1
|
Wilkins-Rodríguez AA, Salazar-Schettino PM, Manning-Cela RG, Gutiérrez-Kobeh L. Differential Regulation of L-Arginine Metabolism through NOS2 and Arginases during Infection with Trypanosoma cruzi. Pathogens 2024; 13:878. [PMID: 39452749 PMCID: PMC11510043 DOI: 10.3390/pathogens13100878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/28/2024] [Accepted: 09/30/2024] [Indexed: 10/26/2024] Open
Abstract
L-arginine metabolism through arginases and inducible nitric oxide synthase (NOS2) constitutes a fundamental axis for the resolution or progression of Chagas disease. Infection with Trypanosoma cruzi can cause a wide spectrum of disease, ranging from acute forms contained by the host immune response to chronic ones, such as the chronic chagasic cardiomyopathy. Here, we analyzed, in an in vitro model, the ability of two T. cruzi isolates, with different degrees of virulence, to regulate the metabolism of L-arginine through arginase 1 (Arg-1) and NOS2 in macrophages and through arginase 2 (Arg-2) and NOS2 in cardiomyocytes. Stimulation of bone marrow-derived macrophages (BMMΦ), obtained from CD1 mice, with TNF-α + IFN-γ induced their polarization into classically activated macrophages (CAMΦ), which expressed functional NOS2, while stimulation with IL-4 induced their polarization into alternatively activated macrophages (AAMΦ), which expressed functional Arg-1. Interestingly, stimulation of cardiomyocytes, obtained from hearts of CD1 neonatal mice, with TNF-α + IFN-γ or IL-4 also resulted in functional NOS2 and arginase expression, as observed in CAMΦ and AAMΦ, but Arg-2 was the arginase isoform expressed instead of Arg-1. We observed that infection of BMMΦ with the more virulent T. cruzi isolate (QRO) importantly diminished NOS2 expression and nitric oxide (NO) production in CAMΦ, allowing parasite survival, while infection with the less virulent isolate (CI2) did not diminish NOS2 activity and NO production in CAMΦ to a great extent, which resulted in parasite killing. Regarding Arg-1, infection of BMMΦ with the QRO isolate significantly induced Arg-1 expression and activity in AAMΦ, which resulted in a higher parasite load than the one in the unstimulated BMMΦ. Even though infection with CI2 isolate did not increase Arg-1 expression and activity in AAMΦ, the parasite load was higher than the one in the unstimulated BMMΦ but at a lesser magnitude than that observed during infection with the QRO isolate. On the other hand, infection of cardiomyocytes with either QRO or CI2 isolates and further stimulation with TNF-α + IFN-γ inhibited NOS2 expression and NO production, leading to amelioration of infection. Surprisingly, infection of cardiomyocytes with either QRO or CI2 isolates and further stimulation with IL-4 strongly inhibited Arg-2 expression and function, which resulted in parasite loads similar to those observed in unstimulated cardiomyocytes. Our results suggest that T. cruzi isolates that exhibit variable virulence or pathogenicity degrees differentially regulate L-arginine metabolism through Arg-1/2 and NOS2 in macrophages and cardiomyocytes.
Collapse
Affiliation(s)
- Arturo A. Wilkins-Rodríguez
- Unidad de Investigación UNAM-INC, División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México-Instituto Nacional de Cardiología “Ignacio Chávez”, Mexico City 14080, Mexico;
| | - Paz María Salazar-Schettino
- Laboratorio de Biología de Parásitos, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| | - Rebeca G. Manning-Cela
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City 07360, Mexico;
| | - Laila Gutiérrez-Kobeh
- Unidad de Investigación UNAM-INC, División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México-Instituto Nacional de Cardiología “Ignacio Chávez”, Mexico City 14080, Mexico;
| |
Collapse
|
2
|
Bogdan C, Islam NAK, Barinberg D, Soulat D, Schleicher U, Rai B. The immunomicrotope of Leishmania control and persistence. Trends Parasitol 2024; 40:788-804. [PMID: 39174373 DOI: 10.1016/j.pt.2024.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/21/2024] [Accepted: 07/22/2024] [Indexed: 08/24/2024]
Abstract
Leishmania is an intracellular protozoan transmitted by sand fly vectors; it causes cutaneous, mucocutaneous, or visceral disease. Its growth and survival are impeded by type 1 T helper cell responses, which entail interferon (IFN)-γ-mediated macrophage activation. Leishmania partially escapes this host defense by triggering immune cell and cytokine responses that favor parasite replication rather than killing. Novel methods for in situ analyses have revealed that the pathways of immune control and microbial evasion are strongly influenced by the tissue context, the micro milieu factors, and the metabolism at the site of infection, which we collectively term the 'immunomicrotope'. Understanding the components and the impact of the immunomicrotope will enable the development of novel strategies for the treatment of chronic leishmaniasis.
Collapse
Affiliation(s)
- Christian Bogdan
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Wasserturmstraße 3/5, D-91054 Erlangen, Germany; FAU Profile Center Immunomedicine, FAU Erlangen-Nürnberg, Schlossplatz 1, D-91054 Erlangen, Germany.
| | - Noor-A-Kasida Islam
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Wasserturmstraße 3/5, D-91054 Erlangen, Germany
| | - David Barinberg
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Wasserturmstraße 3/5, D-91054 Erlangen, Germany
| | - Didier Soulat
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Wasserturmstraße 3/5, D-91054 Erlangen, Germany; FAU Profile Center Immunomedicine, FAU Erlangen-Nürnberg, Schlossplatz 1, D-91054 Erlangen, Germany
| | - Ulrike Schleicher
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Wasserturmstraße 3/5, D-91054 Erlangen, Germany; FAU Profile Center Immunomedicine, FAU Erlangen-Nürnberg, Schlossplatz 1, D-91054 Erlangen, Germany
| | - Baplu Rai
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Wasserturmstraße 3/5, D-91054 Erlangen, Germany
| |
Collapse
|
3
|
Martins VD, Vaz L, Barbosa SC, Paixão PHDM, Torres L, de Oliveira MFA, Oliveira MDA, Vieira LQ, de Faria AMC, Maioli TU. Obesity alters the macrophages' response to Leishmania major in C57BL/6 mice. J Leukoc Biol 2024:qiae171. [PMID: 39213305 DOI: 10.1093/jleuko/qiae171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 06/12/2024] [Indexed: 09/04/2024] Open
Abstract
Obesity is a global pandemic associated with several comorbidities, such as cardiovascular diseases and type 2 diabetes. It is also a predisposing factor for infectious diseases, increasing mortality rates. Moreover, diet-induced obesity can cause metabolic fluctuations that affect macrophage differentiation in various organs. In this sense, we investigated how bone marrow-derived macrophages and tissue-resident macrophages in the skin, which have been differentiated in a host with metabolic syndrome and with previous inflammatory burden, respond to Leishmania major infection. Our findings suggest that bone marrow-derived macrophages from obese C57BL/6 mice, even when cultivated in vitro with inflammatory stimuli, are more susceptible to L. major. These macrophages produce less tumor necrosing factor (TNF) and nitric oxide (NO) and show higher arginase activity. Furthermore, obese mice infected with an intermediate dose of L. major in the skin had more severe lesions when analyzed for ulceration, diameter, thickness, and parasite burden. The increase in lesion severity in obese mice was associated with a higher frequency of tissue-resident macrophages, which are less efficient in killing parasites. We also used CCR2-/- mice, which predominantly have tissue-resident macrophages, and found that lesion resolution was delayed in association with CCR2 deficiency. Additionally, obesity potentiated tissue damage, resulting in higher frequency of tissue-resident macrophages. Our results demonstrate that obesity can alter macrophage responses to infection, leading to increased susceptibility to L. major and more severe cutaneous leishmaniasis. These findings may have important implications for managing obesity-related infections and the development of new therapies for cutaneous leishmaniasis.
Collapse
Affiliation(s)
- Vinicius Dantas Martins
- Postgraduate Program in Biochemistry and Immunology, Biological Sciences Institution, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, CEP 31270-672, Belo Horizonte, Brazil
| | - Leonardo Vaz
- Postgraduate Program in Biochemistry and Immunology, Biological Sciences Institution, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, CEP 31270-672, Belo Horizonte, Brazil
| | - Sara Candida Barbosa
- Postgraduate Program in Biochemistry and Immunology, Biological Sciences Institution, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, CEP 31270-672, Belo Horizonte, Brazil
| | - Pierre Henrique de Menezes Paixão
- Postgraduate Program in Pathology, Biological Sciences Institution, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, CEP 31270-672, Belo Horizonte, Brazil
| | - Licia Torres
- Postgraduate Program in Biochemistry and Immunology, Biological Sciences Institution, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, CEP 31270-672, Belo Horizonte, Brazil
- Postgraduate Program in Nutrition and Health, School of Nursing, Universidade Federal de Minas Gerais, Avenida Alfredo Balena, 190, CEP 30130-100, Belo Horizonte, Brazil
| | - Marcos Felipe Andrade de Oliveira
- Postgraduate Program in Biochemistry and Immunology, Biological Sciences Institution, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, CEP 31270-672, Belo Horizonte, Brazil
| | - Mariana de Almeida Oliveira
- Postgraduate Program in Biochemistry and Immunology, Biological Sciences Institution, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, CEP 31270-672, Belo Horizonte, Brazil
| | - Leda Quercia Vieira
- Postgraduate Program in Biochemistry and Immunology, Biological Sciences Institution, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, CEP 31270-672, Belo Horizonte, Brazil
| | - Ana Maria Caetano de Faria
- Postgraduate Program in Biochemistry and Immunology, Biological Sciences Institution, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, CEP 31270-672, Belo Horizonte, Brazil
| | - Tatiani Uceli Maioli
- Postgraduate Program in Biochemistry and Immunology, Biological Sciences Institution, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, CEP 31270-672, Belo Horizonte, Brazil
- Postgraduate Program in Nutrition and Health, School of Nursing, Universidade Federal de Minas Gerais, Avenida Alfredo Balena, 190, CEP 30130-100, Belo Horizonte, Brazil
| |
Collapse
|
4
|
Registre C, Silva LM, Registre F, Soares RDDOA, Rubio KTS, Carneiro SP, Dos Santos ODH. Targeting Leishmania Promastigotes and Amastigotes Forms through Amino Acids and Peptides: A Promising Therapeutic Strategy. ACS Infect Dis 2024; 10:2467-2484. [PMID: 38950147 DOI: 10.1021/acsinfecdis.4c00089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Millions of people worldwide are affected by leishmaniasis, caused by the Leishmania parasite. Effective treatment is challenging due to the biological complexity of the parasite, drug toxicity, and increasing resistance to conventional drugs. To combat this disease, the development of specific strategies to target and selectively eliminate the parasite is crucial. This Review highlights the importance of amino acids in the developmental stages of Leishmania as a factor determining whether the infection progresses or is suppressed. It also explores the use of peptides as alternatives in parasite control and the development of novel targeted treatments. While these strategies show promise for more effective and targeted treatment, further studies to address the remaining challenges are imperative.
Collapse
Affiliation(s)
- Charmante Registre
- Phytotechnology Laboratory, School of Pharmacy, Federal University of Ouro Preto, Ouro Preto, Minas Gerais 35400000, Brazil
| | - Luciana Miranda Silva
- Phytotechnology Laboratory, School of Pharmacy, Federal University of Ouro Preto, Ouro Preto, Minas Gerais 35400000, Brazil
| | - Farah Registre
- School of Medicine, Goiás Federal University, Goiânia, Goiás 74605-050, Brazil
| | - Rodrigo Dian de Oliveira Aguiar Soares
- Immunopathology Laboratory, Center for Research in Biological Sciences/NUPEB, Federal University of Ouro Preto, Ouro Preto, Minas Gerais 35400000, Brazil
| | - Karina Taciana Santos Rubio
- Toxicology Laboratory, School of Pharmacy, Federal University of Ouro Preto, Ouro Preto, Minas Gerais 35400000, Brazil
| | - Simone Pinto Carneiro
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-University of Munich, 81377 Munich, Germany
| | | |
Collapse
|
5
|
Ribeiro FN, de Souza TL, Menezes RC, Keidel L, dos Santos JPR, da Silva IJ, Pelajo-Machado M, Morgado FN, Porrozzi R. Anatomical Vascular Differences and Leishmania-Induced Vascular Morphological Changes Are Associated with a High Parasite Load in the Skin of Dogs Infected with Leishmania infantum. Pathogens 2024; 13:371. [PMID: 38787223 PMCID: PMC11123845 DOI: 10.3390/pathogens13050371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/07/2023] [Accepted: 12/14/2023] [Indexed: 05/25/2024] Open
Abstract
Canine visceral leishmaniasis (CVL), caused by the protozoan Leishmania infantum, affects several organs, including the skin. Dogs are considered the major domestic reservoir animals for leishmaniasis, and through their highly parasitized skin, they can serve as a source of infection for sandfly vectors. Therefore, studies of the skin parasite-host relationship can contribute to the understanding of the infectious dissemination processes of parasites in the dermis and help to identify targets for diagnosis and treatment. Thus, the aim of this study was to evaluate the association of anatomical vascular differences and Leishmania-induced vascular morphological changes with clinical signs and parasite load by analyzing the ear and abdominal skin from dogs naturally infected with L. infantum. Paired samples of ear and abdominal skin from L. infantum-positive dogs (n = 26) were submitted for histological and immunohistochemistry analyses. The ear skin samples showed a more intense and more diffusely distributed granulomatous inflammatory reaction, a higher number and larger diameter of blood vessels, increased parasite load, higher expression of VEGF+ (vascular endothelial growth factor) and MAC 387+ (calprotectin) recently infiltrating cells, and more intense collagen disruption compared to the abdominal skin samples. Intracellular amastigotes were observed in blood vessels and inside endothelial cells and were diffusely distributed throughout the dermis in the ear skin samples. The NOS2/MAC387+ cell ratio was lower in the ear skin samples than in those of the abdomen, suggesting that in the ear dermis, the inflammatory infiltrate was less capable of producing NO and thereby control the parasite load. Together, these findings indicate how parasites and immune cells are distributed in the skin and suggest an important role for dermal vascularization in cellular influx and thereby in parasite dissemination through the skin of naturally infected dogs.
