1
|
Cater DT, Clem C, Marozkina N, Gaston B. In Vivo Analysis of Tissue S-Nitrosothiols in Pediatric Sepsis. Antioxidants (Basel) 2024; 13:263. [PMID: 38539797 PMCID: PMC10967417 DOI: 10.3390/antiox13030263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/25/2024] [Accepted: 02/18/2024] [Indexed: 09/27/2024] Open
Abstract
S-nitrosothiols are endogenous, bioactive molecules. S-nitrosothiols are implicated in many diseases, including sepsis. It is currently cumbersome to measure S-nitrosothiols clinically. We have previously developed an instrument to measure tissue S-nitrosothiols non-invasively using ultraviolet light. We have performed a prospective case control study of controls and children with sepsis admitted to the PICU. We hypothesized that tissue S-nitrosothiols would be higher in septic patients than controls. Controls were patients with no cardiopulmonary instability. Cases were patients with septic shock. We measured S-nitrosothiols, both at diagnosis and after resolution of shock. A total of 44 patients were enrolled: 21 controls and 23 with sepsis. At baseline, the controls were younger [median age 5 years (IQR 0, 9) versus 11 years (IQR: 6, 16), p-value = 0.012], had fewer comorbidities [7 (33.3%) vs. 20 (87.0%), p-value < 0.001], and had lower PELOD scores [0 (IQR: 0, 0) vs. 12 (IQR: 11, 21), p-value < 0.001]. S-nitrosothiol levels were higher in sepsis cohort (1.1 ppb vs. 0.8 ppb, p = 0.004). Five patients with sepsis had longitudinal measures and had a downtrend after resolution of shock (1.3 ppb vs. 0.9 ppb, p = 0.04). We dichotomized patients based on S-nitrosothiol levels and found an association with worse clinical outcomes, but further work will be needed to validate these findings.
Collapse
Affiliation(s)
- Daniel T. Cater
- Division of Critical Care, Department of Pediatrics, Riley Hospital for Children, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Charles Clem
- Division of Pulmonology, Department of Pediatrics, Riley Hospital for Children, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (C.C.)
| | - Nadzeya Marozkina
- Division of Pulmonology, Department of Pediatrics, Riley Hospital for Children, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (C.C.)
| | - Benjamin Gaston
- Division of Pulmonology, Department of Pediatrics, Riley Hospital for Children, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (C.C.)
- The Herman B. Wells Center for Pediatric Research, Indianapolis, IN 46202, USA
- Crossroads Pediatric Device Consortium, Indianapolis, IN 46202, USA
| |
Collapse
|
2
|
Adetunji JA, Fasae KD, Awe AI, Paimo OK, Adegoke AM, Akintunde JK, Sekhoacha MP. The protective roles of citrus flavonoids, naringenin, and naringin on endothelial cell dysfunction in diseases. Heliyon 2023; 9:e17166. [PMID: 37484296 PMCID: PMC10361329 DOI: 10.1016/j.heliyon.2023.e17166] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 07/25/2023] Open
Abstract
The endothelial cells (ECs) make up the inner lining of blood vessels, acting as a barrier separating the blood and the tissues in several organs. ECs maintain endothelium integrity by controlling the constriction and relaxation of the vasculature, blood fluidity, adhesion, and migration. These actions of ECs are efficiently coordinated via an intricate signaling network connecting receptors, and a wide range of cellular macromolecules. ECs are naturally quiescent i.e.; they are not stimulated and do not proliferate. Upon infection or disease, ECs become activated, and this alteration is pivotal in the pathogenesis of a spectrum of human neurological, cardiovascular, diabetic, cancerous, and viral diseases. Considering the central position that ECs play in disease pathogenesis, therapeutic options have been targeted at improving ECs integrity, assembly, functioning, and health. The dietary intake of flavonoids present in citrus fruits has been associated with a reduced risk of endothelium dysfunction. Naringenin (NGN) and Naringin (NAR), major flavonoids in grapefruit, tomatoes, and oranges possess anti-inflammatory, antioxidant properties, and cell survival potentials, which improve the health of the vascular endothelium. In this review, we provide a comprehensive summary and present the advances in understanding of the mechanisms through which NGN and NAR modulate the biomarkers of vascular dysfunction and protect the endothelium against unresolved inflammation, oxidative stress, atherosclerosis, and angiogenesis. We also provide perspectives and suggest further studies that will help assess the efficacy of citrus flavonoids in the therapeutics of human vascular diseases.
Collapse
Affiliation(s)
- Joy A. Adetunji
- Nutritional and Industrial Biochemistry Unit, Department of Biochemistry, College of Medicine, University of Ibadan, Nigeria
| | - Kehinde D. Fasae
- Department of Biomedical and Diagnostic Sciences, University of Tennessee, Knoxville, USA
| | - Ayobami I. Awe
- Department of Biology, The Catholic University of America, Washington DC, USA
| | - Oluwatomiwa K. Paimo
- Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria
| | - Ayodeji M. Adegoke
- Department of Pharmacology, University of the Free State, P.O. Box 339, Bloemfontein 9300, South Africa
- Cancer Research and Molecular Biology Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, 200005, Nigeria
| | - Jacob K. Akintunde
- Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria
| | - Mamello P. Sekhoacha
- Department of Pharmacology, University of the Free State, P.O. Box 339, Bloemfontein 9300, South Africa
| |
Collapse
|
3
|
Ebeling S, Kowalczyk A, Perez-Vazquez D, Mattiola I. Regulation of tumor angiogenesis by the crosstalk between innate immunity and endothelial cells. Front Oncol 2023; 13:1171794. [PMID: 37234993 PMCID: PMC10206118 DOI: 10.3389/fonc.2023.1171794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/10/2023] [Indexed: 05/28/2023] Open
Abstract
Endothelial cells and immune cells are major regulators of cancer progression and prognosis. Endothelial cell proliferation and angiogenesis are required for providing nutrients and oxygen to the nascent tumor and infiltration of immune cells to the tumor is dependent on endothelial cell activation. Myeloid cells and innate lymphocytes have an important role in shaping the tumor microenvironment by crosstalking with cancer cells and structural cells, including endothelial cells. Innate immune cells can modulate the activation and functions of tumor endothelial cells, and, in turn, endothelial cell expression of adhesion molecules can affect immune cell extravasation. However, the mechanisms underlying this bidirectional crosstalk are not fully understood. In this review, we will provide an overview of the current knowledge on the pathways regulating the crosstalk between innate immune cells and endothelial cells during tumor progression and discuss their potential contribution to the development of novel anti-tumor therapeutic approaches.
Collapse
Affiliation(s)
- Svenja Ebeling
- Institute of Microbiology, Infectious Diseases and Immunology (I-MIDI), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and the Berlin Institute of Health, Berlin, Germany
- Laboratory of Mucosal and Developmental Immunology, Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Anita Kowalczyk
- Institute of Microbiology, Infectious Diseases and Immunology (I-MIDI), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and the Berlin Institute of Health, Berlin, Germany
- Laboratory of Mucosal and Developmental Immunology, Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Diego Perez-Vazquez
- Institute of Microbiology, Infectious Diseases and Immunology (I-MIDI), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and the Berlin Institute of Health, Berlin, Germany
- Laboratory of Mucosal and Developmental Immunology, Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Irene Mattiola
- Institute of Microbiology, Infectious Diseases and Immunology (I-MIDI), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and the Berlin Institute of Health, Berlin, Germany
- Laboratory of Mucosal and Developmental Immunology, Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| |
Collapse
|
4
|
Wu Y, Song X, Li P, Wang Z, Zhao Z, Zhang T. Highly pathogenic porcine reproductive and respiratory syndrome virus-induced inflammatory response in porcine pulmonary microvascular endothelial cells and effects of herbal ingredients on main inflammatory molecules. Int Immunopharmacol 2023; 118:110012. [PMID: 36958210 DOI: 10.1016/j.intimp.2023.110012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/27/2023] [Accepted: 03/06/2023] [Indexed: 03/25/2023]
Abstract
The role of microvascular endothelial cells (MVECs) in viral infection has received increasing attention. Our previous study demonstrated the susceptibility of porcine pulmonary MVECs to highly pathogenic porcine reproductive and respiratory syndrome virus (HP-PRRSV), while their responses to the viral infection remain unclear. This study aimed to understand effects of the HP-PRRSV infection on functions of porcine pulmonary MVECs and the intervention effects of Chinese herbal ingredients on them. Highly purified porcine pulmonary MVECs were separated using CD31-immunomagnetic beads and infected with HP-PRRSV JXA1 and HN strain. The virus particles in cells and the ultrastructural pathological changes of cells were revealed by transmission electron microscopy. High-throughput transcriptome sequencing indicated that 104 and 228 genes were differentially expressed at 36 h post-infection, respectively, including many inflammatory molecules such as interleukins, chemokines, and adhesion molecules. The expression kinetics of HP-PRRSV-induced IL-1α, IL-6, IL-8, and VCAM-1 were characterized at the mRNA and protein levels. Luteolin significantly down-regulated HP-PRRSV-induced increase of the four molecules at both levels, and glycyrrhetinic acid and baicalin reduced that of IL-6 and VCAM-1. Our results suggest that porcine pulmonary MVECs play important roles in the inflammatory lung injury caused by HP-PRRSV infection and that herbal ingredients have potential regulatory effects on the HP-PRRSV-induced dysfunction of MVECs.
Collapse
Affiliation(s)
- Yanmei Wu
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Animal Science and Technology College, Beijing University of Agriculture, No. 7 Beinong Road, Beijing 102206, China
| | - Xiaoxiao Song
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Animal Science and Technology College, Beijing University of Agriculture, No. 7 Beinong Road, Beijing 102206, China
| | - Peishan Li
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Animal Science and Technology College, Beijing University of Agriculture, No. 7 Beinong Road, Beijing 102206, China
| | - Zhaoli Wang
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Animal Science and Technology College, Beijing University of Agriculture, No. 7 Beinong Road, Beijing 102206, China
| | - Zhanzhong Zhao
- Laboratory of Pharmacobiology, Institute of Animal Science, Chinese Academy of Agricultural Science, No. 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Tao Zhang
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Animal Science and Technology College, Beijing University of Agriculture, No. 7 Beinong Road, Beijing 102206, China.
| |
Collapse
|
5
|
Afzal A, Beavers WN, Skaar EP, Calhoun MC, Richardson KA, Landstreet SR, Cliffel DE, Wright D, Bastarache JA, Ware LB. Ultraviolet light oxidation of fresh hemoglobin eliminates aggregate formation seen in commercially sourced hemoglobin. Blood Cells Mol Dis 2023; 98:102699. [PMID: 36027791 PMCID: PMC10024311 DOI: 10.1016/j.bcmd.2022.102699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 08/02/2022] [Accepted: 08/11/2022] [Indexed: 11/17/2022]
Abstract
Elevated levels of circulating cell-free hemoglobin (CFH) are an integral feature of several clinical conditions including sickle cell anemia, sepsis, hemodialysis and cardiopulmonary bypass. Oxidized (Fe3+, ferric) hemoglobin contributes to the pathophysiology of these disease states and is therefore widely studied in experimental models, many of which use commercially sourced CFH. In this study, we treated human endothelial cells with commercially sourced ferric hemoglobin and observed the appearance of dense cytoplasmic aggregates (CAgg) over time. These CAgg were intensely autofluorescent, altered intracellular structures (such as mitochondria), formed in multiple cell types and with different media composition, and formed regardless of the presence or absence of cells. An in-depth chemical analysis of these CAgg revealed that they contain inorganic components and are not pure hemoglobin. To oxidize freshly isolated hemoglobin without addition of an oxidizing agent, we developed a novel method to convert ferrous CFH to ferric CFH using ultraviolet light without the need for additional redox agents. Unlike commercial ferric hemoglobin, treatment of cells with the fresh ferric hemoglobin did not lead to CAgg formation. These studies suggest that commercially sourced CFH may contain stabilizers and additives which contribute to CAgg formation.
Collapse
Affiliation(s)
- Aqeela Afzal
- Department of Neurological Surgery, Division of Surgical Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - William N Beavers
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Pathobiological Sciences, School of Veterinary Medicine, Louisina State University and Agricultural and Mechanical College, Baton Rouge, LA, USA
| | - Eric P Skaar
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | | | - Stuart R Landstreet
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - David E Cliffel
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA
| | - David Wright
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA
| | - Julie A Bastarache
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - Lorraine B Ware
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
6
|
Adams JA, Uryash A, Lopez JR. Non-Invasive Pulsatile Shear Stress Modifies Endothelial Activation; A Narrative Review. Biomedicines 2022; 10:biomedicines10123050. [PMID: 36551807 PMCID: PMC9775985 DOI: 10.3390/biomedicines10123050] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/29/2022] Open
Abstract
The monolayer of cells that line both the heart and the entire vasculature is the endothelial cell (EC). These cells respond to external and internal signals, producing a wide array of primary or secondary messengers involved in coagulation, vascular tone, inflammation, and cell-to-cell signaling. Endothelial cell activation is the process by which EC changes from a quiescent cell phenotype, which maintains cellular integrity, antithrombotic, and anti-inflammatory properties, to a phenotype that is prothrombotic, pro-inflammatory, and permeable, in addition to repair and leukocyte trafficking at the site of injury or infection. Pathological activation of EC leads to increased vascular permeability, thrombosis, and an uncontrolled inflammatory response that leads to endothelial dysfunction. This pathological activation can be observed during ischemia reperfusion injury (IRI) and sepsis. Shear stress (SS) and pulsatile shear stress (PSS) are produced by mechanical frictional forces of blood flow and contraction of the heart, respectively, and are well-known mechanical signals that affect EC function, morphology, and gene expression. PSS promotes EC homeostasis and cardiovascular health. The archetype of inducing PSS is exercise (i.e., jogging, which introduces pulsations to the body as a function of the foot striking the pavement), or mechanical devices which induce external pulsations to the body (Enhanced External Pulsation (EECP), Whole-body vibration (WBV), and Whole-body periodic acceleration (WBPA aka pGz)). The purpose of this narrative review is to focus on the aforementioned noninvasive methods to increase PSS, review how each of these modify specific diseases that have been shown to induce endothelial activation and microcirculatory dysfunction (Ischemia reperfusion injury-myocardial infarction and cardiac arrest and resuscitation), sepsis, and lipopolysaccharide-induced sepsis syndrome (LPS)), and review current evidence and insight into how each may modify endothelial activation and how these may be beneficial in the acute and chronic setting of endothelial activation and microvascular dysfunction.
