1
|
Marti A, Nater A, Pego Magalhaes J, Almeida L, Lewandowska M, Liniger M, Ruggli N, Grau-Roma L, Brito F, Alnaji FG, Vignuzzi M, García-Nicolás O, Summerfield A. Fitness adaptations of Japanese encephalitis virus in pigs following vector-free serial passaging. PLoS Pathog 2024; 20:e1012059. [PMID: 39186783 PMCID: PMC11379391 DOI: 10.1371/journal.ppat.1012059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 09/06/2024] [Accepted: 08/02/2024] [Indexed: 08/28/2024] Open
Abstract
Japanese encephalitis virus (JEV) is a zoonotic mosquito-transmitted Flavivirus circulating in birds and pigs. In humans, JEV can cause severe viral encephalitis with high mortality. Considering that vector-free direct virus transmission was observed in experimentally infected pigs, JEV introduction into an immunologically naïve pig population could result in a series of direct transmissions disrupting the alternating host cycling between vertebrates and mosquitoes. To assess the potential consequences of such a realistic scenario, we passaged JEV ten times in pigs. This resulted in higher in vivo viral replication, increased shedding, and stronger innate immune responses in pigs. Nevertheless, the viral tissue tropism remained similar, and frequency of direct transmission was not enhanced. Next generation sequencing showed single nucleotide deviations in 10% of the genome during passaging. In total, 25 point mutations were selected to reach a frequency of at least 35% in one of the passages. From these, six mutations resulted in amino acid changes located in the precursor of membrane, the envelope, the non-structural 3 and the non-structural 5 proteins. In a competition experiment with two lines of passaging, the mutation M374L in the envelope protein and N275D in the non-structural protein 5 showed a fitness advantage in pigs. Altogether, the interruption of the alternating host cycle of JEV caused a prominent selection of viral quasispecies as well as selection of de novo mutations associated with fitness gains in pigs, albeit without enhancing direct transmission frequency.
Collapse
Affiliation(s)
- Andrea Marti
- Institute of Virology and Immunology IVI, Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Alexander Nater
- Interfaculty Bioinformatics Unit (IBU) and Swiss Institute of Bioinformatics (SIB), University of Bern, Bern, Switzerland
| | - Jenny Pego Magalhaes
- Institute of Virology and Immunology IVI, Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Lea Almeida
- Institute of Virology and Immunology IVI, Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Marta Lewandowska
- Institute of Virology and Immunology IVI, Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Matthias Liniger
- Institute of Virology and Immunology IVI, Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Nicolas Ruggli
- Institute of Virology and Immunology IVI, Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Llorenç Grau-Roma
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Institute of Animal Pathology, COMPATH, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Francisco Brito
- Institute of Virology and Immunology IVI, Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Fadi G Alnaji
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Marco Vignuzzi
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Obdulio García-Nicolás
- Institute of Virology and Immunology IVI, Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Artur Summerfield
- Institute of Virology and Immunology IVI, Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
2
|
Kholodilov IS, Aibulatov SV, Khalin AV, Polienko AE, Klimentov AS, Belova OA, Rogova AA, Medvedev SG, Karganova GG. Orthoflavivirus Lammi in Russia: Possible Transovarial Transmission and Trans-Stadial Survival in Aedes cinereus (Diptera, Culicidae). Viruses 2024; 16:527. [PMID: 38675870 PMCID: PMC11054007 DOI: 10.3390/v16040527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
In the last few years, there has been a dramatic increase in the number of discovered viruses that are transmitted by arthropods. Some of them are pathogenic for humans and mammals, and the pathogenic potential of others is unknown. The genus Orthoflavivirus belongs to the family Flaviviridae and includes arboviruses that cause severe human diseases with damage to the central nervous system and hemorrhagic fevers, as well as viruses with unknown vectors and viruses specific only to insects. The latter group includes Lammi virus, first isolated from a mosquito pool in Finland. It is known that Lammi virus successfully replicates in mosquito cell lines but not in mammalian cell cultures or mice. Lammi virus reduces the reproduction of West Nile virus during superinfection and thus has the potential to reduce the spread of West Nile virus in areas where Lammi virus is already circulating. In this work, we isolated Lammi virus from a pool of adult Aedes cinereus mosquitoes that hatched from larvae/pupae collected in Saint Petersburg, Russia. This fact may indicate transovarial transmission and trans-stadial survival of the virus.
Collapse
Affiliation(s)
- Ivan S. Kholodilov
- Laboratory of Biology of Arboviruses, FSASI “Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of RAS” (Institute of Poliomyelitis), 108819 Moscow, Russia; (A.E.P.); (O.A.B.); (A.A.R.); (G.G.K.)
| | - Sergey V. Aibulatov
- Laboratory for the Study of Parasitic Arthropods, Zoological Institute of Russian Academy of Sciences, 199034 St. Petersburg, Russia; (S.V.A.); (A.V.K.); (S.G.M.)
| | - Alexei V. Khalin
- Laboratory for the Study of Parasitic Arthropods, Zoological Institute of Russian Academy of Sciences, 199034 St. Petersburg, Russia; (S.V.A.); (A.V.K.); (S.G.M.)
| | - Alexandra E. Polienko
- Laboratory of Biology of Arboviruses, FSASI “Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of RAS” (Institute of Poliomyelitis), 108819 Moscow, Russia; (A.E.P.); (O.A.B.); (A.A.R.); (G.G.K.)
| | - Alexander S. Klimentov
- Laboratory of Biochemistry, FSASI “Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of RAS” (Institute of Poliomyelitis), 108819 Moscow, Russia;
| | - Oxana A. Belova
- Laboratory of Biology of Arboviruses, FSASI “Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of RAS” (Institute of Poliomyelitis), 108819 Moscow, Russia; (A.E.P.); (O.A.B.); (A.A.R.); (G.G.K.)
| | - Anastasiya A. Rogova
- Laboratory of Biology of Arboviruses, FSASI “Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of RAS” (Institute of Poliomyelitis), 108819 Moscow, Russia; (A.E.P.); (O.A.B.); (A.A.R.); (G.G.K.)
| | - Sergey G. Medvedev
- Laboratory for the Study of Parasitic Arthropods, Zoological Institute of Russian Academy of Sciences, 199034 St. Petersburg, Russia; (S.V.A.); (A.V.K.); (S.G.M.)
| | - Galina G. Karganova
- Laboratory of Biology of Arboviruses, FSASI “Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of RAS” (Institute of Poliomyelitis), 108819 Moscow, Russia; (A.E.P.); (O.A.B.); (A.A.R.); (G.G.K.)
- Institute of Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, 119146 Moscow, Russia
| |
Collapse
|
3
|
Lebeau G, El Safadi D, Hoarau M, Meilhac O, Krejbich-Trotot P, Viranaicken W. Zika virus restriction of host antioxidant response is mediated by intracellular NS1 and reveals its ability to upregulate Bach1 expression. Biochem Biophys Res Commun 2024; 690:149312. [PMID: 38016247 DOI: 10.1016/j.bbrc.2023.149312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/01/2023] [Accepted: 11/21/2023] [Indexed: 11/30/2023]
Abstract
Zika virus (ZIKV), has gained global attention due to its association with severe disorders, including microcephaly and congenital Zika syndrome. We investigated the role of ZIKV nonstructural protein 1 (NS1) in altering the host's antioxidant response. Using a stable cell line expressing NS1, we found that NS1 significantly reduced the expression of antioxidant-related genes, including heme oxygenase 1 (HO-1), NAD(P)H quinone dehydrogenase 1 (NQO1), and sequestosome-1 (SQSTM1), which are regulated NRF2. Interestingly, this effect was attributed to increased expression of BACH1, a factor that competes with NRF2 for binding to certain antioxidant responsive elements (ARE). Thus, ZIKV NS1-mediated disruption of the antioxidant system is linked to BACH1 overexpression. These findings offer insights into ZIKV pathogenesis and suggest potential therapeutic strategies targeting the NRF2-BACH1 axis.
Collapse
Affiliation(s)
- Grégorie Lebeau
- Université de la Réunion, INSERM U1187, CNRS UMR 9192, IRD UMR 249, Unité Mixte Processus Infectieux en Milieu Insulaire Tropical, Plateforme Technologique CYROI, 94791, Sainte Clotilde, La Réunion, France
| | - Daed El Safadi
- Université de la Réunion, INSERM U1187, CNRS UMR 9192, IRD UMR 249, Unité Mixte Processus Infectieux en Milieu Insulaire Tropical, Plateforme Technologique CYROI, 94791, Sainte Clotilde, La Réunion, France
| | - Mathilde Hoarau
- Université de La Réunion, INSERM, UMR 1188 Diabète athérothombose Réunion Océan Indien (DéTROI), Campus Santé Université de la Réunion, 77 avenue du Docteur Jean-Marie Dambreville, 97410, Saint-Pierre, France
| | - Olivier Meilhac
- Université de La Réunion, INSERM, UMR 1188 Diabète athérothombose Réunion Océan Indien (DéTROI), Campus Santé Université de la Réunion, 77 avenue du Docteur Jean-Marie Dambreville, 97410, Saint-Pierre, France
| | - Pascale Krejbich-Trotot
- Université de la Réunion, INSERM U1187, CNRS UMR 9192, IRD UMR 249, Unité Mixte Processus Infectieux en Milieu Insulaire Tropical, Plateforme Technologique CYROI, 94791, Sainte Clotilde, La Réunion, France
| | - Wildriss Viranaicken
- Université de la Réunion, INSERM U1187, CNRS UMR 9192, IRD UMR 249, Unité Mixte Processus Infectieux en Milieu Insulaire Tropical, Plateforme Technologique CYROI, 94791, Sainte Clotilde, La Réunion, France; Université de La Réunion, INSERM, UMR 1188 Diabète athérothombose Réunion Océan Indien (DéTROI), Campus Santé Université de la Réunion, 77 avenue du Docteur Jean-Marie Dambreville, 97410, Saint-Pierre, France.
| |
Collapse
|
4
|
Poungou N, Sevidzem SL, Koumba AA, Koumba CRZ, Mbehang P, Onanga R, Zahouli JZB, Maganga GD, Djogbénou LS, Borrmann S, Adegnika AA, Becker SC, Mavoungou JF, Nguéma RM. Mosquito-Borne Arboviruses Occurrence and Distribution in the Last Three Decades in Central Africa: A Systematic Literature Review. Microorganisms 2023; 12:4. [PMID: 38276174 PMCID: PMC10819313 DOI: 10.3390/microorganisms12010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/13/2023] [Accepted: 10/19/2023] [Indexed: 01/27/2024] Open
Abstract
Arboviruses represent a real public health problem globally and in the Central African subregion in particular, which represents a high-risk zone for the emergence and re-emergence of arbovirus outbreaks. Furthermore, an updated review on the current arbovirus burden and associated mosquito vectors is lacking for this region. To contribute to filling this knowledge gap, the current study was designed with the following objectives: (i) to systematically review data on the occurrence and distribution of arboviruses and mosquito fauna; and (ii) to identify potential spillover mosquito species in the Central African region in the last 30 years. A web search enabled the documentation of 2454 articles from different online databases. The preferred reporting items for systematic reviews and meta-analyses (PRISMA) and the quality of reporting of meta-analyses (QUORUM) steps for a systematic review enabled the selection of 164 articles that fulfilled our selection criteria. Of the six arboviruses (dengue virus (DENV), chikungunya virus (CHIKV), yellow fever virus (YFV), Zika virus (ZIKV), Rift Valley fever virus (RVFV), and West Nile virus (WNV)) of public health concern studied, the most frequently reported were chikungunya and dengue. The entomological records showed >248 species of mosquitoes regrouped under 15 genera, with Anopheles (n = 100 species), Culex (n = 56 species), and Aedes (n = 52 species) having high species diversity. Three genera were rarely represented, with only one species included, namely, Orthopodomyia, Lutzia, and Verrallina, but individuals of the genera Toxorhinchites and Finlayas were not identified at the species level. We found that two Aedes species (Ae. aegypti and Ae. albopictus) colonised the same microhabitat and were involved in major epidemics of the six medically important arboviruses, and other less-frequently identified mosquito genera consisted of competent species and were associated with outbreaks of medical and zoonotic arboviruses. The present study reveals a high species richness of competent mosquito vectors that could lead to the spillover of medically important arboviruses in the region. Although epidemiological studies were found, they were not regularly documented, and this also applies to vector competence and transmission studies. Future studies will consider unpublished information in dissertations and technical reports from different countries to allow their information to be more consistent. A regional project, entitled "Ecology of Arboviruses" (EcoVir), is underway in three countries (Gabon, Benin, and Cote d'Ivoire) to generate a more comprehensive epidemiological and entomological data on this topic.