Collapse
Affiliation(s)
- Francini N. Ribeiro
- Laboratório de Protozoologia, Instituto Oswaldo Cruz—FIOCRUZ, Rio de Janeiro 21040-360, Brazil; (F.N.R.); (T.L.d.S.)
- Laboratório de Imunoparasitologia, Instituto Oswaldo Cruz—FIOCRUZ, Rio de Janeiro 21040-360, Brazil
| | - Tainã L. de Souza
- Laboratório de Protozoologia, Instituto Oswaldo Cruz—FIOCRUZ, Rio de Janeiro 21040-360, Brazil; (F.N.R.); (T.L.d.S.)
- Laboratório de Imunoparasitologia, Instituto Oswaldo Cruz—FIOCRUZ, Rio de Janeiro 21040-360, Brazil
| | - Rodrigo C. Menezes
- Laboratório de Pesquisa Clínica em Dermatozoonoses em Animais Domésticos, Instituto Nacional de Infectologia Evandro Chagas—FIOCRUZ, Rio de Janeiro 21040-360, Brazil; (R.C.M.); (L.K.)
| | - Lucas Keidel
- Laboratório de Pesquisa Clínica em Dermatozoonoses em Animais Domésticos, Instituto Nacional de Infectologia Evandro Chagas—FIOCRUZ, Rio de Janeiro 21040-360, Brazil; (R.C.M.); (L.K.)
| | - João Paulo R. dos Santos
- Laboratorio de Medicina Experimental e Saúde, Instituto Oswaldo Cruz—FIOCRUZ, Rio de Janeiro 21040-360, Brazil; (J.P.R.d.S.); (I.J.d.S.); (M.P.-M.)
| | - Igor J. da Silva
- Laboratorio de Medicina Experimental e Saúde, Instituto Oswaldo Cruz—FIOCRUZ, Rio de Janeiro 21040-360, Brazil; (J.P.R.d.S.); (I.J.d.S.); (M.P.-M.)
| | - Marcelo Pelajo-Machado
- Laboratorio de Medicina Experimental e Saúde, Instituto Oswaldo Cruz—FIOCRUZ, Rio de Janeiro 21040-360, Brazil; (J.P.R.d.S.); (I.J.d.S.); (M.P.-M.)
- Brazilian National Institute of Science and Technology on Neuroimmunomodulation, Instituto Oswaldo Cruz—FIOCRUZ, Rio de Janeiro 21040-360, Brazil
| | - Fernanda N. Morgado
- Laboratório de Imunoparasitologia, Instituto Oswaldo Cruz—FIOCRUZ, Rio de Janeiro 21040-360, Brazil
| | - Renato Porrozzi
- Laboratório de Protozoologia, Instituto Oswaldo Cruz—FIOCRUZ, Rio de Janeiro 21040-360, Brazil; (F.N.R.); (T.L.d.S.)
| |
Collapse
|
6
|
Zaid A, Ariel A. Harnessing anti-inflammatory pathways and macrophage nano delivery to treat inflammatory and fibrotic disorders. Adv Drug Deliv Rev 2024; 207:115204. [PMID: 38342241 DOI: 10.1016/j.addr.2024.115204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 12/08/2023] [Accepted: 02/05/2024] [Indexed: 02/13/2024]
Abstract
Targeting specific organs and cell types using nanotechnology and sophisticated delivery methods has been at the forefront of applicative biomedical sciences lately. Macrophages are an appealing target for immunomodulation by nanodelivery as they are heavily involved in various aspects of many diseases and are highly plastic in their nature. Their continuum of functional "polarization" states has been a research focus for many years yielding a profound understanding of various aspects of these cells. The ability of monocyte-derived macrophages to metamorphose from pro-inflammatory to reparative and consequently to pro-resolving effectors has raised significant interest in its therapeutic potential. Here, we briefly survey macrophages' ontogeny and various polarization phenotypes, highlighting their function in the inflammation-resolution shift. We review their inducing mediators, signaling pathways, and biological programs with emphasis on the nucleic acid sensing-IFN-I axis. We also portray the polarization spectrum of macrophages and the characteristics of their transition between different subtypes. Finally, we highlighted different current drug delivery methods for targeting macrophages with emphasis on nanotargeting that might lead to breakthroughs in the treatment of wound healing, bone regeneration, autoimmune, and fibrotic diseases.
Collapse
Affiliation(s)
- Ahmad Zaid
- Department of Biology and Human Biology, University of Haifa, Haifa, 3498838 Israel
| | - Amiram Ariel
- Department of Biology and Human Biology, University of Haifa, Haifa, 3498838 Israel.
| |
Collapse
|
7
|
Ezenyi I, Madan E, Singhal J, Jain R, Chakrabarti A, Ghousepeer GD, Pandey RP, Igoli N, Igoli J, Singh S. Screening of traditional medicinal plant extracts and compounds identifies a potent anti-leishmanial diarylheptanoid from Siphonochilus aethiopicus. J Biomol Struct Dyn 2024; 42:2449-2463. [PMID: 37199276 DOI: 10.1080/07391102.2023.2212779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 04/14/2023] [Indexed: 05/19/2023]
Abstract
Available anti-leishmanial drugs are associated with toxic side effects, necessitating the search for safe and effective alternatives. This study is focused on identifying traditional medicinal plant natural products for anti-leishmanial potential and possible mechanism of action. Compounds S and T. cordifolia residual fraction (TC-5) presented the best anti-leishmanial activity (IC50: 0.446 and 1.028 mg/ml) against promastigotes at 48 h and less cytotoxicity to THP-1 macrophages. These test agents elicited increased expression of pro-inflammatory cytokines; TNFα and IL-12. In infected untreated macrophages, NO release was suppressed but was significantly (p < 0.05) increased in infected cells treated with compound S. Importantly, Compound S was found to interact with LdTopoIIdimer in silico, resulting in a likely reduced ability of nucleic acid (dsDNA)-remodelling and, as a result, parasite proliferation in vitro. Thereby, Compound S possesses anti-leishmanial activity and this effect occurs via a Th1-mediated pro-inflammatory response. An increase in NO release and its inhibitory effect on LdTopoII may also contribute to the anti-leishmanial effect of compound S. These results show the potential of this compound as a potential starting point for the discovery of novel anti-leishmanial leads.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ifeoma Ezenyi
- Department of Pharmacology and Toxicology, National Institute for Pharmaceutical Research and Development, Abuja, Nigeria
| | - Evanka Madan
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Jhalak Singhal
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Ravi Jain
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Amrita Chakrabarti
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
- Department of Life Sciences, Shiv Nadar University, Greater Noida, India
| | | | - Ramendra Pati Pandey
- Centre for Drug Design Discovery and Development, SRM University, Sonepat, Haryana, India
| | - Ngozichukwuka Igoli
- Centre for Food Technology and Research, Benue State University, Makurdi, Nigeria
| | - John Igoli
- Centre for Medicinal Plants and Propolis Research, Department of Chemical Sciences, Pen Resource University, Gombe, Nigeria
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Shailja Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
8
|
Mulè A, Crosato V, Kuhns DB, Lorenzi L, Chirico C, Maifredi G, Notarangelo LD, Castelli F, Tomasoni LR. Visceral Leishmaniasis in Immunocompetent Hosts in Brescia: A Case Series and Analysis of Cytokine Cascade. Microorganisms 2024; 12:394. [PMID: 38399799 PMCID: PMC10892745 DOI: 10.3390/microorganisms12020394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/06/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
Visceral leishmaniasis (VL) is a parasitic zoonosis caused by Leishmania spp. that usually manifests itself in immunocompromised subjects. It is a rare and neglected disease, and it is not endemic in the province of Brescia (Italy). Three cases of human VL occurred in Brescia from October to December 2021 in immunocompetent patients. We evaluated the patients looking for signs of underlying immunodeficiencies and conducted further epidemiological evaluations in the province of Brescia without success. An analysis of the sera levels of the main cytokines involved in the immune response to VL was performed. All patients presented a significant augmentation of CXCL-10, CCL-4, and IL-6. The patients tested during the acute phase showed an elevation of IL-1α, IL-5, IL-10, and IL-12, while in the recovery phase, higher levels of TNF-α and IL-7 were detected. Altogether, a predominant activation of the T-helper-2 pathway emerged during the acute phase of the parasite infection, while the cytokines associated with the T-helper-1 pathway were less represented. This imbalanced immune response to the parasite infection might play a crucial role in the development of VL in immunocompetent patients.
Collapse
Affiliation(s)
- Alice Mulè
- Unit of Infectious and Tropical Diseases, Department of Clinical and Experimental Sciences, University of Brescia and ASST Spedali Civili di Brescia, 25123 Brescia, Italy; (V.C.); (F.C.)
| | - Verena Crosato
- Unit of Infectious and Tropical Diseases, Department of Clinical and Experimental Sciences, University of Brescia and ASST Spedali Civili di Brescia, 25123 Brescia, Italy; (V.C.); (F.C.)
| | - Douglas Byron Kuhns
- Neutrophil Monitoring Laboratory, Applied/Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD 20701, USA;
| | - Luisa Lorenzi
- Pathology Unit, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy;
| | - Claudia Chirico
- Department of Hygiene and Health Prevention, Health Protection Agency of Brescia (ATS Brescia), 25124 Brescia, Italy
| | - Giovanni Maifredi
- Epidemiology Unit, Health Protection Agency of Brescia (ATS Brescia), 25124 Brescia, Italy;
| | - Luigi D. Notarangelo
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, NIAID, NIH, Bethesda, MD 20852, USA;
| | - Francesco Castelli
- Unit of Infectious and Tropical Diseases, Department of Clinical and Experimental Sciences, University of Brescia and ASST Spedali Civili di Brescia, 25123 Brescia, Italy; (V.C.); (F.C.)
| | - Lina R. Tomasoni
- Unit of Infectious and Tropical Diseases, ASST Spedali Civili di Brescia, 25123 Brescia, Italy;
| |
Collapse
|
9
|
Mor B, Görmez A, Demirci B. Immunopathological investigation of a gerbil model of cutaneous leishmaniasis. Acta Trop 2023; 246:106991. [PMID: 37479161 DOI: 10.1016/j.actatropica.2023.106991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/07/2023] [Accepted: 07/18/2023] [Indexed: 07/23/2023]
Abstract
Leishmaniasis, caused by Leishmania species (intracellular protozoans), is a chronic, systemic disease that causes skin (cutaneous) and internal organ infections (visceral). Its prevalence has increased in recent years. Leishmania species are considered important pathogens that affect public health. After infecting an individual, the pathogen disrupts the immune system, but, there are not enough studies on which immune mechanisms are affected. The aim of this study was to establish a Leishmania major infection model (the causative agent of cutaneous leishmaniasis) in gerbils (Meriones unguiculatus) and to investigate the immune response in this model by examining the expression of important inflammatory genes (IL-1β, IL-2, IL-6, IFN-ɣ and TNF-α). The presence of parasites was confirmed by microscopic examination of samples taken from the lesions and culture studies. The expression of inflammatory cytokine genes was significantly increased in infected gerbils. The changes indicated that both the Th1 and Th2 pathways are activated in cutaneous leishmaniasis infection. Hence, different immunopathological mechanisms should be evaluated in the pathogenesis of the disease.
Collapse
Affiliation(s)
- Baycan Mor
- Department of Molecular Biology and Genetics, Faculty of Science, Kafkas University, 36100, Kars, Türkiye.
| | - Arzu Görmez
- Department of Biology, Faculty of Science, Dokuz Eylul University, 35390, Izmir, Turkey
| | - Berna Demirci
- Department of Molecular Biology and Genetics, Faculty of Science, Kafkas University, 36100, Kars, Türkiye
| |
Collapse
|
10
|
Kumar VU, Kt MF, Sharma A, Bisht P, Dhingra S, Ravichandiran V, Ramesh M, Murti K. The Possible Role of Selected Vitamins and Minerals in the Therapeutic Outcomes of Leishmaniasis. Biol Trace Elem Res 2023; 201:1672-1688. [PMID: 35779182 DOI: 10.1007/s12011-022-03311-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 05/30/2022] [Indexed: 11/25/2022]
Abstract
Leishmaniasis is a protozoal disease declared as an endemic in areas suffering from severe malnutrition and poverty. The factors associated with poverty like low income, ecological factors, and malnutrition cause disruption in immunity and host defense increasing risk of infection. Altered resistance to infection and host susceptibility are associated with low micronutrient levels in undernourished patients. Malnutrition has been recognized as a poor predictive marker for leishmaniasis, in particular the deficiency of trace elements like zinc, iron, and vitamin A, B, C, D which has a prominent function in the regulation of innate and adaptive immunity, cell proliferation, human physiology, etc. Malnourishment can exacerbate host sensitivity and pathophysiologic intensity to infection in variety of ways, whereas infection can enhance underlying poor nutrition or enhance host vulnerability and sandfly's urge to attack specific hosts. The intensity of leishmaniasis can be influenced by body mass and micronutrient availability in the blood. Vitamin D, C, zinc, and iron are proved effective in inhibiting the growth of leishmaniasis in both amastigote or promastigote forms, either directly or by acting as precursor for a pathway which inhibits the parasite growth. This article elucidates a new perception to the crucial role of micronutrients and their probable role in the therapeutic outcomes of leishmaniasis. Since there is requirement of novel drugs to fight drug resistance and relapse of leishmaniasis, this article may pave way to understand the importance of micronutrients and their role in therapeutic outcomes of leishmaniasis.
