1
|
Zheng C, Zhong Y, Zhang P, Guo Q, Li F, Duan Y. Dynamic transcriptome profiles of skeletal muscle growth and development in Shaziling and Yorkshire pigs using RNA-sequencing. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:7301-7314. [PMID: 38647104 DOI: 10.1002/jsfa.13551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/07/2024] [Accepted: 04/18/2024] [Indexed: 04/25/2024]
Abstract
BACKGROUND We previously demonstrated that Shaziling and Yorkshire pigs differ in growth rate and meat quality. However, the molecular mechanisms responsible for such phenotypic differences remain unclear. In the present study, we performed a transcriptomic analysis of 36 longissimus dorsi (LM) and 36 soleus (SM) muscle samples from Shaziling and Yorkshire pigs at six postnatal stages (30, 60, 90, 150, 210 and 300 days) to explore the differences in postnatal skeletal muscle of Shaziling and Yorkshire pigs. RESULTS Muscle morphological changes and the number of differentially expressed genes indicated the two stages of 60-90 days and 150-210 days were critical for the muscle growth and development in Shaziling pigs. Genes such as FLNC, COL1A1, NRAP, SMYD1, TNNI3, CRYAB and PDLIM3 played vital roles in the muscle growth, and genes such as CCDC71L, LPIN1, CPT1A, UCP3, NR4A3 and PDK4 played dominant roles in the lipid metabolism. Additionally, in contrast to the LM, the percentage of slow-twitch muscle fibers in the SM of both breeds consistently decreased from 30 to 150 days of age, but there was a significant rebound at 210 days of age. However, the percentage of slow-twitch muscle fibers in the SM of Shaziling pigs was higher than that in Yorkshire pigs, which may be associated with the calcium signaling pathway and the PPARβ/δ signaling pathway. CONCLUSION The present study detected two critical periods and many functional genes for the muscle growth and development of Shaziling pigs, and showed differences in muscle fiber characteristics between Shaziling and Yorkshire pigs. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Changbing Zheng
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Yinzhao Zhong
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Peiwen Zhang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Qiuping Guo
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Fengna Li
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yehui Duan
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
2
|
Tangbjerg M, Damgaard A, Karlsen A, Svensson RB, Schjerling P, Gelabert‐Rebato M, Pankratova S, Sangild PT, Kjaer M, Mackey AL. Insulin-like growth factor-1 infusion in preterm piglets does not affect growth parameters of skeletal muscle or tendon tissue. Exp Physiol 2024; 109:1529-1544. [PMID: 38980930 PMCID: PMC11363143 DOI: 10.1113/ep092010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 06/21/2024] [Indexed: 07/11/2024]
Abstract
Prematurity has physical consequences, such as lower birth weight, decreased muscle mass and increased risk of adult-onset metabolic disease. Insulin-like growth factor 1 (IGF-1) has therapeutic potential to improve the growth and quality of muscle and tendon in premature births, and thus attenuate some of these sequalae. We investigated the effect of IGF-1 on extensor carpi radialis muscle and biceps brachii tendon of preterm piglets. The preterm group consisted of 19-day-old preterm (10 days early) piglets, treated with either IGF-1 or vehicle. Term controls consisted of groups of 9-day-old piglets (D9) and 19-day-old piglets (D19). Muscle samples were analysed by immunofluorescence to determine the cross-sectional area (CSA) of muscle fibres, fibre type composition, satellite cell content and central nuclei-containing fibres in the muscle. Tendon samples were analysed for CSA, collagen content and maturation, and vascularization. Gene expression of the tendon was measured by RT-qPCR. Across all endpoints, we found no significant effect of IGF-1 treatment on preterm piglets. Preterm piglets had smaller muscle fibre CSA compared to D9 and D19 control group. Satellite cell content was similar across all groups. For tendon, we found an effect of age on tendon CSA, and mRNA levels of COL1A1, tenomodulin and scleraxis. Immunoreactivity for elastin and CD31, and several markers of tendon maturation, were increased in D9 compared to the preterm piglets. Collagen content was similar across groups. IGF-1 treatment of preterm-born piglets does not influence the growth and maturation of skeletal muscle and tendon.
Collapse
Affiliation(s)
- Malene Tangbjerg
- Institute of Sports Medicine CopenhagenDepartment of Orthopaedic SurgeryCopenhagen University Hospital – Bispebjerg and FrederiksbergCopenhagenDenmark
- Center for Healthy AgingDepartment of Clinical MedicineUniversity of CopenhagenCopenhagenDenmark
| | - Ann Damgaard
- Institute of Sports Medicine CopenhagenDepartment of Orthopaedic SurgeryCopenhagen University Hospital – Bispebjerg and FrederiksbergCopenhagenDenmark
- Center for Healthy AgingDepartment of Clinical MedicineUniversity of CopenhagenCopenhagenDenmark
| | - Anders Karlsen
- Center for Healthy AgingDepartment of Clinical MedicineUniversity of CopenhagenCopenhagenDenmark
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Rene B. Svensson
- Institute of Sports Medicine CopenhagenDepartment of Orthopaedic SurgeryCopenhagen University Hospital – Bispebjerg and FrederiksbergCopenhagenDenmark
- Center for Healthy AgingDepartment of Clinical MedicineUniversity of CopenhagenCopenhagenDenmark
| | - Peter Schjerling
- Institute of Sports Medicine CopenhagenDepartment of Orthopaedic SurgeryCopenhagen University Hospital – Bispebjerg and FrederiksbergCopenhagenDenmark
- Center for Healthy AgingDepartment of Clinical MedicineUniversity of CopenhagenCopenhagenDenmark
| | - Miriam Gelabert‐Rebato
- Research Institute of Biomedical and Health Sciences (IUIBS)University of Las Palmas de Gran Canaria, Las Palmas de Gran CanariaCanary IslandsSpain
| | - Stanislava Pankratova
- Comparative Pediatrics and Nutrition, Faculty of Health and Medical SciencesUniversity of CopenhagenFrederiksbergDenmark
| | - Per Torp Sangild
- Comparative Pediatrics and Nutrition, Faculty of Health and Medical SciencesUniversity of CopenhagenFrederiksbergDenmark
- Department of NeonatologyRigshospitaletCopenhagenDenmark
- Department of PediatricsOdense University HospitalOdenseDenmark
| | - Michael Kjaer
- Institute of Sports Medicine CopenhagenDepartment of Orthopaedic SurgeryCopenhagen University Hospital – Bispebjerg and FrederiksbergCopenhagenDenmark
- Center for Healthy AgingDepartment of Clinical MedicineUniversity of CopenhagenCopenhagenDenmark
| | - Abigail L. Mackey
- Institute of Sports Medicine CopenhagenDepartment of Orthopaedic SurgeryCopenhagen University Hospital – Bispebjerg and FrederiksbergCopenhagenDenmark
- Center for Healthy AgingDepartment of Clinical MedicineUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
3
|
Liu Y, Li H. L-leucine promotes the synthesis of milk protein and milk fat in bovine mammary epithelial cells through the AKT/mTOR signaling pathway under hypoxic conditions. J Nutr Biochem 2024; 134:109732. [PMID: 39117078 DOI: 10.1016/j.jnutbio.2024.109732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/31/2024] [Accepted: 08/04/2024] [Indexed: 08/10/2024]
Abstract
Hypoxia stress has been demonstrated to impede animal embryonic development, spermatogenesis, and lactation, leading to decreased animal production performance. However, the impact of hypoxia-induced activation of hypoxia inducible factor-1 (HIF-1) signaling on milk protein and fat synthesis remains unclear. L-leucine, a branched-chain amino acid, is known to modulate milk protein and fat synthesis. Therefore, our study aimed to evaluate the effect of L-leucine on milk protein and fat synthesis under hypoxic conditions and shed light on the molecular mechanism using an in vitro model. The results indicated that hypoxia treatment significantly decreased the synthesis of α-casein and β-casein, as well as inhibited factors related to milk fat synthesis in bovine mammary epithelial cells (MAC-T). Additionally, hypoxia stress suppressed the activities of the mammalian target of rapamycin (mTOR) and protein kinase B (AKT). Interfering with HIF-1α significantly reversed the expression of AKT, mTOR and factors related to milk synthesis. Importantly, supplementation with L-leucine activated AKT/mTOR signaling, thereby enhancing milk protein and fat synthesis in MAC-T cells to some extent. In conclusion, these findings suggest that HIF-1 signaling plays an important role in milk synthesis and that L-leucine may stimulate the synthesis of milk protein and fat by activating the AKT/mTOR signaling pathway under hypoxic conditions, making it a potential additive for promoting milk synthesis inhibited by hypoxia.
Collapse
Affiliation(s)
- Yuan Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Huixia Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
4
|
Emmert ME, Emmert AS, Goh Q, Cornwall R. Sexual dimorphisms in skeletal muscle: current concepts and research horizons. J Appl Physiol (1985) 2024; 137:274-299. [PMID: 38779763 PMCID: PMC11343095 DOI: 10.1152/japplphysiol.00529.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 05/21/2024] [Accepted: 05/21/2024] [Indexed: 05/25/2024] Open
Abstract
The complex compositional and functional nature of skeletal muscle makes this organ an essential topic of study for biomedical researchers and clinicians. An additional layer of complexity is added with the consideration of sex as a biological variable. Recent research advances have revealed sexual dimorphisms in developmental biology, muscle homeostasis, adaptive responses, and disorders relating to skeletal muscle. Many of the observed sex differences have hormonal and molecular mechanistic underpinnings, whereas others have yet to be elucidated. Future research is needed to investigate the mechanisms dictating sex-based differences in the various aspects of skeletal muscle. As such, it is necessary that skeletal muscle biologists ensure that both female and male subjects are represented in biomedical and clinical studies to facilitate the successful testing and development of therapeutics for all patients.
Collapse
Affiliation(s)
- Marianne E Emmert
- Division of Orthopaedic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States
| | - Andrew S Emmert
- Department of Orthopaedic Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States
| | - Qingnian Goh
- Division of Orthopaedic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States
- Department of Orthopaedic Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States
| | - Roger Cornwall
- Division of Orthopaedic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States
- Department of Orthopaedic Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States
| |
Collapse
|
5
|
Sobczuk J, Paczkowska K, Andrusiów S, Bolanowski M, Daroszewski J. Are Women with Polycystic Ovary Syndrome at Increased Risk of Alzheimer Disease? Lessons from Insulin Resistance, Tryptophan and Gonadotropin Disturbances and Their Link with Amyloid-Beta Aggregation. Biomolecules 2024; 14:918. [PMID: 39199306 PMCID: PMC11352735 DOI: 10.3390/biom14080918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/20/2024] [Accepted: 07/24/2024] [Indexed: 09/01/2024] Open
Abstract
Alzheimer disease, the leading cause of dementia, and polycystic ovary syndrome, one of the most prevalent female endocrine disorders, appear to be unrelated conditions. However, studies show that both disease entities have common risk factors, and the amount of certain protein marker of neurodegeneration is increased in PCOS. Reports on the pathomechanism of both diseases point to the possibility of common denominators linking them. Dysregulation of the kynurenine pathway, insulin resistance, and impairment of the hypothalamic-pituitary-gonadal axis, which are correlated with amyloid-beta aggregation are these common areas. This article discusses the relationship between Alzheimer disease and polycystic ovary syndrome, with a particular focus on the role of disorders of tryptophan metabolism in both conditions. Based on a review of the available literature, we concluded that systemic changes occurring in PCOS influence the increased risk of neurodegeneration.
Collapse
Affiliation(s)
- Joachim Sobczuk
- Department of Endocrinology, Diabetes and Isotope Therapy, University Clinical Hospital, 50-367 Wroclaw, Poland
| | | | - Szymon Andrusiów
- Department of Neurology, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Marek Bolanowski
- Department of Endocrinology, Diabetes and Isotope Therapy, University Clinical Hospital, 50-367 Wroclaw, Poland
- Department of Endocrinology, Diabetes and Isotope Therapy, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Jacek Daroszewski
- Department of Endocrinology, Diabetes and Isotope Therapy, University Clinical Hospital, 50-367 Wroclaw, Poland
- Department of Endocrinology, Diabetes and Isotope Therapy, Wroclaw Medical University, 50-556 Wroclaw, Poland
| |
Collapse
|
6
|
Kim JG, Sharma AR, Lee YH, Chatterjee S, Choi YJ, Rajvansh R, Chakraborty C, Lee SS. Therapeutic Potential of Quercetin as an Antioxidant for Bone-Muscle-Tendon Regeneration and Aging. Aging Dis 2024:AD.2024.0282. [PMID: 39012676 DOI: 10.14336/ad.2024.0282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/24/2024] [Indexed: 07/17/2024] Open
Abstract
Quercetin (QC), a naturally occurring bioflavonoid found in various fruits and vegetables, possesses many potential health benefits, primarily attributed to its robust antioxidant properties. The generation of oxidative stress in bone cells is a key modulator of their physiological behavior. Moreover, oxidative stress status influences the pathophysiology of mineralized tissues. Increasing scientific evidence demonstrates that manipulating the redox balance in bone cells might be an effective technique for developing bone disease therapies. The QC antioxidant abilities in skeletal muscle significantly enhance muscle regeneration and reduce muscle atrophy. In addition, QC has been shown to have protective effects against oxidative stress, inflammation, apoptosis, and matrix degradation in tendons, helping to maintain the structural integrity and functionality of tendons. Thus, the antioxidant properties of QC might be crucial for addressing age-related musculoskeletal disorders like osteoporosis, sarcopenia, and tendon-related inflammatory conditions. Understanding how QC influences redox signaling pathways involved in musculoskeletal disorders, including their effect on bone, muscle, and tendon differentiation, might provide insights into the diverse advantages of QC in promoting tissue regeneration and preventing cellular damage. Therefore, this study reviewed the intricate relationship among oxidative stress, inflammation, and tissue repair, affected by the antioxidative abilities of QC, in age-related musculoskeletal tissues to improve the overall health of bones, muscles, and tendons of the skeletal system. Also, reviewing the ongoing clinical trials of QC for musculoskeletal systems is encouraging. Given the positive effect of QC on musculoskeletal health, further scientific investigations and controlled human intervention studies are necessary to explore the therapeutic potential to its optimum strength.
Collapse
Affiliation(s)
- Jae Gyu Kim
- Institute for Skeletal Aging &;amp Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, 24252, Gangwon-do, Korea
| | - Ashish Ranjan Sharma
- Institute for Skeletal Aging &;amp Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, 24252, Gangwon-do, Korea
| | - Yeon-Hee Lee
- Institute for Skeletal Aging &;amp Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, 24252, Gangwon-do, Korea
| | - Srijan Chatterjee
- Institute for Skeletal Aging &;amp Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, 24252, Gangwon-do, Korea
| | - Yean Jung Choi
- Department of Food and Nutrition, Sahmyook University, Seoul 01795, Korea
| | - Roshani Rajvansh
- Institute for Skeletal Aging &;amp Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, 24252, Gangwon-do, Korea
| | - Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Barasat-Barrackpore Road, Kolkata, West Bengal 700126, India
| | - Sang-Soo Lee
- Institute for Skeletal Aging &;amp Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, 24252, Gangwon-do, Korea
| |
Collapse
|
7
|
Astono J, Poulsen KO, Larsen RA, Jessen EV, Sand CB, Rasmussen MA, Sundekilde UK. Metabolic maturation in the infant urine during the first 3 months of life. Sci Rep 2024; 14:5697. [PMID: 38459082 PMCID: PMC10924096 DOI: 10.1038/s41598-024-56227-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 03/04/2024] [Indexed: 03/10/2024] Open
Abstract
The infant urine metabolome provides a body metabolic snapshot, and the sample collection can be done without stressing the fragile infant. 424 infant urine samples from 157 infants were sampled longitudinally at 1-, 2-, and 3 months of age. 49 metabolites were detected using proton nuclear magnetic resonance spectroscopy. Data were analyzed with multi- and univariate statistical methods to detect differences related to infant age-stage, gestational age, mother's pre-pregnancy BMI, C-section, infant birth weight, and infant sex. Significant differences were identified between age-stage (pbonferoni < 0.05) in 30% (15/49) of the detected metabolites. Urine creatinine increased significantly from 1 to 3 months. In addition, myo-inositol, taurine, methionine, and glucose seem to have conserved levels within the individual over time. We calculated a urine metabolic maturation age and found that the metabolic age at 3 months is negatively correlated to weight at 1 year. These results demonstrate that the metabolic maturation can be observed in urine metabolome with implications on infant growth and specifically suggesting that the systematic age effect on creatinine promotes caution in using this as normalization of other urine metabolites.