Collapse
Affiliation(s)
- Natacha Poungou
- Ecole Doctorale Regionale en Infectiologie Tropical de Franceville (EDR), University of Science and Technique of Masuku (USTM), Franceville P.O. Box 943, Gabon;
- Laboratoire d’Ecologie des Maladies Transmissibles (LEMAT), Université Libreville Nord (ULN), Libreville P.O. Box 1177, Gabon
| | - Silas Lendzele Sevidzem
- Laboratoire d’Ecologie des Maladies Transmissibles (LEMAT), Université Libreville Nord (ULN), Libreville P.O. Box 1177, Gabon
| | - Aubin Armel Koumba
- Département de Biologie et Ecologie Animale, Institut de Recherche en Ecologie Tropicale (IRET-CENAREST), Libreville P.O. Box 13354, Gabon
| | - Christophe Roland Zinga Koumba
- Département de Biologie et Ecologie Animale, Institut de Recherche en Ecologie Tropicale (IRET-CENAREST), Libreville P.O. Box 13354, Gabon
| | - Phillipe Mbehang
- Département de Biologie et Ecologie Animale, Institut de Recherche en Ecologie Tropicale (IRET-CENAREST), Libreville P.O. Box 13354, Gabon
| | - Richard Onanga
- Center of Interdisciplinary Medical Analysis of Franceville (CIRMF), Franceville P.O. Box 769, Gabon
| | - Julien Zahouli Bi Zahouli
- Centre d’Entomologie Médicale et Vétérinaire, Université Alassane Ouattara, Bouaké 01 BPV 18, Côte d’Ivoire
| | - Gael Darren Maganga
- Center of Interdisciplinary Medical Analysis of Franceville (CIRMF), Franceville P.O. Box 769, Gabon
| | - Luc Salako Djogbénou
- Université d’Abomey-Calavi, Institut Régional de Santé Publique, Ouidah P.O. Box 384, Benin
| | - Steffen Borrmann
- Institute for Tropical Medicine (ITM), University of Tübingen, 72074 Tübingen, Germany
| | - Ayola Akim Adegnika
- Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné P.O. Box 242, Gabon
| | - Stefanie C. Becker
- Institute for Parasitology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany;
| | - Jacques François Mavoungou
- Département de Biologie et Ecologie Animale, Institut de Recherche en Ecologie Tropicale (IRET-CENAREST), Libreville P.O. Box 13354, Gabon
| | - Rodrigue Mintsa Nguéma
- Laboratoire d’Ecologie des Maladies Transmissibles (LEMAT), Université Libreville Nord (ULN), Libreville P.O. Box 1177, Gabon
- Département de Biologie et Ecologie Animale, Institut de Recherche en Ecologie Tropicale (IRET-CENAREST), Libreville P.O. Box 13354, Gabon
| |
Collapse
|
5
|
Salas-Rojas M, de Oliveira-Filho EF, Almazán-Marín C, Rodas-Martínez AZ, Aguilar-Setién Á, Drexler JF. Serological evidence for potential yellow fever virus infection in non-human primates, southeastern Mexico. ONE HEALTH OUTLOOK 2023; 5:14. [PMID: 37876014 PMCID: PMC10594671 DOI: 10.1186/s42522-023-00090-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 10/09/2023] [Indexed: 10/26/2023]
Abstract
BACKGROUND Arthropod-borne flaviviruses like dengue virus (DENV) and yellow fever virus (YFV) are major human pathogens. In Latin America, YFV is maintained in sylvatic cycles involving non-human primates (NHP) and forest-dwelling mosquitos. YFV supposedly does not circulate north of Panama. METHODS We conducted a serologic study for flaviviruses and other emerging viruses in NHP from southeastern Mexico. A total of thirty sera of black-handed spider monkeys (Ateles geoffroyi, n = 25), black howler monkeys (Alouatta pigra, n = 3), and mantled howler monkeys (Al. palliata, n = 2) sampled in 2012 and 2018 were screened by an indirect immunofluorescence assay (IFA) to detected IgG antibodies against DENV, YFV, Zika virus (ZIKV), West Nile virus (WNV), Rift Valley fever virus, Crimean-Congo hemorrhagic fever virus, Middle East respiratory syndrome coronavirus, and Zaire Ebola virus, and confirmed by plaque reduction neutralization tests (PRNT90) representing all mosquito-borne flavivirus serocomplexes circulating in the Americas. RESULTS A total of 16 sera (53.3%; 95% CI, 34.3-71.7) showed IFA reactivity to at least one tested flavivirus with end-point titers ranging from 1:100 to 1:1000. No serum reacted with other viruses. Monotypic and high mean PRNT90 endpoint YFV titers of 1:246 were found in 3 black-handed spider monkey sera (10.0%; 95% CI, 2.1-26.5) sampled in 2018 in Tabasco, compared to all other flaviviruses tested. Monotypic endpoint PRNT90 titers of 1:28 for Ilheus virus and 1:22 for WNV in serum of black howler monkeys sampled in 2018 in Tabasco suggested additional flavivirus exposure. CONCLUSIONS Our findings may suggest unnoticed YFV circulation. Intensification of YFV surveillance in NHP and vectors is warranted in Mexico and potentially other areas considered free of yellow fever.
Collapse
Affiliation(s)
- Mónica Salas-Rojas
- UIM en Inmunología, UMAE Hospital de Pediatría, Centro Médico Nacional "Siglo XXI", Instituto Mexicano del Seguro Social, Ciudad de Mexico, México
| | - Edmilson Ferreira de Oliveira-Filho
- Institute of Virology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Cenia Almazán-Marín
- UIM en Inmunología, UMAE Hospital de Pediatría, Centro Médico Nacional "Siglo XXI", Instituto Mexicano del Seguro Social, Ciudad de Mexico, México
| | - Alba Zulema Rodas-Martínez
- División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, Villahermosa, Tabasco, México
| | - Álvaro Aguilar-Setién
- UIM en Inmunología, UMAE Hospital de Pediatría, Centro Médico Nacional "Siglo XXI", Instituto Mexicano del Seguro Social, Ciudad de Mexico, México
| | - Jan Felix Drexler
- Institute of Virology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Charitéplatz 1, 10117, Berlin, Germany.
- German Centre for Infection Research (DZIF), Associated Partner Site Charité, Berlin, Germany.
| |
Collapse
|
6
|
Tang X, Li R, Qi Y, Li W, Liu Z, Wu J. The identification and genetic characteristics of Quang Binh virus from field-captured Culex tritaeniorhynchus (Diptera: Culicidae) from Guizhou Province, China. Parasit Vectors 2023; 16:318. [PMID: 37679786 PMCID: PMC10486134 DOI: 10.1186/s13071-023-05938-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/16/2023] [Indexed: 09/09/2023] Open
Abstract
BACKGROUND Mosquitoes carry a variety of viruses that can cause disease in humans, animals and livestock. Surveys for viruses carried by wild mosquitoes can significantly contribute to surveillance efforts and early detection systems. In addition to mosquito-borne viruses, mosquitoes harbor many insect-specific viruses (ISVs). Quang Binh virus (QBV) is one such example, categorized as an ISV within the Flavivirus genus (family Flaviviridae). QBV has been specifically documented in Vietnam and China, with reports limited to several mosquito species. METHODS The homogenate obtained from female mosquitoes was cultured on C6/36 (Aedes albopictus) and BHK-21 (baby hamster kidney) cell lines. Positive cultures were identified by reverse transcription-polymerase chain reaction (RT‒PCR) with taxon- or species-specific primers. Next-generation sequencing was employed to sequence the complete genomes of the identified positive samples. Subsequently, phylogenetic, gene homology, molecular evolutionary and genetic variation analyses were conducted. RESULT In 2021, a total of 32,177 adult female mosquitoes were collected from 15 counties in Guizhou Province, China. The predominant mosquito species identified were Culex tritaeniorhynchus, Armigeres subalbatus and Anopheles sinensis. Among the collected mosquitoes, three positive cultures were obtained from Cx. tritaeniorhynchus pools, revealing the presence of Quang Binh virus (QBV) RNA sequences. Phylogenetic analysis indicated that the three Guizhou isolates, along with the prototype isolate from Vietnam, formed distinct branches. These branches were primarily closely related to other QBV isolates reported in China. Comparative analysis revealed a high degree of nucleotide and amino acid homology between the Guizhou isolates and both Vietnamese and other indigenous Chinese isolates. Additionally, nonsynonymous single-nucleotide variants (SNVs) were observed in these strains compared to the QBV prototype strain. CONCLUSION This study represents the first report of QBV presences in Cx. tritaeniorhynchus mosquitoes in Guizhou Province, China. Phylogenetic tree analysis showed that the three Guizhou isolates were most closely related to the QBV genes found in China. In addition, the study of the genetic characteristics and variation of this virus provided a deeper understanding of QBV and enriched the baseline data of these insect-specific flaviviruses (ISFVs).
Collapse
Affiliation(s)
- Xiaomin Tang
- Characteristic Key Laboratory of Modern Pathogen Biology, School of Basic Medicine, Guizhou Medical University, Guiyang, 550025, China
- Department of Human Parasitology, School of Basic Medicine, Guizhou Medical University, Guiyang, 550025, China
| | - Rongting Li
- Characteristic Key Laboratory of Modern Pathogen Biology, School of Basic Medicine, Guizhou Medical University, Guiyang, 550025, China
- School of Public Health, Guizhou Medical University, Guiyang, 550025, China
| | - Yanfei Qi
- College of Osteopathic Medicine, Duquesne University, Pittsburgh, PA, 15282, USA
- College of Osteopathic Medicine, California Health Sciences University, Clovis, CA, 93611, USA
| | - Weiyi Li
- Characteristic Key Laboratory of Modern Pathogen Biology, School of Basic Medicine, Guizhou Medical University, Guiyang, 550025, China
- School of Public Health, Guizhou Medical University, Guiyang, 550025, China
| | - Zhihao Liu
- Characteristic Key Laboratory of Modern Pathogen Biology, School of Basic Medicine, Guizhou Medical University, Guiyang, 550025, China
- School of Public Health, Guizhou Medical University, Guiyang, 550025, China
| | - Jiahong Wu
- Characteristic Key Laboratory of Modern Pathogen Biology, School of Basic Medicine, Guizhou Medical University, Guiyang, 550025, China.
- Department of Human Parasitology, School of Basic Medicine, Guizhou Medical University, Guiyang, 550025, China.
| |
Collapse
|
7
|
Li D, Lu HT, Ding YZ, Wang HJ, Ye JL, Qin CF, Liu ZY. Specialized cis-Acting RNA Elements Balance Genome Cyclization to Ensure Efficient Replication of Yellow Fever Virus. J Virol 2023; 97:e0194922. [PMID: 37017533 PMCID: PMC10134800 DOI: 10.1128/jvi.01949-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/13/2023] [Indexed: 04/06/2023] Open
Abstract
Genome cyclization is essential for viral RNA (vRNA) replication of the vertebrate-infecting flaviviruses, and yet its regulatory mechanisms are not fully understood. Yellow fever virus (YFV) is a notorious pathogenic flavivirus. Here, we demonstrated that a group of cis-acting RNA elements in YFV balance genome cyclization to govern efficient vRNA replication. It was shown that the downstream of the 5'-cyclization sequence hairpin (DCS-HP) is conserved in the YFV clade and is important for efficient YFV propagation. By using two different replicon systems, we found that the function of the DCS-HP is determined primarily by its secondary structure and, to a lesser extent, by its base-pair composition. By combining in vitro RNA binding and chemical probing assays, we found that the DCS-HP orchestrates the balance of genome cyclization through two different mechanisms, as follows: the DCS-HP assists the correct folding of the 5' end in a linear vRNA to promote genome cyclization, and it also limits the overstabilization of the circular form through a potential crowding effect, which is influenced by the size and shape of the DCS-HP structure. We also provided evidence that an A-rich sequence downstream of the DCS-HP enhances vRNA replication and contributes to the regulation of genome cyclization. Interestingly, diversified regulatory mechanisms of genome cyclization, involving both the downstream of the 5'-cyclization sequence (CS) and the upstream of the 3'-CS elements, were identified among different subgroups of the mosquito-borne flaviviruses. In summary, our work highlighted how YFV precisely controls the balance of genome cyclization to ensure viral replication. IMPORTANCE Yellow fever virus (YFV), the prototype of the Flavivirus genus, can cause devastating yellow fever disease. Although it is preventable by vaccination, there are still tens of thousands of yellow fever cases per year, and no approved antiviral medicine is available. However, the understandings about the regulatory mechanisms of YFV replication are obscure. In this study, by a combination of bioinformatics, reverse genetics, and biochemical approaches, it was shown that the downstream of the 5'-cyclization sequence hairpin (DCS-HP) promotes efficient YFV replication by modulating the conformational balance of viral RNA. Interestingly, we found specialized combinations for the downstream of the 5'-cyclization sequence (CS) and upstream of the 3'-CS elements in different groups of the mosquito-borne flaviviruses. Moreover, possible evolutionary relationships among the various downstream of the 5'-CS elements were implied. This work highlighted the complexity of RNA-based regulatory mechanisms in the flaviviruses and will facilitate the design of RNA structure-targeted antiviral therapies.
Collapse
Affiliation(s)
- Dan Li
- The Centre for Infection and Immunity Studies, School of Medicine, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Hai-Tao Lu
- The Centre for Infection and Immunity Studies, School of Medicine, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yu-Zhen Ding
- The Centre for Infection and Immunity Studies, School of Medicine, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Hong-Jiang Wang
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
- The Chinese People’s Liberation Army Strategic Support Force Characteristic Medical Center, Beijing, China
| | - Jing-Long Ye
- The Centre for Infection and Immunity Studies, School of Medicine, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Cheng-Feng Qin
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Zhong-Yu Liu
- The Centre for Infection and Immunity Studies, School of Medicine, Sun Yat-sen University, Shenzhen, Guangdong, China
| |
Collapse
|
8
|
Gaunt MW, Pettersson JHO, Kuno G, Gaunt B, de Lamballerie X, Gould EA. Widespread Interspecific Phylogenetic Tree Incongruence Between Mosquito-Borne and Insect-Specific Flaviviruses at Hotspots Originally Identified in Zika Virus. Virus Evol 2022; 8:veac027. [PMID: 35591877 PMCID: PMC9113262 DOI: 10.1093/ve/veac027] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 10/22/2021] [Accepted: 04/17/2022] [Indexed: 11/16/2022] Open
Abstract
Intraspecies (homologous) phylogenetic incongruence, or ‘tree conflict’ between different loci within the same genome of mosquito-borne flaviviruses (MBFV), was first identified in dengue virus (DENV) and subsequently in Japanese encephalitis virus (JEV), St Louis encephalitis virus, and Zika virus (ZIKV). Recently, the first evidence of phylogenetic incongruence between interspecific members of the MBFV was reported in ZIKV and its close relative, Spondweni virus. Uniquely, these hybrid proteomes were derived from four incongruent trees involving an Aedes-associated DENV node (1 tree) and three different Culex-associated flavivirus nodes (3 trees). This analysis has now been extended across a wider spectrum of viruses within the MBFV lineage targeting the breakpoints between phylogenetic incongruent loci originally identified in ZIKV. Interspecies phylogenetic incongruence at these breakpoints was identified in 10 of 50 viruses within the MBFV lineage, representing emergent Aedes and Culex-associated viruses including JEV, West Nile virus, yellow fever virus, and insect-specific viruses. Thus, interspecies phylogenetic incongruence is widespread amongst the flaviviruses and is robustly associated with the specific breakpoints that coincide with the interspecific phylogenetic incongruence previously identified, inferring they are ‘hotspots’. The incongruence amongst the emergent MBFV group was restricted to viruses within their respective associated epidemiological boundaries. This MBFV group was RY-coded at the third codon position (‘wobble codon’) to remove transition saturation. The resulting ‘wobble codon’ trees presented a single topology for the entire genome that lacked any robust evidence of phylogenetic incongruence between loci. Phylogenetic interspecific incongruence was therefore observed for exactly the same loci between amino acid and the RY-coded ‘wobble codon’ alignments and this incongruence represented either a major part, or the entire genomes. Maximum likelihood codon analysis revealed positive selection for the incongruent lineages. Positive selection could result in the same locus producing two opposing trees. These analyses for the clinically important MBFV suggest that robust interspecific phylogenetic incongruence resulted from amino acid selection. Convergent or parallel evolutions are evolutionary processes that would explain the observation, whilst interspecific recombination is unlikely.
