 5xFAD mice, an aggressive model with five genetic mutations closely associated with human AD. Groups of 5xFAD mice administered GA or control peptide intraperitoneally on alternate days for six weeks were evaluated for Aβ deposition, microglia, inflammation and innate immune responses by immunohistochemistry and real time polymerase reaction. GA was observed in proximity with NeuN positive neurons suggesting that the compound crossed the blood brain barrier to reach the brain parenchyma. Further, GA treatment decreased Aβ load, reduced Iba1 + microglia and glial fibrillary acidic protein (GFAP)+ astrocytes, inhibited inflammatory cytokines and suppressed toll like receptor (TLR-2, TLR-4) expressions in 5xFAD mice.
Collapse
Affiliation(s)
- Alison Lindsay
- Department of Oral Pathology, Medicine and Radiology, Indiana University School of Dentistry, United States
| | - Deborah Hickman
- Laboratory of Animal Care and Research, Indiana University School of Medicine, Indiana University-Purdue University Indianapolis, United States
| | - Mythily Srinivasan
- Department of Oral Pathology, Medicine and Radiology, Indiana University School of Dentistry, United States; Provaidya LLC, Indianapolis, IN, United States.
| |
Collapse
|
27
|
Microglial Heterogeneity and Its Potential Role in Driving Phenotypic Diversity of Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms22052780. [PMID: 33803478 PMCID: PMC7967159 DOI: 10.3390/ijms22052780] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/04/2021] [Accepted: 03/05/2021] [Indexed: 01/03/2023] Open
Abstract
Alzheimer’s disease (AD) is increasingly recognized as a highly heterogeneous disorder occurring under distinct clinical and neuropathological phenotypes. Despite the molecular determinants of such variability not being well defined yet, microglial cells may play a key role in this process by releasing distinct pro- and/or anti-inflammatory cytokines, potentially affecting the expression of the disease. We carried out a neuropathological and biochemical analysis on a series of AD brain samples, gathering evidence about the heterogeneous involvement of microglia in AD. The neuropathological studies showed differences concerning morphology, density and distribution of microglial cells among AD brains. Biochemical investigations showed increased brain levels of IL-4, IL-6, IL-13, CCL17, MMP-7 and CXCL13 in AD in comparison with control subjects. The molecular profiling achieved by measuring the brain levels of 25 inflammatory factors known to be involved in neuroinflammation allowed a stratification of the AD patients in three distinct “neuroinflammatory clusters”. These findings strengthen the relevance of neuroinflammation in AD pathogenesis suggesting, in particular, that the differential involvement of neuroinflammatory molecules released by microglial cells during the development of the disease may contribute to modulate the characteristics and the severity of the neuropathological changes, driving—at least in part—the AD phenotypic diversity.
Collapse
|
28
|
Piccioni G, Mango D, Saidi A, Corbo M, Nisticò R. Targeting Microglia-Synapse Interactions in Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms22052342. [PMID: 33652870 PMCID: PMC7956551 DOI: 10.3390/ijms22052342] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 02/22/2021] [Accepted: 02/24/2021] [Indexed: 12/19/2022] Open
Abstract
In this review, we focus on the emerging roles of microglia in the brain, with particular attention to synaptic plasticity in health and disease. We present evidence that ramified microglia, classically believed to be "resting" (i.e., inactive), are instead strongly implicated in dynamic and plastic processes. Indeed, there is an intimate relationship between microglia and neurons at synapses which modulates activity-dependent functional and structural plasticity through the release of cytokines and growth factors. These roles are indispensable to brain development and cognitive function. Therefore, approaches aimed at maintaining the ramified state of microglia might be critical to ensure normal synaptic plasticity and cognition. On the other hand, inflammatory signals associated with Alzheimer's disease are able to modify the ramified morphology of microglia, thus leading to synapse loss and dysfunction, as well as cognitive impairment. In this context, we highlight microglial TREM2 and CSF1R as emerging targets for disease-modifying therapy in Alzheimer's disease (AD) and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Gaia Piccioni
- Laboratory Pharmacology of Synaptic Plasticity, European Brain Research Institute, 00161 Rome, Italy; (D.M.); (A.S.)
- Department of Physiology and Pharmacology “V.Erspamer”, Sapienza University of Rome, 00185 Rome, Italy
- Correspondence: (G.P.); (R.N.)
| | - Dalila Mango
- Laboratory Pharmacology of Synaptic Plasticity, European Brain Research Institute, 00161 Rome, Italy; (D.M.); (A.S.)
- School of Pharmacy, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Amira Saidi
- Laboratory Pharmacology of Synaptic Plasticity, European Brain Research Institute, 00161 Rome, Italy; (D.M.); (A.S.)
- Department of Physiology and Pharmacology “V.Erspamer”, Sapienza University of Rome, 00185 Rome, Italy
| | - Massimo Corbo
- Department of Neurorehabilitation Sciences, Casa Cura Policlinico, 20144 Milan, Italy;
| | - Robert Nisticò
- Laboratory Pharmacology of Synaptic Plasticity, European Brain Research Institute, 00161 Rome, Italy; (D.M.); (A.S.)
- School of Pharmacy, University of Rome “Tor Vergata”, 00133 Rome, Italy
- Correspondence: (G.P.); (R.N.)
| |
Collapse
|
29
|
de Wit NM, Mol K, Rodríguez-Lorenzo S, de Vries HE, Kooij G. The Role of Sphingolipids and Specialized Pro-Resolving Mediators in Alzheimer's Disease. Front Immunol 2021; 11:620348. [PMID: 33633739 PMCID: PMC7902029 DOI: 10.3389/fimmu.2020.620348] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/14/2020] [Indexed: 12/14/2022] Open
Abstract
Alzheimer’s disease (AD) is the leading cause of dementia worldwide giving rise to devastating forms of cognitive decline, which impacts patients’ lives and that of their proxies. Pathologically, AD is characterized by extracellular amyloid deposition, neurofibrillary tangles and chronic neuroinflammation. To date, there is no cure that prevents progression of AD. In this review, we elaborate on how bioactive lipids, including sphingolipids (SL) and specialized pro-resolving lipid mediators (SPM), affect ongoing neuroinflammatory processes during AD and how we may exploit them for the development of new biomarker panels and/or therapies. In particular, we here describe how SPM and SL metabolism, ranging from ω-3/6 polyunsaturated fatty acids and their metabolites to ceramides and sphingosine-1-phosphate, initiates pro- and anti-inflammatory signaling cascades in the central nervous system (CNS) and what changes occur therein during AD pathology. Finally, we discuss novel therapeutic approaches to resolve chronic neuroinflammation in AD by modulating the SPM and SL pathways.
Collapse
Affiliation(s)
- Nienke M de Wit
- Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Kevin Mol
- Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Sabela Rodríguez-Lorenzo
- Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Helga E de Vries
- Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Gijs Kooij
- Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
30
|
The Microbiota-Gut-Brain Axis and Alzheimer's Disease: Neuroinflammation Is to Blame? Nutrients 2020; 13:nu13010037. [PMID: 33374235 PMCID: PMC7824474 DOI: 10.3390/nu13010037] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/20/2020] [Accepted: 12/22/2020] [Indexed: 02/06/2023] Open
Abstract
For years, it has been reported that Alzheimer’s disease (AD) is the most common cause of dementia. Various external and internal factors may contribute to the early onset of AD. This review highlights a contribution of the disturbances in the microbiota–gut–brain (MGB) axis to the development of AD. Alteration in the gut microbiota composition is determined by increase in the permeability of the gut barrier and immune cell activation, leading to impairment in the blood–brain barrier function that promotes neuroinflammation, neuronal loss, neural injury, and ultimately AD. Numerous studies have shown that the gut microbiota plays a crucial role in brain function and changes in the behavior of individuals and the formation of bacterial amyloids. Lipopolysaccharides and bacterial amyloids synthesized by the gut microbiota can trigger the immune cells residing in the brain and can activate the immune response leading to neuroinflammation. Growing experimental and clinical data indicate the prominent role of gut dysbiosis and microbiota–host interactions in AD. Modulation of the gut microbiota with antibiotics or probiotic supplementation may create new preventive and therapeutic options in AD. Accumulating evidences affirm that research on MGB involvement in AD is necessary for new treatment targets and therapies for AD.
Collapse
|
31
|
Brown MR, Radford SE, Hewitt EW. Modulation of β-Amyloid Fibril Formation in Alzheimer's Disease by Microglia and Infection. Front Mol Neurosci 2020; 13:609073. [PMID: 33324164 PMCID: PMC7725705 DOI: 10.3389/fnmol.2020.609073] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 11/03/2020] [Indexed: 01/06/2023] Open
Abstract
Amyloid plaques are a pathological hallmark of Alzheimer's disease. The major component of these plaques are highly ordered amyloid fibrils formed by amyloid-β (Aβ) peptides. However, whilst Aβ amyloid fibril assembly has been subjected to detailed and extensive analysis in vitro, these studies may not reproduce how Aβ fibrils assemble in the brain. This is because the brain represents a highly complex and dynamic environment, and in Alzheimer's disease multiple cofactors may affect the assembly of Aβ fibrils. Moreover, in vivo amyloid plaque formation will reflect the balance between the assembly of Aβ fibrils and their degradation. This review explores the roles of microglia as cofactors in Aβ aggregation and in the clearance of amyloid deposits. In addition, we discuss how infection may be an additional cofactor in Aβ fibril assembly by virtue of the antimicrobial properties of Aβ peptides. Crucially, by understanding the roles of microglia and infection in Aβ amyloid fibril assembly it may be possible to identify new therapeutic targets for Alzheimer's disease.