Collapse
Affiliation(s)
- Jose A. Adams
- Division of Neonatology, Mount Sinai Medical Center, Miami Beach, FL 33140, USA
- Correspondence:
| | - Arkady Uryash
- Division of Neonatology, Mount Sinai Medical Center, Miami Beach, FL 33140, USA
| | - Jose R. Lopez
- Department of Research, Mount Sinai Medical Center, Miami Beach, FL 33140, USA
| |
Collapse
|
7
|
McDonald CR, Weckman AM, Richardson E, Hawkes MT, Leligdowicz A, Namasopo S, Opoka RO, Conroy AL, Kain KC. Sex as a determinant of disease severity and clinical outcome in febrile children under five presenting to a regional referral hospital in Uganda. PLoS One 2022; 17:e0276234. [PMID: 36269702 PMCID: PMC9586386 DOI: 10.1371/journal.pone.0276234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 10/03/2022] [Indexed: 11/20/2022] Open
Abstract
Sex and gender are well-established determinants of health in adult and adolescent populations in low resource settings. There are limited data on sex as a determinant of host response to disease and clinical outcome in febrile children in sub-Saharan Africa, where the risk of infection-related mortality is greatest. We examined sex differences and gender biases in health-seeking behavior, clinical care, biological response to infection, or outcome in a prospective observational cohort of febrile children under 5 years of age presenting to a regional referral hospital in Jinja, Uganda. Main outcomes (stratified by sex) were disease severity at presentation measured by clinical and biological parameters, clinical management (e.g., time to see a physician, treatment by diagnosis), and disease outcome (e.g., mortality). Clinical measures of disease severity included Lambaréné Organ Dysfunction Score (LODS), Signs of Inflammation in Children that Kill (SICK), and the Pediatric Early Death Index for Africa (PEDIA). Biological measures of disease severity were assessed using circulating markers of immune and endothelial activation associated with severe and fatal infections. Differences in outcome by sex were analyzed using bivariate analyses with Bonferroni correction for multiple comparisons. In this cohort of febrile patients admitted to hospital (n = 2049), malaria infection was common (59.2%). 15.9% of children presented with severe disease (LODS score ≥ 2). 97 children (4.7%) died, and most deaths (n = 83) occurred within 48 hours of hospital admission. Clinical measures of disease severity at presentation, clinical management, and outcome (e.g., mortality) did not differ by sex in children under five years of age. Host response to infection, as determined by endothelial and inflammatory mediators (e.g., sTREM1, Ang-2) quantified at hospital presentation, did not differ by sex. In this cohort of children under the age of five, sex was not a principal determinant of disease severity at hospital presentation, clinical management, disease outcome, or biological response to infection (p-values not significant for all comparisons, after Bonferroni correction). The results suggest that health seeking behavior by caregivers and clinical care in the hospital setting did not reflect a gender bias in this cohort.
Collapse
Affiliation(s)
- Chloe R. McDonald
- SAR Laboratories, Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital, Toronto, Canada
| | - Andrea M. Weckman
- SAR Laboratories, Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital, Toronto, Canada,Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Emma Richardson
- Clinical Epidemiology & Biostatistics Department, Faculty of Health Sciences, McMaster University, Hamilton, Canada
| | - Michael T. Hawkes
- Division of Pediatric Infectious Diseases, University of Alberta, Edmonton, Canada
| | - Aleksandra Leligdowicz
- SAR Laboratories, Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital, Toronto, Canada,Interdepartmental Division of Critical Care Medicine, Department of Medicine, University of Toronto, Toronto, Canada
| | - Sophie Namasopo
- Department of Paediatrics, Kabale Regional Referral Hospital, Kabale, Uganda
| | - Robert O. Opoka
- Department of Paediatrics and Child Health, Mulago Hospital and Makerere University, Kawempe, Kampala, Uganda
| | - Andrea L. Conroy
- Department of Pediatrics, Indiana University, School of Medicine, Indianapolis, Indiana, United States of America
| | - Kevin C. Kain
- SAR Laboratories, Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital, Toronto, Canada,Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Canada,Toronto General Hospital Research Institute, University Health Network, Toronto, Canada,Tropical Disease Unit, Division of Infectious Diseases, Department of Medicine, University of Toronto, Toronto, Canada,* E-mail:
| |
Collapse
|
8
|
McDonald CR, Leligdowicz A, Conroy AL, Weckman AM, Richard-Greenblatt M, Ngai M, Erice C, Zhong K, Namasopo S, Opoka RO, Hawkes MT, Kain KC. Immune and endothelial activation markers and risk stratification of childhood pneumonia in Uganda: A secondary analysis of a prospective cohort study. PLoS Med 2022; 19:e1004057. [PMID: 35830474 PMCID: PMC9328519 DOI: 10.1371/journal.pmed.1004057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 07/27/2022] [Accepted: 06/23/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Despite the global burden of pneumonia, reliable triage tools to identify children in low-resource settings at risk of severe and fatal respiratory tract infection are lacking. This study assessed the ability of circulating host markers of immune and endothelial activation quantified at presentation, relative to currently used clinical measures of disease severity, to identify children with pneumonia who are at risk of death. METHODS AND FINDINGS We conducted a secondary analysis of a prospective cohort study of children aged 2 to 59 months presenting to the Jinja Regional Hospital in Jinja, Uganda between February 2012 and August 2013, who met the Integrated Management of Childhood Illness (IMCI) diagnostic criteria for pneumonia. Circulating plasma markers of immune (IL-6, IL-8, CXCL-10/IP-10, CHI3L1, sTNFR1, and sTREM-1) and endothelial (sVCAM-1, sICAM-1, Angpt-1, Angpt-2, and sFlt-1) activation measured at hospital presentation were compared to lactate, respiratory rate, oxygen saturation, procalcitonin (PCT), and C-reactive protein (CRP) with a primary outcome of predicting 48-hour mortality. Of 805 children with IMCI pneumonia, 616 had severe pneumonia. Compared to 10 other immune and endothelial activation markers, sTREM-1 levels at presentation had the best predictive accuracy in identifying 48-hour mortality for children with pneumonia (AUROC 0.885, 95% CI 0.841 to 0.928; p = 0.03 to p < 0.001) and severe pneumonia (AUROC 0.870, 95% CI 0.824 to 0.916; p = 0.04 to p < 0.001). sTREM-1 was more strongly associated with 48-hour mortality than lactate (AUROC 0.745, 95% CI 0.664 to 0.826; p < 0.001), respiratory rate (AUROC 0.615, 95% CI 0.528 to 0.702; p < 0.001), oxygen saturation (AUROC 0.685, 95% CI 0.594 to 0.776; p = 0.002), PCT (AUROC 0.650, 95% CI 0.566 to 0.734; p < 0.001), and CRP (AUROC 0.562, 95% CI 0.472 to 0.653; p < 0.001) in cases of pneumonia and severe pneumonia. The main limitation of this study was the unavailability of radiographic imaging. CONCLUSIONS In this cohort of Ugandan children, sTREM-1 measured at hospital presentation was a significantly better indicator of 48-hour mortality risk than other common approaches to risk stratify children with pneumonia. Measuring sTREM-1 at clinical presentation may improve the early triage, management, and outcome of children with pneumonia at risk of death. TRIAL REGISTRATION The trial was registered at clinicaltrial.gov (NCT04726826).
Collapse
Affiliation(s)
- Chloe R. McDonald
- SAR Laboratories, Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital, Toronto, Canada
| | - Aleksandra Leligdowicz
- SAR Laboratories, Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital, Toronto, Canada
- Department of Medicine, Division of Critical Care Medicine, Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
| | - Andrea L. Conroy
- Department of Pediatrics, Indiana University, School of Medicine, Indianapolis, Indiana, United States of America
| | - Andrea M. Weckman
- SAR Laboratories, Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital, Toronto, Canada
| | - Melissa Richard-Greenblatt
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
- Public Health Ontario Laboratory, Toronto, Canada
| | - Michelle Ngai
- SAR Laboratories, Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital, Toronto, Canada
| | - Clara Erice
- SAR Laboratories, Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital, Toronto, Canada
| | - Kathleen Zhong
- SAR Laboratories, Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital, Toronto, Canada
| | - Sophie Namasopo
- Department of Paediatrics, Kabale Regional Referral Hospital, Kabale, Uganda
| | - Robert O. Opoka
- Department of Paediatrics and Child Health, Mulago Hospital and Makerere University, Kawempe, Kampala, Uganda
| | - Michael T. Hawkes
- Division of Pediatric Infectious Diseases, University of Alberta, Edmonton, Canada
| | - Kevin C. Kain
- SAR Laboratories, Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital, Toronto, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
- Department of Medicine, University of Toronto, Toronto, Canada
- Tropical Disease Unit, Division of Infectious Diseases, Department of Medicine, University of Toronto, Toronto, Canada
- * E-mail:
| |
Collapse
|
9
|
Atkinson BK, Goddard A, Engelbrecht M, Pretorius S, Pazzi P. Circulating markers of endothelial activation in canine parvoviral enteritis. J S Afr Vet Assoc 2022. [DOI: 10.36303/jsava.2022.93.1.496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Affiliation(s)
- BK Atkinson
- Department of Companion Animal Clinical Studies, Faculty of Veterinary Science, University of Pretoria,
South Africa
| | - A Goddard
- Department of Companion Animal Clinical Studies, Faculty of Veterinary Science, University of Pretoria,
South Africa
| | - M Engelbrecht
- Department of Companion Animal Clinical Studies, Faculty of Veterinary Science, University of Pretoria,
South Africa
| | - S Pretorius
- Department of Companion Animal Clinical Studies, Faculty of Veterinary Science, University of Pretoria,
South Africa
| | - P Pazzi
- Department of Companion Animal Clinical Studies, Faculty of Veterinary Science, University of Pretoria,
South Africa
| |
Collapse
|
10
|
Jain V, Thomas T, Basak S, Sharma RK, Singh N. Sequential dysregulated plasma levels of angiopoietins (ANG-2 and ratios of ANG-2/ANG-1) are associated with malaria severity and mortality among hospital admitted cases in South Bastar Region of Chhattisgarh, Central India. Pathog Glob Health 2022; 116:47-58. [PMID: 34308785 PMCID: PMC8812749 DOI: 10.1080/20477724.2021.1953685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Cerebral malaria (CM) is one of the most severe forms of P. falciparum infection, with an associated high case-fatality rate. Angiopoietins (ANG-1 and ANG-2) are important biomarkers of endothelial activation and dysfunction. This study was carried out in Maharani Hospital and associated Medical College, Jagdalpur, CG, Central India from 2010 to 2014. Based on the treatment recovery patterns, cases (n = 65) were classified as mild malaria with rapid recovery (MM-RR), n= 14; non-cerebral severe malaria with moderately fast recovery (NCSM-MFR), n= 9; CM survivors with slow recovery (CMS-SR), n= 36 and deteriorated CM non-survivors (Det-CMNS), n= 6. Plasma levels (pg/ml) of ANG-1 and ANG-2 were measured by ELISA in all the samples at the time of hospital admission and 48 hours of treatment. Levels were also measured in available samples at the third time point (time of discharge for survivors or 72 hours post-treatment in fatal cases). Data analysis was done by appropriate statistical tests using Stata 11.0 and SPSS 25.0 software. At the time of admission, ANG-2 and ratios of ANG-2/ANG-1 significantly distinguished Det-CMNS cases from MM-RR and NCSM-MFR cases with good AUC scores (0.8-0.9). Further, Det-CMNS cases could also be distinguished from MM-RR, NCSM-MFR, and CMS-SR cases by ANG-2 (AUC scores 0.9) and ratios of ANG-2/ANG-1 (AUC: 0.8-0.9) at 48 hours of treatment. Paired analysis of sequential measurement of angiopoietins revealed that compared to admission levels, the ratios of ANG-2/ANG-1 significantly declined 48 hours after treatment in MM-RR (p= 0.041), NCSM-MFR (p= 0.050), and CMS-SR (p= 0.0002) cases but not in cases of Det-CMNS (p= 0.916). In conclusion, plasma levels of ANG-2 and ratios of ANG-2/ANG-1 may serve as good biomarkers to distinguish the malaria severity at the time of hospital admission and recovery patterns upon treatment in Central India.
Collapse
Affiliation(s)
- Vidhan Jain
- Department of Virology and Zoonotic Diseases, ICMR-National Institute of Research in Tribal Health, Jabalpur, MP, India
| | - Trilok Thomas
- Department of Virology and Zoonotic Diseases, ICMR-National Institute of Research in Tribal Health, Jabalpur, MP, India
| | - Sanjay Basak
- Former District Malaria Officer, Maharani Hospital and Associated Medical College Jagdalpur, Chhattisgarh, India
| | - Ravendra Kumar Sharma
- Department of Statistics, ICMR-National Institute of Medical Statistics, ICMR Campus, New Delhi, India
| | - Neeru Singh
- Department of Virology and Zoonotic Diseases, ICMR-National Institute of Research in Tribal Health, Jabalpur, MP, India
| |
Collapse
|
11
|
Fukuda S, Niimi Y, Hirasawa Y, Manyeza ER, Garner CE, Southan G, Salzman AL, Prough DS, Enkhbaatar P. Modulation of oxidative and nitrosative stress attenuates microvascular hyperpermeability in ovine model of Pseudomonas aeruginosa sepsis. Sci Rep 2021; 11:23966. [PMID: 34907252 PMCID: PMC8671546 DOI: 10.1038/s41598-021-03320-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 11/18/2021] [Indexed: 11/09/2022] Open
Abstract
In sepsis, microvascular hyperpermeability caused by oxidative/nitrosative stress (O&NS) plays an important role in tissue edema leading to multi-organ dysfunctions and increased mortality. We hypothesized that a novel compound R-107, a modulator of O&NS, effectively ameliorates the severity of microvascular hyperpermeability and preserves multi-organ function in ovine sepsis model. Sepsis was induced in twenty-two adult female Merino sheep by intravenous infusion of Pseudomonas aeruginosa (PA) (1 × 1010 CFUs). The animals were allocated into: 1) Control (n = 13): intramuscular injection (IM) of saline; and 2) Treatment (n = 9): IM of 50 mg/kg R-107. The treatment was given after the PA injection, and monitored for 24-h. R-107 treatment significantly reduced fluid requirement (15-24 h, P < 0.05), net fluid balance (9-24 h, P < 0.05), and water content in lung/heart/kidney (P = 0.02/0.04/0.01) compared to control. R-107 treatment significantly decreased lung injury score/modified sheep SOFA score at 24-h (P = 0.01/0.04), significantly lowered arterial lactate (21-24 h, P < 0.05), shed syndecan-1 (3-6 h, P < 0.05), interleukin-6 (6-12 h, P < 0.05) levels in plasma, and significantly attenuated lung tissue 3-nitrotyrosine and vascular endothelial growth factor-A expressions (P = 0.03/0.002) compared to control. There was no adverse effect in R-107 treatment. In conclusion, modulation of O&NS by R-107 reduced hyperpermeability markers and improved multi-organ function.
Collapse
Affiliation(s)
- Satoshi Fukuda
- grid.176731.50000 0001 1547 9964Department of Anesthesiology, Medical Branch, University of Texas, 301 University Boulevard, Galveston, TX 77555 USA ,grid.411731.10000 0004 0531 3030Department of General Medicine, International University of Health and Welfare, Shioya Hospital, Tochigi, 329-2145 Japan
| | - Yosuke Niimi
- grid.176731.50000 0001 1547 9964Department of Anesthesiology, Medical Branch, University of Texas, 301 University Boulevard, Galveston, TX 77555 USA ,grid.410818.40000 0001 0720 6587Department of Plastic and Reconstructive Surgery, Tokyo Women’s Medical University, Tokyo, 162-8666 Japan
| | - Yasutaka Hirasawa
- grid.176731.50000 0001 1547 9964Department of Anesthesiology, Medical Branch, University of Texas, 301 University Boulevard, Galveston, TX 77555 USA ,grid.136304.30000 0004 0370 1101Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, 260-8677 Japan
| | - Ennert R. Manyeza
- grid.176731.50000 0001 1547 9964Department of Anesthesiology, Medical Branch, University of Texas, 301 University Boulevard, Galveston, TX 77555 USA
| | | | | | | | - Donald S. Prough
- grid.176731.50000 0001 1547 9964Department of Anesthesiology, Medical Branch, University of Texas, 301 University Boulevard, Galveston, TX 77555 USA
| | - Perenlei Enkhbaatar
- Department of Anesthesiology, Medical Branch, University of Texas, 301 University Boulevard, Galveston, TX, 77555, USA.
| |
Collapse
|
12
|
Hong F, Shi M, Cao J, Wang Y, Gong Y, Gao H, Li Z, Zheng J, Zeng L, He A, Xu K. Predictive role of endothelial cell activation in cytokine release syndrome after chimeric antigen receptor T cell therapy for acute lymphoblastic leukaemia. J Cell Mol Med 2021; 25:11063-11074. [PMID: 34734474 PMCID: PMC8650023 DOI: 10.1111/jcmm.17029] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 10/07/2021] [Accepted: 10/19/2021] [Indexed: 02/02/2023] Open
Abstract
CD19-target chimeric antigen receptor (CAR)-T cell therapy is highly effective for relapsed/refractory (R/R) acute lymphoblastic leukaemia (ALL), but is often complicated by cytokine release syndrome (CRS), which is potentially life-threatening. Endothelial cells are the core regulator of CRS in many infectious diseases and may also play a key role after CAR-T cell therapy. We provided a detailed clinical, laboratory description and endothelial cell activation biomarkers in patients with CRS. Endothelial cell activation was associated with occurrence, development and severity of CRS, manifested by decreased serum angiopoietin (Ang)-1 levels and increased levels of von Willebrand Factor (VWF), Ang-2, Ang-2:Ang-1, sE-selectin, soluble intercellular adhesion molecule (sICAM-1) and soluble vascular cell adhesion molecule (sVCAM)-1. Besides, the endothelial activation was correlated with the hepatic, kidney and hematopoietic dysfunction in CRS patients. After infusion of CAR-T cells, we detected changes of endothelial activation-related biomarkers within 36 hours in patients who subsequently developed CRS, especially severe CRS. Using top tree models, we could predict which patients would develop CRS, especially severe CRS, or identify the severity of CRS by certain biomarkers of endothelial activation. These data provide a new idea and will help identify new targets for early intervention and prevention of CRS.