Collapse
Affiliation(s)
- Michael W Gaunt
- London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom
| | - John H-O Pettersson
- Department of Medical Biochemistry and Microbiology, Zoonosis Science Center, Uppsala University, Uppsala, Sweden
- Sydney Institute for Infectious Diseases, School of Life and Environmental Sciences and School of Medical Sciences, the University of Sydney, Sydney, New South Wales 2006, Australia
| | - Goro Kuno
- Formerly, Centers for Disease Control, Fort Collins, CO 80521, USA
| | - Bill Gaunt
- Aeon-sys, MBCS Kensington Road, Barnsley S75 2TU, UK
| | - Xavier de Lamballerie
- UMR “Unité des Virus Emergents”, Aix-Marseille Université-IRD 190-Inserm 1207-IHU Méditerranée Infection, Marseille, France
- APHM Public Hospitals of Marseille, Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
| | - Ernest A Gould
- UMR “Unité des Virus Emergents”, Aix-Marseille Université-IRD 190-Inserm 1207-IHU Méditerranée Infection, Marseille, France
| |
Collapse
|
9
|
Samanta B. Structural evolution of SLA promoter in mosquito-borne flaviviruses: A sequence-structure based phylogenetic framework. Virology 2021; 562:110-120. [PMID: 34311294 DOI: 10.1016/j.virol.2021.07.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 07/05/2021] [Accepted: 07/15/2021] [Indexed: 11/18/2022]
Abstract
All the flaviviruses have a Y-shaped stem-loop secondary structure known as the SLA element, and the structural features of this element are crucial to initiating the infection cycle. The present study particularly investigated how flaviviruses retained the common core SLA element secondary structure during the species evolution by selecting mosquito-borne flaviviruses (MBFVs) as a case study. The detailed search of nucleotide substitutions in species-wise consensus SLA secondary structure models suggested that the compensatory and hemi-compensatory base changes in the helices are crucial to preserving the common core secondary structure. In contrast to the coding region-based phylogeny, the SLA sequence-structure-based phylogenetic tree revealed an intriguing evolutionary relationship among MBFVs. Overall, this paper demonstrated for the first time the efficacy of RNA secondary structures as a phylogenetic marker to study the RNA virus evolution.
Collapse
Affiliation(s)
- Brajogopal Samanta
- Department of Microbiology and FST, GITAM Institute of Science, GITAM (Deemed to be University), Rushikonda, Visakhapatnam, 530045, Andhra Pradesh, India.
| |
Collapse
|
10
|
Jansen van Vuren P, Parry R, Khromykh AA, Paweska JT. A 1958 Isolate of Kedougou Virus (KEDV) from Ndumu, South Africa, Expands the Geographic and Temporal Range of KEDV in Africa. Viruses 2021; 13:v13071368. [PMID: 34372574 PMCID: PMC8309962 DOI: 10.3390/v13071368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 11/16/2022] Open
Abstract
The mosquito-borne flavivirus, Kedougou virus (KEDV), first isolated in Senegal in 1972, is genetically related to dengue, Zika (ZIKV) and Spondweni viruses (SPOV). Serological surveillance studies in Senegal and isolation of KEDV in the Central African Republic indicate occurrence of KEDV infections in humans, but to date, no disease has been reported. Here, we assembled the coding-complete genome of a 1958 isolate of KEDV from a pool of Aedes circumluteolus mosquitoes collected in Ndumu, KwaZulu-Natal, South Africa. The AR1071 Ndumu KEDV isolate bears 80.51% pairwise nucleotide identity and 93.34% amino acid identity with the prototype DakAar-D1470 strain and was co-isolated with SPOV through intracerebral inoculation of suckling mice and passage on VeroE6 cells. This historical isolate expands the known geographic and temporal range of this relatively unknown flavivirus, aiding future temporal phylogenetic calibration and diagnostic assay refinement.
Collapse
Affiliation(s)
- Petrus Jansen van Vuren
- Australian Centre for Disease Preparedness, CSIRO Health & Biosecurity, Private Bag 24, Geelong, VIC 3220, Australia
- Correspondence: ; Tel.: +613-5227-5700
| | - Rhys Parry
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD 4072, Australia; (R.P.); (A.A.K.)
| | - Alexander A. Khromykh
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD 4072, Australia; (R.P.); (A.A.K.)
- Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Brisbane, QLD 4029, Australia
| | - Janusz T. Paweska
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg 2131, South Africa;
- Centre for Viral Zoonoses, Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa
- Faculty of Health Sciences, School of Pathology, University of Witwatersrand, Johannesburg 2050, South Africa
| |
Collapse
|
11
|
An Unsupervised Algorithm for Host Identification in Flaviviruses. Life (Basel) 2021; 11:life11050442. [PMID: 34069049 PMCID: PMC8157105 DOI: 10.3390/life11050442] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/07/2021] [Accepted: 05/12/2021] [Indexed: 12/28/2022] Open
Abstract
Early characterization of emerging viruses is essential to control their spread, such as the Zika Virus outbreak in 2014. Among other non-viral factors, host information is essential for the surveillance and control of virus spread. Flaviviruses (genus Flavivirus), akin to other viruses, are modulated by high mutation rates and selective forces to adapt their codon usage to that of their hosts. However, a major challenge is the identification of potential hosts for novel viruses. Usually, potential hosts of emerging zoonotic viruses are identified after several confirmed cases. This is inefficient for deterring future outbreaks. In this paper, we introduce an algorithm to identify the host range of a virus from its raw genome sequences. The proposed strategy relies on comparing codon usage frequencies across viruses and hosts, by means of a normalized Codon Adaptation Index (CAI). We have tested our algorithm on 94 flaviviruses and 16 potential hosts. This novel method is able to distinguish between arthropod and vertebrate hosts for several flaviviruses with high values of accuracy (virus group 91.9% and host type 86.1%) and specificity (virus group 94.9% and host type 79.6%), in comparison to empirical observations. Overall, this algorithm may be useful as a complementary tool to current phylogenetic methods in monitoring current and future viral outbreaks by understanding host–virus relationships.
Collapse
|
12
|
Zadra N, Rizzoli A, Rota-Stabelli O. Chronological Incongruences between Mitochondrial and Nuclear Phylogenies of Aedes Mosquitoes. Life (Basel) 2021; 11:life11030181. [PMID: 33669100 PMCID: PMC7996624 DOI: 10.3390/life11030181] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/12/2021] [Accepted: 02/22/2021] [Indexed: 12/16/2022] Open
Abstract
One-third of all mosquitoes belong to the Aedini, a tribe comprising common vectors of viral zoonoses such as Aedes aegypti and Aedes albopictus. To improve our understanding of their evolution, we present an updated multigene estimate of Aedini phylogeny and divergence, focusing on the disentanglement between nuclear and mitochondrial phylogenetic signals. We first show that there are some phylogenetic discrepancies between nuclear and mitochondrial markers which may be caused by wrong taxa assignment in samples collections or by some stochastic effect due to small gene samples. We indeed show that the concatenated dataset is model and framework dependent, indicating a general paucity of signal. Our Bayesian calibrated divergence estimates point toward a mosquito radiation in the mid-Jurassic and an Aedes radiation from the mid-Cretaceous on. We observe, however a strong chronological incongruence between mitochondrial and nuclear data, the latter providing divergence times within the Aedini significantly younger than the former. We show that this incongruence is consistent over different datasets and taxon sampling and that may be explained by either peculiar evolutionary event such as different levels of saturation in certain lineages or a past history of hybridization throughout the genus. Overall, our updated picture of Aedini phylogeny, reveal a strong nuclear-mitochondrial incongruence which may be of help in setting the research agenda for future phylogenomic studies of Aedini mosquitoes.
Collapse
Affiliation(s)
- Nicola Zadra
- Research and Innovation Centre, Fondazione Edmund Mach, 38010 San Michele all Adige (TN), Italy; (N.Z.); (A.R.)
- Department of Cellular, Computational and Integrative Biology—CIBIO, University of Trento, 38123 Povo (TN), Italy
| | - Annapaola Rizzoli
- Research and Innovation Centre, Fondazione Edmund Mach, 38010 San Michele all Adige (TN), Italy; (N.Z.); (A.R.)
| | - Omar Rota-Stabelli
- Research and Innovation Centre, Fondazione Edmund Mach, 38010 San Michele all Adige (TN), Italy; (N.Z.); (A.R.)
- Department of Cellular, Computational and Integrative Biology—CIBIO, University of Trento, 38123 Povo (TN), Italy
- Center Agriculture Food Environment—C3A, University of Trento, 38010 San Michele all Adige (TN), Italy
- Correspondence:
| |
Collapse
|
13
|
Saade M, Ferrero DS, Blanco-Ameijeiras J, Gonzalez-Gobartt E, Flores-Mendez M, Ruiz-Arroyo VM, Martínez-Sáez E, Ramón Y Cajal S, Akizu N, Verdaguer N, Martí E. Multimerization of Zika Virus-NS5 Causes Ciliopathy and Forces Premature Neurogenesis. Cell Stem Cell 2020; 27:920-936.e8. [PMID: 33147489 DOI: 10.1016/j.stem.2020.10.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 08/16/2020] [Accepted: 10/08/2020] [Indexed: 02/07/2023]
Abstract
Zika virus (ZikV) is a flavivirus that infects neural tissues, causing congenital microcephaly. ZikV has evolved multiple mechanisms to restrict proliferation and enhance cell death, although the underlying cellular events involved remain unclear. Here we show that the ZikV-NS5 protein interacts with host proteins at the base of the primary cilia in neural progenitor cells, causing an atypical non-genetic ciliopathy and premature neuron delamination. Furthermore, in human microcephalic fetal brain tissue, ZikV-NS5 persists at the base of the motile cilia in ependymal cells, which also exhibit a severe ciliopathy. Although the enzymatic activity of ZikV-NS5 appears to be dispensable, the amino acids Y25, K28, and K29 that are involved in NS5 oligomerization are essential for localization and interaction with components of the cilium base, promoting ciliopathy and premature neurogenesis. These findings lay the foundation for therapies that target ZikV-NS5 multimerization and prevent the developmental malformations associated with congenital Zika syndrome.
Collapse
Affiliation(s)
- Murielle Saade
- Developmental Biology Department, Instituto de Biología Molecular de Barcelona (IBMB-CSIC), Parc Científic de Barcelona, C/Baldiri i Reixac 20, Barcelona 08028, Spain.
| | - Diego S Ferrero
- Structural Biology Department, Instituto de Biología Molecular de Barcelona (IBMB-CSIC), Parc Científic de Barcelona, C/Baldiri i Reixac 20, Barcelona 08028, Spain
| | - José Blanco-Ameijeiras
- Developmental Biology Department, Instituto de Biología Molecular de Barcelona (IBMB-CSIC), Parc Científic de Barcelona, C/Baldiri i Reixac 20, Barcelona 08028, Spain
| | - Elena Gonzalez-Gobartt
- Developmental Biology Department, Instituto de Biología Molecular de Barcelona (IBMB-CSIC), Parc Científic de Barcelona, C/Baldiri i Reixac 20, Barcelona 08028, Spain
| | - Marco Flores-Mendez
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Victor M Ruiz-Arroyo
- Structural Biology Department, Instituto de Biología Molecular de Barcelona (IBMB-CSIC), Parc Científic de Barcelona, C/Baldiri i Reixac 20, Barcelona 08028, Spain
| | - Elena Martínez-Sáez
- Department of Pathology, Vall d'Hebron University Hospital, Translational Molecular Pathology, Vall d'Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona and Spanish Biomedical Research Network Centre in Oncology (CIBERONC), Barcelona 08035, Spain
| | - Santiago Ramón Y Cajal
- Department of Pathology, Vall d'Hebron University Hospital, Translational Molecular Pathology, Vall d'Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona and Spanish Biomedical Research Network Centre in Oncology (CIBERONC), Barcelona 08035, Spain
| | - Naiara Akizu
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nuria Verdaguer
- Structural Biology Department, Instituto de Biología Molecular de Barcelona (IBMB-CSIC), Parc Científic de Barcelona, C/Baldiri i Reixac 20, Barcelona 08028, Spain
| | - Elisa Martí
- Developmental Biology Department, Instituto de Biología Molecular de Barcelona (IBMB-CSIC), Parc Científic de Barcelona, C/Baldiri i Reixac 20, Barcelona 08028, Spain.
| |
Collapse
|
14
|
Forced Zika Virus Infection of Culex pipiens Leads to Limited Virus Accumulation in Mosquito Saliva. Viruses 2020; 12:v12060659. [PMID: 32575394 PMCID: PMC7354520 DOI: 10.3390/v12060659] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/05/2020] [Accepted: 06/16/2020] [Indexed: 12/22/2022] Open
Abstract
Zika virus (ZIKV) is a mosquito-borne pathogen that caused a large outbreak in the Americas in 2015 and 2016. The virus is currently present in tropical areas around the globe and can cause severe disease in humans, including Guillain-Barré syndrome and congenital microcephaly. The tropical yellow fever mosquito, Aedes aegypti, is the main vector in the urban transmission cycles of ZIKV. The discovery of ZIKV in wild-caught Culex mosquitoes and the ability of Culex quinquefasciatus mosquitoes to transmit ZIKV in the laboratory raised the question of whether the common house mosquito Culex pipiens, which is abundantly present in temperate regions in North America, Asia and Europe, could also be involved in ZIKV transmission. In this study, we investigated the vector competence of Cx. pipiens (biotypes molestus and pipiens) from the Netherlands for ZIKV, using Usutu virus as a control. After an infectious blood meal containing ZIKV, none of the tested mosquitoes accumulated ZIKV in the saliva, although 2% of the Cx. pipiens pipiens mosquitoes showed ZIKV–positive bodies. To test the barrier function of the mosquito midgut on virus transmission, ZIKV was forced into Cx. pipiens mosquitoes by intrathoracic injection, resulting in 74% (molestus) and 78% (pipiens) ZIKV–positive bodies. Strikingly, 14% (molestus) and 7% (pipiens) of the tested mosquitoes accumulated ZIKV in the saliva after injection. This is the first demonstration of ZIKV accumulation in the saliva of Cx. pipiens upon forced infection. Nevertheless, a strong midgut barrier restricted virus dissemination in the mosquito after oral exposure and we, therefore, consider Cx. pipiens as a highly inefficient vector for ZIKV.
