1
|
Moreira X, Hervella P, Lago-Núñez B, Galmán A, de la Fuente M, Covelo F, Marquis RJ, Vázquez-González C, Abdala-Roberts L. Biotic and abiotic factors associated with genome size evolution in oaks. Ecology 2024; 105:e4417. [PMID: 39319753 DOI: 10.1002/ecy.4417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/25/2024] [Accepted: 07/16/2024] [Indexed: 09/26/2024]
Abstract
The evolutionary processes that underlie variation in plant genome size have been much debated. Abiotic factors are thought to have played an important role, with negative and positive correlations between genome size and seasonal or stressful climatic conditions being reported in several systems. In turn, variation in genome size may influence plant traits which affect interactions with other organisms, such as herbivores. The mechanisms underlying evolutionary linkages between plant genome size and biotic and abiotic factors nonetheless remain poorly understod. To address this gap, we conducted phylogenetically controlled analyses testing for associations between genome size, climatic variables, plant traits (defenses and nutrients), and herbivory across 29 oak (Quercus) species. Genome size is significantly associated with both temperature and precipitation seasonality, whereby oak species growing in climates with lower and less variable temperatures but more variable rainfall had larger genomes. In addition, we found a negative association between genome size and leaf nutrient concentration (found to be the main predictor of herbivory), which in turn led to an indirect effect on herbivory. A follow-up test suggested that the association between genome size and leaf nutrients influencing herbivory was mediated by variation in plant growth, whereby species with larger genomes have slower growth rates, which in turn are correlated with lower nutrients. Collectively, these findings reveal novel associations between plant genome size and biotic and abiotic factors that may influence life history evolution and ecological dynamics in this widespread tree genus.
Collapse
Affiliation(s)
- Xoaquín Moreira
- Misión Biológica de Galicia (MBG-CSIC), Pontevedra, Galicia, Spain
| | - Pablo Hervella
- Neuroimaging and Biotechnology Laboratory (NOBEL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | | | - Andrea Galmán
- Department of Ecology, Montana State University, Bozeman, Montana, USA
| | | | - Felisa Covelo
- Departamento de Sistemas Físicos, Químicos y Naturales, Universidad Pablo de Olavide, Seville, Spain
| | - Robert J Marquis
- Department of Biology and the Whitney R. Harris World Ecology Center, University of Missouri-St. Louis, St. Louis, Missouri, USA
| | | | - Luis Abdala-Roberts
- Departamento de Ecología Tropical, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Mérida, Yucatán, Mexico
| |
Collapse
|
2
|
Thompson RA, Malone SC, Peltier D, Six D, Robertson N, Oliveira C, McIntire CD, Pockman WT, McDowell NG, Trowbridge AM, Adams HD. Local carbon reserves are insufficient for phloem terpene induction during drought in Pinus edulis in response to bark beetle-associated fungi. THE NEW PHYTOLOGIST 2024; 244:654-669. [PMID: 39149848 DOI: 10.1111/nph.20051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/24/2024] [Indexed: 08/17/2024]
Abstract
Stomatal closure during drought inhibits carbon uptake and may reduce a tree's defensive capacity. Limited carbon availability during drought may increase a tree's mortality risk, particularly if drought constrains trees' capacity to rapidly produce defenses during biotic attack. We parameterized a new model of conifer defense using physiological data on carbon reserves and chemical defenses before and after a simulated bark beetle attack in mature Pinus edulis under experimental drought. Attack was simulated using inoculations with a consistent bluestain fungus (Ophiostoma sp.) of Ips confusus, the main bark beetle colonizing this tree, to induce a defensive response. Trees with more carbon reserves produced more defenses but measured phloem carbon reserves only accounted for c. 23% of the induced defensive response. Our model predicted universal mortality if local reserves alone supported defense production, suggesting substantial remobilization and transport of stored resin or carbon reserves to the inoculation site. Our results show that de novo terpene synthesis represents only a fraction of the total measured phloem terpenes in P. edulis following fungal inoculation. Without direct attribution of phloem terpene concentrations to available carbon, many studies may be overestimating the scale and importance of de novo terpene synthesis in a tree's induced defense response.
Collapse
Affiliation(s)
- R Alex Thompson
- Department of Life and Environmental Sciences, University of California Merced, Merced, CA, 95343, USA
| | - Shealyn C Malone
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Drew Peltier
- School of Life Sciences, University of Nevada-Las Vegas, Las Vegas, NV, 89154, USA
| | - Diana Six
- Department of Ecosystem and Conservation Sciences, University of Montana, Missoula, MT, 59812, USA
| | - Nathan Robertson
- Biology Department, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Celso Oliveira
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | | | - William T Pockman
- Biology Department, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Nate G McDowell
- Atmospheric Sciences and Global Change Division, Pacific Northwest National Lab, PO Box 999, Richland, WA, 99352, USA
- School of Biological Sciences, Washington State University, PO Box 644236, Pullman, WA, 99164-4236, USA
| | - Amy M Trowbridge
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Henry D Adams
- School of the Environment, Washington State University, PO Box 644236, Pullman, WA, 99164-4236, USA
| |
Collapse
|
3
|
Mezzomo P, Leong JV, Vodrážka P, Moos M, Jorge LR, Volfová T, Michálek J, de L Ferreira P, Kozel P, Sedio BE, Volf M. Variation in induced responses in volatile and non-volatile metabolites among six willow species: Do willow species share responses to herbivory? PHYTOCHEMISTRY 2024; 226:114222. [PMID: 39047854 DOI: 10.1016/j.phytochem.2024.114222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/10/2024] [Accepted: 07/13/2024] [Indexed: 07/27/2024]
Abstract
Chemical variation is a critical aspect affecting performance among co-occurring plants. High chemical variation in metabolites with direct effects on insect herbivores supports chemical niche partitioning, and it can reduce the number of herbivores shared by co-occurring plant species. In contrast, low intraspecific variation in metabolites with indirect effects, such as induced volatile organic compounds (VOCs), may improve the attraction of specialist predators or parasitoids as they show high specificity to insect herbivores. We explored whether induced chemical variation following herbivory by various insect herbivores differs between VOCs vs. secondary non-volatile metabolites (non-VOCs) and salicinoids with direct effects on herbivores in six closely related willow species. Willow species identity explained most variation in VOCs (18.4%), secondary non-VOCs (41.1%) and salicinoids (60.7%). The variation explained by the independent effect of the herbivore treatment was higher in VOCs (2.8%) compared to secondary non-VOCs (0.5%) and salicinoids (0.5%). At the level of individual VOCs, willow species formed groups, as some responded similarly to the same herbivores. Most non-VOCs and salicinoids were upregulated by sap-suckers compared to other herbivore treatments and control across the willow species. In contrast, induced responses in non-VOCs and salicinoids to other herbivores largely differed between the willows. Our results suggest that induced responses broadly differ between various types of chemical defences, with VOCs and non-VOCs showing different levels of specificity and similarity across plant species. This may further contribute to flexible plant responses to herbivory and affect how closely related plants share or partition their chemical niches.
Collapse
Affiliation(s)
- Priscila Mezzomo
- Biology Centre CAS, Institute of Entomology, Ceske Budejovice, Czech Republic; University of South Bohemia, Faculty of Science, Ceske Budejovice, Czech Republic.
| | - Jing V Leong
- Biology Centre CAS, Institute of Entomology, Ceske Budejovice, Czech Republic; University of South Bohemia, Faculty of Science, Ceske Budejovice, Czech Republic
| | - Petr Vodrážka
- Biology Centre CAS, Institute of Entomology, Ceske Budejovice, Czech Republic
| | - Martin Moos
- Biology Centre CAS, Institute of Entomology, Ceske Budejovice, Czech Republic
| | - Leonardo R Jorge
- Biology Centre CAS, Institute of Entomology, Ceske Budejovice, Czech Republic
| | - Tereza Volfová
- Biology Centre CAS, Institute of Entomology, Ceske Budejovice, Czech Republic; University of South Bohemia, Faculty of Science, Ceske Budejovice, Czech Republic
| | - Jan Michálek
- Biology Centre CAS, Institute of Entomology, Ceske Budejovice, Czech Republic; Algatech Centre, Institute of Microbiology, Trebon, Czech Republic
| | - Paola de L Ferreira
- Biology Centre CAS, Institute of Entomology, Ceske Budejovice, Czech Republic; Aarhus University, Department of Biology, Aarhus, Denmark
| | - Petr Kozel
- Biology Centre CAS, Institute of Entomology, Ceske Budejovice, Czech Republic; University of South Bohemia, Faculty of Science, Ceske Budejovice, Czech Republic
| | - Brian E Sedio
- Department of Integrative Biology, University of Texas at Austin, Austin, United States; Smithsonian Tropical Research Institute, Balboa, the Republic of Panama
| | - Martin Volf
- Biology Centre CAS, Institute of Entomology, Ceske Budejovice, Czech Republic; University of South Bohemia, Faculty of Science, Ceske Budejovice, Czech Republic
| |
Collapse
|
4
|
Moreira X, Martín-Cacheda L, Quiroga G, Lago-Núñez B, Röder G, Abdala-Roberts L. Testing the joint effects of arbuscular mycorrhizal fungi and ants on insect herbivory on potato plants. PLANTA 2024; 260:66. [PMID: 39080142 PMCID: PMC11289011 DOI: 10.1007/s00425-024-04492-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/17/2024] [Indexed: 08/02/2024]
Abstract
MAIN CONCLUSION Ants, but not mycorrhizae, significantly affected insect leaf-chewing herbivory on potato plants. However, there was no evidence of mutualistic interactive effects on herbivory. Plants associate with both aboveground and belowground mutualists, two prominent examples being ants and arbuscular mycorrhizal fungi (AMF), respectively. While both of these mutualisms have been extensively studied, joint manipulations testing their independent and interactive (non-additive) effects on plants are rare. To address this gap, we conducted a joint test of ant and AMF effects on herbivory by leaf-chewing insects attacking potato (Solanum tuberosum) plants, and further measured plant traits likely mediating mutualist effects on herbivory. In a field experiment, we factorially manipulated the presence of AMF (two levels: control and mycorrhization) and ants (two levels: exclusion and presence) and quantified the concentration of leaf phenolic compounds acting as direct defenses, as well as plant volatile organic compound (VOC) emissions potentially mediating direct (e.g., herbivore repellents) or indirect (e.g., ant attractants) defense. Moreover, we measured ant abundance and performed a dual-choice greenhouse experiment testing for effects of VOC blends (mimicking those emitted by control vs. AMF-inoculated plants) on ant attraction as a mechanism for indirect defense. Ant presence significantly reduced herbivory whereas mycorrhization had no detectable influence on herbivory and mutualist effects operated independently. Plant trait measurements indicated that mycorrhization had no effect on leaf phenolics but significantly increased VOC emissions. However, mycorrhization did not affect ant abundance and there was no evidence of AMF effects on herbivory operating via ant-mediated defense. Consistently, the dual-choice assay showed no effect of AMF-induced volatile blends on ant attraction. Together, these results suggest that herbivory on potato plants responds mainly to top-down (ant-mediated) rather than bottom-up (AMF-mediated) control, an asymmetry in effects which could have precluded mutualist non-additive effects on herbivory. Further research on this, as well as other plant systems, is needed to examine the ecological contexts under which mutualist interactive effects are more or less likely to emerge and their impacts on plant fitness and associated communities.
Collapse
Affiliation(s)
- Xoaquín Moreira
- Misión Biológica de Galicia (MBG-CSIC), Apartado de Correos 28, 36080, Pontevedra, Galicia, Spain.
| | - Lucía Martín-Cacheda
- Misión Biológica de Galicia (MBG-CSIC), Apartado de Correos 28, 36080, Pontevedra, Galicia, Spain
| | - Gabriela Quiroga
- Centro de Investigaciones Agrarias de Mabegondo (CIAM), Apartado de Correos 10, 15080 A, Coruña, Spain
| | - Beatriz Lago-Núñez
- Misión Biológica de Galicia (MBG-CSIC), Apartado de Correos 28, 36080, Pontevedra, Galicia, Spain
| | - Gregory Röder
- Institute of Biology, University of Neuchâtel, Rue Emile-Argand 11, 2000, Neuchâtel, Switzerland
| | - Luis Abdala-Roberts
- Departamento de Ecología Tropical, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Apartado Postal 4-116, Itzimná, 97000, Mérida, Yucatán, México
| |
Collapse
|
5
|
Manjarrez LF, Guevara MÁ, de María N, Vélez MD, Cobo-Simón I, López-Hinojosa M, Cabezas JA, Mancha JA, Pizarro A, Díaz-Sala MC, Cervera MT. Maritime Pine Rootstock Genotype Modulates Gene Expression Associated with Stress Tolerance in Grafted Stems. PLANTS (BASEL, SWITZERLAND) 2024; 13:1644. [PMID: 38931075 PMCID: PMC11207801 DOI: 10.3390/plants13121644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024]
Abstract
Climate change-induced hazards, such as drought, threaten forest resilience, particularly in vulnerable regions such as the Mediterranean Basin. Maritime pine (Pinus pinaster Aiton), a model species in Western Europe, plays a crucial role in the Mediterranean forest due to its genetic diversity and ecological plasticity. This study characterizes transcriptional profiles of scion and rootstock stems of four P. pinaster graft combinations grown under well-watered conditions. Our grafting scheme combined drought-sensitive and drought-tolerant genotypes for scions (GAL1056: drought-sensitive scion; and Oria6: drought-tolerant scion) and rootstocks (R1S: drought-sensitive rootstock; and R18T: drought-tolerant rootstock). Transcriptomic analysis revealed expression patterns shaped by genotype provenance and graft combination. The accumulation of differentially expressed genes (DEGs) encoding proteins, involved in defense mechanisms and pathogen recognition, was higher in drought-sensitive scion stems and also increased when grafted onto drought-sensitive rootstocks. DEGs involved in drought tolerance mechanisms were identified in drought-tolerant genotypes as well as in drought-sensitive scions grafted onto drought-tolerant rootstocks, suggesting their establishment prior to drought. These mechanisms were associated with ABA metabolism and signaling. They were also involved in the activation of the ROS-scavenging pathways, which included the regulation of flavonoid and terpenoid metabolisms. Our results reveal DEGs potentially associated with the conifer response to drought and point out differences in drought tolerance strategies. These findings suggest genetic trade-offs between pine growth and defense, which could be relevant in selecting more drought-tolerant Pinus pinaster trees.