Collapse
Affiliation(s)
- Fei Hong
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, ShaanXi, China
| | - Ming Shi
- Cancer Institute, Xuzhou Medical University, Jiangsu, China
| | - Jiang Cao
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Jiangsu, China
| | - Ying Wang
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Jiangsu, China
| | - Yanqing Gong
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Jiangsu, China
| | - Hui Gao
- Jiangsu Bone Marrow Stem Cell Institute, Jiangsu, China
| | - Zhenyu Li
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Jiangsu, China
| | - Junnian Zheng
- Cancer Institute, Xuzhou Medical University, Jiangsu, China
| | - Lingyu Zeng
- Jiangsu Bone Marrow Stem Cell Institute, Jiangsu, China
| | - Aili He
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, ShaanXi, China
| | - Kailin Xu
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Jiangsu, China.,Jiangsu Bone Marrow Stem Cell Institute, Jiangsu, China
| |
Collapse
|
13
|
Maucher D, Schmidt B, Schumann J. Loss of Endothelial Barrier Function in the Inflammatory Setting: Indication for a Cytokine-Mediated Post-Transcriptional Mechanism by Virtue of Upregulation of miRNAs miR-29a-3p, miR-29b-3p, and miR-155-5p. Cells 2021; 10:cells10112843. [PMID: 34831066 PMCID: PMC8616298 DOI: 10.3390/cells10112843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/29/2021] [Accepted: 10/12/2021] [Indexed: 11/16/2022] Open
Abstract
Dysfunction of the endothelial barrier plays a central role in the pathogenesis of both acute and chronic inflammatory processes such as sepsis or atherosclerosis. Due to attenuation of endothelial cell contacts, there is an increased transfer of blood proteins and fluid into the surrounding tissue, which relates to edema formation and distribution disorders. However, the mechanisms underlying these responses are not fully understood. In this study, we used human endothelial cells to mimic the loss of barrier function in an inflammatory milieu. We found that a weakened endothelial barrier after cytokine stimulation was accompanied by a significantly changed transcriptome. Apparent was a depletion of mRNAs encoding cell adhesion molecules. Furthermore, we found that cytokine treatment of endothelial cells induced upregulation of miR-29a-3p, miR-29b-3p, and miR-155-5p. miRNAs are known to negatively affect stability and translational efficiency of target mRNAs. Remarkably, miR-29a-3p, miR-29b-3p, and miR-155-5p have already been described to target the mRNAs of central tight and adherent junction proteins including F11 receptor, claudin 1, β-catenin, p120-catenin, and eplin. This taken together points to the existence of a posttranscriptional mechanism for expression inhibition of central adhesion proteins, which is triggered by inflammatory cytokines and mediated by miR-29a-3p, miR-29b-3p, and miR-155-5p.
Collapse
|
14
|
Liu H, Zhong W, Zhang X, Lin D, Wu J. Nanomedicine as a promising strategy for the theranostics of infectious diseases. J Mater Chem B 2021; 9:7878-7908. [PMID: 34611689 DOI: 10.1039/d1tb01316e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Infectious diseases caused by bacteria, viruses, and fungi and their global spread pose a great threat to human health. The 2019 World Health Organization report predicted that infection-related mortality will be similar to cancer mortality by 2050. Particularly, the global cumulative numbers of the recent outbreak of coronavirus disease (COVID-19) have reached 110.7 million cases and over 2.4 million deaths as of February 23, 2021. Moreover, the crisis of these infectious diseases exposes the many problems of traditional diagnosis, treatment, and prevention, such as time-consuming and unselective detection methods, the emergence of drug-resistant bacteria, serious side effects, and poor drug delivery. There is an urgent need for rapid and sensitive diagnosis as well as high efficacy and low toxicity treatments. The emergence of nanomedicine has provided a promising strategy to greatly enhance detection methods and drug treatment efficacy. Owing to their unique optical, magnetic, and electrical properties, nanoparticles (NPs) have great potential for the fast and selective detection of bacteria, viruses, and fungi. NPs exhibit remarkable antibacterial activity by releasing reactive oxygen species and metal ions, exerting photothermal effects, and causing destruction of the cell membrane. Nano-based delivery systems can further improve drug permeability, reduce the side effects of drugs, and prolong systemic circulation time and drug half-life. Moreover, effective drugs against COVID-19 are still lacking. Recently, nanomedicine has shown great potential to accelerate the development of safe and novel anti-COVID-19 drugs. This article reviews the fundamental mechanisms and the latest developments in the treatment and diagnosis of bacteria, viruses, and fungi and discusses the challenges and perspectives in the application of nanomedicine.
Collapse
Affiliation(s)
- Hengyu Liu
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China.
| | - Wenhao Zhong
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China.
| | - Xinyu Zhang
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China.
| | - Dongjun Lin
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China.
| | - Jun Wu
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China. .,School of Biomedical Engineering, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
15
|
Dubrovskyi O, Hasten E, Dudek SM, Flavin MT, Chan LLY. Development of an Image-Based HCS-Compatible Method for Endothelial Barrier Function Assessment. SLAS DISCOVERY 2021; 26:1079-1090. [PMID: 34269109 DOI: 10.1177/24725552211030900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The recent renascence of phenotypic drug discovery (PDD) is catalyzed by its ability to identify first-in-class drugs and deliver results when the exact molecular mechanism is partially obscure. Acute respiratory distress syndrome (ARDS) is a severe, life-threatening condition with a high mortality rate that has increased in frequency due to the COVID-19 pandemic. Despite decades of laboratory and clinical study, no efficient pharmacological therapy for ARDS has been found. An increase in endothelial permeability is the primary event in ARDS onset, causing the development of pulmonary edema that leads to respiratory failure. Currently, the detailed molecular mechanisms regulating endothelial permeability are poorly understood. Therefore, the use of the PDD approach in the search for efficient ARDS treatment can be more productive than classic target-based drug discovery (TDD), but its use requires a new cell-based assay compatible with high-throughput (HTS) and high-content (HCS) screening. Here we report the development of a new plate-based image cytometry method to measure endothelial barrier function. The incorporation of image cytometry in combination with digital image analysis substantially decreases assay variability and increases the signal window. This new method simultaneously allows for rapid measurement of cell monolayer permeability and cytological analysis. The time-course of permeability increase in human pulmonary artery endothelial cells (HPAECs) in response to the thrombin and tumor necrosis factor α treatment correlates with previously published data obtained by transendothelial resistance (TER) measurements. Furthermore, the proposed image cytometry method can be easily adapted for HTS/HCS applications.
Collapse
Affiliation(s)
- Oleksii Dubrovskyi
- UICentre, College of Pharmacy, University of Illinois in Chicago, Chicago, IL, USA
| | - Erica Hasten
- Department of Advanced Technology R&D, Nexcelom Bioscience LLC, Lawrence, MA, USA
| | - Steven M Dudek
- Division of Pulmonary, Critical Care, Sleep, and Allergy, College of Medicine, University of Illinois in Chicago, Chicago, IL, USA
| | - Michael T Flavin
- UICentre, College of Pharmacy, University of Illinois in Chicago, Chicago, IL, USA
| | - Leo Li-Ying Chan
- Department of Advanced Technology R&D, Nexcelom Bioscience LLC, Lawrence, MA, USA
| |
Collapse
|
16
|
Perioperative Vascular Biomarker Profiling in Elective Surgery Patients Developing Postoperative Delirium: A Prospective Cohort Study. Biomedicines 2021; 9:biomedicines9050553. [PMID: 34063403 PMCID: PMC8155907 DOI: 10.3390/biomedicines9050553] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 02/06/2023] Open
Abstract
Background: Postoperative delirium (POD) ranks among the most common complications in surgical patients. Blood-based biomarkers might help identify the patient at risk. This study aimed to assess how serum biomarkers with specificity for vascular and endothelial function and for inflammation are altered, prior to or following surgery in patients who subsequently develop POD. Methods: This was a study on a subcohort of consecutively recruited elective non-cardiac as well as cardiac surgery patients (age > 60 years) of the single-center PROPDESC trial at a German tertiary care hospital. Serum was sampled prior to and following surgery, and the samples were subjected to bead-based multiplex analysis of 17 serum proteins (IL-3, IL-8, IL-10, Cripto, CCL2, RAGE, Resistin, ANGPT2, TIE2, Thrombomodulin, Syndecan-1, E-Selectin, VCAM-1, ICAM-1, CXCL5, NSE, and uPAR). Development of POD was assessed during the first five days after surgery, using the Confusion Assessment Method for ICU (CAM-ICU), the CAM, the 4-‘A’s test (4AT), and the Delirium Observation Scale (DOS). Patients were considered positive if POD was detected at least once during the visitation period by any of the applied methods. Non-parametric testing, as well as propensity score matching were used for statistical analysis. Results: A total of 118 patients were included in the final analysis; 69% underwent non-cardiac surgery, median overall patient age was 71 years, and 59% of patients were male. In the whole cohort, incidence of POD was 28%. The male gender was significantly associated with the development of POD (p = 0.0004), as well as a higher ASA status III (p = 0.04). Incidence of POD was furthermore significantly increased in cardiac surgery patients (p = 0.002). Surgery induced highly significant changes in serum levels of almost all biomarkers except uPAR. In preoperative serum samples, none of the analyzed parameters was significantly altered in subsequent POD patients. In postoperative samples, CCL2 was significantly increased by a factor of 1.75 in POD patients (p = 0.03), as compared to the no-POD cohort. Following propensity score matching, CCL2 remained the only biomarker that showed significant differences in postoperative values (p = 0.01). In cardiac surgery patients, postoperative CCL2 serum levels were more than 3.5 times higher than those following non-cardiac surgery (p < 0.0001). Moreover, after cardiac surgery, Syndecan-1 serum levels were significantly increased in POD patients, as compared to no-POD cardiac surgery patients (p = 0.04). Conclusions: In a mixed cohort of elective non-cardiac as well as cardiac surgery patients, preoperative serum biomarker profiling with specificity for vascular dysfunction and for systemic inflammation was not indicative of subsequent POD development. Surgery-induced systemic inflammation—as evidenced by the significant increase in CCL2 release—was associated with POD, particularly following cardiac surgery. In those patients, postoperative glycocalyx injury might furthermore contribute to POD development.
Collapse
|
17
|
Li Y, Suo L, Fu Z, Li G, Zhang J. Pivotal role of endothelial cell autophagy in sepsis. Life Sci 2021; 276:119413. [PMID: 33794256 DOI: 10.1016/j.lfs.2021.119413] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 03/03/2021] [Accepted: 03/15/2021] [Indexed: 12/12/2022]
Abstract
Sepsis is a fatal organ dysfunction resulting from a disordered host response to infection. Endothelial cells (ECs) are usually the primary targets of inflammatory mediators in sepsis; damage to ECs plays a pivotal part in vital organ failure. In recent studies, autophagy was suggested to play a critical role in the ECs injury although the mechanisms by which ECs are injured in sepsis are not well elucidated. Autophagy is a highly conserved catabolic process that includes sequestrating plasma contents and transporting cargo to lysosomes for recycling the vital substrates required for metabolism. This pathway also counteracts microbial invasion to balance and retain homeostasis, especially during sepsis. Increasing evidence indicates that autophagy is closely associated with endothelial function. The role of autophagy in sepsis may or may not be favorable depending upon conditions. In the present review, the current knowledge of autophagy in the process of sepsis and its influence on ECs was evaluated. In addition, the potential of targeting EC autophagy for clinical treatment of sepsis was discussed.
Collapse
Affiliation(s)
- Yuexian Li
- Department of Anesthesiology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Shenyang, Liaoning 110004, PR China
| | - Liangyuan Suo
- Department of Anesthesiology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shengjing Hospital of China Medical University, No. 44 Xiaoheyan Road, Shengyang, Liaoning 110042, PR China
| | - Zhiling Fu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Shenyang, Liaoning 110004, PR China
| | - Guoqing Li
- Department of Cardiology, Affiliated Zhongshan Hospital of Dalian University, No. 6 Jiefang Street, Dalian, Liaoning 116001, PR China
| | - Jin Zhang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Shenyang, Liaoning 110004, PR China.
| |
Collapse
|
18
|
Walweel K, Skeggs K, Boon AC, See Hoe LE, Bouquet M, Obonyo NG, Pedersen SE, Diab SD, Passmore MR, Hyslop K, Wood ES, Reid J, Colombo SM, Bartnikowski NJ, Wells MA, Black D, Pimenta LP, Stevenson AK, Bisht K, Marshall L, Prabhu DA, James L, Platts DG, Macdonald PS, McGiffin DC, Suen JY, Fraser JF. Endothelin receptor antagonist improves donor lung function in an ex vivo perfusion system. J Biomed Sci 2020; 27:96. [PMID: 33008372 PMCID: PMC7532654 DOI: 10.1186/s12929-020-00690-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 09/24/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND A lung transplant is the last resort treatment for many patients with advanced lung disease. The majority of donated lungs come from donors following brain death (BD). The endothelin axis is upregulated in the blood and lung of the donor after BD resulting in systemic inflammation, lung damage and poor lung graft outcomes in the recipient. Tezosentan (endothelin receptor blocker) improves the pulmonary haemodynamic profile; however, it induces adverse effects on other organs at high doses. Application of ex vivo lung perfusion (EVLP) allows the development of organ-specific hormone resuscitation, to maximise and optimise the donor pool. Therefore, we investigate whether the combination of EVLP and tezosentan administration could improve the quality of donor lungs in a clinically relevant 6-h ovine model of brain stem death (BSD). METHODS After 6 h of BSD, lungs obtained from 12 sheep were divided into two groups, control and tezosentan-treated group, and cannulated for EVLP. The lungs were monitored for 6 h and lung perfusate and tissue samples were processed and analysed. Blood gas variables were measured in perfusate samples as well as total proteins and pro-inflammatory biomarkers, IL-6 and IL-8. Lung tissues were collected at the end of EVLP experiments for histology analysis and wet-dry weight ratio (a measure of oedema). RESULTS Our results showed a significant improvement in gas exchange [elevated partial pressure of oxygen (P = 0.02) and reduced partial pressure of carbon dioxide (P = 0.03)] in tezosentan-treated lungs compared to controls. However, the lungs hematoxylin-eosin staining histology results showed minimum lung injuries and there was no difference between both control and tezosentan-treated lungs. Similarly, IL-6 and IL-8 levels in lung perfusate showed no difference between control and tezosentan-treated lungs throughout the EVLP. Histological and tissue analysis showed a non-significant reduction in wet/dry weight ratio in tezosentan-treated lung tissues (P = 0.09) when compared to control. CONCLUSIONS These data indicate that administration of tezosentan could improve pulmonary gas exchange during EVLP.