Collapse
Affiliation(s)
- Madeleine R Brown
- School of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Sheena E Radford
- School of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Eric W Hewitt
- School of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
32
|
Inflammatory factors and amyloid β-induced microglial polarization promote inflammatory crosstalk with astrocytes. Aging (Albany NY) 2020; 12:22538-22549. [PMID: 33196457 PMCID: PMC7746366 DOI: 10.18632/aging.103663] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 06/17/2020] [Indexed: 02/06/2023]
Abstract
The immunological responses are a key pathological factor in Alzheimer's disease (AD). We hypothesized that microglial polarization alters microglia-astrocyte immune interactions in AD. M1 and M2 microglia were isolated from primary rat microglia and were confirmed to secrete pro-inflammatory and anti-inflammatory factors, respectively. Primary rat astrocytes were co-cultured with M1 or M2 microglial medium. M1 microglial medium increased astrocyte production of pro-inflammatory factors (interleukin [IL]-1β, tumor necrosis factor α and IL-6), while M2 microglial medium enhanced astrocyte production of anti-inflammatory factors (IL-4 and IL-10). To analyze the crosstalk between microglia and astrocytes after microglial polarization specifically in AD, we co-cultured astrocytes with medium from microglia treated with amyloid-β (Aβ) alone or in combination with other inflammatory substances. Aβ alone and Aβ combined with lipopolysaccharide/interferon-γ induced pro-inflammatory activity in M1 microglia and astrocytes, whereas IL-4/IL-13 inhibited Aβ-induced pro-inflammatory activity. Nuclear factor κB p65 was upregulated in M1 microglia and pro-inflammatory astrocytes, while Stat6 was upregulated in M2 microglia and anti-inflammatory astrocytes. These results provide direct evidence that microglial polarization governs communication between microglia and astrocytes, and that AD debris alters this crosstalk.
Collapse
|
33
|
Ciesielska A, Matyjek M, Kwiatkowska K. TLR4 and CD14 trafficking and its influence on LPS-induced pro-inflammatory signaling. Cell Mol Life Sci 2020; 78:1233-1261. [PMID: 33057840 PMCID: PMC7904555 DOI: 10.1007/s00018-020-03656-y] [Citation(s) in RCA: 609] [Impact Index Per Article: 152.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/25/2020] [Accepted: 09/22/2020] [Indexed: 02/07/2023]
Abstract
Toll-like receptor (TLR) 4 belongs to the TLR family of receptors inducing pro-inflammatory responses to invading pathogens. TLR4 is activated by lipopolysaccharide (LPS, endotoxin) of Gram-negative bacteria and sequentially triggers two signaling cascades: the first one involving TIRAP and MyD88 adaptor proteins is induced in the plasma membrane, whereas the second engaging adaptor proteins TRAM and TRIF begins in early endosomes after endocytosis of the receptor. The LPS-induced internalization of TLR4 and hence also the activation of the TRIF-dependent pathway is governed by a GPI-anchored protein, CD14. The endocytosis of TLR4 terminates the MyD88-dependent signaling, while the following endosome maturation and lysosomal degradation of TLR4 determine the duration and magnitude of the TRIF-dependent one. Alternatively, TLR4 may return to the plasma membrane, which process is still poorly understood. Therefore, the course of the LPS-induced pro-inflammatory responses depends strictly on the rates of TLR4 endocytosis and trafficking through the endo-lysosomal compartment. Notably, prolonged activation of TLR4 is linked with several hereditary human diseases, neurodegeneration and also with autoimmune diseases and cancer. Recent studies have provided ample data on the role of diverse proteins regulating the functions of early, late, and recycling endosomes in the TLR4-induced inflammation caused by LPS or phagocytosis of E. coli. In this review, we focus on the mechanisms of the internalization and intracellular trafficking of TLR4 and CD14, and also of LPS, in immune cells and discuss how dysregulation of the endo-lysosomal compartment contributes to the development of diverse human diseases.
Collapse
Affiliation(s)
- Anna Ciesielska
- Laboratory of Molecular Membrane Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur St., 02-093, Warsaw, Poland.
| | - Marta Matyjek
- Laboratory of Molecular Membrane Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur St., 02-093, Warsaw, Poland
| | - Katarzyna Kwiatkowska
- Laboratory of Molecular Membrane Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur St., 02-093, Warsaw, Poland
| |
Collapse
|
34
|
Bibič L, Stokes L. Revisiting the Idea That Amyloid-β Peptide Acts as an Agonist for P2X7. Front Mol Neurosci 2020; 13:166. [PMID: 33071753 PMCID: PMC7530339 DOI: 10.3389/fnmol.2020.00166] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 08/11/2020] [Indexed: 01/24/2023] Open
Abstract
The P2X7 receptor (P2X7) is a cell surface ligand-gated ion channel, activated by its physiological nucleotide agonist ATP and a synthetic analog (BzATP). However, it has also been suggested that there may be structurally unrelated, non-nucleotide agonists such as the amyloidogenic β peptide. Here we aimed to reassess the effect of amyloid β peptides in various in vitro cell models, namely HEK293 overexpressing human P2X7, the microglial BV-2 cell line, and BV-2 cells lacking P2X7. We measured YO-PRO-1 dye uptake in response to full-length amyloid β peptide (1-42) or the shorter amyloid β peptide (25-35) and there was a concentration-dependent increase in YO-PRO-1 dye uptake in HEK-hP2X7 cells. However, these amyloid β peptide-induced increases in YO-PRO-1 dye uptake were also identical in non-transfected HEK-293 cells. We could observe small transient increases in [Ca2+] i induced by amyloid β peptides in BV-2 cells, however these were identical in BV-2 cells lacking P2X7. Furthermore, our metabolic viability and LDH release experiments suggest no significant change in viability or cell membrane damage in HEK-hP2X7 cells. In the BV-2 cells we found that high concentrations of amyloid β peptides (1-42) and (25-35) could reduce cell viability by up to 35% but this was also seen in BV-2 cells lacking P2X7. We found no evidence of LDH release by amyloid β peptides. In summary, we found no evidence that amyloid β peptides act as agonists of P2X7 in our in vitro models. Our study raises the possibility that amyloid β peptides simply mimic features of P2X7 activation.
Collapse
Affiliation(s)
- Lučka Bibič
- School of Pharmacy, University of East Anglia, Norwich, United Kingdom
| | - Leanne Stokes
- School of Pharmacy, University of East Anglia, Norwich, United Kingdom
| |
Collapse
|
35
|
The Mechanistic Role of Bridging Integrator 1 (BIN1) in Alzheimer's Disease. Cell Mol Neurobiol 2020; 41:1431-1440. [PMID: 32719966 DOI: 10.1007/s10571-020-00926-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/17/2020] [Indexed: 01/18/2023]
Abstract
Alzheimer's disease (AD) is the leading cause of dementia. The majority of AD cases are late-onset, multifactorial cases. Genome-wide association studies have identified more than 30 loci associated with sporadic AD (SAD), one of which is Bridging integrator 1 (BIN1). For the past few years, there has been a consensus that BIN1 is second only to APOE as the strongest genetic risk factor for SAD. Therefore, many researchers have put great effort into studying the mechanism by which BIN1 might be involved in the pathogenetic process of AD. To date, plenty of evidence has shown that BIN1 may participate in several pathways in AD, including tau and amyloid pathology. In addition, BIN1 has been indicated to take part in other relevant pathways such as inflammation, apoptosis, and calcium homeostasis. In this review, we systemically summarize the research progress on how BIN1 participates in the development of AD, with the expectation of providing promising perspectives for future research.
Collapse
|
36
|
Guo T, Zhang D, Zeng Y, Huang TY, Xu H, Zhao Y. Molecular and cellular mechanisms underlying the pathogenesis of Alzheimer's disease. Mol Neurodegener 2020; 15:40. [PMID: 32677986 PMCID: PMC7364557 DOI: 10.1186/s13024-020-00391-7] [Citation(s) in RCA: 455] [Impact Index Per Article: 113.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 06/17/2020] [Indexed: 12/11/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common neurodegenerative disorder seen in age-dependent dementia. There is currently no effective treatment for AD, which may be attributed in part to lack of a clear underlying mechanism. Studies within the last few decades provide growing evidence for a central role of amyloid β (Aβ) and tau, as well as glial contributions to various molecular and cellular pathways in AD pathogenesis. Herein, we review recent progress with respect to Aβ- and tau-associated mechanisms, and discuss glial dysfunction in AD with emphasis on neuronal and glial receptors that mediate Aβ-induced toxicity. We also discuss other critical factors that may affect AD pathogenesis, including genetics, aging, variables related to environment, lifestyle habits, and describe the potential role of apolipoprotein E (APOE), viral and bacterial infection, sleep, and microbiota. Although we have gained much towards understanding various aspects underlying this devastating neurodegenerative disorder, greater commitment towards research in molecular mechanism, diagnostics and treatment will be needed in future AD research.
Collapse
Affiliation(s)
- Tiantian Guo
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
| | - Denghong Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
| | - Yuzhe Zeng
- Department of Orthopaedics, Orthopaedic Center of People's Liberation Army, The Affiliated Southeast Hospital of Xiamen University, Zhangzhou, China
| | - Timothy Y Huang
- Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA.
| | - Huaxi Xu
- Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA.
| | - Yingjun Zhao
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China.
| |
Collapse
|
37
|
Hao Y, Guo M, Feng Y, Dong Q, Cui M. Lysophospholipids and Their G-Coupled Protein Signaling in Alzheimer's Disease: From Physiological Performance to Pathological Impairment. Front Mol Neurosci 2020; 13:58. [PMID: 32351364 PMCID: PMC7174595 DOI: 10.3389/fnmol.2020.00058] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 03/24/2020] [Indexed: 12/21/2022] Open
Abstract
Lysophospholipids (LPLs) are bioactive signaling lipids that are generated from phospholipase-mediated hydrolyzation of membrane phospholipids (PLs) and sphingolipids (SLs). Lysophosphatidic acid (LPA) and sphingosine-1-phosphate (S1P) are two of the best-characterized LPLs which mediate a variety of cellular physiological responses via specific G-protein coupled receptor (GPCR) mediated signaling pathways. Considerable evidence now demonstrates the crucial role of LPA and S1P in neurodegenerative diseases, especially in Alzheimer’s disease (AD). Dysfunction of LPA and S1P metabolism can lead to aberrant accumulation of amyloid-β (Aβ) peptides, the formation of neurofibrillary tangles (NFTs), neuroinflammation and ultimately neuronal death. Summarizing LPA and S1P signaling profile may aid in profound health and pathological processes. In the current review, we will introduce the metabolism as well as the physiological roles of LPA and S1P in maintaining the normal functions of the nervous system. Given these pivotal functions, we will further discuss the role of dysregulation of LPA and S1P in promoting AD pathogenesis.
