1
|
Qin Y, Dong X, Dong H, Wang X, Ye T, Wang Q, Duan J, Yu M, Zhang T, Du N, Shen S, Piao F, Guo Z. γ-aminobutyric acid contributes to a novel long-distance signaling in figleaf gourd rootstock-induced cold tolerance of grafted cucumber seedlings. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109168. [PMID: 39366198 DOI: 10.1016/j.plaphy.2024.109168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/15/2024] [Accepted: 09/29/2024] [Indexed: 10/06/2024]
Abstract
Long-distance signals play a vital role in plant stress response. γ-aminobutyric acid (GABA) has been proposed to be a signal and protects crops against diverse stresses. However, whether GABA acts as a long-distance signal to plant response to stresses remains unknown. Here, we found that the GABA content in cucurbita rootstocks, especially figleaf gourd, was significantly higher than that in cucumber. Figleaf gourd rootstock obviously enhanced cold tolerance and GABA accumulation in roots, xylem sap and leaves of grafting cucumber seedlings. Conversely, GABA synthesis inhibitor 3-mercaptopropionic acid (3-MPA) irrigation was more effective than its foliar application in inhibiting grafting-induced cold tolerance. Moreover, fluorescence microscopy confirmed that GABA can be transported from root to shoot through the xylem when the roots of grafted seedlings were fed with fluorescein isothiocyatate-labeled GABA under normal and cold stress conditions. Importantly, 3-MPA irrigation attenuated grafting-induced cold tolerance, as revealed by a decline in the GABA accumulation, the transcripts of ICE1, CBF1 and COR47, the activities of the antioxidant enzymes, and an increase in stomatal aperture. Collectively, our findings strongly support that GABA functions as a novel long-distance signal in figleaf gourd rootstock-induced cold tolerance of grafted cucumber seedlings by modulating CBF-signalling pathways, antioxidant system and stomatal aperture, providing new evidence for long-distance signaling-mediated cold response of plants.
Collapse
Affiliation(s)
- Yanping Qin
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450046, PR China
| | - Xiaoxing Dong
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450046, PR China
| | - Han Dong
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450046, PR China
| | - Xiaojie Wang
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450046, PR China
| | - Ting Ye
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450046, PR China
| | - Qiaonan Wang
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450046, PR China
| | - Jingjing Duan
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450046, PR China
| | - Mingyao Yu
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450046, PR China
| | - Tao Zhang
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450046, PR China
| | - Nanshan Du
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450046, PR China
| | - Shunshan Shen
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450046, PR China
| | - Fengzhi Piao
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450046, PR China.
| | - Zhixin Guo
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450046, PR China.
| |
Collapse
|
2
|
Kim JS, Kidokoro S, Yamaguchi-Shinozaki K, Shinozaki K. Regulatory networks in plant responses to drought and cold stress. PLANT PHYSIOLOGY 2024; 195:170-189. [PMID: 38514098 PMCID: PMC11060690 DOI: 10.1093/plphys/kiae105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 02/15/2024] [Indexed: 03/23/2024]
Abstract
Drought and cold represent distinct types of abiotic stress, each initiating unique primary signaling pathways in response to dehydration and temperature changes, respectively. However, a convergence at the gene regulatory level is observed where a common set of stress-responsive genes is activated to mitigate the impacts of both stresses. In this review, we explore these intricate regulatory networks, illustrating how plants coordinate distinct stress signals into a collective transcriptional strategy. We delve into the molecular mechanisms of stress perception, stress signaling, and the activation of gene regulatory pathways, with a focus on insights gained from model species. By elucidating both the shared and distinct aspects of plant responses to drought and cold, we provide insight into the adaptive strategies of plants, paving the way for the engineering of stress-resilient crop varieties that can withstand a changing climate.
Collapse
Affiliation(s)
- June-Sik Kim
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045Japan
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, 710-0046Japan
| | - Satoshi Kidokoro
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8502Japan
| | - Kazuko Yamaguchi-Shinozaki
- Research Institute for Agriculture and Life Sciences, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo, 156-8502Japan
- Graduate School of Agriculture and Life Science, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032Japan
| | - Kazuo Shinozaki
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045Japan
- Institute for Advanced Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601Japan
| |
Collapse
|
3
|
Haque MI, Shapira O, Attia Z, Cohen Y, Charuvi D, Azoulay-Shemer T. Induction of stomatal opening following a night-chilling event alleviates physiological damage in mango trees. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108221. [PMID: 38048702 DOI: 10.1016/j.plaphy.2023.108221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/01/2023] [Accepted: 11/20/2023] [Indexed: 12/06/2023]
Abstract
Chilling events have become more frequent with climate change and are a significant abiotic factor causing physiological damage to plants and, consequently, reducing crop yield. Like other tropical and subtropical plants, mango (Mangifera indica L.) is particularly sensitive to chilling events, especially if they are followed by bright sunny days. It was previously shown that in mango leaves stomatal opening is restricted in the morning following a night-chilling event. This impairment results in restraint of carbon assimilation and subsequently, photoinhibition and reactive oxygen species production, which leads to chlorosis and in severe cases, cell death. Our detailed physiological analysis showed that foliar application of the guard cell H+-ATPase activator, fusicoccin, in the morning after a cold night, mitigates the physiological damage from 'cold night-bright day' abiotic stress. This application restored stomatal opening, thereby enabling gas exchange, releasing the photosynthetic machinery from harmful excess photon energy, and improving the plant's overall physiological state. The mechanisms by which plants react to this abiotic stress are examined in this work. The foliar application of compounds that cause stomatal opening as a potential method of minimizing physiological damage due to night chilling is discussed.
Collapse
Affiliation(s)
- Md Intesaful Haque
- Fruit Tree Sciences, Volcani Center, Agricultural Research Organization, Newe Ya'ar Research Center, Ramat Yishay, Israel
| | - Or Shapira
- Fruit Tree Sciences, Volcani Center, Agricultural Research Organization, Newe Ya'ar Research Center, Ramat Yishay, Israel
| | - Ziv Attia
- Fruit Tree Sciences, Volcani Center, Agricultural Research Organization, Newe Ya'ar Research Center, Ramat Yishay, Israel
| | - Yuval Cohen
- Institute of Plant Sciences, Volcani Center, Agricultural Research Organization, Rishon LeZion, Israel
| | - Dana Charuvi
- Institute of Plant Sciences, Volcani Center, Agricultural Research Organization, Rishon LeZion, Israel
| | - Tamar Azoulay-Shemer
- Fruit Tree Sciences, Volcani Center, Agricultural Research Organization, Newe Ya'ar Research Center, Ramat Yishay, Israel.
| |
Collapse
|
4
|
Rácz A, Czégény G, Kutyáncsánin D, Nagy N, Hideg É, Csepregi K. Fight against cold: photosynthetic and antioxidant responses of different bell pepper cultivars (Capsicum annuum L.) to cold stress. Biol Futur 2023; 74:327-335. [PMID: 37755652 DOI: 10.1007/s42977-023-00182-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 09/12/2023] [Indexed: 09/28/2023]
Abstract
The special metabolites of bell pepper (Capsicum annuum L.) leaves can protect the plant under possibly damaging circumstances, such as high light, UV, unfavorable temperatures, or other environmental effects. In this study, we examined the cold stress tolerance of three different Hungarian pepper varieties (Darina, Édesalma, Rekord), focusing on the antioxidant and photosynthetic responses. The plants were developed in growth chambers under optimal temperature conditions (day/night 25 °C/20 °C) until the leaves on the fourth node became fully developed, then half of the plants received a cold treatment (day/night 15 °C/10 °C). Via a detailed pigment analysis, the PS II chlorophyll fluorescence responses, gas exchange parameters and total antioxidant capacities, leaf acclimation to low temperatures has been characterized. Our results display some of the developing physiological and antioxidant properties, which are among the main factors in monitoring the damaging effects of cold temperatures. Nevertheless, despite their differences, the tested pepper varieties did not show different cold responses.
Collapse
Affiliation(s)
- A Rácz
- Department of Plant Biology, University of Pécs, Pécs, Hungary
| | - Gy Czégény
- Department of Plant Biology, University of Pécs, Pécs, Hungary
| | - D Kutyáncsánin
- Department of Plant Biology, University of Pécs, Pécs, Hungary
| | - N Nagy
- Department of Plant Biology, University of Pécs, Pécs, Hungary
| | - É Hideg
- Department of Plant Biology, University of Pécs, Pécs, Hungary
| | - K Csepregi
- Department of Plant Biology, University of Pécs, Pécs, Hungary.
| |
Collapse
|
5
|
Antonietta M, de Felipe M, Rothwell SA, Williams TB, Skilleter P, Albacete A, Borras L, Rufino MC, Dodd IC. Prolonged low temperature exposure de-sensitises ABA-induced stomatal closure in soybean, involving an ethylene-dependent process. PLANT, CELL & ENVIRONMENT 2023; 46:2128-2141. [PMID: 37066607 DOI: 10.1111/pce.14590] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 03/31/2023] [Accepted: 04/02/2023] [Indexed: 06/08/2023]
Abstract
Chilling can decrease stomatal sensitivity to abscisic acid (ABA) in some legumes, although hormonal mechanisms involved are unclear. After evaluating leaf gas exchange of 16 European soybean genotypes at 14°C, 6 genotypes representing the range of response were selected. Further experiments combined low (L, 14°C) and high (H, 24°C) temperature exposure from sowing until the unifoliate leaf was visible and L or H temperature until full leaf expansion, to impose four temperature treatments: LL, LH, HL, and HH. Prolonged chilling (LL) substantially decreased leaf water content but increased leaf ethylene evolution and foliar concentrations of the ethylene precursor 1-aminocyclopropane-1-carboxylic acid, indole-3-acetic acid, ABA and jasmonic acid. Across genotypes, photosynthesis linearly increased with stomatal conductance (Gs), with photosynthesis of HH plants threefold higher than LL plants at the same Gs. In all treatments except LL, Gs declined with foliar ABA accumulation. Foliar ABA sprays substantially decreased Gs of HH plants, but did not significantly affect LL plants. Thus low temperature compromised stomatal sensitivity to endogenous and exogenous ABA. Applying the ethylene antagonist 1 methyl-cyclopropene partially reverted excessive stomatal opening of LL plants. Thus, chilling-induced ethylene accumulation may mediate stomatal insensitivity to ABA, offering chemical opportunities for improving seedling survival in cold environments.
Collapse
Affiliation(s)
| | - Matias de Felipe
- IICAR, Universidad Nacional de Rosario-CONICET, Rosario, Argentina
| | - Shane A Rothwell
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - Tom B Williams
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | | | - Alfonso Albacete
- Department of Plant Nutrition, CEBAS-CSIC, Campus Universitario Espinardo, Murcia, Spain
| | - Lucas Borras
- IICAR, Universidad Nacional de Rosario-CONICET, Rosario, Argentina
| | - Mariana C Rufino
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - Ian C Dodd
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| |
Collapse
|
6
|
Lerner D, Martínez MF, Livne-Luzon S, Belmaker J, Peñuelas J, Klein T. A biome-dependent distribution gradient of tree species range edges is strongly dictated by climate spatial heterogeneity. NATURE PLANTS 2023; 9:544-553. [PMID: 36894625 DOI: 10.1038/s41477-023-01369-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Understanding the causes of the arrest of species distributions has been a fundamental question in ecology and evolution. These questions are of particular interest for trees owing to their long lifespan and sessile nature. A surge in data availability evokes a macro-ecological analysis to determine the underlying forces limiting distributions. Here we analyse the spatial distribution of >3,600 major tree species to determine geographical areas of range-edge hotspots and find drivers for their arrest. We confirmed biome edges to be strong delineators of distributions. Importantly, we identified a stronger contribution of temperate than tropical biomes to range edges, adding strength to the notion that tropical areas are centres of radiation. We subsequently identified a strong association of range-edge hotspots with steep spatial climatic gradients. We linked spatial and temporal homogeneity and high potential evapotranspiration in the tropics as the strongest predictors of this phenomenon. We propose that the poleward migration of species in light of climate change might be hindered because of steep climatic gradients.
Collapse
Affiliation(s)
- David Lerner
- Department of Plant & Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel.
| | | | - Stav Livne-Luzon
- Department of Plant & Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Jonathan Belmaker
- School of Zoology, Tel Aviv University, Tel Aviv, Israel
- Steinhardt Museum of Natural History, Tel Aviv University, Tel Aviv, Israel
| | - Josep Peñuelas
- CREAF, Cerdanyola de Vallès, Spain
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, Spain
| | - Tamir Klein
- Department of Plant & Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
7
|
Vera Hernández PF, Mendoza Onofre LE, Rosas Cárdenas FDF. Responses of sorghum to cold stress: A review focused on molecular breeding. FRONTIERS IN PLANT SCIENCE 2023; 14:1124335. [PMID: 36909409 PMCID: PMC9996117 DOI: 10.3389/fpls.2023.1124335] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Climate change has led to the search for strategies to acclimatize plants to various abiotic stressors to ensure the production and quality of crops of commercial interest. Sorghum is the fifth most important cereal crop, providing several uses including human food, animal feed, bioenergy, or industrial applications. The crop has an excellent adaptation potential to different types of abiotic stresses, such as drought, high salinity, and high temperatures. However, it is susceptible to low temperatures compared with other monocotyledonous species. Here, we have reviewed and discussed some of the research results and advances that focused on the physiological, metabolic, and molecular mechanisms that determine sorghum cold tolerance to improve our understanding of the nature of such trait. Questions and opportunities for a comprehensive approach to clarify sorghum cold tolerance or susceptibility are also discussed.
Collapse
Affiliation(s)
- Pedro Fernando Vera Hernández
- Instituto Politécnico Nacional, Centro de Investigación en Biotecnología Aplicada, Ex-Hacienda San Juan Molino Carretera Estatal Tecuexcomac-Tepetitla, Tlaxcala, Mexico
| | | | - Flor de Fátima Rosas Cárdenas
- Instituto Politécnico Nacional, Centro de Investigación en Biotecnología Aplicada, Ex-Hacienda San Juan Molino Carretera Estatal Tecuexcomac-Tepetitla, Tlaxcala, Mexico
| |
Collapse
|
8
|
El-Dakak RA, Badr RH, Zeineldein MH, Swedan EA, Batrawy OE, Hassaballah AF, Hassan IA. Effect of chilling and salinity stress on photosynthetic performance and ultrastructure of chloroplast in faba beans (Vicia faba L.) leaves. RENDICONTI LINCEI. SCIENZE FISICHE E NATURALI 2023. [DOI: 10.1007/s12210-022-01131-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
AbstractChilling (Ch) and salinity (S) are challenging stresses affecting plant physiology, growth, and productivity. The current study investigated the effects of these two stresses, singly and in combination, on photosynthetic performance and ultrastructure of chloroplast of faba beans (Vicia faba L. Cv. Aspani). Plants were exposed to 3 °C and 120 mM NaCl for 16 h in an optimized soil mixture (sand:clay 2:1) under optimized conditions. Results showed that both Ch and S significantly reduced photosynthetic rates, Fv/Fm, chlorophyll content, stomatal index, and stomatal conductance. Chilling caused changes in chloroplast ultrastructure (swelling, ruptured envelopes, and shrunk lamellae), while salinity caused more deformation of the thylakoid membrane and disorganization of the grana structure. However, there was an antagonistic effect between Ch x S. The tolerance of plant to 120 mM NaCl, in the present study, was improved by exposure to Ch which rather allowed the maintenance of chloroplast ultrastructure and morphology of stomata. Moreover, using SEM and TEM gave an effective insight of the ultrastructural damage in plant cells under stress and helps to consider the underlying mechanisms of stress effects. Our results suggest that Ch mitigates the noxious effect of S on the photosynthetic performance of Vicia faba plants.