Collapse
Affiliation(s)
- Julie Astono
- Department of Food Science, Aarhus University, Agro Food Park 48, Aarhus N, Denmark.
| | - Katrine O Poulsen
- Department of Food Science, Aarhus University, Agro Food Park 48, Aarhus N, Denmark
- Sino-Danish Center, Niels Jensens Vej 2, Building 1190, Aarhus, Denmark
| | - Rikke A Larsen
- Department of Food Science, Aarhus University, Agro Food Park 48, Aarhus N, Denmark
| | - Emma V Jessen
- Department of Food Science, Aarhus University, Agro Food Park 48, Aarhus N, Denmark
| | - Chatrine B Sand
- Department of Food Science, Aarhus University, Agro Food Park 48, Aarhus N, Denmark
| | - Morten A Rasmussen
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, Frederiksberg, Denmark
- COPSAC, Herlev-Gentofte Hospital, Ledreborg Alle 28, Gentofte, Denmark
| | - Ulrik K Sundekilde
- Department of Food Science, Aarhus University, Agro Food Park 48, Aarhus N, Denmark.
| |
Collapse
|
8
|
Rudar M, Suryawan A, Nguyen HV, Chacko SK, Vonderohe C, Stoll B, Burrin DG, Fiorotto ML, Davis TA. Pulsatile Leucine Administration during Continuous Enteral Feeding Enhances Skeletal Muscle Mechanistic Target of Rapamycin Complex 1 Signaling and Protein Synthesis in a Preterm Piglet Model. J Nutr 2024; 154:505-515. [PMID: 38141773 PMCID: PMC10900192 DOI: 10.1016/j.tjnut.2023.12.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 12/25/2023] Open
Abstract
BACKGROUND Continuous feeding does not elicit an optimal anabolic response in skeletal muscle but is required for some preterm infants. We reported previously that intermittent intravenous pulses of leucine (Leu; 800 μmol Leu·kg-1·h-1 every 4 h) to continuously fed pigs born at term promoted mechanistic target of rapamycin complex 1 (mTORC1) activation and protein synthesis in skeletal muscle. OBJECTIVES The aim was to determine the extent to which intravenous Leu pulses activate mTORC1 and enhance protein synthesis in the skeletal muscle of continuously fed pigs born preterm. METHODS Pigs delivered 10 d preterm was advanced to full oral feeding >4 d and then assigned to 1 of the following 4 treatments for 28 h: 1) ALA (continuous feeding; pulsed with 800 μmol alanine·kg-1·h-1 every 4 h; n = 8); 2) L1× (continuous feeding; pulsed with 800 μmol Leu·kg-1·h-1 every 4 h; n = 7); 3) L2× (continuous feeding; pulsed with 1600 μmol Leu·kg-1·h-1 every 4 h; n = 8); and 4) INT (intermittent feeding every 4 h; supplied with 800 μmol alanine·kg-1 per feeding; n = 7). Muscle protein synthesis rates were determined with L-[2H5-ring]Phenylalanine. The activation of insulin, amino acid, and translation initiation signaling pathways were assessed by Western blot. RESULTS Peak plasma Leu concentrations were 134% and 420% greater in the L2× compared to the L1× and ALA groups, respectively (P < 0.01). Protein synthesis was greater in the L2× than in the ALA and L1× groups in both the longissimus dorsi and gastrocnemius muscles (P < 0.05) but not different from the INT group (P > 0.10). Amino acid signaling upstream and translation initiation signaling downstream of mTORC1 largely corresponded to the differences in protein synthesis. CONCLUSIONS Intravenous Leu pulses potentiate mTORC1 activity and protein synthesis in the skeletal muscles of continuously fed preterm pigs, but the amount required is greater than in pigs born at term.
Collapse
Affiliation(s)
- Marko Rudar
- Department of Animal Sciences, Auburn University, Auburn, AL, United States
| | - Agus Suryawan
- Department of Pediatrics, USDA/Agricultural Research Service, Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas, United States
| | - Hanh V Nguyen
- Department of Pediatrics, USDA/Agricultural Research Service, Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas, United States
| | - Shaji K Chacko
- Department of Pediatrics, USDA/Agricultural Research Service, Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas, United States
| | - Caitlin Vonderohe
- Department of Pediatrics, USDA/Agricultural Research Service, Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas, United States
| | - Barbara Stoll
- Department of Pediatrics, USDA/Agricultural Research Service, Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas, United States
| | - Douglas G Burrin
- Department of Pediatrics, USDA/Agricultural Research Service, Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas, United States
| | - Marta L Fiorotto
- Department of Pediatrics, USDA/Agricultural Research Service, Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas, United States
| | - Teresa A Davis
- Department of Pediatrics, USDA/Agricultural Research Service, Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas, United States.
| |
Collapse
|
9
|
Liu Y, Li Y, Yu M, Tian Z, Deng J, Ma X, Yin Y. Magnolol Supplementation Alters Serum Parameters, Immune Homeostasis, Amino Acid Profiles, and Gene Expression of Amino Acid Transporters in Growing Pigs. Int J Mol Sci 2023; 24:13952. [PMID: 37762256 PMCID: PMC10530316 DOI: 10.3390/ijms241813952] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/30/2023] [Accepted: 09/02/2023] [Indexed: 09/29/2023] Open
Abstract
This study investigated whether dietary supplementation with magnolol affects growth performance, anti-inflammatory abilities, serum and muscle amino acid profiles, and metabolisms in growing pigs. A total of 42 seventy-days-old growing barrows (Duroc × Landrace × Yorkshire) were randomly allocated into two dietary groups: Con, control group (basal diet); and Mag, magnolol group (basal diet supplemented with 400 mg/kg of magnolol). The results revealed that dietary supplementation with magnolol had no effect (p > 0.05) on growth performance. However, magnolol supplementation remarkably increased (p < 0.05) the serum content of albumin, total protein, immunoglobulin G, immunoglobulin M, and interleukin-22. In addition, dietary magnolol supplementation altered the amino acid (AA) profiles in serum and dorsal muscle and particularly increased (p < 0.05) the serum content of arginine and muscle glutamate. Simultaneously, the mRNA expression of genes associated with AA transport in jejunum (SLC38A2, SLC1A5, and SLC7A1) and ileum (SLC1A5 and SLC7A1) was higher (p < 0.05) in the Mag group than in the Con group. Additionally, the serum metabolomics analysis showed that the addition of magnolol significantly enhanced (p < 0.05) arginine biosynthesis, as well as D-glutamine and D-glutamate metabolism. Overall, these results suggested that dietary supplementation with magnolol has the potential to improve the accumulation of AAs, protein synthesis, immunity, and body health in growing pigs by increasing intestinal absorption and the transport of AAs.
Collapse
Affiliation(s)
- Yanchen Liu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Y.L.); (J.D.)
- State Key Laboratory of Swine and Poultry Breeding Industry, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (Y.L.); (M.Y.); (Z.T.)
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Yuanfei Li
- State Key Laboratory of Swine and Poultry Breeding Industry, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (Y.L.); (M.Y.); (Z.T.)
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Institute of Biological Technology, Nanchang Normal University, Nanchang 330032, China
| | - Miao Yu
- State Key Laboratory of Swine and Poultry Breeding Industry, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (Y.L.); (M.Y.); (Z.T.)
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Zhimei Tian
- State Key Laboratory of Swine and Poultry Breeding Industry, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (Y.L.); (M.Y.); (Z.T.)
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Jinping Deng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Y.L.); (J.D.)
| | - Xianyong Ma
- State Key Laboratory of Swine and Poultry Breeding Industry, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (Y.L.); (M.Y.); (Z.T.)
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Yulong Yin
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Y.L.); (J.D.)
| |
Collapse
|
10
|
Ahmadzadeh‐Gavahan L, Hosseinkhani A, Hamidian G, Jarolmasjed S, Yousefi‐Tabrizi R. Restricted maternal nutrition and supplementation of propylene glycol, monensin sodium and rumen-protected choline chloride during late pregnancy does not affect muscle fibre characteristics of offspring. Vet Med Sci 2023; 9:2260-2268. [PMID: 37556348 PMCID: PMC10508547 DOI: 10.1002/vms3.1239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 04/03/2023] [Accepted: 07/06/2023] [Indexed: 08/11/2023] Open
Abstract
BACKGROUND Grazing in arid and semi-arid regions faces pregnant ewes with feed restrictions and hence affects the offspring muscle fibre characteristics. Using feed additives that enhance nutrient availability during foetal muscle development is expected to alter offspring skeletal muscle characteristics. OBJECTIVES This study evaluated the effect of maternal restricted nutrition and supplementation of propylene glycol, monensin sodium and rumen-protected choline chloride on lamb's muscle fibre characteristics. METHODS Forty-eight Ghezel ewes were randomly allocated to one of six diets (N = 8) during the last 6 weeks of gestation: ad libitum feed intake (AL); restricted feeding (RF); restricted feeding containing propylene glycol (PG); restricted feeding containing propylene glycol and monensin sodium (MS); restricted feeding containing propylene glycol and rumen-protected choline chloride (RPC); restricted feeding containing propylene glycol, monensin sodium and rumen-protected choline chloride (PMC). The muscle samples were obtained from the semitendinosus muscle of 2-week-old male lambs (n = 5/treatment) via biopsy and were stained and classified as fibre types I, IIA and IIB. RESULTS Pre-parturient maternal feed restriction and administration of propylene glycol, monensin sodium and rumen-protected choline chloride had no significant effect on fibre-type composition, fibre density of muscle, muscle cross-sectional area and volume density of fibres (p > 0.05). CONCLUSIONS Either maternal dietary restriction or supplementation of nutrient flux-involved additives during late pregnancy did not alter muscle fibre development and had no short-term effects on muscle properties of the resulting offspring as myogenesis occurs in early and mid-gestation, not late gestation. Therefore, maternal nutrition may not be a problematic issue in sheep production in arid and semi-arid areas.
Collapse
Affiliation(s)
| | - Ali Hosseinkhani
- Department of Animal Science, Faculty of AgricultureUniversity of TabrizTabrizIran
| | - Gholamreza Hamidian
- Department of Basic Sciences, Faculty of Veterinary MedicineUniversity of TabrizTabrizIran
| | | | - Reza Yousefi‐Tabrizi
- Department of Animal Science, Faculty of AgricultureUniversity of TabrizTabrizIran
| |
Collapse
|
11
|
Wallingford JC. Perspective: Assuring the Quality of Protein in Infant Formula. Adv Nutr 2023; 14:585-591. [PMID: 37105407 PMCID: PMC10334145 DOI: 10.1016/j.advnut.2023.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 04/10/2023] [Accepted: 04/21/2023] [Indexed: 04/29/2023] Open
Abstract
Current regulations require that the assessment of protein quality in infant formula be determined using the protein efficiency ratio (PER) rat bioassay where the growth of rats fed a test protein is compared with the growth of rats fed casein. This review cites authoritative body opinions that the PER is not a preferred method for scoring protein quality, particularly as applied to the infant formula. Methodological recommendations specified by FDA and recent guidance propose to control nonprotein dietary variables in the PER. In contrast, the essential amino acid pattern of human milk has been adopted internationally as the standard for protein quality in infant formula. Because casein, the control protein in the PER fails to meet the standard of human milk essential amino acids, the PER based on casein can generate a false assurance of the quality of protein in an infant formula. FDA should revise the method of demonstrating the quality factor for the biological quality of protein to the essential amino acid pattern of human milk, which would be simpler, conform to international standards, and should be considered by FDA under a new statute. Alternate methods of determination of protein quality can be used selectively when there are questions about the digestibility of new protein sources or the effects of manufacturing processes.
Collapse
|
12
|
Posey EA, Davis TA. Review: Nutritional regulation of muscle growth in neonatal swine. Animal 2023; 17 Suppl 3:100831. [PMID: 37263816 PMCID: PMC10621894 DOI: 10.1016/j.animal.2023.100831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/31/2022] [Accepted: 01/06/2023] [Indexed: 06/03/2023] Open
Abstract
Despite advances in the nutritional support of low birth weight and early-weaned piglets, most experience reduced extrauterine growth performance. To further optimize nutritional support and develop targeted intervention strategies, the mechanisms that regulate the anabolic response to nutrition must be fully understood. Knowledge gained in these studies represents a valuable intersection of agriculture and biomedical research, as low birth weight and early-weaned piglets face many of the same morbidities as preterm and low birth weight infants, including extrauterine growth faltering and reduced lean growth. While the reasons for poor growth performance are multifaceted, recent studies have increased our understanding of the role of nutrition in the regulation of skeletal muscle growth in the piglet. The purpose of this review is to summarize the published literature surrounding advances in the current understanding of the anabolic signaling that occurs after a meal and how this response is developmentally regulated in the neonatal pig. It will focus on the regulation of protein synthesis, and especially the upstream and downstream effectors surrounding the master protein kinase, mechanistic target of rapamycin complex 1 (mTORC1) that controls translation initiation. It also will examine the regulatory pathways associated with the postprandial anabolic agents, insulin and specific amino acids, that are upstream of mTORC1 and lead to its activation. Lastly, the integration of upstream signaling cascades by mTORC1 leading to the activation of translation initiation factors that regulate protein synthesis will be discussed. This review concludes that anabolic signaling cascades are stimulated by both insulin and amino acids, especially leucine, through separate pathways upstream of mTORC1, and that these stimulatory pathways result in mTORC1 activation and subsequent activation of downstream effectors that regulate translation initiation Additionally, it is concluded that this anabolic response is unique to the skeletal muscle of the neonate, resulting from increased sensitivity to the rise in both insulin and amino acid after a meal. However, this response is dampened in skeletal muscle of the low birth weight pig, indicative of anabolic resistance. Elucidation of the pathways and regulatory mechanisms surrounding protein synthesis and lean growth allow for the development of potential targeted therapeutics and intervention strategies both in livestock production and neonatal care.
