1
|
Wang J, Hui X, Liu H, Dai X. Classification, characteristics, harmless treatment and safety assessment of antibiotic pharmaceutical wastewater (APWW): A comprehensive review. CHEMOSPHERE 2024; 366:143504. [PMID: 39389375 DOI: 10.1016/j.chemosphere.2024.143504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/17/2024] [Accepted: 10/05/2024] [Indexed: 10/12/2024]
Abstract
The issues related to the spread of antibiotics and antibiotic resistance genes (ARGs) have garnered significant attention from researchers and governments. The production of antibiotics can lead to the emission of high-concentration pharmaceutical wastewater, which contains antibiotic residues and various other pollutants. This review compiles the classification and characteristics of antibiotic pharmaceutical wastewater (APWW), offers an overview of the development, advantages, and disadvantages of diverse harmless treatment processes, and presents a strategy for selecting appropriate treatment approaches. Biological treatment remains the predominant approach for treating APWW. In addition, several alternative methods can be employed to address the challenges associated with APWW treatment. On the other hand, the present safety assessment of the effluent resulting from APWW treatment is inadequate, necessitating more comprehensive research in this domain. It is recommended that researches in this area consider the issue of toxicity and antibiotic resistance as well. The PNECR model (similar to ecotoxicological PNECs but used to specifically refer to endpoints related to antimicrobial resistance) (Murray et al., 2024) is an emerging tool used for evaluating the antimicrobial resistance (AMR) issue. This model is, characterized by its simplicity and effectiveness, is a promising tool for assessing the safety of treated APWW.
Collapse
Affiliation(s)
- Jiawen Wang
- School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China.
| | - Xuesong Hui
- School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Huiling Liu
- School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China.
| | - Xiaohu Dai
- School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| |
Collapse
|
2
|
Bernardini G, van Iersel L, Julien E, Stougie L. Inferring phylogenetic networks from multifurcating trees via cherry picking and machine learning. Mol Phylogenet Evol 2024; 199:108137. [PMID: 39029549 DOI: 10.1016/j.ympev.2024.108137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 02/19/2024] [Accepted: 06/29/2024] [Indexed: 07/21/2024]
Abstract
The Hybridization problem asks to reconcile a set of conflicting phylogenetic trees into a single phylogenetic network with the smallest possible number of reticulation nodes. This problem is computationally hard and previous solutions are limited to small and/or severely restricted data sets, for example, a set of binary trees with the same taxon set or only two non-binary trees with non-equal taxon sets. Building on our previous work on binary trees, we present FHyNCH, the first algorithmic framework to heuristically solve the Hybridization problem for large sets of multifurcating trees whose sets of taxa may differ. Our heuristics combine the cherry-picking technique, recently proposed to solve the same problem for binary trees, with two carefully designed machine-learning models. We demonstrate that our methods are practical and produce qualitatively good solutions through experiments on both synthetic and real data sets.
Collapse
Affiliation(s)
| | - Leo van Iersel
- Delft Institute of Applied Mathematics, Delft, The Netherlands
| | - Esther Julien
- Delft Institute of Applied Mathematics, Delft, The Netherlands.
| | - Leen Stougie
- CWI, Amsterdam, the Netherlands; Vrije Universiteit, Amsterdam, The Netherlands; INRIA-Erable, France
| |
Collapse
|
3
|
Wang S, Jiang Y, Che L, Wang RH, Li SC. Enhancing insights into diseases through horizontal gene transfer event detection from gut microbiome. Nucleic Acids Res 2024; 52:e61. [PMID: 38884260 DOI: 10.1093/nar/gkae515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 04/23/2024] [Accepted: 06/04/2024] [Indexed: 06/18/2024] Open
Abstract
Horizontal gene transfer (HGT) phenomena pervade the gut microbiome and significantly impact human health. Yet, no current method can accurately identify complete HGT events, including the transferred sequence and the associated deletion and insertion breakpoints from shotgun metagenomic data. Here, we develop LocalHGT, which facilitates the reliable and swift detection of complete HGT events from shotgun metagenomic data, delivering an accuracy of 99.4%-verified by Nanopore data-across 200 gut microbiome samples, and achieving an average F1 score of 0.99 on 100 simulated data. LocalHGT enables a systematic characterization of HGT events within the human gut microbiome across 2098 samples, revealing that multiple recipient genome sites can become targets of a transferred sequence, microhomology is enriched in HGT breakpoint junctions (P-value = 3.3e-58), and HGTs can function as host-specific fingerprints indicated by the significantly higher HGT similarity of intra-personal temporal samples than inter-personal samples (P-value = 4.3e-303). Crucially, HGTs showed potential contributions to colorectal cancer (CRC) and acute diarrhoea, as evidenced by the enrichment of the butyrate metabolism pathway (P-value = 3.8e-17) and the shigellosis pathway (P-value = 5.9e-13) in the respective associated HGTs. Furthermore, differential HGTs demonstrated promise as biomarkers for predicting various diseases. Integrating HGTs into a CRC prediction model achieved an AUC of 0.87.
Collapse
Affiliation(s)
- Shuai Wang
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
- Department of Computer Science, City University of Hong Kong, Kowloon, Hong Kong
| | - Yiqi Jiang
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
- Department of Computer Science, City University of Hong Kong, Kowloon, Hong Kong
| | - Lijia Che
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
- Department of Computer Science, City University of Hong Kong, Kowloon, Hong Kong
| | - Ruo Han Wang
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
- Department of Computer Science, City University of Hong Kong, Kowloon, Hong Kong
| | - Shuai Cheng Li
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
- Department of Computer Science, City University of Hong Kong, Kowloon, Hong Kong
| |
Collapse
|
4
|
Teichman S, Lee MD, Willis AD. Analyzing microbial evolution through gene and genome phylogenies. Biostatistics 2024; 25:786-800. [PMID: 37897441 PMCID: PMC11247178 DOI: 10.1093/biostatistics/kxad025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 08/15/2023] [Accepted: 08/27/2023] [Indexed: 10/30/2023] Open
Abstract
Microbiome scientists critically need modern tools to explore and analyze microbial evolution. Often this involves studying the evolution of microbial genomes as a whole. However, different genes in a single genome can be subject to different evolutionary pressures, which can result in distinct gene-level evolutionary histories. To address this challenge, we propose to treat estimated gene-level phylogenies as data objects, and present an interactive method for the analysis of a collection of gene phylogenies. We use a local linear approximation of phylogenetic tree space to visualize estimated gene trees as points in low-dimensional Euclidean space, and address important practical limitations of existing related approaches, allowing an intuitive visualization of complex data objects. We demonstrate the utility of our proposed approach through microbial data analyses, including by identifying outlying gene histories in strains of Prevotella, and by contrasting Streptococcus phylogenies estimated using different gene sets. Our method is available as an open-source R package, and assists with estimating, visualizing, and interacting with a collection of bacterial gene phylogenies.
Collapse
Affiliation(s)
- Sarah Teichman
- University of Washington Department of Statistics, Box 354322, Seattle, WA 98195-4322, USA
| | - Michael D Lee
- KBR NASA Ames Research Center, PO Box 1, Moffett Field, CA 94035-1000
- Blue Marble Space Institute of Science, 600 1st Avenue, 1st Floor, Seattle, WA 98104, USA
| | - Amy D Willis
- University of Washington Department of Biostatistics, Hans Rosling Center for Population Health, Box 351617, Seattle, WA 98195-1617, USA
| |
Collapse
|
5
|
Vega-Heredia S, Giffard-Mena I, Reverter M. Bacterial and viral co-infections in aquaculture under climate warming: co-evolutionary implications, diagnosis, and treatment. DISEASES OF AQUATIC ORGANISMS 2024; 158:1-20. [PMID: 38602294 DOI: 10.3354/dao03778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Climate change and the associated environmental temperature fluctuations are contributing to increases in the frequency and severity of disease outbreaks in both wild and farmed aquatic species. This has a significant impact on biodiversity and also puts global food production systems, such as aquaculture, at risk. Most infections are the result of complex interactions between multiple pathogens, and understanding these interactions and their co-evolutionary mechanisms is crucial for developing effective diagnosis and control strategies. In this review, we discuss current knowledge on bacteria-bacteria, virus-virus, and bacterial and viral co-infections in aquaculture as well as their co-evolution in the context of global warming. We also propose a framework and different novel methods (e.g. advanced molecular tools such as digital PCR and next-generation sequencing) to (1) precisely identify overlooked co-infections, (2) gain an understanding of the co-infection dynamics and mechanisms by knowing species interactions, and (3) facilitate the development multi-pathogen preventive measures such as polyvalent vaccines. As aquaculture disease outbreaks are forecasted to increase both due to the intensification of practices to meet the protein demand of the increasing global population and as a result of global warming, understanding and treating co-infections in aquatic species has important implications for global food security and the economy.
Collapse
Affiliation(s)
- Sarahí Vega-Heredia
- Universidad Autónoma de Baja California, Facultad de Ciencias Marinas, Ensenada, México, Egresada del Programa de Ecología Molecular y Biotecnología, carretera transpeninsular Ensenada-Tijuana No. 3917, C.P. 22860, México
| | - Ivone Giffard-Mena
- Universidad Autónoma de Baja California, Facultad de Ciencias Marinas, Ensenada, México
| | - Miriam Reverter
- School of Biological and Marine Sciences, Plymouth University, Drake Circus, Devon PL4 8AA, UK
| |
Collapse
|
6
|
López Sánchez A, Lafond M. Predicting horizontal gene transfers with perfect transfer networks. Algorithms Mol Biol 2024; 19:6. [PMID: 38321476 PMCID: PMC10848447 DOI: 10.1186/s13015-023-00242-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 10/25/2023] [Indexed: 02/08/2024] Open
Abstract
BACKGROUND Horizontal gene transfer inference approaches are usually based on gene sequences: parametric methods search for patterns that deviate from a particular genomic signature, while phylogenetic methods use sequences to reconstruct the gene and species trees. However, it is well-known that sequences have difficulty identifying ancient transfers since mutations have enough time to erase all evidence of such events. In this work, we ask whether character-based methods can predict gene transfers. Their advantage over sequences is that homologous genes can have low DNA similarity, but still have retained enough important common motifs that allow them to have common character traits, for instance the same functional or expression profile. A phylogeny that has two separate clades that acquired the same character independently might indicate the presence of a transfer even in the absence of sequence similarity. OUR CONTRIBUTIONS We introduce perfect transfer networks, which are phylogenetic networks that can explain the character diversity of a set of taxa under the assumption that characters have unique births, and that once a character is gained it is rarely lost. Examples of such traits include transposable elements, biochemical markers and emergence of organelles, just to name a few. We study the differences between our model and two similar models: perfect phylogenetic networks and ancestral recombination networks. Our goals are to initiate a study on the structural and algorithmic properties of perfect transfer networks. We then show that in polynomial time, one can decide whether a given network is a valid explanation for a set of taxa, and show how, for a given tree, one can add transfer edges to it so that it explains a set of taxa. We finally provide lower and upper bounds on the number of transfers required to explain a set of taxa, in the worst case.
Collapse
Affiliation(s)
| | - Manuel Lafond
- Department of Computer Science, Université de Sherbrooke, Sherbrooke, Canada
| |
Collapse
|
7
|
Tartik M. The priority of yeast to select among various DNA options to repair genome breaks by homologous recombination. Mol Biol Rep 2024; 51:99. [PMID: 38206425 DOI: 10.1007/s11033-023-09058-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 11/02/2023] [Indexed: 01/12/2024]
Abstract
BACKGROUND Horizontal gene transfer (HGT) is considered an important mechanism to contribute to the evolution of bacteria, plants, and animals by allowing the movement of genetic material between organisms, in difference to vertical inheritance. Thereby it can also play a significant role in spreading traits like antibiotic resistance among bacteria and virulence factors between pathogens. During the HGT, organisms take up free DNA from the environment and incorporate it into their genomes. Although HGT is known to be carried out by many organisms, there is limited information on how organisms select which genetic material for horizontal transfer. Here we have investigated the preference priority of Saccharomyces cerevisiae between different options of gene source presented under certain stress conditions to repair a double-strand break (DSB) in DNA via HR. RESULTS Each genetic module was designed with appropriate sequences being homologous for two sides of the DSB, which is important for yeast to repair the fracture with HR. S. cerevisiae made a random selection between two heterologous T1 (44%) and T2 (56%) modules to repair DSB. Interestingly, yeast corrected the DNA break only with the T3 module (almost 100%) when the homologous T3 module was an option for the selection. It seems that S. cerevisiae tends to prefer T3 over alternatives to fix DSBs when it exists among the options. CONCLUSIONS It seems that S. cerevisiae have a preference for priority to select a particular one under certain conditions when it has various DNA options to repair a DSB in its genome, further studies are required to support our findings.
Collapse
Affiliation(s)
- Musa Tartik
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Bingol University, 12000, Bingol, Turkey.