Collapse
|
9
|
Goswami AK, Maurya NK, Goswami S, Bardhan K, Singh SK, Prakash J, Pradhan S, Kumar A, Chinnusamy V, Kumar P, Sharma RM, Sharma S, Bisht DS, Kumar C. Physio-biochemical and molecular stress regulators and their crosstalk for low-temperature stress responses in fruit crops: A review. FRONTIERS IN PLANT SCIENCE 2022; 13:1022167. [PMID: 36578327 PMCID: PMC9790972 DOI: 10.3389/fpls.2022.1022167] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/16/2022] [Indexed: 06/17/2023]
Abstract
Low-temperature stress (LTS) drastically affects vegetative and reproductive growth in fruit crops leading to a gross reduction in the yield and loss in product quality. Among the fruit crops, temperate fruits, during the period of evolution, have developed the mechanism of tolerance, i.e., adaptive capability to chilling and freezing when exposed to LTS. However, tropical and sub-tropical fruit crops are most vulnerable to LTS. As a result, fruit crops respond to LTS by inducing the expression of LTS related genes, which is for climatic acclimatization. The activation of the stress-responsive gene leads to changes in physiological and biochemical mechanisms such as photosynthesis, chlorophyll biosynthesis, respiration, membrane composition changes, alteration in protein synthesis, increased antioxidant activity, altered levels of metabolites, and signaling pathways that enhance their tolerance/resistance and alleviate the damage caused due to LTS and chilling injury. The gene induction mechanism has been investigated extensively in the model crop Arabidopsis and several winter kinds of cereal. The ICE1 (inducer of C-repeat binding factor expression 1) and the CBF (C-repeat binding factor) transcriptional cascade are involved in transcriptional control. The functions of various CBFs and aquaporin genes were well studied in crop plants and their role in multiple stresses including cold stresses is deciphered. In addition, tissue nutrients and plant growth regulators like ABA, ethylene, jasmonic acid etc., also play a significant role in alleviating the LTS and chilling injury in fruit crops. However, these physiological, biochemical and molecular understanding of LTS tolerance/resistance are restricted to few of the temperate and tropical fruit crops. Therefore, a better understanding of cold tolerance's underlying physio-biochemical and molecular components in fruit crops is required under open and simulated LTS. The understanding of LTS tolerance/resistance mechanism will lay the foundation for tailoring the novel fruit genotypes for successful crop production under erratic weather conditions.
Collapse
Affiliation(s)
- Amit Kumar Goswami
- Division of Fruits and Horticultural Technology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Naveen Kumar Maurya
- Division of Fruits and Horticultural Technology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Suneha Goswami
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Kirti Bardhan
- Department of Basic Sciences and Humanities, Navsari Agricultural University, Navsari, India
| | - Sanjay Kumar Singh
- Division of Fruits and Horticultural Technology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Jai Prakash
- Division of Fruits and Horticultural Technology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Satyabrata Pradhan
- Division of Fruits and Horticultural Technology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Amarjeet Kumar
- Multi Testing Technology Centre and Vocational Training Centre, Selesih, Central Agricultural University, Imphal, India
| | - Viswanathan Chinnusamy
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Prabhat Kumar
- Department of Agriculture and Farmers Welfare, Ministry of Agriculture & Farmers Welfare, Govt. of India, Krishi Bhavan, New Delhi, India
| | - Radha Mohan Sharma
- Division of Fruits and Horticultural Technology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Stuti Sharma
- Department of Plant Breeding and Genetics, Jawaharlal Nehru Krishi Vishwavidyalaya, Jabalpur, Madhya Pradesh, India
| | | | - Chavlesh Kumar
- Division of Fruits and Horticultural Technology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
10
|
Kim JY, Lee SJ, Min WK, Cha S, Song JT, Seo HS. COP1 mutation causes low leaf temperature under various abiotic stresses in Arabidopsis thaliana. PLANT DIRECT 2022; 6:e473. [PMID: 36545005 PMCID: PMC9763638 DOI: 10.1002/pld3.473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 10/26/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
Stomata are microscopic pores on epidermal cells of leaves and stems that regulate water loss and gas exchange between the plant and its environment. Constitutive photomorphogenic 1 (COP1) is an E3 ubiquitin ligase that is involved in plant growth and development and multiple abiotic stress responses by regulating the stability of various target proteins. However, little is known about how COP1 controls stomatal aperture and leaf temperature under various environmental conditions. Here, we show that COP1 participates in leaf temperature and stomatal closure regulation under normal and stress conditions in Arabidopsis. Leaf temperature of cop1 mutants was relatively lower than that of wild type (WT) under drought, salt, and heat stress and after abscisic acid (ABA), CaCl2, and H2O2 treatments. However, leaf temperature was generally higher in both WT and cop1 mutants after abiotic stress and chemical treatment than that of untreated WT and cop1 mutants. Stomatal aperture was wider in cop1 mutants than that in WT under all conditions tested, although the extent of stomatal closure varied between WT and cop1 mutants. Under dark conditions, leaf temperature was also lower in cop1 mutants than that in WT. Expression of the genes encoding ABA receptors, ABA biosynthesis proteins, positive regulators of stomatal closure and heat tolerance, and ABA-responsive proteins was lower in cop1 mutants that that in WT. In addition, expression of respiration-related genes was lower in cop1 mutants that that in WT. Taken together, the data provide evidence that mutations in COP1 lead to wider stomatal aperture and higher leaf temperature under normal and stress conditions, indicating that leaf temperature is highly correlated with stomatal aperture.
Collapse
Affiliation(s)
- Joo Yong Kim
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life SciencesSeoul National UniversitySeoulSouth Korea
| | - Seung Ju Lee
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life SciencesSeoul National UniversitySeoulSouth Korea
| | - Wang Ki Min
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life SciencesSeoul National UniversitySeoulSouth Korea
| | - Seoyeon Cha
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life SciencesSeoul National UniversitySeoulSouth Korea
| | - Jong Tae Song
- Department of Applied BiosciencesKyungpook National UniversityDaeguSouth Korea
| | - Hak Soo Seo
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life SciencesSeoul National UniversitySeoulSouth Korea
- Bio‐MAX InstituteSeoul National UniversitySeoulSouth Korea
| |
Collapse
|
11
|
Daems S, Ceusters N, Valcke R, Ceusters J. Effects of chilling on the photosynthetic performance of the CAM orchid Phalaenopsis. FRONTIERS IN PLANT SCIENCE 2022; 13:981581. [PMID: 36507447 PMCID: PMC9732388 DOI: 10.3389/fpls.2022.981581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 11/11/2022] [Indexed: 06/17/2023]
Abstract
INTRODUCTION Crassulacean acid metabolism (CAM) is one of the three main metabolic adaptations for CO2 fixation found in plants. A striking feature for these plants is nocturnal carbon fixation and diurnal decarboxylation of malic acid to feed Rubisco with CO2 behind closed stomata, thereby saving considerable amounts of water. Compared to the effects of high temperatures, drought, and light, much less information is available about the effects of chilling temperatures on CAM plants. In addition a lot of CAM ornamentals are grown in heated greenhouses, urging for a deeper understanding about the physiological responses to chilling in order to increase sustainability in the horticultural sector. METHODS The present study focuses on the impact of chilling temperatures (10°C) for 3 weeks on the photosynthetic performance of the obligate CAM orchid Phalaenopsis 'Edessa'. Detailed assessments of the light reactions were performed by analyzing chlorophyll a fluorescence induction (OJIP) parameters and the carbon fixation reactions by measuring diel leaf gas exchange and diel metabolite patterns. RESULTS AND DISCUSSION Results showed that chilling already affected the light reactions after 24h. Whilst the potential efficiency of photosystem II (PSII) (Fv/Fm) was not yet influenced, a massive decrease in the performance index (PIabs) was noticed. This decrease did not depict an overall downregulation of PSII related energy fluxes since energy absorption and dissipation remained uninfluenced whilst the trapped energy and reduction flux were upregulated. This might point to the presence of short-term adaptation mechanisms to chilling stress. However, in the longer term the electron transport chain from PSII to PSI was affected, impacting both ATP and NADPH provision. To avoid over-excitation and photodamage plants showed a massive increase in thermal dissipation. These considerations are also in line with carbon fixation data showing initial signs of cold adaptation by achieving comparable Rubisco activity compared to unstressed plants but increasing daytime stomatal opening in order to capture a higher proportion of CO2 during daytime. However, in accordance with the light reactions data, Rubisco activity declined and stomatal conductance and CO2 uptake diminished to near zero levels after 3 weeks, indicating that plants were not successful in cold acclimation on the longer term.
Collapse
Affiliation(s)
- Stijn Daems
- Research Group for Sustainable Crop Production & Protection, Division of Crop Biotechnics, Department of Biosystems, KU Leuven, Geel, Belgium
- KU Leuven Plant Institute (LPI), KU Leuven, Leuven, Belgium
| | - Nathalie Ceusters
- Research Group for Sustainable Crop Production & Protection, Division of Crop Biotechnics, Department of Biosystems, KU Leuven, Geel, Belgium
| | - Roland Valcke
- Molecular and Physical Plant Physiology, UHasselt, Diepenbeek, Belgium
| | - Johan Ceusters
- Research Group for Sustainable Crop Production & Protection, Division of Crop Biotechnics, Department of Biosystems, KU Leuven, Geel, Belgium
- KU Leuven Plant Institute (LPI), KU Leuven, Leuven, Belgium
- Centre for Environmental Sciences, Environmental Biology, UHasselt, Diepenbeek, Belgium
| |
Collapse
|
12
|
Takeuchi K, Che Y, Nakano T, Miyake C, Ifuku K. The ability of P700 oxidation in photosystem I reflects chilling stress tolerance in cucumber. JOURNAL OF PLANT RESEARCH 2022; 135:681-692. [PMID: 35767130 DOI: 10.1007/s10265-022-01404-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
Low temperature inhibits photosynthesis and negatively affects plant growth. Cucumber (Cucumis sativus L.) is a chilling-sensitive plant, and its greenhouse production requires considerable energy during the winter. Therefore, a useful stress marker for selecting chilling-tolerant cucumber cultivars is desirable. In this study, we evaluated chilling-stress damage in different cucumber cultivars by measuring photosynthetic parameters. The majority of cultivars showed decreases in the quantum yield of photosystem (PS) II [Fv/Fm and Y(II)] and the quantity of active PS I (Pm) after chilling stress. In contrast, Y(ND)-the ratio of the oxidized state of PSI reaction center chlorophyll P700 (P700+)-differed among cultivars and was perfectly inversely correlated with Y(NA)-the ratio of the non-photooxidizable P700. It has been known that P700+ accumulates under stress conditions and protects plants to suppress the generation of reactive oxygen species. In fact, cultivars unable to induce Y(ND) after chilling stress showed growth retardation with reductions in chlorophyll content and leaf area. Therefore, Y(ND) can be a useful marker to evaluate chilling-stress tolerance in cucumber.
Collapse
Affiliation(s)
- Ko Takeuchi
- Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Yufen Che
- Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Takeshi Nakano
- Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Chikahiro Miyake
- Graduate School of Agriculture, Kobe University, Kobe, Hyogo, Japan
| | - Kentaro Ifuku
- Graduate School of Agriculture, Kyoto University, Kitashirakawa oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan.
| |
Collapse
|
13
|
Rasheed A, Jie Y, Nawaz M, Jie H, Ma Y, Shah AN, Hassan MU, Gillani SFA, Batool M, Aslam MT, Naseem AR, Qari SH. Improving Drought Stress Tolerance in Ramie ( Boehmeria nivea L.) Using Molecular Techniques. FRONTIERS IN PLANT SCIENCE 2022; 13:911610. [PMID: 35845651 PMCID: PMC9280341 DOI: 10.3389/fpls.2022.911610] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 04/26/2022] [Indexed: 06/15/2023]
Abstract
Ramie is one of the most significant fiber crops and contributes to good quality fiber. Drought stress (DS) is one of the most devastating abiotic factors which is accountable for a substantial loss in crop growth and production and disturbing sustainable crop production. DS impairs growth, plant water relation, and nutrient uptake. Ramie has evolved a series of defense responses to cope with DS. There are numerous genes regulating the drought tolerance (DT) mechanism in ramie. The morphological and physiological mechanism of DT is well-studied; however, modified methods would be more effective. The use of novel genome editing tools like clustered regularly interspaced short palindromic repeats (CRISPR) is being used to edit the recessive genes in crops to modify their function. The transgenic approaches are used to develop several drought-tolerant varieties in ramie, and further identification of tolerant genes is needed for an effective breeding plan. Quantitative trait loci (QTLs) mapping, transcription factors (TFs) and speed breeding are highly studied techniques, and these would lead to the development of drought-resilient ramie cultivars. The use of hormones in enhancing crop growth and development under water scarcity circumstances is critical; however, using different concentrations and testing genotypes in changing environments would be helpful to sort the tolerant genotypes. Since plants use various ways to counter DS, investigating mechanisms of DT in plants will lead to improved DT in ramie. This critical review summarized the recent advancements on DT in ramie using novel molecular techniques. This information would help ramie breeders to conduct research studies and develop drought tolerant ramie cultivars.
Collapse
Affiliation(s)
- Adnan Rasheed
- College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Yucheng Jie
- College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Muhammad Nawaz
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Hongdong Jie
- College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Yushen Ma
- College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Adnan Noor Shah
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Muhammad Umair Hassan
- Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang, China
| | | | - Maria Batool
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | | | - Ahmad Raza Naseem
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Sameer H. Qari
- Department of Biology, Al-Jumum University College, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
14
|
Khanthavong P, Yabuta S, Malik AI, Hossain MA, Akagi I, Sakagami JI. Combinational Variation Temperature and Soil Water Response of Stomata and Biomass Production in Maize, Millet, Sorghum and Rice. PLANTS 2022; 11:plants11081039. [PMID: 35448767 PMCID: PMC9031973 DOI: 10.3390/plants11081039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 11/16/2022]
Abstract
Environmental responses of stomatal conductance (gs) as basic information for a photosynthesis-transpiration-coupled model have been increasing under global warming. This study identified the impact of gs behavior under different soil water statuses and temperatures in rice, maize, millet, and sorghum. The experiments consisted of various soil moisture statuses from flooding to drying and combination of soil moisture status and temperature. There was a reduction in shoot biomass of maize and sorghum caused by decreasing of gs, photosynthesis (A), and transpiration (E) in early imposed waterlogging without dependent temperature, whereas millet and rice were dependent on temperature variation. The effect of gradual soil drying, gs, A, and E of maize, millet, and sorghum were caused by low temperature, except rice. The impact of the combination of various soil water statuses and temperatures on gs is important for the trade-off between A and E, and consequently shoot biomass. However, we discovered that an ability to sustain gs is essential for photo assimilation and maintaining leaf temperature through evapotranspiration for biomass production, a mechanism of crop avoidance in variable soil water status and temperature.