Collapse
Affiliation(s)
- E A Posey
- United States Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - T A Davis
- United States Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
13
|
Truong L, Chen YW, Barrere-Cain R, Levenson MT, Shuck K, Xiao W, da Veiga Beltrame E, Panter B, Reich E, Sternberg PW, Yang X, Allard P. Single-nucleus resolution mapping of the adult C. elegans and its application to elucidate inter- and trans-generational response to alcohol. Cell Rep 2023; 42:112535. [PMID: 37227821 PMCID: PMC10592506 DOI: 10.1016/j.celrep.2023.112535] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 03/16/2023] [Accepted: 05/03/2023] [Indexed: 05/27/2023] Open
Abstract
Single-cell transcriptomic platforms provide an opportunity to map an organism's response to environmental cues with high resolution. Here, we applied single-nucleus RNA sequencing (snRNA-seq) to establish the tissue and cell type-resolved transcriptome of the adult C. elegans and characterize the inter- and trans-generational transcriptional impact of ethanol. We profiled the transcriptome of 41,749 nuclei resolving into 31 clusters, representing a diverse array of adult cell types including syncytial tissues. Following exposure to human-relevant doses of alcohol, several germline, striated muscle, and neuronal clusters were identified as being the most transcriptionally impacted at the F1 and F3 generations. The effect on germline clusters was confirmed by phenotypic enrichment analysis as well as by functional validation, which revealed a remarkable inter- and trans-generational increase in germline apoptosis, aneuploidy, and embryonic lethality. Together, snRNA-seq represents a valuable approach for the detailed examination of an adult organism's response to environmental exposures.
Collapse
Affiliation(s)
- Lisa Truong
- Human Genetics Graduate Program, UCLA, Los Angeles, CA 90095, USA
| | - Yen-Wei Chen
- Molecular Toxicology Inter-Departmental Program, UCLA, Los Angeles, CA 90095, USA
| | - Rio Barrere-Cain
- Institute for Society & Genetics, UCLA, Los Angeles, CA 90095, USA
| | - Max T Levenson
- Molecular Toxicology Inter-Departmental Program, UCLA, Los Angeles, CA 90095, USA
| | - Karissa Shuck
- Institute for Society & Genetics, UCLA, Los Angeles, CA 90095, USA
| | - Wen Xiao
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA 90095, USA
| | | | - Blake Panter
- Institute for Society & Genetics, UCLA, Los Angeles, CA 90095, USA
| | - Ella Reich
- Institute for Society & Genetics, UCLA, Los Angeles, CA 90095, USA
| | - Paul W Sternberg
- Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Xia Yang
- Integrative Biology and Physiology Department, UCLA, Los Angeles, CA 90095, USA
| | - Patrick Allard
- Molecular Toxicology Inter-Departmental Program, UCLA, Los Angeles, CA 90095, USA; Institute for Society & Genetics, UCLA, Los Angeles, CA 90095, USA; Molecular Biology Institute, UCLA, Los Angeles, CA 90095, USA.
| |
Collapse
|
14
|
Ai Y, Zhu Y, Wang L, Zhang X, Zhang J, Long X, Gu Q, Han H. Dynamic Changes in the Global Transcriptome of Postnatal Skeletal Muscle in Different Sheep. Genes (Basel) 2023; 14:1298. [PMID: 37372481 DOI: 10.3390/genes14061298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/13/2023] [Accepted: 06/17/2023] [Indexed: 06/29/2023] Open
Abstract
Sheep growth performance, mainly skeletal muscle growth, provides direct economic benefits to the animal husbandry industry. However, the underlying genetic mechanisms of different breeds remain unclear. We found that the cross-sectional area (CSA) of skeletal muscle in Dorper (D) and binary cross-breeding (HD) was higher than that in Hu sheep (H) from 3 months to 12 months after birth. The transcriptomic analysis of 42 quadriceps femoris samples showed that a total of 5053 differential expression genes (DEGs) were identified. The differences in the global gene expression patterns, the dynamic transcriptome of skeletal muscle development, and the transcriptome of the transformation of fast and slow muscles were explored using weighted correlation network analysis (WGCNA) and allele-specific expression analysis. Moreover, the gene expression patterns of HD were more similar to D rather than H from 3 months to 12 months, which might be the reason for the difference in muscle growth in the three breeds. Additionally, several genes (GNB2L1, RPL15, DVL1, FBXO31, etc.) were identified as candidates related to skeletal muscle growth. These results should serve as an important resource revealing the molecular basis of muscle growth and development in sheep.
Collapse
Affiliation(s)
- Yue Ai
- Beijing Key Laboratory of Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yaning Zhu
- Beijing Key Laboratory of Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Linli Wang
- Beijing Key Laboratory of Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xiaosheng Zhang
- Tianjin Key Laboratory of Animal Molecular Breeding and Biotechnology, Tianjin 301700, China
| | - Jinlong Zhang
- Tianjin Key Laboratory of Animal Molecular Breeding and Biotechnology, Tianjin 301700, China
| | - Xianlei Long
- Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Qingyi Gu
- Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Hongbing Han
- Beijing Key Laboratory of Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
15
|
Mendes S, Leal DV, Baker LA, Ferreira A, Smith AC, Viana JL. The Potential Modulatory Effects of Exercise on Skeletal Muscle Redox Status in Chronic Kidney Disease. Int J Mol Sci 2023; 24:ijms24076017. [PMID: 37046990 PMCID: PMC10094245 DOI: 10.3390/ijms24076017] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 04/14/2023] Open
Abstract
Chronic Kidney Disease (CKD) is a global health burden with high mortality and health costs. CKD patients exhibit lower cardiorespiratory and muscular fitness, strongly associated with morbidity/mortality, which is exacerbated when they reach the need for renal replacement therapies (RRT). Muscle wasting in CKD has been associated with an inflammatory/oxidative status affecting the resident cells' microenvironment, decreasing repair capacity and leading to atrophy. Exercise may help counteracting such effects; however, the molecular mechanisms remain uncertain. Thus, trying to pinpoint and understand these mechanisms is of particular interest. This review will start with a general background about myogenesis, followed by an overview of the impact of redox imbalance as a mechanism of muscle wasting in CKD, with focus on the modulatory effect of exercise on the skeletal muscle microenvironment.
Collapse
Affiliation(s)
- Sara Mendes
- Research Center in Sports Sciences, Health Sciences and Human Development, CIDESD, University of Maia, 4475-690 Maia, Portugal
| | - Diogo V Leal
- Research Center in Sports Sciences, Health Sciences and Human Development, CIDESD, University of Maia, 4475-690 Maia, Portugal
| | - Luke A Baker
- Leicester Kidney Lifestyle Team, Department of Health Sciences, University of Leicester, Leicester LE1 7RH, UK
| | - Aníbal Ferreira
- Nova Medical School, 1169-056 Lisbon, Portugal
- NephroCare Portugal SA, 1750-233 Lisbon, Portugal
| | - Alice C Smith
- Leicester Kidney Lifestyle Team, Department of Health Sciences, University of Leicester, Leicester LE1 7RH, UK
| | - João L Viana
- Research Center in Sports Sciences, Health Sciences and Human Development, CIDESD, University of Maia, 4475-690 Maia, Portugal
| |
Collapse
|
16
|
Aoyama T, Alexander T, Asadi S, Harding JE, Meyer MP, Jiang Y, Bloomfield FH. Determinants of handgrip strength at age 2 years in children born moderate and late preterm and associations with neurodevelopmental outcomes. Early Hum Dev 2023; 180:105750. [PMID: 37003126 DOI: 10.1016/j.earlhumdev.2023.105750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 04/03/2023]
Abstract
BACKGROUND Handgrip strength (HGS) indicates current and future health. Although preterm infants have an increased risk of poor grip strength in later life, its determinants and relationship with neurodevelopment are not well understood. AIMS To determine HGS in children born preterm and explore the relationship of HGS with demography, anthropometry, nutritional factors, and neurodevelopmental outcomes. STUDY DESIGN A prospective cohort study of moderate-late preterm babies enrolled in a randomised trial of nutritional support strategies, the DIAMOND trial. SUBJECTS A total of 116 children born between 32 and 35 weeks' gestation, whose HGS was measured at 2 years' corrected age. OUTCOME MEASURES HGS was measured using a dynamometer, and neurodevelopment was assessed using the Bayley Scales of Infant Development-III. Anthropometry and body composition were assessed at birth, discharge, and at 4 months' and 2 years' corrected age. Information on demographics and breastfeeding practices, including type of milk at discharge and duration of exclusive breastfeeding, was collected using questionnaires. RESULTS The mean (standard deviation) HGS was 2.26 (1.07) kg. The Bayley scores were < 85 (-1 standard deviation) in 6 %, 20 %, and 1 % for the cognitive, language, and motor scales, respectively. Multiple regression analysis revealed that HGS was positively associated with language and motor scores (p < .05) after adjusting for confounding factors. HGS was not associated with sex, anthropometry, body composition, or breastfeeding practices. Maternal education was independently associated with HGS (p < .01). CONCLUSIONS HGS at age 2 years in children born moderate-late preterm is associated with language and motor development and maternal education level.
Collapse
Affiliation(s)
- Tomoko Aoyama
- Liggins Institute, University of Auckland, Auckland, New Zealand; National Institutes of Biomedical Innovation, Health and Nutrition, Japan.
| | - Tanith Alexander
- Liggins Institute, University of Auckland, Auckland, New Zealand; Neonatal Unit, Kidz First, Middlemore Hospital, Auckland, New Zealand
| | - Sharin Asadi
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Jane E Harding
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Michael P Meyer
- Neonatal Unit, Kidz First, Middlemore Hospital, Auckland, New Zealand
| | - Yannan Jiang
- Department of Statistics, Faculty of Science, University of Auckland, New Zealand
| | | |
Collapse
|
17
|
Identification and Quantification of Proliferating Cells in Skeletal Muscle of Glutamine Supplemented Low- and Normal-Birth-Weight Piglets. Cells 2023; 12:cells12040580. [PMID: 36831247 PMCID: PMC9953894 DOI: 10.3390/cells12040580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/17/2023] Open
Abstract
One way to improve the growth of low-birth-weight (LBW) piglets can be stimulation of the cellular development of muscle by optimized amino acid supply. In the current study, it was investigated how glutamine (Gln) supplementation affects muscle tissue of LBW and normal-birth-weight (NBW) piglets. Longissimus and semitendinosus muscles of 96 male piglets, which were supplemented with 1 g Gln/kg body weight or alanine, were collected at slaughter on day 5 or 26 post natum (dpn), one hour after injection with Bromodeoxyuridine (BrdU, 12 mg/kg). Immunohistochemistry was applied to detect proliferating, BrdU-positive cells in muscle cross-sections. Serial stainings with cell type specific antibodies enabled detection and subsequent quantification of proliferating satellite cells and identification of further proliferating cell types, e.g., preadipocytes and immune cells. The results indicated that satellite cells and macrophages comprise the largest fractions of proliferating cells in skeletal muscle of piglets early after birth. The Gln supplementation somewhat stimulated satellite cells. We observed differences between the two muscles, but no influence of the piglets' birth weight was observed. Thus, Gln supplements may not be considered as effective treatment in piglets with low birth weight for improvement of muscle growth.
Collapse
|
18
|
Rudar M, Suryawan A, Nguyen HV, Chacko SK, Vonderohe C, Stoll B, Burrin DG, Fiorotto ML, Davis TA. Regulation of skeletal muscle protein synthesis in the preterm pig by intermittent leucine pulses during continuous parenteral feeding. JPEN J Parenter Enteral Nutr 2023; 47:276-286. [PMID: 36128996 PMCID: PMC10621874 DOI: 10.1002/jpen.2450] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/31/2022] [Accepted: 09/15/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND Extrauterine growth restriction is a common complication of preterm birth. Leucine (Leu) is an agonist for the mechanistic target of rapamycin (mTOR) complex 1 (mTORC1) signaling pathway that regulates translation initiation and protein synthesis in skeletal muscle. Previously, we showed that intermittent intravenous pulses of Leu to neonatal pigs born at term receiving continuous enteral nutrition increases muscle protein synthesis and lean mass accretion. Our objective was to determine the impact of intermittent intravenous pulses of Leu on muscle protein anabolism in preterm neonatal pigs administered continuous parenteral nutrition. METHODS Following preterm delivery (on day 105 of 115 gestation), pigs were fitted with umbilical artery and jugular vein catheters and provided continuous parenteral nutrition. Four days after birth, pigs were assigned to receive intermittent Leu (1600 µmol kg-1 h-1 ; n = 8) or alanine (1600 µmol kg-1 h-1 ; n = 8) parenteral pulses every 4 h for 28 h. Anabolic signaling and fractional protein synthesis were determined in skeletal muscle. RESULTS Leu concentration in the longissimus dorsi and gastrocnemius muscles increased in the leucine (LEU) group compared with the alanine (ALA) group (P < 0.0001). Despite the Leu-induced disruption of the Sestrin2·GATOR2 complex, which inhibits mTORC1 activation, in these muscles (P < 0.01), the abundance of mTOR·RagA and mTOR·RagC was not different. Accordingly, mTORC1-dependent activation of 4EBP1, S6K1, eIF4E·eIF4G, and protein synthesis were not different in any muscle between the LEU and ALA groups. CONCLUSION Intermittent pulses of Leu do not enhance muscle protein anabolism in preterm pigs supplied continuous parenteral nutrition.
Collapse
Affiliation(s)
- Marko Rudar
- Department of Animal Sciences, Auburn University, Auburn, Alabama, USA
| | - Agus Suryawan
- USDA/ARS Children’s Nutrition Research Center, Baylor College of Medicine, Houston, Texas, USA
| | - Hanh V. Nguyen
- USDA/ARS Children’s Nutrition Research Center, Baylor College of Medicine, Houston, Texas, USA
| | - Shaji K. Chacko
- USDA/ARS Children’s Nutrition Research Center, Baylor College of Medicine, Houston, Texas, USA
| | - Caitlin Vonderohe
- USDA/ARS Children’s Nutrition Research Center, Baylor College of Medicine, Houston, Texas, USA
| | - Barbara Stoll
- USDA/ARS Children’s Nutrition Research Center, Baylor College of Medicine, Houston, Texas, USA
| | - Douglas G. Burrin
- USDA/ARS Children’s Nutrition Research Center, Baylor College of Medicine, Houston, Texas, USA
| | - Marta L. Fiorotto
- USDA/ARS Children’s Nutrition Research Center, Baylor College of Medicine, Houston, Texas, USA
| | - Teresa A. Davis
- USDA/ARS Children’s Nutrition Research Center, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
19
|
Rozance PJ, Boehmer BH, Chang EI, Wesolowski SR, Brown LD. Chronic Fetal Leucine Infusion Increases Rate of Leucine Oxidation but Not of Protein Synthesis in Late Gestation Fetal Sheep. J Nutr 2023; 153:493-504. [PMID: 36894241 PMCID: PMC10196590 DOI: 10.1016/j.tjnut.2022.12.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 11/19/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Leucine increases protein synthesis rates in postnatal animals and adults. Whether supplemental leucine has similar effects in the fetus has not been determined. OBJECTIVE To determine the effect of a chronic leucine infusion on whole-body leucine oxidation and protein metabolic rates, muscle mass, and regulators of muscle protein synthesis in late gestation fetal sheep. METHODS Catheterized fetal sheep at ∼126 d of gestation (term = 147 d) received infusions of saline (CON, n = 11) or leucine (LEU; n = 9) adjusted to increase fetal plasma leucine concentrations by 50%-100% for 9 d. Umbilical substrate net uptake rates and protein metabolic rates were determined using a 1-13C leucine tracer. Myofiber myosin heavy chain (MHC) type and area, expression of amino acid transporters, and abundance of protein synthesis regulators were measured in fetal skeletal muscle. Groups were compared using unpaired t tests. RESULTS Plasma leucine concentrations were 75% higher in LEU fetuses compared with CON by the end of the infusion period (P < 0.0001). Umbilical blood flow and uptake rates of most amino acids, lactate, and oxygen were similar between groups. Fetal whole-body leucine oxidation was 90% higher in LEU (P < 0.0005) but protein synthesis and breakdown rates were similar. Fetal and muscle weights and myofiber areas were similar between groups, however, there were fewer MHC type IIa fibers (P < 0.05), greater mRNA expression levels of amino acid transporters (P < 0.01), and a higher abundance of signaling proteins that regulate protein synthesis (P < 0.05) in muscle from LEU fetuses. CONCLUSIONS A direct leucine infusion for 9 d in late gestation fetal sheep does not increase protein synthesis rates but results in higher leucine oxidation rates and fewer glycolytic myofibers. Increasing leucine concentrations in the fetus stimulates its own oxidation but also increases amino acid transporter expression and primes protein synthetic pathways in skeletal muscle.