Collapse
Affiliation(s)
- Lorenzo Federico Manjarrez
- Departamento de Ecología y Genética Forestal, Instituto de Ciencias Forestal (ICIFOR), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria—Consejo Superior de Investigaciones Científicas (INIA–CSIC), 28040 Madrid, Spain; (L.F.M.); (N.d.M.); (M.D.V.); (I.C.-S.); (M.L.-H.); (J.A.C.); (J.A.M.)
| | - María Ángeles Guevara
- Departamento de Ecología y Genética Forestal, Instituto de Ciencias Forestal (ICIFOR), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria—Consejo Superior de Investigaciones Científicas (INIA–CSIC), 28040 Madrid, Spain; (L.F.M.); (N.d.M.); (M.D.V.); (I.C.-S.); (M.L.-H.); (J.A.C.); (J.A.M.)
| | - Nuria de María
- Departamento de Ecología y Genética Forestal, Instituto de Ciencias Forestal (ICIFOR), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria—Consejo Superior de Investigaciones Científicas (INIA–CSIC), 28040 Madrid, Spain; (L.F.M.); (N.d.M.); (M.D.V.); (I.C.-S.); (M.L.-H.); (J.A.C.); (J.A.M.)
| | - María Dolores Vélez
- Departamento de Ecología y Genética Forestal, Instituto de Ciencias Forestal (ICIFOR), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria—Consejo Superior de Investigaciones Científicas (INIA–CSIC), 28040 Madrid, Spain; (L.F.M.); (N.d.M.); (M.D.V.); (I.C.-S.); (M.L.-H.); (J.A.C.); (J.A.M.)
| | - Irene Cobo-Simón
- Departamento de Ecología y Genética Forestal, Instituto de Ciencias Forestal (ICIFOR), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria—Consejo Superior de Investigaciones Científicas (INIA–CSIC), 28040 Madrid, Spain; (L.F.M.); (N.d.M.); (M.D.V.); (I.C.-S.); (M.L.-H.); (J.A.C.); (J.A.M.)
| | - Miriam López-Hinojosa
- Departamento de Ecología y Genética Forestal, Instituto de Ciencias Forestal (ICIFOR), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria—Consejo Superior de Investigaciones Científicas (INIA–CSIC), 28040 Madrid, Spain; (L.F.M.); (N.d.M.); (M.D.V.); (I.C.-S.); (M.L.-H.); (J.A.C.); (J.A.M.)
| | - José Antonio Cabezas
- Departamento de Ecología y Genética Forestal, Instituto de Ciencias Forestal (ICIFOR), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria—Consejo Superior de Investigaciones Científicas (INIA–CSIC), 28040 Madrid, Spain; (L.F.M.); (N.d.M.); (M.D.V.); (I.C.-S.); (M.L.-H.); (J.A.C.); (J.A.M.)
| | - José Antonio Mancha
- Departamento de Ecología y Genética Forestal, Instituto de Ciencias Forestal (ICIFOR), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria—Consejo Superior de Investigaciones Científicas (INIA–CSIC), 28040 Madrid, Spain; (L.F.M.); (N.d.M.); (M.D.V.); (I.C.-S.); (M.L.-H.); (J.A.C.); (J.A.M.)
| | - Alberto Pizarro
- Departamento de Ciencias de la Vida, Universidad de Alcalá (UAH), 28805 Alcalá de Henares, Spain; (A.P.); (M.C.D.-S.)
| | - María Carmen Díaz-Sala
- Departamento de Ciencias de la Vida, Universidad de Alcalá (UAH), 28805 Alcalá de Henares, Spain; (A.P.); (M.C.D.-S.)
| | - María Teresa Cervera
- Departamento de Ecología y Genética Forestal, Instituto de Ciencias Forestal (ICIFOR), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria—Consejo Superior de Investigaciones Científicas (INIA–CSIC), 28040 Madrid, Spain; (L.F.M.); (N.d.M.); (M.D.V.); (I.C.-S.); (M.L.-H.); (J.A.C.); (J.A.M.)
| |
Collapse
|
6
|
Molleman F, Mandal M, Sokół-Łętowska A, Walczak U, Volf M, Mallick S, Moos M, Vodrážka P, Prinzing A, Mezzomo P. Simulated Herbivory Affects the Volatile Emissions of Oak Saplings, while Neighbourhood Affects Flavan-3-ols Content of Their Leaves. J Chem Ecol 2024; 50:250-261. [PMID: 38270732 DOI: 10.1007/s10886-024-01471-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/10/2024] [Accepted: 01/17/2024] [Indexed: 01/26/2024]
Abstract
To what extent particular plant defences against herbivorous insects are constitutive or inducible will depend on the costs and benefits in their neighbourhood. Some defensive chemicals in leaves are thought to be costly and hard to produce rapidly, while others, including volatile organic compounds that attract natural enemies, might be cheaper and can be released rapidly. When surrounding tree species are more closely related, trees can face an increased abundance of both specialist herbivores and their parasitoids, potentially increasing the benefits of constitutive and inducible defences. To test if oaks (Quercus robur) respond more to herbivore attacks with volatile emission than with changes in leaf phenolic chemistry and carbon to nitrogen ratio (C: N), and whether oaks respond to the neighbouring tree species, we performed an experiment in a forest in Poland. Oak saplings were placed in neighbourhoods dominated by oak, beech, or pine trees, and half of them were treated with the phytohormone methyl jasmonate (elicitor of anti-herbivore responses). Oaks responded to the treatment by emitting a different volatile blend within 24 h, while leaf phenolic chemistry and C: N remained largely unaffected after 16 days and multiple treatments. Leaf phenolics were subtly affected by the neighbouring trees with elevated flavan-3-ols concentrations in pine-dominated plots. Our results suggest that these oaks rely on phenols as a constitutive defence and when attacked emit volatiles to attract natural enemies. Further studies might determine if the small effect of the neighbourhood on leaf phenolics is a response to different levels of shading, or if oaks use volatile cues to assess the composition of their neighbourhood.
Collapse
Affiliation(s)
- Freerk Molleman
- Department of Systematic Zoology, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego Str. 6, Poznań, PL-61-614, Poland.
| | - Manidip Mandal
- Department of Systematic Zoology, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego Str. 6, Poznań, PL-61-614, Poland
| | - Anna Sokół-Łętowska
- Department of Fruit, Vegetable and Plant Nutraceutical Technology, Faculty of the Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Chełmońskiego Str. 37, Wrocław, 51-630, Poland
| | - Urszula Walczak
- Department of Systematic Zoology, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego Str. 6, Poznań, PL-61-614, Poland
| | - Martin Volf
- Biology Centre, Czech Academy of Sciences, Ceske Budejovice, 37005, Czech Republic
- Faculty of Science, University of South Bohemia, Branisovska 31, Ceske Budejovice, 37005, Czech Republic
| | - Soumen Mallick
- Department of Animal Ecology and Tropical Biology, Biocenter, Field Station Fabrikschleichach, University of Würzburg, Glashüttenstraße 5, 96181, Rauhenebrach, Germany
| | - Martin Moos
- Biology Centre, Czech Academy of Sciences, Ceske Budejovice, 37005, Czech Republic
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - Petr Vodrážka
- Biology Centre, Czech Academy of Sciences, Ceske Budejovice, 37005, Czech Republic
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - Andreas Prinzing
- Research Unit « Ecosystemes, Biodiversité, Evolution », Université de Rennes 1, Centre National de la Recherche Scientifique, Campus Beaulieu, bâtiment 14, Rennes, AF-35042, France
| | - Priscila Mezzomo
- Biology Centre, Czech Academy of Sciences, Ceske Budejovice, 37005, Czech Republic
- Faculty of Science, University of South Bohemia, Branisovska 31, Ceske Budejovice, 37005, Czech Republic
| |
Collapse
|
7
|
Ullah A, Klutsch JG, Erbilgin N. Complementary roles of two classes of defense chemicals in white spruce against spruce budworm. PLANTA 2024; 259:105. [PMID: 38551685 DOI: 10.1007/s00425-024-04383-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 03/08/2024] [Indexed: 04/02/2024]
Abstract
MAIN CONCLUSION Monoterpenes and phenolics play distinct roles in defending white spruce trees from insect defoliators. Monoterpenes contribute to the toxicity of the foliage, deterring herbivory, whereas phenolics impede budworm growth. This study demonstrates the complex interplay between monoterpenes and phenolics and their collective influence on the defense strategy of white spruce trees against a common insect defoliator. Long-lived coniferous trees display considerable variations in their defensive chemistry. The impact of these defense phenotype variations on insect herbivores of the same species remains to be thoroughly studied, mainly due to challenges in replicating the comprehensive defense profiles of trees under controlled conditions. This study methodically examined the defensive properties of foliar monoterpenes and phenolics across 80 distinct white spruce families. These families were subsequently grouped into two chemotypes based on their foliar monoterpene concentrations. To understand the separate and combined effects of these classes on tree defenses to the eastern spruce budworm, we conducted feeding experiments using actual defense profiles from representative families. Specifically, we assessed budworm response when exposed to substrates amended with phenolics alone or monoterpenes. Our findings indicate that the ratios and amounts of monoterpenes and phenolics present in the white spruce foliage influence the survival of spruce budworms. Phenotypes associated with complete larval mortality exhibited elevated ratios (ranging from 0.4 to 0.6) and concentrations (ranging from 1143 to 1796 ng mg-1) of monoterpenes. Conversely, families characterized by higher phenolic ratios (ranging from 0.62 to 0.77) and lower monoterpene concentrations (ranging from 419 to 985 ng mg-1) were less lethal to the spruce budworm. Both classes of defense compounds contribute significantly to the overall defensive capabilities of white spruce trees. Monoterpenes appear critical in determining the general toxicity of foliage, while phenolics play a role in slowing budworm development, thereby underscoring their collective importance in white spruce defenses.
Collapse
Affiliation(s)
- Aziz Ullah
- Department of Renewable Resources, University of Alberta, Edmonton, AB, T6G 2E3, Canada.
| | - Jennifer G Klutsch
- Department of Renewable Resources, University of Alberta, Edmonton, AB, T6G 2E3, Canada
- Natural Resources Canada, Canadian Forest Service, Edmonton, AB, T6H 3S5, Canada
| | - Nadir Erbilgin
- Department of Renewable Resources, University of Alberta, Edmonton, AB, T6G 2E3, Canada
| |
Collapse
|
8
|
Teng HD, Tan CY, He YN, Cai XH, Chen G. Search for Snail Repellents: Antimollusc Activities from Stemona parviflora and Six Other Chinese Stemona Species. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6203-6212. [PMID: 38483144 DOI: 10.1021/acs.jafc.3c07103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Snails are important agricultural pests difficult to control, but data regarding molluscicidal assays are scant. Stemona alkaloids are typical secondary metabolites for the taxa and have been broadly investigated for their pharmacological and toxicological effects. This makes it possible for us to further develop the toxicities of these compounds to snails. In this work, we tested the antifeedant properties of leaves from seven Chinese Stemona species against the land snail species Bradybaena ravida in choice and non-choice feeding assays. The tested leaves Stemona parviflora exhibited the most deterrent effects, and a further phytochemical investigation of aerial parts led to the identification of 16 alkaloids. Among them, three novel alkaloids could be identified. The alkaloidal fraction and single alkaloids were further assayed against this snail species, and the results suggest a cocktail effect because the impact of the alkaloidal fraction was higher than the effects caused by single alkaloids. The study can promote the search process of natural antimollusc products from plants to control snails.
Collapse
Affiliation(s)
- Hui-Dan Teng
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Cheng-Yong Tan
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, People's Republic of China
| | - Yan-Ni He
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550002, People's Republic of China
| | - Xiang-Hai Cai
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, People's Republic of China
| | - Gao Chen
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
9
|
Chen YD, Liu C, Moles A, Jassey VEJ, Bu ZJ. A hidden herbivory effect on Sphagnum reproduction. PLANT BIOLOGY (STUTTGART, GERMANY) 2024; 26:214-222. [PMID: 38192088 DOI: 10.1111/plb.13610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 11/24/2023] [Indexed: 01/10/2024]
Abstract
Defence theories provide predictions about trade-offs in the allocation of resources to defence and growth. However, very little is known about how pressure from herbivores influences the allocation of resources during reproduction. Two common peatland bryophyte species, Sphagnum angustifolium and S. capillifolium, were chosen as study species. Vegetative and reproductive shoots of both Sphagnum species were subjected to treatments with and without herbivores in a lab experiment. After 4 weeks of exposure to herbivores in a growth chamber, we measured biomass production, net photosynthesis rate, defence traits (phenolics in leachate and phenolics in extract), nonstructural carbohydrates (soluble sugar and starch), and reproductive traits (capsule number, weight and diameter, and spore germination) of both Sphagnum species. Reproductive shoots had higher constitutive defence than vegetative shoots in S. angustifolium, and a similar pattern was observed in S. capillifolium. With herbivory, reproductive shoots showed stronger induced defence (released more phenolics) than vegetative shoots in S. capillifolium, but not in S. angustifolium. Herbivory had no effect on capsule number, weight, or diameter, but reduced spore germination percentage by more than half in both species. Our study highlights the hidden effects of herbivory on reproduction of Sphagnum and indicates the presence of maternal effects in bryophytes. Ecologists will benefit from examining both quality- and quantity-based traits when attempting to estimate the herbivory effect on plant fitness.