Collapse
Affiliation(s)
- K Walweel
- Critical Care Research Group, Level 3, Clinical Sciences Building, The Prince Charles Hospital, Rode Road, Brisbane, Australia.
| | - K Skeggs
- Critical Care Research Group, Level 3, Clinical Sciences Building, The Prince Charles Hospital, Rode Road, Brisbane, Australia.,Princess Alexandra Hospital, Woolloongabba, Brisbane, QLD, 4102, Australia
| | - A C Boon
- Critical Care Research Group, Level 3, Clinical Sciences Building, The Prince Charles Hospital, Rode Road, Brisbane, Australia
| | - L E See Hoe
- Critical Care Research Group, Level 3, Clinical Sciences Building, The Prince Charles Hospital, Rode Road, Brisbane, Australia
| | - M Bouquet
- Critical Care Research Group, Level 3, Clinical Sciences Building, The Prince Charles Hospital, Rode Road, Brisbane, Australia
| | - N G Obonyo
- Critical Care Research Group, Level 3, Clinical Sciences Building, The Prince Charles Hospital, Rode Road, Brisbane, Australia.,Initiative to Develop African Research Leaders, KEMRI-Wellcome, Trust Research Programme, Kilifi, Kenya
| | - S E Pedersen
- Critical Care Research Group, Level 3, Clinical Sciences Building, The Prince Charles Hospital, Rode Road, Brisbane, Australia
| | - S D Diab
- Critical Care Research Group, Level 3, Clinical Sciences Building, The Prince Charles Hospital, Rode Road, Brisbane, Australia
| | - M R Passmore
- Critical Care Research Group, Level 3, Clinical Sciences Building, The Prince Charles Hospital, Rode Road, Brisbane, Australia
| | - K Hyslop
- Critical Care Research Group, Level 3, Clinical Sciences Building, The Prince Charles Hospital, Rode Road, Brisbane, Australia
| | - E S Wood
- Critical Care Research Group, Level 3, Clinical Sciences Building, The Prince Charles Hospital, Rode Road, Brisbane, Australia
| | - J Reid
- Critical Care Research Group, Level 3, Clinical Sciences Building, The Prince Charles Hospital, Rode Road, Brisbane, Australia
| | - S M Colombo
- Critical Care Research Group, Level 3, Clinical Sciences Building, The Prince Charles Hospital, Rode Road, Brisbane, Australia.,University of Milan, Milan, Italy
| | | | - M A Wells
- Critical Care Research Group, Level 3, Clinical Sciences Building, The Prince Charles Hospital, Rode Road, Brisbane, Australia.,School of Medical Science, Griffith University, Brisbane, Australia
| | - D Black
- Critical Care Research Group, Level 3, Clinical Sciences Building, The Prince Charles Hospital, Rode Road, Brisbane, Australia
| | - L P Pimenta
- Critical Care Research Group, Level 3, Clinical Sciences Building, The Prince Charles Hospital, Rode Road, Brisbane, Australia
| | - A K Stevenson
- Critical Care Research Group, Level 3, Clinical Sciences Building, The Prince Charles Hospital, Rode Road, Brisbane, Australia
| | - K Bisht
- Mater Research Institute-The University of Queensland, Woolloongabba, QLD, Australia
| | - L Marshall
- The Prince Charles Hospital, Rode Road, Brisbane, Australia
| | - D A Prabhu
- The Prince Charles Hospital, Rode Road, Brisbane, Australia
| | - L James
- Princess Alexandra Hospital, Woolloongabba, Brisbane, QLD, 4102, Australia
| | - D G Platts
- Critical Care Research Group, Level 3, Clinical Sciences Building, The Prince Charles Hospital, Rode Road, Brisbane, Australia
| | - P S Macdonald
- Cardiac Mechanics Research Laboratory, St. Vincent's Hospital and the Victor Chang Cardiac Research Institute, Victoria Street, Darlinghurst, Sydney, NSW, 2061, Australia
| | - D C McGiffin
- Cardiothoracic Surgery and Transplantation, The Alfred Hospital, Melbourne, Australia
| | - J Y Suen
- Critical Care Research Group, Level 3, Clinical Sciences Building, The Prince Charles Hospital, Rode Road, Brisbane, Australia.
| | - J F Fraser
- Critical Care Research Group, Level 3, Clinical Sciences Building, The Prince Charles Hospital, Rode Road, Brisbane, Australia.
| |
Collapse
|
19
|
Maucher D, Schmidt B, Kuhlmann K, Schumann J. Polyunsaturated Fatty Acids of Both the Omega-3 and the Omega-6 Family Abrogate the Cytokine-Induced Upregulation of miR-29a-3p by Endothelial Cells. Molecules 2020; 25:molecules25194466. [PMID: 33003296 PMCID: PMC7583866 DOI: 10.3390/molecules25194466] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/17/2020] [Accepted: 09/27/2020] [Indexed: 11/16/2022] Open
Abstract
Cellular processes fundamentally depend on protein expression control. At this, protein expression is regulated on the transcriptional and the post-transcriptional level. PUFAs are already known to affect gene transcription. The present study was conducted to answer the question whether PUFAs are also able to impact on the miRNA-mediated post-transcriptional fine-tuning of mRNA copy numbers. To this end, cellular miRNA profiles were screened by means of next-generation sequencing and NanoString analysis to compare PUFA-enriched to unsupplemented endothelial cells exposed to an inflammatory milieu. Validation took place by droplet digital PCR, allowing for an absolute quantification of RNA copy numbers. The analyses revealed that the stimulation-induced upregulation of miR-29a-3p is blocked by PUFA enrichment of endothelial cells. What is more, mRNA copy numbers of miR-29a-3p targets, namely the coagulation factors PAI-1, TF, and vWF, as well as the proinflammatory cytokines IL-1β, IL-6, and IL-8, were reduced in PUFA-enriched endothelial cells compared to unsupplemented cells, counteracting the stimulatory effect of an inflammatory environment. These data hint toward a new mechanism of action by which PUFAs modulate the functionality of endothelial cells. Apparently, the inflammation-modulating properties of PUFAs are also mediated at the post-transcriptional level.
Collapse
Affiliation(s)
| | | | | | - Julia Schumann
- Correspondence: ; Tel.: +49-345-5571776; Fax: +49-345-5571781
| |
Collapse
|
20
|
Salih M, Omolo CA, Devnarain N, Elrashedy AA, Mocktar C, Soliman MES, Govender T. Supramolecular self-assembled drug delivery system (SADDs) of vancomycin and tocopherol succinate as an antibacterial agent: in vitro, in silico and in vivo evaluations. Pharm Dev Technol 2020; 25:1090-1108. [PMID: 32684052 DOI: 10.1080/10837450.2020.1797786] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
In this study self-assembled drug delivery system (SADDs) composed of a hydrophobic d-α-tocopherol succinate (TS) and a hydrophilic vancomycin (VCM) were formulated, and its potential for enhancing the antibacterial activity of VCM against Staphylococcus aureus (SA) and Methicillin-resistant Staphylococcus aureus (MRSA) were explored. The SADDs were synthesized via supramolecular complexation, then characterized for in silico, in vitro and in vivo studies. In silico studies confirmed the self-assembly of VCM/TS into NPs. The size, surface charge and drug loading of the SADDs was ˂100 nm, -27 mV and 68%, respectively. The SADDs were non-hemolytic and biosafe. A sustained release of VCM from SADDs was noted, with 52.2% release after 48 hr. The in vitro antibacterial test showed a twofold decrease in Minimum inhibitory concentration (MIC) against SA and MRSA, and a significantly higher reduction in MRSA biofilms compared to bare VCM. Further, in silico studies confirmed strong and stable binding of TS to MRSA efflux pumps. The in vivo study using mice skin infection models showed a 9.5-fold reduction in bacterial load after treatment with SADDs, in comparison with bare VCM. These findings affirmed that VCM/TS NPs as a promising novel nano-delivery for treating bacterial infections.
Collapse
Affiliation(s)
- Mohammed Salih
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Calvin A Omolo
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa.,School of Pharmacy and Health Sciences, United States International University, Nairobi, Kenya
| | - Nikita Devnarain
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Ahmed A Elrashedy
- Molecular Bio-computation and Drug Design Lab, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Chunderika Mocktar
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Mahmoud E S Soliman
- Molecular Bio-computation and Drug Design Lab, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Thirumala Govender
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
21
|
Drayton M, Kizhakkedathu JN, Straus SK. Towards Robust Delivery of Antimicrobial Peptides to Combat Bacterial Resistance. Molecules 2020; 25:molecules25133048. [PMID: 32635310 PMCID: PMC7412191 DOI: 10.3390/molecules25133048] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/24/2020] [Accepted: 06/30/2020] [Indexed: 12/13/2022] Open
Abstract
Antimicrobial peptides (AMPs), otherwise known as host defence peptides (HDPs), are naturally occurring biomolecules expressed by a large array of species across the phylogenetic kingdoms. They have great potential to combat microbial infections by directly killing or inhibiting bacterial activity and/or by modulating the immune response of the host. Due to their multimodal properties, broad spectrum activity, and minimal resistance generation, these peptides have emerged as a promising response to the rapidly concerning problem of multidrug resistance (MDR). However, their therapeutic efficacy is limited by a number of factors, including rapid degradation, systemic toxicity, and low bioavailability. As such, many strategies have been developed to mitigate these limitations, such as peptide modification and delivery vehicle conjugation/encapsulation. Oftentimes, however, particularly in the case of the latter, this can hinder the activity of the parent AMP. Here, we review current delivery strategies used for AMP formulation, focusing on methodologies utilized for targeted infection site release of AMPs. This specificity unites the improved biocompatibility of the delivery vehicle with the unhindered activity of the free AMP, providing a promising means to effectively translate AMP therapy into clinical practice.
Collapse
Affiliation(s)
- Matthew Drayton
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada;
| | - Jayachandran N. Kizhakkedathu
- Department of Pathology and Laboratory Medicine, and Centre for Blood Research, University of British Columbia, 2350 Health Sciences Mall, Life Sciences Centre, Vancouver, BC V6T 1Z3, Canada;
| | - Suzana K. Straus
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada;
- Correspondence: ; Tel.: +1-604-822-2537
| |
Collapse
|
22
|
Erice C, Kain KC. New insights into microvascular injury to inform enhanced diagnostics and therapeutics for severe malaria. Virulence 2019; 10:1034-1046. [PMID: 31775570 PMCID: PMC6930010 DOI: 10.1080/21505594.2019.1696621] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/05/2019] [Accepted: 11/13/2019] [Indexed: 12/25/2022] Open
Abstract
Severe malaria (SM) has high mortality and morbidity rates despite treatment with potent antimalarials. Disease onset and outcome is dependent upon both parasite and host factors. Infected erythrocytes bind to host endothelium contributing to microvascular occlusion and dysregulated inflammatory and immune host responses, resulting in endothelial activation and microvascular damage. This review focuses on the mechanisms of host endothelial and microvascular injury. Only a small percentage of malaria infections (≤1%) progress to SM. Early recognition and treatment of SM can improve outcome, but we lack triage tools to identify SM early in the course of infection. Current point-of-care pathogen-based rapid diagnostic tests do not address this critical barrier. Immune and endothelial activation have been implicated in the pathobiology of SM. We hypothesize that measuring circulating mediators of these pathways at first clinical presentation will enable early triage and treatment of SM. Moreover, that host-based interventions that modulate these pathways will stabilize the microvasculature and improve clinical outcome over that of antimalarial therapy alone.
Collapse
Affiliation(s)
- Clara Erice
- Sandra-Rotman Centre for Global Health, Toronto General Research Institute, University Health Network-Toronto General Hospital, Toronto, Ontario, Canada
| | - Kevin C Kain
- Sandra-Rotman Centre for Global Health, Toronto General Research Institute, University Health Network-Toronto General Hospital, Toronto, Ontario, Canada
- Tropical Disease Unit, Division of Infectious Diseases, Department of Medicine, University of Toronto, Toronto, Canada
| |
Collapse
|
23
|
Marin-Palma D, Sirois CM, Urcuqui-Inchima S, Hernandez JC. Inflammatory status and severity of disease in dengue patients are associated with lipoprotein alterations. PLoS One 2019; 14:e0214245. [PMID: 30901375 PMCID: PMC6430398 DOI: 10.1371/journal.pone.0214245] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 03/09/2019] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION The triggering of severe dengue has been associated with an exacerbated inflammatory process characterized by the production of pro-inflammatory cytokines such as IL-1β/IL-18, which are the product of inflammasome activation. Furthermore, alteration in the levels of high-density (HDL) and low-density lipoproteins (LDL) has been observed; and HDL are known to have immunomodulatory properties, including the regulation of inflammasomes. While HDL would be expected to counteract hyperactivation of the inflammasome, the relationship between HDL and dengue severity, has not previously been explored. METHODOLOGY We conducted a cross-sectional study of 30 patients with dengue and 39 healthy controls matched by sex and age. Lipid profile and levels of C-reactive protein were quantified. Serum levels of IL-1β, IL-6, IL-10, IL-18, and TNF-α, were assessed by ELISA. Expression of inflammasome-related genes in PBMC was quantified by qPCR. RESULTS Dengue patients presented an alteration in the parameters of the lipid profile, with a significant decrease in HDL levels, which was more pronounced in dengue patients with warning signs. Moreover, a decrease in the expression of the inflammasome-related genes NLRP1, NLRC4, caspase-1, IL-1β and IL-18 was observed, as well as an increase in serum levels of C-reactive protein and IL-10 in dengue patients versus healthy donors. Significant positive correlations between LDL levels and the relative expression of NLRP3, NLRC4, IL-1β and IL-18, were found. CONCLUSION The results suggest that there is a relationship between the alteration of LDL and HDL with the imbalance in the inflammatory response, which could be associated with the severity of dengue.
Collapse
Affiliation(s)
- Damariz Marin-Palma
- Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia, Medellin, Colombia
- Grupo Inmunovirologia, Facultad de Medicina, Universidad de Antioquia, UdeA, Medellín, Colombia
| | - Cherilyn M. Sirois
- Department of Biology & Chemistry, Springfield College, Springfield, MA, United States of America
| | - Silvio Urcuqui-Inchima
- Grupo Inmunovirologia, Facultad de Medicina, Universidad de Antioquia, UdeA, Medellín, Colombia
| | - Juan C. Hernandez
- Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia, Medellin, Colombia
- * E-mail:
| |
Collapse
|
24
|
Increased gene copy number of DEFA1/DEFA3 worsens sepsis by inducing endothelial pyroptosis. Proc Natl Acad Sci U S A 2019; 116:3161-3170. [PMID: 30718392 PMCID: PMC6386704 DOI: 10.1073/pnas.1812947116] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Sepsis claims an estimated 30 million episodes and 6 million deaths per year, and treatment options are rather limited. Human neutrophil peptides 1-3 (HNP1-3) are the most abundant neutrophil granule proteins but their neutrophil content varies because of unusually extensive gene copy number polymorphism. A genetic association study found that increased copy number of the HNP-encoding gene DEFA1/DEFA3 is a risk factor for organ dysfunction during sepsis development. However, direct experimental evidence demonstrating that these risk alleles are pathogenic for sepsis is lacking because the genes are present only in some primates and humans. Here, we generate DEFA1/DEFA3 transgenic mice with neutrophil-specific expression of the peptides. We show that mice with high copy number of DEFA1/DEFA3 genes have more severe sepsis-related vital organ damage and mortality than mice with low copy number of DEFA1/DEFA3 or wild-type mice, resulting from more severe endothelial barrier dysfunction and endothelial cell pyroptosis after sepsis challenge. Mechanistically, HNP-1 induces endothelial cell pyroptosis via P2X7 receptor-mediating canonical caspase-1 activation in a NLRP3 inflammasome-dependent manner. Based on these findings, we engineered a monoclonal antibody against HNP-1 to block the interaction with P2X7 and found that the blocking antibody protected mice carrying high copy number of DEFA1/DEFA3 from lethal sepsis. We thus demonstrate that DEFA1/DEFA3 copy number variation strongly modulates sepsis development in vivo and explore a paradigm for the precision treatment of sepsis tailored by individual genetic information.