Collapse
Affiliation(s)
- Yining Hao
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Min Guo
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yiwei Feng
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Qiang Dong
- Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Mei Cui
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
38
|
Yuan C, Aierken A, Xie Z, Li N, Zhao J, Qing H. The age-related microglial transformation in Alzheimer's disease pathogenesis. Neurobiol Aging 2020; 92:82-91. [PMID: 32408056 DOI: 10.1016/j.neurobiolaging.2020.03.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/11/2020] [Accepted: 03/31/2020] [Indexed: 12/15/2022]
Abstract
Neuroinflammatory responses mediated by microglia, the resident immune cells of the central nervous system, have long been a subject of study in the field of Alzheimer's disease (AD). Microglia express a wide range of receptors that act as molecular sensors, through which they can fulfill their various functions. In this review, we first analyzed the changes in the expression levels of microglial membrane receptors SR-A, TREM2, CD36, CD33, and CR3 in aging and AD and described the different roles of these receptors in amyloid-beta clearance and inflammatory responses. Two classical hallmarks of AD are extracellular amyloid-beta deposits and intracellular aggregated phosphorylated tau. In AD, microglia reaction was initially thought to be triggered by amyloid deposits. New evidence showed it also associated with increased phosphorylation of tau. However, which first appeared and induced activated microglia is not clear. Then we summarized diverse opinions on it. Besides, as AD is tightly linked to aging, and microglia changes dramatically on aging, yet the relative impacts of both aging and microglia are less frequently considered, so at last, we discussed the roles of aging microglia in AD. We hope to provide a reference for subsequent research.
Collapse
Affiliation(s)
- Chunxu Yuan
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biological Sciences, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Ailikemu Aierken
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biological Sciences, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Zhen Xie
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biological Sciences, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Nuomin Li
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biological Sciences, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Juan Zhao
- School of Materials Science and Engineering, Department of Materials Processing Engineering, Beijing Institute of Technology, Beijing, China.
| | - Hong Qing
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biological Sciences, School of Life Science, Beijing Institute of Technology, Beijing, China.
| |
Collapse
|
39
|
Pase MP, Himali JJ, Beiser AS, DeCarli C, McGrath ER, Satizabal CL, Aparicio HJ, Adams HHH, Reiner AP, Longstreth WT, Fornage M, Tracy RP, Lopez O, Psaty BM, Levy D, Seshadri S, Bis JC. Association of CD14 with incident dementia and markers of brain aging and injury. Neurology 2020; 94:e254-e266. [PMID: 31818907 PMCID: PMC7108812 DOI: 10.1212/wnl.0000000000008682] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 07/18/2019] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE To test the hypothesis that the inflammatory marker plasma soluble CD14 (sCD14) associates with incident dementia and related endophenotypes in 2 community-based cohorts. METHODS Our samples included the prospective community-based Framingham Heart Study (FHS) and Cardiovascular Health Study (CHS) cohorts. Plasma sCD14 was measured at baseline and related to the incidence of dementia, domains of cognitive function, and MRI-defined brain volumes. Follow-up for dementia occurred over a mean of 10 years (SD 4) in the FHS and a mean of 6 years (SD 3) in the CHS. RESULTS We studied 1,588 participants from the FHS (mean age 69 ± 6 years, 47% male, 131 incident events) and 3,129 participants from the CHS (mean age 72 ± 5 years, 41% male, 724 incident events) for the risk of incident dementia. Meta-analysis across the 2 cohorts showed that each SD unit increase in sCD14 was associated with a 12% increase in the risk of incident dementia (95% confidence interval 1.03-1.23; p = 0.01) following adjustments for age, sex, APOE ε4 status, and vascular risk factors. Higher levels of sCD14 were associated with various cognitive and MRI markers of accelerated brain aging in both cohorts and with a greater progression of brain atrophy and a decline in executive function in the FHS. CONCLUSION sCD14 is an inflammatory marker related to brain atrophy, cognitive decline, and incident dementia.
Collapse
Affiliation(s)
- Matthew P Pase
- From the Harvard T.H. Chan School of Public Health (M.P.P.), Boston; Department of Neurology (J.J.H., A.S.B., C.L.S., H.J.A., S.S.), Boston University School of Medicine; Framingham Heart Study (M.P.P., J.J.H., A.S.B., C.D., E.R.M., C.L.S., H.J.A., D.L., S.S.), MA; Centre for Human Psychopharmacology (M.P.P.), Swinburne University of Technology; Melbourne Dementia Research Centre (M.P.P.), The Florey Institute for Neuroscience and Mental Health & The University of Melbourne, Australia; Department of Biostatistics (J.J.H., A.S.B.), Boston University School of Public Health, MA; Department of Neurology (C.D.), School of Medicine & Imaging of Dementia and Aging Laboratory, Center for Neuroscience, University of California Davis, Sacramento; Departments of Epidemiology (H.H.H.A.) and Radiology and Nuclear Medicine (H.H.H.A.), Erasmus MC, Rotterdam, the Netherlands; Department of Epidemiology (A.P.R., W.T.L., B.M.P.), Fred Hutchinson Cancer Research Center (A.P.R.), Department of Neurology (W.T.L.), Cardiovascular Health Research Unit, Department of Medicine (B.M.P., J.C.B.), and Department of Health Services (B.M.P.), University of Washington, Seattle; Human Genetics Center, Department of Epidemiology (M.F.), Human Genetics & Environmental Sciences, School of Public Health (M.F.), and The Brown Foundation Institute of Molecular Medicine, Research Center for Human Genetics (M.F.), University of Texas Health Science Center, Houston; Departments of Pathology and Laboratory Medicine (R.P.T.) and Biochemistry (R.P.T.), Larner College of Medicine, University of Vermont, Burlington; Department of Neurology (O.L.), School of Medicine, University of Pittsburgh, PA; Kaiser Permanente Washington Health Research Institute (B.M.P.), Seattle; The Population Sciences Branch of the National Heart, Lung and Blood Institute (D.L.), NIH, Bethesda, MD; Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases (S.S.), University of Texas Health Sciences Center, San Antonio; Department of Neurology (E.R.M.), Brigham & Women's Hospital; and Harvard Medical School (E.R.M.), Boston, MA
| | - Jayandra J Himali
- From the Harvard T.H. Chan School of Public Health (M.P.P.), Boston; Department of Neurology (J.J.H., A.S.B., C.L.S., H.J.A., S.S.), Boston University School of Medicine; Framingham Heart Study (M.P.P., J.J.H., A.S.B., C.D., E.R.M., C.L.S., H.J.A., D.L., S.S.), MA; Centre for Human Psychopharmacology (M.P.P.), Swinburne University of Technology; Melbourne Dementia Research Centre (M.P.P.), The Florey Institute for Neuroscience and Mental Health & The University of Melbourne, Australia; Department of Biostatistics (J.J.H., A.S.B.), Boston University School of Public Health, MA; Department of Neurology (C.D.), School of Medicine & Imaging of Dementia and Aging Laboratory, Center for Neuroscience, University of California Davis, Sacramento; Departments of Epidemiology (H.H.H.A.) and Radiology and Nuclear Medicine (H.H.H.A.), Erasmus MC, Rotterdam, the Netherlands; Department of Epidemiology (A.P.R., W.T.L., B.M.P.), Fred Hutchinson Cancer Research Center (A.P.R.), Department of Neurology (W.T.L.), Cardiovascular Health Research Unit, Department of Medicine (B.M.P., J.C.B.), and Department of Health Services (B.M.P.), University of Washington, Seattle; Human Genetics Center, Department of Epidemiology (M.F.), Human Genetics & Environmental Sciences, School of Public Health (M.F.), and The Brown Foundation Institute of Molecular Medicine, Research Center for Human Genetics (M.F.), University of Texas Health Science Center, Houston; Departments of Pathology and Laboratory Medicine (R.P.T.) and Biochemistry (R.P.T.), Larner College of Medicine, University of Vermont, Burlington; Department of Neurology (O.L.), School of Medicine, University of Pittsburgh, PA; Kaiser Permanente Washington Health Research Institute (B.M.P.), Seattle; The Population Sciences Branch of the National Heart, Lung and Blood Institute (D.L.), NIH, Bethesda, MD; Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases (S.S.), University of Texas Health Sciences Center, San Antonio; Department of Neurology (E.R.M.), Brigham & Women's Hospital; and Harvard Medical School (E.R.M.), Boston, MA
| | - Alexa S Beiser