- Department of Life Sciences, Chalmers University of Technology, Kemivägen 10, 412 96, Gothenburg, Sweden.
| |
Collapse
|
8
|
Trost K, Knopp MR, Wimmer JLE, Tria FDK, Martin WF. A universal and constant rate of gene content change traces pangenome flux to LUCA. FEMS Microbiol Lett 2024; 371:fnae068. [PMID: 39165128 PMCID: PMC11394098 DOI: 10.1093/femsle/fnae068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/15/2024] [Accepted: 08/19/2024] [Indexed: 08/22/2024] Open
Abstract
Prokaryotic genomes constantly undergo gene flux via lateral gene transfer, generating a pangenome structure consisting of a conserved core genome surrounded by a more variable accessory genome shell. Over time, flux generates change in genome content. Here, we measure and compare the rate of genome flux for 5655 prokaryotic genomes as a function of amino acid sequence divergence in 36 universally distributed proteins of the informational core (IC). We find a clock of gene content change. The long-term average rate of gene content flux is remarkably constant across all higher prokaryotic taxa sampled, whereby the size of the accessory genome-the proportion of the genome harboring gene content difference for genome pairs-varies across taxa. The proportion of species-level accessory genes per genome, varies from 0% (Chlamydia) to 30%-33% (Alphaproteobacteria, Gammaproteobacteria, and Clostridia). A clock-like rate of gene content change across all prokaryotic taxa sampled suggest that pangenome structure is a general feature of prokaryotic genomes and that it has been in existence since the divergence of bacteria and archaea.
Collapse
Affiliation(s)
- Katharina Trost
- Faculty of Mathematics and Natural Sciences, Institute of Molecular Evolution, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Michael R Knopp
- Faculty of Mathematics and Natural Sciences, Institute of Molecular Evolution, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Jessica L E Wimmer
- Faculty of Mathematics and Natural Sciences, Institute of Molecular Evolution, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Fernando D K Tria
- Faculty of Mathematics and Natural Sciences, Institute of Molecular Evolution, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
- Los Alamos National Laboratory, Los Alamos, NM, United States
| | - William F Martin
- Faculty of Mathematics and Natural Sciences, Institute of Molecular Evolution, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|
9
|
Yee WX, Elsener T, Cehovin A, Maiden MCJ, Tang CM. Evolution and exchange of plasmids in pathogenic Neisseria. mSphere 2023; 8:e0044123. [PMID: 37850911 PMCID: PMC10732060 DOI: 10.1128/msphere.00441-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 09/07/2023] [Indexed: 10/19/2023] Open
Abstract
IMPORTANCE Horizontal gene transfer (HGT) is a major influence in driving the spread of antimicrobial resistance (AMR) in many bacteria. A conjugative plasmid which is widespread in Neisseria gonorrhoeae, pConj, prevented the use of tetracycline/doxycycline for treating gonococcal infection. Here, we show that pConj evolved in the related pathogen, Neisseria meningitidis, and has been acquired by the gonococcus from the meningococcus on multiple occasions. Following its initial acquisition, pConj spread to different gonococcal lineages; changes in the plasmid's conjugation machinery associated with another transfer event limit spread in the gonococcal populations. Our findings have important implications for the use of doxycycline to prevent bacterial sexually transmitted disease which is likely to exacerbate the spread of AMR through HGT in pathogenic bacteria.
Collapse
Affiliation(s)
- Wearn-Xin Yee
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Tabea Elsener
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Ana Cehovin
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | | | - Christoph M. Tang
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
10
|
Wirth NT, Rohr K, Danchin A, Nikel PI. Recursive genome engineering decodes the evolutionary origin of an essential thymidylate kinase activity in Pseudomonas putida KT2440. mBio 2023; 14:e0108123. [PMID: 37732760 PMCID: PMC10653934 DOI: 10.1128/mbio.01081-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/27/2023] [Indexed: 09/22/2023] Open
Abstract
IMPORTANCE Investigating fundamental aspects of metabolism is vital for advancing our understanding of the diverse biochemical capabilities and biotechnological applications of bacteria. The origin of the essential thymidylate kinase function in the model bacterium Pseudomonas putida KT2440, seemingly interrupted due to the presence of a large genomic island that disrupts the cognate gene, eluded a satisfactory explanation thus far. This is a first-case example of an essential metabolic function, likely acquired by horizontal gene transfer, which "landed" in a locus encoding the same activity. As such, foreign DNA encoding an essential dNMPK could immediately adjust to the recipient host-instead of long-term accommodation and adaptation. Understanding how these functions evolve is a major biological question, and the work presented here is a decisive step toward this direction. Furthermore, identifying essential and accessory genes facilitates removing those deemed irrelevant in industrial settings-yielding genome-reduced cell factories with enhanced properties and genetic stability.
Collapse
Affiliation(s)
- Nicolas T. Wirth
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens, Lyngby, Denmark
| | - Katja Rohr
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens, Lyngby, Denmark
| | - Antoine Danchin
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong
| | - Pablo I. Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens, Lyngby, Denmark
| |
Collapse
|
11
|
Eichner M, Inomura K, Pierella Karlusich JJ, Shaked Y. Better together? Lessons on sociality from Trichodesmium. Trends Microbiol 2023; 31:1072-1084. [PMID: 37244772 DOI: 10.1016/j.tim.2023.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 04/30/2023] [Accepted: 05/01/2023] [Indexed: 05/29/2023]
Abstract
The N2-fixing cyanobacterium Trichodesmium is an important player in the oceanic nitrogen and carbon cycles. Trichodesmium occurs both as single trichomes and as colonies containing hundreds of trichomes. In this review, we explore the benefits and disadvantages of colony formation, considering physical, chemical, and biological effects from nanometer to kilometer scale. Showing that all major life challenges are affected by colony formation, we claim that Trichodesmium's ecological success is tightly linked to its colonial lifestyle. Microbial interactions in the microbiome, chemical gradients within the colony, interactions with particles, and elevated mobility in the water column shape a highly dynamic microenvironment. We postulate that these dynamics are key to the resilience of Trichodesmium and other colony formers in our changing environment.
Collapse
Affiliation(s)
- Meri Eichner
- Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Třeboň, Czech Republic.
| | - Keisuke Inomura
- Graduate School of Oceanography, University of Rhode Island, Narragansett, RI, USA
| | | | - Yeala Shaked
- Freddy and Nadine Herrmann Institute of Earth Sciences, Hebrew University, Jerusalem, Israel; Interuniversity Institute for Marine Sciences, Eilat, Israel
| |
Collapse
|
12
|
Sserwadda I, Kidenya BR, Kanyerezi S, Akaro IL, Mkinze B, Mshana SE, Hashim SO, Isoe E, Seni J, Joloba ML, Mboowa G. Unraveling virulence determinants in extended-spectrum beta-lactamase-producing Escherichia coli from East Africa using whole-genome sequencing. BMC Infect Dis 2023; 23:587. [PMID: 37679664 PMCID: PMC10483776 DOI: 10.1186/s12879-023-08579-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 09/04/2023] [Indexed: 09/09/2023] Open
Abstract
Escherichia coli significantly causes nosocomial infections and rampant spread of antimicrobial resistance (AMR). There is limited data on genomic characterization of extended-spectrum β-lactamase (ESBL)-producing E. coli from African clinical settings. This hospital-based longitudinal study unraveled the genetic resistance elements in ESBL E. coli isolates from Uganda and Tanzania using whole-genome sequencing (WGS). A total of 142 ESBL multi-drug resistant E. coli bacterial isolates from both Tanzania and Uganda were sequenced and out of these, 36/57 (63.1%) and 67/85 (78.8%) originated from Uganda and Tanzania respectively. Mutations in RarD, yaaA and ybgl conferring resistances to chloramphenicol, peroxidase and quinolones were observed from Ugandan and Tanzanian isolates. We reported very high frequencies for blaCTX-M-15 with 11/18(61.1%), and blaCTX-M-27 with 12/23 (52.1%), blaTEM-1B with 13/23 (56.5%) of isolates originating from Uganda and Tanzania respectively all conferring resistance to Beta-lactam-penicillin inhibitors. We observed chloramphenicol resistance-conferring gene mdfA in 21/23 (91.3%) of Tanzanian isolates. Extraintestinal E. coli sequence type (ST) 131 accounted for 5/59 (8.4%) of Tanzanian isolates while enterotoxigenic E. coli ST656 was reported in 9/34 (26.4%) of Ugandan isolates. Virulence factors originating from Shigella dysenteriae Sd197 (gspC, gspD, gspE, gspF, gspG, gspF, gspH, gspI), Yersinia pestis CO92 (irp1, ybtU, ybtX, iucA), Salmonella enterica subsp. enterica serovar Typhimurium str. LT2 (csgF and csgG), and Pseudomonas aeruginosa PAO1 (flhA, fliG, fliM) were identified in these isolates. Overall, this study highlights a concerning prevalence and diversity of AMR-conferring elements shaping the genomic structure of multi-drug resistant E. coli in clinical settings in East Africa. It underscores the urgent need to strengthen infection-prevention controls and advocate for the routine use of WGS in national AMR surveillance and monitoring programs.Availability of WGS analysis pipeline: the rMAP source codes, installation, and implementation manual can free be accessed via https://github.com/GunzIvan28/rMAP .
Collapse
Affiliation(s)
- Ivan Sserwadda
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, College of Health Sciences, Makerere University, P.O Box 7072, Kampala, Uganda
- Department of Biochemistry and Bioinformatics, School of Pure and Applied Sciences, Pwani University, P.O Box 195-80108, Kilifi, Kenya
- The African Center of Excellence in Bioinformatics and Data-Intensive Sciences, Infectious Diseases Institute, College of Health Sciences, Makerere University, P.O Box 22418, Kampala, Uganda
| | - Benson R Kidenya
- Department of Biochemistry and Molecular Biology, Weill Bugando School of Medicine, Catholic University of Health and Allied Sciences, Mwanza, Tanzania
| | - Stephen Kanyerezi
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, College of Health Sciences, Makerere University, P.O Box 7072, Kampala, Uganda
- The African Center of Excellence in Bioinformatics and Data-Intensive Sciences, Infectious Diseases Institute, College of Health Sciences, Makerere University, P.O Box 22418, Kampala, Uganda
| | - Inyasi Lawrence Akaro
- Department of Surgery, Weill Bugando School of Medicine, Catholic University of Health and Allied Sciences, Mwanza, Tanzania
| | - Baraka Mkinze
- Department of Surgery, Weill Bugando School of Medicine, Catholic University of Health and Allied Sciences, Mwanza, Tanzania
| | - Stephen E Mshana
- Department of Microbiology and Immunology, Weill Bugando School of Medicine, Catholic University of Health and Allied Sciences, Mwanza, Tanzania
| | - Suhaila O Hashim
- Department of Biochemistry and Bioinformatics, School of Pure and Applied Sciences, Pwani University, P.O Box 195-80108, Kilifi, Kenya
| | - Everlyne Isoe
- Department of Biochemistry and Bioinformatics, School of Pure and Applied Sciences, Pwani University, P.O Box 195-80108, Kilifi, Kenya
| | - Jeremiah Seni
- Department of Microbiology and Immunology, Weill Bugando School of Medicine, Catholic University of Health and Allied Sciences, Mwanza, Tanzania
| | - Moses L Joloba
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, College of Health Sciences, Makerere University, P.O Box 7072, Kampala, Uganda
| | - Gerald Mboowa
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, College of Health Sciences, Makerere University, P.O Box 7072, Kampala, Uganda.
- The African Center of Excellence in Bioinformatics and Data-Intensive Sciences, Infectious Diseases Institute, College of Health Sciences, Makerere University, P.O Box 22418, Kampala, Uganda.
- Africa Centres for Disease Control and Prevention, African Union Commission, Roosevelt Street, P.O. Box 3243, Addis Ababa, W21 K19, Ethiopia.
| |
Collapse
|
13
|
Kim M, Cha IT, Lee KE, Li M, Park SJ. Pangenome analysis provides insights into the genetic diversity, metabolic versatility, and evolution of the genus Flavobacterium. Microbiol Spectr 2023; 11:e0100323. [PMID: 37594286 PMCID: PMC10655711 DOI: 10.1128/spectrum.01003-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 07/04/2023] [Indexed: 08/19/2023] Open
Abstract
Members of the genus Flavobacterium are widely distributed and produce various polysaccharide-degrading enzymes. Many species in the genus have been isolated and characterized. However, few studies have focused on marine isolates or fish pathogens, and in-depth genomic analyses, particularly comparative analyses of isolates from different habitat types, are lacking. Here, we isolated 20 strains of the genus from various environments in South Korea and sequenced their full-length genomes. Combined with published sequence data, we examined genomic traits, evolution, environmental adaptation, and putative metabolic functions in total 187 genomes of isolated species in Flavobacterium categorized as marine, host-associated, and terrestrial including freshwater. A pangenome analysis revealed a correlation between genome size and coding or noncoding density. Flavobacterium spp. had high levels of diversity, allowing for novel gene repertories via recombination events. Defense-related genes only accounted for approximately 3% of predicted genes in all Flavobacterium genomes. While genes involved in metabolic pathways did not differ with respect to isolation source, there was substantial variation in genomic traits; in particular, the abundances of tRNAs and rRNAs were higher in the host-associdated group than in other groups. One genome in the host-associated group contained a Microviridae prophage closely related to an enterobacteria phage. The proteorhodopsin gene was only identified in four terrestrial strains isolated for this study. Furthermore, recombination events clearly influenced genomic diversity and may contribute to the response to environmental stress. These findings shed light on the high genetic variation in Flavobacterium and functional roles in diverse ecosystems as a result of their metabolic versatility. IMPORTANCE The genus Flavobacterium is a diverse group of bacteria that are found in a variety of environments. While most species of this genus are harmless and utilize organic substrates such as proteins and polysaccharides, some members may play a significant role in the cycling for organic substances within their environments. Nevertheless, little is known about the genomic dynamics and/or metabolic capacity of Flavobacterium. Here, we found that Flavobacterium species may have an open pangenome, containing a variety of diverse and novel gene repertoires. Intriguingly, we discovered that one genome (classified into host-associated group) contained a Microviridae prophage closely related to that of enterobacteria. Proteorhodopsin may be expressed under conditions of light or oxygen pressure in some strains isolated for this study. Our findings significantly contribute to the understanding of the members of the genus Flavobacterium diversity exploration and will provide a framework for the way for future ecological characterizations.