Collapse
|
25
|
McDonald CR, Weckman A, Richard-Greenblatt M, Leligdowicz A, Kain KC. Integrated fever management: disease severity markers to triage children with malaria and non-malarial febrile illness. Malar J 2018; 17:353. [PMID: 30305137 PMCID: PMC6180660 DOI: 10.1186/s12936-018-2488-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 09/19/2018] [Indexed: 11/10/2022] Open
Abstract
Febrile symptoms in children are a leading cause of health-care seeking behaviour worldwide. The majority of febrile illnesses are uncomplicated and self-limited, without the need for referral or hospital admission. However, current diagnostic tools are unable to identify which febrile children have self-limited infection and which children are at risk of progressing to life-threatening infections, such as severe malaria. This paper describes the need for a simple community-based tool that can improve the early recognition and triage of febrile children, with either malarial or non-malarial illness, at risk of critical illness. The integration of a disease severity marker into existing malaria rapid diagnostic tests (RDT) could enable detection of children at risk of severe infection in the hospital and community, irrespective of aetiology. Incorporation of a disease severity marker could inform individualized management and early triage of children at risk of life-threatening infection. A child positive for both malaria and a disease severity marker could be prioritized for urgent referral/admission and parenteral therapy. A child positive for malaria and negative for a disease severity marker could be managed conservatively, as an out-patient, with oral anti-malarial therapy. An RDT with a disease severity marker could facilitate an integrated community-based approach to fever syndromes and improve early recognition, risk stratification, and prompt treatment of severe malaria and other life-threatening infections.
Collapse
Affiliation(s)
- Chloe R McDonald
- SAR Laboratories, Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital, MaRS Centre, TMDT, 10th Floor 10-351, Toronto, ON, M5G 1L7, Canada
| | - Andrea Weckman
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Melissa Richard-Greenblatt
- SAR Laboratories, Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital, MaRS Centre, TMDT, 10th Floor 10-351, Toronto, ON, M5G 1L7, Canada
| | - Aleksandra Leligdowicz
- SAR Laboratories, Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital, MaRS Centre, TMDT, 10th Floor 10-351, Toronto, ON, M5G 1L7, Canada.,Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Canada
| | - Kevin C Kain
- SAR Laboratories, Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital, MaRS Centre, TMDT, 10th Floor 10-351, Toronto, ON, M5G 1L7, Canada. .,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada. .,Tropical Disease Unit, Division of Infectious Diseases, Department of Medicine, University of Toronto, Toronto, Canada. .,Toronto General Research Institute, Toronto General Hospital, Toronto, Canada.
| |
Collapse
|
26
|
Klein D. The Tumor Vascular Endothelium as Decision Maker in Cancer Therapy. Front Oncol 2018; 8:367. [PMID: 30250827 PMCID: PMC6139307 DOI: 10.3389/fonc.2018.00367] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 08/17/2018] [Indexed: 12/13/2022] Open
Abstract
Genetic and pathophysiologic criteria prearrange the uncontrolled growth of neoplastic cells that in turn initiates new vessel formation, which is prerequisite for further tumor growth and progression. This first endothelial lining is patchy, disordered in structure and thus, angiogenic tumor vessels were proven to be functionally inferior. As a result, tumors were characterized by areas with an apparent oversupply in addition to areas with an undersupply of vessels, which complicates an efficient administration of intravenous drugs in cancer therapy and might even lower the response e.g. of radiotherapy (RT) because of the inefficient oxygen supply. In addition to the vascular dysfunction, tumor blood vessels contribute to the tumor escape from immunity by the lack of response to inflammatory activation (endothelial anergy) and by repression of leukocyte adhesion molecule expression. However, tumor vessels can remodel by the association with and integration of pericytes and smooth muscle cells which stabilize these immature vessels resulting in normalization of the vascular structures. This normalization of the tumor vascular bed could improve the efficiency of previously established therapeutic approaches, such as chemo- or radiotherapy by a more homogenous drug and oxygen distribution, and/or by overcoming endothelial anergy. This review highlights the current investigations that take advantage of a proper vascular function for improving cancer therapy with a special focus on the endothelial-immune system interplay.
Collapse
Affiliation(s)
- Diana Klein
- Institute of Cell Biology (Cancer Research), University Hospital, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
27
|
Dihydroartemisinin ameliorates sepsis-induced hyperpermeability of glomerular endothelium via up-regulation of occludin expression. Biomed Pharmacother 2018; 99:313-318. [PMID: 29353206 DOI: 10.1016/j.biopha.2018.01.078] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 12/31/2017] [Accepted: 01/12/2018] [Indexed: 02/06/2023] Open
Abstract
Sepsis, the systemic inflammatory responses after infection, remains a serious cause of morbidity and mortality in critically ill patients. The anti-malarial agent dihydroartemisinin (DHA) has been shown to be anti-inflammatory. In this study, we examined the effects of DHA on sepsis-induced acute kidney injury (AKI) and explored the mechanism underlying its mode of action in AKI. In a lipopolysaccharide (LPS)-induced mouse model, we observed that DHA treatment ameliorated glomerular injury, and relieved elevation of the urine albumin to creatinine ratio (UACR) and serum creatinine. At a concentration of 25 μM, DHA had no effect on overall cellular viability or apoptosis in assays with human renal glomerular endothelial cells (HRGECs), but significantly inhibited the tumor necrosis factor-α (TNF-α)-induced hyperpermeability of HRGEC monolayers. We found that TNF-α decreases the expression of the junctional protein occludin in HRGECs, which is reversed by DHA. Taken together, our results demonstrate that DHA decreases permeability of the glomerular endothelium by maintenance of occludin expression. This suggests DHA may have therapeutic utility in sepsis-induced AKI.
Collapse
|
28
|
Hsieh CL, Huang HM, Hsieh SY, Zheng PX, Lin YS, Chiang-Ni C, Tsai PJ, Wang SY, Liu CC, Wu JJ. NAD-Glycohydrolase Depletes Intracellular NAD + and Inhibits Acidification of Autophagosomes to Enhance Multiplication of Group A Streptococcus in Endothelial Cells. Front Microbiol 2018; 9:1733. [PMID: 30123194 PMCID: PMC6085451 DOI: 10.3389/fmicb.2018.01733] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 07/11/2018] [Indexed: 12/17/2022] Open
Abstract
Group A Streptococcus (GAS) is a human pathogen causing a wide spectrum of diseases, from mild pharyngitis to life-threatening necrotizing fasciitis. GAS has been shown to evade host immune killing by invading host cells. However, how GAS resists intracellular killing by endothelial cells is still unclear. In this study, we found that strains NZ131 and A20 have higher activities of NADase and intracellular multiplication than strain SF370 in human endothelial cells (HMEC-1). Moreover, nga mutants of NZ131 (SW957 and SW976) were generated to demonstrate that NADase activity is required for the intracellular growth of GAS in endothelial cells. We also found that intracellular levels of NAD+ and the NAD+/NADH ratio of NZ131-infected HMEC-1 cells were both lower than in cells infected by the nga mutant. Although both NZ131 and its nga mutant were trapped by LC3-positive vacuoles, only nga mutant vacuoles were highly co-localized with acidified lysosomes. On the other hand, intracellular multiplication of the nga mutant was increased by bafilomycin A1 treatment. These results indicate that NADase causes intracellular NAD+ imbalance and impairs acidification of autophagosomes to escape autophagocytic killing and enhance multiplication of GAS in endothelial cells.
Collapse
Affiliation(s)
- Cheng-Lu Hsieh
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hsuan-Min Huang
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shu-Ying Hsieh
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Po-Xing Zheng
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
| | - Yee-Shin Lin
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chuan Chiang-Ni
- Department of Microbiology & Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Pei-Jane Tsai
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shu-Ying Wang
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ching-Chuan Liu
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
- Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jiunn-Jong Wu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
29
|
Wang L, Mehta S, Ahmed Y, Wallace S, Pape MC, Gill SE. Differential Mechanisms of Septic Human Pulmonary Microvascular Endothelial Cell Barrier Dysfunction Depending on the Presence of Neutrophils. Front Immunol 2018; 9:1743. [PMID: 30116240 PMCID: PMC6082932 DOI: 10.3389/fimmu.2018.01743] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 07/16/2018] [Indexed: 01/06/2023] Open
Abstract
Sepsis is characterized by injury of pulmonary microvascular endothelial cells (PMVEC) leading to barrier dysfunction. Multiple mechanisms promote septic PMVEC barrier dysfunction, including interaction with circulating leukocytes and PMVEC apoptotic death. Our previous work demonstrated a strong correlation between septic neutrophil (PMN)-dependent PMVEC apoptosis and pulmonary microvascular albumin leak in septic mice in vivo; however, this remains uncertain in human PMVEC. Thus, we hypothesize that human PMVEC apoptosis is required for loss of PMVEC barrier function under septic conditions in vitro. To assess this hypothesis, human PMVECs cultured alone or in coculture with PMN were stimulated with PBS or cytomix (equimolar interferon γ, tumor necrosis factor α, and interleukin 1β) in the absence or presence of a pan-caspase inhibitor, Q-VD, or specific caspase inhibitors. PMVEC barrier function was assessed by transendothelial electrical resistance (TEER), as well as fluoroisothiocyanate-labeled dextran and Evans blue-labeled albumin flux across PMVEC monolayers. PMVEC apoptosis was identified by (1) loss of cell membrane polarity (Annexin V), (2) caspase activation (FLICA), and (3) DNA fragmentation [terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)]. Septic stimulation of human PMVECs cultured alone resulted in loss of barrier function (decreased TEER and increased macromolecular flux) associated with increased apoptosis (increased Annexin V, FLICA, and TUNEL staining). In addition, treatment of septic PMVEC cultured alone with Q-VD decreased PMVEC apoptosis and prevented septic PMVEC barrier dysfunction. In septic PMN-PMVEC cocultures, there was greater trans-PMVEC macromolecular flux (both dextran and albumin) vs. PMVEC cultured alone. PMN presence also augmented septic PMVEC caspase activation (FLICA staining) vs. PMVEC cultured alone but did not affect septic PMVEC apoptosis. Importantly, pan-caspase inhibition (Q-VD treatment) completely attenuated septic PMN-dependent PMVEC barrier dysfunction. Moreover, inhibition of caspase 3, 8, or 9 in PMN-PMVEC cocultures also reduced septic PMVEC barrier dysfunction whereas inhibition of caspase 1 had no effect. Our data demonstrate that human PMVEC barrier dysfunction under septic conditions in vitro (cytomix stimulation) is clearly caspase-dependent, but the mechanism differs depending on the presence of PMN. In isolated PMVEC, apoptosis contributes to septic barrier dysfunction, whereas PMN presence enhances caspase-dependent septic PMVEC barrier dysfunction independently of PMVEC apoptosis.
Collapse
Affiliation(s)
- Lefeng Wang
- Centre for Critical Illness Research, Lawson Health Research Institute, London, ON, Canada.,Department of Medicine, Western University, London, ON, Canada
| | - Sanjay Mehta
- Centre for Critical Illness Research, Lawson Health Research Institute, London, ON, Canada.,Department of Medicine, Western University, London, ON, Canada.,Division of Respirology, Western University, London, ON, Canada
| | - Yousuf Ahmed
- Centre for Critical Illness Research, Lawson Health Research Institute, London, ON, Canada.,Department of Medicine, Western University, London, ON, Canada
| | - Shelby Wallace
- Department of Physiology and Pharmacology, Western University, London, ON, Canada
| | - M Cynthia Pape
- Centre for Critical Illness Research, Lawson Health Research Institute, London, ON, Canada.,Department of Medicine, Western University, London, ON, Canada
| | - Sean E Gill
- Centre for Critical Illness Research, Lawson Health Research Institute, London, ON, Canada.,Department of Medicine, Western University, London, ON, Canada.,Division of Respirology, Western University, London, ON, Canada.,Department of Physiology and Pharmacology, Western University, London, ON, Canada
| |
Collapse
|
30
|
殷 商, 朱 俊, 罗 莉, 杨 霞, 梁 华, 罗 艳. [Exogenous agmatine inhibits lipopolysaccharide-induced activation and dysfunction of human umbilical vein endothelial cells]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2018; 38:652-660. [PMID: 29997086 PMCID: PMC6765718 DOI: 10.3969/j.issn.1673-4254.2018.06.03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Indexed: 06/08/2023]
Abstract
OBJECTIVE To investigate whether exogenous agmatine inhibits lipopolysaccharide (LPS)-induced activation and dysfunction of human umbilical vein endothelial cells (HUVECs) by modulating nuclear factor-κB (NF-κB) and MAPK signal pathways and the production of reactive oxygen species (ROS). METHODS Cultured HUVECs were treated with agmatine at the optimized concentration of 1.0 mmolγL, LPS (10 µgγmL), and LPS + agmatine, with or without pretreatment with the inhibitors of NF-κB (PDTC), p38 (SB203580), and ERK (PD98059) for 1 h. The levels of soluble vascular cell adhesion molecule 1 (VCAM-1), soluble intercellular adhesion molecule 1 (sICAM-1), soluble E-selectin and monocyte chemoattractant protein 1 (MCP-1) in the supernatant were determined using ELISA, and their mRNA expressions, along with heme oxygenase-1 (HO-1), and NAD(P)H: quinone oxidoreductase 1 (NQO-1), were assessed using real-time PCR. ROS production in the cells was determined using 2, 7-dichlorofluoresce in diacetate (DCFH-DA) as the fluorescence probe. The protein expressions of VCAM-1, ICAM-1, p65, phospho-p65 (p-p65), IκBα, p-IκBα, ERK, p-ERK, p38, p-p38, JNK, and p-JNK were detected using Western blotting. RESULTS LPS stimulation for 6 and 24 h significantly increased the levels of sVCAM-1, sICAM-1, sE-selectin and MCP-1 in the supernatant, intracellular ROS production, and the mRNA expressions of these molecules (P<0.05). Intervention with 1 mmolγL agmatine, similar with pretreatment with p38, ERK and NF-κB inhibitors, obviously inhibited such effects of LPS in HUVECs (P<0.05). Agmatine significantly up-regulated the mRNA expression of HO-1 (P<0.05), inhibited LPS-induced phosphorylation of p38, ERK, nuclear p65 and cytoplasmic IκBα, and up-regulated the protein expression of cytoplasmic IκBα. CONCLUSION Agmatine inhibits LPS-induced activation and dysfunction of HUVECs by modulating NF-κB and MAPK signal pathways to down-regulate the expressions of adhesion molecules and chemokines and by up-regulating the expression of HO-1 to reduce ROS production.