Collapse
Affiliation(s)
- Phanthasin Khanthavong
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0056, Japan; (P.K.); (M.A.H.)
- National Agriculture and Forestry Research Institute, Dong Dok, Ban Nongviengkham, Vientiane 7170, Laos
| | - Shin Yabuta
- Faculty of Agriculture, Kagoshima University, Kagoshima 890-0056, Japan; (S.Y.); (I.A.)
| | - Al Imran Malik
- Alliance of Bioversity International and CIAT (Asia), Lao PDR Office, Dong Dok, Ban Nongviengkham, Vientiane 7170, Laos;
| | - Md Amzad Hossain
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0056, Japan; (P.K.); (M.A.H.)
- Faculty of Agriculture, University of the Ryukyu, Okinawa 903-0213, Japan
| | - Isao Akagi
- Faculty of Agriculture, Kagoshima University, Kagoshima 890-0056, Japan; (S.Y.); (I.A.)
| | - Jun-Ichi Sakagami
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0056, Japan; (P.K.); (M.A.H.)
- Faculty of Agriculture, Kagoshima University, Kagoshima 890-0056, Japan; (S.Y.); (I.A.)
- Correspondence: ; Tel.: +81-099-285-8543
| |
Collapse
|
15
|
Li W, Fu Y, Lv W, Zhao S, Feng H, Shao L, Li C, Yang J. Characterization of the early gene expression profile in Populus ussuriensis under cold stress using PacBio SMRT sequencing integrated with RNA-seq reads. TREE PHYSIOLOGY 2022; 42:646-663. [PMID: 34625806 DOI: 10.1093/treephys/tpab130] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
Populus ussuriensis is an important and fast-growing afforestation plant species in north-eastern China. The whole-genome sequencing of P. ussuriensis has not been completed. Also, the transcriptional network of P. ussuriensis response to cold stress remains unknown. To unravel the early response of P. ussuriensis to chilling (3 °C) stress and freezing (-3 °C) stresses at the transcriptional level, we performed single-molecule real-time (SMRT) and Illumina RNA sequencing for P. ussuriensis. The SMRT long-read isoform sequencing led to the identification of 29,243,277 subreads and 575,481 circular consensus sequencing reads. Approximately 50,910 high-quality isoforms were generated, and 2272 simple sequence repeats and 8086 long non-coding RNAs were identified. The Ca2+ content and abscisic acid (ABA) content in P. ussuriensis were significantly increased under cold stresses, while the value in the freezing stress treatment group was significantly higher than the chilling stress treatment group. A total of 49 genes that are involved in the signal transduction pathways related to perception and transmission of cold stress signals, such as the Ca2+ signaling pathway, ABA signaling pathway and MAPK signaling cascade, were found to be differentially expressed. In addition, 158 transcription factors from 21 different families, such as MYB, WRKY and AP2/ERF, were differentially expressed during chilling and freezing treatments. Moreover, the measurement of physiological indicators and bioinformatics observations demonstrated the altered expression pattern of genes involved in reactive oxygen species balance and the sugar metabolism pathway during chilling and freezing stresses. This is the first report of the early responses of P. ussuriensis to cold stress, which lays the foundation for future studies on the regulatory mechanisms in cold-stress response. In addition the full-length reference transcriptome of P. ussuriensis deciphered could be used in future studies on P. ussuriensis.
Collapse
Affiliation(s)
- Wenlong Li
- State Key Laboratory of Forest Genetics and Tree Breeding, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Yanrui Fu
- State Key Laboratory of Forest Genetics and Tree Breeding, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Wanqiu Lv
- State Key Laboratory of Forest Genetics and Tree Breeding, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Shicheng Zhao
- School of Pharmacy, Harbin University of Commerce, No.138 Tongdajie Street, Harbin 150028, China
| | - He Feng
- State Key Laboratory of Forest Genetics and Tree Breeding, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Liying Shao
- State Key Laboratory of Forest Genetics and Tree Breeding, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Chenghao Li
- State Key Laboratory of Forest Genetics and Tree Breeding, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Jingli Yang
- State Key Laboratory of Forest Genetics and Tree Breeding, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| |
Collapse
|
16
|
Das A, Prakash A, Dedon N, Doty A, Siddiqui M, Preston JC. Variation in climatic tolerance, but not stomatal traits, partially explains Pooideae grass species distributions. ANNALS OF BOTANY 2021; 128:83-95. [PMID: 33772589 PMCID: PMC8318108 DOI: 10.1093/aob/mcab046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 03/24/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND AND AIMS Grasses in subfamily Pooideae live in some of the world's harshest terrestrial environments, from frigid boreal zones to the arid windswept steppe. It is hypothesized that the climate distribution of species within this group is driven by differences in climatic tolerance, and that tolerance can be partially explained by variation in stomatal traits. METHODS We determined the aridity index (AI) and minimum temperature of the coldest month (MTCM) for 22 diverse Pooideae accessions and one outgroup, and used comparative methods to assess predicted relationships for climate traits versus fitness traits, stomatal diffusive conductance to water (gw) and speed of stomatal closure following drought and/or cold. KEY RESULTS Results demonstrate that AI and MTCM predict variation in survival/regreening following drought/cold, and gw under drought/cold is positively correlated with δ 13C-measured water use efficiency (WUE). However, the relationship between climate traits and fitness under drought/cold was not explained by gw or speed of stomatal closure. CONCLUSIONS These findings suggest that Pooideae distributions are at least partly determined by tolerance to aridity and above-freezing cold, but that variation in tolerance is not uniformly explained by variation in stomatal traits.
Collapse
Affiliation(s)
- Aayudh Das
- The University of Vermont, Department of Plant Biology, Burlington, VT 05405, USA
| | - Anoob Prakash
- The University of Vermont, Department of Plant Biology, Burlington, VT 05405, USA
| | - Natalie Dedon
- The University of Vermont, Department of Plant Biology, Burlington, VT 05405, USA
| | - Alex Doty
- The University of Vermont, Department of Plant Biology, Burlington, VT 05405, USA
| | - Muniba Siddiqui
- The University of Vermont, Department of Plant Biology, Burlington, VT 05405, USA
| | - Jill C Preston
- The University of Vermont, Department of Plant Biology, Burlington, VT 05405, USA
| |
Collapse
|
17
|
Sadok W, Lopez JR, Smith KP. Transpiration increases under high-temperature stress: Potential mechanisms, trade-offs and prospects for crop resilience in a warming world. PLANT, CELL & ENVIRONMENT 2021; 44:2102-2116. [PMID: 33278035 DOI: 10.1111/pce.13970] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 05/24/2023]
Abstract
The frequency and intensity of high-temperature stress events are expected to increase as climate change intensifies. Concomitantly, an increase in evaporative demand, driven in part by global warming, is also taking place worldwide. Despite this, studies examining high-temperature stress impacts on plant productivity seldom consider this interaction to identify traits enhancing yield resilience towards climate change. Further, new evidence documents substantial increases in plant transpiration rate in response to high-temperature stress even under arid environments, which raise a trade-off between the need for latent cooling dictated by excessive temperatures and the need for water conservation dictated by increasing evaporative demand. However, the mechanisms behind those responses, and the potential to design the next generation of crops successfully navigating this trade-off, remain poorly investigated. Here, we review potential mechanisms underlying reported increases in transpiration rate under high-temperature stress, within the broader context of their impact on water conservation needed for crop drought tolerance. We outline three main contributors to this phenomenon, namely stomatal, cuticular and water viscosity-based mechanisms, and we outline research directions aiming at designing new varieties optimized for specific temperature and evaporative demand regimes to enhance crop productivity under a warmer and dryer climate.
Collapse
Affiliation(s)
- Walid Sadok
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota, USA
| | - Jose R Lopez
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota, USA
| | - Kevin P Smith
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota, USA
| |
Collapse
|
18
|
Khan MIR, Ashfaque F, Chhillar H, Irfan M, Khan NA. The intricacy of silicon, plant growth regulators and other signaling molecules for abiotic stress tolerance: An entrancing crosstalk between stress alleviators. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 162:36-47. [PMID: 33667965 DOI: 10.1016/j.plaphy.2021.02.024] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 02/01/2021] [Indexed: 05/28/2023]
Abstract
Unfavorable environmental conditions are the critical inimical to the sustainable agriculture. Among various novel strategies designed to protect plants from abiotic stress threats, use of mineral elements as 'stress mitigators' has emerged as the most crucial and interesting aspect. Silicon (Si) is a quasi-essential nutrient that mediates plant growth and development and interacts with plant growth regulators (PGRs) and signaling molecules to combat abiotic stress induced adversities in plants and increase stress tolerance. PGRs are one of the most important chemical messengers that mediate plant growth and development during stressful conditions. However, the individual roles of Si and PGRs have extensively defined but their exquisite crosstalk with each other to mediate plant stress responses is still indiscernible. The present review is an upfront effort to delineate an intricate crosstalk/interaction between Si and PGRs to reduce abiotic stress adversities. The combined effects of interaction of Si with other signaling molecules such as reactive oxygen species (ROS), nitric oxide (NO) and calcium (Ca2+) for the survival of plants under stress and optimal conditions are also discussed.
Collapse
Affiliation(s)
| | - Farha Ashfaque
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, India
| | | | - Mohammad Irfan
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, New Jersey, USA
| | - Nafees A Khan
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, India.
| |
Collapse
|
19
|
Ghassemi S, Delangiz N, Asgari Lajayer B, Saghafi D, Maggi F. Review and future prospects on the mechanisms related to cold stress resistance and tolerance in medicinal plants. ACTA ACUST UNITED AC 2021. [DOI: 10.1016/j.chnaes.2020.09.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
20
|
Birkeland S, Gustafsson ALS, Brysting AK, Brochmann C, Nowak MD. Multiple Genetic Trajectories to Extreme Abiotic Stress Adaptation in Arctic Brassicaceae. Mol Biol Evol 2021; 37:2052-2068. [PMID: 32167553 PMCID: PMC7306683 DOI: 10.1093/molbev/msaa068] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/23/2020] [Accepted: 03/10/2020] [Indexed: 12/11/2022] Open
Abstract
Extreme environments offer powerful opportunities to study how different organisms have adapted to similar selection pressures at the molecular level. Arctic plants have adapted to some of the coldest and driest biomes on Earth and typically possess suites of similar morphological and physiological adaptations to extremes in light and temperature. Here, we compare patterns of molecular evolution in three Brassicaceae species that have independently colonized the Arctic and present some of the first genetic evidence for plant adaptations to the Arctic environment. By testing for positive selection and identifying convergent substitutions in orthologous gene alignments for a total of 15 Brassicaceae species, we find that positive selection has been acting on different genes, but similar functional pathways in the three Arctic lineages. The positively selected gene sets identified in the three Arctic species showed convergent functional profiles associated with extreme abiotic stress characteristic of the Arctic. However, there was little evidence for independently fixed mutations at the same sites and for positive selection acting on the same genes. The three species appear to have evolved similar suites of adaptations by modifying different components in similar stress response pathways, implying that there could be many genetic trajectories for adaptation to the Arctic environment. By identifying candidate genes and functional pathways potentially involved in Arctic adaptation, our results provide a framework for future studies aimed at testing for the existence of a functional syndrome of Arctic adaptation in the Brassicaceae and perhaps flowering plants in general.
Collapse
Affiliation(s)
- Siri Birkeland
- Natural History Museum, University of Oslo, Oslo, Norway
| | | | - Anne K Brysting
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway
| | | | | |
Collapse
|
21
|
Foes or Friends: ABA and Ethylene Interaction under Abiotic Stress. PLANTS 2021; 10:plants10030448. [PMID: 33673518 PMCID: PMC7997433 DOI: 10.3390/plants10030448] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 02/22/2021] [Accepted: 02/24/2021] [Indexed: 12/11/2022]
Abstract
Due to their sessile nature, plants constantly adapt to their environment by modulating various internal plant hormone signals and distributions, as plants perceive environmental changes. Plant hormones include abscisic acid (ABA), auxins, brassinosteroids, cytokinins, ethylene, gibberellins, jasmonates, salicylic acid, and strigolactones, which collectively regulate plant growth, development, metabolism, and defense. Moreover, plant hormone crosstalk coordinates a sophisticated plant hormone network to achieve specific physiological functions, on both a spatial and temporal level. Thus, the study of hormone–hormone interactions is a competitive field of research for deciphering the underlying regulatory mechanisms. Among plant hormones, ABA and ethylene present a fascinating case of interaction. They are commonly recognized to act antagonistically in the control of plant growth, and development, as well as under stress conditions. However, several studies on ABA and ethylene suggest that they can operate in parallel or even interact positively. Here, an overview is provided of the current knowledge on ABA and ethylene interaction, focusing on abiotic stress conditions and a simplified hypothetical model describing stomatal closure / opening, regulated by ABA and ethylene.
Collapse
|
22
|
Yu T, Zhang J, Cao J, Cai Q, Li X, Sun Y, Li S, Li Y, Hu G, Cao S, Liu C, Wang G, Wang L, Duan Y. Leaf transcriptomic response mediated by cold stress in two maize inbred lines with contrasting tolerance levels. Genomics 2021; 113:782-794. [PMID: 33516847 DOI: 10.1016/j.ygeno.2021.01.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/10/2021] [Accepted: 01/25/2021] [Indexed: 11/29/2022]
Abstract
Maize (Zea mays L.) is a thermophilic plant and a minor drop in temperature can prolong the maturity period. Plants respond to cold stress through structural and functional modification in cell membranes as well as changes in the photosynthesis and energy metabolism. In order to understand the molecular mechanisms underlying cold tolerance and adaptation, we employed leaf transcriptome sequencing together with leaf microstructure and relative electrical conductivity measurements in two maize inbred lines, having different cold stress tolerance potentials. The leaf physiological and transcriptomic responses of maize seedlings were studied after growing both inbred lines at 5 °C for 0, 12 and 24 h. Differentially expressed genes were enriched in photosynthesis antenna proteins, MAPK signaling pathway, plant hormone signal transduction, circadian rhythm, secondary metabolites related pathways, ribosome, and proteasome. The seedlings of both genotypes employed common stress responsive pathways to respond to cold stress. However, the cold tolerant line B144 protected its photosystem II from photooxidation by upregulating D1 proteins. The sensitive line Q319 was unable to close its stomata. Collectively, B144 exhibited a cold tolerance owing to its ability to mediate changes in stomata opening as well as protecting photosystem. These results increase our understanding on the cold stress tolerance in maize seedlings and propose multiple key regulators of stress responses such as modifications in photosystem II, stomata guard cell opening and closing, changes in secondary metabolite biosynthesis, and circadian rhythm. This study also presents the signal transduction related changes in MAPK and phytohormone signaling pathways in response to cold stress during seedling stage of maize.