- From the Harvard T.H. Chan School of Public Health (M.P.P.), Boston; Department of Neurology (J.J.H., A.S.B., C.L.S., H.J.A., S.S.), Boston University School of Medicine; Framingham Heart Study (M.P.P., J.J.H., A.S.B., C.D., E.R.M., C.L.S., H.J.A., D.L., S.S.), MA; Centre for Human Psychopharmacology (M.P.P.), Swinburne University of Technology; Melbourne Dementia Research Centre (M.P.P.), The Florey Institute for Neuroscience and Mental Health & The University of Melbourne, Australia; Department of Biostatistics (J.J.H., A.S.B.), Boston University School of Public Health, MA; Department of Neurology (C.D.), School of Medicine & Imaging of Dementia and Aging Laboratory, Center for Neuroscience, University of California Davis, Sacramento; Departments of Epidemiology (H.H.H.A.) and Radiology and Nuclear Medicine (H.H.H.A.), Erasmus MC, Rotterdam, the Netherlands; Department of Epidemiology (A.P.R., W.T.L., B.M.P.), Fred Hutchinson Cancer Research Center (A.P.R.), Department of Neurology (W.T.L.), Cardiovascular Health Research Unit, Department of Medicine (B.M.P., J.C.B.), and Department of Health Services (B.M.P.), University of Washington, Seattle; Human Genetics Center, Department of Epidemiology (M.F.), Human Genetics & Environmental Sciences, School of Public Health (M.F.), and The Brown Foundation Institute of Molecular Medicine, Research Center for Human Genetics (M.F.), University of Texas Health Science Center, Houston; Departments of Pathology and Laboratory Medicine (R.P.T.) and Biochemistry (R.P.T.), Larner College of Medicine, University of Vermont, Burlington; Department of Neurology (O.L.), School of Medicine, University of Pittsburgh, PA; Kaiser Permanente Washington Health Research Institute (B.M.P.), Seattle; The Population Sciences Branch of the National Heart, Lung and Blood Institute (D.L.), NIH, Bethesda, MD; Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases (S.S.), University of Texas Health Sciences Center, San Antonio; Department of Neurology (E.R.M.), Brigham & Women's Hospital; and Harvard Medical School (E.R.M.), Boston, MA
| | - Charles DeCarli
- From the Harvard T.H. Chan School of Public Health (M.P.P.), Boston; Department of Neurology (J.J.H., A.S.B., C.L.S., H.J.A., S.S.), Boston University School of Medicine; Framingham Heart Study (M.P.P., J.J.H., A.S.B., C.D., E.R.M., C.L.S., H.J.A., D.L., S.S.), MA; Centre for Human Psychopharmacology (M.P.P.), Swinburne University of Technology; Melbourne Dementia Research Centre (M.P.P.), The Florey Institute for Neuroscience and Mental Health & The University of Melbourne, Australia; Department of Biostatistics (J.J.H., A.S.B.), Boston University School of Public Health, MA; Department of Neurology (C.D.), School of Medicine & Imaging of Dementia and Aging Laboratory, Center for Neuroscience, University of California Davis, Sacramento; Departments of Epidemiology (H.H.H.A.) and Radiology and Nuclear Medicine (H.H.H.A.), Erasmus MC, Rotterdam, the Netherlands; Department of Epidemiology (A.P.R., W.T.L., B.M.P.), Fred Hutchinson Cancer Research Center (A.P.R.), Department of Neurology (W.T.L.), Cardiovascular Health Research Unit, Department of Medicine (B.M.P., J.C.B.), and Department of Health Services (B.M.P.), University of Washington, Seattle; Human Genetics Center, Department of Epidemiology (M.F.), Human Genetics & Environmental Sciences, School of Public Health (M.F.), and The Brown Foundation Institute of Molecular Medicine, Research Center for Human Genetics (M.F.), University of Texas Health Science Center, Houston; Departments of Pathology and Laboratory Medicine (R.P.T.) and Biochemistry (R.P.T.), Larner College of Medicine, University of Vermont, Burlington; Department of Neurology (O.L.), School of Medicine, University of Pittsburgh, PA; Kaiser Permanente Washington Health Research Institute (B.M.P.), Seattle; The Population Sciences Branch of the National Heart, Lung and Blood Institute (D.L.), NIH, Bethesda, MD; Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases (S.S.), University of Texas Health Sciences Center, San Antonio; Department of Neurology (E.R.M.), Brigham & Women's Hospital; and Harvard Medical School (E.R.M.), Boston, MA
| | - Emer R McGrath
- From the Harvard T.H. Chan School of Public Health (M.P.P.), Boston; Department of Neurology (J.J.H., A.S.B., C.L.S., H.J.A., S.S.), Boston University School of Medicine; Framingham Heart Study (M.P.P., J.J.H., A.S.B., C.D., E.R.M., C.L.S., H.J.A., D.L., S.S.), MA; Centre for Human Psychopharmacology (M.P.P.), Swinburne University of Technology; Melbourne Dementia Research Centre (M.P.P.), The Florey Institute for Neuroscience and Mental Health & The University of Melbourne, Australia; Department of Biostatistics (J.J.H., A.S.B.), Boston University School of Public Health, MA; Department of Neurology (C.D.), School of Medicine & Imaging of Dementia and Aging Laboratory, Center for Neuroscience, University of California Davis, Sacramento; Departments of Epidemiology (H.H.H.A.) and Radiology and Nuclear Medicine (H.H.H.A.), Erasmus MC, Rotterdam, the Netherlands; Department of Epidemiology (A.P.R., W.T.L., B.M.P.), Fred Hutchinson Cancer Research Center (A.P.R.), Department of Neurology (W.T.L.), Cardiovascular Health Research Unit, Department of Medicine (B.M.P., J.C.B.), and Department of Health Services (B.M.P.), University of Washington, Seattle; Human Genetics Center, Department of Epidemiology (M.F.), Human Genetics & Environmental Sciences, School of Public Health (M.F.), and The Brown Foundation Institute of Molecular Medicine, Research Center for Human Genetics (M.F.), University of Texas Health Science Center, Houston; Departments of Pathology and Laboratory Medicine (R.P.T.) and Biochemistry (R.P.T.), Larner College of Medicine, University of Vermont, Burlington; Department of Neurology (O.L.), School of Medicine, University of Pittsburgh, PA; Kaiser Permanente Washington Health Research Institute (B.M.P.), Seattle; The Population Sciences Branch of the National Heart, Lung and Blood Institute (D.L.), NIH, Bethesda, MD; Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases (S.S.), University of Texas Health Sciences Center, San Antonio; Department of Neurology (E.R.M.), Brigham & Women's Hospital; and Harvard Medical School (E.R.M.), Boston, MA
| | - Claudia L Satizabal
- From the Harvard T.H. Chan School of Public Health (M.P.P.), Boston; Department of Neurology (J.J.H., A.S.B., C.L.S., H.J.A., S.S.), Boston University School of Medicine; Framingham Heart Study (M.P.P., J.J.H., A.S.B., C.D., E.R.M., C.L.S., H.J.A., D.L., S.S.), MA; Centre for Human Psychopharmacology (M.P.P.), Swinburne University of Technology; Melbourne Dementia Research Centre (M.P.P.), The Florey Institute for Neuroscience and Mental Health & The University of Melbourne, Australia; Department of Biostatistics (J.J.H., A.S.B.), Boston University School of Public Health, MA; Department of Neurology (C.D.), School of Medicine & Imaging of Dementia and Aging Laboratory, Center for Neuroscience, University of California Davis, Sacramento; Departments of Epidemiology (H.H.H.A.) and Radiology and Nuclear Medicine (H.H.H.A.), Erasmus MC, Rotterdam, the Netherlands; Department of Epidemiology (A.P.R., W.T.L., B.M.P.), Fred Hutchinson Cancer Research Center (A.P.R.), Department of Neurology (W.T.L.), Cardiovascular Health Research Unit, Department of Medicine (B.M.P., J.C.B.), and Department of Health Services (B.M.P.), University of Washington, Seattle; Human Genetics Center, Department of Epidemiology (M.F.), Human Genetics & Environmental Sciences, School of Public Health (M.F.), and The Brown Foundation Institute of Molecular Medicine, Research Center for Human Genetics (M.F.), University of Texas Health Science Center, Houston; Departments of Pathology and Laboratory Medicine (R.P.T.) and Biochemistry (R.P.T.), Larner College of Medicine, University of Vermont, Burlington; Department of Neurology (O.L.), School of Medicine, University of Pittsburgh, PA; Kaiser Permanente Washington Health Research Institute (B.M.P.), Seattle; The Population Sciences Branch of the National Heart, Lung and Blood Institute (D.L.), NIH, Bethesda, MD; Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases (S.S.), University of Texas Health Sciences Center, San Antonio; Department of Neurology (E.R.M.), Brigham & Women's Hospital; and Harvard Medical School (E.R.M.), Boston, MA
| | - Hugo J Aparicio
- From the Harvard T.H. Chan School of Public Health (M.P.P.), Boston; Department of Neurology (J.J.H., A.S.B., C.L.S., H.J.A., S.S.), Boston University School of Medicine; Framingham Heart Study (M.P.P., J.J.H., A.S.B., C.D., E.R.M., C.L.S., H.J.A., D.L., S.S.), MA; Centre for Human Psychopharmacology (M.P.P.), Swinburne University of Technology; Melbourne Dementia Research Centre (M.P.P.), The Florey Institute for Neuroscience and Mental Health & The University of Melbourne, Australia; Department of Biostatistics (J.J.H., A.S.B.), Boston University School of Public Health, MA; Department of Neurology (C.D.), School of Medicine & Imaging of Dementia and Aging Laboratory, Center for Neuroscience, University of California Davis, Sacramento; Departments of Epidemiology (H.H.H.A.) and Radiology and Nuclear Medicine (H.H.H.A.), Erasmus MC, Rotterdam, the Netherlands; Department of Epidemiology (A.P.R., W.T.L., B.M.P.), Fred Hutchinson Cancer Research Center (A.P.R.), Department of Neurology (W.T.L.), Cardiovascular Health Research Unit, Department of Medicine (B.M.P., J.C.B.), and Department of Health Services (B.M.P.), University of Washington, Seattle; Human Genetics Center, Department of Epidemiology (M.F.), Human Genetics & Environmental Sciences, School of Public Health (M.F.), and The Brown Foundation Institute of Molecular Medicine, Research Center for Human Genetics (M.F.), University of Texas Health Science Center, Houston; Departments of Pathology and Laboratory Medicine (R.P.T.) and Biochemistry (R.P.T.), Larner College of Medicine, University of Vermont, Burlington; Department of Neurology (O.L.), School of Medicine, University of Pittsburgh, PA; Kaiser Permanente Washington Health Research Institute (B.M.P.), Seattle; The Population Sciences Branch of the National Heart, Lung and Blood Institute (D.L.), NIH, Bethesda, MD; Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases (S.S.), University of Texas Health Sciences Center, San Antonio; Department of Neurology (E.R.M.), Brigham & Women's Hospital; and Harvard Medical School (E.R.M.), Boston, MA