Collapse
Affiliation(s)
- Minji Kim
- Department of Biology, Jeju National University, Jeju, South Korea
| | - In-Tae Cha
- Microorganism Resources Division, National Institute of Biological Resources, Incheon, South Korea
| | - Ki-Eun Lee
- Microorganism Resources Division, National Institute of Biological Resources, Incheon, South Korea
| | - Meng Li
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Soo-Je Park
- Department of Biology, Jeju National University, Jeju, South Korea
| |
Collapse
|
14
|
Teichman S, Lee MD, Willis AD. Analyzing microbial evolution through gene and genome phylogenies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.15.553440. [PMID: 37645842 PMCID: PMC10462103 DOI: 10.1101/2023.08.15.553440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Microbiome scientists critically need modern tools to explore and analyze microbial evolution. Often this involves studying the evolution of microbial genomes as a whole. However, different genes in a single genome can be subject to different evolutionary pressures, which can result in distinct gene-level evolutionary histories. To address this challenge, we propose to treat estimated gene-level phylogenies as data objects, and present an interactive method for the analysis of a collection of gene phylogenies. We use a local linear approximation of phylogenetic tree space to visualize estimated gene trees as points in low-dimensional Euclidean space, and address important practical limitations of existing related approaches, allowing an intuitive visualization of complex data objects. We demonstrate the utility of our proposed approach through microbial data analyses, including by identifying outlying gene histories in strains of Prevotella, and by contrasting Streptococcus phylogenies estimated using different gene sets. Our method is available as an open-source R package, and assists with estimating, visualizing and interacting with a collection of bacterial gene phylogenies. dimension reduction, microbiome, non-Euclidean, statistical genetics, visualization.
Collapse
Affiliation(s)
| | - Michael D Lee
- NASA Ames Research Center and Blue Marble Space Institute of Science
| | - Amy D Willis
- Department of Biostatistics, University of Washington
| |
Collapse
|
15
|
Nucci A, Rocha EPC, Rendueles O. Latent evolution of biofilm formation depends on life-history and genetic background. NPJ Biofilms Microbiomes 2023; 9:53. [PMID: 37537176 PMCID: PMC10400614 DOI: 10.1038/s41522-023-00422-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 07/20/2023] [Indexed: 08/05/2023] Open
Abstract
Adaptation to one environment can often generate phenotypic and genotypic changes which impact the future ability of an organism to thrive in other environmental conditions. In the context of host-microbe interactions, biofilm formation can increase survival rates in vivo upon exposure to stresses, like the host's immune system or antibiotic therapy. However, how the generic process of adaptation impacts the ability to form biofilm and how it may change through time has seldomly been studied. To do so, we used a previous evolution experiment with three strains of the Klebsiella pneumoniae species complex, in which we specifically did not select for biofilm formation. We observed that changes in the ability to form biofilm happened very fast at first and afterwards reverted to ancestral levels in many populations. Biofilm changes were associated to changes in population yield and surface polysaccharide production. Genotypically, mutations in the tip adhesin of type III fimbriae (mrkD) or the fim switch of type I fimbriae were shaped by nutrient availability during evolution, and their impact on biofilm formation was dependent on capsule production. Analyses of natural isolates revealed similar mutations in mrkD, suggesting that such mutations also play an important role in adaptation outside the laboratory. Our work reveals that the latent evolution of biofilm formation, and its temporal dynamics, depend on nutrient availability, the genetic background and other intertwined phenotypic and genotypic changes. Ultimately, it suggests that small differences in the environment can alter an organism's fate in more complex niches like the host.
Collapse
Affiliation(s)
- Amandine Nucci
- Institut Pasteur, Université de Paris Cité, CNRS, UMR3525, Microbial Evolutionary Genomics, F-75015, Paris, France
| | - Eduardo P C Rocha
- Institut Pasteur, Université de Paris Cité, CNRS, UMR3525, Microbial Evolutionary Genomics, F-75015, Paris, France
| | - Olaya Rendueles
- Institut Pasteur, Université de Paris Cité, CNRS, UMR3525, Microbial Evolutionary Genomics, F-75015, Paris, France.
| |
Collapse
|
16
|
Tang Y, Chen H, Lin Z, Zhang L, Upadhyay A, Liao C, Merkler DJ, Han Q. Evolutionary genomics analysis reveals gene expansion and functional diversity of arylalkylamine N-acetyltransferases in the Culicinae subfamily of mosquitoes. INSECT SCIENCE 2023; 30:569-581. [PMID: 35922881 DOI: 10.1111/1744-7917.13100] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
Arylalkylamine N-acetyltransferase (aaNAT), considered a potential new insecticide target, catalyzes the acetylation of arylalkylamine substrates such as serotonin and dopamine and, hence, mediates diverse functions in insects. However, the origin of insect aaNATs (iaaNATs) and the evolutionary process that generates multiple aaNATs in mosquitoes remain largely unknown. Here, we have analyzed the genomes of 33 species to explore and expand our understanding of the molecular evolution of this gene family in detail. We show that aaNAT orthologs are present in Bacteria, Cephalochordata, Chondrichthyes, Cnidaria, Crustacea, Mammalia, Placozoa, and Teleoste, as well as those from a number of insects, but are absent in some species of Annelida, Echinozoa, and Mollusca as well as Arachnida. Particularly, more than 10 aaNATs were detected in the Culicinae subfamily of mosquitoes. Molecular evolutionary analysis of aaNAT/aaNAT-like genes in mosquitoes reveals that tandem duplication events led to gene expansion in the Culicinae subfamily of mosquitoes more than 190 million years ago. Further selection analysis demonstrates that mosquito aaNATs evolved under strongly positive pressures that generated functional diversity following gene duplication events. Overall, this study may provide novel insights into the molecular evolution of the aaNAT family in mosquitoes.
Collapse
Affiliation(s)
- Yu Tang
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou, China
- One Health Institute, Hainan University, Haikou, China
| | - Huaqing Chen
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou, China
- One Health Institute, Hainan University, Haikou, China
| | - Zhinan Lin
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou, China
- One Health Institute, Hainan University, Haikou, China
| | - Lei Zhang
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou, China
- One Health Institute, Hainan University, Haikou, China
| | - Archana Upadhyay
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou, China
- One Health Institute, Hainan University, Haikou, China
| | - Chenghong Liao
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou, China
- One Health Institute, Hainan University, Haikou, China
| | - David J Merkler
- Department of Chemistry, University of South Florida, Tampa, Florida, USA
| | - Qian Han
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou, China
- One Health Institute, Hainan University, Haikou, China
| |
Collapse
|
17
|
Qi Q, Ghaly TM, Penesyan A, Rajabal V, Stacey JA, Tetu SG, Gillings MR. Uncovering Bacterial Hosts of Class 1 Integrons in an Urban Coastal Aquatic Environment with a Single-Cell Fusion-Polymerase Chain Reaction Technology. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:4870-4879. [PMID: 36912846 DOI: 10.1021/acs.est.2c09739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Horizontal gene transfer (HGT) is a key driver of bacterial evolution via transmission of genetic materials across taxa. Class 1 integrons are genetic elements that correlate strongly with anthropogenic pollution and contribute to the spread of antimicrobial resistance (AMR) genes via HGT. Despite their significance to human health, there is a shortage of robust, culture-free surveillance technologies for identifying uncultivated environmental taxa that harbor class 1 integrons. We developed a modified version of epicPCR (emulsion, paired isolation, and concatenation polymerase chain reaction (PCR)) that links class 1 integrons amplified from single bacterial cells to taxonomic markers from the same cells in emulsified aqueous droplets. Using this single-cell genomic approach and Nanopore sequencing, we successfully assigned class 1 integron gene cassette arrays containing mostly AMR genes to their hosts in coastal water samples that were affected by pollution. Our work presents the first application of epicPCR for targeting variable, multigene loci of interest. We also identified the Rhizobacter genus as novel hosts of class 1 integrons. These findings establish epicPCR as a powerful tool for linking taxa to class 1 integrons in environmental bacterial communities and offer the potential to direct mitigation efforts toward hotspots of class 1 integron-mediated dissemination of AMR.
Collapse
Affiliation(s)
- Qin Qi
- School of Natural Sciences, Macquarie University, 14 Eastern Road, Sydney, NSW 2109, Australia
| | - Timothy M Ghaly
- School of Natural Sciences, Macquarie University, 14 Eastern Road, Sydney, NSW 2109, Australia
| | - Anahit Penesyan
- School of Natural Sciences, Macquarie University, 14 Eastern Road, Sydney, NSW 2109, Australia
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW 2109, Australia
| | - Vaheesan Rajabal
- School of Natural Sciences, Macquarie University, 14 Eastern Road, Sydney, NSW 2109, Australia
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW 2109, Australia
| | - Jeremy Ac Stacey
- School of Natural Sciences, Macquarie University, 14 Eastern Road, Sydney, NSW 2109, Australia
| | - Sasha G Tetu
- School of Natural Sciences, Macquarie University, 14 Eastern Road, Sydney, NSW 2109, Australia
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW 2109, Australia
| | - Michael R Gillings
- School of Natural Sciences, Macquarie University, 14 Eastern Road, Sydney, NSW 2109, Australia
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW 2109, Australia
| |
Collapse
|
18
|
Densi A, Iyer RS, Bhat PJ. Synonymous and Nonsynonymous Substitutions in Dictyostelium discoideum Ammonium Transporter amtA Are Necessary for Functional Complementation in Saccharomyces cerevisiae. Microbiol Spectr 2023; 11:e0384722. [PMID: 36840598 PMCID: PMC10100761 DOI: 10.1128/spectrum.03847-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 01/24/2023] [Indexed: 02/24/2023] Open
Abstract
Ammonium transporters are present in all three domains of life. They have undergone extensive horizontal gene transfer (HGT), gene duplication, and functional diversification and therefore offer an excellent paradigm to study protein evolution. We attempted to complement a mep1Δmep2Δmep3Δ strain of Saccharomyces cerevisiae (triple-deletion strain), which otherwise cannot grow on ammonium as a sole nitrogen source at concentrations of <3 mM, with amtA of Dictyostelium discoideum, an orthologue of S. cerevisiae MEP2. We observed that amtA did not complement the triple-deletion strain of S. cerevisiae for growth on low-ammonium medium. We isolated two mutant derivatives of amtA (amtA M1 and amtA M2) from a PCR-generated mutant plasmid library that complemented the triple-deletion strain of S. cerevisiae. amtA M1 bears three nonsynonymous and two synonymous substitutions, which are necessary for its functionality. amtA M2 bears two nonsynonymous substitutions and one synonymous substitution, all of which are necessary for functionality. Interestingly, AmtA M1 transports ammonium but does not confer methylamine toxicity, while AmtA M2 transports ammonium and confers methylamine toxicity, demonstrating functional diversification. Preliminary biochemical analyses indicated that the mutants differ in their conformations as well as their mechanisms of ammonium transport. These intriguing results clearly point out that protein evolution cannot be fathomed by studying nonsynonymous and synonymous substitutions in isolation. The above-described observations have significant implications for various facets of biological processes and are discussed in detail. IMPORTANCE Functional diversification following gene duplication is one of the major driving forces of protein evolution. While the role of nonsynonymous substitutions in the functional diversification of proteins is well recognized, knowledge of the role of synonymous substitutions in protein evolution is in its infancy. Using functional complementation, we isolated two functional alleles of the D. discoideum ammonium transporter gene (amtA), which otherwise does not function in S. cerevisiae as an ammonium transporters. One of them is an ammonium transporter, while the other is an ammonium transporter that also confers methylammonium (ammonium analogue) toxicity, suggesting functional diversification. Surprisingly, both alleles require a combination of synonymous and nonsynonymous substitutions for their functionality. These results bring out a hitherto-unknown pathway of protein evolution and pave the way for not only understanding protein evolution but also interpreting single nucleotide polymorphisms (SNPs).