Collapse
Affiliation(s)
- V Udaya Kumar
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research (NIPER)-Hajipur, Bihar, India
| | - Muhammed Favas Kt
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research (NIPER)- SAS Nagar, Mohali, Punjab, India
| | - Ayush Sharma
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research (NIPER)-Hajipur, Bihar, India
| | - Priya Bisht
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Hajipur, Bihar, India
| | - Sameer Dhingra
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research (NIPER)-Hajipur, Bihar, India
| | - V Ravichandiran
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER) Kolkata, West Bengal, Kolkata, India
| | - M Ramesh
- Department of Pharmacy Practice, JSS College of Pharmacy Mysuru, Karnataka, Bengaluru, India
| | - Krishna Murti
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research (NIPER)-Hajipur, Bihar, India.
| |
Collapse
|
11
|
Maksoud S, El Hokayem J. The cytokine/chemokine response in Leishmania/HIV infection and co-infection. Heliyon 2023; 9:e15055. [PMID: 37082641 PMCID: PMC10112040 DOI: 10.1016/j.heliyon.2023.e15055] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 03/24/2023] [Accepted: 03/24/2023] [Indexed: 04/04/2023] Open
Abstract
HIV infection progressively weakens the immune system by infecting and destroying cells involved in host defense. Viral infection symptoms are generated and aggravated as immunosuppression progresses, triggered by the presence of opportunistic infections: among these is leishmaniasis, a disease caused by the intracellular parasite Leishmania. The incidence of this co-infection is growing progressively due to the geographic distribution overlap. Both pathogens infect monocytes/macrophages and dendritic cells, although they can also modulate the activity of other cells without co-infecting, such as T and B lymphocytes. Leishmania/HIV co-infection could be described as a system comprising modulations of cell surface molecule expression, production of soluble factors, and intracellular death activities, leading ultimately to the potentiation of infectivity, replication, and spread of both pathogens. This review describes the cytokine/chemokine response in Leishmania/HIV infection and co-infection, discussing how these molecules modulate the course of the disease and analyzing the therapeutic potential of targeting this network.
Collapse
|
12
|
Distinct binding pattern of nor-NOHA inhibitor to liver arginase in aqueous solution – Perspectives from molecular dynamics simulations. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2022.121014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
13
|
Assouab A, El Filaly H, Akarid K. Inhibiting Human and Leishmania Arginases Using Cannabis sativa as a Potential Therapy for Cutaneous Leishmaniasis: A Molecular Docking Study. Trop Med Infect Dis 2022; 7:tropicalmed7120400. [PMID: 36548655 PMCID: PMC9783378 DOI: 10.3390/tropicalmed7120400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/12/2022] [Accepted: 11/17/2022] [Indexed: 11/30/2022] Open
Abstract
Cutaneous leishmaniasis (CL), a vector-borne parasitic disease caused by the Leishmania protozoan, is a serious public health problem in Morocco. The treatment of this disease is still based on pentavalent antimonials as the primary therapy, but these have associated side effects. Thus, the development of effective, risk-free alternative therapeutics based on natural compounds against leishmaniasis is urgent. Arginase, the key enzyme in the polyamine biosynthetic pathway, plays a critical role in leishmaniasis outcome and has emerged as a potential therapeutic target. The objective of this study was to test Cannabis sativa's phytochemical components (cannabinoids and terpenoids) through molecular docking against Leishmania and human arginase enzymes. Our results showed that delta-9-tetrahydrocannabinol (THC) possessed the best binding energies of -6.02 and -6.35 kcal/mol with active sites of Leishmania and human arginases, respectively. Delta-9-THC interacted with Leishmania arginase through various amino acids including His139 and His 154 and linked to human arginase via His 126. In addition to delta-9-THC, caryophyllene oxide and cannabidiol (CBD) also showed a good inhibition of Leishmania and human arginases, respectively. Overall, the studied components were found to inhibit both arginases active sites via hydrogen bonds and hydrophobic interactions. These components may serve as therapeutic agents or in co-administrated therapy for leishmaniasis.
Collapse
|
14
|
Modulation of Arginase-2 mRNA Levels by ω-3 PUFAs and Aspirin in Asthmatic Human Lung Fibroblasts. J Lipids 2022; 2022:3062274. [PMID: 36061615 PMCID: PMC9436553 DOI: 10.1155/2022/3062274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/05/2022] [Accepted: 08/03/2022] [Indexed: 11/17/2022] Open
Abstract
Airway remodeling (AR) increases disease severity, and morbidity of asthmatic patients by contributing to irreversible airflow obstruction and progressive declines in lung function. Arginase isoenzymes and the downstream enzymes ornithine decarboxylase (ODC) and ornithine aminotransferase (OAT) have been implicated in the hyperplastic and fibrotic changes of AR, respectively. Omega-3 polyunsaturated fatty acids (ω-3 PUFAs) and resolvin metabolites have anti-AR effects, but whether they are mediated through the arginase pathway is unclear. Our study intended to determine the effects of the ω-3 PUFAs eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), resolvin D1 (RvD1), TH1 cytokines, acetylsalicylic acid (ASA), cAMP, and dexamethasone (DEX) on the expression of arginase isoenzymes arginase 1 (ARG1) and arginase 2 (ARG2), ODC, and OAT in human lung fibroblasts (HLF) from normal (NHLF) and diseased (DHLF) asthmatic donors using reverse transcription-quantitative real-time polymerase chain reaction (RT-qPCR). Our data showed that EPA and EPA+DHA downregulated ARG2 mRNA 2-fold in both types of HLF. DHA, RvD1, and DEX did not alter mRNA levels for any of the genes studied. EPA lowered the ARG2 protein levels in DHLF, but did not affect those levels in NHLF. ASA upregulated ARG2 mRNA 5-fold and 7-fold in NHLF and DHLF, respectively, TH1 cytokines downregulated ARG2, ODC, and OAT mRNA in DHLF 10-fold, 2-fold, and 2.5-fold, respectively, and cAMP downregulated ARG2 mRNA 2-fold in DHLF. These results are the first to show a direct effect of ω-3 PUFAs on ARG2 mRNA levels and provide further evidence for a role of ω-3 PUFAs in AR.
Collapse
|
15
|
Carter NS, Kawasaki Y, Nahata SS, Elikaee S, Rajab S, Salam L, Alabdulal MY, Broessel KK, Foroghi F, Abbas A, Poormohamadian R, Roberts SC. Polyamine Metabolism in Leishmania Parasites: A Promising Therapeutic Target. Med Sci (Basel) 2022; 10:24. [PMID: 35645240 PMCID: PMC9149861 DOI: 10.3390/medsci10020024] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/18/2022] [Accepted: 04/18/2022] [Indexed: 12/30/2022] Open
Abstract
Parasites of the genus Leishmania cause a variety of devastating and often fatal diseases in humans and domestic animals worldwide. The need for new therapeutic strategies is urgent because no vaccine is available, and treatment options are limited due to a lack of specificity and the emergence of drug resistance. Polyamines are metabolites that play a central role in rapidly proliferating cells, and recent studies have highlighted their critical nature in Leishmania. Numerous studies using a variety of inhibitors as well as gene deletion mutants have elucidated the pathway and routes of transport, revealing unique aspects of polyamine metabolism in Leishmania parasites. These studies have also shed light on the significance of polyamines for parasite proliferation, infectivity, and host-parasite interactions. This comprehensive review article focuses on the main polyamine biosynthetic enzymes: ornithine decarboxylase, S-adenosylmethionine decarboxylase, and spermidine synthase, and it emphasizes recent discoveries that advance these enzymes as potential therapeutic targets against Leishmania parasites.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Sigrid C. Roberts
- School of Pharmacy, Pacific University Oregon, Hillsboro, OR 97123, USA; (N.S.C.); (Y.K.); (S.S.N.); (S.E.); (S.R.); (L.S.); (M.Y.A.); (K.K.B.); (F.F.); (A.A.); (R.P.)
| |
Collapse
|
16
|
Abstract
Leishmaniasis is a zoonotic and vector-borne infectious disease that is caused by the genus Leishmania belonging to the trypanosomatid family. The protozoan parasite has a digenetic life cycle involving a mammalian host and an insect vector. Leishmaniasisis is a worldwide public health problem falling under the neglected tropical disease category, with over 90 endemic countries, and approximately 1 million new cases and 20,000 deaths annually. Leishmania infection can progress toward the development of species–specific pathologic disorders, ranging in severity from self-healing cutaneous lesions to disseminating muco-cutaneous and fatal visceral manifestations. The severity and the outcome of leishmaniasis is determined by the parasite’s antigenic epitope characteristics, the vector physiology, and most importantly, the immune response and immune status of the host. This review examines the nature of host–pathogen interaction in leishmaniasis, innate and adaptive immune responses, and various strategies that have been employed for vaccine development.
Collapse
|
17
|
BARRETO ANNAL, ALONSO ARIADNEN, MORAES DANIELCDE, CURVELO JOSÉA, MIRANDA KILDARE, PORTELA MARISTELAB, FERREIRA-PEREIRA ANTÔNIO, SOUTO-PADRÓN THAIS, SOARES ROSANGELAMARIADEA. Anti-Leishmania amazonensis activity of the marine sponge Dercitus (Stoeba) latex (Porifera) from São Pedro and São Paulo Archipelago, Pernambuco, Brazil. AN ACAD BRAS CIENC 2022; 94:e20211090. [DOI: 10.1590/0001-3765202220211090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 11/19/2021] [Indexed: 11/21/2022] Open
Affiliation(s)
- ANNA L.S. BARRETO
- Universidade Federal do Rio de Janeiro, Brazil; Instituto Brasileiro de Medicina de Reabilitação (IBMR), Brazil
| | - ARIADNE N. ALONSO
- Universidade Federal do Rio de Janeiro, Brazil; Laboratório Richet Medicina Diagnóstica, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Arginine and Arginases Modulate Metabolism, Tumor Microenvironment and Prostate Cancer Progression. Nutrients 2021; 13:nu13124503. [PMID: 34960055 PMCID: PMC8704013 DOI: 10.3390/nu13124503] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/05/2021] [Accepted: 12/11/2021] [Indexed: 12/30/2022] Open
Abstract
Arginine availability and activation of arginine-related pathways at cancer sites have profound effects on the tumor microenvironment, far beyond their well-known role in the hepatic urea cycle. Arginine metabolism impacts not only malignant cells but also the surrounding immune cells behavior, modulating growth, survival, and immunosurveillance mechanisms, either through an arginase-mediated effect on polyamines and proline synthesis, or by the arginine/nitric oxide pathway in tumor cells, antitumor T-cells, myeloid-derived suppressor cells, and macrophages. This review presents evidence concerning the impact of arginine metabolism and arginase activity in the prostate cancer microenvironment, highlighting the recent advances in immunotherapy, which might be relevant for prostate cancer. Even though further research is required, arginine deprivation may represent a novel antimetabolite strategy for the treatment of arginine-dependent prostate cancer.
Collapse
|
19
|
Chen YF, Yu SF, Wu CY, Wu N, Shen J, Shen J, Gao JM, Wen YZ, Hide G, Lai DH, Lun ZR. Innate Resistance to Leishmania amazonensis Infection in Rat Is Dependent on NOS2. Front Microbiol 2021; 12:733286. [PMID: 34777283 PMCID: PMC8586549 DOI: 10.3389/fmicb.2021.733286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/27/2021] [Indexed: 11/16/2022] Open
Abstract
Leishmania infection causes diverse clinical manifestations in humans. The disease outcome is complicated by the combination of many host and parasite factors. Inbred mouse strains vary in resistance to Leishmania major but are highly susceptible to Leishmania amazonensis infection. However, rats are highly resistant to L. amazonensis infection due to unknown mechanisms. We use the inducible nitric oxide synthase (Nos2) gene knockout rat model (Nos2−/− rat) to investigate the role of NOS2 against leishmania infection in rats. Our results demonstrated that diversion toward the NOS2 pathway is the key factor explaining the resistance of rats against L. amazonensis infection. Rats deficient in NOS2 are susceptible to L. amazonensis infection even though their immune response to infection is still strong. Moreover, adoptive transfer of NOS2 competent macrophages into Nos2−/− rats significantly reduced disease development and parasite load. Thus, we conclude that the distinct L-arginine metabolism, observed in rat macrophages, is the basis of the strong innate resistance to Leishmania. These data highlight that macrophages from different hosts possess distinctive properties and produce different outcomes in innate immunity to Leishmania infections.