| | - Hieab H H Adams
- From the Harvard T.H. Chan School of Public Health (M.P.P.), Boston; Department of Neurology (J.J.H., A.S.B., C.L.S., H.J.A., S.S.), Boston University School of Medicine; Framingham Heart Study (M.P.P., J.J.H., A.S.B., C.D., E.R.M., C.L.S., H.J.A., D.L., S.S.), MA; Centre for Human Psychopharmacology (M.P.P.), Swinburne University of Technology; Melbourne Dementia Research Centre (M.P.P.), The Florey Institute for Neuroscience and Mental Health & The University of Melbourne, Australia; Department of Biostatistics (J.J.H., A.S.B.), Boston University School of Public Health, MA; Department of Neurology (C.D.), School of Medicine & Imaging of Dementia and Aging Laboratory, Center for Neuroscience, University of California Davis, Sacramento; Departments of Epidemiology (H.H.H.A.) and Radiology and Nuclear Medicine (H.H.H.A.), Erasmus MC, Rotterdam, the Netherlands; Department of Epidemiology (A.P.R., W.T.L., B.M.P.), Fred Hutchinson Cancer Research Center (A.P.R.), Department of Neurology (W.T.L.), Cardiovascular Health Research Unit, Department of Medicine (B.M.P., J.C.B.), and Department of Health Services (B.M.P.), University of Washington, Seattle; Human Genetics Center, Department of Epidemiology (M.F.), Human Genetics & Environmental Sciences, School of Public Health (M.F.), and The Brown Foundation Institute of Molecular Medicine, Research Center for Human Genetics (M.F.), University of Texas Health Science Center, Houston; Departments of Pathology and Laboratory Medicine (R.P.T.) and Biochemistry (R.P.T.), Larner College of Medicine, University of Vermont, Burlington; Department of Neurology (O.L.), School of Medicine, University of Pittsburgh, PA; Kaiser Permanente Washington Health Research Institute (B.M.P.), Seattle; The Population Sciences Branch of the National Heart, Lung and Blood Institute (D.L.), NIH, Bethesda, MD; Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases (S.S.), University of Texas Health Sciences Center, San Antonio; Department of Neurology (E.R.M.), Brigham & Women's Hospital; and Harvard Medical School (E.R.M.), Boston, MA
| | - Alexander P Reiner
- From the Harvard T.H. Chan School of Public Health (M.P.P.), Boston; Department of Neurology (J.J.H., A.S.B., C.L.S., H.J.A., S.S.), Boston University School of Medicine; Framingham Heart Study (M.P.P., J.J.H., A.S.B., C.D., E.R.M., C.L.S., H.J.A., D.L., S.S.), MA; Centre for Human Psychopharmacology (M.P.P.), Swinburne University of Technology; Melbourne Dementia Research Centre (M.P.P.), The Florey Institute for Neuroscience and Mental Health & The University of Melbourne, Australia; Department of Biostatistics (J.J.H., A.S.B.), Boston University School of Public Health, MA; Department of Neurology (C.D.), School of Medicine & Imaging of Dementia and Aging Laboratory, Center for Neuroscience, University of California Davis, Sacramento; Departments of Epidemiology (H.H.H.A.) and Radiology and Nuclear Medicine (H.H.H.A.), Erasmus MC, Rotterdam, the Netherlands; Department of Epidemiology (A.P.R., W.T.L., B.M.P.), Fred Hutchinson Cancer Research Center (A.P.R.), Department of Neurology (W.T.L.), Cardiovascular Health Research Unit, Department of Medicine (B.M.P., J.C.B.), and Department of Health Services (B.M.P.), University of Washington, Seattle; Human Genetics Center, Department of Epidemiology (M.F.), Human Genetics & Environmental Sciences, School of Public Health (M.F.), and The Brown Foundation Institute of Molecular Medicine, Research Center for Human Genetics (M.F.), University of Texas Health Science Center, Houston; Departments of Pathology and Laboratory Medicine (R.P.T.) and Biochemistry (R.P.T.), Larner College of Medicine, University of Vermont, Burlington; Department of Neurology (O.L.), School of Medicine, University of Pittsburgh, PA; Kaiser Permanente Washington Health Research Institute (B.M.P.), Seattle; The Population Sciences Branch of the National Heart, Lung and Blood Institute (D.L.), NIH, Bethesda, MD; Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases (S.S.), University of Texas Health Sciences Center, San Antonio; Department of Neurology (E.R.M.), Brigham & Women's Hospital; and Harvard Medical School (E.R.M.), Boston, MA
| | - W T Longstreth
- From the Harvard T.H. Chan School of Public Health (M.P.P.), Boston; Department of Neurology (J.J.H., A.S.B., C.L.S., H.J.A., S.S.), Boston University School of Medicine; Framingham Heart Study (M.P.P., J.J.H., A.S.B., C.D., E.R.M., C.L.S., H.J.A., D.L., S.S.), MA; Centre for Human Psychopharmacology (M.P.P.), Swinburne University of Technology; Melbourne Dementia Research Centre (M.P.P.), The Florey Institute for Neuroscience and Mental Health & The University of Melbourne, Australia; Department of Biostatistics (J.J.H., A.S.B.), Boston University School of Public Health, MA; Department of Neurology (C.D.), School of Medicine & Imaging of Dementia and Aging Laboratory, Center for Neuroscience, University of California Davis, Sacramento; Departments of Epidemiology (H.H.H.A.) and Radiology and Nuclear Medicine (H.H.H.A.), Erasmus MC, Rotterdam, the Netherlands; Department of Epidemiology (A.P.R., W.T.L., B.M.P.), Fred Hutchinson Cancer Research Center (A.P.R.), Department of Neurology (W.T.L.), Cardiovascular Health Research Unit, Department of Medicine (B.M.P., J.C.B.), and Department of Health Services (B.M.P.), University of Washington, Seattle; Human Genetics Center, Department of Epidemiology (M.F.), Human Genetics & Environmental Sciences, School of Public Health (M.F.), and The Brown Foundation Institute of Molecular Medicine, Research Center for Human Genetics (M.F.), University of Texas Health Science Center, Houston; Departments of Pathology and Laboratory Medicine (R.P.T.) and Biochemistry (R.P.T.), Larner College of Medicine, University of Vermont, Burlington; Department of Neurology (O.L.), School of Medicine, University of Pittsburgh, PA; Kaiser Permanente Washington Health Research Institute (B.M.P.), Seattle; The Population Sciences Branch of the National Heart, Lung and Blood Institute (D.L.), NIH, Bethesda, MD; Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases (S.S.), University of Texas Health Sciences Center, San Antonio; Department of Neurology (E.R.M.), Brigham & Women's Hospital; and Harvard Medical School (E.R.M.), Boston, MA
| | - Myriam Fornage
- From the Harvard T.H. Chan School of Public Health (M.P.P.), Boston; Department of Neurology (J.J.H., A.S.B., C.L.S., H.J.A., S.S.), Boston University School of Medicine; Framingham Heart Study (M.P.P., J.J.H., A.S.B., C.D., E.R.M., C.L.S., H.J.A., D.L., S.S.), MA; Centre for Human Psychopharmacology (M.P.P.), Swinburne University of Technology; Melbourne Dementia Research Centre (M.P.P.), The Florey Institute for Neuroscience and Mental Health & The University of Melbourne, Australia; Department of Biostatistics (J.J.H., A.S.B.), Boston University School of Public Health, MA; Department of Neurology (C.D.), School of Medicine & Imaging of Dementia and Aging Laboratory, Center for Neuroscience, University of California Davis, Sacramento; Departments of Epidemiology (H.H.H.A.) and Radiology and Nuclear Medicine (H.H.H.A.), Erasmus MC, Rotterdam, the Netherlands; Department of Epidemiology (A.P.R., W.T.L., B.M.P.), Fred Hutchinson Cancer Research Center (A.P.R.), Department of Neurology (W.T.L.), Cardiovascular Health Research Unit, Department of Medicine (B.M.P., J.C.B.), and Department of Health Services (B.M.P.), University of Washington, Seattle; Human Genetics Center, Department of Epidemiology (M.F.), Human Genetics & Environmental Sciences, School of Public Health (M.F.), and The Brown Foundation Institute of Molecular Medicine, Research Center for Human Genetics (M.F.), University of Texas Health Science Center, Houston; Departments of Pathology and Laboratory Medicine (R.P.T.) and Biochemistry (R.P.T.), Larner College of Medicine, University of Vermont, Burlington; Department of Neurology (O.L.), School of Medicine, University of Pittsburgh, PA; Kaiser Permanente Washington Health Research Institute (B.M.P.), Seattle; The Population Sciences Branch of the National Heart, Lung and Blood Institute (D.L.), NIH, Bethesda, MD; Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases (S.S.), University of Texas Health Sciences Center, San Antonio; Department of Neurology (E.R.M.), Brigham & Women's Hospital; and Harvard Medical School (E.R.M.), Boston, MA
| | - Russell P Tracy