Collapse
Affiliation(s)
- 商启 殷
- 重庆医科大学附属第一医院检验科,重庆 400016Department of Clinical Laboratory, First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - 俊宇 朱
- 陆军军医大学大坪医院野战外科研究所//创伤、烧伤与复合伤国家重点实验室第一研究室,重庆 400042Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - 莉 罗
- 陆军军医大学大坪医院野战外科研究所//创伤、烧伤与复合伤国家重点实验室第一研究室,重庆 400042Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - 霞 杨
- 四川大学华西医院临床药学部,四川 成都 610041Department of Clinical Pharmacy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - 华平 梁
- 陆军军医大学大坪医院野战外科研究所//创伤、烧伤与复合伤国家重点实验室第一研究室,重庆 400042Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - 艳 罗
- 重庆医科大学附属第一医院检验科,重庆 400016Department of Clinical Laboratory, First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
31
|
Tang Z, Guo D, Xiong L, Wu B, Xu X, Fu J, Kong L, Liu Z, Xie C. TLR4/PKCα/occludin signaling pathway may be related to blood‑brain barrier damage. Mol Med Rep 2018; 18:1051-1057. [PMID: 29845266 DOI: 10.3892/mmr.2018.9025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Accepted: 10/11/2017] [Indexed: 11/05/2022] Open
Affiliation(s)
- Zhixian Tang
- Department of Cardiothoracic Surgery, Heart Center, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Dan Guo
- Department of Histology and Embryology, Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Liang Xiong
- Department of Preventive Medicine, Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Bing Wu
- Department of Anatomy, Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Xuehua Xu
- Department of Cardiothoracic Surgery, Heart Center, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Jinfeng Fu
- Department of Operation Room, Heart Center, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Liyun Kong
- Department of Operation Room, Heart Center, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Ziyou Liu
- Department of Cardiothoracic Surgery, Heart Center, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Chunfa Xie
- Department of Cardiothoracic Surgery, Heart Center, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| |
Collapse
|
32
|
Leligdowicz A, Richard-Greenblatt M, Wright J, Crowley VM, Kain KC. Endothelial Activation: The Ang/Tie Axis in Sepsis. Front Immunol 2018; 9:838. [PMID: 29740443 PMCID: PMC5928262 DOI: 10.3389/fimmu.2018.00838] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 04/05/2018] [Indexed: 12/21/2022] Open
Abstract
Sepsis, a dysregulated host response to infection that causes life-threatening organ dysfunction, is a highly heterogeneous syndrome with no specific treatment. Although sepsis can be caused by a wide variety of pathogenic organisms, endothelial dysfunction leading to vascular leak is a common mechanism of injury that contributes to the morbidity and mortality associated with the syndrome. Perturbations to the angiopoietin (Ang)/Tie2 axis cause endothelial cell activation and contribute to the pathogenesis of sepsis. In this review, we summarize how the Ang/Tie2 pathway is implicated in sepsis and describe its prognostic as well as therapeutic utility in life-threatening infections.
Collapse
Affiliation(s)
- Aleksandra Leligdowicz
- Sandra Rotman Centre for Global Health, University Health Network and University of Toronto, Toronto, ON, Canada
| | - Melissa Richard-Greenblatt
- Sandra Rotman Centre for Global Health, University Health Network and University of Toronto, Toronto, ON, Canada
| | - Julie Wright
- Sandra Rotman Centre for Global Health, University Health Network and University of Toronto, Toronto, ON, Canada
| | - Valerie M Crowley
- Sandra Rotman Centre for Global Health, University Health Network and University of Toronto, Toronto, ON, Canada
| | - Kevin C Kain
- Sandra Rotman Centre for Global Health, University Health Network and University of Toronto, Toronto, ON, Canada
| |
Collapse
|
33
|
Wright JK, Hayford K, Tran V, Al Kibria GM, Baqui A, Manajjir A, Mahmud A, Begum N, Siddiquee M, Kain KC, Farzin A. Biomarkers of endothelial dysfunction predict sepsis mortality in young infants: a matched case-control study. BMC Pediatr 2018; 18:118. [PMID: 29571293 PMCID: PMC5866512 DOI: 10.1186/s12887-018-1087-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 03/07/2018] [Indexed: 02/15/2023] Open
Abstract
Background Reducing death due to neonatal sepsis is a global health priority, however there are limited tools to facilitate early recognition and treatment. We hypothesized that measuring circulating biomarkers of endothelial function and integrity (i.e. Angiopoietin-Tie2 axis) would identify young infants with sepsis and predict their clinical outcome. Methods We conducted a matched case-control (1:3) study of 98 young infants aged 0–59 days of life presenting to a referral hospital in Bangladesh with suspected sepsis. Plasma levels of Ang-1, Ang-2, sICAM-1, and sVCAM-1 concentrations were measured at admission. The primary outcome was mortality (n = 18); the secondary outcome was bacteremia (n = 10). Results Ang-2 concentrations at presentation were higher among infants who subsequently died of sepsis compared to survivors (aOR 2.50, p = 0.024). Compared to surviving control infants, the Ang-2:Ang-1 ratio was higher among infants who died (aOR 2.29, p = 0.016) and in infants with bacteremia (aOR 5.72, p = 0.041), and there was an increased odds of death across Ang-2:Ang-1 ratio tertiles (aOR 4.82, p = 0.013). Conclusions This study provides new evidence linking the Angiopoietin-Tie2 pathway with mortality and bacteremia in young infants with suspected sepsis. If validated in additional studies, markers of the angiopoietin-Tie2 axis may have clinical utility in risk stratification of infants with suspected sepsis. Electronic supplementary material The online version of this article (10.1186/s12887-018-1087-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Julie Korol Wright
- Tropical Disease Unit, Division of Infectious Diseases, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Kyla Hayford
- Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Vanessa Tran
- Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Gulam Muhammed Al Kibria
- Department of International Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Abdullah Baqui
- International Centre for Maternal and Newborn Health, Department of International Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Ali Manajjir
- Department of Pediatrics, Sylhet MAG Osmani Medical College Hospital, Sylhet, Bangladesh
| | - Arif Mahmud
- International Centre for Maternal and Newborn Health, Department of International Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Nazma Begum
- International Centre for Maternal and Newborn Health, Department of International Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Mashuk Siddiquee
- Dhaka Shishu (Children's) Hospital, Sher-E-Bangla Nagar, Dhaka, Bangladesh
| | - Kevin C Kain
- Tropical Disease Unit, Division of Infectious Diseases, Department of Medicine, University of Toronto, Toronto, ON, Canada.,Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Azadeh Farzin
- International Centre for Maternal and Newborn Health, Department of International Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA. .,Division of Neonatology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
34
|
Kumar NP, Velayutham B, Nair D, Babu S. Angiopoietins as biomarkers of disease severity and bacterial burden in pulmonary tuberculosis. Int J Tuberc Lung Dis 2018; 21:93-99. [PMID: 28157471 DOI: 10.5588/ijtld.16.0565] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Circulating angiogenic factors of the vascular endothelial growth factor family are important biomarkers of disease severity in pulmonary tuberculosis (PTB). However, the role of angiopoietins, which are also involved in angiogenesis, in PTB is not known. OBJECTIVE AND DESIGN To examine the association of circulating angiopoietins with TB disease or latent tuberculous infection (LTBI), we examined the systemic levels of angiopoietin (Ang) 1, Ang 2 and Tie-2 receptor in individuals with PTB (n = 44), LTBI (n = 44) or no tuberculous infection (NTBI) (n = 44). RESULTS Circulating levels of Ang-1, Ang-2 and Tie-2 were significantly higher in PTB than in individuals with LTBI or NTBI. Moreover, Ang-1, Ang-2 and Tie-2 levels were significantly higher in PTB with bilateral disease. The levels of these factors also exhibited a significant positive relationship with bacterial burdens in PTB. Receiver operating characteristics curve analysis revealed Ang-2 as a marker distinguishing PTB from LTBI or NTBI. Finally, the circulating levels of Ang-1, Ang-2 and Tie-2 were significantly reduced following anti-tuberculosis chemotherapy. CONCLUSIONS Our data demonstrate that PTB is associated with elevated levels of circulating angiopoietins, possibly reflecting endothelial dysfunction. In addition, Ang-2 could prove useful as a biomarker to monitor disease severity, bacterial burden and therapeutic responses.
Collapse
Affiliation(s)
- N P Kumar
- International Center for Excellence in Research, National Institutes of Health, Chennai, India
| | - B Velayutham
- National Institutes for Research in Tuberculosis, Chennai, India
| | - D Nair
- National Institutes for Research in Tuberculosis, Chennai, India
| | - S Babu
- International Center for Excellence in Research, National Institutes of Health, Chennai, India; Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
35
|
|
36
|
Kuck JL, Bastarache JA, Shaver CM, Fessel JP, Dikalov SI, May JM, Ware LB. Ascorbic acid attenuates endothelial permeability triggered by cell-free hemoglobin. Biochem Biophys Res Commun 2018; 495:433-437. [PMID: 29129689 PMCID: PMC5736437 DOI: 10.1016/j.bbrc.2017.11.058] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 11/08/2017] [Indexed: 01/09/2023]
Abstract
BACKGROUND Increased endothelial permeability is central to shock and organ dysfunction in sepsis but therapeutics targeted to known mediators of increased endothelial permeability have been unsuccessful in patient studies. We previously reported that cell-free hemoglobin (CFH) is elevated in the majority of patients with sepsis and is associated with organ dysfunction, poor clinical outcomes and elevated markers of oxidant injury. Others have shown that Vitamin C (ascorbate) may have endothelial protective effects in sepsis. In this study, we tested the hypothesis that high levels of CFH, as seen in the circulation of patients with sepsis, disrupt endothelial barrier integrity. METHODS Human umbilical vein endothelial cells (HUVEC) were grown to confluence and treated with CFH with or without ascorbate. Monolayer permeability was measured by Electric Cell-substrate Impedance Sensing (ECIS) or transfer of 14C-inulin. Viability was measured by trypan blue exclusion. Intracellular ascorbate was measured by HPLC. RESULTS CFH increased permeability in a dose- and time-dependent manner with 1 mg/ml of CFH increasing inulin transfer by 50% without affecting cell viability. CFH (1 mg/ml) also caused a dramatic reduction in intracellular ascorbate in the same time frame (1.4 mM without CFH, 0.23 mM 18 h after 1 mg/ml CFH, p < 0.05). Pre-treatment of HUVECs with ascorbate attenuated CFH induced permeability. CONCLUSIONS CFH increases endothelial permeability in part through depletion of intracellular ascorbate. Supplementation of ascorbate can attenuate increases in permeability mediated by CFH suggesting a possible therapeutic approach in sepsis.
Collapse
Affiliation(s)
- Jamie L. Kuck
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Julie A. Bastarache
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN,Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN
| | - Ciara M. Shaver
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Joshua P. Fessel
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN,Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN
| | - Sergey I. Dikalov
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN
| | - James M. May
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Lorraine B. Ware
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN,Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN,Corresponding author: Lorraine B. Ware, MD, Professor of Medicine and Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, 1161 21st Avenue South, T1218 MCN, Nashville, TN 37232,
| |
Collapse
|
37
|
Trommer S, Leimert A, Bucher M, Schumann J. Impact of Unsaturated Fatty Acids on Cytokine-Driven Endothelial Cell Dysfunction. Int J Mol Sci 2017; 18:ijms18122739. [PMID: 29258201 PMCID: PMC5751340 DOI: 10.3390/ijms18122739] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 12/08/2017] [Accepted: 12/15/2017] [Indexed: 12/21/2022] Open
Abstract
Polyunsaturated fatty acids (PUFA) are reported to exert prophylactic and acute therapeutic effects in diseases linked to endothelial dysfunction. In the present study, the consequences of a PUFA enrichment of endothelial cells (cell line TIME) on cell viability, expression of the cytokines interleukin-6 (IL-6), interleukin-8 (IL-8), granulocyte-macrophage colony-stimulating factor (GM-CSF), and monocyte chemoattractant protein 1 (MCP-1), synthesis of the adhesion molecules intercellular adhesion molecule 1 (ICAM-1) and vascular adhesion molecule 1 (VCAM-1), and production of the coagulation factors plasminogen activator inhibitor-1 (PAI-1), von Willebrand factor (vWF), and tissue factor (TF) was analyzed in parallel. PUFA of both the n3 and the n6 family were investigated in a physiologically relevant concentration of 15 µM, and experiments were performed in both the presence and the absence of the pro-inflammatory cytokines interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), and interferon-γ (IFN-γ). Supplementation of the culture medium with particular fatty acids was found to have a promoting effect on cellular production of the cytokines IL-6, IL-8, GM-CSF, and MCP-1. Further on, PUFA treatment in the absence of a stimulant diminished the percentage of endothelial cells positive for ICAM-1, and adversely affected the stimulation-induced upregulation of VCAM-1. Cell viability and production of coagulation factors were not or only marginally affected by supplemented fatty acids. Altogether, the data indicate that PUFA of either family are only partially able to counterbalance the destructive consequences of an endothelial dysfunction.
Collapse
Affiliation(s)
- Simon Trommer
- Clinic for Anesthesiology and Surgical Intensive Care, University Hospital Halle (Saale), 06120 Halle (Saale), Germany.
| | - Anja Leimert
- Clinic for Anesthesiology and Surgical Intensive Care, University Hospital Halle (Saale), 06120 Halle (Saale), Germany.
| | - Michael Bucher
- Clinic for Anesthesiology and Surgical Intensive Care, University Hospital Halle (Saale), 06120 Halle (Saale), Germany.
| | - Julia Schumann
- Clinic for Anesthesiology and Surgical Intensive Care, University Hospital Halle (Saale), 06120 Halle (Saale), Germany.
| |
Collapse
|
38
|
Zhang X, Chen Y, Wang L, Kang Q, Yu G, Wan X, Wang J, Zhu K. MiR-4505 aggravates lipopolysaccharide-induced vascular endothelial injury by targeting heat shock protein A12B. Mol Med Rep 2017; 17:1389-1395. [PMID: 29115487 DOI: 10.3892/mmr.2017.7936] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Accepted: 10/10/2017] [Indexed: 11/06/2022] Open
Abstract
Heat shock protein family A member 12B (HSPA12B) is a heat shock protein primarily expressed in endothelial cells. Our previous study showed that it was protective against endothelial injury induced by lipopolysaccharide (LPS). The present study was performed to investigate whether micro (mi)RNA was involved in HSPA12B expression in endothelial cells challenged by LPS. We first screened the miRNA candidates potentially related to HSPA12B by bioinformatics analysis. Then the mimics of the miRNA candidates were transfected into human umbilical vein endothelial cells (HUVECs) to investigate the miRNAs that negatively regulated HSPA12B expression. The miRNA expression was also determined in LPS‑stimulated HUVECs. Dual luciferase activity assay was performed to confirm the relationship between the candidate miRNA and HSPA12B. Role of nuclear factor (NF)‑κB in the miRNA expression was investigated by using its inhibitor. Finally, the role of the miRNA on LPS induced injury was investigated. Eleven miRNAs were screened by bioinformatics analysis and 4 of them could inhibit HSPA12B expression at both mRNA and protein levels. Among the 4 miRNA candidates, only miR‑4505 was highly expressed in HUVECs stimulated by LPS. Luciferase analysis showed that miR‑4505 directly interacted with the 3'untranslated region of HSPA12B. LPS‑induced upregulation of miR‑4505 was blocked by NF‑κB inhibitor. Transfection with miR‑4505 mimics reduced the transendothelial electrical resistance and vascular endothelial‑cadherin expression. The scratch test demonstrated that miR‑4505 inhibited endothelial migration capacity. In conclusion, miR‑4505 downregulates the expression of HSPA12B and aggravates the LPS‑induced vascular endothelial cell injury.