Collapse
Affiliation(s)
- Y-D Chen
- Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun, China
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Institute for Peat and Mire Research, Northeast Normal University, Changchun, China
- Jilin Provincial Key Laboratory for Wetland Ecological Processes and Environmental Change in the Changbai Mountains, Changchun, China
| | - C Liu
- Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun, China
- Peatland Ecology Research Group and Centre for Northern Studies, Université Laval, Québec, QC, Canada
| | - A Moles
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, UNSW Sydney, Kensington, NSW, Australia
| | - V E J Jassey
- Laboratoire Ecologie Fonctionnelle et Environnement (LEFE), Université Paul Sabatier, CNRS, Toulouse, France
| | - Z-J Bu
- Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun, China
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Institute for Peat and Mire Research, Northeast Normal University, Changchun, China
- Jilin Provincial Key Laboratory for Wetland Ecological Processes and Environmental Change in the Changbai Mountains, Changchun, China
| |
Collapse
|
10
|
Guo J, Liu S, Jing D, He K, Zhang Y, Li M, Qi J, Wang Z. Genotypic variation in field-grown maize eliminates trade-offs between resistance, tolerance and growth in response to high pressure from the Asian corn borer. PLANT, CELL & ENVIRONMENT 2023; 46:3072-3089. [PMID: 36207806 DOI: 10.1111/pce.14458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/28/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
Insect herbivory challenges plant survival, and coordination of the interactions between growth, herbivore resistance/tolerance is a key problem faced by plants. Based on field experiments into resistance to the Asian corn borer (ACB, Ostrinia furnacalis), we selected 10 inbred maize lines, of which five were resistant and five were susceptible to ACB. We conducted ACB larval bioassays, analysed defensive chemicals, phytohormones, and relative gene expression using RNA-seq and qPCR as well as agronomic traits, and found resistant lines had weaker inducibility, but were more resistant after ACB attack than susceptible lines. Resistance was related to high levels of major benzoxazinoids, but was not related to induced levels of JA or JA-Ile. Following combination analyses of transcriptome, metabolome and larval performance data, we discovered three benzoxazinoids biosynthesis-related transcription factors, NAC60, WRKY1 and WRKY46. Protoplast transformation analysis suggested that these may regulate maize defence-growth trade-offs by increasing levels of benzoxazinoids, JA and SA but decreasing IAA. Moreover, the resistance/tolerance-growth trade-offs were not observed in the 10 lines, and genotype-specific metabolic and genetic features probably eliminated the trade-offs. This study highlights the possibility of breeding maize varieties simultaneously with improved defences and higher yield under complex field conditions.
Collapse
Affiliation(s)
- Jingfei Guo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, MOA-CABI Joint Laboratory for Bio-safety, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shen Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, MOA-CABI Joint Laboratory for Bio-safety, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dapeng Jing
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, MOA-CABI Joint Laboratory for Bio-safety, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Kanglai He
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, MOA-CABI Joint Laboratory for Bio-safety, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yongjun Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, MOA-CABI Joint Laboratory for Bio-safety, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mingshun Li
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Jinfeng Qi
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Zhenying Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, MOA-CABI Joint Laboratory for Bio-safety, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
11
|
Zhou Y, Chen C, Xiong Y, Xiao F, Wang Y. Heavy metal induced resistance to herbivore of invasive plant: implications from inter- and intraspecific comparisons. FRONTIERS IN PLANT SCIENCE 2023; 14:1222867. [PMID: 37649994 PMCID: PMC10464952 DOI: 10.3389/fpls.2023.1222867] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 07/26/2023] [Indexed: 09/01/2023]
Abstract
Introduction Heavy metals can affect the content of secondary metabolites in plants, which are one of the important defenses of plants against herbivores. However, studies on the effects of heavy metals on secondary metabolites of invasive plants are scarce. Phytolacca americana is an invasive plant in China, which can hyperaccumulate the heavy metal Mn. Methods This study used two Mn treatments (control and treatment group) and four species from Phytolacca (including the native and introduced populations of P. americana, its native and exotic congeners in China) to investigate the impact of heavy metal Mn on the invasive ability of P. americana. Results The results show that heavy metal Mn can enhance the inhibitory effect of the introduced populations of P. americana on the growth of herbivore (the weight of herbivore has decreased by 66%), and altered the feeding preferences of herbivore. We also found that heavy metal Mn can significantly increase the content of quantitative resistance in the leaves of the introduced populations of P. americana and is higher than its native populations, native and exotic congeners. In addition, heavy metal Mn caused the quantitative resistance of the exotic congener significantly higher than that of the native congeners. Discussion In summary, the heavy metal Mn can increase the content of secondary metabolites in leaves to enhance the interspecific competitive advantage of P. americana and promote its invasion, and also increase the invasion risk of exotic species.
Collapse
Affiliation(s)
| | | | | | | | - Yi Wang
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Centre for Invasion Biology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, China
| |
Collapse
|
12
|
Park G, Norton L, Avery D, Dam HG. Grazers modify the dinoflagellate relationship between toxin production and cell growth. HARMFUL ALGAE 2023; 126:102439. [PMID: 37290888 DOI: 10.1016/j.hal.2023.102439] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 06/10/2023]
Abstract
Although the typical framework for studies and models of bloom dynamics in toxigenic phytoplankton is predominantly based on abiotic determinants, there is mounting evidence of grazer control of toxin production. We tested for the effect of grazer control of toxin production and cell growth rate during a laboratory-simulated bloom of the dinoflagellate Alexandrium catenella. We measured cellular toxin content and net growth rate when cells were exposed to copepod grazers (direct exposure), copepod cues (indirect exposure), and no copepods (control) throughout the exponential, stationary, and declining phases of the bloom. During the simulated bloom, cellular toxin content plateaued after the stationary phase and there was a significantly positive relationship between growth rate and toxin production, predominantly in the exponential phase. Grazer-induced toxin production was evident throughout the bloom, but highest during the exponential phase. Induction was greater when cells were directly exposed to grazers rather than their cues alone. In the presence of grazers toxin production and cell growth rate were negatively related, indicating a defense-growth trade-off. Further, a fitness reduction associated with toxin production was more evident in the presence than the absence of grazers. Consequently, the relationship between toxin production and cell growth is fundamentally different between constitutive and inducible defense. This suggests that understanding and predicting bloom dynamics requires considering both constitutive and grazer-induced toxin production.
Collapse
Affiliation(s)
- Gihong Park
- Department of Marine Sciences, University of Connecticut, 1080 Shennecossett Road, Groton, CT 06340, USA.
| | - Lydia Norton
- Department of Marine Sciences, University of Connecticut, 1080 Shennecossett Road, Groton, CT 06340, USA.
| | - David Avery
- Maine Maritime Academy, 1 Pleasant Street, Castine, Maine 04420, USA.
| | - Hans G Dam
- Department of Marine Sciences, University of Connecticut, 1080 Shennecossett Road, Groton, CT 06340, USA.
| |
Collapse
|
13
|
Yoneya K, Miki T, Katayama N. Plant volatiles and priority effects interactively determined initial community assembly of arthropods on multiple willow species. Ecol Evol 2023; 13:e10270. [PMID: 37492458 PMCID: PMC10364932 DOI: 10.1002/ece3.10270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 06/15/2023] [Accepted: 06/19/2023] [Indexed: 07/27/2023] Open
Abstract
Plant traits, which are often species specific, can serve as environmental filtering for community assembly on plants. At the same time, the species identity of the initially colonizing arthropods would vary between plant individuals, which would subsequently influence colonizing arthropods and community development in the later stages. However, it remains unclear whether interindividual divergence due to priority effects is equally important as plant trait-specific environmental filtering in the initial stages. In this study, we propose that plant volatile organic compounds (PVOCs) may play a crucial role as an environmental filter in the initial stages of community assembly, which can prevent the community assembly process from being purely stochastic. To test this hypothesis, we conducted short term but highly frequent monitoring (19 observations over 9 days) of arthropod community assembly on intact individuals of six willow species in a common garden. PVOC compositions were analyzed before starting the experiment and compared with arthropod compositions occurring on Days 1-2 of the experiment (earliest colonizer community) and those occurring on Days 8-9 of the experiment (subsequent colonizer community). Unintentionally, deer herbivory also occurred at night of Day 2. Distance-based statistics demonstrated that PVOC compositions were plant species specific, but neither the earliest colonizer nor the subsequent colonizer community composition could be explained by plant species identity. Rather, Procrustes analysis showed that both the PVOC composition and that of the earliest colonizer community can be used to explain the subsequent colonizer community. In addition, the linkage between PVOCs and the subsequent colonizer community was stronger on individuals with deer herbivory. These findings indicate that PVOCs have widespread effects on initial community assembly, as well as priority effects brought on by stochastic immigration, and that plant species identity only has weak and indirect effects on the actual composition of the community.
Collapse
Affiliation(s)
- Kinuyo Yoneya
- Faculty of AgricultureKindai UniversityNaraJapan
- Center for Biodiversity ScienceRyukoku UniversityOtsuJapan
| | - Takeshi Miki
- Center for Biodiversity ScienceRyukoku UniversityOtsuJapan
- Faculty of Advanced Science and TechnologyRyukoku UniversityOtsuJapan
| | - Noboru Katayama
- General EducationFaculty of CommerceOtaru University of CommerceOtaruJapan
| |
Collapse
|
14
|
Capblancq T, Lachmuth S, Fitzpatrick MC, Keller SR. From common gardens to candidate genes: exploring local adaptation to climate in red spruce. THE NEW PHYTOLOGIST 2023; 237:1590-1605. [PMID: 36068997 PMCID: PMC10092705 DOI: 10.1111/nph.18465] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 08/09/2022] [Indexed: 05/12/2023]
Abstract
Local adaptation to climate is common in plant species and has been studied in a range of contexts, from improving crop yields to predicting population maladaptation to future conditions. The genomic era has brought new tools to study this process, which was historically explored through common garden experiments. In this study, we combine genomic methods and common gardens to investigate local adaptation in red spruce and identify environmental gradients and loci involved in climate adaptation. We first use climate transfer functions to estimate the impact of climate change on seedling performance in three common gardens. We then explore the use of multivariate gene-environment association methods to identify genes underlying climate adaptation, with particular attention to the implications of conducting genome scans with and without correction for neutral population structure. This integrative approach uncovered phenotypic evidence of local adaptation to climate and identified a set of putatively adaptive genes, some of which are involved in three main adaptive pathways found in other temperate and boreal coniferous species: drought tolerance, cold hardiness, and phenology. These putatively adaptive genes segregated into two 'modules' associated with different environmental gradients. This study nicely exemplifies the multivariate dimension of adaptation to climate in trees.
Collapse
Affiliation(s)
- Thibaut Capblancq
- Department of Plant BiologyUniversity of VermontBurlingtonVT05405USA
| | - Susanne Lachmuth
- Appalachian LaboratoryUniversity of Maryland Center for Environmental ScienceFrostburgMD21532USA
| | - Matthew C. Fitzpatrick
- Appalachian LaboratoryUniversity of Maryland Center for Environmental ScienceFrostburgMD21532USA
| | - Stephen R. Keller
- Department of Plant BiologyUniversity of VermontBurlingtonVT05405USA
| |
Collapse
|
15
|
Valdovinos FS, Hale KRS, Dritz S, Glaum PR, McCann KS, Simon SM, Thébault E, Wetzel WC, Wootton KL, Yeakel JD. A bioenergetic framework for aboveground terrestrial food webs. Trends Ecol Evol 2023; 38:301-312. [PMID: 36437144 DOI: 10.1016/j.tree.2022.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/10/2022] [Accepted: 11/04/2022] [Indexed: 11/26/2022]
Abstract
Bioenergetic approaches have been greatly influential for understanding community functioning and stability and predicting effects of environmental changes on biodiversity. These approaches use allometric relationships to establish species' trophic interactions and consumption rates and have been successfully applied to aquatic ecosystems. Terrestrial ecosystems, where body mass is less predictive of plant-consumer interactions, present inherent challenges that these models have yet to meet. Here, we discuss the processes governing terrestrial plant-consumer interactions and develop a bioenergetic framework integrating those processes. Our framework integrates bioenergetics specific to terrestrial plants and their consumers within a food web approach while also considering mutualistic interactions. Such a framework is poised to advance our understanding of terrestrial food webs and to predict their responses to environmental changes.