- From the Harvard T.H. Chan School of Public Health (M.P.P.), Boston; Department of Neurology (J.J.H., A.S.B., C.L.S., H.J.A., S.S.), Boston University School of Medicine; Framingham Heart Study (M.P.P., J.J.H., A.S.B., C.D., E.R.M., C.L.S., H.J.A., D.L., S.S.), MA; Centre for Human Psychopharmacology (M.P.P.), Swinburne University of Technology; Melbourne Dementia Research Centre (M.P.P.), The Florey Institute for Neuroscience and Mental Health & The University of Melbourne, Australia; Department of Biostatistics (J.J.H., A.S.B.), Boston University School of Public Health, MA; Department of Neurology (C.D.), School of Medicine & Imaging of Dementia and Aging Laboratory, Center for Neuroscience, University of California Davis, Sacramento; Departments of Epidemiology (H.H.H.A.) and Radiology and Nuclear Medicine (H.H.H.A.), Erasmus MC, Rotterdam, the Netherlands; Department of Epidemiology (A.P.R., W.T.L., B.M.P.), Fred Hutchinson Cancer Research Center (A.P.R.), Department of Neurology (W.T.L.), Cardiovascular Health Research Unit, Department of Medicine (B.M.P., J.C.B.), and Department of Health Services (B.M.P.), University of Washington, Seattle; Human Genetics Center, Department of Epidemiology (M.F.), Human Genetics & Environmental Sciences, School of Public Health (M.F.), and The Brown Foundation Institute of Molecular Medicine, Research Center for Human Genetics (M.F.), University of Texas Health Science Center, Houston; Departments of Pathology and Laboratory Medicine (R.P.T.) and Biochemistry (R.P.T.), Larner College of Medicine, University of Vermont, Burlington; Department of Neurology (O.L.), School of Medicine, University of Pittsburgh, PA; Kaiser Permanente Washington Health Research Institute (B.M.P.), Seattle; The Population Sciences Branch of the National Heart, Lung and Blood Institute (D.L.), NIH, Bethesda, MD; Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases (S.S.), University of Texas Health Sciences Center, San Antonio; Department of Neurology (E.R.M.), Brigham & Women's Hospital; and Harvard Medical School (E.R.M.), Boston, MA
| | - Oscar Lopez
- From the Harvard T.H. Chan School of Public Health (M.P.P.), Boston; Department of Neurology (J.J.H., A.S.B., C.L.S., H.J.A., S.S.), Boston University School of Medicine; Framingham Heart Study (M.P.P., J.J.H., A.S.B., C.D., E.R.M., C.L.S., H.J.A., D.L., S.S.), MA; Centre for Human Psychopharmacology (M.P.P.), Swinburne University of Technology; Melbourne Dementia Research Centre (M.P.P.), The Florey Institute for Neuroscience and Mental Health & The University of Melbourne, Australia; Department of Biostatistics (J.J.H., A.S.B.), Boston University School of Public Health, MA; Department of Neurology (C.D.), School of Medicine & Imaging of Dementia and Aging Laboratory, Center for Neuroscience, University of California Davis, Sacramento; Departments of Epidemiology (H.H.H.A.) and Radiology and Nuclear Medicine (H.H.H.A.), Erasmus MC, Rotterdam, the Netherlands; Department of Epidemiology (A.P.R., W.T.L., B.M.P.), Fred Hutchinson Cancer Research Center (A.P.R.), Department of Neurology (W.T.L.), Cardiovascular Health Research Unit, Department of Medicine (B.M.P., J.C.B.), and Department of Health Services (B.M.P.), University of Washington, Seattle; Human Genetics Center, Department of Epidemiology (M.F.), Human Genetics & Environmental Sciences, School of Public Health (M.F.), and The Brown Foundation Institute of Molecular Medicine, Research Center for Human Genetics (M.F.), University of Texas Health Science Center, Houston; Departments of Pathology and Laboratory Medicine (R.P.T.) and Biochemistry (R.P.T.), Larner College of Medicine, University of Vermont, Burlington; Department of Neurology (O.L.), School of Medicine, University of Pittsburgh, PA; Kaiser Permanente Washington Health Research Institute (B.M.P.), Seattle; The Population Sciences Branch of the National Heart, Lung and Blood Institute (D.L.), NIH, Bethesda, MD; Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases (S.S.), University of Texas Health Sciences Center, San Antonio; Department of Neurology (E.R.M.), Brigham & Women's Hospital; and Harvard Medical School (E.R.M.), Boston, MA
| | - Bruce M Psaty
- From the Harvard T.H. Chan School of Public Health (M.P.P.), Boston; Department of Neurology (J.J.H., A.S.B., C.L.S., H.J.A., S.S.), Boston University School of Medicine; Framingham Heart Study (M.P.P., J.J.H., A.S.B., C.D., E.R.M., C.L.S., H.J.A., D.L., S.S.), MA; Centre for Human Psychopharmacology (M.P.P.), Swinburne University of Technology; Melbourne Dementia Research Centre (M.P.P.), The Florey Institute for Neuroscience and Mental Health & The University of Melbourne, Australia; Department of Biostatistics (J.J.H., A.S.B.), Boston University School of Public Health, MA; Department of Neurology (C.D.), School of Medicine & Imaging of Dementia and Aging Laboratory, Center for Neuroscience, University of California Davis, Sacramento; Departments of Epidemiology (H.H.H.A.) and Radiology and Nuclear Medicine (H.H.H.A.), Erasmus MC, Rotterdam, the Netherlands; Department of Epidemiology (A.P.R., W.T.L., B.M.P.), Fred Hutchinson Cancer Research Center (A.P.R.), Department of Neurology (W.T.L.), Cardiovascular Health Research Unit, Department of Medicine (B.M.P., J.C.B.), and Department of Health Services (B.M.P.), University of Washington, Seattle; Human Genetics Center, Department of Epidemiology (M.F.), Human Genetics & Environmental Sciences, School of Public Health (M.F.), and The Brown Foundation Institute of Molecular Medicine, Research Center for Human Genetics (M.F.), University of Texas Health Science Center, Houston; Departments of Pathology and Laboratory Medicine (R.P.T.) and Biochemistry (R.P.T.), Larner College of Medicine, University of Vermont, Burlington; Department of Neurology (O.L.), School of Medicine, University of Pittsburgh, PA; Kaiser Permanente Washington Health Research Institute (B.M.P.), Seattle; The Population Sciences Branch of the National Heart, Lung and Blood Institute (D.L.), NIH, Bethesda, MD; Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases (S.S.), University of Texas Health Sciences Center, San Antonio; Department of Neurology (E.R.M.), Brigham & Women's Hospital; and Harvard Medical School (E.R.M.), Boston, MA
| | - Daniel Levy
- From the Harvard T.H. Chan School of Public Health (M.P.P.), Boston; Department of Neurology (J.J.H., A.S.B., C.L.S., H.J.A., S.S.), Boston University School of Medicine; Framingham Heart Study (M.P.P., J.J.H., A.S.B., C.D., E.R.M., C.L.S., H.J.A., D.L., S.S.), MA; Centre for Human Psychopharmacology (M.P.P.), Swinburne University of Technology; Melbourne Dementia Research Centre (M.P.P.), The Florey Institute for Neuroscience and Mental Health & The University of Melbourne, Australia; Department of Biostatistics (J.J.H., A.S.B.), Boston University School of Public Health, MA; Department of Neurology (C.D.), School of Medicine & Imaging of Dementia and Aging Laboratory, Center for Neuroscience, University of California Davis, Sacramento; Departments of Epidemiology (H.H.H.A.) and Radiology and Nuclear Medicine (H.H.H.A.), Erasmus MC, Rotterdam, the Netherlands; Department of Epidemiology (A.P.R., W.T.L., B.M.P.), Fred Hutchinson Cancer Research Center (A.P.R.), Department of Neurology (W.T.L.), Cardiovascular Health Research Unit, Department of Medicine (B.M.P., J.C.B.), and Department of Health Services (B.M.P.), University of Washington, Seattle; Human Genetics Center, Department of Epidemiology (M.F.), Human Genetics & Environmental Sciences, School of Public Health (M.F.), and The Brown Foundation Institute of Molecular Medicine, Research Center for Human Genetics (M.F.), University of Texas Health Science Center, Houston; Departments of Pathology and Laboratory Medicine (R.P.T.) and Biochemistry (R.P.T.), Larner College of Medicine, University of Vermont, Burlington; Department of Neurology (O.L.), School of Medicine, University of Pittsburgh, PA; Kaiser Permanente Washington Health Research Institute (B.M.P.), Seattle; The Population Sciences Branch of the National Heart, Lung and Blood Institute (D.L.), NIH, Bethesda, MD; Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases (S.S.), University of Texas Health Sciences Center, San Antonio; Department of Neurology (E.R.M.), Brigham & Women's Hospital; and Harvard Medical School (E.R.M.), Boston, MA
| | - Sudha Seshadri
- From the Harvard T.H. Chan School of Public Health (M.P.P.), Boston; Department of Neurology (J.J.H., A.S.B., C.L.S., H.J.A., S.S.), Boston University School of Medicine; Framingham Heart Study (M.P.P., J.J.H., A.S.B., C.D., E.R.M., C.L.S., H.J.A., D.L., S.S.), MA; Centre for Human Psychopharmacology (M.P.P.), Swinburne University of Technology; Melbourne Dementia Research Centre (M.P.P.), The Florey Institute for Neuroscience and Mental Health & The University of Melbourne, Australia; Department of Biostatistics (J.J.H., A.S.B.), Boston University School of Public Health, MA; Department of Neurology (C.D.), School of Medicine & Imaging of Dementia and Aging Laboratory, Center for Neuroscience, University of California Davis, Sacramento; Departments of Epidemiology (H.H.H.A.) and Radiology and Nuclear Medicine (H.H.H.A.), Erasmus MC, Rotterdam, the Netherlands; Department of Epidemiology (A.P.R., W.T.L., B.M.P.), Fred Hutchinson Cancer Research Center (A.P.R.), Department of Neurology (W.T.L.), Cardiovascular Health Research Unit, Department of Medicine (B.M.P., J.C.B.), and Department of Health Services (B.M.P.), University of Washington, Seattle; Human Genetics Center, Department of Epidemiology (M.F.), Human Genetics & Environmental Sciences, School of Public Health (M.F.), and The Brown Foundation Institute of Molecular Medicine, Research Center for Human Genetics (M.F.), University of Texas Health Science Center, Houston; Departments of Pathology and Laboratory Medicine (R.P.T.) and Biochemistry (R.P.T.), Larner College of Medicine, University of Vermont, Burlington; Department of Neurology (O.L.), School of Medicine, University of Pittsburgh, PA; Kaiser Permanente Washington Health Research Institute (B.M.P.), Seattle; The Population Sciences Branch of the National Heart, Lung and Blood Institute (D.L.), NIH, Bethesda, MD; Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases (S.S.), University of Texas Health Sciences Center, San Antonio; Department of Neurology (E.R.M.), Brigham & Women's Hospital; and Harvard Medical School (E.R.M.), Boston, MA.