Collapse
Affiliation(s)
- Tao Yu
- Heilongjiang Academy of Agricultural Sciences Postdoctoral Programme, Harbin, 150086, Heilongjiang, China; Maize Research Institute of Heilongjiang Academy of Agricultural Sciences, Nangrang, Harbin, Heilongjiang, China
| | - Jianguo Zhang
- Heilongjiang Academy of Agricultural Sciences Postdoctoral Programme, Harbin, 150086, Heilongjiang, China; Maize Research Institute of Heilongjiang Academy of Agricultural Sciences, Nangrang, Harbin, Heilongjiang, China
| | - Jingsheng Cao
- Maize Research Institute of Heilongjiang Academy of Agricultural Sciences, Nangrang, Harbin, Heilongjiang, China.
| | - Quan Cai
- Maize Research Institute of Heilongjiang Academy of Agricultural Sciences, Nangrang, Harbin, Heilongjiang, China
| | - Xin Li
- Maize Research Institute of Heilongjiang Academy of Agricultural Sciences, Nangrang, Harbin, Heilongjiang, China
| | - Yan Sun
- Maize Research Institute of Heilongjiang Academy of Agricultural Sciences, Nangrang, Harbin, Heilongjiang, China
| | - Sinan Li
- Maize Research Institute of Heilongjiang Academy of Agricultural Sciences, Nangrang, Harbin, Heilongjiang, China
| | - Yunlong Li
- Maize Research Institute of Heilongjiang Academy of Agricultural Sciences, Nangrang, Harbin, Heilongjiang, China
| | - Guanghui Hu
- Maize Research Institute of Heilongjiang Academy of Agricultural Sciences, Nangrang, Harbin, Heilongjiang, China
| | - Shiliang Cao
- Maize Research Institute of Heilongjiang Academy of Agricultural Sciences, Nangrang, Harbin, Heilongjiang, China
| | - Changhua Liu
- College of Advanced Agriculture and Ecological Environment, Heilongjiang Academy of Agricultural Sciences, Nangang, Harbin, Heilongjiang, China
| | - Gangqing Wang
- Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Lishan Wang
- College of Advanced Agriculture and Ecological Environment, Heilongjiang Academy of Agricultural Sciences, Nangang, Harbin, Heilongjiang, China
| | - Yajuan Duan
- College of Advanced Agriculture and Ecological Environment, Heilongjiang Academy of Agricultural Sciences, Nangang, Harbin, Heilongjiang, China
| |
Collapse
|
23
|
Barnaby JY, Kim J, Devi MJ, Fleisher DH, Tucker ML, Reddy VR, Sicher RC. Varying Atmospheric CO 2 Mediates the Cold-Induced CBF-Dependent Signaling Pathway and Freezing Tolerance in Arabidopsis. Int J Mol Sci 2020; 21:ijms21207616. [PMID: 33076265 PMCID: PMC7593905 DOI: 10.3390/ijms21207616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 11/16/2022] Open
Abstract
Changes in the stomatal aperture in response to CO2 levels allow plants to manage water usage, optimize CO2 uptake and adjust to environmental stimuli. The current study reports that sub-ambient CO2 up-regulated the low temperature induction of the C-repeat Binding Factor (CBF)-dependent cold signaling pathway in Arabidopsis (Arabidopsis thaliana) and the opposite occurred in response to supra-ambient CO2. Accordingly, cold induction of various downstream cold-responsive genes was modified by CO2 treatments and expression changes were either partially or fully CBF-dependent. Changes in electrolyte leakage during freezing tests were correlated with CO2′s effects on CBF expression. Cold treatments were also performed on Arabidopsis mutants with altered stomatal responses to CO2, i.e., high leaf temperature 1-2 (ht1-2, CO2 hypersensitive) and β-carbonic anhydrase 1 and 4 (ca1ca4, CO2 insensitive). The cold-induced expression of CBF and downstream CBF target genes plus freezing tolerance of ht1-2 was consistently less than that for Col-0, suggesting that HT1 is a positive modulator of cold signaling. The ca1ca4 mutant had diminished CBF expression during cold treatment but the downstream expression of cold-responsive genes was either similar to or greater than that of Col-0. This finding suggested that βCA1/4 modulates the expression of certain cold-responsive genes in a CBF-independent manner. Stomatal conductance measurements demonstrated that low temperatures overrode low CO2-induced stomatal opening and this process was delayed in the cold tolerant mutant, ca1ca4, compared to the cold sensitive mutant, ht1-2. The similar stomatal responses were evident from freezing tolerant line, Ox-CBF, overexpression of CBF3, compared to wild-type ecotype Ws-2. Together, these results indicate that CO2 signaling in stomata and CBF-mediated cold signaling work coordinately in Arabidopsis to manage abiotic stress.
Collapse
Affiliation(s)
- Jinyoung Y. Barnaby
- Adaptive Cropping Systems Laboratory, Agricultural Research Service, USDA, Building 001, 10300 Baltimore Ave., Beltsville, MD 20705, USA; (M.J.D.); (D.H.F.); (V.R.R.); (R.C.S.)
- Dale Bumpers National Rice Research Center, Agricultural Research Service, USDA, Building 001, 10300 Baltimore Ave., Beltsville, MD 20705, USA
- Correspondence: ; Tel.:+1-301-504-8436
| | - Joonyup Kim
- Soybean Genomics and Improvement Laboratory, Agricultural Research Service, USDA, Building 006, 10300 Baltimore Ave., Beltsville, MD 20705, USA; (J.K.); (M.L.T.)
| | - Mura Jyostna Devi
- Adaptive Cropping Systems Laboratory, Agricultural Research Service, USDA, Building 001, 10300 Baltimore Ave., Beltsville, MD 20705, USA; (M.J.D.); (D.H.F.); (V.R.R.); (R.C.S.)
| | - David H. Fleisher
- Adaptive Cropping Systems Laboratory, Agricultural Research Service, USDA, Building 001, 10300 Baltimore Ave., Beltsville, MD 20705, USA; (M.J.D.); (D.H.F.); (V.R.R.); (R.C.S.)
| | - Mark L. Tucker
- Soybean Genomics and Improvement Laboratory, Agricultural Research Service, USDA, Building 006, 10300 Baltimore Ave., Beltsville, MD 20705, USA; (J.K.); (M.L.T.)
| | - Vangimalla R. Reddy
- Adaptive Cropping Systems Laboratory, Agricultural Research Service, USDA, Building 001, 10300 Baltimore Ave., Beltsville, MD 20705, USA; (M.J.D.); (D.H.F.); (V.R.R.); (R.C.S.)
| | - Richard C. Sicher
- Adaptive Cropping Systems Laboratory, Agricultural Research Service, USDA, Building 001, 10300 Baltimore Ave., Beltsville, MD 20705, USA; (M.J.D.); (D.H.F.); (V.R.R.); (R.C.S.)
| |
Collapse
|
24
|
Silicon Alleviates Temperature Stresses in Poinsettia by Regulating Stomata, Photosynthesis, and Oxidative Damages. AGRONOMY-BASEL 2020. [DOI: 10.3390/agronomy10091419] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The effects of silicon (Si) on temperature stresses were investigated in poinsettia. Well-rooted cuttings supplemented with and without Si were exposed to 40 °C, and plants treated with or without Si during cutting propagation and cultivation were subjected to 4 °C. The results showed that almost all the stomata of cuttings without Si supplementation were closed, while some of them were still open in cuttings supplemented with Si under a high temperature stress. However, Si was not able to alleviate stomatal closure of poinsettia under low temperature stress. The increased epicuticular wax might contribute to enhanced resistance of poinsettia to low temperature stresses. In addition, poinsettia maintained a higher photosynthetic rate and lower malonaldehyde and hydrogen sulfide concentrations when supplemented with Si under high and low temperature stresses, which might contribute to lower APX activities. Overall, temperature stresses had negative impacts on the physiological characteristics of poinsettia, while Si could alleviate some effects of temperature stresses.
Collapse
|
25
|
Augustyniak A, Pawłowicz I, Lechowicz K, Izbiańska-Jankowska K, Arasimowicz-Jelonek M, Rapacz M, Perlikowski D, Kosmala A. Freezing Tolerance of Lolium multiflorum/Festuca arundinacea Introgression Forms is Associated with the High Activity of Antioxidant System and Adjustment of Photosynthetic Activity under Cold Acclimation. Int J Mol Sci 2020; 21:ijms21165899. [PMID: 32824486 PMCID: PMC7460622 DOI: 10.3390/ijms21165899] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 07/21/2020] [Accepted: 07/25/2020] [Indexed: 12/15/2022] Open
Abstract
Though winter-hardiness is a complex trait, freezing tolerance was proved to be its main component. Species from temperate regions acquire tolerance to freezing in a process of cold acclimation, which is associated with the exposure of plants to low but non-freezing temperatures. However, mechanisms of cold acclimation in Lolium-Festuca grasses, important for forage production in Europe, have not been fully recognized. Thus, two L. multiflorum/F. arundinacea introgression forms with distinct freezing tolerance were used herein as models in the comprehensive research to dissect these mechanisms in that group of plants. The work was focused on: (i) analysis of cellular membranes' integrity; (ii) analysis of plant photosynthetic capacity (chlorophyll fluorescence; gas exchange; gene expression, protein accumulation, and activity of selected enzymes of the Calvin cycle); (iii) analysis of plant antioxidant capacity (reactive oxygen species generation; gene expression, protein accumulation, and activity of selected enzymes); and (iv) analysis of Cor14b accumulation, under cold acclimation. The more freezing tolerant introgression form revealed a higher integrity of membranes, an ability to cold acclimate its photosynthetic apparatus and higher water use efficiency after three weeks of cold acclimation, as well as a higher capacity of the antioxidant system and a lower content of reactive oxygen species in low temperature.
Collapse
Affiliation(s)
- Adam Augustyniak
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland; (A.A.); (I.P.); (K.L.); (D.P.)
| | - Izabela Pawłowicz
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland; (A.A.); (I.P.); (K.L.); (D.P.)
| | - Katarzyna Lechowicz
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland; (A.A.); (I.P.); (K.L.); (D.P.)
| | - Karolina Izbiańska-Jankowska
- Department of Plant Ecophysiology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland; (K.I.-J.); (M.A.-J.)
| | - Magdalena Arasimowicz-Jelonek
- Department of Plant Ecophysiology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland; (K.I.-J.); (M.A.-J.)
| | - Marcin Rapacz
- Department of Plant Breeding, Physiology and Seed Science, University of Agriculture in Kraków, Podłużna 3, 30-239 Kraków, Poland;
| | - Dawid Perlikowski
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland; (A.A.); (I.P.); (K.L.); (D.P.)
| | - Arkadiusz Kosmala
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland; (A.A.); (I.P.); (K.L.); (D.P.)
- Correspondence:
| |
Collapse
|
26
|
Wei H, Liu C, Hu J, Jeong BR. Quality of Supplementary Morning Lighting (SML) During Propagation Period Affects Physiology, Stomatal Characteristics, and Growth of Strawberry Plants. PLANTS (BASEL, SWITZERLAND) 2020; 9:E638. [PMID: 32429476 PMCID: PMC7285151 DOI: 10.3390/plants9050638] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/12/2020] [Accepted: 05/14/2020] [Indexed: 11/16/2022]
Abstract
Artificial light supplementation is widely used in modern agriculture. Due to their numerous advantages, light emitting diodes (LEDs) are widely used to effectively increase the yield or control the development of crops. In the present study, the effects of supplementary morning lighting (SML) with LEDs on the physiology and stomatal characteristics of strawberry plants were studied, with the aim of awakening the plant guard cells before sunrise and enabling strawberry plants to efficiently photosynthesize immediately after sunrise. Young daughter plants of 'Maehyang' and 'Seolhyang' strawberry cultivars that have just rooted were grown under LEDs with different wavelengths-white (W), red (R), mixed blue and red (BR, 1:1), and blue (B)-to investigate the effects of the SML on the physiology, stomatal characteristics, and growth. The SML was provided for 2 h at an intensity of 100 μmol·m-2·s-1 PPFD before sunrise every morning. A group without supplementary lighting was set as the control. The results showed that the different SML qualities have significantly affected the stomatal characteristics. The B SML promoted the stomatal opening more effectively compared to the other SMLs. The stomatal conductance and quantum yield (Fv/Fm) of leaves treated with the SMLs were higher than those of the control group. The B and BR SMLs most significantly affected the stomatal conductance and quantum yield (Fv/Fm). After 30 days of the SML treatments, it was observed that the B SML effectively improved the plant quality, chlorophyll content, and carbohydrate accumulation in the two strawberry cultivars. In general, a short-term exposure to blue light before sunrise can effectively improve the quality and promote the production of strawberry plants.
Collapse
Affiliation(s)
- Hao Wei
- Department of Horticulture, Division of Applied Life Science (BK21 Plus Program), Graduate School of Gyeongsang National University, Jinju 52828, Korea; (H.W.); (C.L.); (J.H.)
| | - Chen Liu
- Department of Horticulture, Division of Applied Life Science (BK21 Plus Program), Graduate School of Gyeongsang National University, Jinju 52828, Korea; (H.W.); (C.L.); (J.H.)
| | - Jiangtao Hu
- Department of Horticulture, Division of Applied Life Science (BK21 Plus Program), Graduate School of Gyeongsang National University, Jinju 52828, Korea; (H.W.); (C.L.); (J.H.)
| | - Byoung Ryong Jeong
- Department of Horticulture, Division of Applied Life Science (BK21 Plus Program), Graduate School of Gyeongsang National University, Jinju 52828, Korea; (H.W.); (C.L.); (J.H.)
- Institute of Agriculture & Life Science, Gyeongsang National University, Jinju 52828, Korea
- Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Korea
| |
Collapse
|
27
|
Lim CW, Lee SC. ABA-Dependent and ABA-Independent Functions of RCAR5/PYL11 in Response to Cold Stress. FRONTIERS IN PLANT SCIENCE 2020; 11:587620. [PMID: 33101352 PMCID: PMC7545830 DOI: 10.3389/fpls.2020.587620] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/09/2020] [Indexed: 05/04/2023]
Abstract
Arabidopsis thaliana has 14 abscisic acid (ABA) receptors-PYR1/PYLs/RCARs-which have diverse and redundant functions in ABA signaling; however, the precise role of these ABA receptors remains to be elucidated. Here, we report the functional characterization of RCAR5/PYL11 in response to cold stress. Expression of RCAR5 gene in dry seeds and leaves was ABA-dependent and ABA-independent, respectively. Under cold stress conditions, seed germination was negatively affected by the level of RCAR5 expression, which was dependent on ABA and was regulated by HAB1, OST1, and ABI5-downstream components of RCAR5 in ABA signaling. Leaves of RCAR5-overexpressing plants showed enhanced stomatal closure-independent of ABA-and high expression levels of cold, dehydration, and/or ABA-responsive genes compared to those of wild-type; these traits conferred enhanced freezing tolerance. Our data suggest that RCAR5 functions in response to cold stress by delaying seed germination and inducing rapid stomatal closure via ABA-dependent and ABA-independent pathways, respectively.