Collapse
|
15
|
Xisto MF, Prates JWO, Dias IM, Dias RS, da Silva CC, de Paula SO. NS1 Recombinant Proteins Are Efficiently Produced in Pichia pastoris and Have Great Potential for Use in Diagnostic Kits for Dengue Virus Infections. Diagnostics (Basel) 2020; 10:E379. [PMID: 32517281 PMCID: PMC7345099 DOI: 10.3390/diagnostics10060379] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/26/2020] [Accepted: 06/04/2020] [Indexed: 12/24/2022] Open
Abstract
Dengue is one of the major diseases causing global public health concerns. Despite technological advances in vaccine production against all its serotypes, it is estimated that the dengue virus is responsible for approximately 390 million infections per year. Laboratory diagnosis has been the key point for the correct treatment and prevention of this disease. Currently, the limiting factor in the manufacture of dengue diagnostic kits is the large-scale production of the non-structural 1 (NS1) antigen used in the capture of the antibody present in the infected patients' serum. In this work, we demonstrate the production of the non-structural 1 protein of dengue virus (DENV) serotypes 1-4 (NS1-DENV1, NS1-DENV2, NS1-DENV3, and NS1-DENV4) in the methylotrophic yeast Pichia pastoris KM71H. Secreted recombinant protein was purified by affinity chromatography and characterized by SDS-PAGE and ELISA. The objectives of this study were achieved, and the results showed that P. pastoris is a good heterologous host and worked well in the production of NS1DENV 1-4 recombinant proteins. Easy to grow and quick to obtain, this yeast secreted ready-to-use proteins, with a final yield estimated at 2.8-4.6 milligrams per liter of culture. We reached 85-91% sensitivity and 91-93% specificity using IgM as a target, and for anti-dengue IgG, 83-87% sensitivity and 81-93% specificity were achieved. In this work, we conclude that the NS1 recombinant proteins are efficiently produced in P. pastoris and have great potential for use in diagnostic kits for dengue virus infections. The transformed yeast obtained can be used for production in industrial-scale bioreactors.
Collapse
Affiliation(s)
- Mariana Fonseca Xisto
- Department of General Biology, Federal University of Viçosa, Viçosa, Minas Gerais 36570-900, Brazil; (M.F.X.); (I.M.D.); (R.S.D.)
| | - John Willians Oliveira Prates
- Department of Microbiology, Federal University of Viçosa, Viçosa, Minas Gerais 36570-900, Brazil; (J.W.O.P.); (C.C.d.S.)
| | - Ingrid Marques Dias
- Department of General Biology, Federal University of Viçosa, Viçosa, Minas Gerais 36570-900, Brazil; (M.F.X.); (I.M.D.); (R.S.D.)
| | - Roberto Sousa Dias
- Department of General Biology, Federal University of Viçosa, Viçosa, Minas Gerais 36570-900, Brazil; (M.F.X.); (I.M.D.); (R.S.D.)
| | - Cynthia Canedo da Silva
- Department of Microbiology, Federal University of Viçosa, Viçosa, Minas Gerais 36570-900, Brazil; (J.W.O.P.); (C.C.d.S.)
| | - Sérgio Oliveira de Paula
- Department of General Biology, Federal University of Viçosa, Viçosa, Minas Gerais 36570-900, Brazil; (M.F.X.); (I.M.D.); (R.S.D.)
| |
Collapse
|
16
|
Ahmed A, Dietrich I, LaBeaud AD, Lindsay SW, Musa A, Weaver SC. Risks and Challenges of Arboviral Diseases in Sudan: The Urgent Need for Actions. Viruses 2020; 12:E81. [PMID: 31936607 PMCID: PMC7019415 DOI: 10.3390/v12010081] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/07/2020] [Accepted: 01/07/2020] [Indexed: 12/16/2022] Open
Abstract
The risk of emergence and/or re-emergence of arthropod-borne viral (arboviral) infections is rapidly growing worldwide, particularly in Africa. The burden of arboviral infections and diseases is not well scrutinized because of the inefficient surveillance systems in endemic countries. Furthermore, the health systems are fully occupied by the burden of other co-existing febrile illnesses, especially malaria. In this review we summarize the epidemiology and risk factors associated with the major human arboviral diseases and highlight the gap in knowledge, research, and control in Sudan. Published data in English up to March 2019 were reviewed and are discussed to identify the risks and challenges for the control of arboviruses in the country. In addition, the lack of suitable diagnostic tools such as viral genome sequencing, and the urgent need for establishing a genomic database of the circulating viruses and potential sources of entry are discussed. Moreover, the research and healthcare gaps and global health threats are analyzed, and suggestions for developing strategic health policy for the prevention and control of arboviruses with focus on building the local diagnostic and research capacity and establishing an early warning surveillance system for the early detection and containment of arboviral epidemics are offered.
Collapse
Affiliation(s)
- Ayman Ahmed
- Institute of Endemic Diseases, University of Khartoum, Khartoum 11111, Sudan
- Institute for Human Infections and Immunity, Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77755, USA
- World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX 77755, USA
| | | | | | - Steve W. Lindsay
- Department of Biosciences, Durham University, Durham DH1 3LE, UK
| | - Ahmed Musa
- Institute of Endemic Diseases, University of Khartoum, Khartoum 11111, Sudan
| | - Scott C. Weaver
- Institute for Human Infections and Immunity, Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77755, USA
- World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX 77755, USA
| |
Collapse
|
17
|
Gaunt MW, Gubler DJ, Pettersson JHO, Kuno G, Wilder-Smith A, de Lamballerie X, Gould EA, Falconar AK. Recombination of B- and T-cell epitope-rich loci from Aedes- and Culex-borne flaviviruses shapes Zika virus epidemiology. Antiviral Res 2019; 174:104676. [PMID: 31837392 DOI: 10.1016/j.antiviral.2019.104676] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 12/06/2019] [Accepted: 12/08/2019] [Indexed: 02/07/2023]
Abstract
Sporadic human Zika virus (ZIKV) infections have been recorded in Africa and Asia since the 1950s. Major epidemics occurred only after ZIKV emerged in the Pacific islands and spread to the Americas. Specific biological determinants of the explosive epidemic nature of ZIKV have not been identified. Phylogenetic studies revealed incongruence in ZIKV placement in relation to Aedes-borne dengue viruses (DENV) and Culex-borne flaviviruses. We hypothesized that this incongruence reflects interspecies recombination resulting in ZIKV evasion of cross-protective T-cell immunity. We investigated ZIKV phylogenetic incongruence in relation to: DENV T-cell epitope maps experimentally identified ex vivo, published B-cell epitope loci, and CD8+ T-cell epitopes predicted in silico for mosquito-borne flaviviruses. Our findings demonstrate that the ZIKV proteome is a hybrid of Aedes-borne DENV proteins interspersed amongst Culex-borne flavivirus proteins derived through independent interspecies recombination events. These analyses infer that DENV-associated proteins in the ZIKV hybrid proteome generated immunodominant human B-cell responses, whereas ZIKV recombinant derived Culex-borne flavivirus-associated proteins generated immunodominant CD8+ and/or CD4+ T-cell responses. In silico CD8+ T-cell epitope ZIKV cross-reactive prediction analyses verified this observation. We propose that by acquiring cytotoxic T-cell epitope-rich regions from Culex-borne flaviviruses, ZIKV evaded DENV-generated T-cell immune cross-protection. Thus, Culex-borne flaviviruses, including West Nile virus and Japanese encephalitis virus, might induce cross-protective T-cell responses against ZIKV. This would explain why explosive ZIKV epidemics occurred in DENV-endemic regions of Micronesia, Polynesia and the Americas where Culex-borne flavivirus outbreaks are infrequent and why ZIKV did not cause major epidemics in Asia where Culex-borne flaviviruses are widespread.
Collapse
Affiliation(s)
- Michael W Gaunt
- London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK.
| | - Duane J Gubler
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Rd, 169857, Singapore
| | - John H-O Pettersson
- Department of Medical Biochemistry and Microbiology, Zoonosis Science Center, Uppsala University, Uppsala, Sweden; Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Goro Kuno
- 1648 Collindale Dr, Fort Collins, CO, 80525, USA
| | - Annelies Wilder-Smith
- London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK; Department of Public Health and Clinical Medicine, Epidemiology and Public Health, Umeå University, Umeå, Sweden; Heidelberg Institute of Global Health, University of Heidelberg, Germany
| | - Xavier de Lamballerie
- UMR "Unité des Virus Emergents", Aix-Marseille Université-IRD 190, Inserm, 1207-IHU Méditerranée Infection, Marseille, France
| | - Ernest A Gould
- UMR "Unité des Virus Emergents", Aix-Marseille Université-IRD 190, Inserm, 1207-IHU Méditerranée Infection, Marseille, France
| | - Andrew K Falconar
- Departmento de Medicina, Universidad del Norte, Barranquilla, Colombia
| |
Collapse
|
18
|
Faustino AF, Martins AS, Karguth N, Artilheiro V, Enguita FJ, Ricardo JC, Santos NC, Martins IC. Structural and Functional Properties of the Capsid Protein of Dengue and Related Flavivirus. Int J Mol Sci 2019; 20:E3870. [PMID: 31398956 PMCID: PMC6720645 DOI: 10.3390/ijms20163870] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/05/2019] [Accepted: 08/06/2019] [Indexed: 02/07/2023] Open
Abstract
Dengue, West Nile and Zika, closely related viruses of the Flaviviridae family, are an increasing global threat, due to the expansion of their mosquito vectors. They present a very similar viral particle with an outer lipid bilayer containing two viral proteins and, within it, the nucleocapsid core. This core is composed by the viral RNA complexed with multiple copies of the capsid protein, a crucial structural protein that mediates not only viral assembly, but also encapsidation, by interacting with host lipid systems. The capsid is a homodimeric protein that contains a disordered N-terminal region, an intermediate flexible fold section and a very stable conserved fold region. Since a better understanding of its structure can give light into its biological activity, here, first, we compared and analyzed relevant mosquito-borne Flavivirus capsid protein sequences and their predicted structures. Then, we studied the alternative conformations enabled by the N-terminal region. Finally, using dengue virus capsid protein as main model, we correlated the protein size, thermal stability and function with its structure/dynamics features. The findings suggest that the capsid protein interaction with host lipid systems leads to minor allosteric changes that may modulate the specific binding of the protein to the viral RNA. Such mechanism can be targeted in future drug development strategies, namely by using improved versions of pep14-23, a dengue virus capsid protein peptide inhibitor, previously developed by us. Such knowledge can yield promising advances against Zika, dengue and closely related Flavivirus.
Collapse
Affiliation(s)
- André F Faustino
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal
| | - Ana S Martins
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal
| | - Nina Karguth
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal
| | - Vanessa Artilheiro
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal
| | - Francisco J Enguita
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal
| | - Joana C Ricardo
- Centro de Química-Física Molecular, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
| | - Nuno C Santos
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal.
| | - Ivo C Martins
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal.
| |
Collapse
|
19
|
Suppression of Type I Interferon Signaling by Flavivirus NS5. Viruses 2018; 10:v10120712. [PMID: 30558110 PMCID: PMC6316265 DOI: 10.3390/v10120712] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 12/08/2018] [Accepted: 12/09/2018] [Indexed: 01/02/2023] Open
Abstract
Type I interferon (IFN-I) is the first line of mammalian host defense against viral infection. To counteract this, the flaviviruses, like other viruses, have encoded a variety of antagonists, and use a multi-layered molecular defense strategy to establish their infections. Among the most potent antagonists is non-structural protein 5 (NS5), which has been shown for all disease-causing flaviviruses to target different steps and players of the type I IFN signaling pathway. Here, we summarize the type I IFN antagonist mechanisms used by flaviviruses with a focus on the role of NS5 in regulating one key regulator of type I IFN, signal transducer and activator of transcription 2 (STAT2).
Collapse
|
20
|
Vasileva Wand NI, Bonney LC, Watson RJ, Graham V, Hewson R. Point-of-care diagnostic assay for the detection of Zika virus using the recombinase polymerase amplification method. J Gen Virol 2018; 99:1012-1026. [PMID: 29897329 PMCID: PMC6171711 DOI: 10.1099/jgv.0.001083] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 05/05/2018] [Indexed: 01/25/2023] Open
Abstract
The sudden and explosive expansion of Zika virus (ZIKV) from the African continent through Oceania and culminating in the outbreak in South America has highlighted the importance of new rapid point-of-care diagnostic tools for the control and prevention of transmission. ZIKV infection has devastating consequences, such as neurological congenital malformations in infants born to infected mothers and Guillain-Barré syndrome in adults. Additionally, its potential for transmission through vector bites, as well as from person to person through blood transfusions and sexual contact, are important considerations for prompt diagnosis. Recombinase polymerase amplification (RPA), an isothermal method, was developed as an alternative field-applicable assay to PCR. Here we report the development of a novel ZIKV real-time reverse transcriptase RPA (RT-RPA) assay capable of detecting a range of different ZIKV strains from a variety of geographical locations. The ZIKV RT-RPA was shown to be highly sensitive, being capable of detecting as few as five copies of target nucleic acid per reaction, and suitable for use with a battery-operated portable device. The ZIKV RT-RPA demonstrated 100 % specificity and 83 % sensitivity in clinical samples. Furthermore, we determined that the ZIKV RT-RPA is a versatile assay that can be applied to crude samples, such as saliva and serum, and can be used as a vector surveillance tool on crude mosquito homogenates. Therefore, the developed ZIKV RT-RPA is a useful diagnostic tool that can be transferred to a resource-limited location, eliminating the need for a specialized and sophisticated laboratory environment and highly trained staff.
Collapse
Affiliation(s)
- Nadina I. Vasileva Wand
- Public Health England, National Infection Service, Microbiology Services Division, Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - Laura C. Bonney
- Public Health England, National Infection Service, Microbiology Services Division, Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - Robert J. Watson
- Public Health England, National Infection Service, Microbiology Services Division, Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - Victoria Graham
- Public Health England, National Infection Service, Microbiology Services Division, Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - Roger Hewson
- Public Health England, National Infection Service, Microbiology Services Division, Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| |
Collapse
|
21
|
Díez-Fernández A, Martínez-de la Puente J, Ruiz S, Gutiérrez-López R, Soriguer R, Figuerola J. Aedes vittatus in Spain: current distribution, barcoding characterization and potential role as a vector of human diseases. Parasit Vectors 2018; 11:297. [PMID: 29773077 PMCID: PMC5958405 DOI: 10.1186/s13071-018-2879-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 04/29/2018] [Indexed: 12/02/2022] Open
Abstract
Background Aedes vittatus is currently found in Africa, Asia and Europe, where it acts as a vector of pathogens causing animal and human diseases (e.g. chikungunya, Zika and dengue). Like other Aedes species, Ae. vittatus is able to breed in artificial containers. The ECDC has recently highlighted the need for molecular tools (i.e. barcoding characterization) that enable Aedes species to be identified in entomological surveys. Results We sampled mosquito larvae and adults in southern Spain and used a molecular approach to amplify and sequence a fragment of the cytochrome c oxidase subunit 1 gene (barcoding region) of the mosquitoes. The blast comparison of the mosquito sequences isolated from Spain with those deposited in public databases provided a ≥ 99% similarity with sequences for two Aedes mosquitoes, Ae. vittatus and Ae. cogilli, while similarities with other Aedes species were ≤ 94%. Aedes cogilli is only present in India and there are no records of this species from Europe. Conclusions Due to the low genetic differences between Ae. vittatus and Ae. cogilli, the barcoding region should not be used as the only method for identifying Ae. vittatus, especially in areas where both of these Aedes species are present. This type of analysis should thus be combined with morphological identification using available keys and/or the characterization of other molecular markers. In addition, further entomological surveys should be conducted in order to identify the fine-scale distribution of this mosquito species in Europe.