| | - Joshua C Bis
- From the Harvard T.H. Chan School of Public Health (M.P.P.), Boston; Department of Neurology (J.J.H., A.S.B., C.L.S., H.J.A., S.S.), Boston University School of Medicine; Framingham Heart Study (M.P.P., J.J.H., A.S.B., C.D., E.R.M., C.L.S., H.J.A., D.L., S.S.), MA; Centre for Human Psychopharmacology (M.P.P.), Swinburne University of Technology; Melbourne Dementia Research Centre (M.P.P.), The Florey Institute for Neuroscience and Mental Health & The University of Melbourne, Australia; Department of Biostatistics (J.J.H., A.S.B.), Boston University School of Public Health, MA; Department of Neurology (C.D.), School of Medicine & Imaging of Dementia and Aging Laboratory, Center for Neuroscience, University of California Davis, Sacramento; Departments of Epidemiology (H.H.H.A.) and Radiology and Nuclear Medicine (H.H.H.A.), Erasmus MC, Rotterdam, the Netherlands; Department of Epidemiology (A.P.R., W.T.L., B.M.P.), Fred Hutchinson Cancer Research Center (A.P.R.), Department of Neurology (W.T.L.), Cardiovascular Health Research Unit, Department of Medicine (B.M.P., J.C.B.), and Department of Health Services (B.M.P.), University of Washington, Seattle; Human Genetics Center, Department of Epidemiology (M.F.), Human Genetics & Environmental Sciences, School of Public Health (M.F.), and The Brown Foundation Institute of Molecular Medicine, Research Center for Human Genetics (M.F.), University of Texas Health Science Center, Houston; Departments of Pathology and Laboratory Medicine (R.P.T.) and Biochemistry (R.P.T.), Larner College of Medicine, University of Vermont, Burlington; Department of Neurology (O.L.), School of Medicine, University of Pittsburgh, PA; Kaiser Permanente Washington Health Research Institute (B.M.P.), Seattle; The Population Sciences Branch of the National Heart, Lung and Blood Institute (D.L.), NIH, Bethesda, MD; Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases (S.S.), University of Texas Health Sciences Center, San Antonio; Department of Neurology (E.R.M.), Brigham & Women's Hospital; and Harvard Medical School (E.R.M.), Boston, MA
| |
Collapse
|
40
|
Pereira CF, Santos AE, Moreira PI, Pereira AC, Sousa FJ, Cardoso SM, Cruz MT. Is Alzheimer's disease an inflammasomopathy? Ageing Res Rev 2019; 56:100966. [PMID: 31577960 DOI: 10.1016/j.arr.2019.100966] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/28/2019] [Accepted: 09/27/2019] [Indexed: 01/04/2023]
Abstract
Alzheimer's disease (AD) is the most common form of dementia in the elderly and, despite the tremendous efforts researchers have put into AD research, there are no effective options for prevention and treatment of the disease. The best way to reach this goal is to clarify the mechanisms involved in the onset and progression of AD. In the last few years the views about the drivers of AD have been changing and nowadays it is believed that neuroinflammation takes center stage in disease pathogenesis. Herein, we provide an overview about the role of neuroinflammation in AD describing the role of microglia and astroglia is this process. Then, we will debate the NLRP3 inflammasome putting the focus on its activation through the canonical, non-canonical and alternative pathways and the triggers involved herein namely endoplasmic reticulum stress, mitochondrial dysfunction, reactive oxygen species and amyloid β peptide. Data supporting the hypothesis that inflammasome-mediated peripheral inflammation may contribute to AD pathology will be presented. Finally, a brief discussion about the therapeutic potential of NLRP3 inflammasome modulation is also provided.
Collapse
|
41
|
Abstract
Historically neurodegenerative diseases, Alzheimer's disease (AD) in particular, have been viewed to be primarily caused and driven by neuronal mechanisms. Very recently, due to experimental, genetic, and epidemiologic evidence, immune mechanisms have entered the central stage and are now believed to contribute significantly to risk, onset, and disease progression of this class of disorders. Although immune activation of microglial cells may over time engage various signal transduction pathways, inflammasome activation, which represents a canonical and initiating pathway, seems to be one of the first responses to extracellular β-amyloid (Aβ) accumulation. Here we review the current understanding of inflammasome activation in AD.-Venegas, C., Heneka, M. T. Inflammasome-mediated innate immunity in Alzheimer's disease.
Collapse
Affiliation(s)
- Carmen Venegas
- Department of Neurodegenerative Disease and Geriatric Psychiatry, University of Bonn Medical Center, Bonn, Germany
| | - Michael T Heneka
- Department of Neurodegenerative Disease and Geriatric Psychiatry, University of Bonn Medical Center, Bonn, Germany.,German Center for Neurodegenerative Disease (DZNE), Bonn, Germany; and.,Department of Infectious Diseases and Immunology, University of Massachussetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
42
|
Lin C, Zhao S, Zhu Y, Fan Z, Wang J, Zhang B, Chen Y. Microbiota-gut-brain axis and toll-like receptors in Alzheimer's disease. Comput Struct Biotechnol J 2019; 17:1309-1317. [PMID: 31921396 PMCID: PMC6944716 DOI: 10.1016/j.csbj.2019.09.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 09/19/2019] [Accepted: 09/22/2019] [Indexed: 12/21/2022] Open
Abstract
Alzheimer’s disease (AD) is a multifactorial disease which involves both the periphery and central nervous system (CNS). It has been recently recognized that gut microbiota interacts with the gut and brain (microbiota-gut-brain axis), contributing to the pathogenesis of neurodegenerative diseases, such as AD. Dysbiosis of gut microbiota can induce increased intestinal permeability and systemic inflammation, which may lead to the development of AD pathologies and cognitive impairment via the neural, immune, endocrine, and metabolic pathways. Toll-like receptors (TLRs) play an important role in the innate immune system via recognizing microbes-derived pathogens and initiating the inflammatory process. TLRs have also been found in the brain, especially in the microglia, and have been indicated in the development of AD. In this review, we summarized the relationship between microbiota-gut-brain axis and AD, as well as the complex role of TLRs in AD. Intervention of the gut microbiota or modulation of TLRs properly might emerge as promising preventive and therapeutic strategies for AD.
Collapse
Affiliation(s)
- Caixiu Lin
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Neurology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shuai Zhao
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yueli Zhu
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ziqi Fan
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jing Wang
- Department of Geriatric, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Baorong Zhang
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yanxing Chen
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
43
|
Xu Q, Xu W, Cheng H, Yuan H, Tan X. Efficacy and mechanism of cGAMP to suppress Alzheimer's disease by elevating TREM2. Brain Behav Immun 2019; 81:495-508. [PMID: 31283973 DOI: 10.1016/j.bbi.2019.07.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 07/03/2019] [Accepted: 07/04/2019] [Indexed: 12/27/2022] Open
Abstract
Innate immune responses are considered to play crucial roles in the progression of Alzheimer's disease (AD). Recently, immunotherapy is emerging as an innovative and highly conceivable strategy for AD treatment. The cGAMP-STING-IRF3 signaling pathway plays a pivotal role in mediating innate immune responses. In this study, we provide pioneering investigation to find that the STING stimulator, cGAMP, significantly ameliorates cognitive deficits, improves pathological changes, decreases Aβ plaque load and reduces neuron apoptosis in APP/PS1 transgenetic mice. The stimulation of cGAMP-STING-IRF3 pathway induces expression of triggering receptor expressed on myeloid cells 2 (TREM2), and the overexpression of TREM2 further decreases Aβ deposition and neuron loss while improves AD pathomorphology and cognitive impairment. Additionally, TREM2 regulates microglia polarization from M1 towards M2 phenotype thereby achieves reduction of neuroinflammation in AD. These findings support that the enhancement of TREM2 exerts beneficial effects in ameliorating AD development. Taken together, our results demonstrate that cGAMP is a potential candidate for applications in Alzheimer's disease immunotherapy.
Collapse
Affiliation(s)
- Qiming Xu
- Department of Chemistry & Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China
| | - Wei Xu
- Department of Chemistry & Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China
| | - Hao Cheng
- Department of Chemistry & Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China
| | - Hong Yuan
- Department of Chemistry & Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China
| | - Xiangshi Tan
- Department of Chemistry & Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China.
| |
Collapse
|
44
|
Hermann JK, Ravikumar M, Shoffstall AJ, Ereifej ES, Kovach KM, Chang J, Soffer A, Wong C, Srivastava V, Smith P, Protasiewicz G, Jiang J, Selkirk SM, Miller RH, Sidik S, Ziats NP, Taylor DM, Capadona JR. Inhibition of the cluster of differentiation 14 innate immunity pathway with IAXO-101 improves chronic microelectrode performance. J Neural Eng 2019; 15:025002. [PMID: 29219114 DOI: 10.1088/1741-2552/aaa03e] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Neuroinflammatory mechanisms are hypothesized to contribute to intracortical microelectrode failures. The cluster of differentiation 14 (CD14) molecule is an innate immunity receptor involved in the recognition of pathogens and tissue damage to promote inflammation. The goal of the study was to investigate the effect of CD14 inhibition on intracortical microelectrode recording performance and tissue integration. APPROACH Mice implanted with intracortical microelectrodes in the motor cortex underwent electrophysiological characterization for 16 weeks, followed by endpoint histology. Three conditions were examined: (1) wildtype control mice, (2) knockout mice lacking CD14, and (3) wildtype control mice administered a small molecule inhibitor to CD14 called IAXO-101. MAIN RESULTS The CD14 knockout mice exhibited acute but not chronic improvements in intracortical microelectrode performance without significant differences in endpoint histology. Mice receiving IAXO-101 exhibited significant improvements in recording performance over the entire 16 week duration without significant differences in endpoint histology. SIGNIFICANCE Full removal of CD14 is beneficial at acute time ranges, but limited CD14 signaling is beneficial at chronic time ranges. Innate immunity receptor inhibition strategies have the potential to improve long-term intracortical microelectrode performance.
Collapse
Affiliation(s)
- John K Hermann
- Advanced Platform Technology Center, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Rehabilitation Research and Development, 10701 East Blvd. Mail Stop 151 AW/APT, Cleveland OH 44106, United States of America. Department of Biomedical Engineering, Case Western Reserve University, School of Engineering, 2071 Martin Luther King Jr Drive, Wickenden Bldg, Cleveland OH 44106, United States of America
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Aftabizadeh M, Tatarek-Nossol M, Andreetto E, El Bounkari O, Kipp M, Beyer C, Latz E, Bernhagen J, Kapurniotu A. Blocking Inflammasome Activation Caused by β-Amyloid Peptide (Aβ) and Islet Amyloid Polypeptide (IAPP) through an IAPP Mimic. ACS Chem Neurosci 2019; 10:3703-3717. [PMID: 31295403 DOI: 10.1021/acschemneuro.9b00260] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Inflammation in the brain and pancreas is linked to cell degeneration and pathogenesis of both Alzheimer's disease (AD) and type 2 diabetes (T2D). Inflammatory cascades in both tissues are triggered by the uptake of β-amyloid peptide (Aβ) or islet amyloid polypeptide (IAPP) aggregates by microglial cells (AD) or macrophages (T2D) and their insufficient lysosomal degradation. This results in lysosomal damage, caspase-1/NLRP3 inflammasome activation and release of interleukin-1β (IL-1β), a key proinflammatory cytokine in both diseases. Here we show that the inflammatory processes mediated by Aβ and IAPP aggregates in microglial cells and macrophages are blocked by IAPP-GI, a nonamyloidogenic IAPP mimic, which forms high-affinity soluble and nonfibrillar hetero-oligomers with both polypeptides. In contrast to fibrillar Aβ aggregates, nonfibrillar Aβ/IAPP-GI or Aβ/IAPP hetero-oligomers become rapidly internalized by microglial cells and targeted to lysosomes where Aβ is fully degraded. Internalization occurs via IAPP receptor-mediated endocytosis. Moreover, in contrast to IAPP aggregates, IAPP/IAPP-GI hetero-oligomers become rapidly internalized and degraded in the lysosomal compartments of macrophages. Our findings uncover a previously unknown function for the IAPP/Aβ cross-amyloid interaction and suggest that conversion of Aβ or IAPP into lysosome-targeted and easily degradable hetero-oligomers by heteroassociation with IAPP mimics could become a promising approach to specifically prevent amyloid-mediated inflammation in AD, T2D, or both diseases.