Collapse
Affiliation(s)
- Yun-Fu Chen
- Guangdong Provincial Key Laboratory of Aquatic Economic Animals, Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Si-Fei Yu
- Institute of Immunology and Key Laboratory of Tropical Disease Control of the Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Chang-You Wu
- Institute of Immunology and Key Laboratory of Tropical Disease Control of the Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Na Wu
- Guangdong Provincial Key Laboratory of Aquatic Economic Animals, Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Jia Shen
- Guangdong Provincial Key Laboratory of Aquatic Economic Animals, Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Juan Shen
- Institute of Immunology and Key Laboratory of Tropical Disease Control of the Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Jiang-Mei Gao
- Guangdong Provincial Key Laboratory of Aquatic Economic Animals, Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Yan-Zi Wen
- Guangdong Provincial Key Laboratory of Aquatic Economic Animals, Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Geoff Hide
- Ecosystems and Environment Research Centre and Biomedical Research Centre, School of Science, Engineering and Environment, University of Salford, Salford, United Kingdom
| | - De-Hua Lai
- Guangdong Provincial Key Laboratory of Aquatic Economic Animals, Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Zhao-Rong Lun
- Guangdong Provincial Key Laboratory of Aquatic Economic Animals, Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China.,Ecosystems and Environment Research Centre and Biomedical Research Centre, School of Science, Engineering and Environment, University of Salford, Salford, United Kingdom
| |
Collapse
|
20
|
Chang CY, Park JH, Ouh IO, Gu NY, Jeong SY, Lee SA, Lee YH, Hyun BH, Kim KS, Lee J. Novel method to repair articular cartilage by direct reprograming of prechondrogenic mesenchymal stem cells. Eur J Pharmacol 2021; 911:174416. [PMID: 34606836 DOI: 10.1016/j.ejphar.2021.174416] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 08/07/2021] [Accepted: 08/09/2021] [Indexed: 12/27/2022]
Abstract
Age-related cartilage loss is worsened by the limited regenerative capacity of chondrocytes. The role of cell-based therapies using mesenchymal stem cells is gaining interest. Adipose tissue-derived mesenchymal stem cells (ADSCs) are an attractive source to generate the optimal number of chondrocytes required to repair a cartilage defect and regenerate hyaline articular cartilage. Here, we report an outstanding technique to prepare chondrocytes for cartilage repair using canine ADSCs. We hypothesized that external electrical fields promote prechondrogenic condensation without requiring genetic modifications or exogenous factors. We analyzed the effect of electrical stimulation (ES) on the differentiation of ADSC micromass into chondrocytes. Highly compact structures were formed within 3 days of ES of canine ADSC micromass. The expression of type I collagen gene was abolished in these cells compared with that in control micromass cultures and monolayer cultures. We further found that ES enhanced the production of proteoglycan, a highly produced extracellular matrix component in chondrocytes. Additionally, single-cell RNA sequencing analysis showed that canine ADSC micromass undergoing ES developed a prechondrogenic cell aggregation, suggesting their metabolic conversion, biogenesis, and calcium ion change. Collectively, our findings demonstrate the capacity of ES to drive the chondrogenesis of ADSCs in the absence of exogenous factors and confirm its commercial potential as a budget-friendly therapy for the repair of cartilage defects.
Collapse
Affiliation(s)
- Chi Young Chang
- Hanyang Digitech, 332-7, Samsung 1-ro, Hwaseong, Gyeonggi-do, 18380, Republic of Korea; Youth Bio Global, 273, Digital-ro, Guro-gu, Seoul, 08381, Republic of Korea
| | - Ju Hyun Park
- Hanyang Digitech, 332-7, Samsung 1-ro, Hwaseong, Gyeonggi-do, 18380, Republic of Korea; Youth Bio Global, 273, Digital-ro, Guro-gu, Seoul, 08381, Republic of Korea
| | - In-Ohk Ouh
- Viral Disease Research Division, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon, Gyeongsangbuk-do, 39660, Republic of Korea
| | - Na-Yeon Gu
- Viral Disease Research Division, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon, Gyeongsangbuk-do, 39660, Republic of Korea
| | - So Yeon Jeong
- Viral Disease Research Division, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon, Gyeongsangbuk-do, 39660, Republic of Korea
| | - Se-A Lee
- Viral Disease Research Division, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon, Gyeongsangbuk-do, 39660, Republic of Korea
| | - Yoon-Hee Lee
- Viral Disease Research Division, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon, Gyeongsangbuk-do, 39660, Republic of Korea
| | - Bang-Hun Hyun
- Viral Disease Research Division, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon, Gyeongsangbuk-do, 39660, Republic of Korea
| | - Ki Suk Kim
- Hanyang Digitech, 332-7, Samsung 1-ro, Hwaseong, Gyeonggi-do, 18380, Republic of Korea
| | - Jienny Lee
- Viral Disease Research Division, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon, Gyeongsangbuk-do, 39660, Republic of Korea; Division of Regenerative Medicine Safety Control, Department of Chronic Disease Convergence Research, Korea National Institute of Health, Korea Disease Control and Prevention Agency, 187 Osongsaengmyeong 2-ro, Cheongju, Chungcheongbuk-do, 28159, Republic of Korea.
| |
Collapse
|
21
|
Lopes ME, dos Santos LM, Sacks D, Vieira LQ, Carneiro MB. Resistance Against Leishmania major Infection Depends on Microbiota-Guided Macrophage Activation. Front Immunol 2021; 12:730437. [PMID: 34745100 PMCID: PMC8564857 DOI: 10.3389/fimmu.2021.730437] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 09/06/2021] [Indexed: 12/24/2022] Open
Abstract
Innate immune cells present a dual role during leishmaniasis: they constitute the first line of host defense but are also the main host cells for the parasite. Response against the infection that results in the control of parasite growth and lesion healing depends on activation of macrophages into a classical activated phenotype. We report an essential role for the microbiota in driving macrophage and monocyte-derived macrophage activation towards a resistance phenotype against Leishmania major infection in mice. Both germ-free and dysbiotic mice showed a higher number of myeloid innate cells in lesions and increased number of infected cells, mainly dermal resident and inflammatory macrophages. Despite developing a Th1 immune response characterized by the same levels of IFN-γ production as the conventional mice, germ-free mice presented reduced numbers of iNOS+ macrophages at the peak of infection. Absence or disturbance of host microbiota impaired the capacity of bone marrow-derived macrophage to be activated for Leishmania killing in vitro, even when stimulated by Th1 cytokines. These cells presented reduced expression of inos mRNA, and diminished production of microbicidal molecules, such as ROS, while presenting a permissive activation status, characterized by increased expression of arginase I and il-10 mRNA and higher arginase activity. Colonization of germ-free mice with complete microbiota from conventional mice rescued their ability to control the infection. This study demonstrates the essential role of host microbiota on innate immune response against L. major infection, driving host macrophages to a resistance phenotype.
Collapse
Affiliation(s)
- Mateus Eustáquio Lopes
- Laboratório de Gnotobiologia e Imunologia, Instituto de Ciências Biológicas, Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Liliane Martins dos Santos
- Laboratório de Gnotobiologia e Imunologia, Instituto de Ciências Biológicas, Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - David Sacks
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Leda Quercia Vieira
- Laboratório de Gnotobiologia e Imunologia, Instituto de Ciências Biológicas, Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Matheus B. Carneiro
- Laboratório de Gnotobiologia e Imunologia, Instituto de Ciências Biológicas, Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
22
|
Tomiotto-Pellissier F, Miranda-Sapla MM, Silva TF, Bortoleti BTDS, Gonçalves MD, Concato VM, Rodrigues ACJ, Detoni MB, Costa IN, Panis C, Conchon-Costa I, Bordignon J, Pavanelli WR. Murine Susceptibility to Leishmania amazonensis Infection Is Influenced by Arginase-1 and Macrophages at the Lesion Site. Front Cell Infect Microbiol 2021; 11:687633. [PMID: 34660334 PMCID: PMC8517480 DOI: 10.3389/fcimb.2021.687633] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 09/13/2021] [Indexed: 12/30/2022] Open
Abstract
Cutaneous leishmaniasis is a zoonotic infectious disease broadly distributed worldwide, causing a range of diseases with clinical outcomes ranging from self-healing infections to chronic disfiguring disease. The effective immune response to this infection is yet to be more comprehensively understood and is fundamental for developing drugs and vaccines. Thus, we used experimental models of susceptibility (BALB/c) and partial resistance (C57BL/6) to Leishmania amazonensis infection to investigate the local profile of mediators involved in the development of cutaneous leishmaniasis. We found worse disease outcome in BALB/c mice than in C57BL/6 mice, with almost 15 times higher parasitic load, ulcerated lesion formation, and higher levels of IL-6 in infected paws. In contrast, C57BL/6 presented higher levels of IFN-γ and superoxide anion (•O2−) after 11 weeks of infection and no lesion ulcerations. A peak of local macrophages appeared after 24 h of infection in both of the studied mice strains, followed by another increase after 240 h, detected only in C57BL/6 mice. Regarding M1 and M2 macrophage phenotype markers [iNOS, MHC-II, CD206, and arginase-1 (Arg-1)], we found a pronounced increase in Arg-1 levels in BALB/c after 11 weeks of infection, whereas C57BL/6 showed an initial predomination of markers from both profiles, followed by an M2 predominance, coinciding with the second peak of macrophage infiltration, 240 h after the infection. Greater deposition of type III collagen and lesion resolution was also observed in C57BL/6 mice. The adoptive transfer of macrophages from C57BL/6 to infected BALB/c at the 11th week showed a reduction in both edema and the number of parasites at the lesion site, in addition to lower levels of Arg-1. Thus, C57BL/6 mice have a more effective response against L. amazonensis, based on a balance between inflammation and tissue repair, while BALB/c mice have an excessive Arg-1 production at late infection. The worst evolution seems to be influenced by recruitment of Arg-1 related macrophages, since the adoptive transfer of macrophages from C57BL/6 mice to BALB/c resulted in better outcomes, with lower levels of Arg-1.
Collapse
Affiliation(s)
- Fernanda Tomiotto-Pellissier
- Biosciences and Biotechnology Graduate Program, Carlos Chagas Institute (ICC), Fiocruz, Curitiba, Brazil.,Laboratory of Immunoparasitology of Neglected Diseases and Cancer (LIDNC), Department of Pathological Sciences, State University of Londrina, Londrina, Brazil
| | - Milena Menegazzo Miranda-Sapla
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer (LIDNC), Department of Pathological Sciences, State University of Londrina, Londrina, Brazil
| | - Taylon Felipe Silva
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer (LIDNC), Department of Pathological Sciences, State University of Londrina, Londrina, Brazil
| | - Bruna Taciane da Silva Bortoleti
- Biosciences and Biotechnology Graduate Program, Carlos Chagas Institute (ICC), Fiocruz, Curitiba, Brazil.,Laboratory of Immunoparasitology of Neglected Diseases and Cancer (LIDNC), Department of Pathological Sciences, State University of Londrina, Londrina, Brazil
| | - Manoela Daiele Gonçalves
- Laboratory of Biotransformation and Phytochemistry, Department of Chemistry, State University of Londrina, Universitary Hospital, Londrina, Brazil
| | - Virginia Márcia Concato
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer (LIDNC), Department of Pathological Sciences, State University of Londrina, Londrina, Brazil
| | - Ana Carolina Jacob Rodrigues
- Biosciences and Biotechnology Graduate Program, Carlos Chagas Institute (ICC), Fiocruz, Curitiba, Brazil.,Laboratory of Immunoparasitology of Neglected Diseases and Cancer (LIDNC), Department of Pathological Sciences, State University of Londrina, Londrina, Brazil
| | - Mariana Barbosa Detoni
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer (LIDNC), Department of Pathological Sciences, State University of Londrina, Londrina, Brazil
| | - Idessania Nazareth Costa
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer (LIDNC), Department of Pathological Sciences, State University of Londrina, Londrina, Brazil
| | - Carolina Panis
- Laboratory of Tumor Biology, State University of Western Paraná (UNIOESTE), Francisco Beltrão, Brazil
| | - Ivete Conchon-Costa
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer (LIDNC), Department of Pathological Sciences, State University of Londrina, Londrina, Brazil
| | - Juliano Bordignon
- Biosciences and Biotechnology Graduate Program, Carlos Chagas Institute (ICC), Fiocruz, Curitiba, Brazil.,Laboratory of Molecular Virology, Carlos Chagas Institute (ICC), Fiocruz, Curitiba, Brazil
| | - Wander Rogério Pavanelli
- Biosciences and Biotechnology Graduate Program, Carlos Chagas Institute (ICC), Fiocruz, Curitiba, Brazil.,Laboratory of Immunoparasitology of Neglected Diseases and Cancer (LIDNC), Department of Pathological Sciences, State University of Londrina, Londrina, Brazil
| |
Collapse
|
23
|
Carneiro MB, Peters NC. The Paradox of a Phagosomal Lifestyle: How Innate Host Cell- Leishmania amazonensis Interactions Lead to a Progressive Chronic Disease. Front Immunol 2021; 12:728848. [PMID: 34557194 PMCID: PMC8452962 DOI: 10.3389/fimmu.2021.728848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/10/2021] [Indexed: 02/06/2023] Open
Abstract
Intracellular phagosomal pathogens represent a formidable challenge for innate immune cells, as, paradoxically, these phagocytic cells can act as both host cells that support pathogen replication and, when properly activated, are the critical cells that mediate pathogen elimination. Infection by parasites of the Leishmania genus provides an excellent model organism to investigate this complex host-pathogen interaction. In this review we focus on the dynamics of Leishmania amazonensis infection and the host innate immune response, including the impact of the adaptive immune response on phagocytic host cell recruitment and activation. L. amazonensis infection represents an important public health problem in South America where, distinct from other Leishmania parasites, it has been associated with all three clinical forms of leishmaniasis in humans: cutaneous, muco-cutaneous and visceral. Experimental observations demonstrate that most experimental mouse strains are susceptible to L. amazonensis infection, including the C57BL/6 mouse, which is resistant to other species such as Leishmania major, Leishmania braziliensis and Leishmania infantum. In general, the CD4+ T helper (Th)1/Th2 paradigm does not sufficiently explain the progressive chronic disease established by L. amazonensis, as strong cell-mediated Th1 immunity, or a lack of Th2 immunity, does not provide protection as would be predicted. Recent findings in which the balance between Th1/Th2 immunity was found to influence permissive host cell availability via recruitment of inflammatory monocytes has also added to the complexity of the Th1/Th2 paradigm. In this review we discuss the roles played by innate cells starting from parasite recognition through to priming of the adaptive immune response. We highlight the relative importance of neutrophils, monocytes, dendritic cells and resident macrophages for the establishment and progressive nature of disease following L. amazonensis infection.