Collapse
Affiliation(s)
- Fernanda S Valdovinos
- Department of Environmental Science and Policy, University of California, Davis, Davis, CA, USA.
| | - Kayla R S Hale
- Department of Environmental Science and Policy, University of California, Davis, Davis, CA, USA; Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | - Sabine Dritz
- Department of Environmental Science and Policy, University of California, Davis, Davis, CA, USA
| | - Paul R Glaum
- Department of Environmental Science and Policy, University of California, Davis, Davis, CA, USA
| | - Kevin S McCann
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada
| | - Sophia M Simon
- Department of Environmental Science and Policy, University of California, Davis, Davis, CA, USA
| | - Elisa Thébault
- Sorbonne Université, UPEC, Université Paris Cité, CNRS, IRD, INRAE, Institute of Ecology and Environmental Sciences of Paris, Paris, France
| | - William C Wetzel
- Department of Integrative Biology, Michigan State University, East Lansing, MI, USA; Department of Entomology, Michigan State University, East Lansing, MI, USA
| | - Kate L Wootton
- BioFrontiers Institute at the University of Colorado, Boulder, CO, USA
| | - Justin D Yeakel
- Department of Life & Environmental Sciences, University of California, Merced, CA, USA
| |
Collapse
|
16
|
Ferrenberg S, Vázquez‐González C, Lee SR, Kristupaitis M. Divergent growth‐differentiation balance strategies and resource competition shape mortality patterns in ponderosa pine. Ecosphere 2023. [DOI: 10.1002/ecs2.4349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Affiliation(s)
- Scott Ferrenberg
- Department of Ecosystem and Conservation Sciences University of Montana Missoula Montana USA
| | - Carla Vázquez‐González
- Department of Ecology and Evolutionary Biology University of California Irvine California USA
- Misión Biológica de Galicia National Spanish Research Council Pontevedra Spain
| | - Steven R. Lee
- Department of Biology New Mexico State University Las Cruces New Mexico USA
| | - Milda Kristupaitis
- Department of Biology New Mexico State University Las Cruces New Mexico USA
| |
Collapse
|
17
|
Tlili H, Arfa AB, Boubakri A, Hanen N, Neffati M, Doria E. Biochemical Composition and Biological Activities of Various Population of Brassica tournefortii Growing Wild in Tunisia. PLANTS (BASEL, SWITZERLAND) 2022; 11:3393. [PMID: 36501432 PMCID: PMC9739365 DOI: 10.3390/plants11233393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Brassica tournefortii Gouan, commonly known (Aslooz) in Tunisia, is an annual plant, native to the North Africa and Middle East. Brassica species are used as food, their young leaves can be cooked, providing nutrients and health-giving phytochemicals such as phenolic compounds, polyphenols and carotenoids. Phytochemical composition and bioactivity of Brassica tournefortii leaf extracts, collected from four different bioclimatic zones in Tunisia, are investigated in the present study. Results showed that location and climatic variations can alter the phytochemical composition of B. tournefortii. Interestingly, HPLC analysis enabled identifying lutein and beta-carotene at high concentrations, especially in extracts of B. tournefortii collected from Gabes (B2) (344 µg/g of lutein) and B. tournefortii collected from Zarzis (B3) (1364 µg/g of beta-carotene). In particular, the antioxidant activity measured by DPPH assay showed that the extract of the plants collected from the growing region of Zarzis exhibits the highest antioxidant activities (0.99 mg/mL). All the Brassica tournefortii extracts showed a relevant antiproliferative activity, especially toward the Caco-2 cell line. These preliminary data resulted in being useful to correlate growth environmental conditions with different accumulation of metabolites in Brassica species still being poorly studied.
Collapse
Affiliation(s)
- Hajer Tlili
- Laboratory of Pastoral Ecosystems and Valorization of Spontaeous Plants and Microorganisms, Institute of Arid Regions (IRA), Medenine 4119, Tunisia
| | - Abdelkarim Ben Arfa
- Laboratory of Pastoral Ecosystems and Valorization of Spontaeous Plants and Microorganisms, Institute of Arid Regions (IRA), Medenine 4119, Tunisia
| | - Abdelbasset Boubakri
- Laboratory of Pastoral Ecosystems and Valorization of Spontaeous Plants and Microorganisms, Institute of Arid Regions (IRA), Medenine 4119, Tunisia
| | - Najjaa Hanen
- Laboratory of Pastoral Ecosystems and Valorization of Spontaeous Plants and Microorganisms, Institute of Arid Regions (IRA), Medenine 4119, Tunisia
| | - Mohamed Neffati
- Laboratory of Pastoral Ecosystems and Valorization of Spontaeous Plants and Microorganisms, Institute of Arid Regions (IRA), Medenine 4119, Tunisia
| | - Enrico Doria
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
18
|
Fyllas NM, Chrysafi D, Avtzis DN, Moreira X. Photosynthetic and defensive responses of two Mediterranean oaks to insect leaf herbivory. TREE PHYSIOLOGY 2022; 42:2282-2293. [PMID: 35766868 PMCID: PMC9832970 DOI: 10.1093/treephys/tpac067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 06/11/2022] [Indexed: 06/15/2023]
Abstract
Insect herbivory is a dominant interaction across virtually all ecosystems globally and has dramatic effects on plant function such as reduced photosynthesis activity and increased levels of defenses. However, most previous work assessing the link between insect herbivory, photosynthesis and plant defenses has been performed on cultivated model plant species, neglecting a full understanding of patterns in natural systems. In this study, we performed a field experiment to investigate the effects of herbivory by a generalist foliar feeding insect (Lymantria dispar) and leaf mechanical damage on multiple leaf traits associated with defense against herbivory and photosynthesis activity on two sympatric oak species with contrasting leaf habit (the evergreen Quercus coccifera L. and the deciduous Quercus pubescens Willd). Our results showed that, although herbivory treatments and oak species did not strongly affect photosynthesis and dark respiration, these two factors exerted interactive effects. Insect herbivory and mechanical damage (vs control) decreased photosynthesis activity for Q. coccifera but not for Q. pubescens. Insect herbivory and mechanical damage tended to increase chemical (increased flavonoid and lignin concentration) defenses, but these effects were stronger for Q. pubescens. Overall, this study shows that two congeneric oak species with contrasting leaf habit differ in their photosynthetic and defensive responses to insect herbivory. While the evergreen oak species followed a more conservative strategy (reduced photosynthesis and higher physical defenses), the deciduous oak species followed a more acquisitive strategy (maintained photosynthesis and higher chemical defenses).
Collapse
Affiliation(s)
| | - Despina Chrysafi
- Biodiversity Conservation Lab, Department of Environment, University of the Aegean, Mytilene 81100, Greece
| | - Dimitrios N Avtzis
- Forest Research Institute, Hellenic Agricultural Organization, Thessaloniki 57006, Greece
| | - Xoaquín Moreira
- Misión Biológica de Galicia (MBG-CSIC), Apartado de Correos 28, Pontevedra, Galicia 36080, Spain
| |
Collapse
|
19
|
Constitutive and Induced Defenses in Long-lived Pines Do Not Trade Off but Are Influenced by Climate. J Chem Ecol 2022; 48:746-760. [PMID: 35982356 DOI: 10.1007/s10886-022-01377-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 10/15/2022]
Abstract
Plants resist herbivores and pathogens by using constitutive (baseline) and inducible (change in defense after an attack) defenses. Inducibility has long been predicted to trade off with constitutive defense, reflecting the economic use of resources. However, empirical evidence for such tradeoffs is variable, and we still lack understanding about when and where defense trade-offs occur. We tested for tradeoffs between constitutive and induced defenses in natural populations of three species of long-lived pines (Pinus balfouriana, P. flexilis, P. longaeva) that differ greatly in constitutive defense and resistance to mountain pine beetle (MPB, Dendroctonus ponderosae). We also assessed how climate influenced constitutive and inducible defenses. At seven high-elevation sites in the western U.S., we simulated MPB attack to induce defenses and measured concentrations of terpene-based phloem defenses on days 0, 15, and 30. Constitutive and induced defenses did not trade off among or within species. Simulated MPB attack induced large increases in defense concentrations in all species independent of constitutive levels. MPB and its symbiotic fungi typically kill trees and thus could be selective forces maintaining strong inducibility within and among species. The contrasting constitutive concentrations in these species could be driven by the adaptation for specializing in harsh, high-elevation environments (e.g., P. balfouriana and P. longaeva) or by competition (e.g., P. flexilis), though these hypotheses have not been empirically examined. Climate influenced defenses, with the greatest concentrations of constitutive and induced defenses occurring at the coldest and driest sites. The interactions between climate and defenses have implications for these species under climate change.
Collapse
|
20
|
Azuma WA, Kawai K, Tanabe T, Nakahata R, Hiura T. Intraspecific variation in growth‐related traits—from leaf to whole‐tree—in three provenances of
Cryptomeria japonica
canopy trees grown in a common garden. Ecol Res 2022. [DOI: 10.1111/1440-1703.12349] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Wakana A. Azuma
- Graduate School of Agricultural Science Kobe University Kobe Japan
- Graduate School of Agriculture Kyoto University Kyoto Japan
| | - Kiyosada Kawai
- Center for Ecological Research Kyoto University Otsu Japan
- Forestry Division Japan International Research Center for Agricultural Sciences (JIRCAS) Tsukuba Japan
| | - Tomoko Tanabe
- Graduate School of Global Environmental Studies Kyoto University Kyoto Japan
| | - Ryo Nakahata
- Graduate School of Agriculture Kyoto University Kyoto Japan
- Graduate School of Agricultural and Life Sciences The University of Tokyo Tokyo Japan
| | - Tsutom Hiura
- Department of Ecosystem Studies The University of Tokyo Tokyo Japan
| |
Collapse
|
21
|
Soderberg DN, Bentz BJ, Runyon JB, Hood SM, Mock KE. Chemical defense strategies, induction timing, growth, and trade‐offs in
Pinus aristata
and
Pinus flexilis. Ecosphere 2022. [DOI: 10.1002/ecs2.4183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- David N. Soderberg
- Wildland Resources Department Utah State University Logan Utah USA
- Ecology Center Utah State University Logan Utah USA
| | - Barbara J. Bentz
- USDA Forest Service, Rocky Mountain Research Station Logan Utah USA
| | - Justin B. Runyon
- USDA Forest Service, Rocky Mountain Research Station Bozeman Montana USA
| | - Sharon M. Hood
- USDA Forest Service, Rocky Mountain Research Station Missoula Montana USA
| | - Karen E. Mock
- Wildland Resources Department Utah State University Logan Utah USA
- Ecology Center Utah State University Logan Utah USA
| |
Collapse
|
22
|
Eisenring M, Best RJ, Zierden MR, Cooper HF, Norstrem MA, Whitham TG, Grady K, Allan GJ, Lindroth RL. Genetic divergence along a climate gradient shapes chemical plasticity of a foundation tree species to both changing climate and herbivore damage. GLOBAL CHANGE BIOLOGY 2022; 28:4684-4700. [PMID: 35596651 DOI: 10.1111/gcb.16275] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/21/2022] [Indexed: 06/15/2023]
Abstract
Climate change is threatening the persistence of many tree species via independent and interactive effects on abiotic and biotic conditions. In addition, changes in temperature, precipitation, and insect attacks can alter the traits of these trees, disrupting communities and ecosystems. For foundation species such as Populus, phytochemical traits are key mechanisms linking trees with their environment and are likely jointly determined by interactive effects of genetic divergence and variable environments throughout their geographic range. Using reciprocal Fremont cottonwood (Populus fremontii) common gardens along a steep climatic gradient, we explored how environment (garden climate and simulated herbivore damage) and genetics (tree provenance and genotype) affect both foliar chemical traits and the plasticity of these traits. We found that (1) Constitutive and plastic chemical responses to changes in garden climate and damage varied among defense compounds, structural compounds, and leaf nitrogen. (2) For both defense and structural compounds, plastic responses to different garden climates depended on the climate in which a population or genotype originated. Specifically, trees originating from cool provenances showed higher defense plasticity in response to climate changes than trees from warmer provenances. (3) Trees from cool provenances growing in cool garden conditions expressed the lowest constitutive defense levels but the strongest induced (plastic) defenses in response to damage. (4) The combination of hot garden conditions and simulated herbivory switched the strategy used by these genotypes, increasing constitutive defenses but erasing the capacity for induction after damage. Because Fremont cottonwood chemistry plays a major role in shaping riparian communities and ecosystems, the effects of changes in phytochemical traits can be wide reaching. As the southwestern US is confronted with warming temperatures and insect outbreaks, these results improve our capacity to predict ecosystem consequences of climate change and inform selection of tree genotypes for conservation and restoration purposes.