Collapse
Affiliation(s)
- Paul J Rozance
- Department of Pediatrics, University of Colorado School of Medicine, Perinatal Research Center, Aurora, Colorado, USA
| | - Brit H Boehmer
- Department of Pediatrics, University of Colorado School of Medicine, Perinatal Research Center, Aurora, Colorado, USA
| | - Eileen I Chang
- Department of Pediatrics, University of Colorado School of Medicine, Perinatal Research Center, Aurora, Colorado, USA
| | - Stephanie R Wesolowski
- Department of Pediatrics, University of Colorado School of Medicine, Perinatal Research Center, Aurora, Colorado, USA
| | - Laura D Brown
- Department of Pediatrics, University of Colorado School of Medicine, Perinatal Research Center, Aurora, Colorado, USA.
| |
Collapse
|
20
|
Sosseh SAL, Barrow A, Lu ZJ. Cultural beliefs, attitudes and perceptions of lactating mothers on exclusive breastfeeding in The Gambia: an ethnographic study. BMC Womens Health 2023; 23:18. [PMID: 36639678 PMCID: PMC9838071 DOI: 10.1186/s12905-023-02163-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 01/05/2023] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND WHO/UNICEF recommends that women in resource-poor developing countries- like the Gambia, should exclusively breastfeed their infants for the first six months of their lives because of its health benefits to both mother and infant. The study aimed to explore the cultural beliefs, attitudes, and perceptions of lactating mothers towards exclusive breastfeeding in The Gambia. METHODS This was a qualitative ethnographic study of culture-sharing groups of mothers with infants 4 to 6 months old. The study was conducted from July to October 2014 and data collection was done through a face-to-face, in-depth interview and moderate participant observation. The study recruited 22 breastfeeding mothers attending government health facilities in the Kanifing Municipality. The collected data were transcribed verbatim and analyzed through a constant comparison method generating six cultural themes, each with sub-themes. RESULTS Baby's welfare is traditionally based on the types of food mother's eat. To this end, mothers reportedly shunned eating green leafy vegetables, liquid and hot foods for their infants' wellbeing. Encounters such as weight loss, nipple inflammation, and backache, which mothers associated with hyper latching and sitting for prolonged breastfeeding, respectively, were among major undesirable physical effects revealed by the participants. Furthermore, the necessity of giving water to infants for their survival was illustrated as a barricade to exclusive breastfeeding practices. Likewise, the entrenched practice of giving charm water to instill the Islamic faith and shielding infants against evil spirits was another factor influencing exclusive breastfeeding practices. Finally, the belief that breast milk adequacy is based on breast size and nurturing men's physical strength by starting prelacteal feeds early in infancy also contributes to the meek exclusive breastfeeding rate among mothers. CONCLUSION This study could be a gazette piece for effective policy making and enhance nurses' cultural sensitivity while caring for lactating mothers. Cultural meanings of health care behaviors in lactating mothers challenge universally applying guidelines of exclusive breastfeeding to all societies. The study findings could benefit healthcare providers in informing policies and designing culturally adaptive and acceptable community-based breastfeeding intervention programs in resource-limited settings.
Collapse
Affiliation(s)
- Sering A. L. Sosseh
- grid.260539.b0000 0001 2059 7017International Health Program, National Yang-Ming University, Hsinchu, Taiwan ,grid.442863.f0000 0000 9692 3993Department of Public and Environmental Health, School of Medicine & Allied Health Sciences, University of The Gambia, Kanifing, The Gambia
| | - Amadou Barrow
- grid.442863.f0000 0000 9692 3993Department of Public and Environmental Health, School of Medicine & Allied Health Sciences, University of The Gambia, Kanifing, The Gambia
| | - Zxyyann Jane Lu
- grid.411649.f0000 0004 0532 2121Department of Bioscience Technology, Chung Yuan Christian University, Taoyüan, Taiwan
| |
Collapse
|
21
|
Rudar M, Naberhuis JK, Suryawan A, Nguyen HV, Fiorotto ML, Davis TA. Prematurity blunts protein synthesis in skeletal muscle independently of body weight in neonatal pigs. Pediatr Res 2023:10.1038/s41390-022-02456-3. [PMID: 36627358 DOI: 10.1038/s41390-022-02456-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 11/30/2022] [Accepted: 12/21/2022] [Indexed: 01/11/2023]
Abstract
BACKGROUND Postnatal growth failure in premature infants is associated with reduced lean mass accretion. Prematurity impairs the feeding-induced stimulation of translation initiation and protein synthesis in the skeletal muscle of neonatal pigs. The objective was to determine whether body weight independently contributes to the blunted postprandial protein synthesis. METHODS Preterm and term pigs that were either fasted or fed were stratified into quartiles according to birth weight to yield preterm and term groups of similar body weight; first and second quartiles of preterm pigs and third and fourth quartiles of term pigs were compared (preterm-fasted, n = 23; preterm-fed, n = 25; term-fasted, n = 21; term-fed, n = 21). Protein synthesis rates and mechanistic target of rapamycin complex 1 (mTORC1) activation in skeletal muscle were determined. RESULTS Relative body weight gain was lower in preterm compared to term pigs. Prematurity attenuated the feeding-induced increase in mTORC1 activation in longissimus dorsi and gastrocnemius muscles (P < 0.05). Protein synthesis in gastrocnemius (P < 0.01), but not in longissimus dorsi muscle, was blunted by preterm birth. CONCLUSION A lower capacity of skeletal muscle to respond adequately to feeding may contribute to reduced body weight gain and lean mass accretion in preterm infants. IMPACT This study has shown that the feeding-induced increase in protein synthesis of skeletal and cardiac muscle is blunted in neonatal pigs born preterm compared to pigs born at term independently of birth weight. These findings support the notion that preterm birth, and not low birth weight, impairs the capacity of skeletal and cardiac muscle to upregulate mechanistic target of rapamycin-dependent anabolic signaling pathways and protein synthesis in response to the postprandial increase in insulin and amino acids. These observations suggest that a blunted anabolic response to feeding contributes to reduced lean mass accretion and altered body composition in preterm infants.
Collapse
Affiliation(s)
- Marko Rudar
- Department of Animal Sciences, Auburn University, Auburn, AL, USA
| | - Jane K Naberhuis
- United States Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Agus Suryawan
- United States Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Hanh V Nguyen
- United States Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Marta L Fiorotto
- United States Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Teresa A Davis
- United States Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
22
|
Morales A, Sánchez V, Pérez B, Camacho RL, Arce N, Avelar E, González-Vega JC, Htoo JK, Cervantes M. Effect of dl-methionine supplementation above requirement on performance; intestinal morphology, antioxidant activity, and gene expression; and serum concentration of amino acids in heat stressed pigs. J Anim Sci 2023; 101:skac379. [PMID: 36383458 PMCID: PMC9833035 DOI: 10.1093/jas/skac379] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/11/2022] [Indexed: 11/17/2022] Open
Abstract
The intestinal morphology and function can be compromised in pigs exposed to heat stress (HS), partly due to increased production of reactive-oxygen species. Because methionine (Met) functions as intracellular antioxidant, the requirement of Met may be increased in HS-pigs. The effect of dietary supplementation with dl-Met above requirement on performance, small intestine morphology, antioxidant enzymes activity, amino acid transporters expression, and serum concentration (SC) of free AA in HS-pigs was evaluated. A basal wheat-soybean meal diet was formulated to meet 100% Met requirement with the other indispensable AA exceeding at least 20% their requirement. Sixty individually housed pigs (23.0 ± 2.4 kg BW, 12 pigs per treatment) were randomly assigned to five treatments: TN100, thermal-neutral (22.7 °C) housed pigs fed the basal diet; HS100, HS120, HS140, HS160; HS-pigs (29.6 °C to 39.4 °C) fed the basal diet supplemented with dl-Met to contain 0%, 20%, 40%, and 60% dl-Met above the requirement, respectively. Pigs had free access to feed and water during the 21-d trial. Blood samples were collected on day 18 to analyze the absorptive AA-SC. The effect of ambient temperature (HS100 vs. TN100), as well as the linear and quadratic effects of increasing Met levels in the diets for HS-pigs were analyzed. The HS100 pigs gained less weight than TN100 and HS120 pigs (P < 0.01); gain:feed was also higher in HS120 pigs than in HS100 pigs (P ≤ 0.05). Feed intake of TN100 pigs was higher than that of HS-pigs fed the dl-Met supplemented diets (P < 0.05). Villi height reduced in pigs HS, but Met supplementation quadratically increased it (P < 0.05). Superoxide dismutase and catalase activities, reduced glutathione concentration, and relative expression of B0AT2 in ileum decreased (P < 0.05), but glutathione peroxidase activity increased in HS-pigs. dl-Met supplementation linearly affected catalase and glutathione peroxidase activities, as well as the relative expression of b0,+AT in jejunum (P < 0.05) of HS-pigs. The SC of Ile, Leu, Lys, Phe, and Val were higher in HS100 pigs than in TN100 pigs (P < 0.05). Graded levels of supplemental dl-Met in diets for HS-pigs linearly decreased SC of Ile, Leu, and Val (P < 0.05), tended to decrease His, Lys, and Thr (P < 0.10), and increased Met (P < 0.01). In conclusion, HS had negative effect on weight gain and intestinal morpho-physiology; however, it was ameliorated by adding 20% Met above the requirement in diets for growing pigs.
Collapse
Affiliation(s)
- Adriana Morales
- ICA-Universidad Autónoma de Baja California, 21100 Mexicali, B.C., México
| | - Verónica Sánchez
- ICA-Universidad Autónoma de Baja California, 21100 Mexicali, B.C., México
| | - Bayron Pérez
- ICA-Universidad Autónoma de Baja California, 21100 Mexicali, B.C., México
| | - Reyna L Camacho
- ICA-Universidad Autónoma de Baja California, 21100 Mexicali, B.C., México
| | - Néstor Arce
- ICA-Universidad Autónoma de Baja California, 21100 Mexicali, B.C., México
| | - Ernesto Avelar
- ICA-Universidad Autónoma de Baja California, 21100 Mexicali, B.C., México
| | | | | | - Miguel Cervantes
- ICA-Universidad Autónoma de Baja California, 21100 Mexicali, B.C., México
| |
Collapse
|
23
|
Specific Alteration of Branched-Chain Amino Acid Profile in Polycystic Ovary Syndrome. Biomedicines 2023; 11:biomedicines11010108. [PMID: 36672616 PMCID: PMC9856032 DOI: 10.3390/biomedicines11010108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/09/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is one of the most common endocrinopathies in reproductive age women; it is a complex health issue with numerous comorbidities. Attention has recently been drawn to amino acids as they are molecules essential to maintain homeostasis. The aim of the study was to investigate the branch chain amino acid (BCAA) profile in women with PCOS. A total of 326 women, 208 diagnosed with PCOS and 118 healthy controls, participated in the study; all the patients were between 18 and 40 years old. Anthropometrical, biochemical and hormonal parameters were assessed. Gas-liquid chromatography combined with tandem mass spectrometry was used to investigate BCAA levels. Statistical analysis showed significantly higher plasma levels of BCAAs (540.59 ± 97.23 nmol/mL vs. 501.09 ± 85.33 nmol/mL; p < 0.001) in women with PCOS. Significant correlations (p < 0.05) were found between BCAA and BMI, HOMA-IR, waist circumference and total testosterone levels. In the analysis of individuals with abdominal obesity, there were significant differences between PCOS and controls in BCAA (558.13 ± 100.51 vs. 514.22 ± 79.76 nmol/mL) and the concentrations of all the analyzed amino acids were higher in the PCOS patients. Hyperandrogenemia in PCOS patients was associated with significantly higher leucine, isoleucine and total BCAA levels. The increase of BCAA levels among PCOS patients in comparison to healthy controls might be an early sign of metabolic alteration and a predictive factor for other disturbances.
Collapse
|
24
|
Suryawan A, Rudar M, Naberhuis JK, Fiorotto ML, Davis TA. Preterm birth alters the feeding-induced activation of Akt signaling in the muscle of neonatal piglets. Pediatr Res 2022:10.1038/s41390-022-02382-4. [PMID: 36402914 DOI: 10.1038/s41390-022-02382-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 10/04/2022] [Accepted: 10/27/2022] [Indexed: 11/21/2022]
Abstract
BACKGROUND Postnatal lean mass accretion is commonly reduced in preterm infants. This study investigated mechanisms involved in the blunted feeding-induced activation of Akt in the skeletal muscle of preterm pigs that contributes to lower protein synthesis rates. METHODS On day 3 following cesarean section, preterm and term piglets were fasted or fed an enteral meal. Activation of Akt signaling pathways in skeletal muscle was determined. RESULTS Akt1 and Akt2, but not Akt3, phosphorylation were lower in the skeletal muscle of preterm than in term pigs (P < 0.05). Activation of Akt-positive regulators, PDK1 and mTORC2, but not FAK, were lower in preterm than in term (P < 0.05). The formation of Akt complexes with GAPDH and Hsp90 and the abundance of Ubl4A were lower in preterm than in term (P < 0.05). The abundance of Akt inhibitors, PHLPP and SHIP2, but not PTEN and IP6K1, were higher in preterm than in term pigs (P < 0.05). PP2A activation was inhibited by feeding in term but not in preterm pigs (P < 0.05). CONCLUSIONS Our results suggest that preterm birth impairs regulatory components involved in Akt activation, thereby limiting the anabolic response to feeding. This anabolic resistance likely contributes to the reduced lean accretion following preterm birth. IMPACT The Akt-mTORC1 pathway plays an important role in the regulation of skeletal muscle protein synthesis in neonates. This is the first evidence to demonstrate that, following preterm birth, the postprandial activation of positive regulators of Akt in the skeletal muscle is reduced, whereas the activation of negative regulators of Akt is enhanced. This anabolic resistance of Akt signaling in response to feeding likely contributes to the reduced accretion of lean mass in premature infants. These results may provide potential novel molecular targets for intervention to enhance lean growth in preterm neonates.
Collapse
Affiliation(s)
- Agus Suryawan
- United States Department of Agriculture/Agricultural Research Service, Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Marko Rudar
- Department of Animal Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Jane K Naberhuis
- United States Department of Agriculture/Agricultural Research Service, Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Marta L Fiorotto
- United States Department of Agriculture/Agricultural Research Service, Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Teresa A Davis
- United States Department of Agriculture/Agricultural Research Service, Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
25
|
Alfaqih MS, Tarawan VM, Sylviana N, Goenawan H, Lesmana R, Susianti S. Effects of Vitamin D on Satellite Cells: A Systematic Review of In Vivo Studies. Nutrients 2022; 14:4558. [PMID: 36364820 PMCID: PMC9657163 DOI: 10.3390/nu14214558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/22/2022] [Accepted: 10/25/2022] [Indexed: 08/30/2023] Open
Abstract
The non-classical role of vitamin D has been investigated in recent decades. One of which is related to its role in skeletal muscle. Satellite cells are skeletal muscle stem cells that play a pivotal role in skeletal muscle growth and regeneration. This systematic review aims to investigate the effect of vitamin D on satellite cells. A systematic search was performed in Scopus, MEDLINE, and Google Scholar. In vivo studies assessing the effect of vitamin D on satellite cells, published in English in the last ten years were included. Thirteen in vivo studies were analyzed in this review. Vitamin D increases the proliferation of satellite cells in the early life period. In acute muscle injury, vitamin D deficiency reduces satellite cells differentiation. However, administering high doses of vitamin D impairs skeletal muscle regeneration. Vitamin D may maintain satellite cell quiescence and prevent spontaneous differentiation in aging. Supplementation of vitamin D ameliorates decreased satellite cells' function in chronic disease. Overall, evidence suggests that vitamin D affects satellite cells' function in maintaining skeletal muscle homeostasis. Further research is needed to determine the most appropriate dose of vitamin D supplementation in a specific condition for the optimum satellite cells' function.