Collapse
Affiliation(s)
- Matheus B Carneiro
- Snyder Institute for Chronic Diseases, Departments of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine and Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Nathan C Peters
- Snyder Institute for Chronic Diseases, Departments of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine and Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
24
|
Seif MA, Al-Mohammed HI. ASSESSMENT OF THE OXIDATIVE AND NITROSATIVE STRESS IN THE SERUM OF SAUDI PATIENTS WITH CUTANEOUS LEISHMANIASIS BEFORE AND AFTER TREATMENT. J Parasitol 2021; 107:810-816. [PMID: 34648629 DOI: 10.1645/20-109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Macrophages, within which Leishmania species replicate, generate large amounts of reactive oxygen species (ROS) and reactive nitrogen species (RNS) to kill these parasites. The present study assessed the oxidative and nitrosative stress, and specific immune enzymes in the serum of patients with cutaneous leishmaniasis (Cl) before and after treatment and in the control individuals. Serum activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), L-arginase, myeloperoxidase (MPO), and adenosine deaminase (ADA) and the levels of reduced glutathione, malondialdehyde (MDA), and nitric oxide (NO) were studied. The activities of L-arginase, MPO, and ADA and the levels of MDA and NO were significantly elevated (P < 0.001), while the activities of SOD, CAT, and GSH-Px, and the levels of reduced glutathione (GSH) were significantly (P < 0.001) reduced in untreated patients as compared with values of patients after treatment and of control individuals. The treatment, which included intramuscular injection of sodium stibogluconate and meglumine antimoniate, ameliorated these factors in comparison to the untreated group. These results suggest that oxidative and nitrosative stress may play an important role in the pathogenesis of untreated cutaneous leishmaniasis. Furthermore, the reduction in oxidative and nitrosative stress in the treated Cl patients may be due to the drug decreasing energy production by the parasite, which eventually leads to its death.
Collapse
Affiliation(s)
- Mossad A Seif
- Division of Biochemistry, Biomedical Sciences Department, College of Medicine, King Faisal University, P.O. Box 10950, Hufof, Al-Ahsa, 31982, Kingdom of Saudi Arabia
| | - Hamdan I Al-Mohammed
- Division of Parasitology, Biomedical Sciences Department, College of Medicine, King Faisal University, P.O. Box 10950, Hufof, Al-Ahsa, 31982, Kingdom of Saudi Arabia
| |
Collapse
|
25
|
Immune-metabolic interactions between Leishmania and macrophage host. Curr Opin Microbiol 2021; 63:231-237. [PMID: 34438164 DOI: 10.1016/j.mib.2021.07.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/08/2021] [Accepted: 07/19/2021] [Indexed: 12/12/2022]
Abstract
Manipulation of host metabolic fluxes by Leishmania represents a strategy to circumvent host immune response leading to long-term parasite survival and playing an important role in the pathology of infection. Specific Leishmania-dependent metabolic alterations in infected macrophages have been associated with resistance or susceptibility to infection. Thus, deciphering the multilevel interactions between metabolism and function on innate immune cells during infection offers considerable therapeutic or prophylactic promise. In this review, we provide an overview of recent literature highlighting Leishmania-macrophage interactions and discuss the potential of metabolic targeted therapies to shift the balance of dysfunctional, damaging, or non-productive responses to protective immune reactivity patterns towards pathogen elimination.
Collapse
|
26
|
Prasanna P, Kumar P, Mandal S, Payal T, Kumar S, Hossain SU, Das P, Ravichandiran V, Mandal D. 7,8-dihydroxyflavone-functionalized gold nanoparticles target the arginase enzyme of Leishmania donovani. Nanomedicine (Lond) 2021; 16:1887-1903. [PMID: 34397295 DOI: 10.2217/nnm-2021-0161] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Aim: To analyze the efficacy and possible mechanism of action of 7,8-dihydroxyflavone (DHF) and DHF synthesized gold nanoparticles (GNPs) against the parasite Leishmania donovani. Methods: GNPs were synthesized using DHF and characterized by dynamic light scattering, ζ potential, Fourier transform infrared spectroscopy, transmission electron microscopy and x-ray diffraction. The efficacy of DHF and DHF-GNP were tested against sensitive and drug-resistant parasites. GNP uptake was measured on macrophages by atomic absorption spectroscopy. Results: DHF and DHF-GNP (∼35 nm) were equally effective against sensitive and drug-resistant strains and inhibited the arginase activity of parasites. Increased IFN-γ and reduced IL-12 cytokine response showed a Th1/Th2-mediated cell death in macrophages. Conclusion: The low cytotoxicity and high biological activity of DHF-GNP may be useful for chemotherapy of leishmaniasis.
Collapse
Affiliation(s)
- Pragya Prasanna
- Department of Biotechnology, National Institute of Pharmaceutical Education & Research (NIPER), Hajipur, 844102, India
| | - Prakash Kumar
- Department of Biotechnology, National Institute of Pharmaceutical Education & Research (NIPER), Hajipur, 844102, India
| | - Saptarshi Mandal
- Department of Chemistry, Indian Institute of Technology, Patna, 801106, India
| | - Tanvi Payal
- Department of Biotechnology, National Institute of Pharmaceutical Education & Research (NIPER), Hajipur, 844102, India.,Cognizant Technology Solution, Hyderabad, 800051, India
| | - Saurabh Kumar
- Department of Biotechnology, National Institute of Pharmaceutical Education & Research (NIPER), Hajipur, 844102, India
| | - Sk Ugir Hossain
- Department of Clinical and Translational Medicine, Chittaranjan National Cancer Institute, Kolkata, 700026, India
| | - Prolay Das
- Department of Chemistry, Indian Institute of Technology, Patna, 801106, India
| | - V Ravichandiran
- Department of Biotechnology, National Institute of Pharmaceutical Education & Research (NIPER), Hajipur, 844102, India.,National Institute of Pharmaceutical Education & Research (NIPER), Kolkata, 700054, India
| | - Debabrata Mandal
- Department of Biotechnology, National Institute of Pharmaceutical Education & Research (NIPER), Hajipur, 844102, India
| |
Collapse
|
27
|
Repression of MUC1 Promotes Expansion and Suppressive Function of Myeloid-Derived Suppressor Cells in Pancreatic and Breast Cancer Murine Models. Int J Mol Sci 2021; 22:ijms22115587. [PMID: 34070449 PMCID: PMC8197523 DOI: 10.3390/ijms22115587] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 05/21/2021] [Accepted: 05/21/2021] [Indexed: 12/12/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are immature myeloid cells that are responsible for immunosuppression in tumor microenvironment. Here we report the impact of mucin 1 (MUC1), a transmembrane glycoprotein, on proliferation and functional activity of MDSCs. To determine the role of MUC1 in MDSC phenotype, we analyzed MDSCs derived from wild type (WT) and MUC1-knockout (MUC1KO) mice bearing syngeneic pancreatic (KCKO) or breast (C57MG) tumors. We observed enhanced tumor growth of pancreatic and breast tumors in the MUC1KO mice compared to the WT mice. Enhanced tumor growth in the MUC1KO mice was associated with increased numbers of suppressive MDSCs and T regulatory (Tregs) cells in the tumor microenvironment. Compared to the WT host, MUC1KO host showed higher levels of iNOS, ARG1, and TGF-β, thus promoting proliferation of MDSCs with an immature and immune suppressive phenotype. When co-cultured with effector T cells, MDSCs from MUC1KO mice led to higher repression of IL-2 and IFN-γ production by T cells as compared to MDSCs from WT mice. Lastly, MDSCs from MUC1KO mice showed higher levels of c-Myc and activated pSTAT3 as compared to MDSCs from WT mice, suggesting increased survival, proliferation, and prevention of maturation of MDSCs in the MUC1KO host. We report diminished T cell function in the KO versus WT mice. In summary, the data suggest that MUC1 may regulate signaling pathways that are critical to maintain the immunosuppressive properties of MDSCs.
Collapse
|
28
|
Elmahallawy EK, Alkhaldi AAM, Saleh AA. Host immune response against leishmaniasis and parasite persistence strategies: A review and assessment of recent research. Biomed Pharmacother 2021; 139:111671. [PMID: 33957562 DOI: 10.1016/j.biopha.2021.111671] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 04/18/2021] [Accepted: 04/24/2021] [Indexed: 12/13/2022] Open
Abstract
Leishmaniasis, a neglected parasitic disease caused by a unicellular protozoan of the genus Leishmania, is transmitted through the bite of a female sandfly. The disease remains a major public health problem and is linked to tropical and subtropical regions, with an endemic picture in several regions, including East Africa, the Mediterranean basin and South America. The different causative species display a diversity of clinical presentations; therefore, the immunological data on leishmaniasis are both scarce and controversial for the different forms and infecting species of the parasite. The present review highlights the main immune parameters associated with leishmaniasis that might contribute to a better understanding of the pathogenicity of the parasite and the clinical outcomes of the disease. Our aim was to provide a concise overview of the immunobiology of the disease and the factors that influence it, as this knowledge may be helpful in developing novel chemotherapeutic and vaccine strategies.
Collapse
Affiliation(s)
- Ehab Kotb Elmahallawy
- Department of Zoonoses, Faculty of Veterinary Medicine, Sohag University, Sohag 82524, Egypt.
| | | | - Amira A Saleh
- Department of Medical Parasitology, Faculty of Medicine, Zagazig University, Zgazig, Egypt
| |
Collapse
|
29
|
Rostami MN, Khamesipour A. Potential biomarkers of immune protection in human leishmaniasis. Med Microbiol Immunol 2021; 210:81-100. [PMID: 33934238 PMCID: PMC8088758 DOI: 10.1007/s00430-021-00703-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 03/22/2021] [Indexed: 12/30/2022]
Abstract
Leishmaniasis is a vector-borne neglected tropical disease endemic in over 100 countries around the world. Available control measures are not always successful, therapeutic options are limited, and there is no vaccine available against human leishmaniasis, although several candidate antigens have been evaluated over the last decades. Plenty of studies have aimed to evaluate the immune response development and a diverse range of host immune factors have been described to be associated with protection or disease progression in leishmaniasis; however, to date, no comprehensive biomarker(s) have been identified as surrogate marker of protection or exacerbation, and lack of enough information remains a barrier for vaccine development. Most of the current understanding of the role of different markers of immune response in leishmaniasis has been collected from experimental animal models. Although the data generated from the animal models are crucial, it might not always be extrapolated to humans. Here, we briefly review the events during Leishmania invasion of host cells and the immune responses induced against Leishmania in animal models and humans and their potential role as a biomarker of protection against human leishmaniasis.
Collapse
Affiliation(s)
| | - Ali Khamesipour
- Center for Research and Training in Skin Diseases and Leprosy, Tehran University of Medical Sciences, 14155-6383, Tehran, Iran.
| |
Collapse
|
30
|
Parab AR, McCall LI. Tryp-ing Up Metabolism: Role of Metabolic Adaptations in Kinetoplastid Disease Pathogenesis. Infect Immun 2021; 89:e00644-20. [PMID: 33526564 PMCID: PMC8090971 DOI: 10.1128/iai.00644-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Today, more than a billion people-one-sixth of the world's population-are suffering from neglected tropical diseases. Human African trypanosomiasis, Chagas disease, and leishmaniasis are neglected tropical diseases caused by protozoan parasites belonging to the genera Trypanosoma and Leishmania About half a million people living in tropical and subtropical regions of the world are at risk of contracting one of these three infections. Kinetoplastids have complex life cycles with different morphologies and unique physiological requirements at each life cycle stage. This review covers the latest findings on metabolic pathways impacting disease pathogenesis of kinetoplastids within the mammalian host. Nutrient availability is a key factor shaping in vivo parasite metabolism; thus, kinetoplastids display significant metabolic flexibility. Proteomic and transcriptomic profiles show that intracellular trypanosomatids are able to switch to an energy-efficient metabolism within the mammalian host system. Host metabolic changes can also favor parasite persistence, and contribute to symptom development, in a location-specific fashion. Ultimately, targeted and untargeted metabolomics studies have been a valuable approach to elucidate the specific biochemical pathways affected by infection within the host, leading to translational drug development and diagnostic insights.