Collapse
|
28
|
Sevanto S. Methods for Assessing the Role of Phloem Transport in Plant Stress Responses. Methods Mol Biol 2019; 2014:311-336. [PMID: 31197806 DOI: 10.1007/978-1-4939-9562-2_25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Delivery of carbohydrates to tissues that need them under stress is important for plant defenses and survival. Yet, little is known on how phloem function is altered under stress, and how that influences plant responses to stress. This is because phloem is a challenging tissue to study. It consists of cells of various types with soft cell walls, and the cells show strong wounding reactions to protect their integrity, making both imaging and functional studies challenging. This chapter summarizes theories on how phloem transport is affected by stress and presents methods that have been used to gain the current knowledge. These techniques range from tracer studies and imaging to carbon balance and anatomical analyses. Advances in these techniques in the recent years have considerably increased our ability to investigate phloem function, and application of the new methods on plant stress studies will help provide a more comprehensive picture of phloem function and its limitations under stress.
Collapse
Affiliation(s)
- Sanna Sevanto
- Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, NM, USA.
| |
Collapse
|
29
|
Campos Mantello C, Boatwright L, da Silva CC, Scaloppi EJ, de Souza Goncalves P, Barbazuk WB, Pereira de Souza A. Deep expression analysis reveals distinct cold-response strategies in rubber tree (Hevea brasiliensis). BMC Genomics 2019; 20:455. [PMID: 31164105 PMCID: PMC6549365 DOI: 10.1186/s12864-019-5852-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 05/28/2019] [Indexed: 01/08/2023] Open
Abstract
Background Natural rubber, an indispensable commodity used in approximately 40,000 products, is fundamental to the tire industry. The rubber tree species Hevea brasiliensis (Willd. ex Adr. de Juss.) Muell-Arg., which is native the Amazon rainforest, is the major producer of latex worldwide. Rubber tree breeding is time consuming, expensive and requires large field areas. Thus, genetic studies could optimize field evaluations, thereby reducing the time and area required for these experiments. In this work, transcriptome sequencing was used to identify a full set of transcripts and to evaluate the gene expression involved in the different cold-response strategies of the RRIM600 (cold-resistant) and GT1 (cold-tolerant) genotypes. Results We built a comprehensive transcriptome using multiple database sources, which resulted in 104,738 transcripts clustered in 49,304 genes. The RNA-seq data from the leaf tissues sampled at four different times for each genotype were used to perform a gene-level expression analysis. Differentially expressed genes (DEGs) were identified through pairwise comparisons between the two genotypes for each time series of cold treatments. DEG annotation revealed that RRIM600 and GT1 exhibit different chilling tolerance strategies. To cope with cold stress, the RRIM600 clone upregulates genes promoting stomata closure, photosynthesis inhibition and a more efficient reactive oxygen species (ROS) scavenging system. The transcriptome was also searched for putative molecular markers (single nucleotide polymorphisms (SNPs) and microsatellites) in each genotype. and a total of 27,111 microsatellites and 202,949 (GT1) and 156,395 (RRIM600) SNPs were identified in GT1 and RRIM600. Furthermore, a search for alternative splicing (AS) events identified a total of 20,279 events. Conclusions The elucidation of genes involved in different chilling tolerance strategies associated with molecular markers and information regarding AS events provides a powerful tool for further genetic and genomic analyses of rubber tree breeding. Electronic supplementary material The online version of this article (10.1186/s12864-019-5852-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Camila Campos Mantello
- Molecular Biology and Genetic Engineering Center (CBMEG), University of Campinas (UNICAMP), Campinas, SP, Brazil.,Department of Biology, University of Florida, Gainesville, FL, USA.,The John Bingham Laboratory, National Institute of Agricultural Botany, Cambridge, UK
| | - Lucas Boatwright
- Department of Biology, University of Florida, Gainesville, FL, USA
| | - Carla Cristina da Silva
- Molecular Biology and Genetic Engineering Center (CBMEG), University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Erivaldo Jose Scaloppi
- Rubber Research Advanced Center (CAPSA), Agronomical Institute (IAC), Votuporanga, SP, Brazil
| | | | - W Brad Barbazuk
- Department of Biology, University of Florida, Gainesville, FL, USA.,Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Anete Pereira de Souza
- Molecular Biology and Genetic Engineering Center (CBMEG), University of Campinas (UNICAMP), Campinas, SP, Brazil. .,Department of Plant Biology, Biology Institute, University of Campinas (UNICAMP), Campinas, SP, Brazil.
| |
Collapse
|
30
|
Ding Y, Shi Y, Yang S. Advances and challenges in uncovering cold tolerance regulatory mechanisms in plants. THE NEW PHYTOLOGIST 2019; 222:1690-1704. [PMID: 30664232 DOI: 10.1111/nph.15696] [Citation(s) in RCA: 392] [Impact Index Per Article: 78.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 01/15/2019] [Indexed: 05/18/2023]
Abstract
Contents Summary I. Introduction II. Cold stress and physiological responses in plants III. Sensing of cold signals in plants IV. Messenger molecules involved in cold signal transduction V. Cold signal transduction in plants VI. Conclusions and perspectives Acknowledgements References SUMMARY: Cold stress is a major environmental factor that seriously affects plant growth and development, and influences crop productivity. Plants have evolved a series of mechanisms that allow them to adapt to cold stress at both the physiological and molecular levels. Over the past two decades, much progress has been made in identifying crucial components involved in cold-stress tolerance and dissecting their regulatory mechanisms. In this review, we summarize recent major advances in our understanding of cold signalling and put forward open questions in the field of plant cold-stress responses. Answering these questions should help elucidate the molecular mechanisms underlying plant tolerance to cold stress.
Collapse
Affiliation(s)
- Yanglin Ding
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yiting Shi
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Shuhua Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
31
|
Agurla S, Gahir S, Munemasa S, Murata Y, Raghavendra AS. Mechanism of Stomatal Closure in Plants Exposed to Drought and Cold Stress. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1081:215-232. [PMID: 30288712 DOI: 10.1007/978-981-13-1244-1_12] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Drought is one of the abiotic stresses which impairs the plant growth/development and restricts the yield of many crops throughout the world. Stomatal closure is a common adaptation response of plants to the onset of drought condition. Stomata are microscopic pores on the leaf epidermis, which regulate the transpiration/CO2 uptake by leaves. Stomatal guard cells can sense various abiotic and biotic stress stimuli from the internal and external environment and respond quickly to initiate closure under unfavorable conditions. Stomata also limit the entry of pathogens into leaves, restricting their invasion. Drought is accompanied by the production and/or mobilization of the phytohormone, abscisic acid (ABA), which is well-known for its ability to induce stomatal closure. Apart from the ABA, various other factors that accumulate during drought and affect the stomatal function are plant hormones (auxins, MJ, ethylene, brassinosteroids, and cytokinins), microbial elicitors (salicylic acid, harpin, Flg 22, and chitosan), and polyamines . The role of various signaling components/secondary messengers during stomatal opening or closure has been a matter of intense investigation. Reactive oxygen species (ROS) , nitric oxide (NO) , cytosolic pH, and calcium are some of the well-documented signaling components during stomatal closure. The interrelationship and interactions of these signaling components such as ROS, NO, cytosolic pH, and free Ca2+ are quite complex and need further detailed examination.Low temperatures can have deleterious effects on plants. However, plants evolved protection mechanisms to overcome the impact of this stress. Cold temperature inhibits stomatal opening and causes stomatal closure. Cold-acclimated plants often exhibit marked changes in their lipid composition, particularly of the membranes. Cold stress often leads to the accumulation of ABA, besides osmolytes such as glycine betaine and proline. The role of signaling components such as ROS, NO, and Ca2+ during cold acclimation is yet to be established, though the effects of cold stress on plant growth and development are studied extensively. The information on the mitigation processes is quite limited. We have attempted to describe consequences of drought and cold stress in plants, emphasizing stomatal closure. Several of these factors trigger signaling components in roots, shoots, and atmosphere, all leading to stomatal closure. A scheme is presented to show the possible signaling events and their convergence and divergence of action during stomatal closure. The possible directions for future research are discussed.
Collapse
Affiliation(s)
- Srinivas Agurla
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Shashibhushan Gahir
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Shintaro Munemasa
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Yoshiyuki Murata
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan.
| | - Agepati S Raghavendra
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, India.
| |
Collapse
|
32
|
Hajihashemi S, Noedoost F, Geuns JMC, Djalovic I, Siddique KHM. Effect of Cold Stress on Photosynthetic Traits, Carbohydrates, Morphology, and Anatomy in Nine Cultivars of Stevia rebaudiana. FRONTIERS IN PLANT SCIENCE 2018; 9:1430. [PMID: 30323827 PMCID: PMC6172358 DOI: 10.3389/fpls.2018.01430] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 09/07/2018] [Indexed: 05/20/2023]
Abstract
Stevia rebaudiana Bertoni is a sweet medicinal herb that is cultivated worldwide. This study aimed to identify the genotypic responses and function of nine cultivars of S. rebaudiana (accession numbers 1-9 from the EUSTAS Stevia Gene Bank) to low temperature. Plants were grown in vitro and incubated under controlled conditions at 5° or 25°C for 1 month. Cold stress significantly decreased the maximum quantum yield of photosystem II (Fv/Fm) in all cultivars, which was more pronounced in cultivars 5, 6, 8, and 9. The efficiency of photosystems I and II (PIABS) also declined in cold-stressed plants and was accompanied by reductions in net photosynthesis (PN), intercellular CO2 (Ci), water use efficiency (WUE), and chlorophyll a, chlorophyll b and carotenoid contents, more so in cultivars 5, 6, 8, and 9. Regardless of the downregulation of photosynthetic capacity, the cold stress increased water-soluble carbohydrates in all cultivars, which was accompanied by an increase in fresh leaf mass and area, more so in cultivars 5, 6, 8, and 9. Furthermore, cold stress increased the stomatal index and density, epidermal cell density, stem diameter, xylem vessel width, phloem tissue width, and number of sclerenchyma in all cultivars. Even though the nine cultivars of S. rebaudiana had lower PSII efficiencies at low temperatures, the increase in carbohydrates and leaf mass suggests that damage to PSII is not responsible for the reduction in its efficiency.
Collapse
Affiliation(s)
- Shokoofeh Hajihashemi
- Plant Biology Department, Faculty of Science, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran
| | - Fariba Noedoost
- Plant Biology Department, Faculty of Science, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran
| | - Jan M. C. Geuns
- Laboratory of Functional Biology, KU Leuven, Leuven, Belgium
| | - Ivica Djalovic
- Institute of Field and Vegetable Crops, Novi Sad, Serbia
| | - Kadambot H. M. Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
33
|
Bilska-Kos A, Panek P, Szulc-Głaz A, Ochodzki P, Cisło A, Zebrowski J. Chilling-induced physiological, anatomical and biochemical responses in the leaves of Miscanthus × giganteus and maize (Zea mays L.). JOURNAL OF PLANT PHYSIOLOGY 2018; 228:178-188. [PMID: 29945073 DOI: 10.1016/j.jplph.2018.05.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 04/28/2018] [Accepted: 05/15/2018] [Indexed: 05/21/2023]
Abstract
Miscanthus × giganteus and Zea mays, closely-related C4 grasses, originated from warm climates react differently to low temperature. To investigate the response to cold (12-14 °C) in these species, the photosynthetic and anatomical parameters as well as biochemical properties of the cell wall were studied. The research was performed using M. giganteus (MG) and two Z. mays lines differentiated for chilling-sensitivity: chilling-tolerant (Zm-T) and chilling-sensitive (Zm-S). The chilled plants of Zm-S line demonstrated strong inhibition of net CO2 assimilation and a clear decrease in F'v/F'm, Fv/Fm and ɸPSII, while in MG and Zm-T plants these parameters were almost unchanged. The anatomical studies revealed that MG plants had thinner leaves, epidermis and mesophyll cell layer as well as thicker cell walls in the comparison to both maize lines. Cold led to an increase in leaf thickness and mesophyll cell layer thickness in the Zm-T maize line, while the opposite response was observed in Zm-S. In turn, in chilled plants of MG and Zm-T lines, some anatomical parameters associated with bundle sheath cells were higher. In addition, Zm-S line showed the strong increase in the cell wall thickness at cold for mesophyll and bundle sheath cells. Chilling-treatment induced the changes in the cell wall biochemistry of tested species, mainly in the content of glucuronoarabinoxylan, uronic acid, β-glucan and phenolic compounds. This work presents a new approach in searching of mechanism(s) of tolerance/sensitivity to low temperature in two thermophilic plants: Miscanthus and maize.
Collapse
Affiliation(s)
- Anna Bilska-Kos
- Department of Plant Biochemistry and Physiology, Plant Breeding and Acclimatization Institute - National Research Institute, Radzików, 05-870, Błonie, Poland; Department of Plant Physiology, Faculty of Biotechnology, University of Rzeszow, Aleja Rejtana 16c, 35-959, Rzeszow, Poland.
| | - Piotr Panek
- Department of Plant Physiology, Faculty of Biotechnology, University of Rzeszow, Aleja Rejtana 16c, 35-959, Rzeszow, Poland
| | - Anna Szulc-Głaz
- Department of Plant Physiology, Faculty of Biotechnology, University of Rzeszow, Aleja Rejtana 16c, 35-959, Rzeszow, Poland
| | - Piotr Ochodzki
- Department of Plant Pathology, Plant Breeding and Acclimatization Institute - National Research Institute, Radzików, 05-870, Błonie, Poland
| | - Aneta Cisło
- Department of Plant Physiology, Faculty of Biotechnology, University of Rzeszow, Aleja Rejtana 16c, 35-959, Rzeszow, Poland
| | - Jacek Zebrowski
- Department of Plant Physiology, Faculty of Biotechnology, University of Rzeszow, Aleja Rejtana 16c, 35-959, Rzeszow, Poland
| |
Collapse
|
34
|
Shi Y, Ding Y, Yang S. Molecular Regulation of CBF Signaling in Cold Acclimation. TRENDS IN PLANT SCIENCE 2018; 23:623-637. [PMID: 29735429 DOI: 10.1016/j.tplants.2018.04.002] [Citation(s) in RCA: 374] [Impact Index Per Article: 62.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 03/28/2018] [Accepted: 04/05/2018] [Indexed: 05/19/2023]
Abstract
Cold stress restricts plant growth, development, and distribution. Understanding how plants transduce and respond to cold signals has long been a topic of interest. Traditional genetic and molecular analyses have identified C-repeat/DREB binding factors (CBFs) as key transcription factors that function in cold acclimation. Recent studies revealed the involvement of pivotal protein kinases and transcription factors in CBF-dependent signaling, expanding our knowledge of cold signal transduction from perception to downstream gene expression events. In this review, we summarize recent advances in our understanding of the molecular regulation of these core components of the CBF cold signaling pathway. Knowledge of the mechanism underlying the ability of plants to survive freezing temperatures will facilitate the development of crop plants with increased freezing tolerance.