Collapse
Affiliation(s)
- Muhammad Subhan Alfaqih
- Biomedical Science Master Program, Faculty of Medicine, Universitas Padjadjaran, Jl. Prof Eyckman No.38, Bandung 45363, Indonesia
| | - Vita Murniati Tarawan
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Jatinangor 45363, Indonesia
| | - Nova Sylviana
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Jatinangor 45363, Indonesia
- Central Laboratory, Universitas Padjadjaran, Jatinangor 45363, Indonesia
| | - Hanna Goenawan
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Jatinangor 45363, Indonesia
- Central Laboratory, Universitas Padjadjaran, Jatinangor 45363, Indonesia
| | - Ronny Lesmana
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Jatinangor 45363, Indonesia
- Central Laboratory, Universitas Padjadjaran, Jatinangor 45363, Indonesia
| | - Susianti Susianti
- Central Laboratory, Universitas Padjadjaran, Jatinangor 45363, Indonesia
| |
Collapse
|
26
|
Liu G, Wang X, Fan X, Luo X. Metabolomics profiles in acute-on-chronic liver failure: Unveiling pathogenesis and predicting progression. Front Pharmacol 2022; 13:953297. [PMID: 36059949 PMCID: PMC9437334 DOI: 10.3389/fphar.2022.953297] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
Acute-on-chronic liver failure (ACLF) usually develops based on acute decompensation (AD) of cirrhosis and is characterized by intense systemic inflammation, multiple organ failure, and high short-term mortality. Validated biomarkers for the diagnosis and prognosis of ACLF remain to be clarified. Metabolomics is an emerging method used to measure low-molecular-weight metabolites and is currently frequently implemented to understand pathophysiological processes involved in disease progression, as well as to search for new diagnostic or prognostic biomarkers of various disorders. The characterization of metabolites in ACLF has recently been described via metabolomics. The role of metabolites in the pathogenesis of ACLF deserves further investigation and improvement and could be the basis for the development of new diagnostic and therapeutic strategies. In this review, we focused on the contributions of metabolomics on uncovering metabolic profiles in patients with ACLF, the key metabolic pathways that are involved in the progression of ACLF, and the potential metabolite-associated therapeutic targets for ACLF.
Collapse
Affiliation(s)
- Guofeng Liu
- Department of Gastroenterology and Hepatology, Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoze Wang
- Department of Gastroenterology and Hepatology, Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoli Fan
- Department of Gastroenterology and Hepatology, Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, West China Hospital, Sichuan University, Chengdu, China
| | - Xuefeng Luo
- Department of Gastroenterology and Hepatology, Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
27
|
Wang X, Xu J, Zeng H, Han Z. Enhancement of BCAT2-Mediated Valine Catabolism Stimulates β-Casein Synthesis via the AMPK-mTOR Signaling Axis in Bovine Mammary Epithelial Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:9898-9907. [PMID: 35916279 DOI: 10.1021/acs.jafc.2c03629] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Valine, a kind of branched-chain amino acid, plays a regulatory role beyond that of a building block in milk protein synthesis. However, the underlying molecular mechanism through which valine stimulates β-casein synthesis has not been clarified. Therefore, our study aimed to evaluate the effect of valine on β-casein synthesis and shed light into the molecular mechanism using an in vitro model. Results showed that valine supplementation significantly increased β-casein synthesis in bovine mammary epithelial cells (BMECs). Meanwhile, the supplementation of valine resulted in high levels of branched-chain aminotransferase transaminase 2 (BCAT2), TCA-cycle intermediate metabolites, and ATP, AMP-activated protein kinase (AMPK) inhibition, and mammalian target of rapamycin (mTOR) activation. Furthermore, the inhibition of BCAT2 decreased the β-casein synthesis and downregulated the AMPK-mTOR pathway, with similar results observed for AMPK activation. Together, the present data indicate that valine promotes the synthesis of β-casein by affecting the AMPK-mTOR signaling axis and that BCAT2-mediated valine catabolism is the key target.
Collapse
Affiliation(s)
- Xinling Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jie Xu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Hanfang Zeng
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhaoyu Han
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
28
|
Posont RJ, Most MS, Cadaret CN, Marks-Nelson ES, Beede KA, Limesand SW, Schmidt TB, Petersen JL, Yates DT. Primary myoblasts from intrauterine growth-restricted fetal sheep exhibit intrinsic dysfunction of proliferation and differentiation that coincides with enrichment of inflammatory cytokine signaling pathways. J Anim Sci 2022; 100:6652330. [PMID: 35908792 PMCID: PMC9339287 DOI: 10.1093/jas/skac145] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 04/14/2022] [Indexed: 12/14/2022] Open
Abstract
Intrauterine growth restriction (IUGR) is linked to lifelong reductions in muscle mass due to intrinsic functional deficits in myoblasts, but the mechanisms underlying these deficits are not known. Our objective was to determine if the deficits were associated with changes in inflammatory and adrenergic regulation of IUGR myoblasts, as was previously observed in IUGR muscle. Primary myoblasts were isolated from IUGR fetal sheep produced by hyperthermia-induced placental insufficiency (PI-IUGR; n = 9) and their controls (n = 9) and from IUGR fetal sheep produced by maternofetal inflammation (MI-IUGR; n = 6) and their controls (n = 7). Proliferation rates were less (P < 0.05) for PI-IUGR myoblasts than their controls and were not affected by incubation with IL-6, TNF-α, norepinephrine, or insulin. IκB kinase inhibition reduced (P < 0.05) proliferation of control myoblasts modestly in basal media but substantially in TNF-α-added media and reduced (P < 0.05) PI-IUGR myoblast proliferation substantially in basal and TNF-α-added media. Proliferation was greater (P < 0.05) for MI-IUGR myoblasts than their controls and was not affected by incubation with TNF-α. Insulin increased (P < 0.05) proliferation in both MI-IUGR and control myoblasts. After 72-h differentiation, fewer (P < 0.05) PI-IUGR myoblasts were myogenin+ than controls in basal and IL-6 added media but not TNF-α-added media. Fewer (P < 0.05) PI-IUGR myoblasts were desmin+ than controls in basal media only. Incubation with norepinephrine did not affect myogenin+ or desmin+ percentages, but insulin increased (P < 0.05) both markers in control and PI-IUGR myoblasts. After 96-h differentiation, fewer (P < 0.05) MI-IUGR myoblasts were myogenin+ and desmin+ than controls regardless of media, although TNF-α reduced (P < 0.05) desmin+ myoblasts for both groups. Differentiated PI-IUGR myoblasts had greater (P < 0.05) TNFR1, ULK2, and TNF-α-stimulated TLR4 gene expression, and PI-IUGR semitendinosus muscle had greater (P < 0.05) TNFR1 and IL6 gene expression, greater (P < 0.05) c-Fos protein, and less (P < 0.05) IκBα protein. Differentiated MI-IUGR myoblasts had greater (P < 0.05) TNFR1 and IL6R gene expression, tended to have greater (P = 0.07) ULK2 gene expression, and had greater (P < 0.05) β-catenin protein and TNF-α-stimulated phosphorylation of NFκB. We conclude that these enriched components of TNF-α/TNFR1/NFκB and other inflammatory pathways in IUGR myoblasts contribute to their dysfunction and help explain impaired muscle growth in the IUGR fetus.
Collapse
Affiliation(s)
- Robert J Posont
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Micah S Most
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Caitlin N Cadaret
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Eileen S Marks-Nelson
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Kristin A Beede
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Sean W Limesand
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ 65721, USA
| | - Ty B Schmidt
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Jessica L Petersen
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Dustin T Yates
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| |
Collapse
|
29
|
Shirakawa T, Toyono T, Inoue A, Matsubara T, Kawamoto T, Kokabu S. Factors Regulating or Regulated by Myogenic Regulatory Factors in Skeletal Muscle Stem Cells. Cells 2022; 11:cells11091493. [PMID: 35563799 PMCID: PMC9104119 DOI: 10.3390/cells11091493] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 11/23/2022] Open
Abstract
MyoD, Myf5, myogenin, and MRF4 (also known as Myf6 or herculin) are myogenic regulatory factors (MRFs). MRFs are regarded as master transcription factors that are upregulated during myogenesis and influence stem cells to differentiate into myogenic lineage cells. In this review, we summarize MRFs, their regulatory factors, such as TLE3, NF-κB, and MRF target genes, including non-myogenic genes such as taste receptors. Understanding the function of MRFs and the physiology or pathology of satellite cells will contribute to the development of cell therapy and drug discovery for muscle-related diseases.
Collapse
Affiliation(s)
- Tomohiko Shirakawa
- Division of Orofacial Functions and Orthodontics, Department of Health Improvement, Kyushu Dental University, Kitakyushu 803-8580, Japan; (T.S.); (A.I.); (T.K.)
- Division of Molecular Signaling and Biochemistry, Department of Health Improvement, Kyushu Dental University, Kitakyushu 803-8580, Japan;
| | - Takashi Toyono
- Division of Anatomy, Department of Health Promotion, Kyushu Dental University, Kitakyushu 803-8580, Japan;
| | - Asako Inoue
- Division of Orofacial Functions and Orthodontics, Department of Health Improvement, Kyushu Dental University, Kitakyushu 803-8580, Japan; (T.S.); (A.I.); (T.K.)
- Division of Molecular Signaling and Biochemistry, Department of Health Improvement, Kyushu Dental University, Kitakyushu 803-8580, Japan;
| | - Takuma Matsubara
- Division of Molecular Signaling and Biochemistry, Department of Health Improvement, Kyushu Dental University, Kitakyushu 803-8580, Japan;
| | - Tatsuo Kawamoto
- Division of Orofacial Functions and Orthodontics, Department of Health Improvement, Kyushu Dental University, Kitakyushu 803-8580, Japan; (T.S.); (A.I.); (T.K.)
| | - Shoichiro Kokabu
- Division of Molecular Signaling and Biochemistry, Department of Health Improvement, Kyushu Dental University, Kitakyushu 803-8580, Japan;
- Correspondence: ; Tel.: +81-93-582-1131; Fax: +81-93-285-6000
| |
Collapse
|
30
|
Effects of Dietary Chlorogenic Acid Supplementation Derived from Lonicera macranthoides Hand-Mazz on Growth Performance, Free Amino Acid Profile, and Muscle Protein Synthesis in a Finishing Pig Model. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6316611. [PMID: 35313639 PMCID: PMC8934221 DOI: 10.1155/2022/6316611] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 12/10/2021] [Accepted: 02/21/2022] [Indexed: 12/22/2022]
Abstract
Chlorogenic acid (CGA), as one of the richest polyphenol compounds in nature, has broad applications in many fields due to its various biological properties. However, initial data on the effects of dietary CGA on protein synthesis and related basal metabolic activity has rarely been reported. The current study is aimed at (1) determining whether dietary CGA supplementation improves the growth performance and carcass traits, (2) assessing whether dietary CGA alters the free amino acid profile, and (3) verifying whether dietary CGA promotes muscle protein synthesis in finishing pigs. Thirty-two (Large × White × Landrace) finishing barrows with an average initial body weight of
kg were randomly allotted to 4 groups and fed diets supplemented with 0, 0.02%, 0.04%, and 0.08% CGA, respectively. The results indicated that, compared with the control group, dietary supplementation with 0.04% CGA slightly stimulated the growth performance of pigs, whereas no significant correlation was noted between the dietary CGA levels and animal growth (
). Furthermore, the carcass traits of pigs were improved by 0.04% dietary CGA (
). In addition, dietary CGA significantly improved the serum free amino acid profiles of pigs (
), while 0.04% dietary CGA promoted more amino acids to translocate to skeletal muscles (
). The relative mRNA expression levels of SNAT2 in both longissimus dorsi (LD) and biceps femoris (BF) muscles were augmented in the 0.02% and 0.04% groups (
), and the LAT1 mRNA expression in the BF muscle was elevated in the 0.02% group (
). We also found that dietary CGA supplementation at the levels of 0.04% or 0.08% promoted the expression of p-Akt and activated the mTOR-S6K1-4EBP1 axis in the LD muscle (
). Besides, the MAFbx mRNA abundance in the 0.02% and 0.04% groups was significantly lower (
). Our results revealed that dietary supplementation with CGA of 0.04% improved the free amino acid profile and enhanced muscle protein biosynthesis in the LD muscle in finishing pigs.
Collapse
|
31
|
Greene MA, Powell R, Bruce T, Bridges WC, Duckett SK. miRNA transcriptome and myofiber characteristics of lamb skeletal muscle during hypertrophic growth 1. Front Genet 2022; 13:988756. [PMID: 36419828 PMCID: PMC9677349 DOI: 10.3389/fgene.2022.988756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Postnatal muscle growth is achieved through hypertrophy of the muscle fibers and is impacted by the activity of satellite cells, the quiescent muscle stem cell. Several miRNAs are preferentially expressed in skeletal muscle and could provide a mechanism for increasing muscle hypertrophy through satellite cell proliferation and/or differentiation. The objectives of this study were to: 1) Characterize the miRNA transcriptome of the longissimus thoracis et lumborum muscle at several developmental timepoints [gestational d 85 (PN1), 110 (PN2), 133 (PN3), postnatal d 42 (PW1), 65 (PW2), 243 (MAT)] during muscle hypertrophy in lambs, and 2) examine miR-29a, identified in sequencing to be differentially regulated across development, loss of function on satellite cell proliferation and differentiation. Muscle fiber characteristics showed drastic increases (p < 0.0001) in fiber size and alterations in muscle fiber type occur during pre and postnatal development. miRNA sequencing comparisons were performed in developmental order (PN1 vs. PN2, PN2 vs. PN3, PN3 vs. PW1, PW1 vs. PW2, PW2 vs. MAT). There were 184 differentially expressed (P adj < 0.05) miRNA, 142 unique miRNA, from all 5 comparisons made. The transitional stage (PN3 vs. PW1) had the largest number (115) of differentially expressed miRNA. Inhibition of miR-29a in satellite cell culture increased (p < 0.05) cell proliferation and differentiation capacity. Characterization of the miRNA transcriptome provides valuable insights into the miRNA involved in muscle fiber hypertrophy and the potential importance of the transitional period.