Collapse
Affiliation(s)
- Michael Eisenring
- Department of Entomology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Forest Entomology, Swiss Federal Research Institute for Forest, Snow, and Landscape Research WSL, Zurich, Switzerland
| | - Rebecca J Best
- School of Earth and Sustainability, Northern Arizona University, Flagstaff, Arizona, USA
| | - Mark R Zierden
- Department of Entomology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Hillary F Cooper
- Center for Adaptable Western Landscapes, Northern Arizona University, Flagstaff, Arizona, USA
| | - Madelyn A Norstrem
- School of Earth and Sustainability, Northern Arizona University, Flagstaff, Arizona, USA
| | - Thomas G Whitham
- Center for Adaptable Western Landscapes, Northern Arizona University, Flagstaff, Arizona, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, USA
| | - Kevin Grady
- School of Forestry, Northern Arizona University, Flagstaff, Arizona, USA
| | - Gerard J Allan
- Center for Adaptable Western Landscapes, Northern Arizona University, Flagstaff, Arizona, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, USA
| | - Richard L Lindroth
- Department of Entomology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
23
|
Gaytán Á, Moreira X, Castagneyrol B, Van Halder I, De Frenne P, Meeussen C, Timmermans BGH, Ten Hoopen JPJG, Rasmussen PU, Bos N, Jaatinen R, Pulkkinen P, Söderlund S, Covelo F, Gotthard K, Tack AJM. The co-existence of multiple oak leaf flushes contributes to the large within-tree variation in chemistry, insect attack and pathogen infection. THE NEW PHYTOLOGIST 2022; 235:1615-1628. [PMID: 35514157 PMCID: PMC9545873 DOI: 10.1111/nph.18209] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 05/03/2022] [Indexed: 06/14/2023]
Abstract
Many plant species produce multiple leaf flushes during the growing season, which might have major consequences for within-plant variation in chemistry and species interactions. Yet, we lack a theoretical or empirical framework for how differences among leaf flushes might shape variation in damage by insects and diseases. We assessed the impact of leaf flush identity on leaf chemistry, insect attack and pathogen infection on the pedunculate oak Quercus robur by sampling leaves from each leaf flush in 20 populations across seven European countries during an entire growing season. The first leaf flush had higher levels of primary compounds, and lower levels of secondary compounds, than the second flush, whereas plant chemistry was highly variable in the third flush. Insect attack decreased from the first to the third flush, whereas infection by oak powdery mildew was lowest on leaves from the first flush. The relationship between plant chemistry, insect attack and pathogen infection varied strongly among leaf flushes and seasons. Our findings demonstrate the importance of considering differences among leaf flushes for our understanding of within-tree variation in chemistry, insect attack and disease levels, something particularly relevant given the expected increase in the number of leaf flushes with climate change.
Collapse
Affiliation(s)
- Álvaro Gaytán
- Department of Ecology, Environment and Plant SciencesStockholm UniversitySvante Arrhenius väg 20AStockholmSweden
| | - Xoaquín Moreira
- Misión Biológica de Galicia (MBG‐CSIC)Apdo. 2836080Pontevedra, GaliciaSpain
| | | | | | - Pieter De Frenne
- Forest & Nature LaboratoryGhent UniversityGeraardsbergsesteenweg 267BE‐9090Gontrode‐MelleBelgium
| | - Camille Meeussen
- Forest & Nature LaboratoryGhent UniversityGeraardsbergsesteenweg 267BE‐9090Gontrode‐MelleBelgium
| | - Bart G. H. Timmermans
- Department of AgricultureLouis Bolk InstituteKosterijland 3‐53981 AJBunnikthe Netherlands
| | | | - Pil U. Rasmussen
- The National Research Centre for the Working Environment2100CopenhagenDenmark
| | - Nick Bos
- Section for Ecology & EvolutionUniversity of Copenhagen2200CopenhagenDenmark
| | - Raimo Jaatinen
- Natural Resources Institute Finland, Haapastensyrjä Breeding StationFI‐16200LäyliäinenFinland
| | - Pertti Pulkkinen
- Natural Resources Institute Finland, Haapastensyrjä Breeding StationFI‐16200LäyliäinenFinland
| | - Sara Söderlund
- Department of Ecology, Environment and Plant SciencesStockholm UniversitySvante Arrhenius väg 20AStockholmSweden
| | - Felisa Covelo
- Departamento de Sistemas FísicosQuímicos y NaturalesUniversidad Pablo de OlavideCarretera de Utrera km. 141013SevilleSpain
| | - Karl Gotthard
- Department of ZoologyStockholm UniversitySvante Arrhenius väg 18BSE‐106 91StockholmSweden
| | - Ayco J. M. Tack
- Department of Ecology, Environment and Plant SciencesStockholm UniversitySvante Arrhenius väg 20AStockholmSweden
| |
Collapse
|
24
|
Cera A, Montserrat‐Martí G, Drenovsky RE, Ourry A, Brunel‐Muguet S, Palacio S. Gypsum endemics accumulate excess nutrients in leaves as a potential constitutive strategy to grow in grazed extreme soils. PHYSIOLOGIA PLANTARUM 2022; 174:e13738. [PMID: 35765177 PMCID: PMC9546198 DOI: 10.1111/ppl.13738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
Extreme soils often have mineral nutrient imbalances compared to plant nutritional requirements and co-occur in open areas where grazers thrive. Thus, plants must respond to both constraints, which can affect nutrient concentrations in all plant organs. Gypsum soil provides an excellent model system to study adaptations to extreme soils under current grazing practices as it harbours two groups of plant species that differ in their tolerance to gypsum soils and foliar composition. However, nutrient concentrations in organs other than leaves, and their individual responses to simulated herbivory, are still unknown in gypsum plants. We studied plant biomass, root mass ratio and nutrient partitioning among different organs (leaves, stems, coarse roots, fine roots) in five gypsum endemics and five generalists cultivated in gypsum and calcareous soils and subjected to different levels of simulated browsing. Gypsum endemics tended to have higher elemental concentration in leaves, stems and coarse roots than generalist species in both soil types, whereas both groups tended to show similar high concentrations in fine roots. This behaviour was especially clear with sulphur (S), which is found in excess in gypsum soils, and which endemics accumulated in leaves as sulphate (>50% of S). Moreover, plants subjected to clipping, regardless of their affinity to gypsum, were unable to compensate for biomass losses and showed similar elemental composition to unclipped plants. The accumulation of excess mineral nutrients by endemic species in aboveground organs may be a constitutive nutritional strategy in extreme soils and is potentially playing an anti-herbivore role in grazed gypsum outcrops.
Collapse
Affiliation(s)
- Andreu Cera
- Departamento Biodiversidad y Restauración, Instituto Pirenaico de EcologíaConsejo Superior de Investigaciones CientíficasJacaSpain
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals (BEECA), Secció de Botànica i Micologia, Facultat de BiologiaUniversitat de BarcelonaBarcelonaSpain
| | - Gabriel Montserrat‐Martí
- Departamento Biodiversidad y Restauración, Instituto Pirenaico de EcologíaConsejo Superior de Investigaciones CientíficasZaragozaSpain
| | | | - Alain Ourry
- Agronomie et Nutritions N, C, S, SFR Normandie Végétal (FED 4277), UNICAEN, INRAE, UMR 950 Ecophysiologie VégétaleNormandie UniversitéCaenFrance
| | - Sophie Brunel‐Muguet
- Agronomie et Nutritions N, C, S, SFR Normandie Végétal (FED 4277), UNICAEN, INRAE, UMR 950 Ecophysiologie VégétaleNormandie UniversitéCaenFrance
| | - Sara Palacio
- Departamento Biodiversidad y Restauración, Instituto Pirenaico de EcologíaConsejo Superior de Investigaciones CientíficasJacaSpain
| |
Collapse
|
25
|
Coverdale TC, Agrawal AA. Experimental insect suppression causes loss of induced, but not constitutive, resistance in Solanum carolinense. Ecology 2022; 103:e3786. [PMID: 35711089 DOI: 10.1002/ecy.3786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/29/2022] [Accepted: 05/16/2022] [Indexed: 11/06/2022]
Abstract
Spatiotemporal variation in herbivory is a major driver of intraspecific variation in plant defense. Comparatively little is known, however, about how changes in herbivory regime affect the balance of constitutive and induced resistance, which are often considered alternative defensive strategies. Here, we investigated how nearly a decade of insect herbivore suppression affected constitutive and induced resistance in horsenettle (Solanum carolinense), a widespread herbaceous perennial. We allowed replicated horsenettle populations to respond to the presence or absence of herbivores by applying insecticide to all plants in half of 16 field plots. Horsenettle density rapidly increased in response to insecticide treatment, and this effect persisted for at least four years after the cessation of herbivore suppression. We subsequently grew half-sibling families from seeds collected during and shortly after insecticide treatment in a common garden and found strong effects of insect suppression on induced resistance. Feeding trials in field mesocosms with false Colorado potato beetles (Leptinotarsa juncta), a common specialist herbivore, revealed that multi-year herbivore suppression drove rapid attenuation of induced resistance: offspring of plants from insect-suppression plots exhibited a near-complete loss of induced resistance to beetles, while those from control plots incurred ~70% less damage after experimental induction. Plants from insect-suppression plots also had ~40% greater constitutive resistance than those from control plots, although this difference was not statistically significant. We nonetheless detected a strong trade-off between constitutive and induced resistance across families. In contrast, the constitutive expression of trypsin inhibitors (TI), an important chemical defense trait in horsenettle, was reduced by 20% in the offspring of plants from insect-suppression plots relative to those from control plots. However, TIs were induced to an equal extent whether or not insect herbivores had been historically suppressed. While several defense and performance traits (prickle density, TI concentration, resistance against false Colorado potato beetles and flea beetles, biomass, and seed mass) varied markedly across families, no traits exhibited significant pairwise correlations. Overall, our results indicate that, while the divergent responses of multiple defense traits to insect suppression led to comparatively small changes in overall constitutive resistance, they significantly reduced induced resistance against false Colorado potato beetle.
Collapse
Affiliation(s)
- Tyler C Coverdale
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA.,Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Anurag A Agrawal
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA.,Department of Entomology, Cornell University, Ithaca, NY, USA
| |
Collapse
|
26
|
Anti-Herbivore Resistance Changes in Tomato with Elevation. J Chem Ecol 2022; 48:196-206. [DOI: 10.1007/s10886-021-01341-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/30/2021] [Accepted: 12/15/2021] [Indexed: 10/19/2022]
|
27
|
Nantongo JS, Potts BM, Frickey T, Telfer E, Dungey H, Fitzgerald H, O'Reilly-Wapstra JM. Analysis of the transcriptome of the needles and bark of Pinus radiata induced by bark stripping and methyl jasmonate. BMC Genomics 2022; 23:52. [PMID: 35026979 PMCID: PMC8759178 DOI: 10.1186/s12864-021-08231-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 11/30/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Plants are attacked by diverse insect and mammalian herbivores and respond with different physical and chemical defences. Transcriptional changes underlie these phenotypic changes. Simulated herbivory has been used to study the transcriptional and other early regulation events of these plant responses. In this study, constitutive and induced transcriptional responses to artificial bark stripping are compared in the needles and the bark of Pinus radiata to the responses from application of the plant stressor, methyl jasmonate. The time progression of the responses was assessed over a 4-week period. RESULTS Of the 6312 unique transcripts studied, 86.6% were differentially expressed between the needles and the bark prior to treatment. The most abundant constitutive transcripts were related to defence and photosynthesis and their expression did not differ between the needles and the bark. While no differential expression of transcripts were detected in the needles following bark stripping, in the bark this treatment caused an up-regulation and down-regulation of genes associated with primary and secondary metabolism. Methyl jasmonate treatment caused differential expression of transcripts in both the bark and the needles, with individual genes related to primary metabolism more responsive than those associated with secondary metabolism. The up-regulation of genes related to sugar break-down and the repression of genes related with photosynthesis, following both treatments was consistent with the strong down-regulation of sugars that has been observed in the same population. Relative to the control, the treatments caused a differential expression of genes involved in signalling, photosynthesis, carbohydrate and lipid metabolism as well as defence and water stress. However, non-overlapping transcripts were detected between the needles and the bark, between treatments and at different times of assessment. Methyl jasmonate induced more transcriptional responses in the bark than bark stripping, although the peak of expression following both treatments was detected 7 days post treatment application. The effects of bark stripping were localised, and no systemic changes were detected in the needles. CONCLUSION There are constitutive and induced differences in the needle and bark transcriptome of Pinus radiata. Some expression responses to bark stripping may differ from other biotic and abiotic stresses, which contributes to the understanding of plant molecular responses to diverse stresses. Whether the gene expression changes are heritable and how they differ between resistant and susceptible families identified in earlier studies needs further investigation.
Collapse
Affiliation(s)
- J S Nantongo
- School of Natural Sciences, University of Tasmania, Private Bag 5, Hobart, Tasmania, 7001, Australia.
- National Forestry Resources Research Institute, Mukono, Uganda.
| | - B M Potts
- School of Natural Sciences, University of Tasmania, Private Bag 5, Hobart, Tasmania, 7001, Australia
- ARC Training Centre for Forest Value, Hobart, Tasmania, Australia
| | | | | | | | - H Fitzgerald
- School of Natural Sciences, University of Tasmania, Private Bag 5, Hobart, Tasmania, 7001, Australia
| | - J M O'Reilly-Wapstra
- School of Natural Sciences, University of Tasmania, Private Bag 5, Hobart, Tasmania, 7001, Australia
- ARC Training Centre for Forest Value, Hobart, Tasmania, Australia
| |
Collapse
|
28
|
Laoué J, Fernandez C, Ormeño E. Plant Flavonoids in Mediterranean Species: A Focus on Flavonols as Protective Metabolites under Climate Stress. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11020172. [PMID: 35050060 PMCID: PMC8781291 DOI: 10.3390/plants11020172] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/27/2021] [Accepted: 01/05/2022] [Indexed: 05/03/2023]
Abstract
Flavonoids are specialized metabolites largely widespread in plants where they play numerous roles including defense and signaling under stress conditions. These compounds encompass several chemical subgroups such as flavonols which are one the most represented classes. The most studied flavonols are kaempferol, quercetin and myricetin to which research attributes antioxidative properties and a potential role in UV-defense through UV-screening mechanisms making them critical for plant adaptation to climate change. Despite the great interest in flavonol functions in the last decades, some functional aspects remain under debate. This review summarizes the importance of flavonoids in plant defense against climate stressors and as signal molecules with a focus on flavonols in Mediterranean plant species. The review emphasizes the relationship between flavonol location (at the organ, tissue and cellular scales) and their function as defense metabolites against climate-related stresses. It also provides evidence that biosynthesis of flavonols, or flavonoids as a whole, could be a crucial process allowing plants to adapt to climate change, especially in the Mediterranean area which is considered as one of the most sensitive regions to climate change over the globe.