Collapse
Affiliation(s)
- Asha Densi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Revathi S. Iyer
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Paike Jayadeva Bhat
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
19
|
Zeldes B, Poehlein A, Jain S, Baum C, Daniel R, Müller V, Basen M. DNA uptake from a laboratory environment drives unexpected adaptation of a thermophile to a minor medium component. ISME COMMUNICATIONS 2023; 3:2. [PMID: 37938748 PMCID: PMC9834392 DOI: 10.1038/s43705-022-00211-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 06/01/2023]
Abstract
DNA uptake is widespread among microorganisms and considered a strategy for rapid adaptation to new conditions. While both DNA uptake and adaptation are referred to in the context of natural environments, they are often studied in laboratories under defined conditions. For example, a strain of the thermophile Thermoanaerobacter kivui had been adapted to growth on high concentrations of carbon monoxide (CO). Unusual phenotypes of the CO-adapted strain prompted us to examine it more closely, revealing a horizontal gene transfer (HGT) event from another thermophile, Thermoanaerobacter sp. strain X514, being cultured in the same laboratory. The transferred genes conferred on T. kivui the ability to utilize trehalose, a trace component of the yeast-extract added to the media during CO-adaptation. This same HGT event simultaneously deleted a native operon for thiamine biosynthesis, which likely explains why the CO-adapted strain grows poorly without added vitamins. Attempts to replicate this HGT by providing T. kivui with genomic DNA from Thermoanaerobacter sp. strain X514 revealed that it is easily reproducible in the lab. This subtle form of "genome contamination" is difficult to detect, since the genome remains predominantly T. kivui, and no living cells from the original contamination remain. Unexpected HGT between two microorganisms as well as simultaneous adaptation to several conditions may occur often and unrecognized in laboratory environments, requiring caution and careful monitoring of phenotype and genotype of microorganisms that are naturally-competent for DNA uptake.
Collapse
Affiliation(s)
- Benjamin Zeldes
- Microbiology, Institute of Biological Sciences, University of Rostock, Rostock, Germany
| | - Anja Poehlein
- Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Georg-August University, Göttingen, Germany
| | - Surbhi Jain
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Goethe University, Frankfurt/Main, Germany
| | - Christoph Baum
- Microbiology, Institute of Biological Sciences, University of Rostock, Rostock, Germany
| | - Rolf Daniel
- Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Georg-August University, Göttingen, Germany
| | - Volker Müller
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Goethe University, Frankfurt/Main, Germany
| | - Mirko Basen
- Microbiology, Institute of Biological Sciences, University of Rostock, Rostock, Germany.
| |
Collapse
|
20
|
Membrane-Binding Biomolecules Influence the Rate of Vesicle Exchange between Bacteria. Appl Environ Microbiol 2022; 88:e0134622. [PMID: 36342184 PMCID: PMC9746307 DOI: 10.1128/aem.01346-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The exchange of bacterial extracellular vesicles facilitates molecular exchange between cells, including the horizontal transfer of genetic material. Given the implications of such transfer events on cell physiology and adaptation, some bacterial cells have likely evolved mechanisms to regulate vesicle exchange. Past work has identified mechanisms that influence the formation of extracellular vesicles, including the production of small molecules that modulate membrane structure; however, whether these mechanisms also modulate vesicle uptake and have an overall impact on the rate of vesicle exchange is unknown. Here, we show that membrane-binding molecules produced by microbes influence both the formation and uptake of extracellular vesicles and have the overall impact of increasing the vesicle exchange rate within a bacterial coculture. In effect, production of compounds that increase vesicle exchange rates encourage gene exchange between neighboring cells. The ability of several membrane-binding compounds to increase vesicle exchange was demonstrated. Three of these compounds, nisin, colistin, and polymyxin B, are antimicrobial peptides added at sub-inhibitory concentrations. These results suggest that a potential function of exogenous compounds that bind to membranes may be the regulation of vesicle exchange between cells. IMPORTANCE The exchange of bacterial extracellular vesicles is one route of gene transfer between bacteria, although it was unclear if bacteria developed strategies to modulate the rate of gene transfer within vesicles. In eukaryotes, there are many examples of specialized molecules that have evolved to facilitate the production, loading, and uptake of vesicles. Recent work with bacteria has shown that some small molecules influence membrane curvature and induce vesicle formation. Here, we show that similar compounds facilitate vesicle uptake, thereby increasing the overall rate of vesicle exchange within bacterial populations. The addition of membrane-binding compounds, several of them antibiotics at subinhibitory concentrations, to a bacterial coculture increased the rate of horizontal gene transfer via vesicle exchange.
Collapse
|
21
|
Evolution of the connectivity and indispensability of a transferable gene: the simplicity hypothesis. BMC Ecol Evol 2022; 22:140. [PMID: 36451084 PMCID: PMC9710062 DOI: 10.1186/s12862-022-02091-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 10/26/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND The number of interactions between a transferable gene or its protein product and genes or gene products native to its microbial host is referred to as connectivity. Such interactions impact the tendency of the gene to be retained by evolution following horizontal gene transfer (HGT) into a microbial population. The complexity hypothesis posits that the protein product of a transferable gene with lower connectivity is more likely to function in a way that is beneficial to a new microbial host compared to the protein product of a transferable gene with higher connectivity. A gene with lower connectivity is consequently more likely to be fixed in any microbial population it enters by HGT. The more recently proposed simplicity hypothesis posits that the connectivity of a transferable gene might increase over time within any single microbial population due to gene-host coevolution, but that differential rates of colonization of microbial populations by HGT in accordance with differences in connectivity might act to counter this and even reduce connectivity over time, comprising an evolutionary trade-off. RESULTS We present a theoretical model that can be used to predict the conditions under which gene-host coevolution might increase or decrease the connectivity of a transferable gene over time. We show that the opportunity to enter new microbial populations by HGT can cause the connectivity of a transferable gene to evolve toward lower values, particularly in an environment that is unstable with respect to the function of the gene's protein product. We also show that a lack of such opportunity in a stable environment can cause the connectivity of a transferable gene to evolve toward higher values. CONCLUSION Our theoretical model suggests that the connectivity of a transferable gene can change over time toward higher values corresponding to a more sessile state of lower transferability or lower values corresponding to a more itinerant state of higher transferability, depending on the ecological milieu in which the gene exists. We note, however, that a better understanding of gene-host coevolutionary dynamics in natural microbial systems is required before any further conclusions about the veracity of the simplicity hypothesis can be drawn.
Collapse
|
22
|
Calix[4]arene Polyamine Triazoles: Synthesis, Aggregation and DNA Binding. Int J Mol Sci 2022; 23:ijms232314889. [PMID: 36499212 PMCID: PMC9738031 DOI: 10.3390/ijms232314889] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/20/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Artificial gene delivery systems are in great demand from both scientific and practical biomedical points of view. In this paper, we present the synthesis of a new click chemistry calix[4]arene precursor with free lower rim and new water-soluble calixarene triazoles with 12 amino-groups on the upper rim (one with free phenol hydroxyl groups and two another containing four butyl or tetradecyl fragments). Aggregation in the series of amino-triazole calixarenes of different lipophilicity (calixarene with free phenol hydroxyl groups or butyl and tetradecyl fragments on the lower rim) was studied using dynamic light scattering and fluorescent pyrene probe. It was found that calix[4]arene with a free lower rim, like alkyl-substituted butyl calix[4]arene, forms stable submicron aggregates 150-200 nm in size, while the more lipophilic tetradecyl -substituted calix[4]arene forms micellar aggregates19 nm in size. Using UV-Vis spectroscopy, fluorimetry and CD, it was shown that amino-triazole calix[4]arenes bind to calf thymus DNA by classical intercalation. According to DLS and TEM data, all studied macrocycles cause significant DNA compaction, forming stable nanoparticles 50-20 nm in size. Among all studied calix[4]arenes the most lipophilic tetradecyl one proved to be the best for both binding and compaction of DNA.
Collapse
|
23
|
Philips JG, Martin-Avila E, Robold AV. Horizontal gene transfer from genetically modified plants - Regulatory considerations. Front Bioeng Biotechnol 2022; 10:971402. [PMID: 36118580 PMCID: PMC9471246 DOI: 10.3389/fbioe.2022.971402] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/05/2022] [Indexed: 11/13/2022] Open
Abstract
Gene technology regulators receive applications seeking permission for the environmental release of genetically modified (GM) plants, many of which possess beneficial traits such as improved production, enhanced nutrition and resistance to drought, pests and diseases. The regulators must assess the risks to human and animal health and to the environment from releasing these GM plants. One such consideration, of many, is the likelihood and potential consequence of the introduced or modified DNA being transferred to other organisms, including people. While such gene transfer is most likely to occur to sexually compatible relatives (vertical gene transfer), horizontal gene transfer (HGT), which is the acquisition of genetic material that has not been inherited from a parent, is also a possibility considered during these assessments. Advances in HGT detection, aided by next generation sequencing, have demonstrated that HGT occurrence may have been previously underestimated. In this review, we provide updated evidence on the likelihood, factors and the barriers for the introduced or modified DNA in GM plants to be horizontally transferred into a variety of recipients. We present the legislation and frameworks the Australian Gene Technology Regulator adheres to with respect to the consideration of risks posed by HGT. Such a perspective may generally be applicable to regulators in other jurisdictions as well as to commercial and research organisations who develop GM plants.
Collapse
|
24
|
Hinnekens P, Mahillon J. Conjugation-mediated transfer of pXO16, a large plasmid from Bacillus thuringiensis sv. israelensis, across the Bacillus cereus group and its impact on host phenotype. Plasmid 2022; 122:102639. [PMID: 35842001 DOI: 10.1016/j.plasmid.2022.102639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/27/2022] [Accepted: 07/10/2022] [Indexed: 11/17/2022]
Abstract
pXO16, the 350 kb-conjugative plasmid from Bacillus thuringiensis sv. israelensis promotes its own transfer at high efficiency, triggers the transfer of mobilizable and non-mobilizable plasmids, as well as the transfer of host chromosomal loci. Naturally found in B. thuringiensis sv. israelensis, pXO16 transfers to various strains of Bacillus cereus sensu lato (s.l.) at a wide range of frequencies. Despite this host diversity, a paradox remains between the relatively large host spectrum and the natural occurrence of pXO16, so far restricted to B. thuringiensis sv. israelensis. Proposing first insights exploring this paradox, we investigated the behaviour of pXO16 amongst different members of the B. cereus group. We first looked at the transfer of pXO16 to two new host clusters of B. cereus s.l., Bacillus mycoides and Bacillus anthracis clusters. This examination brought to light the impairment of the characteristic rhizoidal phenotype of B. mycoides in presence of pXO16. We also explored the stability of pXO16 at different temperatures as some B. cereus group members are well-known for their psychro- or thermo-tolerance. This shed light on the thermo-sensitivity of the plasmid. The influence of pXO16 on its host cell growth and on swimming capacity also revealed no or limited impact on its natural host B. thuringiensis sv. israelensis. On the contrary, pXO16 affected more strongly both the growth and swimming capacity of other B. cereus s.l. hosts. This reinforced the running hypothesis of a co-evolution between pXO16 and B. thuringiensis sv. israelensis, enabling the plasmid maintenance without impairing the host strain development.
Collapse
Affiliation(s)
- Pauline Hinnekens
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute, Université Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
| | - Jacques Mahillon
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute, Université Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium.
| |
Collapse
|
25
|
Abstract
Subcellular compartmentalization is a defining feature of all cells. In prokaryotes, compartmentalization is generally achieved via protein-based strategies. The two main classes of microbial protein compartments are bacterial microcompartments and encapsulin nanocompartments. Encapsulins self-assemble into proteinaceous shells with diameters between 24 and 42 nm and are defined by the viral HK97-fold of their shell protein. Encapsulins have the ability to encapsulate dedicated cargo proteins, including ferritin-like proteins, peroxidases, and desulfurases. Encapsulation is mediated by targeting sequences present in all cargo proteins. Encapsulins are found in many bacterial and archaeal phyla and have been suggested to play roles in iron storage, stress resistance, sulfur metabolism, and natural product biosynthesis. Phylogenetic analyses indicate that they share a common ancestor with viral capsid proteins. Many pathogens encode encapsulins, and recent evidence suggests that they may contribute toward pathogenicity. The existing information on encapsulin structure, biochemistry, biological function, and biomedical relevance is reviewed here.
Collapse
Affiliation(s)
- Tobias W. Giessen
- Departments of Biomedical Engineering and Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
26
|
Wawerka M, Dąbkowski D, Rutecka N, Mykowiecka A, Górecki P. Embedding gene trees into phylogenetic networks by conflict resolution algorithms. Algorithms Mol Biol 2022; 17:11. [PMID: 35590416 PMCID: PMC9119282 DOI: 10.1186/s13015-022-00218-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 03/22/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Phylogenetic networks are mathematical models of evolutionary processes involving reticulate events such as hybridization, recombination, or horizontal gene transfer. One of the crucial notions in phylogenetic network modelling is displayed tree, which is obtained from a network by removing a set of reticulation edges. Displayed trees may represent an evolutionary history of a gene family if the evolution is shaped by reticulation events. RESULTS We address the problem of inferring an optimal tree displayed by a network, given a gene tree G and a tree-child network N, under the deep coalescence and duplication costs. We propose an O(mn)-time dynamic programming algorithm (DP) to compute a lower bound of the optimal displayed tree cost, where m and n are the sizes of G and N, respectively. In addition, our algorithm can verify whether the solution is exact. Moreover, it provides a set of reticulation edges corresponding to the obtained cost. If the cost is exact, the set induces an optimal displayed tree. Otherwise, the set contains pairs of conflicting edges, i.e., edges sharing a reticulation node. Next, we show a conflict resolution algorithm that requires [Formula: see text] invocations of DP in the worst case, where r is the number of reticulations. We propose a similar [Formula: see text]-time algorithm for level-k tree-child networks and a branch and bound solution to compute lower and upper bounds of optimal costs. We also extend the algorithms to a broader class of phylogenetic networks. Based on simulated data, the average runtime is [Formula: see text] under the deep-coalescence cost and [Formula: see text] under the duplication cost. CONCLUSIONS Despite exponential complexity in the worst case, our algorithms perform significantly well on empirical and simulated datasets, due to the strategy of resolving internal dissimilarities between gene trees and networks. Therefore, the algorithms are efficient alternatives to enumeration strategies commonly proposed in the literature and enable analyses of complex networks with dozens of reticulations.