Collapse
Affiliation(s)
- Yiting Shi
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China; These authors contributed equally
| | - Yanglin Ding
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China; These authors contributed equally
| | - Shuhua Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
35
|
Xie Y, Chen P, Yan Y, Bao C, Li X, Wang L, Shen X, Li H, Liu X, Niu C, Zhu C, Fang N, Shao Y, Zhao T, Yu J, Zhu J, Xu L, van Nocker S, Ma F, Guan Q. An atypical R2R3 MYB transcription factor increases cold hardiness by CBF-dependent and CBF-independent pathways in apple. THE NEW PHYTOLOGIST 2018; 218:201-218. [PMID: 29266327 DOI: 10.1111/nph.14952] [Citation(s) in RCA: 159] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 11/13/2017] [Indexed: 05/19/2023]
Abstract
Apple (Malus × domestica) trees are vulnerable to freezing temperatures. However, there has been only limited success in developing cold-hardy cultivars. This lack of progress is due at least partly to lack of understanding of the molecular mechanisms of freezing tolerance in apple. In this study, we evaluated the potential roles for two R2R3 MYB transcription factors (TFs), MYB88 and the paralogous FLP (MYB124), in cold stress in apple and Arabidopsis. We found that MYB88 and MYB124 positively regulate freezing tolerance and cold-responsive gene expression in both apple and Arabidopsis. Chromatin-Immunoprecipitation-qPCR and electrophoretic mobility shift assays showed that MdMYB88/MdMYB124 act as direct regulators of the COLD SHOCK DOMAIN PROTEIN 3 (MdCSP3) and CIRCADIAN CLOCK ASSOCIATED 1 (MdCCA1) genes. Dual luciferase reporter assay indicated that MdCCA1 but not MdCSP3 activated the expression of MdCBF3 under cold stress. Moreover, MdMYB88 and MdMYB124 promoted anthocyanin accumulation and H2 O2 detoxification in response to cold. Taken together, our results suggest that MdMYB88 and MdMYB124 positively regulate cold hardiness and cold-responsive gene expression under cold stress by C-REPEAT BINDING FACTOR (CBF)-dependent and CBF-independent pathways.
Collapse
Affiliation(s)
- Yinpeng Xie
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, China
| | - Pengxiang Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, China
| | - Yan Yan
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, China
| | - Chana Bao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, China
| | - Xuewei Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, China
| | - Liping Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, China
| | - Xiaoxia Shen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, China
| | - Haiyan Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, China
| | - Xiaofang Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, China
| | - Chundong Niu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, China
| | - Chen Zhu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, China
| | - Nan Fang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, China
| | - Yun Shao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, China
| | - Tao Zhao
- Biosystematics Group, Wageningen University, 6708, PB Wageningen, the Netherlands
| | - Jiantao Yu
- College of Information Engineering, Northwest A&F University, Yangling, 712100, China
| | - Jianhua Zhu
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, 20742, USA
| | - Lingfei Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, China
| | - Steven van Nocker
- Department of Horticulture, Michigan State University, 1066 Bogue St, East Lansing, MI, 48824, USA
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, China
| | - Qingmei Guan
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, China
| |
Collapse
|
36
|
Jurczyk B, Grzesiak M, Pociecha E, Wlazło M, Rapacz M. Diverse Stomatal Behaviors Mediating Photosynthetic Acclimation to Low Temperatures in Hordeum vulgare. FRONTIERS IN PLANT SCIENCE 2018; 9:1963. [PMID: 30687360 PMCID: PMC6333868 DOI: 10.3389/fpls.2018.01963] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 12/18/2018] [Indexed: 05/21/2023]
Abstract
Photosynthetic acclimation to cold conditions is an important factor influencing freezing tolerance of plants. Photosynthetic enzyme activities increase as part of a photochemical mechanism underlying photosynthetic acclimation to low temperatures. Additionally, a non-photochemical mechanism may be activated to minimize photooxidative damage. The aim of this study was to test the hypothesis that differences in stomatal conductance in Hordeum vulgare plants with contrasting freezing tolerances induce various strategies for photosynthetic acclimation to cold stress. Different stomatal behaviors during the prehardening step resulted in diverse plant reactions to low-temperature stress. Plants with a relatively low freezing tolerance exhibited decreased stomatal conductance, resulting in decreased photochemical activity, faster induction of the non-photochemical mechanism, and downregulated expression of two Rubisco activase (RcaA) splicing variants. In contrast, plants with a relatively high freezing tolerance that underwent a prehardening step maintained the stomatal conductance at control level and exhibited delayed photochemical activity and RcaA expression decrease, and increased Rubisco activity, which increased net photosynthetic rate. Thus, in barley, the induction of photoinhibition avoidance (i.e., non-photochemical photoacclimation mechanism) is insufficient for an effective cold acclimation. An increase in cold-induced net photosynthetic rate due to open stomata is also necessary.
Collapse
Affiliation(s)
- Barbara Jurczyk
- Department of Plant Physiology, Faculty of Agriculture and Economics, University of Agriculture in Kraków, Kraków, Poland
- *Correspondence: Barbara Jurczyk, ;
| | - Maciej Grzesiak
- Institute of Plant Physiology, Polish Academy of Sciences, Kraków, Poland
| | - Ewa Pociecha
- Department of Plant Physiology, Faculty of Agriculture and Economics, University of Agriculture in Kraków, Kraków, Poland
| | - Magdalena Wlazło
- Department of Plant Physiology, Faculty of Agriculture and Economics, University of Agriculture in Kraków, Kraków, Poland
| | - Marcin Rapacz
- Department of Plant Physiology, Faculty of Agriculture and Economics, University of Agriculture in Kraków, Kraków, Poland
| |
Collapse
|
37
|
Muneer S, Wei H, Park YG, Jeong HK, Jeong BR. Proteomic Analysis Reveals the Dynamic Role of Silicon in Alleviation of Hyperhydricity in Carnation Grown In Vitro. Int J Mol Sci 2017; 19:E50. [PMID: 29295554 PMCID: PMC5796000 DOI: 10.3390/ijms19010050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 12/12/2017] [Accepted: 12/22/2017] [Indexed: 11/21/2022] Open
Abstract
The present study depicted the role of silicon in limiting the hyperhydricity in shoot cultures of carnation through proteomic analysis. Four-week-old healthy shoot cultures of carnation "Purple Beauty" were sub-cultured on Murashige and Skoog medium followed with four treatments, viz. control (-Si/-Hyperhydricity), hyperhydric with no silicon treatment (-Si/+Hyperhydricity), hyperhydric with silicon treatment (+Si/+Hyperhydricity), and only silicon treated with no hyperhydricity (+Si/-Hyperhydricity). Comparing to control morphological features of hyperhydric carnations showed significantly fragile, bushy and lustrous leaf nature, while Si supply restored these effects. Proteomic investigation revealed that approximately seventy protein spots were differentially expressed under Si and/or hyperhydric treatments and were either up- or downregulated in abundance depending on their functions. Most of the identified protein spots were related to stress responses, photosynthesis, and signal transduction. Proteomic results were further confirmed through immunoblots by selecting specific proteins such as superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT), PsaA, and PsbA. Moreover, protein-protein interaction was also performed on differentially expressed protein spots using specific bioinformatic tools. In addition, stress markers were analyzed by histochemical localization of hydrogen peroxide (H₂O₂) and singlet oxygen (O₂1-). In addition, the ultrastructure of chloroplasts in hyperhydric leaves significantly resulted in inefficiency of thylakoid lamella with the loss of grana but were recovered in silicon supplemented leaves. The proteomic study together with physiological analysis indicated that Si has a substantial role in upholding the hyperhydricity in in vitro grown carnation shoot cultures.
Collapse
Affiliation(s)
- Sowbiya Muneer
- Division of Applied Life Science (BK21 Plus program), Gyeongsang National University, Jinju 52828, Korea.
| | - Hao Wei
- Division of Applied Life Science (BK21 Plus program), Gyeongsang National University, Jinju 52828, Korea.
| | - Yoo Gyeong Park
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Korea.
| | - Hai Kyoung Jeong
- Division of Applied Life Science (BK21 Plus program), Gyeongsang National University, Jinju 52828, Korea.
| | - Byoung Ryong Jeong
- Division of Applied Life Science (BK21 Plus program), Gyeongsang National University, Jinju 52828, Korea.
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Korea.
- Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Korea.
| |
Collapse
|
38
|
Du X, Jin Z, Liu D, Yang G, Pei Y. Hydrogen sulfide alleviates the cold stress through MPK4 in Arabidopsis thaliana. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 120:112-119. [PMID: 29024849 DOI: 10.1016/j.plaphy.2017.09.028] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 09/29/2017] [Accepted: 09/30/2017] [Indexed: 05/23/2023]
Abstract
Hydrogen sulfide (H2S) is a gaseous signaling molecule that mediates physiological processes in animals and plants. In this study, we investigated the relationship of H2S and mitogen activated protein kinase (MAPK) under cold stress in Arabidopsis. H2S up-regulated MAPK expression levels and was involved in the cold stress-related upregulation of MAPK genes expression. We then chose MPK4 whose expression level was influenced the most by H2S as a target and found that H2S's ability to alleviate cold stress required MPK4. Both H2S and MPK4 regulated the expression levels of the cold response genes inducer of CBF expression 1 (ICE1), C-repeat-binding factors (CBF3), cold responsive 15A (COR15A) and cold responsive 15B (COR15B). H2S inhibited the opening of stomata under cold stress, which required the participation of MPK4. In conclusion, MPK4 is a downstream component of H2S-related cold-stress resistance, and H2S and MPK4 both regulated the cold response genes and stomatal movement to response the cold stress.
Collapse
Affiliation(s)
- Xinzhe Du
- School of Life Science, Shanxi University, Taiyuan City, Shanxi Province, China.
| | - Zhuping Jin
- School of Life Science, Shanxi University, Taiyuan City, Shanxi Province, China.
| | - Danmei Liu
- School of Life Science, Shanxi University, Taiyuan City, Shanxi Province, China.
| | - Guangdong Yang
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Canada.
| | - Yanxi Pei
- School of Life Science, Shanxi University, Taiyuan City, Shanxi Province, China.
| |
Collapse
|
39
|
Arias NS, Scholz FG, Goldstein G, Bucci SJ. The cost of avoiding freezing in stems: trade-off between xylem resistance to cavitation and supercooling capacity in woody plants. TREE PHYSIOLOGY 2017. [PMID: 28633378 DOI: 10.1093/treephys/tpx071] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Stems and leaves of Olea europaea L. (olive) avoid freezing damage by substantial supercooling during the winter season. Physiological changes during acclimation to low temperatures were studied in five olive cultivars. Water relations and hydraulic traits, ice nucleation temperature (INT) and temperatures resulting in 50% damage (LT50) were determined. All cultivars showed a gradual decrease in INT and LT50 from the dry and warm summer to the wet and cold winter in Patagonia, Argentina. During acclimation to low temperatures there was an increase in leaf cell wall rigidity and stomatal conductance (gs), as well as a decrease in leaf apoplastic water content, leaf water potential (Ψ), sap flow and stem hydraulic conductivity (ks). More negative Ψ as a consequence of high gs and detrimental effects of low temperatures on root activity resulted in a substantial loss of ks due to embolism formation. Seasonal stem INT decrease from summer to winter was directly related to the xylem resistance to cavitation, determined by the loss of ks across cultivars. Thus the loss of freezable water in xylem vessels by embolisms increased stem supercooling capacity and delayed ice propagation from stems to the leaves. For the first time, a trade-off between xylem resistance to cavitation and stem and leaf supercooling capacity was observed in plants that avoid extracellular freezing by permanent supercooling. The substantial loss of hydraulic function in olive cultivar stems by embolism formation with their high repair costs are compensated by avoiding plant damage at very low subzero temperatures.
Collapse
Affiliation(s)
- Nadia S Arias
- Instituto de Biociencias de la Patagonia (INBIOP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad Nacional de la Patagonia San Juan Bosco (UNPSJB), Comodoro Rivadavia, Argentina
- Grupo de Estudios Biofísicos y Eco-fisiológicos (GEBEF), UNPSJB, Comodoro Rivadavia, Argentina
| | - Fabián G Scholz
- Instituto de Biociencias de la Patagonia (INBIOP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad Nacional de la Patagonia San Juan Bosco (UNPSJB), Comodoro Rivadavia, Argentina
- Grupo de Estudios Biofísicos y Eco-fisiológicos (GEBEF), UNPSJB, Comodoro Rivadavia, Argentina
| | - Guillermo Goldstein
- Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA-CONICET-Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
- Laboratorio de Ecología Funcional (LEF), UBA, Buenos Aires, Argentina
- Department of Biology, University of Miami, Coral Gables, PO Box 249118, FL 33124, USA
| | - Sandra J Bucci
- Instituto de Biociencias de la Patagonia (INBIOP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad Nacional de la Patagonia San Juan Bosco (UNPSJB), Comodoro Rivadavia, Argentina
- Grupo de Estudios Biofísicos y Eco-fisiológicos (GEBEF), UNPSJB, Comodoro Rivadavia, Argentina
| |
Collapse
|
40
|
Oustric J, Morillon R, Luro F, Herbette S, Lourkisti R, Giannettini J, Berti L, Santini J. Tetraploid Carrizo citrange rootstock (Citrus sinensis Osb.×Poncirus trifoliata L. Raf.) enhances natural chilling stress tolerance of common clementine (Citrus clementina Hort. ex Tan). JOURNAL OF PLANT PHYSIOLOGY 2017; 214:108-115. [PMID: 28478318 DOI: 10.1016/j.jplph.2017.04.014] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 04/06/2017] [Accepted: 04/14/2017] [Indexed: 05/17/2023]
Abstract
Low temperatures can disturb the development, growth and geographic distribution of plants, particularly cold-sensitive plants in the Mediterranean area, where temperatures can reach seasonally low levels. In citrus crops, scion/rootstock combinations are used to improve fruit production and quality, and increase tolerance to biotic and abiotic stresses. In the last decade, several studies have shown that tetraploid citrus seedlings or rootstocks are more tolerant to abiotic stress than their respective diploid. The objective of this study was to test whether the use of tetraploid rootstocks can improve the chilling tolerance of the scion. We compared physiological and biochemical responses to low seasonal temperatures of common Clementine (Citrus sinensis Osb.×Poncirus trifoliata L. Raf.) grafted on diploid and tetraploid Carrizo citrange rootstocks, named C/2xCC and C/4xCC, respectively. During the coldest months, C/4xCC showed a smaller decrease in net photosynthesis (Pn), stomatal conductance (Gs), chlorophyll fluorescence (Fv/Fm), and starch levels, and lower levels of malondialdehyde and electrolyte leakage than C/2xCC. Specific activities of catalase (CAT), ascorbate peroxidase (APX) and dehydroascorbate reductase (DHAR) were higher in C/4xCC during the cold period, whereas chlorophyll, proline, ascorbate and hydrogen peroxide (H2O2) levels and superoxide dismutase (SOD) activity did not vary significantly between C/4xCC and C/2xCC throughout the study period. Taken together, these results demonstrate that tetraploid Carrizo citrange rootstock improves the chilling tolerance of common clementine (scion) thanks to a part of the antioxidant system.