Collapse
Affiliation(s)
- Alazne Díez-Fernández
- Estación Biológica de Doñana (EBD-CSIC), Calle Américo Vespucio 26, E-41092, Seville, Spain.
| | - Josué Martínez-de la Puente
- Estación Biológica de Doñana (EBD-CSIC), Calle Américo Vespucio 26, E-41092, Seville, Spain.,CIBER de Epidemiología y Salud Pública (CIBERESP), Seville, Spain
| | - Santiago Ruiz
- CIBER de Epidemiología y Salud Pública (CIBERESP), Seville, Spain.,Servicio de Control de Mosquitos, Diputación de Huelva, Huelva, Spain
| | - Rafael Gutiérrez-López
- Estación Biológica de Doñana (EBD-CSIC), Calle Américo Vespucio 26, E-41092, Seville, Spain
| | - Ramón Soriguer
- Estación Biológica de Doñana (EBD-CSIC), Calle Américo Vespucio 26, E-41092, Seville, Spain.,CIBER de Epidemiología y Salud Pública (CIBERESP), Seville, Spain
| | - Jordi Figuerola
- Estación Biológica de Doñana (EBD-CSIC), Calle Américo Vespucio 26, E-41092, Seville, Spain.,CIBER de Epidemiología y Salud Pública (CIBERESP), Seville, Spain
| |
Collapse
|
22
|
Johansen CA, Williams SH, Melville LF, Nicholson J, Hall RA, Bielefeldt-Ohmann H, Prow NA, Chidlow GR, Wong S, Sinha R, Williams DT, Lipkin WI, Smith DW. Characterization of Fitzroy River Virus and Serologic Evidence of Human and Animal Infection. Emerg Infect Dis 2018; 23:1289-1299. [PMID: 28726621 PMCID: PMC5547785 DOI: 10.3201/eid2308.161440] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In northern Western Australia in 2011 and 2012, surveillance detected a novel arbovirus in mosquitoes. Genetic and phenotypic analyses confirmed that the new flavivirus, named Fitzroy River virus, is related to Sepik virus and Wesselsbron virus, in the yellow fever virus group. Most (81%) isolates came from Aedes normanensis mosquitoes, providing circumstantial evidence of the probable vector. In cell culture, Fitzroy River virus replicated in mosquito (C6/36), mammalian (Vero, PSEK, and BSR), and avian (DF-1) cells. It also infected intraperitoneally inoculated weanling mice and caused mild clinical disease in 3 intracranially inoculated mice. Specific neutralizing antibodies were detected in sentinel horses (12.6%), cattle (6.6%), and chickens (0.5%) in the Northern Territory of Australia and in a subset of humans (0.8%) from northern Western Australia.
Collapse
|
23
|
Does adaptation to vertebrate codon usage relate to flavivirus emergence potential? PLoS One 2018; 13:e0191652. [PMID: 29385205 PMCID: PMC5792106 DOI: 10.1371/journal.pone.0191652] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 01/09/2018] [Indexed: 12/30/2022] Open
Abstract
Codon adaptation index (CAI) is a measure of synonymous codon usage biases given a usage reference. Through mutation, selection, and drift, viruses can optimize their replication efficiency and produce more offspring, which could increase the chance of secondary transmission. To evaluate how higher CAI towards the host has been associated with higher viral titers, we explored temporal trends of several historic and extensively sequenced zoonotic flaviviruses and relationships within the genus itself. To showcase evolutionary and epidemiological relationships associated with silent, adaptive synonymous changes of viruses, we used codon usage tables from human housekeeping and antiviral immune genes, as well as tables from arthropod vectors and vertebrate species involved in the flavivirus maintenance cycle. We argue that temporal trends of CAI changes could lead to a better understanding of zoonotic emergences, evolutionary dynamics, and host adaptation. CAI appears to help illustrate historically relevant trends of well-characterized viruses, in different viral species and genetic diversity within a single species. CAI can be a useful tool together with in vivo and in vitro kinetics, phylodynamics, and additional functional genomics studies to better understand species trafficking and viral emergence in a new host.
Collapse
|
24
|
Nandy A, Basak SC. The Epidemic that Shook the World—The Zika Virus Rampage. EXPLORATORY RESEARCH AND HYPOTHESIS IN MEDICINE 2017; 2:43-56. [DOI: 10.14218/erhm.2017.00018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
25
|
Han GZ. A Single Substitution Changes Zika Virus Infectivity in Mosquitoes. Trends Microbiol 2017; 25:603-605. [DOI: 10.1016/j.tim.2017.05.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Accepted: 05/30/2017] [Indexed: 10/19/2022]
|
26
|
Hunter FF. Linking Only Aedes aegypti with Zika Virus Has World-Wide Public Health Implications. Front Microbiol 2017; 8:1248. [PMID: 28736548 PMCID: PMC5500625 DOI: 10.3389/fmicb.2017.01248] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 06/21/2017] [Indexed: 01/08/2023] Open
Affiliation(s)
- Fiona F Hunter
- Centre for Vector-borne Diseases, Department of Biological Sciences, Brock UniversitySt. Catharines, ON, Canada
| |
Collapse
|
27
|
Abstract
Flaviviruses present substantial differences in their host range and transmissibility. We studied the evolution of base composition, dinucleotide biases, codon usage and amino acid frequencies in the genus Flavivirus within a phylogenetic framework by principal components analysis. There is a mutual interplay between the evolutionary history of flaviviruses and their respective vectors and/or hosts. Hosts associated to distinct phylogenetic groups may be driving flaviviruses at different pace and through various sequence landscapes, as can be seen for viruses associated with Aedes or Culex spp., although phylogenetic inertia cannot be ruled out. In some cases, viruses face even opposite forces. For instance, in tick-borne flaviviruses, while vertebrate hosts exert pressure to deplete their CpG, tick vectors drive them to exhibit GC-rich codons. Within a vertebrate environment, natural selection appears to be acting on the viral genome to overcome the immune system. On the other side, within an arthropod environment, mutational biases seem to be the dominant forces.
Collapse
|
28
|
Yang Y, Wong G, Ye B, Li S, Li S, Zheng H, Wang Q, Liang M, Gao GF, Liu L, Liu Y, Bi Y. Development of a reverse transcription quantitative polymerase chain reaction-based assay for broad coverage detection of African and Asian Zika virus lineages. Virol Sin 2017; 32:199-206. [PMID: 28530022 DOI: 10.1007/s12250-017-3958-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Accepted: 04/26/2017] [Indexed: 01/11/2023] Open
Abstract
The Zika virus (ZIKV) is an arbovirus that has spread rapidly worldwide within recent times. There is accumulating evidence that associates ZIKV infections with Guillain-Barré Syndrome (GBS) and microcephaly in humans. The ZIKV is genetically diverse and can be separated into Asian and African lineages. A rapid, sensitive, and specific assay is needed for the detection of ZIKV across various pandemic regions. So far, the available primers and probes do not cover the genetic diversity and geographic distribution of all ZIKV strains. To this end, we have developed a one-step quantitative reverse transcription polymerase chain reaction (qRT-PCR) assay based on conserved sequences in the ZIKV envelope (E) gene. The detection limit of the assay was determined to be five RNA transcript copies and 2.94 × 10-3 50% tissue culture infectious doses (TCID50) of live ZIKV per reaction. The assay was highly specific and able to detect five different ZIKV strains covering the Asian and African lineages without nonspecific amplification, when tested against other flaviviruses. The assay was also successful in testing for ZIKV in clinical samples. Our assay represents an improvement over the current methods available for the detection ZIKV and would be valuable as a diagnostic tool in various pandemic regions.
Collapse
Affiliation(s)
- Yang Yang
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Shenzhen, 518112, China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences, Beijing, 100101, China
| | - Gary Wong
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Shenzhen, 518112, China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences, Beijing, 100101, China
| | - Baoguo Ye
- China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Shihua Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences, Beijing, 100101, China
| | - Shanqin Li
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Shenzhen, 518112, China
| | - Haixia Zheng
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Shenzhen, 518112, China
| | - Qiang Wang
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Shenzhen, 518112, China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences, Beijing, 100101, China
| | - Mifang Liang
- Key Laboratory for Medical Virology, NHFPC, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, 102206, China
| | - George F Gao
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Shenzhen, 518112, China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences, Beijing, 100101, China
- Office of Director-General, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lei Liu
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Shenzhen, 518112, China.
| | - Yingxia Liu
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Shenzhen, 518112, China.
| | - Yuhai Bi
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Shenzhen, 518112, China.
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
29
|
Piontkivska H, Frederick M, Miyamoto MM, Wayne ML. RNA editing by the host ADAR system affects the molecular evolution of the Zika virus. Ecol Evol 2017. [PMID: 28649357 PMCID: PMC5478085 DOI: 10.1002/ece3.3033] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Zika virus (ZIKV) is a mosquito‐transmitted flavivirus, linked to microcephaly and fetal death in humans. Here, we investigate whether host‐mediated RNA editing of adenosines (ADAR) plays a role in the molecular evolution of ZIKV. Using complete coding sequences for the ZIKV polyprotein, we show that potential ADAR substitutions are underrepresented at the ADAR‐resistant GA dinucleotides of both the positive and negative strands, that these changes are spatially and temporally clustered (as expected of ADAR editing) for three branches of the viral phylogeny, and that ADAR mutagenesis can be linked to its codon usage. Furthermore, resistant GA dinucleotides are enriched on the positive (but not negative) strand, indicating that the former is under stronger purifying selection than the latter. ADAR editing also affects the evolution of the rhabdovirus sigma. Our study now documents that host ADAR editing is a mutation and evolutionary force of positive‐ as well as negative‐strand RNA viruses.
Collapse
Affiliation(s)
- Helen Piontkivska
- Department of Biological Sciences and School of Biomedical Sciences Kent State University Kent OH USA
| | - Madeline Frederick
- Department of Biological Sciences and School of Biomedical Sciences Kent State University Kent OH USA
| | | | - Marta L Wayne
- Department of Biology University of Florida Gainesville FL USA.,Emerging Pathogens Institute University of Florida Gainesville FL USA
| |
Collapse
|
30
|
Evans MV, Dallas TA, Han BA, Murdock CC, Drake JM. Data-driven identification of potential Zika virus vectors. eLife 2017; 6:e22053. [PMID: 28244371 PMCID: PMC5342824 DOI: 10.7554/elife.22053] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 02/13/2017] [Indexed: 11/13/2022] Open
Abstract
Zika is an emerging virus whose rapid spread is of great public health concern. Knowledge about transmission remains incomplete, especially concerning potential transmission in geographic areas in which it has not yet been introduced. To identify unknown vectors of Zika, we developed a data-driven model linking vector species and the Zika virus via vector-virus trait combinations that confer a propensity toward associations in an ecological network connecting flaviviruses and their mosquito vectors. Our model predicts that thirty-five species may be able to transmit the virus, seven of which are found in the continental United States, including Culex quinquefasciatus and Cx. pipiens. We suggest that empirical studies prioritize these species to confirm predictions of vector competence, enabling the correct identification of populations at risk for transmission within the United States.
Collapse
Affiliation(s)
- Michelle V Evans
- Odum School of Ecology, University of Georgia, Athens, United States
- Center for the Ecology of Infectious Diseases, University of Georgia, Athens, United States
| | - Tad A Dallas
- Odum School of Ecology, University of Georgia, Athens, United States
- Department of Environmental Science and Policy, University of California-Davis, Davis, United States
| | - Barbara A Han
- Cary Institute of Ecosystem Studies, Millbrook, United States
| | - Courtney C Murdock
- Odum School of Ecology, University of Georgia, Athens, United States
- Center for the Ecology of Infectious Diseases, University of Georgia, Athens, United States
- Department of Infectious Disease, University of Georgia, Athens, United States
- Center for Tropical Emerging Global Diseases, University of Georgia, Athens, United States
- Center for Vaccines and Immunology, University of Georgia, Athens, United States
- River Basin Center, University of Georgia, Athens, United States
| | - John M Drake
- Odum School of Ecology, University of Georgia, Athens, United States
- Center for the Ecology of Infectious Diseases, University of Georgia, Athens, United States
- River Basin Center, University of Georgia, Athens, United States
| |
Collapse
|
31
|
Genetic characterization of Cacipacoré virus from ticks collected in São Paulo State, Brazil. Arch Virol 2017; 162:1783-1786. [PMID: 28220327 DOI: 10.1007/s00705-017-3279-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 01/21/2017] [Indexed: 10/20/2022]
Abstract
Cacipacoré virus (CPCV) is a potential emerging virus classified in the genus Flavivirus, family Flaviviridae. In the present study, we present the genetic characterization of a CPCV isolated from ticks (Amblyomma cajennense) collected from a sick capybara (Hydrochoerus hydrochaeris) in São Paulo State, Brazil. The CPCV isolate shares the typical genomic organization of flaviviruses with 10,857 nucleotides in length and a single open reading frame of 10,284 nucleotides encoding a polyprotein of 3,427 amino acids. Phylogenetic analysis revealed that CPCV is unique, as a potentially tick-borne virus, in the Japanese encephalitis virus serogroup.
Collapse
|
32
|
The Many Faces of the Flavivirus NS5 Protein in Antagonism of Type I Interferon Signaling. J Virol 2017; 91:JVI.01970-16. [PMID: 27881649 DOI: 10.1128/jvi.01970-16] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The vector-borne flaviviruses cause severe disease in humans on every inhabited continent on earth. Their transmission by arthropods, particularly mosquitoes, facilitates large emergence events such as witnessed with Zika virus (ZIKV) or West Nile virus in the Americas. Every vector-borne flavivirus examined thus far that causes disease in humans, from dengue virus to ZIKV, antagonizes the host type I interferon (IFN-I) response by preventing JAK-STAT signaling, suggesting that suppression of this pathway is an important determinant of infection. The most direct and potent viral inhibitor of this pathway is the nonstructural protein NS5. However, the mechanisms utilized by NS5 from different flaviviruses are often quite different, sometimes despite close evolutionary relationships between viruses. The varied mechanisms of NS5 as an IFN-I antagonist are also surprising given that the evolution of NS5 is restrained by the requirement to maintain function of two enzymatic activities critical for virus replication, the methyltransferase and RNA-dependent RNA polymerase. This review discusses the different strategies used by flavivirus NS5 to evade the antiviral effects of IFN-I and how this information can be used to better model disease and develop antiviral countermeasures.