Collapse
|
27
|
Shimizu T, Aritoshi T, Beatty JT, Masuda T. Persulfide-Responsive Transcription Factor SqrR Regulates Gene Transfer and Biofilm Formation via the Metabolic Modulation of Cyclic di-GMP in Rhodobacter capsulatus. Microorganisms 2022; 10:908. [PMID: 35630353 PMCID: PMC9143464 DOI: 10.3390/microorganisms10050908] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 04/24/2022] [Accepted: 04/25/2022] [Indexed: 12/04/2022] Open
Abstract
Bacterial phage-like particles (gene transfer agents-GTAs) are widely employed as a crucial genetic vector in horizontal gene transfer. GTA-mediated gene transfer is induced in response to various stresses; however, regulatory mechanisms are poorly understood. We found that the persulfide-responsive transcription factor SqrR may repress the expression of several GTA-related genes in the photosynthetic bacterium Rhodobacter capsulatus. Here, we show that the sqrR deletion mutant (ΔsqrR) produces higher amounts of intra- and extracellular GTA and gene transfer activity than the wild type (WT). The transcript levels of GTA-related genes are also increased in ΔsqrR. In spite of the presumption that GTA-related genes are regulated in response to sulfide by SqrR, treatment with sulfide did not alter the transcript levels of these genes in the WT strain. Surprisingly, hydrogen peroxide increased the transcript levels of GTA-related genes in the WT, and this alteration was abolished in the ΔsqrR strain. Moreover, the absence of SqrR changed the intracellular cyclic dimeric GMP (c-di-GMP) levels, and the amount of c-di-GMP was correlated with GTA activity and biofilm formation. These results suggest that SqrR is related to the repression of GTA production and the activation of biofilm formation via control of the intracellular c-di-GMP levels.
Collapse
Affiliation(s)
- Takayuki Shimizu
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan; (T.A.); (T.M.)
| | - Toma Aritoshi
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan; (T.A.); (T.M.)
| | - J. Thomas Beatty
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada;
| | - Tatsuru Masuda
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan; (T.A.); (T.M.)
| |
Collapse
|
28
|
Khedkar S, Smyshlyaev G, Letunic I, Maistrenko OM, Coelho LP, Orakov A, Forslund SK, Hildebrand F, Luetge M, Schmidt TSB, Barabas O, Bork P. Landscape of mobile genetic elements and their antibiotic resistance cargo in prokaryotic genomes. Nucleic Acids Res 2022; 50:3155-3168. [PMID: 35323968 PMCID: PMC8989519 DOI: 10.1093/nar/gkac163] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/30/2022] [Accepted: 03/11/2022] [Indexed: 12/02/2022] Open
Abstract
Prokaryotic Mobile Genetic Elements (MGEs) such as transposons, integrons, phages and plasmids, play important roles in prokaryotic evolution and in the dispersal of cargo functions like antibiotic resistance. However, each of these MGE types is usually annotated and analysed individually, hampering a global understanding of phylogenetic and environmental patterns of MGE dispersal. We thus developed a computational framework that captures diverse MGE types, their cargos and MGE-mediated horizontal transfer events, using recombinases as ubiquitous MGE marker genes and pangenome information for MGE boundary estimation. Applied to ∼84k genomes with habitat annotation, we mapped 2.8 million MGE-specific recombinases to six operational MGE types, which together contain on average 13% of all the genes in a genome. Transposable elements (TEs) dominated across all taxa (∼1.7 million occurrences), outnumbering phages and phage-like elements (<0.4 million). We recorded numerous MGE-mediated horizontal transfer events across diverse phyla and habitats involving all MGE types, disentangled and quantified the extent of hitchhiking of TEs (17%) and integrons (63%) with other MGE categories, and established TEs as dominant carriers of antibiotic resistance genes. We integrated all these findings into a resource (proMGE.embl.de), which should facilitate future studies on the large mobile part of genomes and its horizontal dispersal.
Collapse
Affiliation(s)
- Supriya Khedkar
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, 69117 Heidelberg, Germany
| | - Georgy Smyshlyaev
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, 69117 Heidelberg, Germany.,Department of Molecular Biology, University of Geneva, 1211 Geneva, Switzerland
| | - Ivica Letunic
- Biobyte solutions GmbH, Bothestr 142, 69117 Heidelberg, Germany
| | - Oleksandr M Maistrenko
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, 69117 Heidelberg, Germany
| | - Luis Pedro Coelho
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China
| | - Askarbek Orakov
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, 69117 Heidelberg, Germany
| | - Sofia K Forslund
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, 69117 Heidelberg, Germany.,Max Delbrück Centre for Molecular Medicine, Berlin, Germany.,Experimental and Clinical Research Center, Charité-Universitätsmedizin and Max-Delbrück Center, Berlin, Germany.,Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Falk Hildebrand
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, 69117 Heidelberg, Germany
| | - Mechthild Luetge
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, 69117 Heidelberg, Germany
| | - Thomas S B Schmidt
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, 69117 Heidelberg, Germany
| | - Orsolya Barabas
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, 69117 Heidelberg, Germany.,Department of Molecular Biology, University of Geneva, 1211 Geneva, Switzerland
| | - Peer Bork
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, 69117 Heidelberg, Germany.,Max Delbrück Centre for Molecular Medicine, Berlin, Germany.,Department of Bioinformatics, Biocenter, University of Würzburg, Würzburg, Germany.,Yonsei Frontier Lab (YFL), Yonsei University, Seoul 03722, South Korea
| |
Collapse
|
29
|
O'Connell LM, Kelleher P, van Rijswijck IMH, de Waal P, van Peij NNME, Mahony J, van Sinderen D. Natural Transformation in Gram-Positive Bacteria and Its Biotechnological Relevance to Lactic Acid Bacteria. Annu Rev Food Sci Technol 2022; 13:409-431. [PMID: 35333592 DOI: 10.1146/annurev-food-052720-011445] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Competence refers to the specialized physiological state in which bacteria undergo transformation through the internalization of exogenous DNA in a controlled and genetically encoded process that leads to genotypic and, in many cases, phenotypic changes. Natural transformation was first described in Streptococcus pneumoniae and has since been demonstrated in numerous species, including Bacillus subtilis and Neisseria gonorrhoeae. Homologs of the genes encoding the DNA uptake machinery for natural transformation have been reported to be present in several lactic acid bacteria, including Lactobacillus spp., Streptococcus thermophilus, and Lactococcus spp. In this review, we collate current knowledge of the phenomenon of natural transformation in Gram-positive bacteria. Furthermore, we describe the mechanism of competence development and its regulation in model bacterial species. We highlight the importance and opportunities for the application of these findings in the context of bacterial starter cultures associated with food fermentations as well as current limitations in this area of research.
Collapse
Affiliation(s)
- Laura M O'Connell
- APC Microbiome Ireland and School of Microbiology, University College Cork, Cork, Ireland;
| | - Philip Kelleher
- APC Microbiome Ireland and School of Microbiology, University College Cork, Cork, Ireland;
| | | | - Paul de Waal
- DSM Biotechnology Center, Delft, The Netherlands
| | | | - Jennifer Mahony
- APC Microbiome Ireland and School of Microbiology, University College Cork, Cork, Ireland;
| | - Douwe van Sinderen
- APC Microbiome Ireland and School of Microbiology, University College Cork, Cork, Ireland;
| |
Collapse
|
30
|
He LX, He LY, Gao FZ, Wu DL, Ye P, Cheng YX, Chen ZY, Hu LX, Liu YS, Chen J, Ying GG. Antibiotics, antibiotic resistance genes and microbial community in grouper mariculture. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 808:152042. [PMID: 34856250 DOI: 10.1016/j.scitotenv.2021.152042] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 06/13/2023]
Abstract
Increasing use of feed and medicine in mariculture could cause negative environmental impacts such as habitat modification, microbial disease development and antibiotic resistance. Here we investigated contamination of antibiotics and antibiotic resistance genes (ARGs), and composition of microbial community in grouper mariculture systems in Hainan province, China. Results showed detection of various antibiotic residues with the dominance of fluoroquinolones and tetracyclines in the six grouper cultivation systems. The concentrations of the detected antibiotics in the grouper mariculture water were significantly higher than those in the original seawater. Some of the detected antibiotics such as enrofloxacin, ciprofloxacin, ofloxacin, oxytetracycline and erythromycin in the mariculture water and/or sediment would pose high resistance selection risks. Sulfonamides resistance genes sul1 and sul2 were found to be predominant in water and sediment, while tetracycline resistance genes were prevalent in fish gill and gut. The dominant bacterial phyla in water and sediments were Bacteroides, Actinomycetes, and Proteobacteria, while the dominant ones in fish gill and gut were the Proteobacteria. Genera of Vibrio and Mycobacterium in the core microbiota were important zoonotic pathogens, and there was a significant positive correlation between Vibrio and ARGs. Phyla of Proteobacteria, Actinomyces, and Cyanobacteria were positively correlated to ARGs, indicating that these microorganisms are potential hosts of ARGs. The putative functions of microbiome related to antibiotic resistance and human diseases were significantly higher in fish than in the mariculture environment. This study suggests that mariculture system is a reservoir of ARGs, and the use of antibiotics in mariculture could induce the increase of antibiotic resistance and the prevalence of opportunistic pathogens.
Collapse
Affiliation(s)
- Lu-Xi He
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Liang-Ying He
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Fang-Zhou Gao
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Dai-Ling Wu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Pu Ye
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Yu-Xiao Cheng
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Zi-Yin Chen
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Li-Xin Hu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - You-Sheng Liu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Jun Chen
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; Guangdong Provincial Engineering Technology Research Center for Life and Health of River & Lake, Pearl River Hydraulic Research Institute, Pearl River Water Resources Commission of the Ministry of Water Resources, Guangzhou 510611, China
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China.
| |
Collapse
|
31
|
Kuznetsova MV, Maslennikova IL, Pospelova JS, Žgur Bertok D, Starčič Erjavec M. Differences in recipient ability of uropathogenic Escherichia coli strains in relation with their pathogenic potential. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 97:105160. [PMID: 34839025 DOI: 10.1016/j.meegid.2021.105160] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 11/20/2021] [Accepted: 11/23/2021] [Indexed: 11/18/2022]
Abstract
Conjugation is recognized as a mechanism driving dissemination of antibacterial resistances and virulence factors among bacteria. In the presented work conjugative transfer frequency into clinical uropathogenic Escherichia coli strains (UPEC) isolated from patients with symptomatic urinary tract infections was investigated. From 93 obtained UPEC strains only 29 were suitable for conjugation experiments with the plasmid pOX38, a well-known F-plasmid derivative. The study was focused on comparison of conjugation frequencies in plankton and biofilm, including comparison of conjugation frequencies in high and low biofilm biomass with their virulence potential. It was shown that the conjugation frequency depended on the biofilm biomass and was significantly higher in thin (OD580 < 0.3) than in thick biofilm (OD580 ≥ 0.3). Nonmetric multidimensional scaling analysis revealed that higher conjugation frequencies in plankton and biofilm were directly positively correlated with the sum of virulence-associated genes of the recipient strain and presence of multidrug antibiotic resistances. On the other hand, the sum of insensitivities to different bacteriocins was negatively correlated with an increase in the conjugative transfer level. Our results obtained hence indicate that the evolution of potentially more pathogenic strains via conjugation is depended on the strains' ability to be a "good" recipient in the conjugative transfer, possibly due to the ability to form thinner biofilms.