Collapse
Affiliation(s)
- Adwaita R Parab
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma, USA
| | - Laura-Isobel McCall
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma, USA
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, USA
| |
Collapse
|
31
|
Suman M, Rajnikant M. Impact of suitable control on a uniform interpretation of units for arginase assay. Biochem Biophys Rep 2021; 25:100910. [PMID: 33506116 PMCID: PMC7815646 DOI: 10.1016/j.bbrep.2021.100910] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 12/26/2020] [Accepted: 01/08/2021] [Indexed: 12/17/2022] Open
Abstract
The arginase catalyzes the conversion of arginine into ornithine and urea. The activity of arginase serves as a critical diagnostic marker for several pathophysiological conditions. However, a specific, sensitive, and universal assay system for arginase with suitable control is elusive. Mostly amount of either urea or ornithine is estimated but an interpretation of the activity of arginase needs to be re-evaluated considering the endogenous level and influence of the substrate. This report; has been intended to evaluate methods of arginase assay and suitable controls. A conversion factor has been suggested for uniform interpretation of units for arginase assay.
Collapse
Affiliation(s)
- Mishra Suman
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, 221005, India
| | - Mishra Rajnikant
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, 221005, India
| |
Collapse
|
32
|
Elmahallawy EK, Alkhaldi AAM. Insights into Leishmania Molecules and Their Potential Contribution to the Virulence of the Parasite. Vet Sci 2021; 8:vetsci8020033. [PMID: 33672776 PMCID: PMC7924612 DOI: 10.3390/vetsci8020033] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/11/2021] [Accepted: 02/14/2021] [Indexed: 12/12/2022] Open
Abstract
Neglected parasitic diseases affect millions of people worldwide, resulting in high morbidity and mortality. Among other parasitic diseases, leishmaniasis remains an important public health problem caused by the protozoa of the genus Leishmania, transmitted by the bite of the female sand fly. The disease has also been linked to tropical and subtropical regions, in addition to being an endemic disease in many areas around the world, including the Mediterranean basin and South America. Although recent years have witnessed marked advances in Leishmania-related research in various directions, many issues have yet to be elucidated. The intention of the present review is to give an overview of the major virulence factors contributing to the pathogenicity of the parasite. We aimed to provide a concise picture of the factors influencing the reaction of the parasite in its host that might help to develop novel chemotherapeutic and vaccine strategies.
Collapse
Affiliation(s)
- Ehab Kotb Elmahallawy
- Department of Zoonoses, Faculty of Veterinary Medicine, Sohag University, Sohag 82524, Egypt
- Correspondence: (E.K.E.); (A.A.M.A.)
| | - Abdulsalam A. M. Alkhaldi
- Biology Department, College of Science, Jouf University, Sakaka, Aljouf 2014, Saudi Arabia
- Correspondence: (E.K.E.); (A.A.M.A.)
| |
Collapse
|
33
|
Kupani M, Sharma S, Pandey RK, Kumar R, Sundar S, Mehrotra S. IL-10 and TGF-β Induced Arginase Expression Contributes to Deficient Nitric Oxide Response in Human Visceral Leishmaniasis. Front Cell Infect Microbiol 2021; 10:614165. [PMID: 33680983 PMCID: PMC7930829 DOI: 10.3389/fcimb.2020.614165] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 12/31/2020] [Indexed: 12/01/2022] Open
Abstract
Nitric oxide (NO) is an anti-microbial effector of the innate immune system which plays major role in non-specific killing of various pathogens including protozoan parasites. However, due to subversion of the host’s immune processes by pathogens, suboptimal production of NO is frequently found in many infection models. Previous studies have shown suppressed NO production during Leishmania donovani infection, the causative agent of visceral leishmaniasis (VL). Availability of L-Arginine, a semi-essential amino acid is required for inducible nitric oxide synthase (iNOS) mediated NO production. However, arginase is another enzyme, which if expressed concomitantly, may strongly compete for L-Arginine, and suppress NO production by iNOS. In the present study, plasma nitrite and arginase levels were measured in VL patients before and after successful drug treatment, endemic and non-endemic healthy donors. We observed significantly lower NO levels in the plasma of VL patients as compared to endemic controls, which improved significantly post-treatment. Significantly elevated arginase activity was also observed in the plasma of VL patients, which may be associated with NO deficiency. VL patients also showed significantly higher levels of IL-10 and TGF-β, which are known to regulate expression of arginase in various immune cells. In vitro studies with human peripheral blood mononuclear cells (PBMCs) further corroborated the role of IL-10 and TGF-β in arginase mediated suppression of NO production.
Collapse
Affiliation(s)
- Manu Kupani
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, India
| | - Smriti Sharma
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Rajeev Kumar Pandey
- Research and Development Division, Thermo Fisher Scientific, Bangalore, India
| | - Rajiv Kumar
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Shyam Sundar
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Sanjana Mehrotra
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, India
| |
Collapse
|
34
|
Natural Products That Target the Arginase in Leishmania Parasites Hold Therapeutic Promise. Microorganisms 2021; 9:microorganisms9020267. [PMID: 33525448 PMCID: PMC7911663 DOI: 10.3390/microorganisms9020267] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/22/2021] [Accepted: 01/24/2021] [Indexed: 01/03/2023] Open
Abstract
Parasites of the genus Leishmania cause a variety of devastating and often fatal diseases in humans worldwide. Because a vaccine is not available and the currently small number of existing drugs are less than ideal due to lack of specificity and emerging drug resistance, the need for new therapeutic strategies is urgent. Natural products and their derivatives are being used and explored as therapeutics and interest in developing such products as antileishmanials is high. The enzyme arginase, the first enzyme of the polyamine biosynthetic pathway in Leishmania, has emerged as a potential therapeutic target. The flavonols quercetin and fisetin, green tea flavanols such as catechin (C), epicatechin (EC), epicatechin gallate (ECG), and epigallocatechin-3-gallate (EGCG), and cinnamic acid derivates such as caffeic acid inhibit the leishmanial enzyme and modulate the host’s immune response toward parasite defense while showing little toxicity to the host. Quercetin, EGCG, gallic acid, caffeic acid, and rosmarinic acid have proven to be effective against Leishmania in rodent infectivity studies. Here, we review research on these natural products with a focus on their promise for the development of treatment strategies as well as unique structural and pharmacokinetic/pharmacodynamic features of the most promising agents.
Collapse
|
35
|
Regulation of macrophage subsets and cytokine production in leishmaniasis. Cytokine 2020; 147:155309. [PMID: 33334669 DOI: 10.1016/j.cyto.2020.155309] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 09/18/2020] [Accepted: 09/19/2020] [Indexed: 12/14/2022]
Abstract
Macrophages are host cells for parasites of the genus Leishmania where they multiply inside parasitophorous vacuoles. Paradoxically, macrophages are also the cells responsible for killing or controlling parasite growth, if appropriately activated. In this review, we will cover the patterns of macrophage activation and the mechanisms used by the parasite to circumvent being killed. We will highlight the impacts of the vector bite on macrophage activation. Finally, we will discuss the ontogeny of macrophages that are infected by Leishmania spp.
Collapse
|
36
|
Cytokine saga in visceral leishmaniasis. Cytokine 2020; 147:155322. [PMID: 33127259 DOI: 10.1016/j.cyto.2020.155322] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 09/21/2020] [Accepted: 09/25/2020] [Indexed: 12/12/2022]
Abstract
In humans, infection with Leishmania manifests into a spectrum of diseases. The manifestation of the diseases depend on the resultant evasion of the parasite to immune responses namely by macrophages, which is an exclusive host of Leishmania. The B cells valiantly mount antibody responses, however, to no avail as the Leishmania parasites occupy the intracellular niches of the macrophages and subvert the immune response. Extensive studies have been documented on the role of cell-mediated immunity (CMI) in protection and counter survival strategies of the parasites leading to downregulation of CMI. The present review attempts to discuss the cytokines in progression or resolution of visceral form of leishmaniasis or kala-azar, predominantly affecting the Indian subcontinent. The components/cytokine(s) responsible for the regulation of the critical balance of T helper cells and their subsets have been discussed in the perspective. Therefore, any strategy involving the treatment of visceral leishmania (VL) needs to consider the balance and regulation of T cell function.
Collapse
|
37
|
Lima BSDS, Esteves BB, Fialho-Júnior LC, Mendes TADO, Pires SDF, Chapeourouge A, Perales J, de Andrade HM. Study of the differentially abundant proteins among Leishmania amazonensis, L. braziliensis, and L. infantum. PLoS One 2020; 15:e0240612. [PMID: 33057350 PMCID: PMC7561129 DOI: 10.1371/journal.pone.0240612] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 09/29/2020] [Indexed: 01/05/2023] Open
Abstract
Leishmaniasis has been considered as emerging and re-emerging disease, and its increasing global incidence has raised concerns. The great clinical diversity of the disease is mainly determined by the species. In several American countries, tegumentary leishmaniasis (TL) is associated with both Leishmania amazonensis and L. braziliensis, while visceral leishmaniasis (VL) is associated with L. (L.) infantum. The major molecules that determine the most diverse biological variations are proteins. In the present study, through a DIGE approach, we identified differentially abundant proteins among the species mentioned above. We observed a variety of proteins with differential abundance among the studied species; and the biological networks predicted for each species showed that many of these proteins interacted with each other. The prominent proteins included the heat shock proteins (HSPs) and the protein network involved in oxide reduction process in L. amazonensis, the protein network of ribosomes in L. braziliensis, and the proteins involved in energy metabolism in L. infantum. The important proteins, as revealed by the PPI network results, enrichment categories, and exclusive proteins analysis, were arginase, HSPs, and trypanothione reductase in L. amazonensis; enolase, peroxidoxin, and tryparedoxin1 in L. braziliensis; and succinyl-CoA ligase [GDP -forming] beta-chain and transaldolase in L. infantum.
Collapse
Affiliation(s)
- Bruna Soares de Souza Lima
- Departamento de Medicina, Faculdade Dinâmica do Vale do Piranga (FADIP), Ponte Nova, Minas Gerais, Brazil
- Departamento de Parasitologia, Laboratório de Leishmanioses, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Barbara Beiral Esteves
- Departamento de Parasitologia, Laboratório de Leishmanioses, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Luiz Carlos Fialho-Júnior
- Departamento de Parasitologia, Laboratório de Leishmanioses, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Simone da Fonseca Pires
- Departamento de Parasitologia, Laboratório de Leishmanioses, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Jonas Perales
- Laboratório de Toxinologia, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Helida Monteiro de Andrade
- Departamento de Parasitologia, Laboratório de Leishmanioses, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- * E-mail:
| |
Collapse
|
38
|
Bogdan C. Macrophages as host, effector and immunoregulatory cells in leishmaniasis: Impact of tissue micro-environment and metabolism. Cytokine X 2020; 2:100041. [PMID: 33604563 PMCID: PMC7885870 DOI: 10.1016/j.cytox.2020.100041] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 12/13/2022] Open
Abstract
Leishmania are protozoan parasites that predominantly reside in myeloid cells within their mammalian hosts. Monocytes and macrophages play a central role in the pathogenesis of all forms of leishmaniasis, including cutaneous and visceral leishmaniasis. The present review will highlight the diverse roles of macrophages in leishmaniasis as initial replicative niche, antimicrobial effectors, immunoregulators and as safe hideaway for parasites persisting after clinical cure. These multiplex activities are either ascribed to defined subpopulations of macrophages (e.g., Ly6ChighCCR2+ inflammatory monocytes/monocyte-derived dendritic cells) or result from different activation statuses of tissue macrophages (e.g., macrophages carrying markers of of classical [M1] or alternative activation [M2]). The latter are shaped by immune- and stromal cell-derived cytokines (e.g., IFN-γ, IL-4, IL-10, TGF-β), micro milieu factors (e.g., hypoxia, tonicity, amino acid availability), host cell-derived enzymes, secretory products and metabolites (e.g., heme oxygenase-1, arginase 1, indoleamine 2,3-dioxygenase, NOS2/NO, NOX2/ROS, lipids) as well as by parasite products (e.g., leishmanolysin/gp63, lipophosphoglycan). Exciting avenues of current research address the transcriptional, epigenetic and translational reprogramming of macrophages in a Leishmania species- and tissue context-dependent manner.