Collapse
|
29
|
Crithmum maritimum seeds, a potential source for high-quality oil and phenolic compounds in soils with no agronomical relevance. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
30
|
Biddick M. Scale-dependent trends in the investment of leaf domatia. Biol J Linn Soc Lond 2021. [DOI: 10.1093/biolinnean/blab154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
Theory predicts that plants invest in defences proportional to the value or amount of tissue at risk. Domatia-bearing plants house predatory arthropods that defend against insect and fungal attack. Though leaf domatia represent a direct investment in the defence of leaf tissues, it remains unknown whether domatia production scales with amount of tissue at risk. I investigated how domatia investment scales with leaf size in 20 species of trees and shrubs from the south-west Pacific. Large-leaved species produced more domatia than smaller leaved species. However, domatia production did not consistently scale with leaf area among individuals of the same species, illustrating that trends in domatia investment are scale-dependent. Overall results suggest the processes modulating the allocation of resources to defence at the interspecific level are distinct from those operating at the intraspecific level.
Collapse
Affiliation(s)
- Matthew Biddick
- Terrestrial Ecology Research Group, Technical University of Munich, Freising, Germany
| |
Collapse
|
31
|
Costa e Silva J, Jordan R, Potts BM, Pinkard E, Prober SM. Directional Selection on Tree Seedling Traits Driven by Experimental Drought Differs Between Mesic and Dry Populations. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.722964] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We evaluated population differences and drought-induced phenotypic selection on four seedling traits of the Australian forest tree Eucalyptus pauciflora using a glasshouse dry-down experiment. We compared dry and mesic populations and tested for directional selection on lamina length (reflecting leaf size), leaf shape, the node of ontogenetic transition to the petiolate leaf (reflecting the loss of vegetative juvenility), and lignotuber size (reflecting a recovery trait). On average, the dry population had smaller and broader leaves, greater retention of the juvenile leaf state and larger lignotubers than the mesic population, but the populations did not differ in seedling survival. While there was statistical support for directional selection acting on the focal traits in one or other population, and for differences between populations in selection gradient estimates for two traits, only one trait—lamina length—exhibited a pattern of directional selection consistent with the observed population differences being a result of past adaptation to reduce seedling susceptibility to acute drought. The observed directional selection for lamina length in the mesic population suggests that future increases in drought risk in the wild will shift the mean of the mesic population toward that of the dry population. Further, we provide evidence suggesting an early age trade-off between drought damage and recovery traits, with phenotypes which develop larger lignotubers early being more susceptible to drought death. Such trade-offs could have contributed to the absence of population mean differences in survival, despite marked differentiation in seedling traits.
Collapse
|
32
|
Hurel A, de Miguel M, Dutech C, Desprez‐Loustau M, Plomion C, Rodríguez‐Quilón I, Cyrille A, Guzman T, Alía R, González‐Martínez SC, Budde KB. Genetic basis of growth, spring phenology, and susceptibility to biotic stressors in maritime pine. Evol Appl 2021; 14:2750-2772. [PMID: 34950227 PMCID: PMC8674897 DOI: 10.1111/eva.13309] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 10/03/2021] [Indexed: 11/30/2022] Open
Abstract
Forest ecosystems are increasingly challenged by extreme events, for example, drought, storms, pest attacks, and fungal pathogen outbreaks, causing severe ecological and economic losses. Understanding the genetic basis of adaptive traits in tree species is of key importance to preserve forest ecosystems, as genetic variation in a trait (i.e., heritability) determines its potential for human-mediated or evolutionary change. Maritime pine (Pinus pinaster Aiton), a conifer widely distributed in southwestern Europe and northwestern Africa, grows under contrasted environmental conditions promoting local adaptation. Genetic variation at adaptive phenotypes, including height, spring phenology, and susceptibility to two fungal pathogens (Diplodia sapinea and Armillaria ostoyae) and an insect pest (Thaumetopoea pityocampa), was assessed in a range-wide clonal common garden of maritime pine. Broad-sense heritability was significant for height (0.219), spring phenology (0.165-0.310), and pathogen susceptibility (necrosis length caused by D. sapinea, 0.152; and by A. ostoyae, 0.021, measured on inoculated, excised branches under controlled conditions), but not for pine processionary moth incidence in the common garden. The correlations of trait variation among populations revealed contrasting trends for pathogen susceptibility to D. sapinea and A. ostoyae with respect to height. Taller trees showed longer necrosis length caused by D. sapinea while shorter trees were more affected by A. ostoyae. Moreover, maritime pine populations from areas with high summer temperatures and frequent droughts were less susceptible to D. sapinea but more susceptible to A. ostoyae. Finally, an association study using 4227 genome-wide SNPs revealed several loci significantly associated with each trait (range of 3-26), including a possibly disease-induced translation initiation factor, eIF-5, associated with needle discoloration caused by D. sapinea. This study provides important insights to develop genetic conservation and breeding strategies integrating species responses to biotic stressors.
Collapse
Affiliation(s)
- Agathe Hurel
- BIOGECO, INRAEUniversity of BordeauxCestasFrance
| | - Marina de Miguel
- BIOGECO, INRAEUniversity of BordeauxCestasFrance
- EGFV, INRAEUniversity of BordeauxVillenave‐d'OrnonFrance
| | - Cyril Dutech
- BIOGECO, INRAEUniversity of BordeauxCestasFrance
| | | | | | | | | | | | | | | | - Katharina B. Budde
- BIOGECO, INRAEUniversity of BordeauxCestasFrance
- Büsgen‐InstituteGeorg‐August University GöttingenGöttingenGermany
| |
Collapse
|
33
|
Bustos‐Segura C, Hernández‐Cumplido J, Traine J, Benrey B. Herbivory and jasmonate treatment affect reproductive traits in wild Lima bean, but without transgenerational effects. AMERICAN JOURNAL OF BOTANY 2021; 108:2096-2104. [PMID: 34693514 PMCID: PMC9297984 DOI: 10.1002/ajb2.1786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 07/15/2021] [Accepted: 07/19/2021] [Indexed: 05/05/2023]
Abstract
PREMISE Plant responses to herbivores and their elicitors include changes in traits associated with phenology, defense, and reproduction. Induced responses by chewing herbivores are known to be hormonally mediated by the jasmonate pathway and can cascade and affect late-season seed predators and pollinators. Moreover, herbivore-induced plant responses can be transmitted to the next generation. Whether herbivore-induced transgenerational effects also apply to phenological traits is less well understood. METHODS Here, we explored responses of wild lima bean plants (Phaseolus lunatus) to herbivory and jasmonate treatment and possible transgenerational effects of herbivore-induced early flowering. In a controlled field experiment, we exposed lima bean plants to herbivory by leaf beetles or methyl jasmonate sprays (MJ). We then compared plant development, phenology, reproductive fitness and seed traits among these treatments and undamaged, untreated control plants. RESULTS We found that MJ and leaf herbivory induced similar responses, with treated plants growing less, flowering earlier, and producing fewer seeds than undamaged plants. However, seed size, phenolics and cyanogenic glycosides concentrations did not differ among treatments. Seed germination rates and flowering time of the offspring were similar among maternal treatments. CONCLUSIONS Overall, the results confirm that responses of lima bean to herbivory by leaf beetles are mediated by jasmonate; however, effects on phenological traits are not transmitted to the next generation. We discuss why transgenerational effects of herbivory might be restricted to traits that directly target herbivores.
Collapse
Affiliation(s)
- Carlos Bustos‐Segura
- Institute of Biology, Laboratory of Evolutionary EntomologyUniversity of NeuchâtelRue Emile‐Argand 112000Switzerland
| | | | - Juan Traine
- Institute of Biology, Laboratory of Evolutionary EntomologyUniversity of NeuchâtelRue Emile‐Argand 112000Switzerland
| | - Betty Benrey
- Institute of Biology, Laboratory of Evolutionary EntomologyUniversity of NeuchâtelRue Emile‐Argand 112000Switzerland
| |
Collapse
|
34
|
Ullah A, Klutsch JG, Erbilgin N. Production of complementary defense metabolites reflects a co-evolutionary arms race between a host plant and a mutualistic bark beetle-fungal complex. PLANT, CELL & ENVIRONMENT 2021; 44:3064-3077. [PMID: 34008191 DOI: 10.1111/pce.14100] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 04/30/2021] [Indexed: 06/12/2023]
Abstract
Intra-specific variation in conifers has been extensively studied with respect to defense against herbivores and pathogens. While studies have shown the ability of individual or specific mixtures of compounds to influence insects and microbes, research testing biologically relevant mixtures of defense compounds reflecting intra-specific variation amongst tree populations to enemy complexes is needed. We characterized the variations in lodgepole pine monoterpenes from a progeny trial in western Canada and grouped trees in four clusters using their monoterpene profiles. We then selected 11 representative families across four clusters and amended their entire monoterpene profiles (with the exception of β-phellandrene) in media to determine how representative families affect the performance of the mountain pine beetle or its fungal symbiont. We placed adult beetles or inoculated fungus on the amended media and measured beetle performance and fungal growth as a proxy to host suitability. We found that different clusters or families differentially influenced beetle or fungal responses. However, monoterpene profiles of trees suitable to the beetle or the fungus were dissimilar. These outcomes reflect a co-evolutionary arms-race between the host and the bark beetle-fungus complex, which has resulted in the production of complementary defense metabolites among different pine populations to enhance tree survival.
Collapse
Affiliation(s)
- Aziz Ullah
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta, Canada
| | - Jennifer G Klutsch
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta, Canada
| | - Nadir Erbilgin
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
35
|
Capador-Barreto HD, Bernhardsson C, Milesi P, Vos I, Lundén K, Wu HX, Karlsson B, Ingvarsson PK, Stenlid J, Elfstrand M. Killing two enemies with one stone? Genomics of resistance to two sympatric pathogens in Norway spruce. Mol Ecol 2021; 30:4433-4447. [PMID: 34218489 DOI: 10.1111/mec.16058] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 06/22/2021] [Accepted: 06/29/2021] [Indexed: 12/31/2022]
Abstract
Trees must cope with the attack of multiple pathogens, often simultaneously during their long lifespan. Ironically, the genetic and molecular mechanisms controlling this process are poorly understood. The objective of this study was to compare the genetic component of resistance in Norway spruce to Heterobasidion annosum s.s. and its sympatric congener Heterobasidion parviporum. Heterobasidion root- and stem-rot is a major disease of Norway spruce caused by members of the Heterobasidion annosum species complex. Resistance to both pathogens was measured using artificial inoculations in half-sib families of Norway spruce trees originating from central to northern Europe. The genetic component of resistance was analysed using 63,760 genome-wide exome-capture sequenced SNPs and multitrait genome-wide associations. No correlation was found for resistance to the two pathogens; however, associations were found between genomic variants and resistance traits with synergic or antagonist pleiotropic effects to both pathogens. Additionally, a latitudinal cline in resistance in the bark to H. annosum s.s. was found; trees from southern latitudes, with a later bud-set and thicker stem diameter, allowed longer lesions, but this was not the case for H. parviporum. In summary, this study detects genomic variants with pleiotropic effects which explain multiple disease resistance from a genic level and could be useful for selection of resistant trees to both pathogens. Furthermore, it highlights the need for additional research to understand the evolution of resistance traits to multiple pathogens in trees.
Collapse
Affiliation(s)
- Hernán D Capador-Barreto
- Uppsala Biocentre, Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Carolina Bernhardsson
- Uppsala Biocentre, Department of Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Pascal Milesi
- Department of Ecology and Genetics, Evolutionary Biology Centre, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Ingrid Vos
- Forestry Research Institute of Sweden (Skogforsk), Ekebo, Sweden
| | - Karl Lundén
- Uppsala Biocentre, Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Harry X Wu
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Bo Karlsson
- Forestry Research Institute of Sweden (Skogforsk), Ekebo, Sweden
| | - Pär K Ingvarsson
- Uppsala Biocentre, Department of Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Jan Stenlid
- Uppsala Biocentre, Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Malin Elfstrand
- Uppsala Biocentre, Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
36
|
Perkovich C, Ward D. Herbivore-induced defenses are not under phylogenetic constraints in the genus Quercus (oak): Phylogenetic patterns of growth, defense, and storage. Ecol Evol 2021; 11:5187-5203. [PMID: 34026000 PMCID: PMC8131805 DOI: 10.1002/ece3.7409] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/05/2021] [Accepted: 02/12/2021] [Indexed: 11/30/2022] Open
Abstract
The evolution of plant defenses is often constrained by phylogeny. Many of the differences between competing plant defense theories hinge upon the differences in the location of meristem damage (apical versus auxiliary) and the amount of tissue removed. We analyzed the growth and defense responses of 12 Quercus (oak) species from a well-resolved molecular phylogeny using phylogenetically independent contrasts. Access to light is paramount for forest-dwelling tree species, such as many members of the genus Quercus. We therefore predicted a greater investment in defense when apical meristem tissue was removed. We also predicted a greater investment in defense when large amounts of tissue were removed and a greater investment in growth when less tissues were removed. We conducted five simulated herbivory treatments including a control with no damage and alterations of the location of meristem damage (apical versus auxiliary shoots) and intensity (25% versus 75% tissue removal). We measured growth, defense, and nutrient re-allocation traits in response to simulated herbivory. Phylomorphospace models were used to demonstrate the phylogenetic nature of trade-offs between characteristics of growth, chemical defenses, and nutrient re-allocation. We found that growth-defense trade-offs in control treatments were under phylogenetic constraints, but phylogenetic constraints and growth-defense trade-offs were not common in the simulated herbivory treatments. Growth-defense constraints exist within the Quercus genus, although there are adaptations to herbivory that vary among species.