Collapse
|
33
|
Aliota MT, Dudley DM, Newman CM, Mohr EL, Gellerup DD, Breitbach ME, Buechler CR, Rasheed MN, Mohns MS, Weiler AM, Barry GL, Weisgrau KL, Eudailey JA, Rakasz EG, Vosler LJ, Post J, Capuano S, Golos TG, Permar SR, Osorio JE, Friedrich TC, O’Connor SL, O’Connor DH. Heterologous Protection against Asian Zika Virus Challenge in Rhesus Macaques. PLoS Negl Trop Dis 2016; 10:e0005168. [PMID: 27911897 PMCID: PMC5135040 DOI: 10.1371/journal.pntd.0005168] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 11/07/2016] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Zika virus (ZIKV; Flaviviridae, Flavivirus) was declared a public health emergency of international concern by the World Health Organization (WHO) in February 2016, because of the evidence linking infection with ZIKV to neurological complications, such as Guillain-Barre Syndrome in adults and congenital birth defects including microcephaly in the developing fetus. Because development of a ZIKV vaccine is a top research priority and because the genetic and antigenic variability of many RNA viruses limits the effectiveness of vaccines, assessing whether immunity elicited against one ZIKV strain is sufficient to confer broad protection against all ZIKV strains is critical. Recently, in vitro studies demonstrated that ZIKV likely circulates as a single serotype. Here, we demonstrate that immunity elicited by African lineage ZIKV protects rhesus macaques against subsequent infection with Asian lineage ZIKV. METHODOLOGY/PRINCIPAL FINDINGS Using our recently developed rhesus macaque model of ZIKV infection, we report that the prototypical ZIKV strain MR766 productively infects macaques, and that immunity elicited by MR766 protects macaques against heterologous Asian ZIKV. Furthermore, using next generation deep sequencing, we found in vivo restoration of a putative N-linked glycosylation site upon replication in macaques that is absent in numerous MR766 strains that are widely being used by the research community. This reversion highlights the importance of carefully examining the sequence composition of all viral stocks as well as understanding how passage history may alter a virus from its original form. CONCLUSIONS/SIGNIFICANCE An effective ZIKV vaccine is needed to prevent infection-associated fetal abnormalities. Macaques whose immune responses were primed by infection with East African ZIKV were completely protected from detectable viremia when subsequently rechallenged with heterologous Asian ZIKV. Therefore, these data suggest that immunogen selection is unlikely to adversely affect the breadth of vaccine protection, i.e., any Asian ZIKV immunogen that protects against homologous challenge will likely confer protection against all other Asian ZIKV strains.
Collapse
Affiliation(s)
- Matthew T. Aliota
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Dawn M. Dudley
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Christina M. Newman
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Emma L. Mohr
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Wisconsin, United States of America
| | - Dane D. Gellerup
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Meghan E. Breitbach
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Connor R. Buechler
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Mustafa N. Rasheed
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Mariel S. Mohns
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Andrea M. Weiler
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Gabrielle L. Barry
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Kim L. Weisgrau
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Josh A. Eudailey
- Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Eva G. Rakasz
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Logan J. Vosler
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Jennifer Post
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Saverio Capuano
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Thaddeus G. Golos
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Departments of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Departments of Obstetrics and Gynecology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Sallie R. Permar
- Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Jorge E. Osorio
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Thomas C. Friedrich
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Shelby L. O’Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - David H. O’Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
34
|
Wang X, Yin F, Bi Y, Cheng G, Li J, Hou L, Li Y, Yang B, Liu W, Yang L. Rapid and sensitive detection of Zika virus by reverse transcription loop-mediated isothermal amplification. J Virol Methods 2016; 238:86-93. [PMID: 27793644 DOI: 10.1016/j.jviromet.2016.10.010] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 10/24/2016] [Accepted: 10/24/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND Zika virus (ZIKV) is an arbovirus that recently emerged and has expanded worldwide, causing a global threat and raising international concerns. Current molecular diagnostics, e.g., real-time PCR and reverse transcription PCR (RT-PCR), are time consuming, expensive, and can only be deployed in a laboratory instead of for field diagnostics. OBJECTIVES This study aimed to develop a one-step reverse transcription loop-mediated isothermal amplification (RT-LAMP) platform showing sensitivity, specificity, and more convenience than previous methods, being easily distributed and implemented. METHODS Specific primers were designed and screened to target the entire ZIKV genome. The analytical sensitivity and specificity of the assay were evaluated and compared with traditional PCR and quantitative real-time PCR. Three different simulated clinical sample quick preparation protocols were evaluated to establish a rapid and straightforward treatment procedure for clinical specimens in open field detection. RESULTS The RT-LAMP assay for detection of ZIKV demonstrated superior specificity and sensitivity compared to traditional PCR at the optimum reaction temperature. For the ZIKV RNA standard, the limit of detection was 20 copies/test. For the simulated ZIKV clinical samples, the limit of detection was 0.02 pfu/test, which was one order of magnitude higher than RT-PCR and similar to real-time PCR. The detection limit of simulated ZIKV specimens prepared using a protease quick processing method was consistent with that of samples prepared using commercial nucleic acid extraction kits, indicating that our ZIKV detection method could be used in point-of-care testing. CONCLUSIONS The RT-LAMP assay had excellent sensitivity and specificity for detecting ZIKV and can be deployed together with a rapid specimen processing method, offering the possibility for ZIKV diagnosis outside of the laboratory.
Collapse
Affiliation(s)
- Xuan Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fenggui Yin
- College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning 530004, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuhai Bi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gong Cheng
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lidan Hou
- China Institute of Veterinary Drug Control, Beijing 100081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunlong Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Baozhi Yang
- University of Chinese Academy of Sciences, Beijing 100049, China; College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning 530004, China
| | - Wenjun Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; China Institute of Veterinary Drug Control, Beijing 100081, China
| | - Limin Yang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
35
|
Haddow AD, Nasar F, Guzman H, Ponlawat A, Jarman RG, Tesh RB, Weaver SC. Genetic Characterization of Spondweni and Zika Viruses and Susceptibility of Geographically Distinct Strains of Aedes aegypti, Aedes albopictus and Culex quinquefasciatus (Diptera: Culicidae) to Spondweni Virus. PLoS Negl Trop Dis 2016; 10:e0005083. [PMID: 27783682 PMCID: PMC5082648 DOI: 10.1371/journal.pntd.0005083] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 09/28/2016] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Zika virus (ZIKV) has extended its known geographic distribution to the New World and is now responsible for severe clinical complications in a subset of patients. While substantial genetic and vector susceptibility data exist for ZIKV, less is known for the closest related flavivirus, Spondweni virus (SPONV). Both ZIKV and SPONV have been known to circulate in Africa since the mid-1900s, but neither has been genetically characterized by gene and compared in parallel. Furthermore, the susceptibility of peridomestic mosquito species incriminated or suspected in the transmission of ZIKV to SPONV was unknown. METHODOLOGY/PRINCIPAL FINDINGS In this study, two geographically distinct strains of SPONV were genetically characterized and compared to nine genetically and geographically distinct ZIKV strains. Additionally, the susceptibility of both SPONV strains was determined in three mosquito species. The open reading frame (ORF) of the SPONV 1952 Nigerian Chuku strain, exhibited a nucleotide and amino acid identity of 97.8% and 99.2%, respectively, when compared to the SPONV 1954 prototype South African SA Ar 94 strain. The ORF of the SPONV Chuku strain exhibited a nucleotide and amino acid identity that ranged from 68.3% to 69.0% and 74.6% to 75.0%, respectively, when compared to nine geographically and genetically distinct strains of ZIKV. The ORF of the nine African and Asian lineage ZIKV strains exhibited limited nucleotide divergence. Aedes aegypti, Ae. albopictus and Culex quinquefasciatus susceptibility and dissemination was low or non-existent following artificial infectious blood feeding of moderate doses of both SPONV strains. CONCLUSIONS/SIGNIFICANCE SPONV and ZIKV nucleotide and amino acid divergence coupled with differences in geographic distribution, ecology and vector species support previous reports that these viruses are separate species. Furthermore, the low degree of SPONV infection or dissemination in Ae. albopictus, Ae. aegypti and Cx. quinquefasciatus following exposure to two geographically and genetically distinct virus strains suggest a low potential for these species to serve as vectors.
Collapse
Affiliation(s)
- Andrew D. Haddow
- The University of Texas Medical Branch, Institute for Human Infections and Immunity, Department of Pathology and Center for Biodefense and Emerging Infectious Diseases, Galveston, Texas
- United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Virology Division, Fort Detrick, Maryland
| | - Farooq Nasar
- The University of Texas Medical Branch, Institute for Human Infections and Immunity, Department of Pathology and Center for Biodefense and Emerging Infectious Diseases, Galveston, Texas
- United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Virology Division, Fort Detrick, Maryland
| | - Hilda Guzman
- The University of Texas Medical Branch, Institute for Human Infections and Immunity, Department of Pathology and Center for Biodefense and Emerging Infectious Diseases, Galveston, Texas
| | - Alongkot Ponlawat
- Armed Forces Research Institute of Medical Sciences (AFRIMS), Department of Entomology, Bangkok, Thailand
| | - Richard G. Jarman
- Armed Forces Research Institute of Medical Sciences (AFRIMS), Department of Virology, Bangkok, Thailand
| | - Robert B. Tesh
- The University of Texas Medical Branch, Institute for Human Infections and Immunity, Department of Pathology and Center for Biodefense and Emerging Infectious Diseases, Galveston, Texas
| | - Scott C. Weaver
- The University of Texas Medical Branch, Institute for Human Infections and Immunity, Department of Pathology and Center for Biodefense and Emerging Infectious Diseases, Galveston, Texas
- The University of Texas Medical Branch, Institute for Human Infections and Immunity, Department of Microbiology & Immunology, Galveston, Texas
| |
Collapse
|
36
|
May M, Relich RF. A Comprehensive Systems Biology Approach to Studying Zika Virus. PLoS One 2016; 11:e0161355. [PMID: 27584813 PMCID: PMC5008700 DOI: 10.1371/journal.pone.0161355] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 08/03/2016] [Indexed: 01/08/2023] Open
Abstract
Zika virus (ZIKV) is responsible for an ongoing and intensifying epidemic in the Western Hemisphere. We examined the complete predicted proteomes, glycomes, and selectomes of 33 ZIKV strains representing temporally diverse members of the African lineage, the Asian lineage, and the current outbreak in the Americas. Derivation of the complete selectome is an 'omics' approach to identify distinct evolutionary pressures acting on different features of an organism. Employment of the M8 model did not show evidence of global diversifying selection acting on the ZIKV polyprotein; however, a mixed effect model of evolution showed strong evidence (P<0.05) for episodic diversifying selection acting on specific sites. Single nucleotide polymorphisms (SNPs) were predictably frequent across strains relative to the derived consensus sequence. None of the 9 published detection procedures utilize targets that share 100% identity across the 33 strains examined, indicating that ZIKV escape from molecular detection is predictable. The predicted O-linked glycome showed marked diversity across strains; however, the N-linked glycome was highly stable. All Asian and American strains examined were predicted to include glycosylation of E protein ASN154, a modification proposed to mediate neurotropism, whereas the modification was not predicted for African strains. SNP diversity, episodic diversifying selection, and differential glycosylation, particularly of ASN154, may have major biological implications for ZIKV disease. Taken together, the systems biology perspective of ZIKV indicates: a.) The recently emergent Asian/American N-glycotype is mediating the new and emerging neuropathogenic potential of ZIKV; and b.) further divergence at specific sites is predictable as endemnicity is established in the Americas.
Collapse
Affiliation(s)
- Meghan May
- Department of Biomedical Sciences, University of New England College of Osteopathic Medicine, Biddeford, Maine, United States of America
- Seacoast Biomedical Science Institute, York, Maine, United States of America
| | - Ryan F. Relich
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| |
Collapse
|
37
|
Hamel R, Liégeois F, Wichit S, Pompon J, Diop F, Talignani L, Thomas F, Desprès P, Yssel H, Missé D. Zika virus: epidemiology, clinical features and host-virus interactions. Microbes Infect 2016; 18:441-9. [DOI: 10.1016/j.micinf.2016.03.009] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 03/15/2016] [Indexed: 12/18/2022]
|
38
|
Grant A, Ponia SS, Tripathi S, Balasubramaniam V, Miorin L, Sourisseau M, Schwarz MC, Sánchez-Seco MP, Evans MJ, Best SM, García-Sastre A. Zika Virus Targets Human STAT2 to Inhibit Type I Interferon Signaling. Cell Host Microbe 2016; 19:882-90. [PMID: 27212660 DOI: 10.1016/j.chom.2016.05.009] [Citation(s) in RCA: 595] [Impact Index Per Article: 74.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 05/10/2016] [Accepted: 05/11/2016] [Indexed: 12/21/2022]
Abstract
The ongoing epidemic of Zika virus (ZIKV) illustrates the importance of flaviviruses as emerging human pathogens. All vector-borne flaviviruses studied thus far have to overcome type I interferon (IFN) to replicate and cause disease in vertebrates. The mechanism(s) by which ZIKV antagonizes IFN signaling is unknown. Here, we report that the nonstructural protein NS5 of ZIKV and other flaviviruses examined could suppress IFN signaling, but through different mechanisms. ZIKV NS5 expression resulted in proteasomal degradation of the IFN-regulated transcriptional activator STAT2 from humans, but not mice, which may explain the requirement for IFN deficiency to observe ZIKV-induced disease in mice. The mechanism of ZIKV NS5 resembles dengue virus (DENV) NS5 and not its closer relative, Spondweni virus (SPOV). However, unlike DENV, ZIKV did not require the E3 ubiquitin ligase UBR4 to induce STAT2 degradation. Hence, flavivirus NS5 proteins exhibit a remarkable functional convergence in IFN antagonism, albeit by virus-specific mechanisms.