Collapse
Affiliation(s)
- Xu Zhang
- Department of Anesthesiology and Intensive Care Medicine, Changhai Hospital, The Second Military Medical University, Shanghai 200433, P.R. China
| | - Yi Chen
- Department of Anesthesiology and Intensive Care Medicine, Changhai Hospital, The Second Military Medical University, Shanghai 200433, P.R. China
| | - Lei Wang
- Department of Anesthesiology and Intensive Care Medicine, Changhai Hospital, The Second Military Medical University, Shanghai 200433, P.R. China
| | - Qiuxiang Kang
- Department of Anesthesiology and Intensive Care Medicine, Changhai Hospital, The Second Military Medical University, Shanghai 200433, P.R. China
| | - Guifang Yu
- Department of Anesthesiology, The Third People's Hospital, Shanghai Jiaotong University, Shanghai 201999, P.R. China
| | - Xiaojian Wan
- Department of Anesthesiology and Intensive Care Medicine, Changhai Hospital, The Second Military Medical University, Shanghai 200433, P.R. China
| | - Jiafeng Wang
- Department of Anesthesiology and Intensive Care Medicine, Changhai Hospital, The Second Military Medical University, Shanghai 200433, P.R. China
| | - Keming Zhu
- Department of Anesthesiology and Intensive Care Medicine, Changhai Hospital, The Second Military Medical University, Shanghai 200433, P.R. China
| |
Collapse
|
39
|
Lion A, Richard M, Esnault E, Kut E, Soubieux D, Guillory V, Germond M, Blondeau C, Guabiraba R, Short KR, Marc D, Quéré P, Trapp S. Productive replication of avian influenza viruses in chicken endothelial cells is determined by hemagglutinin cleavability and is related to innate immune escape. Virology 2017; 513:29-42. [PMID: 29031164 DOI: 10.1016/j.virol.2017.10.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 09/30/2017] [Accepted: 10/04/2017] [Indexed: 12/21/2022]
Abstract
Endotheliotropism is a hallmark of gallinaceous poultry infections with highly pathogenic avian influenza (HPAI) viruses and a feature that distinguishes HPAI from low pathogenic avian influenza (LPAI) viruses. Here, we used chicken aortic endothelial cells (chAEC) as a novel in vitro infection model to assess the susceptibility, permissiveness, and host response of chicken endothelial cells (EC) to infections with avian influenza (AI) viruses. Our data show that productive replication of AI viruses in chAEC is critically determined by hemagglutinin cleavability, and is thus an exclusive trait of HPAI viruses. However, we provide evidence for a link between limited (i.e. trypsin-dependent) replication of certain LPAI viruses, and the viruses' ability to dampen the antiviral innate immune response in infected chAEC. Strikingly, this cell response pattern was also detected in HPAI virus-infected chAEC, suggesting that viral innate immune escape might be a prerequisite for robust AI virus replication in chicken EC.
Collapse
Affiliation(s)
- Adrien Lion
- INRA ISP, Université François Rabelais de Tours, UMR 1282, Nouzilly, France
| | - Mathilde Richard
- Erasmus Medical Center, Department of Viroscience, Rotterdam, The Netherlands
| | - Evelyne Esnault
- INRA ISP, Université François Rabelais de Tours, UMR 1282, Nouzilly, France
| | - Emmanuel Kut
- INRA ISP, Université François Rabelais de Tours, UMR 1282, Nouzilly, France
| | - Denis Soubieux
- INRA ISP, Université François Rabelais de Tours, UMR 1282, Nouzilly, France
| | - Vanaïque Guillory
- INRA ISP, Université François Rabelais de Tours, UMR 1282, Nouzilly, France
| | - Mélody Germond
- INRA ISP, Université François Rabelais de Tours, UMR 1282, Nouzilly, France
| | - Caroline Blondeau
- INRA ISP, Université François Rabelais de Tours, UMR 1282, Nouzilly, France
| | - Rodrigo Guabiraba
- INRA ISP, Université François Rabelais de Tours, UMR 1282, Nouzilly, France
| | - Kirsty R Short
- Erasmus Medical Center, Department of Viroscience, Rotterdam, The Netherlands; University of Queensland, School of Biomedical Sciences, Brisbane, Australia
| | - Daniel Marc
- INRA ISP, Université François Rabelais de Tours, UMR 1282, Nouzilly, France
| | - Pascale Quéré
- INRA ISP, Université François Rabelais de Tours, UMR 1282, Nouzilly, France
| | - Sascha Trapp
- INRA ISP, Université François Rabelais de Tours, UMR 1282, Nouzilly, France.
| |
Collapse
|
40
|
Guo J, Yan W, Yang Y, Wang Z, Tian F. Monitoring of vascular endothelial growth factor and its soluble receptor levels in early trauma. J Trauma Acute Care Surg 2017; 82:766-770. [PMID: 28099389 DOI: 10.1097/ta.0000000000001373] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND This clinical observation study aimed to investigate the relationship between the serum levels of vascular endothelial growth factor (VEGF) and its soluble receptors with the severity and the occurrence of late acute respiratory distress syndrome (ARDS) in early trauma. METHODS Sixty patients with multiple injuries were divided into three groups according to the Injury Severity Score (ISS) and the serum levels of VEGF, soluble VEGF receptor 1 (sVEGFR1), and sVEGFR2, were measured. Ten healthy people were recruited as controls. The incidence of late ARDS was also monitored, and its relationship to the above measures analyzed. RESULTS VEGF was not associated with ISS (p > 0.05); sVEGFR1 was positively associated with ISS (r = 0.459, p < 0.0001); however, sVEGFR2 was negatively associated with ISS (r = 0.510, p < 0.0001). The serum VEGF levels between the ARDS group and the non-ARDS group showed no significant difference (p > 0.05). sVEGFR1 in the ARDS group was significantly higher than that in the non-ARDS group (p < 0.0001), and sVEGFR2 in the ARDS group was significantly lower than that in the non-ARDS group (p < 0.0001). CONCLUSION In conclusion, the increasing of sVEGFR1 and the decreasing of sVEGFR2 in early trauma might be closely related to the occurrence of late ARDS. LEVEL OF EVIDENCE Prognostic study, level III.
Collapse
Affiliation(s)
- Jianying Guo
- From the Department of Critical Care Medicine (J.G., Z.W.), the Third Hospital of Hebei Medical University, Shijiazhuang, China; Department of Intensive Care Unit (W.Y.), the First Hospital of Baoding, Baoding, Hebei, China; Department of Severe Medicine (Y.Y.), Xingtai People's Hospital, Xingtai, Hebei, China; and Department of Respiratory (F.T.), the Third Hospital of Hebei Medical University, Shijiazhuang, China
| | | | | | | | | |
Collapse
|
41
|
Kuleš J, Gotić J, Mrljak V, Barić Rafaj R. Blood markers of fibrinolysis and endothelial activation in canine babesiosis. BMC Vet Res 2017; 13:82. [PMID: 28363279 PMCID: PMC5376283 DOI: 10.1186/s12917-017-0995-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 03/18/2017] [Indexed: 03/09/2023] Open
Abstract
Background Canine babesiosis is a tick-borne disease caused by hemoprotozoan parasites of the genus Babesia. The disease can be clinically classified into uncomplicated and complicated forms. The aim of this study was to assess the level of endothelial activation and alterations in the fibrinolytic pathway during canine babesiosis. Results Blood samples were collected on the day of admission and on the 6th day after treatment with imidocarb propionate, from 30 dogs of various breeds and of both sexes with naturally occurring babesiosis caused by B. canis. In this prospective study, plasminogen activity was assessed using a chromogenic assay, and concentrations of high mobility group box-1 protein (HMGB-1), intercellular adhesive molecule-1 (ICAM-1), vascular adhesive molecule-1 (VCAM-1), soluble urokinase receptor of plasminogen activator (suPAR), thrombin activatable fibrinolysis inhibitor (TAFI), soluble thrombomodulin (TM) and plasminogen activator inhibitor-1 (PAI-1) were determined using a canine specific ELISA. Concentrations of TM, HMGB-1, VCAM-1 and suPAR were increased in dogs with babesiosis at admission compared to healthy dogs. After treatment, concentrations of TM were lower in infected dogs compared to healthy dogs. Dogs with babesiosis also had increased concentrations of TM, ICAM-1 and HMGB-1 and decreased plasminogen and PAI-1 at presentation compared to day 6 after treatment. Dogs with complicated babesiosis had higher concentrations of TM, HMGB1 and TAFI at admission compared to the 6th day. Conclusions Biomarkers of endothelial activation and fibrinolysis were altered in dogs with babesiosis. Further studies into their usefulness as biomarkers of disease severity or prognosis is warranted.
Collapse
Affiliation(s)
- Josipa Kuleš
- ERA Chair team VetMedZg, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000, Zagreb, Croatia
| | - Jelena Gotić
- Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000, Zagreb, Croatia
| | - Vladimir Mrljak
- Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000, Zagreb, Croatia.
| | - Renata Barić Rafaj
- Department of Chemistry and Biochemistry, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000, Zagreb, Croatia
| |
Collapse
|
42
|
Barker KR, Lu Z, Kim H, Zheng Y, Chen J, Conroy AL, Hawkes M, Cheng HS, Njock MS, Fish JE, Harlan JM, López JA, Liles WC, Kain KC. miR-155 Modifies Inflammation, Endothelial Activation and Blood-Brain Barrier Dysfunction in Cerebral Malaria. Mol Med 2017; 23:24-33. [PMID: 28182191 DOI: 10.2119/molmed.2016.00139] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 01/26/2017] [Indexed: 12/17/2022] Open
Abstract
miR-155 has been shown to participate in host response to infection and neuro-inflammation via negative regulation of blood-brain-barrier (BBB) integrity and T cell function. We hypothesized that miR-155 may contribute to the pathogenesis of cerebral malaria (CM). To test this hypothesis, we used a genetic approach to modulate miR-155 expression in an experimental model of cerebral malaria (ECM). In addition, an engineered endothelialized microvessel system and serum samples from Ugandan children with CM were used to examine an anti-miR-155 as a potential adjunctive therapeutic for severe malaria. Despite higher parasitemia, survival was significantly improved in miR-155-/- mice vs. wild-type littermate mice in ECM. Improved survival was associated with preservation of BBB integrity and reduced endothelial activation, despite increased levels of pro-inflammatory cytokines. Pre-treatment with antagomir-155 reduced vascular leak induced by human CM sera in an ex vivo endothelial microvessel model. These data provide evidence supporting a mechanistic role for miR-155 in host response to malaria via regulation of endothelial activation, microvascular leak and BBB dysfunction in CM.
Collapse
Affiliation(s)
- Kevin Richard Barker
- Department of Laboratory Medicine and Pathobiology, University of Toronto, ON, Canada.,Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital, and the Tropical Disease Unit, Department of Medicine, University of Toronto, ON, Canada
| | - Ziyue Lu
- Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital, and the Tropical Disease Unit, Department of Medicine, University of Toronto, ON, Canada
| | - Hani Kim
- Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital, and the Tropical Disease Unit, Department of Medicine, University of Toronto, ON, Canada
| | - Ying Zheng
- Department of Bioengineering, University of Washington, Seattle, WA, USA; Center of Cardiovascular Biology, Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Junmei Chen
- Bloodworks Northwest Research Institute, Seattle, WA, USA
| | - Andrea L Conroy
- Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital, and the Tropical Disease Unit, Department of Medicine, University of Toronto, ON, Canada
| | - Michael Hawkes
- Division of Infectious Diseases, Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| | - Henry S Cheng
- Department of Laboratory Medicine and Pathobiology, University of Toronto, ON, Canada.,Toronto General Research Institute, University Health Network, Toronto, ON, Canada; Heart and Stroke Richard Lewar Centre of Excellence in Cardiovascular Research, Toronto, ON, Canada
| | - Makon-Sébastien Njock
- Toronto General Research Institute, University Health Network, Toronto, ON, Canada; Heart and Stroke Richard Lewar Centre of Excellence in Cardiovascular Research, Toronto, ON, Canada
| | - Jason E Fish
- Department of Laboratory Medicine and Pathobiology, University of Toronto, ON, Canada.,Toronto General Research Institute, University Health Network, Toronto, ON, Canada; Heart and Stroke Richard Lewar Centre of Excellence in Cardiovascular Research, Toronto, ON, Canada
| | - John M Harlan
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Jose A López
- Bloodworks Northwest Research Institute, Seattle, WA, USA.,Department of Medicine, University of Washington, Seattle, WA, USA
| | - W Conrad Liles
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Kevin C Kain
- Department of Laboratory Medicine and Pathobiology, University of Toronto, ON, Canada.,Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital, and the Tropical Disease Unit, Department of Medicine, University of Toronto, ON, Canada
| |
Collapse
|
43
|
Retta SF, Glading AJ. Oxidative stress and inflammation in cerebral cavernous malformation disease pathogenesis: Two sides of the same coin. Int J Biochem Cell Biol 2016; 81:254-270. [PMID: 27639680 PMCID: PMC5155701 DOI: 10.1016/j.biocel.2016.09.011] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 09/08/2016] [Accepted: 09/13/2016] [Indexed: 12/14/2022]
Abstract
CCM proteins play pleiotropic roles in various redox-sensitive signaling pathways. CCM proteins modulate the crosstalk between redox signaling and autophagy that govern cell homeostasis and stress responses. Oxidative stress and inflammation are emerging as key focal determinants of CCM lesion formation, progression and severity. The pleiotropic functions of CCM proteins may prevent vascular dysfunctions triggered by local oxidative stress and inflammatory events. The distinct therapeutic compounds proposed so far for CCM disease share the ability to modulate redox signaling and autophagy.
Cerebral Cavernous Malformation (CCM) is a vascular disease of proven genetic origin, which may arise sporadically or is inherited as an autosomal dominant condition with incomplete penetrance and highly variable expressivity. CCM lesions exhibit a range of different phenotypes, including wide inter-individual differences in lesion number, size, and susceptibility to intracerebral hemorrhage (ICH). Lesions may remain asymptomatic or result in pathological conditions of various type and severity at any age, with symptoms ranging from recurrent headaches to severe neurological deficits, seizures, and stroke. To date there are no direct therapeutic approaches for CCM disease besides the surgical removal of accessible lesions. Novel pharmacological strategies are particularly needed to limit disease progression and severity and prevent de novo formation of CCM lesions in susceptible individuals. Useful insights into innovative approaches for CCM disease prevention and treatment are emerging from a growing understanding of the biological functions of the three known CCM proteins, CCM1/KRIT1, CCM2 and CCM3/PDCD10. In particular, accumulating evidence indicates that these proteins play major roles in distinct signaling pathways, including those involved in cellular responses to oxidative stress, inflammation and angiogenesis, pointing to pathophysiological mechanisms whereby the function of CCM proteins may be relevant in preventing vascular dysfunctions triggered by these events. Indeed, emerging findings demonstrate that the pleiotropic roles of CCM proteins reflect their critical capacity to modulate the fine-tuned crosstalk between redox signaling and autophagy that govern cell homeostasis and stress responses, providing a novel mechanistic scenario that reconciles both the multiple signaling pathways linked to CCM proteins and the distinct therapeutic approaches proposed so far. In addition, recent studies in CCM patient cohorts suggest that genetic susceptibility factors related to differences in vascular sensitivity to oxidative stress and inflammation contribute to inter-individual differences in CCM disease susceptibility and severity. This review discusses recent progress into the understanding of the molecular basis and mechanisms of CCM disease pathogenesis, with specific emphasis on the potential contribution of altered cell responses to oxidative stress and inflammatory events occurring locally in the microvascular environment, and consequent implications for the development of novel, safe, and effective preventive and therapeutic strategies.