Collapse
Affiliation(s)
- Marina V Kuznetsova
- Institute of Ecology and Genetics of Microorganisms Ural Branch Russian Academy of Sciences, Goleva street 13, 614081 Perm, Russia
| | - Irina L Maslennikova
- Institute of Ecology and Genetics of Microorganisms Ural Branch Russian Academy of Sciences, Goleva street 13, 614081 Perm, Russia
| | - Julia S Pospelova
- Institute of Ecology and Genetics of Microorganisms Ural Branch Russian Academy of Sciences, Goleva street 13, 614081 Perm, Russia
| | - Darja Žgur Bertok
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia.
| | - Marjanca Starčič Erjavec
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia.
| |
Collapse
|
32
|
Popin RV, Alvarenga DO, Castelo-Branco R, Fewer DP, Sivonen K. Mining of Cyanobacterial Genomes Indicates Natural Product Biosynthetic Gene Clusters Located in Conjugative Plasmids. Front Microbiol 2021; 12:684565. [PMID: 34803938 PMCID: PMC8600333 DOI: 10.3389/fmicb.2021.684565] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 10/11/2021] [Indexed: 11/24/2022] Open
Abstract
Microbial natural products are compounds with unique chemical structures and diverse biological activities. Cyanobacteria commonly possess a wide range of biosynthetic gene clusters (BGCs) to produce natural products. Although natural product BGCs have been found in almost all cyanobacterial genomes, little attention has been given in cyanobacterial research to the partitioning of these biosynthetic pathways in chromosomes and plasmids. Cyanobacterial plasmids are believed to disperse several natural product BGCs, such as toxins, by plasmids through horizontal gene transfer. Therefore, plasmids may confer the ability to produce toxins and may play a role in the evolution of diverse natural product BGCs from cyanobacteria. Here, we performed an analysis of the distribution of natural product BGCs in 185 genomes and mapped the presence of genes involved in the conjugation in plasmids. The 185 analyzed genomes revealed 1817 natural products BGCs. Individual genomes contained 1–42 biosynthetic pathways (mean 8), 95% of which were present in chromosomes and the remaining 5% in plasmids. Of the 424 analyzed cyanobacterial plasmids, 12% contained homologs of genes involved in conjugation and natural product biosynthetic pathways. Among the biosynthetic pathways in plasmids, manual curation identified those to produce aeruginosin, anabaenopeptin, ambiguine, cryptophycin, hassallidin, geosmin, and microcystin. These compounds are known toxins, protease inhibitors, odorous compounds, antimicrobials, and antitumorals. The present study provides in silico evidence using genome mining that plasmids may be involved in the distribution of natural product BGCs in cyanobacteria. Consequently, cyanobacterial plasmids have importance in the context of biotechnology, water management, and public health risk assessment. Future research should explore in vivo conjugation and the end products of natural product BGCs in plasmids via chemical analyses.
Collapse
Affiliation(s)
| | - Danillo Oliveira Alvarenga
- Department of Microbiology, University of Helsinki, Helsinki, Finland.,Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Raquel Castelo-Branco
- Department of Microbiology, University of Helsinki, Helsinki, Finland.,Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Porto, Portugal
| | - David Peter Fewer
- Department of Microbiology, University of Helsinki, Helsinki, Finland
| | - Kaarina Sivonen
- Department of Microbiology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
33
|
Muleta A, Tesfaye K, Assefa F, Greenlon A, Riely BK, Carrasquilla-Garcia N, Gai Y, Haileslassie T, Cook DR. Genomic diversity and distribution of Mesorhizobium nodulating chickpea (Cicer arietinum L.) from low pH soils of Ethiopia. Syst Appl Microbiol 2021; 45:126279. [PMID: 34839036 DOI: 10.1016/j.syapm.2021.126279] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 10/26/2021] [Accepted: 11/09/2021] [Indexed: 10/19/2022]
Abstract
Chickpea is the third most important grain legume worldwide. This is due in part to its high protein content that results from its ability to acquire bioavailable nitrogen when colonized by diverse, nitrogen fixing Mesorhizobium species. However, the diversity and distribution of mesorhizobia communities may depend on their adaptation to soil conditions. Therefore, this study was initiated in order to isolate and investigate the diversity and taxonomic identities of chickpea-nodulating Mesorhizobium species from low pH soils of Ethiopia. A total of 81 rhizobia strains were isolated from chickpea nodules harvested from low pH soils throughout Ethiopia, and their genomes were sequenced and assembled. Considering a representative set of the best-sequenced 81 genomes, the average sequence depth was 30X, with estimated average genome sizes of approximately 7 Mbp. Annotation of the assembled genome predicted an average of 7,453 protein-coding genes. Concatenation of 400 universal PhyloPhlAn conserved genes present in the genomes of all 81 strains allowed detailed phylogenetic analysis, from which eight well-supported species were identified, including M.opportunistum, M.australicum, Mesorhizobium sp. LSJC280BOO, M.wenxiniae, M.amorphae, M.loti and M.plurifarium, as well as a novel species. Phylogenetic reconstructions based on the symbiosis-related (nodC and nifH) genes were different from the core genes and consistent with horizontal transfer of the symbiotic island. The two major genomic groups, M.plurifarium and M.loti, were widely distributed in almost all the sites. The geographic pattern of genomic diversity indicated there was no relationship between geographic and genetic distance (r = 0.01, p > 0.01). In conclusion, low pH soils in Ethiopia harbored a diverse group of Mesorhizobium species, several of which were not previously known to nodulate chickpea.
Collapse
Affiliation(s)
- Atsede Muleta
- Department of Microbial, Cellular and Molecular Biology, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia.
| | - Kassahun Tesfaye
- Institutes of Biotechnology, Addis Ababa University, P.O Box 1176, Addis Ababa, Ethiopia; Ethiopian Biotechnology Institute, Addis Ababa, Ethiopia
| | - Fassil Assefa
- Department of Microbial, Cellular and Molecular Biology, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia
| | - Alex Greenlon
- Department of Plant Pathology, University of California Davis, One Shields Ave, Davis, CA, United States
| | - Brendan K Riely
- Department of Plant Pathology, University of California Davis, One Shields Ave, Davis, CA, United States
| | - Noelia Carrasquilla-Garcia
- Department of Plant Pathology, University of California Davis, One Shields Ave, Davis, CA, United States
| | - Yunpeng Gai
- Department of Plant Pathology, University of California Davis, One Shields Ave, Davis, CA, United States
| | | | - Douglas R Cook
- Department of Plant Pathology, University of California Davis, One Shields Ave, Davis, CA, United States
| |
Collapse
|
34
|
Greening SS, Zhang J, Midwinter AC, Wilkinson DA, Fayaz A, Williamson DA, Anderson MJ, Gates MC, French NP. Transmission dynamics of an antimicrobial resistant Campylobacter jejuni lineage in New Zealand's commercial poultry network. Epidemics 2021; 37:100521. [PMID: 34775297 DOI: 10.1016/j.epidem.2021.100521] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 08/05/2021] [Accepted: 11/07/2021] [Indexed: 11/26/2022] Open
Abstract
Understanding the relative contribution of different between-farm transmission pathways is essential in guiding recommendations for mitigating disease spread. This study investigated the association between contact pathways linking poultry farms in New Zealand and the genetic relatedness of antimicrobial resistant Campylobacter jejuni Sequence Type 6964 (ST-6964), with the aim of identifying the most likely contact pathways that contributed to its rapid spread across the industry. Whole-genome sequencing was performed on 167C. jejuni ST-6964 isolates sampled from across 30 New Zealand commercial poultry enterprises. The genetic relatedness between isolates was determined using whole genome multilocus sequence typing (wgMLST). Permutational multivariate analysis of variance and distance-based linear models were used to explore the strength of the relationship between pairwise genetic associations among the C. jejuni isolates and each of several pairwise distance matrices, indicating either the geographical distance between farms or the network distance of transportation vehicles. Overall, a significant association was found between the pairwise genetic relatedness of the C. jejuni isolates and the parent company, the road distance and the network distance of transporting feed vehicles. This result suggests that the transportation of feed within the commercial poultry industry as well as other local contacts between flocks, such as the movements of personnel, may have played a significant role in the spread of C. jejuni. However, further information on the historical contact patterns between farms is needed to fully characterise the risk of these pathways and to understand how they could be targeted to reduce the spread of C. jejuni.
Collapse
Affiliation(s)
- Sabrina S Greening
- Epicentre, School of Veterinary Science, Massey University, Palmerston North, New Zealand.
| | - Ji Zhang
- mEpiLab, Infectious Disease Research Centre, School of Veterinary Science, Massey University, Palmerston North, New Zealand; New Zealand Food Safety Science and Research Centre, Hopkirk Research Institute, Massey University, Palmerston North, New Zealand
| | - Anne C Midwinter
- mEpiLab, Infectious Disease Research Centre, School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - David A Wilkinson
- mEpiLab, Infectious Disease Research Centre, School of Veterinary Science, Massey University, Palmerston North, New Zealand; New Zealand Food Safety Science and Research Centre, Hopkirk Research Institute, Massey University, Palmerston North, New Zealand
| | - Ahmed Fayaz
- mEpiLab, Infectious Disease Research Centre, School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Deborah A Williamson
- Microbiological Diagnostic Unit and Public Health Laboratory, University of Melbourne, Parkville, Victoria, Australia
| | - Marti J Anderson
- New Zealand Institute for Advanced Study, Massey University, Auckland, New Zealand
| | - M Carolyn Gates
- Epicentre, School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Nigel P French
- mEpiLab, Infectious Disease Research Centre, School of Veterinary Science, Massey University, Palmerston North, New Zealand; New Zealand Food Safety Science and Research Centre, Hopkirk Research Institute, Massey University, Palmerston North, New Zealand
| |
Collapse
|
35
|
Interplay between Phenotypic Resistance to Relevant Antibiotics in Gram-Negative Urinary Pathogens: A Data-Driven Analysis of 10 Years' Worth of Antibiogram Data. Life (Basel) 2021; 11:life11101059. [PMID: 34685429 PMCID: PMC8537761 DOI: 10.3390/life11101059] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/28/2021] [Accepted: 10/05/2021] [Indexed: 12/18/2022] Open
Abstract
The global emergence of antimicrobial resistance (AMR) has become a critical issue for clinicians, as it puts the decades of developments in the medical field in jeopardy, by severely limiting the useful therapeutic arsenal of drugs, both in nosocomial and community-acquired infections. In the present study, a secondary analysis of taxonomic and resistance data was performed, corresponding to urinary tract infections (UTIs) caused by Gram-negative bacteria, detected between 1 January 2008 to 31 December 2017 at the Albert Szent-Györgyi Health Center, University of Szeged. The following were identifiable from the data collected: year of isolation; outpatient (OP)/inpatient (IP) origin of the isolate; taxonomy; and susceptibility/resistance to selected indicator antibiotics. Principal component analysis (PCA) and a correlation matrix were used to determine the association between the presences of resistance against indicator antibiotics in each taxonomic group. Overall, data from n = 16,240 outpatient and n = 13,964 inpatient Gram-negative UTI isolates were included in the data analyses. In E. coli, strong positive correlations were seen between resistance to ciprofloxacin (CIP) and gentamicin (GEN) resistance (OP: r = 0.6342, p = 0.049; IP: r = 0.9602, p < 0.001), whereas strong negative correlations were shown for fosfomycin (FOS) and nitrofurantoin (NIT) resistance (OP: r = -0.7183, p = 0.019; IP: r = -0.7437; p = 0.014). For Klebsiella spp. isolates, CIP resistance showed strong positive correlation with resistance to third-generation cephalosporins (3GC) and GEN (r = 0.7976, p = 0.006 and r = 0.7428, p = 0.014, respectively) in OP isolates, and with resistance to trimethoprim-sulfamethoxazole (SXT) and FOS (r = 0.8144, p = 0.004 and r = 0.7758, p < 0.001, respectively) in IP isolates. For members of the Citrobacter-Enterobacter-Serratia group, the resistance among indicator antibiotics showed a strong positive correlation, with the exception of FOS resistance. In the Proteus-Providencia-Morganella group, the strongest association was noted between CIP and SXT resistance (OP: r = 0.9251, p < 0.001; IP: r = 0.8007; p = 0.005). In the case of OP Acinetobacter spp., CIP showed strong and significant positive correlations with most indicator antibiotics, whereas for IP isolates, strong negative correlations arose among imipenem (IMI) resistance and resistance to other drugs. For Pseudomonas spp., strong and positive correlations were noted among resistance to β-lactam antibiotics and aminoglycosides, with the exception of ceftazidime (CEFT), showing strong, but negative correlations. Though molecular tests and sequencing-based platforms are now considered as the gold-standard for AMR surveillance, standardized collection of phenotypic resistance data and the introduction of Big Data analytic methods may be a viable alternative for molecular surveillance, especially in low-resource settings.
Collapse
|
36
|
Wang Y, Lu J, Zhang S, Li J, Mao L, Yuan Z, Bond PL, Guo J. Non-antibiotic pharmaceuticals promote the transmission of multidrug resistance plasmids through intra- and intergenera conjugation. THE ISME JOURNAL 2021; 15:2493-2508. [PMID: 33692486 PMCID: PMC8397710 DOI: 10.1038/s41396-021-00945-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 02/14/2021] [Accepted: 02/18/2021] [Indexed: 12/30/2022]
Abstract
Antibiotic resistance is a global threat to public health. The use of antibiotics at sub-inhibitory concentrations has been recognized as an important factor in disseminating antibiotic resistance via horizontal gene transfer. Although non-antibiotic, human-targeted pharmaceuticals are widely used by society (95% of the pharmaceuticals market), the potential contribution to the spread of antibiotic resistance is not clear. Here, we report that commonly consumed, non-antibiotic pharmaceuticals, including nonsteroidal anti-inflammatories (ibuprofen, naproxen, diclofenac), a lipid-lowering drug (gemfibrozil), and a β-blocker (propranolol), at clinically and environmentally relevant concentrations, significantly accelerated the dissemination of antibiotic resistance via plasmid-borne bacterial conjugation. Various indicators were used to study the bacterial response to these drugs, including monitoring reactive oxygen species (ROS) and cell membrane permeability by flow cytometry, cell arrangement, and whole-genome RNA and protein sequencing. Enhanced conjugation correlated well with increased production of ROS and cell membrane permeability. Additionally, these non-antibiotic pharmaceuticals induced responses similar to those detected when bacteria are exposed to antibiotics, such as inducing the SOS response and enhancing efflux pumps. The findings advance understanding of the transfer of antibiotic resistance genes, emphasizing the concern that non-antibiotic, human-targeted pharmaceuticals enhance the spread of antibiotic resistance among bacterial populations.