Collapse
Affiliation(s)
- M A Greene
- Department of Animal and Veterinary Sciences, Clemson University, Clemson, SC, United States
| | - R Powell
- Clemson Light Imaging Facility, Clemson University, Clemson, SC, United States
| | - T Bruce
- Clemson Light Imaging Facility, Clemson University, Clemson, SC, United States.,Department of Bioengineering, Clemson University, Clemson, SC, United States
| | - W C Bridges
- School of Mathematical and Statistical Sciences, Clemson University, Clemson, SC, United States
| | - S K Duckett
- Department of Animal and Veterinary Sciences, Clemson University, Clemson, SC, United States
| |
Collapse
|
32
|
Inflammatory Mediation of Heat Stress-Induced Growth Deficits in Livestock and Its Potential Role as a Target for Nutritional Interventions: A Review. Animals (Basel) 2021; 11:ani11123539. [PMID: 34944316 PMCID: PMC8698153 DOI: 10.3390/ani11123539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/06/2021] [Accepted: 12/10/2021] [Indexed: 12/05/2022] Open
Abstract
Simple Summary Heat stress is a persistent challenge for livestock producers. Molecular changes throughout the body that result from sustained heat stress slow muscle growth and thus are detrimental to carcass yield and value. Feedlot animals are at particularly high risk for heat stress because their confinement limits their ability to pursue shade and other natural cooling behaviors. Changes in infrastructure to reduce the impact of heat stress are often cost-prohibitive, but recent studies have revealed that anti-inflammatory therapies may help to improve growth deficits in heat-stressed animals. This review describes the conditions that cause heat stress and explains the role of inflammation in muscle growth impairment. Additionally, it discusses the potential for several natural anti-inflammatory dietary additives to improve muscle growth outcomes in heat-stressed livestock. Abstract Heat stress is detrimental to well-being and growth performance in livestock, and systemic inflammation arising during chronic heat stress contributes to these poor outcomes. Sustained exposure of muscle and other tissues to inflammation can impair the cellular processes that facilitate muscle growth and intramuscular fat deposition, thus reducing carcass quality and yield. Climate change is expected to produce more frequent extreme heat events, increasing the potential impact of heat stress on sustainable livestock production. Feedlot animals are at particularly high risk for heat stress, as confinement limits their ability to seek cooling from the shade, water, or breeze. Economically practical options to circumvent heat stress in feedlot animals are limited, but understanding the mechanistic role of inflammation in heat stress outcomes may provide the basis for treatment strategies to improve well-being and performance. Feedlot animals receive formulated diets daily, which provides an opportunity to administer oral nutraceuticals and other bioactive products to mitigate heat stress-induced inflammation. In this review, we examine the complex associations between heat stress, systemic inflammation, and dysregulated muscle growth in meat animals. We also present evidence for potential nutraceutical and dietary moderators of inflammation and how they might improve the unique pathophysiology of heat stress.
Collapse
|
33
|
Rudar M, Naberhuis JK, Suryawan A, Nguyen HV, Stoll B, Style CC, Verla MA, Olutoye OO, Burrin DG, Fiorotto ML, Davis TA. Intermittent bolus feeding does not enhance protein synthesis, myonuclear accretion, or lean growth more than continuous feeding in a premature piglet model. Am J Physiol Endocrinol Metab 2021; 321:E737-E752. [PMID: 34719946 PMCID: PMC8714968 DOI: 10.1152/ajpendo.00236.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Optimizing enteral nutrition for premature infants may help mitigate extrauterine growth restriction and adverse chronic health outcomes. Previously, we showed in neonatal pigs born at term that lean growth is enhanced by intermittent bolus compared with continuous feeding. The objective was to determine if prematurity impacts how body composition, muscle protein synthesis, and myonuclear accretion respond to feeding modality. Following preterm delivery, pigs were fed equivalent amounts of formula delivered either as intermittent boluses (INT; n = 30) or continuously (CONT; n = 14) for 21 days. Body composition was measured by dual-energy X-ray absorptiometry (DXA) and muscle growth was assessed by morphometry, myonuclear accretion, and satellite cell abundance. Tissue anabolic signaling and fractional protein synthesis rates were determined in INT pigs in postabsorptive (INT-PA) and postprandial (INT-PP) states and in CONT pigs. Body weight gain and composition did not differ between INT and CONT pigs. Longissimus dorsi (LD) protein synthesis was 34% greater in INT-PP than INT-PA pigs (P < 0.05) but was not different between INT-PP and CONT pigs. Phosphorylation of 4EBP1 and S6K1 and eIF4E·eIF4G abundance in LD paralleled changes in LD protein synthesis. Satellite cell abundance, myonuclear accretion, and fiber cross-sectional area in LD did not differ between groups. These results suggest that, unlike pigs born at term, intermittent bolus feeding does not enhance lean growth more than continuous feeding in pigs born preterm. Premature birth attenuates the capacity of skeletal muscle to respond to cyclical surges in insulin and amino acids with intermittent feeding in early postnatal life.NEW & NOTEWORTHY Extrauterine growth restriction often occurs in premature infants but may be mitigated by optimizing enteral feeding strategies. We show that intermittent bolus feeding does not increase skeletal muscle protein synthesis, myonuclear accretion, or lean growth more than continuous feeding in preterm pigs. This attenuated anabolic response of muscle to intermittent bolus feeding, compared with previous observations in pigs born at term, may contribute to deficits in lean mass that many premature infants exhibit into adulthood.
Collapse
Affiliation(s)
- Marko Rudar
- United States Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
- Department of Animal Sciences, Auburn University, Auburn, Alabama
| | - Jane K Naberhuis
- United States Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Agus Suryawan
- United States Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Hanh V Nguyen
- United States Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Barbara Stoll
- United States Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Candace C Style
- The Department of Pediatric Surgery, Nationwide Children's Hospital, Columbus, Ohio
| | - Mariatu A Verla
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas
| | - Oluyinka O Olutoye
- The Department of Pediatric Surgery, Nationwide Children's Hospital, Columbus, Ohio
| | - Douglas G Burrin
- United States Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Marta L Fiorotto
- United States Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Teresa A Davis
- United States Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
34
|
Hicks ZM, Yates DT. Going Up Inflame: Reviewing the Underexplored Role of Inflammatory Programming in Stress-Induced Intrauterine Growth Restricted Livestock. FRONTIERS IN ANIMAL SCIENCE 2021; 2. [PMID: 34825243 PMCID: PMC8612632 DOI: 10.3389/fanim.2021.761421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The impact of intrauterine growth restriction (IUGR) on health in humans is well-recognized. It is the second leading cause of perinatal mortality worldwide, and it is associated with deficits in metabolism and muscle growth that increase lifelong risk for hypertension, obesity, hyperlipidemia, and type 2 diabetes. Comparatively, the barrier that IUGR imposes on livestock production is less recognized by the industry. Meat animals born with low birthweight due to IUGR are beset with greater early death loss, inefficient growth, and reduced carcass merit. These animals exhibit poor feed-to-gain ratios, less lean mass, and greater fat deposition, which increase production costs and decrease value. Ultimately, this reduces the amount of meat produced by each animal and threatens the economic sustainability of livestock industries. Intrauterine growth restriction is most commonly the result of fetal programming responses to placental insufficiency, but the exact mechanisms by which this occurs are not well-understood. In uncompromised pregnancies, inflammatory cytokines are produced at modest rates by placental and fetal tissues and play an important role in fetal development. However, unfavorable intrauterine conditions can cause cytokine activity to be excessive during critical windows of fetal development. Our recent evidence indicates that this impacts developmental programming of muscle growth and metabolism and contributes to the IUGR phenotype. In this review, we outline the role of inflammatory cytokine activity in the development of normal and IUGR phenotypes. We also highlight the contributions of sheep and other animal models in identifying mechanisms for IUGR pathologies.
Collapse
Affiliation(s)
- Zena M Hicks
- Stress Physiology Laboratory, Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Dustin T Yates
- Stress Physiology Laboratory, Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE, United States
| |
Collapse
|
35
|
Abstract
Zika virus (ZIKV) infection became a worldwide concern due to its correlation with the development of microcephaly and other neurological disorders. ZIKV neurotropism is well characterized, but the role of peripheral viral amplification to brain infection remains unknown. Here, we found that ZIKV replicates in human primary skeletal muscle myoblasts, impairing its differentiation into myotubes but not interfering with the integrity of the already-formed muscle fibers. Using mouse models, we showed ZIKV tropism to muscle tissue either during embryogenesis after maternal transmission or when infection occurred after birth. Interestingly, ZIKV replication in the mouse skeletal muscle started immediately after ZIKV inoculation, preceding viral RNA detection in the brain and causing no disruption to the integrity of the blood brain barrier, and remained active for more than 2 weeks, whereas replication in the spleen and liver were not sustained over time. In addition, ZIKV infection of the skeletal muscle induces necrotic lesions, inflammation, and fiber atrophy. We also found a reduction in the expression of regulatory myogenic factors that are essential for muscle repair after injury. Taken together, our results indicate that the skeletal muscle is an early site of viral amplification and lesion that may result in late consequences in muscle development after ZIKV infection. IMPORTANCE Zika Virus (ZIKV) neurotropism and its deleterious effects on central nervous system have been well characterized. However, investigations of the initial replication sites for the establishment of infection and viral spread to neural tissues remain underexplored. A complete description of the range of ZIKV-induced lesions and others factors that can influence the severity of the disease is necessary to prevent ZIKV’s deleterious effects. ZIKV has been shown to access the central nervous system without significantly affecting blood-brain barrier permeability. Here, we demonstrated that skeletal muscle is an earlier site of ZIKV replication, contributing to the increase of peripheral ZIKV load. ZIKV replication in muscle promotes necrotic lesions and inflammation and also impairs myogenesis. Overall, our findings showed that skeletal muscle is involved in pathogenesis and opens new fields in the investigation of the long-term consequences of early infection.
Collapse
|
36
|
Suryawan A, El-Kadi SW, Nguyen HV, Fiorotto ML, Davis TA. Intermittent Bolus Compared With Continuous Feeding Enhances Insulin and Amino Acid Signaling to Translation Initiation in Skeletal Muscle of Neonatal Pigs. J Nutr 2021; 151:2636-2645. [PMID: 34159368 PMCID: PMC8417931 DOI: 10.1093/jn/nxab190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Nutrition administered as intermittent bolus feeds rather than continuously promotes greater protein synthesis rates in skeletal muscle and enhances lean growth in a neonatal piglet model. The molecular mechanisms responsible remain unclear. OBJECTIVES We aimed to identify the insulin- and/or amino acid-signaling components involved in the enhanced stimulation of skeletal muscle by intermittent bolus compared to continuous feeding in neonatal pigs born at term. METHODS Term piglets (2-3 days old) were fed equal amounts of sow milk replacer [12.8 g protein and 155 kcal/(kg body weight · d)] by orogastric tube as intermittent bolus meals every 4 hours (INT) or by continuous infusion (CTS). After 21 days, gastrocnemius muscle samples were collected from CTS, INT-0 (before a meal), and INT-60 (60 minutes after a meal) groups (n = 6/group). Insulin- and amino acid-signaling components relevant to mechanistic target of rapamycin complex (mTORC) 1 activation and protein translation were measured. RESULTS Phosphorylation of the insulin receptor, IRS-1, PDK1, mTORC2, pan-Akt, Akt1, Akt2, and TSC2 was 106% to 273% higher in the skeletal muscle of INT-60 piglets than in INT-0 and CTS piglets (P < 0.05), but phosphorylation of PTEN, PP2A, Akt3, ERK1/2, and AMPK did not differ among groups, nor did abundances of PHLPP, SHIP2, and Ubl4A. The association of GATOR2 with Sestrin1/2, but not CASTOR1, was 51% to 52% lower in INT-60 piglets than in INT-0 and CTS piglets (P < 0.05), but the abundances of SLC7A5/LAT1, SLC38A2/SNAT2, SLC38A9, Lamtor1/2, and V-ATPase did not differ. Associations of mTOR with RagA, RagC, and Rheb and phosphorylation of S6K1 and 4EBP1, but not eIF2α and eEF2, were 101% to 176% higher in INT-60 piglets than in INT-0 and CTS piglets (P < 0.05). CONCLUSIONS The enhanced rates of muscle protein synthesis and growth with intermittent bolus compared to continuous feeding in a neonatal piglet model can be explained by enhanced activation of both the insulin- and amino acid-signaling pathways that regulate translation initiation.
Collapse
Affiliation(s)
- Agus Suryawan
- USDA/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Samer W El-Kadi
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Hanh V Nguyen
- USDA/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Marta L Fiorotto
- USDA/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Teresa A Davis
- USDA/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
37
|
Liu Y, He Q, Azad MAK, Xiao Y, Yin Y, Kong X. Nuclear Magnetic Resonance-Based Metabolomic Analysis Reveals Physiological Stage, Breed, and Diet Effects on the Intramuscular Metabolism of Amino Acids and Related Nutrients in Pigs. Front Vet Sci 2021; 8:681192. [PMID: 34447801 PMCID: PMC8382954 DOI: 10.3389/fvets.2021.681192] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/12/2021] [Indexed: 11/27/2022] Open
Abstract
Skeletal muscle is a complex tissue that exhibits considerable plasticity in response to nutrients, animal, or its growth stage, but the underlying mechanisms are largely unknown. This study was conducted to evaluate the effects of physiological stage, breed, and diet on the metabolome of the skeletal muscle of pigs. Ninety-six barrows, including 48 purebred Bama mini-pigs, representing the fat type, and 48 Landrace pigs, representing the lean type, were randomly assigned to either a low- or adequate-protein diet (n = 24 per group). The experimental period commenced at 5 weeks of age and extended to the finishing period. Psoas major muscles (PMMs) were collected at the nursery, growing, and finishing stages; and the contents of amino acids (AAs), fatty acids (FAs), and metabolites were analyzed using a nuclear magnetic resonance-based approach. Results showed that most AAs and monounsaturated FAs (MUFAs; including C16:1 and C18:1) contents were increased (p < 0.05) gradually, while those of polyunsaturated FAs (including C18:2, C20:4n−6, C20:5n−3, and C22:6n−3) were decreased (p < 0.05) in the PMM with increasing age. Compared with Landrace pigs, Bama mini-pigs had higher (p < 0.05) contents of flavor-related AAs (including methionine, phenylalanine, tyrosine, leucine, and serine) in the nursery and growing stages and higher (p < 0.05) percentages of saturated FAs and MUFAs throughout the trial. Dietary protein levels affected the muscular profiles of AAs and FAs in an age-dependent manner. In addition, the adequate-protein diet increased (p < 0.05) the muscular contents of α-ketoglutarate in the two breeds. These findings indicate that the dynamic profiles of AAs, FAs, and metabolites in pig muscle tissues are regulated by breed, diet, and physiological stage.
Collapse
Affiliation(s)
- Yingying Liu
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.,Hunan Provincial Key Laboratory of Conservation and Genetic Analysis of Local Pig Breeds Germplasm Resources, Hunan Institute of Animal and Veterinary Science, Changsha, China
| | - Qinghua He
- Department of Food Science and Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
| | - Md Abul Kalam Azad
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Yi Xiao
- College of Information and Intelligence, Hunan Agricultural University, Changsha, China
| | - Yulong Yin
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Xiangfeng Kong
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| |
Collapse
|
38
|
Dact1 is expressed during chicken and mouse skeletal myogenesis and modulated in human muscle diseases. Comp Biochem Physiol B Biochem Mol Biol 2021; 256:110645. [PMID: 34252542 DOI: 10.1016/j.cbpb.2021.110645] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 06/02/2021] [Accepted: 07/06/2021] [Indexed: 12/23/2022]
Abstract
Vertebrate skeletal muscle development and repair relies on the precise control of Wnt signaling. Dact1 (Dapper/Frodo) is an important modulator of Wnt signaling, interacting with key components of the various Wnt transduction pathways. Here, we characterized Dact1 mRNA and protein expression in chicken and mouse fetal muscles in vivo and during the differentiation of chick primary and mouse C2C12 myoblasts in vitro. We also performed in silico analysis to investigate Dact1 gene expression in human myopathies, and evaluated the Dact1 protein structure to seek an explanation for the accumulation of Dact1 protein aggregates in the nuclei of myogenic cells. Our results show for the first time that in both chicken and mouse, Dact1 is expressed during myogenesis, with a strong upregulation as cells engage in terminal differentiation, cell cycle withdrawal and cell fusion. In humans, Dact1 expression was found to be altered in specific muscle pathologies, including muscular dystrophies. Our bioinformatic analyses of Dact1 proteins revealed long intrinsically disordered regions, which may underpin the ability of Dact1 to interact with its many partners in the various Wnt pathways. In addition, we found that Dact1 has strong propensity for liquid-liquid phase separation, a feature that explains its ability to form nuclear aggregates and points to a possible role as a molecular 'on'-'off' switch. Taken together, our data suggest Dact1 as a candidate, multi-faceted regulator of amniote myogenesis with a possible pathophysiological role in human muscular diseases.