Collapse
Affiliation(s)
- Julie Oustric
- CNRS, UMR 6134 SPE, Laboratoire Biochimie and Biologie Moléculaire du Végétal, 20250 Corte, France.
| | - Raphaël Morillon
- Equipe "Amélioration des Plantes à Multiplication Végétative", UMR AGAP, Département BIOS, CIRAD, Station de Roujol, 97170 Petit-Bourg, Guadeloupe, France.
| | - François Luro
- UMR AGAP Corse, station INRA/CIRAD, 20230 San Giuliano, France.
| | | | - Radia Lourkisti
- CNRS, UMR 6134 SPE, Laboratoire Biochimie and Biologie Moléculaire du Végétal, 20250 Corte, France.
| | - Jean Giannettini
- CNRS, UMR 6134 SPE, Laboratoire Biochimie and Biologie Moléculaire du Végétal, 20250 Corte, France.
| | - Liliane Berti
- CNRS, UMR 6134 SPE, Laboratoire Biochimie and Biologie Moléculaire du Végétal, 20250 Corte, France.
| | - Jérémie Santini
- CNRS, UMR 6134 SPE, Laboratoire Biochimie and Biologie Moléculaire du Végétal, 20250 Corte, France.
| |
Collapse
|
41
|
Almadanim MC, Alexandre BM, Rosa MTG, Sapeta H, Leitão AE, Ramalho JC, Lam TT, Negrão S, Abreu IA, Oliveira MM. Rice calcium-dependent protein kinase OsCPK17 targets plasma membrane intrinsic protein and sucrose-phosphate synthase and is required for a proper cold stress response. PLANT, CELL & ENVIRONMENT 2017; 40:1197-1213. [PMID: 28102545 DOI: 10.1111/pce.12916] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 01/10/2017] [Accepted: 01/15/2017] [Indexed: 05/20/2023]
Abstract
Calcium-dependent protein kinases (CDPKs) are involved in plant tolerance mechanisms to abiotic stresses. Although CDPKs are recognized as key messengers in signal transduction, the specific role of most members of this family remains unknown. Here, we test the hypothesis that OsCPK17 plays a role in rice cold stress response by analysing OsCPK17 knockout, silencing and overexpressing rice lines under low temperature. Altered OsCPK17 gene expression compromises cold tolerance performance, without affecting the expression of key cold stress-inducible genes. A comparative phosphoproteomic approach led to the identification of six potential in vivo OsCPK17 targets, which are associated with sugar and nitrogen metabolism, and with osmotic regulation. To test direct interaction, in vitro kinase assays were performed, showing that the sucrose-phosphate synthase OsSPS4 and the aquaporin OsPIP2;1/OsPIP2;6 are phosphorylated by OsCPK17 in a calcium-dependent manner. Altogether, our data indicates that OsCPK17 is required for a proper cold stress response in rice, likely affecting the activity of membrane channels and sugar metabolism.
Collapse
Affiliation(s)
- M Cecília Almadanim
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157, Oeiras, Portugal
| | - Bruno M Alexandre
- Instituto de Biologia Experimental e Tecnológica, 2780-157, Oeiras, Portugal
| | - Margarida T G Rosa
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157, Oeiras, Portugal
| | - Helena Sapeta
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157, Oeiras, Portugal
| | - António E Leitão
- Plant Stress and Biodiversity, Linking Landscape, Environment, Agriculture and Food (LEAF), Dept. Recursos Naturais, Ambiente e Território (DRAT), Instituto Superior de Agronomia, Universidade de Lisboa, 2784-505, Oeiras, Portugal
| | - José C Ramalho
- Plant Stress and Biodiversity, Linking Landscape, Environment, Agriculture and Food (LEAF), Dept. Recursos Naturais, Ambiente e Território (DRAT), Instituto Superior de Agronomia, Universidade de Lisboa, 2784-505, Oeiras, Portugal
| | - TuKiet T Lam
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520-8024, USA
- MS and Proteomics Resource, WM Keck Foundation Biotechnology Resource Laboratory, Yale University, New Haven, CT, 06520-8024, USA
| | - Sónia Negrão
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157, Oeiras, Portugal
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Isabel A Abreu
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157, Oeiras, Portugal
- Instituto de Biologia Experimental e Tecnológica, 2780-157, Oeiras, Portugal
| | - M Margarida Oliveira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157, Oeiras, Portugal
- Instituto de Biologia Experimental e Tecnológica, 2780-157, Oeiras, Portugal
| |
Collapse
|
42
|
Takahashi N, Sunohara Y, Fujiwara M, Matsumoto H. Improved tolerance to transplanting injury and chilling stress in rice seedlings treated with orysastrobin. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 113:161-167. [PMID: 28214729 DOI: 10.1016/j.plaphy.2017.02.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 01/20/2017] [Accepted: 02/05/2017] [Indexed: 06/06/2023]
Abstract
In addition to their fungicidal activity, strobilurin-type fungicides are reported to show enhancing effects on crop growth and yield. Previous studies suggested that the fungicide has a mitigating effect on abiotic stresses. However, there are few reports about growth enhancement through abiotic stress alleviation by strobilurin-type fungicides, but the mechanism of action of the growth enhancement is still not clear. The present study revealed that orysastrobin enhanced rice seedling growth after root cutting injury and chilling stress. We also found that orysastrobin decreased the transpiration rate and increased ascorbate peroxidase and glutathione reductase activities. This stress alleviation was eliminated by the application of naproxen, a putative abscisic acid biosynthesis inhibitor. These results suggested that orysastrobin improved tolerance against transplanting injury and chilling stress in rice seedlings by inducing water-retaining activity through the suppression of transpiration, and also by inducing reactive oxygen scavenging activity thus inhibiting reactive oxygen species accumulation.
Collapse
Affiliation(s)
- Naoto Takahashi
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Yukari Sunohara
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Masami Fujiwara
- Agricultural Station, Development and Registration - Crop Protection, BASF Japan Ltd., Tahara, Aichi 441-3413, Japan
| | - Hiroshi Matsumoto
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan.
| |
Collapse
|
43
|
Chen C, Zhang Y, Xu Z, Luan A, Mao Q, Feng J, Xie T, Gong X, Wang X, Chen H, He Y. Transcriptome Profiling of the Pineapple under Low Temperature to Facilitate Its Breeding for Cold Tolerance. PLoS One 2016; 11:e0163315. [PMID: 27656892 PMCID: PMC5033252 DOI: 10.1371/journal.pone.0163315] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Accepted: 09/07/2016] [Indexed: 12/18/2022] Open
Abstract
The pineapple (Ananas comosus) is cold sensitive. Most cultivars are injured during winter periods, especially in sub-tropical regions. There is a lack of molecular information on the pineapple's response to cold stress. In this study, high-throughput transcriptome sequencing and gene expression analysis were performed on plantlets of a cold-tolerant genotype of the pineapple cultivar 'Shenwan' before and after cold treatment. A total of 1,186 candidate cold responsive genes were identified, and their credibility was confirmed by RT-qPCR. Gene set functional enrichment analysis indicated that genes related to cell wall properties, stomatal closure and ABA and ROS signal transduction play important roles in pineapple cold tolerance. In addition, a protein association network of CORs (cold responsive genes) was predicted, which could serve as an entry point to dissect the complex cold response network. Our study found a series of candidate genes and their association network, which will be helpful to cold stress response studies and pineapple breeding for cold tolerance.
Collapse
Affiliation(s)
- Chengjie Chen
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, Guangdong, P.R. China
| | - Yafeng Zhang
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, Guangdong, P.R. China
| | - Zhiqiang Xu
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, Guangdong, P.R. China
| | - Aiping Luan
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, Guangdong, P.R. China
| | - Qi Mao
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, Guangdong, P.R. China
| | - Junting Feng
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, Guangdong, P.R. China
| | - Tao Xie
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, Guangdong, P.R. China
| | - Xue Gong
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, Guangdong, P.R. China
| | - Xiaoshuang Wang
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, Guangdong, P.R. China
| | - Hao Chen
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, Guangdong, P.R. China
| | - Yehua He
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, Guangdong, P.R. China
| |
Collapse
|
44
|
Dessena L, Mulas M. Influence of temperature on biomass production of clones of Atriplex halimus. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2016; 60:677-686. [PMID: 26353974 DOI: 10.1007/s00484-015-1062-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 08/21/2015] [Accepted: 08/30/2015] [Indexed: 06/05/2023]
Abstract
A very effective tool to combat desertification is revegetation. Promising species for this purpose are the evergreen shrubs of the genus Atriplex. The objective of the research was to study the growing responses of Atriplex halimus under different thermal regimes and to evaluate the biomass accumulation of selected clones. The test was carried out in four sites of Sardinia Island (Italy) characterized by different latitude, altitude and air temperature trends along the year. In every site, potted plants of five clones of A. halimus were compared for biomass production as measured by linear growth of plants (central axis and secondary shoots), as well as by dry weight of leaves, shoots and roots per plant. Correlations between sums of hour-degrees under or above the thresholds of critical air temperatures, comprised between 0 and 35 °C, and the plant growth indicators were analysed. Differences among the five clones, with regard to the influence of low temperatures on plant growth and on the biomass production were evaluated. Among five tested clones, GIO1 and SAN3 resulted more sensitive to low temperatures. Clones MAR1, PAL1 and FAN3 resulted less sensitive to low temperatures and in the site characterized by the lowest minimum temperatures also have shown greater adaptability and thus biomass growth in the observed period. The clone PAL1 showed a lower shoot/root biomass ratio as adaptation to cold temperature, and the clone FAN3, the opposite behaviour and a general preference to temperate thermal regimes.
Collapse
Affiliation(s)
- Leonarda Dessena
- Department of Nature and Land Sciences of the University of Sassari, Via E. De Nicola 9, 07100, Sassari, Italy
| | - Maurizio Mulas
- Department of Nature and Land Sciences of the University of Sassari, Via E. De Nicola 9, 07100, Sassari, Italy.
| |
Collapse
|
45
|
Ding Y, Li H, Zhang X, Xie Q, Gong Z, Yang S. OST1 kinase modulates freezing tolerance by enhancing ICE1 stability in Arabidopsis. Dev Cell 2015; 32:278-89. [PMID: 25669882 DOI: 10.1016/j.devcel.2014.12.023] [Citation(s) in RCA: 381] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 11/04/2014] [Accepted: 12/23/2014] [Indexed: 11/26/2022]
Abstract
Cold stress is a major environmental factor that limits plant growth and development. The C-repeat-binding factor (CBF)-dependent cold signaling pathway is extensively studied in Arabidopsis; however, the specific protein kinases involved in this pathway remain elusive. Here we report that OST1 (open stomata 1), a well-known Ser/Thr protein kinase in ABA signaling, acts upstream of CBFs to positively regulate freezing tolerance. The ost1 mutants show freezing hypersensitivity, whereas transgenic plants overexpressing OST1 exhibit enhanced freezing tolerance. The OST1 kinase is activated by cold stress. Moreover, OST1 interacts with both the transcription factor ICE1 and the E3 ligase HOS1 in the CBF pathway. Cold-activated OST1 phosphorylates ICE1 and enhances its stability and transcriptional activity. Meanwhile, OST1 interferes with the interaction between HOS1 and ICE1, thus suppressing HOS1-mediated ICE1 degradation under cold stress. Our results thus uncover the unexpected roles of OST1 in modulating CBF-dependent cold signaling in Arabidopsis.
Collapse
Affiliation(s)
- Yanglin Ding
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Hui Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xiaoyan Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Qi Xie
- State Key Laboratory of Plant Genomics and National Plant Gene Research Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhizhong Gong
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Shuhua Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
46
|
Su F, Jacquard C, Villaume S, Michel J, Rabenoelina F, Clément C, Barka EA, Dhondt-Cordelier S, Vaillant-Gaveau N. Burkholderia phytofirmans PsJN reduces impact of freezing temperatures on photosynthesis in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2015; 6:810. [PMID: 26483823 PMCID: PMC4591482 DOI: 10.3389/fpls.2015.00810] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 09/16/2015] [Indexed: 05/08/2023]
Abstract
Several plant growth-promoting rhizobacteria (PGPR) are known to improve plant tolerance to multiple stresses, including low temperatures. However, mechanisms underlying this protection are still poorly understood. The aim of this study was to evaluate the role of the endophytic PGPR, Burkholderia phytofirmans strain PsJN (Bp PsJN), on Arabidopsis thaliana cold tolerance using photosynthesis parameters as physiological markers. Under standard conditions, our results indicated that Bp PsJN inoculation led to growth promotion of Arabidopsis plants without significant modification on photosynthesis parameters and chloroplast organization. However, bacterial colonization induced a cell wall strengthening in the mesophyll. Impact of inoculation modes (either on seeds or by soil irrigation) and their effects overnight at 0, -1, or -3°C, were investigated by following photosystem II (PSII) activity and gas exchanges. Following low temperatures stress, a decrease of photosynthesis parameters was observed. In addition, during three consecutive nights or days at -1°C, PSII activity was monitored. Pigment contents, RuBisCO protein abundance, expression of several genes including RbcS, RbcL, CBF1, CBF2, CBF3, ICE1, COR15a, and COR78 were evaluated at the end of exposure. To assess the impact of the bacteria on cell ultrastructure under low temperatures, microscopic observations were achieved. Results indicated that freezing treatment induced significant changes in PSII activity as early as the first cold day, whereas the same impact on PSII activity was observed only during the third cold night. The significant effects conferred by PsJN were differential accumulation of pigments, and reduced expression of RbcL and COR78. Microscopical observations showed an alteration/disorganization in A. thaliana leaf mesophyll cells independently of the freezing treatments. The presence of bacteria during the three successive nights or days did not significantly improved A. thaliana responses but prevented the plasmalemma disruption under freezing stress.