Collapse
Affiliation(s)
- Yue Wang
- Advanced Water Management Centre, The University of Queensland, St. Lucia, Brisbane, QLD, Australia
| | - Ji Lu
- Advanced Water Management Centre, The University of Queensland, St. Lucia, Brisbane, QLD, Australia
| | - Shuai Zhang
- Advanced Water Management Centre, The University of Queensland, St. Lucia, Brisbane, QLD, Australia
| | - Jie Li
- Advanced Water Management Centre, The University of Queensland, St. Lucia, Brisbane, QLD, Australia
| | - Likai Mao
- Advanced Water Management Centre, The University of Queensland, St. Lucia, Brisbane, QLD, Australia
| | - Zhiguo Yuan
- Advanced Water Management Centre, The University of Queensland, St. Lucia, Brisbane, QLD, Australia
| | - Philip L Bond
- Advanced Water Management Centre, The University of Queensland, St. Lucia, Brisbane, QLD, Australia
| | - Jianhua Guo
- Advanced Water Management Centre, The University of Queensland, St. Lucia, Brisbane, QLD, Australia.
| |
Collapse
|
37
|
Georgakopoulos-Soares I, Yizhar-Barnea O, Mouratidis I, Hemberg M, Ahituv N. Absent from DNA and protein: genomic characterization of nullomers and nullpeptides across functional categories and evolution. Genome Biol 2021; 22:245. [PMID: 34433494 PMCID: PMC8386077 DOI: 10.1186/s13059-021-02459-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 08/09/2021] [Indexed: 11/13/2022] Open
Abstract
Nullomers and nullpeptides are short DNA or amino acid sequences that are absent from a genome or proteome, respectively. One potential cause for their absence could be their having a detrimental impact on an organism. RESULTS: Here, we identify all possible nullomers and nullpeptides in the genomes and proteomes of thirty eukaryotes and demonstrate that a significant proportion of these sequences are under negative selection. We also identify nullomers that are unique to specific functional categories: coding sequences, exons, introns, 5'UTR, 3'UTR, promoters, and show that coding sequence and promoter nullomers are most likely to be selected against. By analyzing all protein sequences across the tree of life, we further identify 36,081 peptides up to six amino acids in length that do not exist in any known organism, termed primes. We next characterize all possible single base pair mutations that can lead to the appearance of a nullomer in the human genome, observing a significantly higher number of mutations than expected by chance for specific nullomer sequences in transposable elements, likely due to their suppression. We also annotate nullomers that appear due to naturally occurring variants and show that a subset of them can be used to distinguish between different human populations. Analysis of nullomers and nullpeptides across vertebrate evolution shows they can also be used as phylogenetic classifiers. CONCLUSIONS: We provide a catalog of nullomers and nullpeptides in distinct functional categories, develop methods to systematically study them, and highlight the use of variability in these sequences in other analyses.
Collapse
Affiliation(s)
- Ilias Georgakopoulos-Soares
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Ofer Yizhar-Barnea
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Ioannis Mouratidis
- Department of Computer Science, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Martin Hemberg
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA.
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK.
| | - Nadav Ahituv
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA.
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
38
|
Agarwal G, Gitaitis RD, Dutta B. Pan-Genome of Novel Pantoea stewartii subsp. indologenes Reveals Genes Involved in Onion Pathogenicity and Evidence of Lateral Gene Transfer. Microorganisms 2021; 9:1761. [PMID: 34442840 PMCID: PMC8399035 DOI: 10.3390/microorganisms9081761] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 11/16/2022] Open
Abstract
Pantoea stewartii subsp. indologenes (Psi) is a causative agent of leafspot on foxtail millet and pearl millet; however, novel strains were recently identified that are pathogenic on onions. Our recent host range evaluation study identified two pathovars; P. stewartii subsp. indologenes pv. cepacicola pv. nov. and P. stewartii subsp. indologenes pv. setariae pv. nov. that are pathogenic on onions and millets or on millets only, respectively. In the current study, we developed a pan-genome using the whole genome sequencing of newly identified/classified Psi strains from both pathovars [pv. cepacicola (n = 4) and pv. setariae (n = 13)]. The full spectrum of the pan-genome contained 7030 genes. Among these, 3546 (present in genomes of all 17 strains) were the core genes that were a subset of 3682 soft-core genes (present in ≥16 strains). The accessory genome included 1308 shell genes and 2040 cloud genes (present in ≤2 strains). The pan-genome showed a clear linear progression with >6000 genes, suggesting that the pan-genome of Psi is open. Comparative phylogenetic analysis showed differences in phylogenetic clustering of Pantoea spp. using PAVs/wgMLST approach in comparison with core genome SNPs-based phylogeny. Further, we conducted a horizontal gene transfer (HGT) study using Psi strains from both pathovars along with strains from other Pantoea species, namely, P. stewartii subsp. stewartii LMG 2715T, P. ananatis LMG 2665T, P. agglomerans LMG L15, and P. allii LMG 24248T. A total of 317 HGT events among four Pantoea species were identified with most gene transfer events occurring between Psi pv. cepacicola and Psi pv. setariae. Pan-GWAS analysis predicted a total of 154 genes, including seven gene-clusters, which were associated with the pathogenicity phenotype (necrosis on seedling) on onions. One of the gene-clusters contained 11 genes with known functions and was found to be chromosomally located.
Collapse
Affiliation(s)
- Gaurav Agarwal
- Department of Plant Pathology, Coastal Plain Experiment Station, University of Georgia, Tifton, GA 31793, USA;
| | | | - Bhabesh Dutta
- Department of Plant Pathology, Coastal Plain Experiment Station, University of Georgia, Tifton, GA 31793, USA;
| |
Collapse
|
39
|
Andreas MP, Giessen TW. Large-scale computational discovery and analysis of virus-derived microbial nanocompartments. Nat Commun 2021; 12:4748. [PMID: 34362927 PMCID: PMC8346489 DOI: 10.1038/s41467-021-25071-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 07/12/2021] [Indexed: 02/06/2023] Open
Abstract
Encapsulins are a class of microbial protein compartments defined by the viral HK97-fold of their capsid protein, self-assembly into icosahedral shells, and dedicated cargo loading mechanism for sequestering specific enzymes. Encapsulins are often misannotated and traditional sequence-based searches yield many false positive hits in the form of phage capsids. Here, we develop an integrated search strategy to carry out a large-scale computational analysis of prokaryotic genomes with the goal of discovering an exhaustive and curated set of all HK97-fold encapsulin-like systems. We find over 6,000 encapsulin-like systems in 31 bacterial and four archaeal phyla, including two novel encapsulin families. We formulate hypotheses about their potential biological functions and biomedical relevance, which range from natural product biosynthesis and stress resistance to carbon metabolism and anaerobic hydrogen production. An evolutionary analysis of encapsulins and related HK97-type virus families shows that they share a common ancestor, and we conclude that encapsulins likely evolved from HK97-type bacteriophages.
Collapse
Affiliation(s)
- Michael P Andreas
- Department of Biomedical Engineering, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Tobias W Giessen
- Department of Biomedical Engineering, University of Michigan Medical School, Ann Arbor, MI, USA.
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
40
|
Sheinman M, Arkhipova K, Arndt PF, Dutilh BE, Hermsen R, Massip F. Identical sequences found in distant genomes reveal frequent horizontal transfer across the bacterial domain. eLife 2021; 10:62719. [PMID: 34121661 PMCID: PMC8270642 DOI: 10.7554/elife.62719] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 06/13/2021] [Indexed: 12/19/2022] Open
Abstract
Horizontal gene transfer (HGT) is an essential force in microbial evolution. Despite detailed studies on a variety of systems, a global picture of HGT in the microbial world is still missing. Here, we exploit that HGT creates long identical DNA sequences in the genomes of distant species, which can be found efficiently using alignment-free methods. Our pairwise analysis of 93,481 bacterial genomes identified 138,273 HGT events. We developed a model to explain their statistical properties as well as estimate the transfer rate between pairs of taxa. This reveals that long-distance HGT is frequent: our results indicate that HGT between species from different phyla has occurred in at least 8% of the species. Finally, our results confirm that the function of sequences strongly impacts their transfer rate, which varies by more than three orders of magnitude between different functional categories. Overall, we provide a comprehensive view of HGT, illuminating a fundamental process driving bacterial evolution.
Collapse
Affiliation(s)
- Michael Sheinman
- Theoretical Biology and Bioinformatics, Biology Department, Utrecht University, Utrecht, Netherlands.,Division of Molecular Carcinogenesis, the Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Ksenia Arkhipova
- Theoretical Biology and Bioinformatics, Biology Department, Utrecht University, Utrecht, Netherlands
| | - Peter F Arndt
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Bas E Dutilh
- Theoretical Biology and Bioinformatics, Biology Department, Utrecht University, Utrecht, Netherlands
| | - Rutger Hermsen
- Theoretical Biology and Bioinformatics, Biology Department, Utrecht University, Utrecht, Netherlands
| | - Florian Massip
- Berlin Institute for Medical Systems Biology, Max Delbrück Center, Berlin, Germany.,Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, Villleurbanne, France
| |
Collapse
|
41
|
Fernández-Domínguez IJ, Manzo-Merino J, Taja-Chayeb L, Dueñas-González A, Pérez-Cárdenas E, Trejo-Becerril C. The role of extracellular DNA (exDNA) in cellular processes. Cancer Biol Ther 2021; 22:267-278. [PMID: 33858306 DOI: 10.1080/15384047.2021.1890319] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Nowadays, extracellular DNA or circulating cell-free DNA is considered to be a molecule with clinical applications (diagnosis, prognosis, monitoring of treatment responses, or patient follow-up) in diverse pathologies, especially in cancer. Nevertheless, because of its molecular characteristics, it can have many other functions. This review focuses on the participation of extracellular DNA (exDNA) in fundamental processes such as cell signaling, coagulation, immunity, evolution through horizontal transfer of genetic information, and adaptive response to inflammatory processes. A deeper understanding of its role in each of these processes will allow development of better tools to monitor and control pathologies, as well as helping to generate new therapeutic options, beyond the applicability of DNA in liquid biopsy.
Collapse
Affiliation(s)
| | | | - Lucia Taja-Chayeb
- Division of Basic Research, Instituto Nacional de Cancerología, México City
| | - Alfonso Dueñas-González
- Division of Basic Research, Instituto Nacional de Cancerología, México City.,Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | | |
Collapse
|
42
|
Antimicrobial Resistance in the Context of the Sustainable Development Goals: A Brief Review. Eur J Investig Health Psychol Educ 2021; 11:71-82. [PMID: 34542450 PMCID: PMC8314330 DOI: 10.3390/ejihpe11010006] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/13/2021] [Accepted: 01/17/2021] [Indexed: 12/15/2022] Open
Abstract
The reduction in infectious disease morbidity and mortality may be attributed to a variety of factors; however, improved sanitation and public health, and the introduction of vaccines and antibiotics are among the most significant. The development of antimicrobial resistance (AMR) in bacterial pathogens is an expected consequence of evolutionary adaptation to these noxious agents and the widespread use of these drugs has significantly sped up this process. Infections caused by multidrug resistant pathogens are directly associated with worse clinical outcomes, longer hospital stays, excess mortality in the affected patients and an increasing burden and costs on the healthcare infrastructure. The Sustainable Development Goals (SDGs) were published in 2015 by the United Nations to serve as a global blueprint for a better, more equitable, more sustainable life on our planet. The SDGs contextualize AMR as a global public health and societal issue; in addition, the continuing emergence of AMR may limit the attainment on many SDGs. The aim of this mini-review is to provide insight on the interface between attainment of SDGs and the clinical problem of drug resistance in bacteria.
Collapse
|
43
|
Wendling CC, Refardt D, Hall AR. Fitness benefits to bacteria of carrying prophages and prophage-encoded antibiotic-resistance genes peak in different environments. Evolution 2021; 75:515-528. [PMID: 33347602 PMCID: PMC7986917 DOI: 10.1111/evo.14153] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 11/12/2020] [Accepted: 12/09/2020] [Indexed: 12/14/2022]
Abstract
Understanding the role of horizontal gene transfer (HGT) in adaptation is a key challenge in evolutionary biology. In microbes, an important mechanism of HGT is prophage acquisition (phage genomes integrated into bacterial chromosomes). Prophages can influence bacterial fitness via the transfer of beneficial genes (including antibiotic‐resistance genes, ARGs), protection from superinfecting phages, or switching to a lytic lifecycle that releases free phages infectious to competitors. We expect these effects to depend on environmental conditions because of, for example, environment‐dependent induction of the lytic lifecycle. However, it remains unclear how costs/benefits of prophages vary across environments. Here, studying prophages with/without ARGs in Escherichia coli, we disentangled the effects of prophages alone and adaptive genes they carry. In competition with prophage‐free strains, benefits from prophages and ARGs peaked in different environments. Prophages were most beneficial when induction of the lytic lifecycle was common, whereas ARGs were more beneficial upon antibiotic exposure and with reduced prophage induction. Acquisition of prophage‐encoded ARGs by competing strains was most common when prophage induction, and therefore free phages, were common. Thus, selection on prophages and adaptive genes they carry varies independently across environments, which is important for predicting the spread of mobile/integrating genetic elements and their role in evolution.