Collapse
Affiliation(s)
| | - David Ward
- Department of Biological SciencesKent State UniversityKentOHUSA
| |
Collapse
|
37
|
Simões R, Pimentel C, Ferreira-Dias S, Miranda I, Pereira H. Phytochemical characterization of phloem in maritime pine and stone pine in three sites in Portugal. Heliyon 2021; 7:e06718. [PMID: 33898836 PMCID: PMC8055561 DOI: 10.1016/j.heliyon.2021.e06718] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/09/2021] [Accepted: 03/31/2021] [Indexed: 12/14/2022] Open
Abstract
This study analyzes the content and chemical profile of extractives present in the young phloem of mature trees of maritime pine (Pinus pinaster) and stone pine (P. pinea) in three sites in Portugal located in different climatic environments. The cross-sites average of extractives was similar in both pines with 38.5% in P. pinea and 37.7% in P. pinaster phloem. The hydrophilic fraction represented 82% and 70% of P. pinea and P. pinaster total extractives respectively, with large contents of phenolic compounds, flavonoids and tannins, and showed very high oxygen scavenging and reducing ability. Lipophilic extractives were present in higher proportion in P. pinaster phloem than in P. pinea phloem, and showed a large content of resin acids, with the predominance of abietic acid in P. pinaster, and dehydroabietic acid in P. pinea phloems, and of alkanoic acids. P. pinaster and P. pinea have specific defences related to phloem production of resin and phenolic compounds with the ratio phenolic-to-oleoresin compounds higher for P. pinea (4.7 vs 2.3 for P. pinaster) and constant in the three sites. The phytochemical content and composition of the young phloem of P. pinaster and P. pinea showed site differences highlighting the relationship between environment and metabolic production.
Collapse
Affiliation(s)
- Rita Simões
- Forest Research Centre (CEF), Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Carla Pimentel
- Forest Research Centre (CEF), Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Suzana Ferreira-Dias
- Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Isabel Miranda
- Forest Research Centre (CEF), Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Helena Pereira
- Forest Research Centre (CEF), Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| |
Collapse
|
38
|
Hiura T, Yoshioka H, Matsunaga SN, Saito T, Kohyama TI, Kusumoto N, Uchiyama K, Suyama Y, Tsumura Y. Diversification of terpenoid emissions proposes a geographic structure based on climate and pathogen composition in Japanese cedar. Sci Rep 2021; 11:8307. [PMID: 33859305 PMCID: PMC8050256 DOI: 10.1038/s41598-021-87810-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 03/26/2021] [Indexed: 11/29/2022] Open
Abstract
Biogenic volatile organic compounds emitted from plants are important constituents of atmospheric chemistry and play a major role in the resistance of plants against various environmental stresses. However, little is known about how abiotic and biotic environments on a geographic scale relate to diversifications of the emission. Here, we present variations of terpenes stored in and emitted from leaves of a single species in a common garden, using genetically differentiated local populations of Japanese cedar, the most dominant and widely distributed tree species in Japan. Furthermore, we determined the composition of fungal communities in 50 locations, based on the presence or absence of 158 fungal species inhabiting the cedar. The results showed that terpenoids, especially those that are emitted, were highly diversified and geographically structured among the 12 populations. The total amount of stored terpenes was negatively affected by warm and less-snow climates. On the other hand, variations in some emitted terpenoid species among the populations were correlated to antagonistic fungal species inhabiting the Japanese cedar. We propose that the diversification of composition and amount of stored and emitted terpenoids in the tree species is not only structured by climate, but also antagonistic fungal communities through biological interactions.
Collapse
Affiliation(s)
- Tsutom Hiura
- Department of Ecosystem Studies, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan.
| | - Hayate Yoshioka
- Graduate School of Environmental Earth Science, Hokkaido University, Sapporo, 060-0809, Japan
| | - Sou N Matsunaga
- R&D Center, Green Technology System Division, Taikisha Ltd, Aiko-Gun, 243-0308, Japan
| | - Takuya Saito
- National Institute for Environmental Studies, Tsukuba, 305-8506, Japan
| | - Tetsuo I Kohyama
- Graduate School of Environmental Earth Science, Hokkaido University, Sapporo, 060-0809, Japan
| | - Norihisa Kusumoto
- Forestry and Forest Products Research Institute, Forest Research and Management Organization, Tsukuba, 305-8687, Japan
| | - Kentaro Uchiyama
- Forestry and Forest Products Research Institute, Forest Research and Management Organization, Tsukuba, 305-8687, Japan
| | - Yoshihisa Suyama
- Field Science Center, Graduate School of Agricultural Science, Tohoku University, Osaki, 989-6711, Japan
| | - Yoshihiko Tsumura
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8577, Japan
| |
Collapse
|
39
|
Scogings PF, Demmer S, Hattas D. Spinescence and Total Phenolic Content Do Not Influence Diet Preference of a Critically Endangered Megaherbivore, but the Mix of Compounds Does. J Chem Ecol 2021; 47:322-333. [PMID: 33651225 DOI: 10.1007/s10886-021-01258-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/17/2021] [Accepted: 02/23/2021] [Indexed: 11/30/2022]
Abstract
In contrast to understanding spinescence in savanna woody species, little is known about the functions of plant secondary metabolites (PSM). Negative effects of PSMs on individual animal performance potentially translate into negative effects on herbivore population growth. Hence, understanding PSM functions is important for the conservation of savanna megafauna. We tested the view that black rhinoceros (Diceros bicornis) diet preference is not affected by spinescence or total phenolic abundance. We hypothesized that the composition of phenolic mixtures, however, would affect preference. Furthermore, we tested our data from 71 woody species for a trade-off between structural and chemical defenses. Spinescence type, and spinescence generally, did not deter black rhino feeding. Using eco-metabolomic data, we found that total abundance of phenolics did not affect preference, but mixture composition did and that the probability of spinescence trading off against phenolics depended on the mixture. We note that our study was restricted to black rhino and that diet preferences of other mammal herbivores might be influenced by subtle differences in phenolic mixtures. However, our results did support a previous, more detailed study of phenolic profiles of six species showing the same patterns in relation to preference generalised across mammal herbivore species in savannas. Our results represent substantial advancement in the understanding of the roles of PSMs, especially flavonoid compounds, in the functioning of savanna ecosystems, and highlight the need to dig deeper into broad groups of traits such as spinescence or total phenolics to improve understanding of woody plant defenses in savannas.
Collapse
Affiliation(s)
- Peter F Scogings
- School of Life Sciences, University of KwaZulu-Natal, Private Bag X01, Scottsville, 3209, South Africa.
| | - Stuart Demmer
- School of Life Sciences, University of KwaZulu-Natal, Private Bag X01, Scottsville, 3209, South Africa.,Centre for Functional Biodiversity, University of KwaZulu-Natal, Scottsville, South Africa
| | - Dawood Hattas
- Department of Biological Sciences, University of Cape Town, Rondebosch, South Africa
| |
Collapse
|
40
|
Mullin M, Klutsch JG, Cale JA, Hussain A, Zhao S, Whitehouse C, Erbilgin N. Primary and Secondary Metabolite Profiles of Lodgepole Pine Trees Change with Elevation, but Not with Latitude. J Chem Ecol 2021; 47:280-293. [PMID: 33651224 DOI: 10.1007/s10886-021-01249-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/17/2020] [Accepted: 01/15/2021] [Indexed: 12/01/2022]
Abstract
Climate change has a large influence on plant functional and phenotypic traits including plant primary and secondary metabolites. One well-established approach to investigating the variation in plant metabolites involves studying plant populations along elevation and latitude gradients. We considered how two space-for-time climate change gradients (elevation and latitude) influence carbohydrate reserves (soluble sugars, starches) and secondary metabolites (monoterpenes, diterpene resin acids) of lodgepole pine trees in western Canada. We were particularly interested in the relationship of terpenes and carbohydrates with a wide range of tree, site, and climatic factors. We found that only elevation had a strong influence on the expression of both terpenes and carbohydrates of trees. Specifically, as elevation increased, concentrations of monoterpenes and diterpenes generally increased and soluble sugars (glucose, sucrose, total sugars) decreased. In contrast, latitude had no impact on either of terpenes or carbohydrates. Furthermore, we found a positive relationship between concentrations of starch and total terpenes and diterpenes in the elevation study; whereas neither starches nor sugars were correlated to terpenes in the latitude study. Similarly, both terpenes and carbohydrates had a much greater number of significant correlations to site characteristics such as slope, basal area index, and sand basal area, in the elevational than in the latitude study. Overall, these results support the conclusion that both biotic and abiotic factors likely drive the patterns of primary and secondary metabolite profiles of lodgepole pine along geographical gradients. Also, presence of a positive relationship between terpenes and starches suggests an interaction between primary ad secondary metabolites of lodgepole pine trees.
Collapse
Affiliation(s)
- Melanie Mullin
- Department of Renewable Resources, University of Alberta, 442 Earth Sciences Building, Edmonton, Alberta, T6G 2E3, Canada
| | - J G Klutsch
- Department of Renewable Resources, University of Alberta, 442 Earth Sciences Building, Edmonton, Alberta, T6G 2E3, Canada
| | - J A Cale
- Department of Renewable Resources, University of Alberta, 442 Earth Sciences Building, Edmonton, Alberta, T6G 2E3, Canada
| | - A Hussain
- Department of Renewable Resources, University of Alberta, 442 Earth Sciences Building, Edmonton, Alberta, T6G 2E3, Canada
| | - S Zhao
- Department of Renewable Resources, University of Alberta, 442 Earth Sciences Building, Edmonton, Alberta, T6G 2E3, Canada
| | - C Whitehouse
- Alberta Agriculture and Forestry, 9920 108 Street, Edmonton, Alberta, T5K 2M4, Canada
| | - Nadir Erbilgin
- Department of Renewable Resources, University of Alberta, 442 Earth Sciences Building, Edmonton, Alberta, T6G 2E3, Canada.
| |
Collapse
|
41
|
Puentes A, Zhao T, Lundborg L, Björklund N, Borg-Karlson AK. Variation in Methyl Jasmonate-Induced Defense Among Norway Spruce Clones and Trade-Offs in Resistance Against a Fungal and an Insect Pest. FRONTIERS IN PLANT SCIENCE 2021; 12:678959. [PMID: 34108985 PMCID: PMC8182065 DOI: 10.3389/fpls.2021.678959] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 04/28/2021] [Indexed: 05/22/2023]
Abstract
An essential component of plant defense is the change that occurs from a constitutive to an induced state following damage or infection. Exogenous application of the plant hormone methyl jasmonate (MeJA) has shown great potential to be used as a defense inducer prior to pest exposure, and could be used as a plant protection measure. Here, we examined (1) the importance of MeJA-mediated induction for Norway spruce (Picea abies) resistance against damage by the pine weevil Hylobius abietis, which poses a threat to seedling survival, and infection by the spruce bark beetle-associated blue-stain fungus Endoconidiophora polonica, (2) genotypic variation in MeJA-induced defense (terpene chemistry), and (3) correlations among resistance to each pest. In a semi-field experiment, we exposed rooted-cuttings from nine different Norway spruce clones to insect damage and fungal infection separately. Plants were treated with 0, 25, or 50 mM MeJA, and planted in blocks where only pine weevils were released, or in a separate block in which plants were fungus-inoculated or not (control group). As measures of resistance, stem area debarked and fungal lesion lengths were assessed, and as a measure of defensive capacity, terpene chemistry was examined. We found that MeJA treatment increased resistance to H. abietis and E. polonica, but effects varied with clone. Norway spruce clones that exhibited high constitutive resistance did not show large changes in area debarked or lesion length when MeJA-treated, and vice versa. Moreover, insect damage negatively correlated with fungal infection. Clones receiving little pine weevil damage experienced larger lesion lengths, and vice versa, both in the constitutive and induced states. Changes in absolute terpene concentrations occurred with MeJA treatment (but not on proportional terpene concentrations), however, variation in chemistry was mostly explained by differences between clones. We conclude that MeJA can enhance protection against H. abietis and E. polonica, but the extent of protection will depend on the importance of constitutive and induced resistance for the Norway spruce clone in question. Trade-offs among resistances do not necessarily hinder the use of MeJA, as clones that are constitutively more resistant to either pest, should show greater MeJA-induced resistance against the other.