Collapse
Affiliation(s)
- Alesha Grant
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sanket S Ponia
- Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, MT 59840, USA
| | - Shashank Tripathi
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Vinod Balasubramaniam
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Lisa Miorin
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Marion Sourisseau
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Megan C Schwarz
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Mari Paz Sánchez-Seco
- Laboratory of Arbovirus and Imported Viral Diseases, National Center of Microbiology, Institute of Health Carlos III, 28029 Madrid, Spain
| | - Matthew J Evans
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sonja M Best
- Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, MT 59840, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
39
|
Conway MJ. Identification of a Flavivirus Sequence in a Marine Arthropod. PLoS One 2015; 10:e0146037. [PMID: 26717191 PMCID: PMC4699914 DOI: 10.1371/journal.pone.0146037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 12/11/2015] [Indexed: 01/12/2023] Open
Abstract
Phylogenetic analysis has yet to uncover the early origins of flaviviruses. In this study, I mined a database of expressed sequence tags in order to discover novel flavivirus sequences. Flavivirus sequences were identified in a pool of mRNA extracted from the sea spider Endeis spinosa (Pycnogonida, Pantopoda). Reconstruction of the translated sequences and BLAST analysis matched the sequence to the flavivirus NS5 gene. Additional sequences corresponding to envelope and the NS5 MTase domain were also identified. Phylogenetic analysis of homologous NS5 sequences revealed that Endeis spinosa NS5 (ESNS5) is likely related to classical insect-specific flaviviruses. It is unclear if ESNS5 represents genetic material from an active viral infection or an integrated viral genome. These data raise the possibility that classical insect-specific flaviviruses and perhaps medically relevant flaviviruses, evolved from progenitors that infected marine arthropods.
Collapse
Affiliation(s)
- Michael J. Conway
- Foundational Sciences, Central Michigan University, College of Medicine, Mt. Pleasant, Michigan, 48859, United States of America
| |
Collapse
|
40
|
Ecuador Paraiso Escondido Virus, a New Flavivirus Isolated from New World Sand Flies in Ecuador, Is the First Representative of a Novel Clade in the Genus Flavivirus. J Virol 2015; 89:11773-85. [PMID: 26355096 PMCID: PMC4645344 DOI: 10.1128/jvi.01543-15] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 09/04/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED A new flavivirus, Ecuador Paraiso Escondido virus (EPEV), named after the village where it was discovered, was isolated from sand flies (Psathyromyia abonnenci, formerly Lutzomyia abonnenci) that are unique to the New World. This represents the first sand fly-borne flavivirus identified in the New World. EPEV exhibited a typical flavivirus genome organization. Nevertheless, the maximum pairwise amino acid sequence identity with currently recognized flaviviruses was 52.8%. Phylogenetic analysis of the complete coding sequence showed that EPEV represents a distinct clade which diverged from a lineage that was ancestral to the nonvectored flaviviruses Entebbe bat virus, Yokose virus, and Sokoluk virus and also the Aedes-associated mosquito-borne flaviviruses, which include yellow fever virus, Sepik virus, Saboya virus, and others. EPEV replicated in C6/36 mosquito cells, yielding high infectious titers, but failed to reproduce either in vertebrate cell lines (Vero, BHK, SW13, and XTC cells) or in suckling mouse brains. This surprising result, which appears to eliminate an association with vertebrate hosts in the life cycle of EPEV, is discussed in the context of the evolutionary origins of EPEV in the New World. IMPORTANCE The flaviviruses are rarely (if ever) vectored by sand fly species, at least in the Old World. We have identified the first representative of a sand fly-associated flavivirus, Ecuador Paraiso Escondido virus (EPEV), in the New World. EPEV constitutes a novel clade according to current knowledge of the flaviviruses. Phylogenetic analysis of the virus genome showed that EPEV roots the Aedes-associated mosquito-borne flaviviruses, including yellow fever virus. In light of this new discovery, the New World origin of EPEV is discussed together with that of the other flaviviruses.
Collapse
|
41
|
Rupprecht CE, Burgess GW. Viral and vector zoonotic exploitation of a homo-sociome memetic complex. Clin Microbiol Infect 2015; 21:394-403. [PMID: 25769428 PMCID: PMC7128523 DOI: 10.1016/j.cmi.2015.02.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 02/17/2015] [Accepted: 02/27/2015] [Indexed: 12/24/2022]
Abstract
As most newly characterized emerging infectious diseases are considered to be zoonotic, a modern pre-eminence ascribed within this classification lies clearly within the viral taxonomic realm. In particular, RNA viruses deserve special concern given their documented impact on conservation biology, veterinary medicine and public health, with an unprecedented ability to promote an evolutionary host–pathogen arms race from the ultimate infection and immunity perspective. However, besides the requisite molecular/gross anatomical and physiological bases for infectious diseases to transmit from one host to another, both viral pathogens and their reservoirs/vectors exploit a complex anthropological, cultural, historical, psychological and social suite that specifically defines the phylodynamics within Homo sapiens, unlike any other species. Some of these variables include the ecological benefits of living in groups, decisions on hunting and foraging behaviours and dietary preferences, myths and religious doctrines, health economics, travel destinations, population planning, political decisions on agricultural product bans and many others, in a homo-sociome memetic complex. Taken to an extreme, such complexities elucidate the underpinnings of explanations as to why certain viral zoonoses reside in neglected people, places and things, whereas others are chosen selectively and prioritized for active mitigation. Canine-transmitted rabies serves as one prime example of how a neglected viral zoonosis may transition to greater attention on the basis of renewed advocacy, social media, local champions and vested international community engagement. In contrast, certain bat-associated and arboviral diseases suffer from basic ignorance and perpetuated misunderstanding of fundamental reservoir and vector ecology tenets, translated into failed control policies that only exacerbate the underlying environmental conditions of concern. Beyond applied biomedical knowledge, epidemiological skills and biotechnical abilities alone, if a homo-sociome memetic complex approach is also entertained in a modern transdisciplinary context, neglected viral zoonosis may be better understood, controlled, prevented and possibly eliminated, in a more holistic One Health context.
Collapse
Affiliation(s)
- C E Rupprecht
- LYSSA LLC, Lawrenceville, GA 30044, USA; The Wistar Institute, Philadelphia, PA, USA.
| | - G W Burgess
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Qld, Australia
| |
Collapse
|
42
|
Moureau G, Cook S, Lemey P, Nougairede A, Forrester NL, Khasnatinov M, Charrel RN, Firth AE, Gould EA, de Lamballerie X. New insights into flavivirus evolution, taxonomy and biogeographic history, extended by analysis of canonical and alternative coding sequences. PLoS One 2015; 10:e0117849. [PMID: 25719412 PMCID: PMC4342338 DOI: 10.1371/journal.pone.0117849] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 01/02/2015] [Indexed: 12/20/2022] Open
Abstract
To generate the most diverse phylogenetic dataset for the flaviviruses to date, we determined the genomic sequences and phylogenetic relationships of 14 flaviviruses, of which 10 are primarily associated with Culex spp. mosquitoes. We analyze these data, in conjunction with a comprehensive collection of flavivirus genomes, to characterize flavivirus evolutionary and biogeographic history in unprecedented detail and breadth. Based on the presumed introduction of yellow fever virus into the Americas via the transatlantic slave trade, we extrapolated a timescale for a relevant subset of flaviviruses whose evolutionary history, shows that different Culex-spp. associated flaviviruses have been introduced from the Old World to the New World on at least five separate occasions, with 2 different sets of factors likely to have contributed to the dispersal of the different viruses. We also discuss the significance of programmed ribosomal frameshifting in a central region of the polyprotein open reading frame in some mosquito-associated flaviviruses.
Collapse
Affiliation(s)
- Gregory Moureau
- Aix Marseille Université, IRD French Institute of Research for Development, EHESP French School of Public Health, EPV UMR_D 190 Emergence des Pathologies Virales, Marseille, France
| | - Shelley Cook
- Department of Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, United Kingdom
| | - Philippe Lemey
- Department of Microbiology and Immunology, Rega Institute, KU Leuven, Minderbroedersstraat 10, 3000 Leuven, Belgium
| | - Antoine Nougairede
- Aix Marseille Université, IRD French Institute of Research for Development, EHESP French School of Public Health, EPV UMR_D 190 Emergence des Pathologies Virales, Marseille, France
| | - Naomi L. Forrester
- Institute for Human Infections and Immunity and Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, United States of America
| | - Maxim Khasnatinov
- Centre for Ecology and Hydrology, Maclean Building, Benson Lane, Crowmarsh, Gifford, Wallingford, Oxfordshire, OX10, United Kingdom
| | - Remi N. Charrel
- Aix Marseille Université, IRD French Institute of Research for Development, EHESP French School of Public Health, EPV UMR_D 190 Emergence des Pathologies Virales, Marseille, France
| | - Andrew E. Firth
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom
| | - Ernest A. Gould
- Aix Marseille Université, IRD French Institute of Research for Development, EHESP French School of Public Health, EPV UMR_D 190 Emergence des Pathologies Virales, Marseille, France
| | - Xavier de Lamballerie
- Aix Marseille Université, IRD French Institute of Research for Development, EHESP French School of Public Health, EPV UMR_D 190 Emergence des Pathologies Virales, Marseille, France
| |
Collapse
|
43
|
Faustino AF, Guerra GM, Huber RG, Hollmann A, Domingues MM, Barbosa GM, Enguita FJ, Bond PJ, Castanho MARB, Da Poian AT, Almeida FCL, Santos NC, Martins IC. Understanding dengue virus capsid protein disordered N-Terminus and pep14-23-based inhibition. ACS Chem Biol 2015; 10:517-26. [PMID: 25412346 DOI: 10.1021/cb500640t] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Dengue virus (DENV) infection affects millions of people and is becoming a major global disease for which there is no specific available treatment. pep14-23 is a recently designed peptide, based on a conserved segment of DENV capsid (C) protein. It inhibits the interaction of DENV C with host intracellular lipid droplets (LDs), which is crucial for viral replication. Combining bioinformatics and biophysics, here, we analyzed pep14-23 structure and ability to bind different phospholipids, relating that information with the full-length DENV C. We show that pep14-23 acquires α-helical conformation upon binding to negatively charged phospholipid membranes, displaying an asymmetric charge distribution structural arrangement. Structure prediction for the N-terminal segment reveals four viable homodimer orientations that alternatively shield or expose the DENV C hydrophobic pocket. Taken together, these findings suggest a new biological role for the disordered N-terminal region, which may function as an autoinhibitory domain mediating DENV C interaction with its biological targets. The results fit with our current understanding of DENV C and pep14-23 structure and function, paving the way for similar approaches to understanding disordered proteins and improved peptidomimetics drug development strategies against DENV and similar Flavivirus infections.
Collapse
Affiliation(s)
- André F. Faustino
- Instituto
de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal
| | - Gabriela M. Guerra
- Instituto
de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal
| | - Roland G. Huber
- Bioinformatics
Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis
Street, #07-01 Matrix, 138671 Singapore, Singapore
| | - Axel Hollmann
- Instituto
de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal
| | - Marco M. Domingues
- Instituto
de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal
| | - Glauce M. Barbosa
- Instituto
de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
| | - Francisco J. Enguita
- Instituto
de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal
| | - Peter J. Bond
- Bioinformatics
Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis
Street, #07-01 Matrix, 138671 Singapore, Singapore
- Department
of Biological Sciences, National University of Singapore, 14 Science
Drive 4, 117543 Singapore, Singapore
| | - Miguel A. R. B. Castanho
- Instituto
de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal
| | - Andrea T. Da Poian
- Instituto
de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
| | - Fabio C. L. Almeida
- Instituto
de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
- Centro
Nacional de Ressonância Magnética Nuclear, Universidade Federal do Rio de Janeiro and National Institute of Structural Biology and Bioimage, Rio de Janeiro, RJ 21941-902, Brazil
| | - Nuno C. Santos
- Instituto
de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal
| | - Ivo C. Martins
- Instituto
de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal
| |
Collapse
|
44
|
Beasley DWC, McAuley AJ, Bente DA. Yellow fever virus: genetic and phenotypic diversity and implications for detection, prevention and therapy. Antiviral Res 2014; 115:48-70. [PMID: 25545072 DOI: 10.1016/j.antiviral.2014.12.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 12/05/2014] [Accepted: 12/11/2014] [Indexed: 11/28/2022]
Abstract
Yellow fever virus (YFV) is the prototypical hemorrhagic fever virus, yet our understanding of its phenotypic diversity and any molecular basis for observed differences in disease severity and epidemiology is lacking, when compared to other arthropod-borne and haemorrhagic fever viruses. This is, in part, due to the availability of safe and effective vaccines resulting in basic YFV research taking a back seat to those viruses for which no effective vaccine occurs. However, regular outbreaks occur in endemic areas, and the spread of the virus to new, previously unaffected, areas is possible. Analysis of isolates from endemic areas reveals a strong geographic association for major genotypes, and recent epidemics have demonstrated the emergence of novel sequence variants. This review aims to outline the current understanding of YFV genetic and phenotypic diversity and its sources, as well as the available animal models for characterizing these differences in vivo. The consequences of genetic diversity for detection and diagnosis of yellow fever and development of new vaccines and therapeutics are discussed.
Collapse
Affiliation(s)
- David W C Beasley
- Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555, United States; Sealy Center for Vaccine Development, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555, United States; Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555, United States; Institute for Human Infections and Immunity, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555, United States.
| | - Alexander J McAuley
- Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555, United States
| | - Dennis A Bente
- Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555, United States; Sealy Center for Vaccine Development, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555, United States; Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555, United States; Institute for Human Infections and Immunity, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555, United States
| |
Collapse
|
45
|
Tretyakova I, Nickols B, Hidajat R, Jokinen J, Lukashevich IS, Pushko P. Plasmid DNA initiates replication of yellow fever vaccine in vitro and elicits virus-specific immune response in mice. Virology 2014; 468-470:28-35. [PMID: 25129436 DOI: 10.1016/j.virol.2014.07.050] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Revised: 07/12/2014] [Accepted: 07/27/2014] [Indexed: 12/30/2022]
Abstract
Yellow fever (YF) causes an acute hemorrhagic fever disease in tropical Africa and Latin America. To develop a novel experimental YF vaccine, we applied iDNA infectious clone technology. The iDNA represents plasmid that encodes the full-length RNA genome of 17D vaccine downstream from a cytomegalovirus (CMV) promoter. The vaccine was designed to transcribe the full-length viral RNA and to launch 17D vaccine virus in vitro and in vivo. Transfection with 10 ng of iDNA plasmid was sufficient to start replication of vaccine virus in vitro. Safety of the parental 17D and iDNA-derived 17D viruses was confirmed in AG129 mice deficient in receptors for IFN-α/β/γ. Finally, direct vaccination of BALB/c mice with a single 20 μg dose of iDNA plasmid resulted in seroconversion and elicitation of virus-specific neutralizing antibodies in animals. We conclude that iDNA immunization approach combines characteristics of DNA and attenuated vaccines and represents a promising vaccination strategy for YF.