Collapse
Affiliation(s)
- Fan Su
- Unité de Recherche Vignes et Vins de Champagne – EA 4707, Laboratoire de Stress, Défenses et Reproduction des Plantes, UFR Sciences Exactes et Naturelles, SFR Condorcet FR CNRS 3417, Université de Reims Champagne-ArdenneReims, France
| | - Cédric Jacquard
- Unité de Recherche Vignes et Vins de Champagne – EA 4707, Laboratoire de Stress, Défenses et Reproduction des Plantes, UFR Sciences Exactes et Naturelles, SFR Condorcet FR CNRS 3417, Université de Reims Champagne-ArdenneReims, France
| | - Sandra Villaume
- Unité de Recherche Vignes et Vins de Champagne – EA 4707, Laboratoire de Stress, Défenses et Reproduction des Plantes, UFR Sciences Exactes et Naturelles, SFR Condorcet FR CNRS 3417, Université de Reims Champagne-ArdenneReims, France
| | - Jean Michel
- Laboratoire de Recherche en Nanosciences, Pôle FarmanReims, France
| | - Fanja Rabenoelina
- Unité de Recherche Vignes et Vins de Champagne – EA 4707, Laboratoire de Stress, Défenses et Reproduction des Plantes, UFR Sciences Exactes et Naturelles, SFR Condorcet FR CNRS 3417, Université de Reims Champagne-ArdenneReims, France
| | - Christophe Clément
- Unité de Recherche Vignes et Vins de Champagne – EA 4707, Laboratoire de Stress, Défenses et Reproduction des Plantes, UFR Sciences Exactes et Naturelles, SFR Condorcet FR CNRS 3417, Université de Reims Champagne-ArdenneReims, France
| | - Essaid A. Barka
- Unité de Recherche Vignes et Vins de Champagne – EA 4707, Laboratoire de Stress, Défenses et Reproduction des Plantes, UFR Sciences Exactes et Naturelles, SFR Condorcet FR CNRS 3417, Université de Reims Champagne-ArdenneReims, France
| | - Sandrine Dhondt-Cordelier
- Unité de Recherche Vignes et Vins de Champagne – EA 4707, Laboratoire de Stress, Défenses et Reproduction des Plantes, UFR Sciences Exactes et Naturelles, SFR Condorcet FR CNRS 3417, Université de Reims Champagne-ArdenneReims, France
| | - Nathalie Vaillant-Gaveau
- Unité de Recherche Vignes et Vins de Champagne – EA 4707, Laboratoire de Stress, Défenses et Reproduction des Plantes, UFR Sciences Exactes et Naturelles, SFR Condorcet FR CNRS 3417, Université de Reims Champagne-ArdenneReims, France
- *Correspondence: Nathalie Vaillant-Gaveau, Unité de Recherche Vignes et Vins de Champagne – EA 4707, Laboratoire de Stress, Défenses et Reproduction des Plantes, UFR Sciences Exactes et Naturelles, SFR Condorcet FR CNRS 3417, Université de Reims Champagne-Ardenne, Moulin de la Housse – Bâtiment 18, BP 1039, 51687 Reims Cedex 2, France,
| |
Collapse
|
47
|
Ronzier E, Corratgé-Faillie C, Sanchez F, Prado K, Brière C, Leonhardt N, Thibaud JB, Xiong TC. CPK13, a noncanonical Ca2+-dependent protein kinase, specifically inhibits KAT2 and KAT1 shaker K+ channels and reduces stomatal opening. PLANT PHYSIOLOGY 2014; 166:314-26. [PMID: 25037208 PMCID: PMC4149717 DOI: 10.1104/pp.114.240226] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 07/15/2014] [Indexed: 05/18/2023]
Abstract
Ca(2) (+)-dependent protein kinases (CPKs) form a large family of 34 genes in Arabidopsis (Arabidopsis thaliana). Based on their dependence on Ca(2+), CPKs can be sorted into three types: strictly Ca(2+)-dependent CPKs, Ca(2+)-stimulated CPKs (with a significant basal activity in the absence of Ca(2+)), and essentially calcium-insensitive CPKs. Here, we report on the third type of CPK, CPK13, which is expressed in guard cells but whose role is still unknown. We confirm the expression of CPK13 in Arabidopsis guard cells, and we show that its overexpression inhibits light-induced stomatal opening. We combine several approaches to identify a guard cell-expressed target. We provide evidence that CPK13 (1) specifically phosphorylates peptide arrays featuring Arabidopsis K(+) Channel KAT2 and KAT1 polypeptides, (2) inhibits KAT2 and/or KAT1 when expressed in Xenopus laevis oocytes, and (3) closely interacts in plant cells with KAT2 channels (Förster resonance energy transfer-fluorescence lifetime imaging microscopy). We propose that CPK13 reduces stomatal aperture through its inhibition of the guard cell-expressed KAT2 and KAT1 channels.
Collapse
Affiliation(s)
- Elsa Ronzier
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 386, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5004, SupAgro, and Université Montpellier 2, Laboratoire de Biochimie & Physiologie Moléculaire des Plantes, F-34060 Montpellier cedex 2, France (E.R., C.C.-F., F.S., K.P., J.-B.T., T.C.X.);Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5546, Laboratoire de Recherche en Sciences Végétales, 31326 Castanet-Tolosan, France (C.B.);Université Paul Sabatier, Pôle de Biotechnologies Végétales 24, Chemin de Borde Rouge, Boite Postale 42617 Auzeville, 31326 Castanet-Tolosan, France (C.B.); andLaboratoire de Biologie du Développement des Plantes, Unité Mixte de Recherche 7265 Centre National de la Recherche Scientifique-Commissariat à l'Energie Atomique-Université Aix-Marseille II, Commissariat à l'Energie Atomique Cadarache Bat 156, 13108 St. Paul Lez Durance, France (N.L.)
| | - Claire Corratgé-Faillie
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 386, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5004, SupAgro, and Université Montpellier 2, Laboratoire de Biochimie & Physiologie Moléculaire des Plantes, F-34060 Montpellier cedex 2, France (E.R., C.C.-F., F.S., K.P., J.-B.T., T.C.X.);Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5546, Laboratoire de Recherche en Sciences Végétales, 31326 Castanet-Tolosan, France (C.B.);Université Paul Sabatier, Pôle de Biotechnologies Végétales 24, Chemin de Borde Rouge, Boite Postale 42617 Auzeville, 31326 Castanet-Tolosan, France (C.B.); andLaboratoire de Biologie du Développement des Plantes, Unité Mixte de Recherche 7265 Centre National de la Recherche Scientifique-Commissariat à l'Energie Atomique-Université Aix-Marseille II, Commissariat à l'Energie Atomique Cadarache Bat 156, 13108 St. Paul Lez Durance, France (N.L.)
| | - Frédéric Sanchez
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 386, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5004, SupAgro, and Université Montpellier 2, Laboratoire de Biochimie & Physiologie Moléculaire des Plantes, F-34060 Montpellier cedex 2, France (E.R., C.C.-F., F.S., K.P., J.-B.T., T.C.X.);Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5546, Laboratoire de Recherche en Sciences Végétales, 31326 Castanet-Tolosan, France (C.B.);Université Paul Sabatier, Pôle de Biotechnologies Végétales 24, Chemin de Borde Rouge, Boite Postale 42617 Auzeville, 31326 Castanet-Tolosan, France (C.B.); andLaboratoire de Biologie du Développement des Plantes, Unité Mixte de Recherche 7265 Centre National de la Recherche Scientifique-Commissariat à l'Energie Atomique-Université Aix-Marseille II, Commissariat à l'Energie Atomique Cadarache Bat 156, 13108 St. Paul Lez Durance, France (N.L.)
| | - Karine Prado
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 386, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5004, SupAgro, and Université Montpellier 2, Laboratoire de Biochimie & Physiologie Moléculaire des Plantes, F-34060 Montpellier cedex 2, France (E.R., C.C.-F., F.S., K.P., J.-B.T., T.C.X.);Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5546, Laboratoire de Recherche en Sciences Végétales, 31326 Castanet-Tolosan, France (C.B.);Université Paul Sabatier, Pôle de Biotechnologies Végétales 24, Chemin de Borde Rouge, Boite Postale 42617 Auzeville, 31326 Castanet-Tolosan, France (C.B.); andLaboratoire de Biologie du Développement des Plantes, Unité Mixte de Recherche 7265 Centre National de la Recherche Scientifique-Commissariat à l'Energie Atomique-Université Aix-Marseille II, Commissariat à l'Energie Atomique Cadarache Bat 156, 13108 St. Paul Lez Durance, France (N.L.)
| | - Christian Brière
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 386, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5004, SupAgro, and Université Montpellier 2, Laboratoire de Biochimie & Physiologie Moléculaire des Plantes, F-34060 Montpellier cedex 2, France (E.R., C.C.-F., F.S., K.P., J.-B.T., T.C.X.);Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5546, Laboratoire de Recherche en Sciences Végétales, 31326 Castanet-Tolosan, France (C.B.);Université Paul Sabatier, Pôle de Biotechnologies Végétales 24, Chemin de Borde Rouge, Boite Postale 42617 Auzeville, 31326 Castanet-Tolosan, France (C.B.); andLaboratoire de Biologie du Développement des Plantes, Unité Mixte de Recherche 7265 Centre National de la Recherche Scientifique-Commissariat à l'Energie Atomique-Université Aix-Marseille II, Commissariat à l'Energie Atomique Cadarache Bat 156, 13108 St. Paul Lez Durance, France (N.L.)
| | - Nathalie Leonhardt
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 386, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5004, SupAgro, and Université Montpellier 2, Laboratoire de Biochimie & Physiologie Moléculaire des Plantes, F-34060 Montpellier cedex 2, France (E.R., C.C.-F., F.S., K.P., J.-B.T., T.C.X.);Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5546, Laboratoire de Recherche en Sciences Végétales, 31326 Castanet-Tolosan, France (C.B.);Université Paul Sabatier, Pôle de Biotechnologies Végétales 24, Chemin de Borde Rouge, Boite Postale 42617 Auzeville, 31326 Castanet-Tolosan, France (C.B.); andLaboratoire de Biologie du Développement des Plantes, Unité Mixte de Recherche 7265 Centre National de la Recherche Scientifique-Commissariat à l'Energie Atomique-Université Aix-Marseille II, Commissariat à l'Energie Atomique Cadarache Bat 156, 13108 St. Paul Lez Durance, France (N.L.)
| | - Jean-Baptiste Thibaud
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 386, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5004, SupAgro, and Université Montpellier 2, Laboratoire de Biochimie & Physiologie Moléculaire des Plantes, F-34060 Montpellier cedex 2, France (E.R., C.C.-F., F.S., K.P., J.-B.T., T.C.X.);Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5546, Laboratoire de Recherche en Sciences Végétales, 31326 Castanet-Tolosan, France (C.B.);Université Paul Sabatier, Pôle de Biotechnologies Végétales 24, Chemin de Borde Rouge, Boite Postale 42617 Auzeville, 31326 Castanet-Tolosan, France (C.B.); andLaboratoire de Biologie du Développement des Plantes, Unité Mixte de Recherche 7265 Centre National de la Recherche Scientifique-Commissariat à l'Energie Atomique-Université Aix-Marseille II, Commissariat à l'Energie Atomique Cadarache Bat 156, 13108 St. Paul Lez Durance, France (N.L.)
| | - Tou Cheu Xiong
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 386, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5004, SupAgro, and Université Montpellier 2, Laboratoire de Biochimie & Physiologie Moléculaire des Plantes, F-34060 Montpellier cedex 2, France (E.R., C.C.-F., F.S., K.P., J.-B.T., T.C.X.);Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5546, Laboratoire de Recherche en Sciences Végétales, 31326 Castanet-Tolosan, France (C.B.);Université Paul Sabatier, Pôle de Biotechnologies Végétales 24, Chemin de Borde Rouge, Boite Postale 42617 Auzeville, 31326 Castanet-Tolosan, France (C.B.); andLaboratoire de Biologie du Développement des Plantes, Unité Mixte de Recherche 7265 Centre National de la Recherche Scientifique-Commissariat à l'Energie Atomique-Université Aix-Marseille II, Commissariat à l'Energie Atomique Cadarache Bat 156, 13108 St. Paul Lez Durance, France (N.L.)
| |
Collapse
|
48
|
Wei L, Marshall JD, Link TE, Kavanagh KL, DU E, Pangle RE, Gag PJ, Ubierna N. Constraining 3-PG with a new δ13C submodel: a test using the δ13C of tree rings. PLANT, CELL & ENVIRONMENT 2014; 37:82-100. [PMID: 23663114 DOI: 10.1111/pce.12133] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 04/22/2013] [Accepted: 05/01/2013] [Indexed: 06/02/2023]
Abstract
A semi-mechanistic forest growth model, 3-PG (Physiological Principles Predicting Growth), was extended to calculate δ(13)C in tree rings. The δ(13)C estimates were based on the model's existing description of carbon assimilation and canopy conductance. The model was tested in two ~80-year-old natural stands of Abies grandis (grand fir) in northern Idaho. We used as many independent measurements as possible to parameterize the model. Measured parameters included quantum yield, specific leaf area, soil water content and litterfall rate. Predictions were compared with measurements of transpiration by sap flux, stem biomass, tree diameter growth, leaf area index and δ(13)C. Sensitivity analysis showed that the model's predictions of δ(13)C were sensitive to key parameters controlling carbon assimilation and canopy conductance, which would have allowed it to fail had the model been parameterized or programmed incorrectly. Instead, the simulated δ(13)C of tree rings was no different from measurements (P > 0.05). The δ(13)C submodel provides a convenient means of constraining parameter space and avoiding model artefacts. This δ(13)C test may be applied to any forest growth model that includes realistic simulations of carbon assimilation and transpiration.
Collapse
Affiliation(s)
- Liang Wei
- Department of Forest, Rangeland, and Fire Sciences, University of Idaho, Moscow, ID, 83844-1133, USA
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Wang Y, Liu F, Jensen CR. Comparative effects of deficit irrigation and alternate partial root-zone irrigation on xylem pH, ABA and ionic concentrations in tomatoes. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:1907-17. [PMID: 22162869 PMCID: PMC3295386 DOI: 10.1093/jxb/err370] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Revised: 08/30/2011] [Accepted: 10/21/2011] [Indexed: 05/24/2023]
Abstract
Comparative effects of partial root-zone irrigation (PRI) and deficit irrigation (DI) on xylem pH, ABA, and ionic concentrations of tomato (Lycopersicon esculentum L.) plants were investigated in two split-root pot experiments. Results showed that PRI plants had similar or significantly higher xylem pH, which was increased by 0.2 units relative to DI plants. Nitrate and total ionic concentrations (cations+anions), and the proportion of cations influenced xylem pH such that xylem pH increases as nitrate and total ionic concentrations decrease, and the proportion of cations increases. In most cases, the xylem ABA concentration was similar for PRI and DI plants, and a clear association between increases in xylem pH with increasing xylem ABA concentration was only found when the soil water content was relatively low. The concentrations of anions, cations, and the sum of anions and cations in PRI were higher than in the DI treatment when soil water content was relatively high in the wetted soil compartment. However, when water content in both soil compartments of the PRI pots were very low before the next irrigation, the acquisition of nutrients by roots was reduced, resulting in lower concentrations of anions and cations in the PRI than in the DI treatment. It is therefore essential that the soil water content in the wet zone should be maintained relatively high while that in the drying soil zone should not be very low, both conditions are crucial to maintain high soil and plant water status while sustaining ABA signalling of the plants.
Collapse
Affiliation(s)
- Yaosheng Wang
- Department of Agriculture and Ecology, University of Copenhagen, Taastrup, Denmark.
| | | | | |
Collapse
|
50
|
Siddiqua M, Nassuth A. Vitis CBF1 and Vitis CBF4 differ in their effect on Arabidopsis abiotic stress tolerance, development and gene expression. PLANT, CELL & ENVIRONMENT 2011; 34:1345-59. [PMID: 21486303 DOI: 10.1111/j.1365-3040.2011.02334.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Plants growing in temperate regions encode several C-repeat binding factor/dehydration responsive element binding factors (CBF/DREB1) and the question is whether these transcription factors have different functions. In this study, Arabidopsis transformed with grape CBF1 (VrCBF1) or grape CBF4 (VrCBF4) were characterized. Electrolyte leakage assays showed that the freezing tolerance of transgenic lines was correlated with the level of VrCBF expression irrespective of the type of CBF, while drought tolerance was most increased by VrCBF1. VrCBF overexpression coincided with an increase in the expression of the cold-regulated genes AtCOR15a, AtRD29A, AtCOR6.6 and AtCOR47. In addition, the development of grape CBF overexpressing plants was seen to be altered and resulted in dwarf plants which flowered later and had thicker rosette leaves with a higher stomatal density. Analysis of gene expression showed that these morphological changes may be because of an increase in the expression of AtRGL3 in VrCBF4 lines or AtGA2ox7 in VrCBF1 lines, and AtFLC in both. In addition, the results show for the first time that CBFs can positively affect the expression of AtICE1/SCREAM1, the gene that is known to induce AtCBF3 expression. The difference in gene induction by VrCBF1 compared with VrCBF4 suggests that these CBFs have different regulons.
Collapse
Affiliation(s)
- Mahbuba Siddiqua
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | | |
Collapse
|