Collapse
|
39
|
Zhao Y, Albrecht E, Stange K, Li Z, Schregel J, Sciascia QL, Metges CC, Maak S. Glutamine supplementation stimulates cell proliferation in skeletal muscle and cultivated myogenic cells of low birth weight piglets. Sci Rep 2021; 11:13432. [PMID: 34183762 PMCID: PMC8239033 DOI: 10.1038/s41598-021-92959-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/17/2021] [Indexed: 11/25/2022] Open
Abstract
Muscle growth of low birth weight (LBW) piglets may be improved with adapted nutrition. This study elucidated effects of glutamine (Gln) supplementation on the cellular muscle development of LBW and normal birth weight (NBW) piglets. Male piglets (n = 144) were either supplemented with 1 g Gln/kg body weight or an isonitrogeneous amount of alanine (Ala) between postnatal day 1 and 12 (dpn). Twelve piglets per group were slaughtered at 5, 12 and 26 dpn, one hour after injection with Bromodeoxyuridine (BrdU, 12 mg/kg). Muscle samples were collected and myogenic cells were isolated and cultivated. Expression of muscle growth related genes was quantified with qPCR. Proliferating, BrdU-positive cells in muscle sections were detected with immunohistochemistry indicating different cell types and decreasing proliferation with age. More proliferation was observed in muscle tissue of LBW-GLN than LBW-ALA piglets at 5 dpn, but there was no clear effect of supplementation on related gene expression. Cell culture experiments indicated that Gln could promote cell proliferation in a dose dependent manner, but expression of myogenesis regulatory genes was not altered. Overall, Gln supplementation stimulated cell proliferation in muscle tissue and in vitro in myogenic cell culture, whereas muscle growth regulatory genes were barely altered.
Collapse
Affiliation(s)
- Yaolu Zhao
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Muscle Biology and Growth, 18196, Dummerstorf, Germany
| | - Elke Albrecht
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Muscle Biology and Growth, 18196, Dummerstorf, Germany.
| | - Katja Stange
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Muscle Biology and Growth, 18196, Dummerstorf, Germany
| | - Zeyang Li
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Nutritional Physiology "Oskar Kellner", 18196, Dummerstorf, Germany
| | - Johannes Schregel
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Nutritional Physiology "Oskar Kellner", 18196, Dummerstorf, Germany
| | - Quentin L Sciascia
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Nutritional Physiology "Oskar Kellner", 18196, Dummerstorf, Germany
| | - Cornelia C Metges
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Nutritional Physiology "Oskar Kellner", 18196, Dummerstorf, Germany
| | - Steffen Maak
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Muscle Biology and Growth, 18196, Dummerstorf, Germany
| |
Collapse
|
40
|
Picaud JC, De Magistris A, Mussap M, Corbu S, Dessì A, Noto A, Fanos V, Cesare Marincola F. Urine NMR Metabolomics Profile of Preterm Infants With Necrotizing Enterocolitis Over the First Two Months of Life: A Pilot Longitudinal Case-Control Study. Front Mol Biosci 2021; 8:680159. [PMID: 34212004 PMCID: PMC8239193 DOI: 10.3389/fmolb.2021.680159] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 05/20/2021] [Indexed: 12/22/2022] Open
Abstract
Objective: To investigate changes in the urine metabolome of very low birth weight preterm newborns with necrotizing enterocolitis (NEC) and feed intolerance, we conducted a longitudinal study over the first 2 months of life. The metabolome of NEC newborns was compared with two control groups that did not develop NEC: the first one included preterm babies with feed intolerance, while the second one preterm babies with good feed tolerance. Methods: Newborns developing NEC within the 3 weeks of life were identified as early onset NEC, while the remaining as late onset NEC. Case-control matching was done according to the gestational age (±1 week), birth weight (± 200 g), and postnatal age. A total of 96 urine samples were collected and analyzed. In newborns with NEC, samples were collected before, during and after the diagnosis over the first 2 months of life, while in controls samples were collected as close as possible to the postnatal age of newborns with NEC. Proton nuclear magnetic resonance (1H NMR) spectroscopy was used for metabolomic analysis. Data were analyzed by univariate and multivariate statistical analysis. Results: In all the preterm newborns, urine levels of betaine, glycine, succinate, and citrate positively correlated with postnatal age. Suberate and lactate correlated with postnatal age in preterms with NEC and in controls with food intolerance, while N,N-dimethylglycine (N,N-DMG) correlated only in controls with good digestive tolerance. Preterm controls with feed intolerance showed a progressive significant decrease of N-methylnicotinamide and carnitine. Lactate, betaine, myo-inositol, urea, creatinine, and N,N-dimethylglycine discriminated late-onset NEC from controls with good feed tolerance. Conclusion: Our findings are discussed in terms of contributions from nutritional and clinical managements of patients and gut microbiota.
Collapse
Affiliation(s)
- Jean-Charles Picaud
- Neonatology Unit, Croix-Rousse University Hospital, Hospices Civils de Lyon, Lyon, France
| | - Anna De Magistris
- Pediatrics and Neonatology Division of, Azienda USL Romagna, Santa Maria Delle Croci Hospital, Ravenna, Italy
| | - Michele Mussap
- Department of Surgical Sciences, University of Cagliari, Cagliari, Italy
| | - Sara Corbu
- Department of Surgical Sciences, University of Cagliari, Cagliari, Italy
| | - Angelica Dessì
- Department of Surgical Sciences, University of Cagliari, Cagliari, Italy
| | - Antonio Noto
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Vassilios Fanos
- Department of Surgical Sciences, University of Cagliari, Cagliari, Italy
| | - Flaminia Cesare Marincola
- Department of Chemical and Geological Sciences, Cittadella Universitaria di Monserrato, University of Cagliari, Cagliari, Italy
| |
Collapse
|
41
|
Prasad V, Millay DP. Skeletal muscle fibers count on nuclear numbers for growth. Semin Cell Dev Biol 2021; 119:3-10. [PMID: 33972174 DOI: 10.1016/j.semcdb.2021.04.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/30/2021] [Accepted: 04/19/2021] [Indexed: 02/06/2023]
Abstract
Skeletal muscle cells are noteworthy for their syncytial nature, with each myofiber accumulating hundreds or thousands of nuclei derived from resident muscle stem cells (MuSCs). These nuclei are accrued through cell fusion, which is controlled by the two essential fusogens Myomaker and Myomerger that are transiently expressed within the myogenic lineage. While the absolute requirement of fusion for muscle development has been known for decades, the underlying need for the magnitude of multinucleation in muscle remains mysterious. Possible advantages of multinucleation include the potential it affords for transcriptional diversity within these massive cells, and as a means of increasing DNA content to support optimal cell size and function. In this article, we review recent advances that elucidate the relationship between myonuclear numbers and establishment of myofiber size, and discuss how this new information refines our understanding of the concept of myonuclear domains (MND), the cytoplasmic volumes that each resident myonucleus can support. Finally, we explore the potential consequences and costs of multinucleation and its impacts on myonuclear transcriptional reserve capacity, growth potential, myofiber size regulation, and muscle adaptability. We anticipate this report will not only serve to highlight the latest advances in the basic biology of syncytial muscle cells but also provide information to help design the next generation of therapeutic strategies to maintain muscle mass and function.
Collapse
Affiliation(s)
- Vikram Prasad
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Douglas P Millay
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA.
| |
Collapse
|
42
|
Skeletal Muscle Changes, Function, and Health-Related Quality of Life in Survivors of Pediatric Critical Illness. Crit Care Med 2021; 49:1547-1557. [PMID: 33861558 DOI: 10.1097/ccm.0000000000004970] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES To describe functional and skeletal muscle changes observed during pediatric critical illness and recovery and their association with health-related quality of life. DESIGN Prospective cohort study. SETTING Single multidisciplinary PICU. PATIENTS Children with greater than or equal to 1 organ dysfunction, expected PICU stay greater than or equal to 48 hours, expected survival to discharge, and without progressive neuromuscular disease or malignancies were followed from admission to approximately 6.7 months postdischarge. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS Functional status was measured using the Functional Status Scale score and Pediatric Evaluation of Disability Inventory-Computer Adaptive Test. Patient and parental health-related quality of life were measured using the Pediatric Quality of Life Inventory and Short Form-36 questionnaires, respectively. Quadriceps muscle size, echogenicity, and fat thickness were measured using ultrasonography during PICU stay, at hospital discharge, and follow-up. Factors affecting change in muscle were explored. Associations between functional, muscle, and health-related quality of life changes were compared using regression analysis. Seventy-three survivors were recruited, of which 44 completed follow-ups. Functional impairment persisted in four of 44 (9.1%) at 6.7 months (interquartile range, 6-7.7 mo) after discharge. Muscle size decreased during PICU stay and was associated with inadequate energy intake (adjusted β, 0.15; 95% CI, 0.02-0.28; p = 0.030). No change in echogenicity or fat thickness was observed. Muscle growth postdischarge correlated with mobility function scores (adjusted β, 0.05; 95% CI, 0.01-0.09; p = 0.046). Improvements in mobility scores were associated with improved physical health-related quality of life at follow-up (adjusted β, 1.02; 95% CI, 0.23-1.81; p = 0.013). Child physical health-related quality of life at hospital discharge was associated with parental physical health-related quality of life (adjusted β, 0.09; 95% CI, 0.01-0.17; p = 0.027). CONCLUSIONS Muscle decreased in critically ill children, which was associated with energy inadequacy and impaired muscle growth postdischarge. Muscle changes correlated with change in mobility, which was associated with child health-related quality of life. Mobility, child health-related quality of life, and parental health-related quality of life appeared to be interlinked.
Collapse
|
43
|
Rudar M, Naberhuis JK, Suryawan A, Nguyen HV, Stoll B, Style CC, Verla MA, Olutoye OO, Burrin DG, Fiorotto ML, Davis TA. Prematurity blunts the insulin- and amino acid-induced stimulation of translation initiation and protein synthesis in skeletal muscle of neonatal pigs. Am J Physiol Endocrinol Metab 2021; 320:E551-E565. [PMID: 33427053 PMCID: PMC7988778 DOI: 10.1152/ajpendo.00203.2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Extrauterine growth restriction in premature infants is largely attributed to reduced lean mass accretion and is associated with long-term morbidities. Previously, we demonstrated that prematurity blunts the feeding-induced stimulation of translation initiation signaling and protein synthesis in skeletal muscle of neonatal pigs. The objective of the current study was to determine whether the blunted feeding response is mediated by reduced responsiveness to insulin, amino acids, or both. Pigs delivered by cesarean section preterm (PT; 103 days, n = 25) or at term (T; 112 days, n = 26) were subject to euinsulinemic-euaminoacidemic-euglycemic (FAST), hyperinsulinemic-euaminoacidemic-euglycemic (INS), or euinsulinemic-hyperaminoacidemic-euglycemic (AA) clamps four days after delivery. Indices of mechanistic target of rapamycin complex 1 (mTORC1) signaling and fractional protein synthesis rates were measured after 2 h. Although longissimus dorsi (LD) muscle protein synthesis increased in response to both INS and AA, the increase was 28% lower in PT than in T. Upstream of mTORC1, Akt phosphorylation, an index of insulin signaling, was increased with INS but was 40% less in PT than in T. The abundances of mTOR·RagA and mTOR·RagC, indices of amino acid signaling, increased with AA but were 25% less in PT than in T. Downstream of mTORC1, eIF4E·eIF4G abundance was increased by both INS and AA but attenuated by prematurity. These results suggest that preterm birth blunts both insulin- and amino acid-induced activation of mTORC1 and protein synthesis in skeletal muscle, thereby limiting the anabolic response to feeding. This anabolic resistance likely contributes to the high prevalence of extrauterine growth restriction in prematurity.NEW & NOTEWORTHY Extrauterine growth faltering is a major complication of premature birth, but the underlying cause is poorly understood. Our results demonstrate that preterm birth blunts both the insulin-and amino acid-induced activation of mTORC1-dependent translation initiation and protein synthesis in skeletal muscle, thereby limiting the anabolic response to feeding. This anabolic resistance likely contributes to the reduced accretion of lean mass and extrauterine growth restriction of premature infants.
Collapse
Affiliation(s)
- Marko Rudar
- United States Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
- Department of Animal Sciences, Auburn University, Auburn, Alabama
| | - Jane K Naberhuis
- United States Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Agus Suryawan
- United States Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Hanh V Nguyen
- United States Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Barbara Stoll
- United States Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Candace C Style
- Division of Pediatric Surgery, Michael E. DeBakey Department of Surgery, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas
| | - Mariatu A Verla
- Division of Pediatric Surgery, Michael E. DeBakey Department of Surgery, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas
| | - Oluyinka O Olutoye
- Division of Pediatric Surgery, Michael E. DeBakey Department of Surgery, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas
| | - Douglas G Burrin
- United States Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Marta L Fiorotto
- United States Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Teresa A Davis
- United States Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
44
|
Cramer AAW, Prasad V, Eftestøl E, Song T, Hansson KA, Dugdale HF, Sadayappan S, Ochala J, Gundersen K, Millay DP. Nuclear numbers in syncytial muscle fibers promote size but limit the development of larger myonuclear domains. Nat Commun 2020; 11:6287. [PMID: 33293533 PMCID: PMC7722938 DOI: 10.1038/s41467-020-20058-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 10/30/2020] [Indexed: 12/11/2022] Open
Abstract
Mammalian cells exhibit remarkable diversity in cell size, but the factors that regulate establishment and maintenance of these sizes remain poorly understood. This is especially true for skeletal muscle, comprised of syncytial myofibers that each accrue hundreds of nuclei during development. Here, we directly explore the assumed causal relationship between multinucleation and establishment of normal size through titration of myonuclear numbers during mouse neonatal development. Three independent mouse models, where myonuclear numbers were reduced by 75, 55, or 25%, led to the discovery that myonuclei possess a reserve capacity to support larger functional cytoplasmic volumes in developing myofibers. Surprisingly, the results revealed an inverse relationship between nuclei numbers and reserve capacity. We propose that as myonuclear numbers increase, the range of transcriptional return on a per nuclear basis in myofibers diminishes, which accounts for both the absolute reliance developing myofibers have on nuclear accrual to establish size, and the limits of adaptability in adult skeletal muscle.