Collapse
Key Words
- (L)CL, (localized) cutaneous leishmaniasis
- AHR, aryl hydrocarbon receptor
- AMP, antimicrobial peptide
- Arg, arginase
- Arginase
- CAMP, cathelicidin-type antimicrobial peptide
- CR, complement receptor
- DC, dendritic cells
- DCL, diffuse cutaneous leishmaniasis
- HO-1, heme oxygenase 1
- Hypoxia
- IDO, indoleamine-2,3-dioxygenase
- IFN, interferon
- IFNAR, type I IFN (IFN-α/β) receptor
- IL, interleukin
- Interferon-α/β
- Interferon-γ
- JAK, Janus kinase
- LPG, lipophosphoglycan
- LRV1, Leishmania RNA virus 1
- Leishmaniasis
- Macrophages
- Metabolism
- NCX1, Na+/Ca2+ exchanger 1
- NFAT5, nuclear factor of activated T cells 5
- NK cell, natural killer cell
- NO, nitric oxide
- NOS2 (iNOS), type 2 (or inducible) nitric oxide synthase
- NOX2, NADPH oxidase 2 (gp91 or cytochrome b558 β-subunit of Phox)
- Nitric oxide
- OXPHOS, mitochondrial oxidative phosphorylation
- PKDL, post kala-azar dermal leishmaniasis
- Phagocyte NADPH oxidase
- Phox, phagocyte NADPH oxidase
- RNS, reactive nitrogen species
- ROS, reactive oxygen species
- SOCS, suppressor of cytokine signaling
- STAT, signal transducer and activator of transcription
- TGF-β, transforming growth factor-beta
- TLR, toll-like receptor
- Th1 (Th2), type 1 (type2) T helper cell
- Tonicity
- VL, visceral leishmaniasis
- mTOR, mammalian/mechanistic target of rapamycin
Collapse
Affiliation(s)
- Christian Bogdan
- Mikrobiologisches Institut - klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, D-91054 Erlangen, Germany.,Medical Immunology Campus Erlangen, FAU Erlangen-Nürnberg, D-91054 Erlangen, Germany
| |
Collapse
|
39
|
Saunders EC, McConville MJ. Immunometabolism of Leishmania granulomas. Immunol Cell Biol 2020; 98:832-844. [PMID: 32780446 DOI: 10.1111/imcb.12394] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/06/2020] [Accepted: 08/06/2020] [Indexed: 12/19/2022]
Abstract
Leishmania are parasitic protists that cause a spectrum of diseases in humans characterized by the formation of granulomatous lesions in the skin or other tissues, such as liver and spleen. The extent to which Leishmania granulomas constrain or promote parasite growth is critically dependent on the host T-helper type 1/T-helper type 2 immune response and the localized functional polarization of infected and noninfected macrophages toward a classically (M1) or alternatively (M2) activated phenotype. Recent studies have shown that metabolic reprograming of M1 and M2 macrophages underpins the capacity of these cells to act as permissive or nonpermissive host reservoirs, respectively. In this review, we highlight the metabolic requirements of Leishmania amastigotes and the evidence that these parasites induce and/or exploit metabolic reprogramming of macrophage metabolism. We also focus on recent studies highlighting the role of key macrophage metabolic signaling pathways, such as mechanistic target of rapamycin, adenosine monophosphate-activated protein kinase and peroxisome proliferator receptor gamma in regulating the pathological progression of Leishmania granulomas. These studies highlight the intimate connectivity between Leishmania and host cell metabolism, the need to investigate these interactions in vivo and the potential to exploit host cell metabolic signaling pathways in developing new host-directed therapies.
Collapse
Affiliation(s)
- Eleanor C Saunders
- Department of Biochemistry and Molecular Biology, Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Malcolm J McConville
- Department of Biochemistry and Molecular Biology, Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Parkville, VIC, 3010, Australia
| |
Collapse
|
40
|
Pessenda G, da Silva JS. Arginase and its mechanisms in Leishmania persistence. Parasite Immunol 2020; 42:e12722. [PMID: 32294247 DOI: 10.1111/pim.12722] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/14/2020] [Accepted: 04/07/2020] [Indexed: 12/12/2022]
Abstract
Leishmaniasis is a neglected infectious disease with clinical presentations ranging from asymptomatic or mild symptoms to chronic infection and eventual death. The mechanisms of disease susceptibility and pathology have been extensively studied, but there are no steadfast rules regarding leishmaniasis. A Th1 response is usually associated with infection control, while a predominant Th2 response is detrimental to the patient. In this scenario, the enzymes arginase and inducible nitric oxide synthase represent two possible pathways of immune response. While the former contributes to parasite replication, the latter is crucial for its control. In the present review, we collected study results that associate arginase expression in patients and in experimental models with disease susceptibility/chronicity and show some proposed mechanisms that explain the role of arginase in maintaining Leishmania infection, including polyamine and thiol synthesis, tissue-resident macrophage (TRM) proliferation and activation and T-cell suppression and exhaustion.
Collapse
Affiliation(s)
- Gabriela Pessenda
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - João Santana da Silva
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Fundação Oswaldo Cruz Bi-institucional, Ribeirão Preto, Brazil
| |
Collapse
|
41
|
Mas A, Martínez-Rodrigo A, Orden JA, Molina R, Jiménez M, Jiménez MÁ, Carrión J, Domínguez-Bernal G. Properties of virulence emergence of Leishmania infantum isolates from Phlebotomus perniciosus collected during the human leishmaniosis outbreak in Madrid, Spain. Hepatic histopathology and immunological parameters as virulence markers in the mouse model. Transbound Emerg Dis 2020; 68:704-714. [PMID: 32668083 DOI: 10.1111/tbed.13733] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/04/2020] [Accepted: 07/10/2020] [Indexed: 12/20/2022]
Abstract
Recent anthropic activity related to the construction of the Bosquesur Green Park in a large urban setting in Madrid (Spain) has resulted in the largest reported community outbreak of human leishmaniosis in Europe. Previous phylogenetic and molecular-typing studies of parasite isolates have implicated the Leishmania infantum ITS-Lombardi genotype in this outbreak. In an unusual scenario, visceral leishmaniosis (VL) is affecting a significant number of individuals, suggesting that an increase in parasite virulence has occurred. In this work, using an in vivo BALB/c model of VL, we aimed to investigate the properties of emergent virulence of the L. infantum POL2FL7 and BOS1FL1 isolates obtained from Phlebotomus perniciosus collected in the outbreak area and compare them with those of the well-characterized strain BCN150 MON-1 isolated from a dog. The P. perniciosus specimens were collected during an entomological survey conducted in the transmission season of 2012. We observed a range of virulence phenotypes from moderately to highly aggressive after 5 weeks of infection. IV challenge of mice with outbreak isolates from sand flies induced higher splenic and liver parasite burdens, higher serological titres of specific anti-Leishmania antibodies and impaired capacities to control infection, as revealed by the arginine metabolism and low ratios of Th1/Th2 cytokine profiles analysed, compared with the corresponding measures evaluated in mice infected with the BCN150 strain. The BOS1FL1 isolate showed the highest degree of virulence among the isolates, superior to that of POL2FL7, as evidenced by the analysed biomarkers and the histopathological severity of liver lesions. These results provide insight into how L. infantum isolates from sand flies collected in the outbreak area have been able to affect not only immunosuppressed patients but also middle-aged people with normal immunocompetence in the largest human VL outbreak in Europe.
Collapse
Affiliation(s)
- Alicia Mas
- INMIVET, Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Abel Martínez-Rodrigo
- INMIVET, Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - José Antonio Orden
- INMIVET, Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Ricardo Molina
- Laboratorio de Entomología Médica, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Spain
| | - Maribel Jiménez
- Laboratorio de Entomología Médica, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Spain
| | - María Ángeles Jiménez
- Servicio de Anatomía Patológica, Facultad de Veterinaria, Hospital Clínico Veterinario, Universidad Complutense de Madrid, Madrid, Spain
| | - Javier Carrión
- INMIVET, Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Gustavo Domínguez-Bernal
- INMIVET, Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
42
|
The role of monocytes/macrophages in Leishmania infection: A glance at the human response. Acta Trop 2020; 207:105456. [PMID: 32222362 DOI: 10.1016/j.actatropica.2020.105456] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 03/20/2020] [Accepted: 03/20/2020] [Indexed: 12/18/2022]
Abstract
Leishmania are obligate intracellular parasites of mononuclear phagocytes transmitted by Phlebotomine sandflies. Monocytes are one of the main cell types recruited to the site of the bite having an important role in the defense against Leishmania parasites in the first hours of infection. In the tissue, macrophages play a pivotal role as both the primary replication sites and the major effector cells responsible for parasite elimination. Many authors have reviewed the monocyte/macrophage-Leishmania interactions from results derived in mice, however, given the important differences between mice an humans we considered vital to discuss the role of these cells in human leishmaniasis. In this review, we recapitulated the most important studies carried out to understand the different roles of human monocyte/macrophages in Leishmania infection and how they can participate in both control and the immunopathogenesis of the disease.
Collapse
|
43
|
Differential Regulation of l-Arginine Metabolism through Arginase 1 during Infection with Leishmania mexicana Isolates Obtained from Patients with Localized and Diffuse Cutaneous Leishmaniasis. Infect Immun 2020; 88:IAI.00963-19. [PMID: 32312763 DOI: 10.1128/iai.00963-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 03/31/2020] [Indexed: 01/08/2023] Open
Abstract
l-Arginine metabolism through arginase 1 (Arg-1) and inducible nitric oxide synthase (NOS2) constitutes a fundamental axis for the resolution or progression of leishmaniasis. Infection with Leishmania mexicana can cause two distinct clinical manifestations: localized cutaneous leishmaniasis (LCL) and diffuse cutaneous leishmaniasis (DCL). In this work, we analyzed in an in vivo model the capacity of two L. mexicana isolates, one obtained from a patient with LCL and the other from a patient with DCL, to regulate the metabolism of l-arginine through Arg-1 and NOS2. Susceptible BALB/c mice were infected with L. mexicana isolates from both clinical manifestations, and the evolution of the infection as well as protein presence and activity of Arg-1 and NOS2 were evaluated. The lesions of mice infected with the DCL isolate were bigger, had higher parasite loads, and showed greater protein presence and enzymatic activity of Arg-1 than the lesions of mice infected with the LCL isolate. In contrast, NOS2 protein synthesis was poorly or not induced in the lesions of mice infected with the LCL or DCL isolate. The immunochemistry analysis of the lesions allowed the identification of highly parasitized macrophages positive for Arg-1, while no staining for NOS2 was found. In addition, we observed in lesions of patients with DCL macrophages with higher parasite loads and stronger Arg-1 staining than those in lesions of patients with LCL. Our results suggest that L. mexicana isolates obtained from patients with LCL or DCL exhibit different virulence or pathogenicity degrees and differentially regulate l-arginine metabolism through Arg-1.
Collapse
|
44
|
Pagliari C, Kanashiro-Galo L, Jesus ACC, Saldanha MG, Sotto MN. Paracoccidioidomycosis: characterization of subpopulations of macrophages and cytokines in human mucosal lesions. Med Mycol 2020; 57:757-763. [PMID: 30418569 DOI: 10.1093/mmy/myy120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/15/2018] [Accepted: 10/18/2018] [Indexed: 12/14/2022] Open
Abstract
Mucosal lesions of paracoccidioidomycosis (PCM) are frequently described and clinically important. Macrophages are classified as M1 or M2. M1 are proinflammatory and M2 are related to chronicity. Dectin-1 recognizes β-glucan and plays an important role against fungal cells. The objective was to verify the presence of M1, M2, and dectin-1 and a possible correlation with Th1/Th2 cytokines in mucosal PCM lesions. In sum, 33 biopsies of oral PCM were submitted to histological and immunohistochemistry analysis, and positive cells were quantified. Eleven biopsies were characterized by compact granulomas (G1), 12 with loose granulomas (G2), and 10 with both kind of granulomas (G3). pSTAT-1 was equally increased in the three groups. G1 was characterized by an increased number of CD163+ macrophages. G2 presented similar number of arginase 1, iNOS, and CD163 expressing cells. G3 presented an increased number of cells expressing arginase 1 and CD163 over iNOS. G1 and G3 presented high number of cells expressing interferon (IFN)-γ; interleukin (IL) 5 was increased in G2 and G3; the expression of IL10 was similar among the three groups, and the expression of tumor necrosis factor (TNF)-α was higher in G3. G1 correlates to Th1 cytokines and pSTAT-1 and G2 correlates to Th2 cytokines. G3 presents both kinds of cytokines. We could not associate the expression of arginase-1, CD163, iNOS, and dectin-1 with the pattern of cytokines or kind of granuloma.
Collapse
Affiliation(s)
- C Pagliari
- Universidade de São Paulo, Faculdade de Medicina, Departamento de Patologia, São Paulo, SP, Brazil
| | - L Kanashiro-Galo
- Universidade de São Paulo, Faculdade de Medicina, Departamento de Patologia, São Paulo, SP, Brazil
| | - A C C Jesus
- Universidade de São Paulo, Faculdade de Medicina, Departamento de Patologia, São Paulo, SP, Brazil
| | - M G Saldanha
- Fundação Oswaldo Cruz, Instituto Gonçalo Moniz, Salvador, BA, Brazil
| | - M N Sotto
- Universidade de São Paulo, Faculdade de Medicina, Departamento de Patologia, São Paulo, SP, Brazil
| |
Collapse
|
45
|
Carneiro MB, Lopes ME, Hohman LS, Romano A, David BA, Kratofil R, Kubes P, Workentine ML, Campos AC, Vieira LQ, Peters NC. Th1-Th2 Cross-Regulation Controls Early Leishmania Infection in the Skin by Modulating the Size of the Permissive Monocytic Host Cell Reservoir. Cell Host Microbe 2020; 27:752-768.e7. [PMID: 32298657 DOI: 10.1016/j.chom.2020.03.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 01/13/2020] [Accepted: 03/16/2020] [Indexed: 12/19/2022]
Abstract
The impact of T helper (Th) 1 versus Th2 immunity on intracellular infections is attributed to classical versus alternative activation of macrophages leading to resistance or susceptibility. However, observations in multiple infectious settings demonstrate deficiencies in mediators of Th1-Th2 immunity, which have paradoxical or no impact. We report that prior to influencing activation, Th1/Th2 immunity first controls the size of the permissive host cell reservoir. During early Leishmania infection of the skin, IFN-γ- or STAT6-mediated changes in phagocyte activation were counteracted by changes in IFN-γ-mediated recruitment of permissive CCR2+ monocytes. Monocytes were required for early parasite expansion and acquired an alternatively activated phenotype despite the Th1 dermal environment required for their recruitment. Surprisingly, STAT6 did not enhance intracellular parasite proliferation, but rather modulated the size and permissiveness of the monocytic host cell reservoir via regulation of IFN-γ and IL-10. These observations expand our understanding of the Th1-Th2 paradigm during infection.