Collapse
Affiliation(s)
- Carolin C Wendling
- ETH Zürich, Institute of Integrative Biology, Universitätstrasse 16, Zürich, Switzerland
| | - Dominik Refardt
- Institute of Natural Resource Sciences, Zürich University of Applied Sciences, Campus Grüental, Wädenswil, Switzerland
| | - Alex R Hall
- ETH Zürich, Institute of Integrative Biology, Universitätstrasse 16, Zürich, Switzerland
| |
Collapse
|
44
|
Acar Kirit H, Lagator M, Bollback JP. Experimental determination of evolutionary barriers to horizontal gene transfer. BMC Microbiol 2020; 20:326. [PMID: 33115402 PMCID: PMC7592521 DOI: 10.1186/s12866-020-01983-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 09/21/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Horizontal gene transfer, the acquisition of genes across species boundaries, is a major source of novel phenotypes that enables microbes to rapidly adapt to new environments. How the transferred gene alters the growth - fitness - of the new host affects the success of the horizontal gene transfer event and how rapidly the gene spreads in the population. Several selective barriers - factors that impact the fitness effect of the transferred gene - have been suggested to impede the likelihood of horizontal transmission, however experimental evidence is scarce. The objective of this study was to determine the fitness effects of orthologous genes transferred from Salmonella enterica serovar Typhimurium to Escherichia coli to identify the selective barriers using highly precise experimental measurements. RESULTS We found that most gene transfers result in strong fitness costs. Previously identified evolutionary barriers - gene function and the number of protein-protein interactions - did not predict the fitness effects of transferred genes. In contrast, dosage sensitivity, gene length, and the intrinsic protein disorder significantly impact the likelihood of a successful horizontal transfer. CONCLUSION While computational approaches have been successful in describing long-term barriers to horizontal gene transfer, our experimental results identified previously underappreciated barriers that determine the fitness effects of newly transferred genes, and hence their short-term eco-evolutionary dynamics.
Collapse
Affiliation(s)
- Hande Acar Kirit
- Institute of Integrative Biology, Functional and Comparative Genomics, University of Liverpool, Liverpool, L69 7ZB, UK
- Present Address: Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, 73019, USA
| | - Mato Lagator
- Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, Manchester, M13 9PT, UK
| | - Jonathan P Bollback
- Institute of Integrative Biology, Functional and Comparative Genomics, University of Liverpool, Liverpool, L69 7ZB, UK.
| |
Collapse
|
45
|
The sociology of science and generality of the DNA/RNA/protein paradigm throughout the cosmos. ADVANCES IN GENETICS 2020. [PMID: 33081925 DOI: 10.1016/bs.adgen.2020.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
The theory of cometary panspermia argues that life cannot have originated on Earth in the time available. It must have an ultimate, but still undiscovered cosmological source. The origin of life remains an open question. Life on Earth was introduced by impacting comets, and its further evolution was driven by the subsequent acquisition of cosmically derived genes. Explicit predictions of this theory stating how the acquisition of new genes drives evolution, are compared with recent developments in relation to horizontal gene transfer, and the role of retroviruses in evolution. Precisely stated predictions of the theory of cometary panspermia are shown to have been verified.
Collapse
|
46
|
Burks DJ, Azad RK. Higher-order Markov models for metagenomic sequence classification. Bioinformatics 2020; 36:4130-4136. [PMID: 32516355 DOI: 10.1093/bioinformatics/btaa562] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 05/19/2020] [Accepted: 06/03/2020] [Indexed: 11/13/2022] Open
Abstract
MOTIVATION Alignment-free, stochastic models derived from k-mer distributions representing reference genome sequences have a rich history in the classification of DNA sequences. In particular, the variants of Markov models have previously been used extensively. Higher-order Markov models have been used with caution, perhaps sparingly, primarily because of the lack of enough training data and computational power. Advances in sequencing technology and computation have enabled exploitation of the predictive power of higher-order models. We, therefore, revisited higher-order Markov models and assessed their performance in classifying metagenomic sequences. RESULTS Comparative assessment of higher-order models (HOMs, 9th order or higher) with interpolated Markov model, interpolated context model and lower-order models (8th order or lower) was performed on metagenomic datasets constructed using sequenced prokaryotic genomes. Our results show that HOMs outperform other models in classifying metagenomic fragments as short as 100 nt at all taxonomic ranks, and at lower ranks when the fragment size was increased to 250 nt. HOMs were also found to be significantly more accurate than local alignment which is widely relied upon for taxonomic classification of metagenomic sequences. A novel software implementation written in C++ performs classification faster than the existing Markovian metagenomic classifiers and can therefore be used as a standalone classifier or in conjunction with existing taxonomic classifiers for more robust classification of metagenomic sequences. AVAILABILITY AND IMPLEMENTATION The software has been made available at https://github.com/djburks/SMM. CONTACT Rajeev.Azad@unt.edu. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- David J Burks
- Department of Biological Sciences and BioDiscovery Institute
| | - Rajeev K Azad
- Department of Biological Sciences and BioDiscovery Institute.,Department of Mathematics, University of North Texas, Denton, TX 76203, USA
| |
Collapse
|
47
|
Daugavet MA, Shabelnikov SV, Podgornaya OI. Amino acid sequence associated with bacteriophage recombination site helps to reveal genes potentially acquired through horizontal gene transfer. BMC Bioinformatics 2020; 21:305. [PMID: 32703190 PMCID: PMC7379824 DOI: 10.1186/s12859-020-03599-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 06/10/2020] [Indexed: 12/04/2022] Open
Abstract
Background Horizontal gene transfer, i.e. the acquisition of genetic material from nonparent organism, is considered an important force driving species evolution. Many cases of horizontal gene transfer from prokaryotes to eukaryotes have been registered, but no transfer mechanism has been deciphered so far, although viruses were proposed as possible vectors in several studies. In agreement with this idea, in our previous study we discovered that in two eukaryotic proteins bacteriophage recombination site (AttP) was adjacent to the regions originating via horizontal gene transfer. In one of those cases AttP site was present inside the introns of cysteine-rich repeats. In the present study we aimed to apply computational tools for finding multiple horizontal gene transfer events in large genome databases. For that purpose we used a sequence of cysteine-rich repeats to identify genes potentially acquired through horizontal transfer. Results HMMER remote similarity search significantly detected 382 proteins containing cysteine-rich repeats. All of them, except 8 sequences, belong to eukaryotes. In 124 proteins the presence of conserved structural domains was predicted. In spite of the fact that cysteine-rich repeats are found almost exclusively in eukaryotic proteins, many predicted domains are most common for prokaryotes or bacteriophages. Ninety-eight proteins out of 124 contain typical prokaryotic domains. In those cases proteins were considered as potentially originating via horizontal transfer. In addition, HHblits search revealed that two domains of the same fungal protein, Glycoside hydrolase and Peptidase M15, have high similarity with proteins of two different prokaryotic species, hinting at independent horizontal gene transfer events. Conclusions Cysteine-rich repeats in eukaryotic proteins are usually accompanied by conserved domains typical for prokaryotes or bacteriophages. These proteins, containing both cysteine-rich repeats, and characteristic prokaryotic domains, might represent multiple independent horizontal gene transfer events from prokaryotes to eukaryotes. We believe that the presence of bacteriophage recombination site inside cysteine-rich repeat coding sequence may facilitate horizontal genes transfer. Thus computational approach, described in the present study, can help finding multiple sequences originated from horizontal transfer in eukaryotic genomes.
Collapse
Affiliation(s)
| | | | - Olga I Podgornaya
- Institute of Cytology, St. Petersburg, Russia, 194064.,School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia, 690090.,Department of Cytology and Histology, St. Pb State University, St. Petersburg, Russia, 199034
| |
Collapse
|
48
|
Exploration of space to achieve scientific breakthroughs. Biotechnol Adv 2020; 43:107572. [PMID: 32540473 DOI: 10.1016/j.biotechadv.2020.107572] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 05/05/2020] [Accepted: 05/29/2020] [Indexed: 12/13/2022]
Abstract
Living organisms adapt to changing environments using their amazing flexibility to remodel themselves by a process called evolution. Environmental stress causes selective pressure and is associated with genetic and phenotypic shifts for better modifications, maintenance, and functioning of organismal systems. The natural evolution process can be used in complement to rational strain engineering for the development of desired traits or phenotypes as well as for the production of novel biomaterials through the imposition of one or more selective pressures. Space provides a unique environment of stressors (e.g., weightlessness and high radiation) that organisms have never experienced on Earth. Cells in the outer space reorganize and develop or activate a range of molecular responses that lead to changes in cellular properties. Exposure of cells to the outer space will lead to the development of novel variants more efficiently than on Earth. For instance, natural crop varieties can be generated with higher nutrition value, yield, and improved features, such as resistance against high and low temperatures, salt stress, and microbial and pest attacks. The review summarizes the literature on the parameters of outer space that affect the growth and behavior of cells and organisms as well as complex colloidal systems. We illustrate an understanding of gravity-related basic biological mechanisms and enlighten the possibility to explore the outer space environment for application-oriented aspects. This will stimulate biological research in the pursuit of innovative approaches for the future of agriculture and health on Earth.
Collapse
|
49
|
Shuffling type of biological evolution based on horizontal gene transfer and the biosphere gene pool hypothesis. Biosystems 2020; 193-194:104131. [DOI: 10.1016/j.biosystems.2020.104131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 03/12/2020] [Accepted: 03/12/2020] [Indexed: 02/08/2023]
|
50
|
Gallant J, Mouton J, Ummels R, Ten Hagen-Jongman C, Kriel N, Pain A, Warren RM, Bitter W, Heunis T, Sampson SL. Identification of gene fusion events in Mycobacterium tuberculosis that encode chimeric proteins. NAR Genom Bioinform 2020; 2:lqaa033. [PMID: 33575588 PMCID: PMC7671302 DOI: 10.1093/nargab/lqaa033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/16/2020] [Accepted: 05/05/2020] [Indexed: 02/07/2023] Open
Abstract
Mycobacterium tuberculosis is a facultative intracellular pathogen responsible for causing tuberculosis. The harsh environment in which M. tuberculosis survives requires this pathogen to continuously adapt in order to maintain an evolutionary advantage. However, the apparent absence of horizontal gene transfer in M. tuberculosis imposes restrictions in the ways by which evolution can occur. Large-scale changes in the genome can be introduced through genome reduction, recombination events and structural variation. Here, we identify a functional chimeric protein in the ppe38-71 locus, the absence of which is known to have an impact on protein secretion and virulence. To examine whether this approach was used more often by this pathogen, we further develop software that detects potential gene fusion events from multigene deletions using whole genome sequencing data. With this software we could identify a number of other putative gene fusion events within the genomes of M. tuberculosis isolates. We were able to demonstrate the expression of one of these gene fusions at the protein level using mass spectrometry. Therefore, gene fusions may provide an additional means of evolution for M. tuberculosis in its natural environment whereby novel chimeric proteins and functions can arise.
Collapse
Affiliation(s)
- James Gallant
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Science, Faculty of Medicine and Health Science, Stellenbosch University, Tygerberg, Cape Town 7505, South Africa.,Section of Molecular Microbiology, Amsterdam Institute for Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
| | - Jomien Mouton
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Science, Faculty of Medicine and Health Science, Stellenbosch University, Tygerberg, Cape Town 7505, South Africa
| | - Roy Ummels
- Medical Microbiology and Infection Control, Vrije Universiteit Amsterdam, Amsterdam UMC, 1081 HZ Amsterdam, The Netherlands
| | - Corinne Ten Hagen-Jongman
- Section of Molecular Microbiology, Amsterdam Institute for Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
| | - Nastassja Kriel
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Science, Faculty of Medicine and Health Science, Stellenbosch University, Tygerberg, Cape Town 7505, South Africa
| | - Arnab Pain
- Biological and Environmental Sciences and Engineering (BESE) Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia.,Global Station for Zoonosis Control, GI-CoRE, Hokkaido University, 001-0020, N20 W10 Kita-ku, Sapporo, Japan
| | - Robin M Warren
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Science, Faculty of Medicine and Health Science, Stellenbosch University, Tygerberg, Cape Town 7505, South Africa
| | - Wilbert Bitter
- Section of Molecular Microbiology, Amsterdam Institute for Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands.,Medical Microbiology and Infection Control, Vrije Universiteit Amsterdam, Amsterdam UMC, 1081 HZ Amsterdam, The Netherlands
| | - Tiaan Heunis
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Science, Faculty of Medicine and Health Science, Stellenbosch University, Tygerberg, Cape Town 7505, South Africa.,Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Samantha L Sampson
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Science, Faculty of Medicine and Health Science, Stellenbosch University, Tygerberg, Cape Town 7505, South Africa
| |
Collapse
|