Collapse
Affiliation(s)
- Irina Tretyakova
- Medigen, Inc., 8420 Gas House Pike, Suite S, Frederick, MD 21701, USA
| | - Brian Nickols
- Medigen, Inc., 8420 Gas House Pike, Suite S, Frederick, MD 21701, USA
| | - Rachmat Hidajat
- Medigen, Inc., 8420 Gas House Pike, Suite S, Frederick, MD 21701, USA
| | - Jenny Jokinen
- Department of Pharmacology and Toxicology, School of Medicine, Center for Predictive Medicine and Emerging Infectious Diseases, University of Louisville, Louisville, KY, USA
| | - Igor S Lukashevich
- Department of Pharmacology and Toxicology, School of Medicine, Center for Predictive Medicine and Emerging Infectious Diseases, University of Louisville, Louisville, KY, USA
| | - Peter Pushko
- Medigen, Inc., 8420 Gas House Pike, Suite S, Frederick, MD 21701, USA.
| |
Collapse
|
46
|
Huhtamo E, Cook S, Moureau G, Uzcátegui NY, Sironen T, Kuivanen S, Putkuri N, Kurkela S, Harbach RE, Firth AE, Vapalahti O, Gould EA, de Lamballerie X. Novel flaviviruses from mosquitoes: mosquito-specific evolutionary lineages within the phylogenetic group of mosquito-borne flaviviruses. Virology 2014; 464-465:320-329. [PMID: 25108382 PMCID: PMC4170750 DOI: 10.1016/j.virol.2014.07.015] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 03/07/2014] [Accepted: 07/01/2014] [Indexed: 01/17/2023]
Abstract
Novel flaviviruses that are genetically related to pathogenic mosquito-borne flaviviruses (MBFV) have been isolated from mosquitoes in various geographical locations, including Finland. We isolated and characterized another novel virus of this group from Finnish mosquitoes collected in 2007, designated as Ilomantsi virus (ILOV). Unlike the MBFV that infect both vertebrates and mosquitoes, the MBFV-related viruses appear to be specific to mosquitoes similar to the insect-specific flaviviruses (ISFs). In this overview of MBFV-related viruses we conclude that they differ from the ISFs genetically and antigenically. Phylogenetic analyses separated the MBFV-related viruses isolated in Africa, the Middle East and South America from those isolated in Europe and Asia. Serological cross-reactions of MBFV-related viruses with other flaviviruses and their potential for vector-borne transmission require further characterization. The divergent MBFV-related viruses are probably significantly under sampled to date and provide new information on the variety, properties and evolution of vector-borne flaviviruses. Mosquito-borne flavivirus-related viruses were isolated from Finnish mosquitoes. Isolates were reactive with flavivirus antibodies but appeared mosquito-specific. Sequence analysis identified related viruses from different parts of the world. These viruses represent unique properties among the mosquito-borne flavivirus group.
Collapse
Affiliation(s)
- Eili Huhtamo
- Department of Virology, Haartman Institute, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| | - Shelley Cook
- Department of Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, United Kingdom
| | - Gregory Moureau
- UMR D 190 "Emergence des Pathologies Virales", Aix Marseille University, IRD French Institute of Research for Development, EHESP French School of Public Health, 27 Boulevard Jean Moulin, Marseille 13005, France
| | - Nathalie Y Uzcátegui
- Department of Virology, Haartman Institute, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Tarja Sironen
- Department of Virology, Haartman Institute, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Suvi Kuivanen
- Department of Virology, Haartman Institute, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Niina Putkuri
- Department of Virology, Haartman Institute, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Satu Kurkela
- Department of Virology, Haartman Institute, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Department of Virology and Immunology, Helsinki University Central Hospital Laboratory (HUSLAB), P.O. Box 400, Haartmaninkatu 3, 00029 HUS, Helsinki, Finland
| | - Ralph E Harbach
- Department of Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, United Kingdom
| | - Andrew E Firth
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom
| | - Olli Vapalahti
- Department of Virology, Haartman Institute, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Department of Virology and Immunology, Helsinki University Central Hospital Laboratory (HUSLAB), P.O. Box 400, Haartmaninkatu 3, 00029 HUS, Helsinki, Finland; Division of Microbiology and Epidemiology, Department of Basic Veterinary Sciences, University of Helsinki, Helsinki, Finland
| | - Ernest A Gould
- UMR D 190 "Emergence des Pathologies Virales", Aix Marseille University, IRD French Institute of Research for Development, EHESP French School of Public Health, 27 Boulevard Jean Moulin, Marseille 13005, France
| | - Xavier de Lamballerie
- UMR D 190 "Emergence des Pathologies Virales", Aix Marseille University, IRD French Institute of Research for Development, EHESP French School of Public Health, 27 Boulevard Jean Moulin, Marseille 13005, France
| |
Collapse
|
47
|
Pettersson JHO, Fiz-Palacios O. Dating the origin of the genus Flavivirus in the light of Beringian biogeography. J Gen Virol 2014; 95:1969-1982. [PMID: 24914065 DOI: 10.1099/vir.0.065227-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The genus Flavivirus includes some of the most important human viral pathogens, and its members are found in all parts of the populated world. The temporal origin of diversification of the genus has long been debated due to the inherent problems with dating deep RNA virus evolution. A generally accepted hypothesis suggests that Flavivirus emerged within the last 10 000 years. However, it has been argued that the tick-borne Powassan flavivirus was introduced into North America some time between the opening and closing of the Beringian land bridge that connected Asia and North America 15 000-11 000 years ago, indicating an even older origin for Flavivirus. To determine the temporal origin of Flavivirus, we performed Bayesian relaxed molecular clock dating on a dataset with high coverage of the presently available Flavivirus diversity by combining tip date calibrations and internal node calibration, based on the Powassan virus and Beringian land bridge biogeographical event. Our analysis suggested that Flavivirus originated ~85 000 (64 000-110 000) or 120 000 (87 000-159 000) years ago, depending on the circumscription of the genus. This is significantly older than estimated previously. In light of our results, we propose that it is likely that modern humans came in contact with several members of the genus Flavivirus much earlier than suggested previously, and that it is possible that the spread of several flaviviruses coincided with, and was facilitated by, the migration and population expansion of modern humans out of Africa.
Collapse
Affiliation(s)
- John H-O Pettersson
- Department of Systematic Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Omar Fiz-Palacios
- Department of Systematic Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| |
Collapse
|
48
|
Mlera L, Melik W, Bloom ME. The role of viral persistence in flavivirus biology. Pathog Dis 2014; 71:137-63. [PMID: 24737600 PMCID: PMC4154581 DOI: 10.1111/2049-632x.12178] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 04/08/2014] [Accepted: 04/09/2014] [Indexed: 12/30/2022] Open
Abstract
In nature, vector borne flaviviruses are persistently cycled between either the tick or mosquito vector and small mammals such as rodents, skunks, and swine. These viruses account for considerable human morbidity and mortality worldwide. Increasing and substantial evidence of viral persistence in humans, which includes the isolation of RNA by RT PCR and infectious virus by culture, continues to be reported. Viral persistence can also be established in vitro in various human, animal, arachnid, and insect cell lines in culture. Although some research has focused on the potential roles of defective virus particles, evasion of the immune response through the manipulation of autophagy and/or apoptosis, the precise mechanism of flavivirus persistence is still not well understood. We propose additional research for further understanding of how viral persistence is established in different systems. Avenues for additional studies include determining whether the multifunctional flavivirus protein NS5 has a role in viral persistence, the development of relevant animal models of viral persistence, and investigating the host responses that allow vector borne flavivirus replication without detrimental effects on infected cells. Such studies might shed more light on the viral–host relationships and could be used to unravel the mechanisms for establishment of persistence. Persistent infections by vector borne flaviviruses are an important, but inadequately studied topic.
Collapse
Affiliation(s)
- Luwanika Mlera
- Rocky Mountain Laboratories, Laboratory of Virology, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | | | | |
Collapse
|
49
|
Thompson NN, Auguste AJ, Travassos da Rosa APA, Carrington CVF, Blitvich BJ, Chadee DD, Tesh RB, Weaver SC, Adesiyun AA. Seroepidemiology of selected alphaviruses and flaviviruses in bats in Trinidad. Zoonoses Public Health 2014; 62:53-60. [PMID: 24751420 PMCID: PMC7165661 DOI: 10.1111/zph.12118] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Indexed: 11/30/2022]
Abstract
A serosurvey of antibodies against selected flaviviruses and alphaviruses in 384 bats (representing 10 genera and 14 species) was conducted in the Caribbean island of Trinidad. Sera were analysed using epitope‐blocking enzyme‐linked immunosorbent assays (ELISAs) specific for antibodies against West Nile virus (WNV), Venezuelan equine encephalitis virus (VEEV) and eastern equine encephalitis virus (EEEV), all of which are zoonotic viruses of public health significance in the region. Overall, the ELISAs resulted in the detection of VEEV‐specific antibodies in 11 (2.9%) of 384 bats. Antibodies to WNV and EEEV were not detected in any sera. Of the 384 sera, 308 were also screened using hemagglutination inhibition assay (HIA) for antibodies to the aforementioned viruses as well as St. Louis encephalitis virus (SLEV; which also causes epidemic disease in humans), Rio Bravo virus (RBV), Tamana bat virus (TABV) and western equine encephalitis virus (WEEV). Using this approach, antibodies to TABV and RBV were detected in 47 (15.3%) and 3 (1.0%) bats, respectively. HIA results also suggest the presence of antibodies to an undetermined flavivirus(es) in 8 (2.6%) bats. Seropositivity for TABV was significantly (P < 0.05; χ2) associated with bat species, location and feeding preference, and for VEEV with roost type and location. Differences in prevalence rates between urban and rural locations were statistically significant (P < 0.05; χ2) for TABV only. None of the aforementioned factors was significantly associated with RBV seropositivity rates.
Collapse
Affiliation(s)
- N N Thompson
- School of Veterinary Medicine, The University of the West Indies, St. Augustine, Trinidad and Tobago
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Grard G, Caron M, Mombo IM, Nkoghe D, Mboui Ondo S, Jiolle D, Fontenille D, Paupy C, Leroy EM. Zika virus in Gabon (Central Africa)--2007: a new threat from Aedes albopictus? PLoS Negl Trop Dis 2014; 8:e2681. [PMID: 24516683 PMCID: PMC3916288 DOI: 10.1371/journal.pntd.0002681] [Citation(s) in RCA: 457] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 12/19/2013] [Indexed: 11/18/2022] Open
Abstract
Background Chikungunya and dengue viruses emerged in Gabon in 2007, with large outbreaks primarily affecting the capital Libreville and several northern towns. Both viruses subsequently spread to the south-east of the country, with new outbreaks occurring in 2010. The mosquito species Aedes albopictus, that was known as a secondary vector for both viruses, recently invaded the country and was the primary vector involved in the Gabonese outbreaks. We conducted a retrospective study of human sera and mosquitoes collected in Gabon from 2007 to 2010, in order to identify other circulating arboviruses. Methodology/Principal Findings Sample collections, including 4312 sera from patients presenting with painful febrile disease, and 4665 mosquitoes belonging to 9 species, split into 247 pools (including 137 pools of Aedes albopictus), were screened with molecular biology methods. Five human sera and two Aedes albopictus pools, all sampled in an urban setting during the 2007 outbreak, were positive for the flavivirus Zika (ZIKV). The ratio of Aedes albopictus pools positive for ZIKV was similar to that positive for dengue virus during the concomitant dengue outbreak suggesting similar mosquito infection rates and, presumably, underlying a human ZIKV outbreak. ZIKV sequences from the envelope and NS3 genes were amplified from a human serum sample. Phylogenetic analysis placed the Gabonese ZIKV at a basal position in the African lineage, pointing to ancestral genetic diversification and spread. Conclusions/Significance We provide the first direct evidence of human ZIKV infections in Gabon, and its first occurrence in the Asian tiger mosquito, Aedes albopictus. These data reveal an unusual natural life cycle for this virus, occurring in an urban environment, and potentially representing a new emerging threat due to this novel association with a highly invasive vector whose geographic range is still expanding across the globe. Not previously considered an important human arboviral pathogen, the epidemic capacity of Zika virus (ZIKV, a dengue-related flavivirus) was revealed by the Micronesia outbreak in 2007, which affected about 5000 persons. Widely distributed throughout tropical areas of Asia and Africa, ZIKV is transmitted by a broad range of mosquito species, most of which are sylvatic or rural, Aedes aegypti, an anthropophilic and urban species, being considered the main ZIKV epidemic vector. In a context of emerging arbovirus infections (chikungunya (CHIKV) and dengue (DENV)) in Gabon since 2007, we conducted a retrospective study to detect other, related viruses. In samples collected during the concurrent CHIKV/DENV outbreaks that occurred in the capital city in 2007, we detected ZIKV in both humans and mosquitoes, and notably the Asian mosquito Aedes albopictus that recently invaded the country and was the main vector responsible for these outbreaks. We found that the Gabonese ZIKV strain belonged to the African lineage, and phylogenetic analysis suggested ancestral diversification and spread rather than recent introduction. These findings, showing for the first time epidemic ZIKV activity in an urban environment in Central Africa and the presence of ZIKV in the invasive mosquito Aedes albopictus, raise the possibility of a new emerging threat to human health.
Collapse
Affiliation(s)
- Gilda Grard
- UMVE, Centre International de Recherches Médicales de Franceville, Franceville, Gabon
- * E-mail:
| | - Mélanie Caron
- UMVE, Centre International de Recherches Médicales de Franceville, Franceville, Gabon
- MIVEGEC, Institut de Recherche pour le Développement (IRD-224, CNRS-5290, Universités de Montpellier 1 & 2), Montpellier, France
| | - Illich Manfred Mombo
- UMVE, Centre International de Recherches Médicales de Franceville, Franceville, Gabon
- MIVEGEC, Institut de Recherche pour le Développement (IRD-224, CNRS-5290, Universités de Montpellier 1 & 2), Montpellier, France
| | - Dieudonné Nkoghe
- UMVE, Centre International de Recherches Médicales de Franceville, Franceville, Gabon
- Ministère de la Santé Publique, Libreville, Gabon
| | - Statiana Mboui Ondo
- UMVE, Centre International de Recherches Médicales de Franceville, Franceville, Gabon
| | - Davy Jiolle
- MIVEGEC, Institut de Recherche pour le Développement (IRD-224, CNRS-5290, Universités de Montpellier 1 & 2), Montpellier, France
- URES, CIRMF, Franceville, Gabon
| | - Didier Fontenille
- MIVEGEC, Institut de Recherche pour le Développement (IRD-224, CNRS-5290, Universités de Montpellier 1 & 2), Montpellier, France
| | - Christophe Paupy
- MIVEGEC, Institut de Recherche pour le Développement (IRD-224, CNRS-5290, Universités de Montpellier 1 & 2), Montpellier, France
- URES, CIRMF, Franceville, Gabon
| | - Eric Maurice Leroy
- UMVE, Centre International de Recherches Médicales de Franceville, Franceville, Gabon
- MIVEGEC, Institut de Recherche pour le Développement (IRD-224, CNRS-5290, Universités de Montpellier 1 & 2), Montpellier, France
| |
Collapse
|