Collapse
Affiliation(s)
- Alyssa A W Cramer
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Vikram Prasad
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Einar Eftestøl
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Taejeong Song
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
| | - Kenth-Arne Hansson
- Department of Biosciences, University of Oslo, Oslo, Norway
- Center for Integrative Neuroplasticity (CINPLA), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Hannah F Dugdale
- Center of Human and Applied Physiological Sciences, School of Basic and Medical Biosciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Sakthivel Sadayappan
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
| | - Julien Ochala
- Center of Human and Applied Physiological Sciences, School of Basic and Medical Biosciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
- Randall Center for Cell and Molecular Biophysics, School of Basic & Medical Biosciences, Faculty of Life Sciences & Medicine, Guy's Campus, King's College London, London, UK
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Douglas P Millay
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA.
| |
Collapse
|
45
|
Zhao Y, Albrecht E, Sciascia QL, Li Z, Görs S, Schregel J, Metges CC, Maak S. Effects of Oral Glutamine Supplementation on Early Postnatal Muscle Morphology in Low and Normal Birth Weight Piglets. Animals (Basel) 2020; 10:E1976. [PMID: 33126436 PMCID: PMC7692811 DOI: 10.3390/ani10111976] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/23/2020] [Accepted: 10/24/2020] [Indexed: 12/16/2022] Open
Abstract
Adapted nutrition can improve the growth of low birth weight (LBW) piglets. Since maternal milk is thought to provide insufficient glutamine (Gln) for LBW piglets, the current study investigated the influence of Gln supplementation during the early suckling period on development and lipid deposition in skeletal muscle. The weight differences between LBW and normal birth weight (NBW) littermates persisted from birth to slaughter (p < 0.001). However, intramuscular Gln and Ala concentrations were altered in piglets according to the supplementation (p < 0.01). There were larger muscle fibers (p = 0.048) in Gln-supplemented piglets. Capillarization or nuclei number per muscle fiber was not influenced by birth weight (BiW) or Gln supplementation. Abundance of myosin heavy chain (MYH) isoforms was slightly altered by Gln supplementation. LBW piglets had more lipid droplets than NBW piglets at day 5 of life in both muscles (p < 0.01). The differences decreased with age. Adipocyte development increased with age, but was not influenced by BiW or supplementation. The results indicate that BiW differences were accompanied by differences in lipid deposition and muscle fiber structure, suggesting a delayed development in LBW piglets. Supplementation with Gln may support piglets to overcome those disadvantages.
Collapse
Affiliation(s)
- Yaolu Zhao
- Institute of Muscle Biology and Growth, Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; (Y.Z.); (S.M.)
| | - Elke Albrecht
- Institute of Muscle Biology and Growth, Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; (Y.Z.); (S.M.)
| | - Quentin L. Sciascia
- Institute of Nutritional Physiology “Oskar Kellner”, Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; (Q.L.S.); (Z.L.); (S.G.); (J.S.); (C.C.M.)
| | - Zeyang Li
- Institute of Nutritional Physiology “Oskar Kellner”, Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; (Q.L.S.); (Z.L.); (S.G.); (J.S.); (C.C.M.)
| | - Solvig Görs
- Institute of Nutritional Physiology “Oskar Kellner”, Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; (Q.L.S.); (Z.L.); (S.G.); (J.S.); (C.C.M.)
| | - Johannes Schregel
- Institute of Nutritional Physiology “Oskar Kellner”, Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; (Q.L.S.); (Z.L.); (S.G.); (J.S.); (C.C.M.)
| | - Cornelia C. Metges
- Institute of Nutritional Physiology “Oskar Kellner”, Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; (Q.L.S.); (Z.L.); (S.G.); (J.S.); (C.C.M.)
| | - Steffen Maak
- Institute of Muscle Biology and Growth, Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; (Y.Z.); (S.M.)
| |
Collapse
|
46
|
Manta-Vogli PD, Schulpis KH, Loukas YL, Dotsikas Y. Birth weight related essential, non-essential and conditionally essential amino acid blood concentrations in 12,000 breastfed full-term infants perinatally. Scandinavian Journal of Clinical and Laboratory Investigation 2020; 80:571-579. [DOI: 10.1080/00365513.2020.1818280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Penelope D. Manta-Vogli
- Department of Clinical Nutrition & Dietetics, Agia Sofia Children’s Hospital, Athens, Greece
| | | | - Yannis L. Loukas
- Laboratory of Pharmaceutical Analysis, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Yannis Dotsikas
- Laboratory of Pharmaceutical Analysis, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
47
|
Dixit NN, McFarland DC, Fisher MB, Cole JH, Saul KR. Integrated iterative musculoskeletal modeling predicts bone morphology following brachial plexus birth injury (BPBI). J Biomech 2020; 103:109658. [PMID: 32089271 PMCID: PMC7141945 DOI: 10.1016/j.jbiomech.2020.109658] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 01/05/2023]
Abstract
Brachial plexus birth injury (BPBI) is the most common nerve injury among children. The glenohumeral joint of affected children can undergo severe osseous deformation and altered muscle properties, depending on location of the injury relative to the dorsal root ganglion (preganglionic or postganglionic). Preganglionic injury results in lower muscle mass and shorter optimal muscle length compared to postganglionic injury. We investigated whether these changes to muscle properties over time following BPBI provide a mechanically-driven explanation for observed differences in bone deformity between preganglionic and postganglionic BPBI. We developed a computational framework integrating musculoskeletal modeling to represent muscle changes over time and finite element modeling to simulate bone growth in response to mechanical and biological stimuli. The simulations predicted that the net glenohumeral joint loads in the postganglionic injury case were nearly 10.5% greater than in preganglionic. Predicted bone deformations were more severe in the postganglionic case, with the glenoid more declined (pre: -43.8°, post: -51.0°), flatter with higher radius of curvature (pre: 3.0 mm, post: 3.7 mm), and anteverted (pre: 2.53°, post: 4.93°) than in the preganglionic case. These simulated glenoid deformations were consistent with previous experimental studies. Thus, we concluded that the differences in muscle mass and length between the preganglionic and postganglionic injuries are critical mechanical drivers of the altered glenohumeral joint shape.
Collapse
Affiliation(s)
- Nikhil N Dixit
- North Carolina State University, Raleigh, NC, United States
| | | | - Matthew B Fisher
- North Carolina State University, Raleigh, NC, United States; University of North Carolina, Chapel Hill, NC, United States
| | - Jacqueline H Cole
- North Carolina State University, Raleigh, NC, United States; University of North Carolina, Chapel Hill, NC, United States
| | | |
Collapse
|
48
|
Xing Y, Wu X, Xie C, Xiao D, Zhang B. Meat Quality and Fatty Acid Profiles of Chinese Ningxiang Pigs Following Supplementation with N-Carbamylglutamate. Animals (Basel) 2020; 10:ani10010088. [PMID: 31935807 PMCID: PMC7023016 DOI: 10.3390/ani10010088] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/26/2019] [Accepted: 01/02/2020] [Indexed: 12/25/2022] Open
Abstract
Simple Summary N-carbamylglutamate (NCG) has been demonstrated to promote the synthesis of endogenous arginine and improve reproductive performance. In the present study, we found that dietary NCG supplementation improved meat quality of a Chinese fat-type pig by increasing muscle tenderness and Phe concentration, and optimizing fatty acid profiles in different tissues. These results provided scientific evidence for the application of NCG as a feed additive in finishing pigs. Abstract The present study evaluated the effects of dietary N-carbamylglutamate (NCG) on carcass traits, meat quality, and fatty acid profiles in the longissimus dorsi muscle and adipose tissues of Chinese Ningxiang pigs. A total of 36 castrated female pigs with a similar initial weight (43.21 ± 0.57 kg) were randomly assigned to two treatments (with six pens per treatment and three pigs per pen) and fed either a basal diet or a basal diet supplemented with 0.08% NCG for 56 days. Results showed that dietary NCG reduced shear force (p = 0.004) and increased drip loss (p = 0.044) in longissimus dorsi muscle of Ningxiang pigs. Moreover, increased levels of oleic acid (C18:1n9c) (p = 0.009), paullinic acid (C20:1) (p = 0.004), and α-linolenic acid (C18:3n3) (p < 0.001), while significant reduction in the proportions of arachidonic acid (C20:4n6) (p < 0.001) and polyunsaturated fatty acid (PUFA) (p = 0.017) were observed in the longissimus dorsi muscle of pigs fed NCG when compared with those fed the control diet. As for adipose tissues, the C20:1 (p = 0.045) proportion in dorsal subcutaneous adipose (DSA), as well as the stearic acid (C18:0) (p = 0.018) level in perirenal adipose (PA) were decreased when pigs were fed the NCG diet compared with those of the control diet. In contrast, the margaric acid (C17:0) (p = 0.043) proportion in PA were increased. Moreover, the NCG diet produced PA with a greater proportion of total PUFAs (p = 0.001) (particularly linoleic acid (C18:2n6c) (p = 0.001)) compared with those produced by the control diet. These findings suggest that dietary NCG has beneficial effects by decreasing the shear force and improving the healthfulness of fatty acid profiles, providing a novel strategy for enhancing meat quality of pigs.
Collapse
Affiliation(s)
- Yueteng Xing
- Hunan Co-Innovation Center of Safety Animal Production, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Y.X.); (C.X.); (D.X.)
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Xin Wu
- Hunan Co-Innovation Center of Safety Animal Production, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Y.X.); (C.X.); (D.X.)
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang 330096, China
- Correspondence: (X.W.); (B.Z.); Tel.: +86-731-84619767 (X.W.); +86-731-84618088 (B.Z.); Fax: +86-731-84612685 (X.W.)
| | - Chunyan Xie
- Hunan Co-Innovation Center of Safety Animal Production, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Y.X.); (C.X.); (D.X.)
- Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang 330096, China
| | - Dingfu Xiao
- Hunan Co-Innovation Center of Safety Animal Production, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Y.X.); (C.X.); (D.X.)
| | - Bin Zhang
- Hunan Co-Innovation Center of Safety Animal Production, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Y.X.); (C.X.); (D.X.)
- Correspondence: (X.W.); (B.Z.); Tel.: +86-731-84619767 (X.W.); +86-731-84618088 (B.Z.); Fax: +86-731-84612685 (X.W.)
| |
Collapse
|
49
|
Rudar M, Columbus DA, Steinhoff-Wagner J, Suryawan A, Nguyen HV, Fleischmann R, Davis TA, Fiorotto ML. Leucine Supplementation Does Not Restore Diminished Skeletal Muscle Satellite Cell Abundance and Myonuclear Accretion When Protein Intake Is Limiting in Neonatal Pigs. J Nutr 2020; 150:22-30. [PMID: 31518419 PMCID: PMC6946895 DOI: 10.1093/jn/nxz216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/10/2019] [Accepted: 08/08/2019] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Rapid growth of skeletal muscle in the neonate requires the coordination of protein deposition and myonuclear accretion. During this developmental stage, muscle protein synthesis is highly sensitive to amino acid supply, especially Leu, but we do not know if this is true for satellite cells, the source of muscle fiber myonuclei. OBJECTIVE We examined whether dietary protein restriction reduces myonuclear accretion in the neonatal pig, and if any reduction in myonuclear accretion is mitigated by restoring Leu intake. METHODS Neonatal pigs (1.53 ± 0.2 kg) were fitted with jugular vein and gastric catheters and fed 1 of 3 isoenergetic milk replacers every 4 h for 21 d: high protein [HP; 22.5 g protein/(kg/d); n= 8]; restricted protein [RP; 11.2 g protein/(kg/d); n= 10]; or restricted protein with Leu [RPL; 12.0 g protein/(kg/d); n= 10]. Pigs were administered 5-bromo-2'-deoxyuridine (BrdU; 15 mg/kg) intravenously every 12 h from days 6 to 8. Blood was sampled on days 6 and 21 to measure plasma Leu concentrations. On day 21, pigs were killed and the longissimus dorsi (LD) muscle was collected to measure cell morphometry, satellite cell abundance, myonuclear accretion, and insulin-like growth factor (IGF) system expression. RESULTS Compared with HP pigs, postprandial plasma Leu concentration in RP pigs was 37% and 47% lower on days 6 and 21, respectively (P < 0.05); Leu supplementation in RPL pigs restored postprandial Leu to HP concentrations. Dietary protein restriction reduced LD myofiber cross-sectional area by 21%, satellite cell abundance by 35%, and BrdU+ myonuclear abundance by 25% (P < 0.05); Leu did not reverse these outcomes. Dietary protein restriction reduced LD muscle IGF2 expression by 60%, but not IGF1 or IGF1R expression (P < 0.05); Leu did not rescue IGF2 expression. CONCLUSIONS Satellite cell abundance and myonuclear accretion in neonatal pigs are compromised when dietary protein intake is restricted and are not restored with Leu supplementation.
Collapse
Affiliation(s)
- Marko Rudar
- USDA/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Daniel A Columbus
- USDA/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Julia Steinhoff-Wagner
- USDA/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Agus Suryawan
- USDA/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Hanh V Nguyen
- USDA/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Ryan Fleischmann
- USDA/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Teresa A Davis
- USDA/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Marta L Fiorotto
- USDA/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA,Address correspondence to MLF (E-mail: )
| |
Collapse
|
50
|
Naberhuis JK, Suryawan A, Nguyen HV, Hernandez-Garcia A, Cruz SM, Lau PE, Olutoye OO, Stoll B, Burrin DG, Fiorotto ML, Davis TA. Prematurity blunts the feeding-induced stimulation of translation initiation signaling and protein synthesis in muscle of neonatal piglets. Am J Physiol Endocrinol Metab 2019; 317:E839-E851. [PMID: 31503514 PMCID: PMC6879862 DOI: 10.1152/ajpendo.00151.2019] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Postnatal growth of lean mass is commonly blunted in preterm infants and may contribute to short- and long-term morbidities. To determine whether preterm birth alters the protein anabolic response to feeding, piglets were delivered at term or preterm, and fractional protein synthesis rates (Ks) were measured at 3 days of age while fasted or after an enteral meal. Activation of signaling pathways that regulate protein synthesis and degradation were determined. Relative body weight gain was lower in preterm than in term. Gestational age at birth (GAB) did not alter fasting plasma glucose or insulin, but when fed, plasma insulin and glucose rose more slowly, and reached peak value later, in preterm than in term. Feeding increased Ks in longissimus dorsi (LD) and gastrocnemius muscles, heart, pancreas, and kidney in both GAB groups, but the response was blunted in preterm. In diaphragm, lung, jejunum, and brain, feeding increased Ks regardless of GAB. Liver Ks was greater in preterm than term and increased with feeding regardless of GAB. In all tissues, changes in 4EBP1, S6K1, and PKB phosphorylation paralleled changes in Ks. In LD, eIF4E·eIF4G complex formation, phosphorylation of TSC2, mTOR, and rpS6, and association of mammalian target of rapamycin (mTOR1) complex with RagA, RagC, and Rheb were increased by feeding and blunted by prematurity. There were no differences among groups in LD protein degradation markers. Our results demonstrate that preterm birth reduces weight gain and the protein synthetic response to feeding in muscle, pancreas, and kidney, and this is associated with blunted insulin- and/or amino acid-induced translation initiation signaling.
Collapse
Affiliation(s)
- Jane K Naberhuis
- United States Department of Agriculture, Agricultural Research Service, Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Agus Suryawan
- United States Department of Agriculture, Agricultural Research Service, Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Hanh V Nguyen
- United States Department of Agriculture, Agricultural Research Service, Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Adriana Hernandez-Garcia
- United States Department of Agriculture, Agricultural Research Service, Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Stephanie M Cruz
- Division of Pediatric Surgery, Michael E. DeBakey Department of Surgery, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas
| | - Patricio E Lau
- Division of Pediatric Surgery, Michael E. DeBakey Department of Surgery, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas
| | - Oluyinka O Olutoye
- Division of Pediatric Surgery, Michael E. DeBakey Department of Surgery, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas
| | - Barbara Stoll
- United States Department of Agriculture, Agricultural Research Service, Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Douglas G Burrin
- United States Department of Agriculture, Agricultural Research Service, Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Marta L Fiorotto
- United States Department of Agriculture, Agricultural Research Service, Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Teresa A Davis
- United States Department of Agriculture, Agricultural Research Service, Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| |
Collapse
|