Collapse
Affiliation(s)
- Maryam Aftabizadeh
- Division of Peptide Biochemistry, Technische Universität München, Emil-Erlenmeyer-Forum 5, D-85354 Freising, Germany
- Cancer Immunotherapeutics and Tumor Immunology, City of Hope Medical Center Duarte, 1500 East Duarte Road, Duarte, California 91010, United States
| | | | - Erika Andreetto
- Division of Peptide Biochemistry, Technische Universität München, Emil-Erlenmeyer-Forum 5, D-85354 Freising, Germany
| | - Omar El Bounkari
- Chair of Vascular Biology, Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-University of Munich, 81377 Munich, Germany
| | - Markus Kipp
- Department of Anatomy II, Ludwig-Maximilians-University of Munich, 80336 Munich, Germany
| | | | - Eicke Latz
- Institute of Innate Immunity, University of Bonn, Biomedical Center, University of Bonn, Sigmund-Freud-Str. 25, 53127 Bonn, Germany
- Division of Infectious Diseases & Immunology, University of Massachusetts Medical School, 364 Plantation St., Worcester, Massachusetts 01605, United States
| | - Jürgen Bernhagen
- Chair of Vascular Biology, Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-University of Munich, 81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
| | - Aphrodite Kapurniotu
- Division of Peptide Biochemistry, Technische Universität München, Emil-Erlenmeyer-Forum 5, D-85354 Freising, Germany
| |
Collapse
|
46
|
Hermann JK, Capadona JR. Understanding the Role of Innate Immunity in the Response to Intracortical Microelectrodes. Crit Rev Biomed Eng 2019; 46:341-367. [PMID: 30806249 DOI: 10.1615/critrevbiomedeng.2018027166] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Intracortical microelectrodes exhibit enormous potential for researching the nervous system, steering assistive devices and functional electrode stimulation systems for severely paralyzed individuals, and augmenting the brain with computing power. Unfortunately, intracortical microelectrodes often fail to consistently record signals over clinically useful periods. Biological mechanisms, such as the foreign body response to intracortical microelectrodes and self-perpetuating neuroinflammatory cascades, contribute to the inconsistencies and decline in recording performance. Unfortunately, few studies have directly correlated microelectrode performance with the neuroinflammatory response to the implanted devices. However, of those select studies that have, the role of the innate immune system remains among the most likely links capable of corroborating the results of different studies, across laboratories. Therefore, the overall goal of this review is to highlight the role of innate immunity signaling in the foreign body response to intracortical microelectrodes and hypothesize as to appropriate strategies that may become the most relevant in enabling brain-dwelling electrodes of any geometry, or location, for a range of clinical applications.
Collapse
Affiliation(s)
- John K Hermann
- Department of Biomedical Engineering, Case Western Reserve University, 2071 Martin Luther King Jr. Drive, Wickenden Bldg, Cleveland, OH 44106; Advanced Platform Technology Center, Rehabilitation Research and Development, Louis Stokes Cleveland VA Medical Center, 10701 East Blvd. Mail Stop 151 AW/APT, Cleveland, OH 44106-1702
| | - Jeffrey R Capadona
- Department of Biomedical Engineering, Case Western Reserve University, 2071 Martin Luther King Jr. Drive, Wickenden Bldg, Cleveland, OH 44106; Advanced Platform Technology Center, Rehabilitation Research and Development, Louis Stokes Cleveland VA Medical Center, 10701 East Blvd. Mail Stop 151 AW/APT, Cleveland, OH 44106-1702
| |
Collapse
|
47
|
Herbal Formula Fo Shou San Attenuates Alzheimer's Disease-Related Pathologies via the Gut-Liver-Brain Axis in APP/PS1 Mouse Model of Alzheimer's Disease. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:8302950. [PMID: 31316576 PMCID: PMC6601474 DOI: 10.1155/2019/8302950] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 05/20/2019] [Indexed: 02/07/2023]
Abstract
Fo Shou San (FSS) is an ancient paired-herb decoction, used in China to treat blood deficiency, blood stasis, stroke, and ischemic cerebral vascular disease for about one thousand years. The mechanisms associated with these properties, however, are not completely understood. Gut bacteria, gut bacterial lipopolysaccharides (LPS), alkaline phosphatase (AP), and lipid peroxidation are common biochemical signaling that takes place on gut-liver-brain axis. Growing evidences have revealed that gut bacterial lipopolysaccharides (LPS) enter the systemic circulation via the portal vein, and finally entering the brain tissue is an important cause of inflammatory degeneration of Alzheimer's disease (AD). Alkaline phosphatase (AP) dephosphorylates LPS forming a nontoxic LPS and reduces systemic inflammation via gut-liver-brain axis. In this study, to identify the differentially gut-liver-brain axis among APP/PS1 mice, FSS-treated APP/PS1 mice, and control mice, behavioral tests were performed to assess the cognitive ability and hematoxylin-eosin staining was used to assess neuronal damage in the hippocampus; immunohistochemistry, western blotting, a quantitative chromogenic end-point Tachypleus amebocyte lysate (TAL) assay kit, Malondialdehyde (MDA) assay kit, AP Assay Kit, and real-time quantitative PCR (qPCR) were used to assess the level of LPS, MDA, AP, and gut bacteria. We found that FSS regulates gut-liver-brain axis to regulate AP and gut bacteria and attenuate the LPS-related systemic inflammation, oxidative stress (MDA), and thereby AD-related pathology in APP/PS1 mice. This is the first study to provide a reference for FSS-treated AD mice to aid in understanding the underlying mechanisms of FSS. FSS may also improve gastrointestinal tract barrier and blood-brain barrier and thus ameliorates the symptoms of AD; this is subject to our further study.
Collapse
|
48
|
Cyclosporin A inhibits differentiation and activation of monocytic cells induced by 27-hydroxycholesterol. Int Immunopharmacol 2019; 69:358-367. [DOI: 10.1016/j.intimp.2019.01.045] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 01/28/2019] [Accepted: 01/29/2019] [Indexed: 11/22/2022]
|
49
|
Kowalski K, Mulak A. Brain-Gut-Microbiota Axis in Alzheimer's Disease. J Neurogastroenterol Motil 2019; 25:48-60. [PMID: 30646475 PMCID: PMC6326209 DOI: 10.5056/jnm18087] [Citation(s) in RCA: 471] [Impact Index Per Article: 94.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 08/21/2018] [Accepted: 09/16/2018] [Indexed: 12/11/2022] Open
Abstract
Disturbances along the brain-gut-microbiota axis may significantly contribute to the pathogenesis of neurodegenerative disorders. Alzheimer's disease (AD) is the most frequent cause of dementia characterized by a progressive decline in cognitive function associated with the formation of amyloid beta (Aβ) plaques and neurofibrillary tangles. Alterations in the gut microbiota composition induce increased permeability of the gut barrier and immune activation leading to systemic inflammation, which in turn may impair the blood-brain barrier and promote neuroinflammation, neural injury, and ultimately neurodegeneration. Recently, Aβ has also been recognized as an antimicrobial peptide participating in the innate immune response. However, in the dysregulated state, Aβ may reveal harmful properties. Importantly, bacterial amyloids through molecular mimicry may elicit cross-seeding of misfolding and induce microglial priming. The Aβ seeding and propagation may occur at different levels of the brain-gut-microbiota axis. The potential mechanisms of amyloid spreading include neuron-to-neuron or distal neuron spreading, direct blood-brain barrier crossing or via other cells as astrocytes, fibroblasts, microglia, and immune system cells. A growing body of experimental and clinical data confirms a key role of gut dysbiosis and gut microbiota-host interactions in neurodegeneration. The convergence of gut-derived inflammatory response together with aging and poor diet in the elderly contribute to the pathogenesis of AD. Modification of the gut microbiota composition by food-based therapy or by probiotic supplementation may create new preventive and therapeutic options in AD.
Collapse
Affiliation(s)
- Karol Kowalski
- Department of Gastroenterology and Hepatology, Wroclaw Medical University, Poland
| | - Agata Mulak
- Department of Gastroenterology and Hepatology, Wroclaw Medical University, Poland
| |
Collapse
|
50
|
Dong Y, Li X, Cheng J, Hou L. Drug Development for Alzheimer's Disease: Microglia Induced Neuroinflammation as a Target? Int J Mol Sci 2019; 20:E558. [PMID: 30696107 PMCID: PMC6386861 DOI: 10.3390/ijms20030558] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 01/09/2019] [Accepted: 01/13/2019] [Indexed: 12/14/2022] Open
Abstract
Alzheimer's disease (AD) is one of the most common causes of dementia. Its pathogenesis is characterized by the aggregation of the amyloid-β (Aβ) protein in senile plaques and the hyperphosphorylated tau protein in neurofibrillary tangles in the brain. Current medications for AD can provide temporary help with the memory symptoms and other cognitive changes of patients, however, they are not able to stop or reverse the progression of AD. New medication discovery and the development of a cure for AD is urgently in need. In this review, we summarized drugs for AD treatments and their recent updates, and discussed the potential of microglia induced neuroinflammation as a target for anti-AD drug development.
Collapse
Affiliation(s)
- Yuan Dong
- Department of Biochemistry, Medical College, Qingdao University, Qingdao 266071, China.
| | - Xiaoheng Li
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China.
| | - Jinbo Cheng
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing 100850, China.
| | - Lin Hou
- Department of Biochemistry, Medical College, Qingdao University, Qingdao 266071, China.
| |
Collapse
|