Collapse
Affiliation(s)
- Saverio Francesco Retta
- Department of Clinical and Biological Sciences, School of Medicine and Surgery, University of Torino, Regione Gonzole 10, 10043 Orbassano, Torino, Italy; CCM Italia Research Network(1).
| | - Angela J Glading
- University of Rochester Medical Center, School of Medicine and Dentistry, 601 Elmwood Ave, 14642 Rochester, NY, USA.
| |
Collapse
|
44
|
Barker KR, Conroy AL, Hawkes M, Murphy H, Pandey P, Kain KC. Biomarkers of hypoxia, endothelial and circulatory dysfunction among climbers in Nepal with AMS and HAPE: a prospective case-control study. J Travel Med 2016; 23:taw005. [PMID: 26984355 PMCID: PMC5731443 DOI: 10.1093/jtm/taw005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/11/2016] [Indexed: 12/12/2022]
Abstract
BACKGROUND The mechanisms underlying acute mountain sickness (AMS) and high-altitude pulmonary edema (HAPE) are not fully understood. We hypothesized that regulators of endothelial function, circulatory homeostasis, hypoxia and cell stress contribute to the pathobiology of AMS and HAPE. METHODS We conducted a prospective case-control study of climbers developing altitude illness who were evacuated to the CIWEC clinic in Kathmandu, compared to healthy acclimatized climbers. ELISA was used to measure plasma biomarkers of the above pathways. RESULTS Of the 175 participants, there were 71 cases of HAPE, 54 cases of AMS and 50 acclimatized controls (ACs). Markers of endothelial function were associated with HAPE: circulating levels of endothelin-1 (ET-1) were significantly elevated and levels of sKDR (soluble kinase domain receptor) were significantly decreased in cases of HAPE compared to AC or AMS. ET-1 levels were associated with disease severity as indicated by oxygen saturation. Angiopoietin-like 4 (Angptl4) and resistin, a marker of cell stress, were associated with AMS and HAPE irrespective of severity. Corin and angiotensin converting enzyme, regulators of volume homeostasis, were significantly decreased in HAPE compared to AC. CONCLUSION Our findings indicate that regulators of endothelial function, vascular tone and cell stress are altered in altitude illness and may mechanistically contribute to the pathobiology of HAPE.
Collapse
Affiliation(s)
- Kevin R Barker
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada, Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital, Toronto, ON, Canada
| | - Andrea L Conroy
- Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital, Toronto, ON, Canada
| | - Michael Hawkes
- Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital, Toronto, ON, Canada, Division of Infectious Diseases, Department of Pediatrics, University of Alberta, Edmonton, AB, Canada and
| | - Holly Murphy
- CIWEC Hospital and Travel Medicine Center, Kathmandu, Nepal
| | - Prativa Pandey
- CIWEC Hospital and Travel Medicine Center, Kathmandu, Nepal
| | - Kevin C Kain
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada, Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital, Toronto, ON, Canada, The Tropical Disease Unit, Department of Medicine, University of Toronto, Toronto, ON, Canada,
| |
Collapse
|
45
|
Kumar NP, Banurekha VV, Nair D, Babu S. Circulating Angiogenic Factors as Biomarkers of Disease Severity and Bacterial Burden in Pulmonary Tuberculosis. PLoS One 2016; 11:e0146318. [PMID: 26727122 PMCID: PMC4699686 DOI: 10.1371/journal.pone.0146318] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 12/15/2015] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Angiogenesis and lymphangiogenesis are classical features of granuloma formation in pulmonary tuberculosis (PTB). In addition, the angiogenic factor--VEGF-A is a known biomarker for PTB. AIMS/METHODOLOGY To examine the association of circulating angiogenic factors with PTB, we examined the systemic levels of VEGF-A, VEGF-C, VEGF-D, VEGF-R1, VEGF-R2 and VEGF-R3in individuals with PTB, latent TB (LTB) or no TB infection (NTB). RESULTS Circulating levels of VEGF-A, VEGF-C andVEGF-R2 were significantly higher in PTB compared to LTB or NTB individuals. Moreover, the levels of VEGF-A, VEGF-C and VEGF-R2 were significantly higher in PTB with bilateral and/or cavitary disease. The levels of these factors also exhibited a significant positive relationship with bacterial burdens in PTB. ROC analysis revealed VEGF-A and VEGF-R2 as markers distinguishing PTB from LTB or NTB. Finally, the circulating levels of all the angiogenic factors examined were significantly reduced following successful chemotherapy. CONCLUSION Therefore, our data demonstrate that PTB is associated with elevated levels of circulating angiogenic factors, possibly reflecting vascular and endothelial dysfunction. In addition, some of these circulating angiogenic factors could prove useful as biomarkers to monitor disease severity, bacterial burden and therapeutic responses.
Collapse
Affiliation(s)
- Nathella Pavan Kumar
- National Institutes of Health—NIRT—International Center for Excellence in Research, Chennai, India
| | | | - Dina Nair
- National Institute for Research in Tuberculosis, Chennai, India
| | - Subash Babu
- National Institutes of Health—NIRT—International Center for Excellence in Research, Chennai, India
| |
Collapse
|
46
|
Wang C, Armstrong SM, Sugiyama MG, Tabuchi A, Krauszman A, Kuebler WM, Mullen B, Advani S, Advani A, Lee WL. Influenza-Induced Priming and Leak of Human Lung Microvascular Endothelium upon Exposure to Staphylococcus aureus. Am J Respir Cell Mol Biol 2015; 53:459-70. [PMID: 25693001 DOI: 10.1165/rcmb.2014-0373oc] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
A major cause of death after influenza virus infection is lung injury due to a bacterial superinfection, yet the mechanism is unknown. Death has been attributed to virus-induced immunosuppression and bacterial overgrowth, but this hypothesis is based on data from the preantibiotic era and animal models that omit antimicrobial therapy. Because of diagnostic uncertainty, most patients with influenza receive antibiotics, making bacterial overgrowth unlikely. Respiratory failure after superinfection presents as acute respiratory distress syndrome, a disorder characterized by lung microvascular leak and edema. The objective of this study was to determine whether the influenza virus sensitizes the lung endothelium to leak upon exposure to circulating bacterial-derived molecular patterns from Staphylococcus aureus. In vitro as well as in vivo models of influenza followed by S. aureus superinfection were used. Molecular mechanisms were explored using molecular biology, knockout mice, and human autopsy specimens. Influenza virus infection sensitized human lung endothelium to leak when challenged with S. aureus, even at low doses of influenza and even when the pathogens were given days apart. Influenza virus increased endothelial expression of TNFR1 both in vitro and in intact lungs, a finding corroborated by human autopsy specimens of patients with influenza. Leak was recapitulated with protein A, a TNFR1 ligand, and sequential infection caused protein A-dependent loss of IκB, cleavage of caspases 8 and 3, and lung endothelial apoptosis. Mice infected sequentially with influenza virus and S. aureus developed significantly increased lung edema that was protein A and TNFR1 dependent. Influenza virus primes the lung endothelium to leak, predisposing patients to acute respiratory distress syndrome upon exposure to S. aureus.
Collapse
Affiliation(s)
- Changsen Wang
- 1 Keenan Research Centre for Biomedical Science at St. Michael's Hospital, Toronto, Ontario, Canada
| | - Susan M Armstrong
- 1 Keenan Research Centre for Biomedical Science at St. Michael's Hospital, Toronto, Ontario, Canada.,2 Institute of Medical Science
| | - Michael G Sugiyama
- 1 Keenan Research Centre for Biomedical Science at St. Michael's Hospital, Toronto, Ontario, Canada.,3 Department of Laboratory Medicine and Pathobiology
| | - Arata Tabuchi
- 1 Keenan Research Centre for Biomedical Science at St. Michael's Hospital, Toronto, Ontario, Canada
| | - Adrienn Krauszman
- 1 Keenan Research Centre for Biomedical Science at St. Michael's Hospital, Toronto, Ontario, Canada
| | - Wolfgang M Kuebler
- 1 Keenan Research Centre for Biomedical Science at St. Michael's Hospital, Toronto, Ontario, Canada
| | - Brendan Mullen
- 4 Department of Pathology, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Suzanne Advani
- 1 Keenan Research Centre for Biomedical Science at St. Michael's Hospital, Toronto, Ontario, Canada
| | - Andrew Advani
- 1 Keenan Research Centre for Biomedical Science at St. Michael's Hospital, Toronto, Ontario, Canada.,5 Department of Medicine, University of Toronto, Toronto, Ontario, Canada; and
| | - Warren L Lee
- 1 Keenan Research Centre for Biomedical Science at St. Michael's Hospital, Toronto, Ontario, Canada.,2 Institute of Medical Science.,3 Department of Laboratory Medicine and Pathobiology.,6 Interdepartmental Division of Critical Care and.,5 Department of Medicine, University of Toronto, Toronto, Ontario, Canada; and
| |
Collapse
|
47
|
Al-Khalisy H, Nikiforov I, Jhajj M, Kodali N, Cheriyath P. A widened pulse pressure: a potential valuable prognostic indicator of mortality in patients with sepsis. J Community Hosp Intern Med Perspect 2015; 5:29426. [PMID: 26653692 PMCID: PMC4677588 DOI: 10.3402/jchimp.v5.29426] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 08/24/2015] [Accepted: 10/16/2015] [Indexed: 11/26/2022] Open
Abstract
Background Sepsis is one of the leading causes of death in the United States and the most common cause of death among critically ill patients in non-coronary intensive care units. Previous studies have showed pulse pressure (PP) to be a predictor of fluid responsiveness in patients with sepsis. Additionally, previous studies have correlated PP to cardiovascular risk factors and increase in mortality in end-stage renal disease patients. Objectives To determine the correlation between PP and mortality in patients with sepsis. Methods A retrospective review was conducted on 5,003 patients admitted with the diagnosis of sepsis using ICD-9 codes during the time period from January 2010 to December 2014 at two community-based hospitals in central Pennsylvania. Results Our study findings showed significant decrease in the mortality when the PP was greater than 70 mmHg of patients with sepsis (p-value: 0.0003, odds ratio: 0.67, 95% confidence limit: 0.54–0.83). Conclusion Based on our findings, we suggest that PP could be a valuable clinical tool in the early assessment of patients admitted with sepsis and could be used as a prognostic factor to assess and implement management therapy for the patients with sepsis.
Collapse
Affiliation(s)
- Hassan Al-Khalisy
- Department of Medicine, Pinnacle Health Hospital, Harrisburg, PA, USA;
| | - Ivan Nikiforov
- Department of Medicine, Pinnacle Health Hospital, Harrisburg, PA, USA
| | - Manjit Jhajj
- Department of Medicine, Pinnacle Health Hospital, Harrisburg, PA, USA
| | - Namratha Kodali
- Department of Medicine, Pinnacle Health Hospital, Harrisburg, PA, USA
| | - Pramil Cheriyath
- Department of Medicine, Pinnacle Health Hospital, Harrisburg, PA, USA
| |
Collapse
|
48
|
Zheng YJ, Xu WP, Ding G, Gao YH, Wang HR, Pan SM. Expression of HMGB1 in septic serum induces vascular endothelial hyperpermeability. Mol Med Rep 2015; 13:513-21. [PMID: 26572550 DOI: 10.3892/mmr.2015.4536] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Accepted: 09/09/2015] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was to investigate the effects of high mobility group protein B1 (HMGB1), which is expressed in the serum of patients with sepsis, on vascular endothelial permeability. Sera from patients with sepsis were used to treat endothelial cells (ECs), and the effect on endothelial permeability was evaluated using immunofluorescence. The morphologies of endothelial cytoskeletal actin and vascular endothelial (VE)‑cadherin were assessed using laser scanning confocal microscopy. The protein expression levels of HMGB1, B‑cell lymphoma 2 (BCL‑2) and BCL‑2‑associated X protein (BAX) were detected using western blotting. EC apoptosis was measured using flow cytometry. The results demonstrated that HMGB1 was significantly expressed in the serum 24 h following the onset of sepsis, and the expression levels peaked at 48 h, which were sustained until 96 h post‑onset. Compared with the control group, treatment of the ECs with 20% septic serum in vitro significantly increased endothelial monolayer permeability (P<0.01), markedly induced transcellular filamentous (F)‑actin rearrangement with stress fiber formation, and resulted in the localization of VE‑cadherin fragmentations at the cell borders with increased gaps between ECs. Furthermore, flow cytometry showed that the apoptotic rate of ECs was significantly increased following treatment with septic serum. In addition, the expression levels of BAX were significantly increased, whereas the expression levels of BCL‑2 were significantly decreased. Pretreatment with an HMGBI inhibitor (ethyl pyruvate; 5 µM) 24 h prior to treatment with the septic serum attenuated the effects of septic serum treatment. Together, these findings suggested that treatment of ECs with sera from patients with sepsis may induce the loss of vascular endothelial monolayer integrity, elicit the formation of endothelial F‑actin stress fibers and initiate VE‑cadherin redistribution, which may be attributed to high levels of HMGB1 in the serum. This mechanism also appears to involve changes in the activation of BAX and BCL‑2, resulting in EC apoptosis.
Collapse
Affiliation(s)
- Yun-Jiang Zheng
- Emergency Department, Chongming Branch, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 202150, P.R. China
| | - Wei-Ping Xu
- Administration Division, Chongming Branch, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 202150, P.R. China
| | - Gang Ding
- Department of Oncology, Chongming Branch, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 202150, P.R. China
| | - Yu-Hua Gao
- Administration Division, Chongming Branch, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 202150, P.R. China
| | - Hai-Rong Wang
- Emergency Department, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China
| | - Shu-Ming Pan
- Emergency Department, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China
| |
Collapse
|
49
|
Caffeoyl glucosides from Nandina domestica inhibit LPS-induced endothelial inflammatory responses. Bioorg Med Chem Lett 2015; 25:5367-71. [DOI: 10.1016/j.bmcl.2015.09.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 09/09/2015] [Accepted: 09/12/2015] [Indexed: 12/13/2022]
|
50
|
Masat E, Gasparini C, Agostinis C, Bossi F, Radillo O, De Seta F, Tamassia N, Cassatella MA, Bulla R. RelB activation in anti-inflammatory decidual endothelial cells: a master plan to avoid pregnancy failure? Sci Rep 2015; 5:14847. [PMID: 26463648 PMCID: PMC4604455 DOI: 10.1038/srep14847] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 07/21/2015] [Indexed: 01/17/2023] Open
Abstract
It is known that excessive inflammation at fetal-maternal interface is a key contributor in a compromised pregnancy. Female genital tract is constantly in contact with microorganisms and several strategies must be adopted to avoid pregnancy failure. Decidual endothelial cells (DECs) lining decidual microvascular vessels are the first cells that interact with pro-inflammatory stimuli released into the environment by microorganisms derived from gestational tissues or systemic circulation. Here, we show that DECs are hypo-responsive to LPS stimulation in terms of IL-6, CXCL8 and CCL2 production. Our results demonstrate that DECs express low levels of TLR4 and are characterized by a strong constitutive activation of the non-canonical NF-κB pathway and a low responsiveness of the canonical pathway to LPS. In conclusion, DECs show a unique hypo-responsive phenotype to the pro-inflammatory stimulus LPS in order to control the inflammatory response at feto-maternal interface.
Collapse
Affiliation(s)
- Elisa Masat
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Chiara Gasparini
- Institute for Maternal and Child Health, IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) “Burlo Garofolo”, Trieste, Italy
| | - Chiara Agostinis
- Institute for Maternal and Child Health, IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) “Burlo Garofolo”, Trieste, Italy
| | - Fleur Bossi
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Oriano Radillo
- Institute for Maternal and Child Health, IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) “Burlo Garofolo”, Trieste, Italy
| | - Francesco De Seta
- Department of Life Sciences, University of Trieste, Trieste, Italy
- Institute for Maternal and Child Health, IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) “Burlo Garofolo”, Trieste, Italy
| | - Nicola Tamassia
- Section of General Pathology, Department of Medicine, School of Medicine, University of Verona, Verona, Italy
| | - Marco A. Cassatella
- Section of General Pathology, Department of Medicine, School of Medicine, University of Verona, Verona, Italy
| | - Roberta Bulla
- Department of Life Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|