Collapse
Affiliation(s)
- Matheus Batista Carneiro
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB T2N 4Z6, Canada; Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada; Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada
| | - Mateus Eustáquio Lopes
- Departamento de Bioquímica e Imunologia - ICB - Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270901, Brazil
| | - Leah S Hohman
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB T2N 4Z6, Canada; Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada; Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada
| | - Audrey Romano
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Bruna Araujo David
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB T2N 4Z6, Canada; Department of Physiology and Pharmacology, University of Calgary, Calgary, AB T2N 4Z6, Canada
| | - Rachel Kratofil
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB T2N 4Z6, Canada; Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada; Department of Physiology and Pharmacology, University of Calgary, Calgary, AB T2N 4Z6, Canada
| | - Paul Kubes
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB T2N 4Z6, Canada; Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada; Department of Physiology and Pharmacology, University of Calgary, Calgary, AB T2N 4Z6, Canada
| | - Matthew L Workentine
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada
| | - Alexandre C Campos
- Departamento de Bioquímica e Imunologia - ICB - Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270901, Brazil
| | - Leda Quercia Vieira
- Departamento de Bioquímica e Imunologia - ICB - Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270901, Brazil
| | - Nathan C Peters
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB T2N 4Z6, Canada; Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada; Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada.
| |
Collapse
|
46
|
Venturin GL, Bragato JP, Melo LM, Rebech GT, Costa SF, de Siqueira CE, Oliveira Dos Santos Maciel M, Eugênio FDR, Patto Santos PS, de Lima VMF. Regulatory effect of PGE 2 on microbicidal activity and inflammatory cytokines in canine leishmaniasis. Parasite Immunol 2020; 42:e12713. [PMID: 32173875 DOI: 10.1111/pim.12713] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 02/11/2020] [Accepted: 02/14/2020] [Indexed: 12/27/2022]
Abstract
Canine leishmaniasis (CanL) is caused by the intracellular parasite Leishmania infantum. Prostaglandin E2 (PGE2 ) exerts potent regulatory effects on the immune system in experimental model Leishmania infection, but this influence has not yet been studied in CanL. In this study, PGE2 and PGE2 receptor levels and the regulatory effect of PGE2 on arginase activity, NO2 , IL-10, IL-17, IFN-γ, TNF-α and parasite load were evaluated in cultures of splenic leucocytes obtained from dogs with CanL in the presence of agonists and inhibitors. Our results showed that splenic leucocytes from dogs with CanL had lower EP2 receptor levels than those of splenic leucocytes from healthy animals. We observed that NO2 levels decreased when the cells were treated with a PGE2 receptor agonist (EP1/EP2/EP3) or COX-2 inhibitor (NS-398) and that TNF-α, IL-17 and IFN-γ cytokine levels decreased when the cells were treated with a PGE2 receptor agonist (EP2) or PGE2 itself. The parasite load in splenic leucocyte cell cultures from dogs with CanL decreased after stimulation of the cells with PGE2 . We conclude that Leishmania infection of dogs modulates PGE2 receptors and speculate that the binding of PGE2 to its receptors may activate the microbicidal capacity of cells.
Collapse
Affiliation(s)
- Gabriela Lovizutto Venturin
- School of Veterinary Medicine (Faculdade de Medicina Veterinária; FMVA), Sao Paulo State University 'Júlio de Mesquita Filho'(UNESP), Araçatuba, Brazil
| | - Jaqueline Poleto Bragato
- School of Veterinary Medicine (Faculdade de Medicina Veterinária; FMVA), Sao Paulo State University 'Júlio de Mesquita Filho'(UNESP), Araçatuba, Brazil
| | - Larissa Martins Melo
- School of Veterinary Medicine (Faculdade de Medicina Veterinária; FMVA), Sao Paulo State University 'Júlio de Mesquita Filho'(UNESP), Araçatuba, Brazil
| | - Gabriela Torres Rebech
- School of Veterinary Medicine (Faculdade de Medicina Veterinária; FMVA), Sao Paulo State University 'Júlio de Mesquita Filho'(UNESP), Araçatuba, Brazil
| | - Sidnei Ferro Costa
- School of Veterinary Medicine (Faculdade de Medicina Veterinária; FMVA), Sao Paulo State University 'Júlio de Mesquita Filho'(UNESP), Araçatuba, Brazil
| | - Carlos Eduardo de Siqueira
- School of Veterinary Medicine (Faculdade de Medicina Veterinária; FMVA), Sao Paulo State University 'Júlio de Mesquita Filho'(UNESP), Araçatuba, Brazil
| | - Marilene Oliveira Dos Santos Maciel
- School of Veterinary Medicine (Faculdade de Medicina Veterinária; FMVA), Sao Paulo State University 'Júlio de Mesquita Filho'(UNESP), Araçatuba, Brazil
| | - Flávia de Rezende Eugênio
- Clinics Department, Animal Surgery and Reproduction, School of Veterinary Medicine (Faculdade de Medicina Veterinária; FMVA), Sao Paulo State University 'Júlio de Mesquita Filho'(UNESP), Araçatuba, Brazil
| | - Paulo Sérgio Patto Santos
- Clinics Department, Animal Surgery and Reproduction, School of Veterinary Medicine (Faculdade de Medicina Veterinária; FMVA), Sao Paulo State University 'Júlio de Mesquita Filho'(UNESP), Araçatuba, Brazil
| | - Valéria Marçal Felix de Lima
- Clinics Department, Animal Surgery and Reproduction, School of Veterinary Medicine (Faculdade de Medicina Veterinária; FMVA), Sao Paulo State University 'Júlio de Mesquita Filho'(UNESP), Araçatuba, Brazil
| |
Collapse
|
47
|
Methyl gallate: Selective antileishmanial activity correlates with host-cell directed effects. Chem Biol Interact 2020; 320:109026. [DOI: 10.1016/j.cbi.2020.109026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/11/2020] [Accepted: 02/25/2020] [Indexed: 11/22/2022]
|
48
|
Hurdayal R, Nieuwenhuizen NE, Khutlang R, Brombacher F. Inflammatory Dendritic Cells, Regulated by IL-4 Receptor Alpha Signaling, Control Replication, and Dissemination of Leishmania major in Mice. Front Cell Infect Microbiol 2020; 9:479. [PMID: 32039054 PMCID: PMC6992597 DOI: 10.3389/fcimb.2019.00479] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 12/27/2019] [Indexed: 11/16/2022] Open
Abstract
Leishmaniasis is a vector-borne disease caused by Leishmania parasites. Macrophages are considered the primary parasite host cell, but dendritic cells (DCs) play a critical role in initiating adaptive immunity and controlling Leishmania infection. Accordingly, our previous study in CD11ccreIL-4Rα−/lox mice, which have impaired IL-4 receptor alpha (IL-4Rα) expression on CD11c+ cells including DCs, confirmed a protective role for IL-4/IL-13-responsive DCs in replication and dissemination of parasites during cutaneous leishmaniasis. However, it was unclear which DC subset/s was executing this function. To investigate this, we infected CD11ccreIL-4Rα−/lox and control mice with L. major GFP+ parasites and identified subsets of infected DCs by flow cytometry. Three days after infection, CD11b+ DCs and CD103+ DCs were the main infected DC subsets in the footpad and draining lymph node, respectively and by 4 weeks post-infection, Ly6C+ and Ly6C− CD11b+ DCs were the main infected DC populations in both the lymph nodes and footpads. Interestingly, Ly6C+CD11b+ inflammatory monocyte-derived DCs but not Ly6C−CD11b+ DCs hosted parasites in the spleen. Importantly, intracellular parasitism was significantly higher in IL-4Rα-deficient DCs. In terms of DC effector function, we found no change in the expression of pattern-recognition receptors (TLR4 and TLR9) nor in expression of the co-stimulatory marker, CD80, but MHCII expression was lower in CD11ccreIL-4Rα−/lox mice at later time-points compared to the controls. Interestingly, in CD11ccreIL-4Rα−/lox mice, which have reduced Th1 responses, CD11b+ DCs had impaired iNOS production, suggesting that DC IL-4Rα expression and NO production is important for controlling parasite numbers and preventing dissemination. Expression of the alternative activation marker arginase was unchanged in CD11b+ DCs in CD11creIL-4Rα−/lox mice compared to littermate controls, but RELM-α was upregulated, suggesting IL-4Rα-independent alternative activation. In summary, L. major parasites may use Ly6C+CD11b+ inflammatory DCs derived from monocytes recruited to infection as “Trojan horses” to migrate to secondary lymphoid organs and peripheral sites, and DC IL-4Rα expression is important for controlling infection.
Collapse
Affiliation(s)
- Ramona Hurdayal
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa.,International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Cape Town, South Africa.,Division of Immunology, Department of Pathology, Faculty of Health Sciences, South African Medical Research Council on Immunology of Infectious Diseases, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa.,Faculty of Health Sciences, Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Natalie Eva Nieuwenhuizen
- International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Cape Town, South Africa.,Division of Immunology, Department of Pathology, Faculty of Health Sciences, South African Medical Research Council on Immunology of Infectious Diseases, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa.,Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Rethabile Khutlang
- Identity Authentication Research Group, Defence and Security, Council for Scientific and Industrial Research, Pretoria, South Africa
| | - Frank Brombacher
- International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Cape Town, South Africa.,Division of Immunology, Department of Pathology, Faculty of Health Sciences, South African Medical Research Council on Immunology of Infectious Diseases, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa.,Faculty of Health Sciences, Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
49
|
Nouwen LV, Everts B. Pathogens MenTORing Macrophages and Dendritic Cells: Manipulation of mTOR and Cellular Metabolism to Promote Immune Escape. Cells 2020; 9:cells9010161. [PMID: 31936570 PMCID: PMC7017145 DOI: 10.3390/cells9010161] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/01/2020] [Accepted: 01/07/2020] [Indexed: 02/06/2023] Open
Abstract
Myeloid cells, including macrophages and dendritic cells, represent an important first line of defense against infections. Upon recognition of pathogens, these cells undergo a metabolic reprogramming that supports their activation and ability to respond to the invading pathogens. An important metabolic regulator of these cells is mammalian target of rapamycin (mTOR). During infection, pathogens use host metabolic pathways to scavenge host nutrients, as well as target metabolic pathways for subversion of the host immune response that together facilitate pathogen survival. Given the pivotal role of mTOR in controlling metabolism and DC and macrophage function, pathogens have evolved strategies to target this pathway to manipulate these cells. This review seeks to discuss the most recent insights into how pathogens target DC and macrophage metabolism to subvert potential deleterious immune responses against them, by focusing on the metabolic pathways that are known to regulate and to be regulated by mTOR signaling including amino acid, lipid and carbohydrate metabolism, and autophagy.
Collapse
|
50
|
Nahidi S, Gholami E, Taslimi Y, Habibzadeh S, Seyed N, Davarpanah E, Ghanadan A, Rafati S, Taheri T. The outcome of arginase activity inhibition in BALB/c mice hosting Leishmania tropica. Parasite Immunol 2020; 42:e12691. [PMID: 31811772 DOI: 10.1111/pim.12691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 11/25/2019] [Accepted: 12/03/2019] [Indexed: 11/29/2022]
Abstract
Two species of Leishmania (L), L. tropica and L. major, are among the main causative agents of cutaneous leishmaniasis. Arginase (ARG) is an essential enzyme for cell growth, thus an attractive drug target. In this study, we tried to survey the inhibitory impact of ARG by nor-NOHA (N-ω-hydroxy-L-nor-arginine) on in vivo infection caused by L. tropica. BALB/c mice were inoculated with L. tropicaEGFP-LUC (Ltrop) or L. majorEGFP-LUC (Lmj) and then were treated by nor-NOHA. ARG inhibitor only indicated a delay in generation of a cutaneous lesion in inoculated footpad with nor-NOHA-Ltrop and nor-NOHA-Lmj. ARG activity has been significantly reduced in nor-NOHA-Ltrop group. In this group, ARG activity inhibition correlated with increased levels of nitric oxide (NO). In both inoculated mice with Ltrop or Lmj, parasite load showed a significant decrease at later steps during the CL course post-treatment. In vivo bioluminescence intensity did not show any ARG's inhibitory effect on treated-Ltrop. The findings verified that the ARG activity may partially control the L. tropica infection in BALB/c mice through reduction of parasite proliferation and parasite killing through NO generation. This effect is dose-dependent.
Collapse
Affiliation(s)
- Shima Nahidi
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - Elham Gholami
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - Yasaman Taslimi
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - Sima Habibzadeh
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - Negar Seyed
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - Elaheh Davarpanah
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - Alireza Ghanadan
- Depatment of Dermatopathology, Razi Hospital, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pathology, Cancer Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Sima Rafati
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - Tahereh Taheri
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|