Collapse
Affiliation(s)
- Adriana Puentes
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
- *Correspondence: Adriana Puentes, ;
| | - Tao Zhao
- Man-Technology-Environment Research Centre, Örebro University, Örebro, Sweden
| | - Lina Lundborg
- Department of Chemistry, Organic Chemistry, KTH, Royal Institute of Technology, School of Chemical Science and Engineering, Stockholm, Sweden
| | - Niklas Björklund
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Anna-Karin Borg-Karlson
- Department of Chemistry, Organic Chemistry, KTH, Royal Institute of Technology, School of Chemical Science and Engineering, Stockholm, Sweden
- Department of Chemical Engineering, Mid Sweden University, Sundsvall, Sweden
| |
Collapse
|
42
|
Galmán A, Abdala‐Roberts L, Wartalska P, Covelo F, Röder G, Szenteczki MA, Moreira X, Rasmann S. Elevational gradients in constitutive and induced oak defences based on individual traits and their correlated expression patterns. OIKOS 2020. [DOI: 10.1111/oik.07588] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Andrea Galmán
- Misión Biológica de Galicia (MBG‐CSIC), Pontevedra Galicia Spain
| | - Luis Abdala‐Roberts
- Depto de Ecología Tropical, Campus de Ciencias Biológicas y Agropecuarias, Univ. Autónoma de Yucatán, Itzimná, Mérida Yucatán México
| | - Pola Wartalska
- Małopolska Centre of Biotechnology, Jagiellonian Univ. Kraków Poland
| | - Felisa Covelo
- Depto de Sistemas Físicos, Químicos y Naturales, Univ. Pablo de Olavide Sevilla Spain
| | - Gregory Röder
- Inst. of Biology, Univ. of Neuchâtel Neuchâtel Switzerland
| | | | - Xoaquín Moreira
- Misión Biológica de Galicia (MBG‐CSIC), Pontevedra Galicia Spain
| | - Sergio Rasmann
- Inst. of Biology, Univ. of Neuchâtel Neuchâtel Switzerland
| |
Collapse
|
43
|
Scogings PF, De Fortier A. Severe simulated herbivory constrains
Sclerocarya birrea
saplings regardless of resource availability. AUSTRAL ECOL 2020. [DOI: 10.1111/aec.12983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Peter F. Scogings
- School of Life Sciences University of KwaZulu‐Natal Private Bag X01 Scottsville3209South Africa
| | - An De Fortier
- Department of Zoology University of Zululand Kwadlangezwa South Africa
| |
Collapse
|
44
|
Xiao L, Ding J, Zhang J, Huang W, Siemann E. Chemical responses of an invasive plant to herbivory and abiotic environments reveal a novel invasion mechanism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 741:140452. [PMID: 32886966 DOI: 10.1016/j.scitotenv.2020.140452] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 06/16/2020] [Accepted: 06/21/2020] [Indexed: 06/11/2023]
Abstract
Invasive plant environments differ along latitudes and between native and introduced ranges. In response to herbivory and abiotic stresses that vary with latitudes and between ranges, invasive plants may shift their secondary chemicals to facilitate invasion success. However, it remains unclear whether and how invasive plant chemical responses to herbivory and chemical responses to abiotic environments are associated. We conducted large scale field surveys of herbivory on the invasive tallow tree (Triadica sebifera) along latitudes in both its native (China) and introduced ranges (United States) and collected leaf samples for analyses of tannins and flavonoids. We used data on climate and solar radiation to examine these chemical responses to abiotic environments and their variations along these latitudes and between ranges. We also re-analyzed previously published data from multiple common garden experiments on tallow tree to investigate genetic divergence of secondary chemical concentrations between introduced and native populations. We found foliar tannins and herbivory (chewing, sucking) were higher in the native range compared to the invasive range. Allocation to tannins versus flavonoids decreased with latitude in the native range but did not vary in the invasive range. Analyses of previously published common garden experimental data indicated genetic divergence contributes to chemical concentration differences between ranges. Our field data further indicated that the latitudinal patterns were primarily phenotypic responses to herbivory in China while in US they were primarily phenotypic responses to abiotic environments. The variation of tannins may be linked to flavonoids, given tannins and flavonoids share a biosynthesis pathway. Together, our results suggest that invasive plants adjust their secondary metabolism to decrease chemicals that primarily defend against herbivory and increase those that help them to respond to their abiotic environment. These findings deepen our understanding of how invasive plants adapt to biogeographically heterogeneous environments through trade-offs between secondary chemical responses.
Collapse
Affiliation(s)
- Li Xiao
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei 430074, China; University of Chinese Academy of Sciences, Beijing 100049, China; National Engineering Laboratory for Applied Technology of Forestry & Ecology in Southern China, College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
| | - Jianqing Ding
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China.
| | - Jialiang Zhang
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei 430074, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Huang
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei 430074, China; Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China
| | - Evan Siemann
- Biosciences Department, Rice University, Houston, TX, USA
| |
Collapse
|
45
|
Valdés-Correcher E, Bourdin A, González-Martínez SC, Moreira X, Galmán A, Castagneyrol B, Hampe A. Leaf chemical defences and insect herbivory in oak: accounting for canopy position unravels marked genetic relatedness effects. ANNALS OF BOTANY 2020; 126:865-872. [PMID: 32463869 PMCID: PMC7539359 DOI: 10.1093/aob/mcaa101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 05/22/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND AND AIMS Highly controlled experiments document that plant genetic diversity and relatedness can shape herbivore communities and patterns of herbivory. Evidence from the field is, however, scarce and inconsistent. We assessed whether a genetic signal underlying herbivory can be detected in oak woodlands when accounting for variation at smaller (within-tree) and larger (among-stand) scales. METHODS We tested relationships between tree genetic relatedness, leaf chemical defences and insect herbivory for different canopy layers in 240 trees from 15 pedunculate oak (Quercus robur) forest stands. We partitioned sources of variability in herbivory and defences among stands, individuals and branches. KEY RESULTS Leaf defences, insect herbivory and their relationship differed systematically between the upper and the lower tree canopy. When accounting for this canopy effect, the variation explained by tree genetic relatedness rose from 2.8 to 34.1 % for herbivory and from 7.1 to 13.8 % for leaf defences. The effect was driven by markedly stronger relationships in the upper canopy. CONCLUSIONS Our findings illustrate that considerable effects of the host plant genotype on levels of leaf chemical defences and associated insect herbivory can be detected in natural tree populations when within-individual variation is properly accounted for.
Collapse
Affiliation(s)
| | | | | | - Xoaquín Moreira
- Misión Biológica de Galicia (MBG-CSIC), Pontevedra, Galicia, Spain
| | - Andrea Galmán
- Misión Biológica de Galicia (MBG-CSIC), Pontevedra, Galicia, Spain
| | | | - Arndt Hampe
- INRAE, Univ. Bordeaux, BIOGECO, Cestas, France
| |
Collapse
|
46
|
Moreira X, Abdala-Roberts L, Hidalgo-Galvez MD, Vázquez-González C, Pérez-Ramos IM. Micro-climatic effects on plant phenolics at the community level in a Mediterranean savanna. Sci Rep 2020; 10:14757. [PMID: 32901084 PMCID: PMC7479144 DOI: 10.1038/s41598-020-71782-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/21/2020] [Indexed: 11/08/2022] Open
Abstract
Research has shown that warming and drought change plant phenolics. However, much of this work has centered on the effects of individual abiotic stressors on single plant species rather than the concurrent effects of multiple stressors at the plant community level. To address this gap, we manipulated rainfall and air temperature to test for their individual and interactive effects on the expression of leaf phenolics at the community level for annual plant species occurring in two habitat types (under oak tree canopies or in open grasslands) in a Mediterranean savanna. We found that augmented temperature had a significant positive effect on the community-weighted mean of total phenolics whereas reduced rainfall had no effect. In addition, we found no evidence of interactive effects between climatic stressors and these patterns remained consistent across habitat types. Overall, this study points at increasing efforts to investigate the linkages between climate change and community-level shifts in plant secondary chemistry.
Collapse
Affiliation(s)
- Xoaquín Moreira
- Misión Biológica de Galicia (MBG-CSIC), Apdo. 28, 36080, Pontevedra, Galicia, Spain.
| | - Luis Abdala-Roberts
- Department of Tropical Ecology, Autonomous University of Yucatan, Apartado Postal 4-116, 97000, Itzimna, Mérida, Yucatan, Mexico
| | - M Dolores Hidalgo-Galvez
- Institute of Natural Resources and Agrobiology of Seville (IRNAS-CSIC), 10 Reina Mercedes Avenue, 41012, Seville, Spain
| | | | - Ignacio M Pérez-Ramos
- Institute of Natural Resources and Agrobiology of Seville (IRNAS-CSIC), 10 Reina Mercedes Avenue, 41012, Seville, Spain.
| |
Collapse
|
47
|
Vuorinen KEM, Rao SJ, Hester AJ, Speed JDM. Herbivory and climate as drivers of woody plant growth: Do deer decrease the impacts of warming? ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2020; 30:e02119. [PMID: 32160360 DOI: 10.1002/eap.2119] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/15/2020] [Accepted: 02/17/2020] [Indexed: 06/10/2023]
Abstract
Vegetation at ecotone transitions between open and forested areas is often heavily affected by two key processes: climate change and management of large herbivore densities. These both drive woody plant state shifts, determining the location and the nature of the limit between open and tree or shrub-dominated landscapes. In order to adapt management to prevailing and future climate, we need to understand how browsing and climatic factors together affect the growth of plants at biome borders. To disentangle herbivory and climate effects, we combined long-term tree growth monitoring and dendroecology to investigate woody plant growth under different temperatures and red deer (Cervus elaphus) herbivory pressures at forest-moorland ecotones in the Scottish highlands. Reforestation and deer densities are core and conflicting management concerns in the area, and there is an urgent need for additional knowledge. We found that deer herbivory and climate had significant and interactive effects on tree growth: in the presence of red deer, pine (Pinus sylvestris) growth responded more strongly to annual temperature than in the absence of deer, possibly reflecting differing plant-plant competition and facilitation conditions. As expected, pine growth was negatively related to deer density and positively to temperature. However, at the tree population level, warming decreased growth when more than 60% of shoots were browsed. Heather (Calluna vulgaris) growth was negatively related to temperature and the direction of the response to deer switched from negative to positive when mean annual temperatures fell below 6.0°C. In addition, our models allow estimates to be made of how woody plant growth responds under specific combinations of temperature and herbivory, and show how deer management can be adapted to predicted climatic changes in order to more effectively achieve reforestation goals. Our results support the hypothesis that temperature and herbivory have interactive effects on woody plant growth, and thus accounting for just one of these two factors is insufficient for understanding plant growth mechanics at biome transitions. Furthermore, we show that climate-driven woody plant growth increases can be negated by herbivory.
Collapse
Affiliation(s)
- Katariina E M Vuorinen
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology, Trondheim, NO-7491, Norway
| | - Shaila J Rao
- The National Trust for Scotland, Mar Lodge Estate, Braemar, AB35 5YJ, UK
| | - Alison J Hester
- The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, UK
| | - James D M Speed
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology, Trondheim, NO-7491, Norway
| |
Collapse
|
48
|
Zamora-Nasca LB, Dimarco RD, Nassini D, Alvear PA, Mayoral A, Nuñez MA, Relva MA. Sheep feeding preference as a tool to control pine invasion in Patagonia: influence of foliar toughness, terpenoids and resin content. Sci Rep 2020; 10:12113. [PMID: 32694547 PMCID: PMC7374590 DOI: 10.1038/s41598-020-68748-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 06/30/2020] [Indexed: 11/23/2022] Open
Abstract
Herbivores modulate the structure and composition of plant communities, including plant invasions. This is conditioned by plant palatability which can be reduced by its chemical or physical traits. The effects that ungulates browsing has on pine invasions are variable and the empirical evidence on the causes of this variability is scarce. We experimentally explored how sheep browsing preference varies between seedlings of pine species with different invasiveness; Pinus contorta (high invasiveness), P. ponderosa (medium invasiveness), P. radiata (medium invasiveness) and P. jeffreyi (low invasiveness). Secondly, we quantified anti-herbivory chemical compounds and physical traits of these species and related them with sheep preference observed. The browsing incidence of P. contorta was 68%, P. ponderosa 58%, P. radiata 29%, and P. jeffreyi 84%. Among anti-herbivory traits analyzed, α-pinene concentration had a negative effect on the probability of a terminal bud being browsed and on browsing intensity. Meanwhile, foliar toughness was negatively related to browsing intensity and water concentration was positively related to browsing intensity. Also, the most invasive species, P. contorta, was highly damaged. Thus, sheep herbivory could be slowing pine invasion rate; suggesting that could be considered a tool to control early invasions, especially for this particular species.
Collapse
Affiliation(s)
- Lucía B Zamora-Nasca
- Instituto de Investigaciones en Biodiversidad y Medio Ambiente, CONICET - Universidad Nacional del Comahue, Bariloche, Río Negro, Argentina
| | - Romina D Dimarco
- Grupo de Ecología de Poblaciones de Insectos, IFAB (INTA - CONICET), Modesta Victoria 4450, 8400, Bariloche, Rio Negro, Argentina.
| | - Daniela Nassini
- Departamento de Fisicoquímica y Control de Calidad. Complejo Tecnológico Pilcaniyeu, CNEA, Bariloche, Río Negro, Argentina
| | - Pablo A Alvear
- Instituto de Investigaciones en Biodiversidad y Medio Ambiente, CONICET - Universidad Nacional del Comahue, Bariloche, Río Negro, Argentina
| | - Ariel Mayoral
- Instituto de Investigaciones en Biodiversidad y Medio Ambiente, CONICET - Universidad Nacional del Comahue, Bariloche, Río Negro, Argentina
| | - Martin A Nuñez
- Grupo Ecología de Invasiones. Instituto de Investigaciones en Biodiversidad y Medio Ambiente, CONICET - Universidad Nacional del Comahue, Bariloche, Río Negro, Argentina
| | - M Andrea Relva
- Instituto de Investigaciones en Biodiversidad y Medio Ambiente, CONICET - Universidad Nacional del Comahue, Bariloche, Río Negro, Argentina
| |
Collapse
|
49
|
Huang J, Rücker A, Schmidt A, Gleixner G, Gershenzon J, Trumbore S, Hartmann H. Production of constitutive and induced secondary metabolites is coordinated with growth and storage in Norway spruce saplings. TREE PHYSIOLOGY 2020; 40:928-942. [PMID: 32268379 PMCID: PMC7325531 DOI: 10.1093/treephys/tpaa040] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 01/17/2020] [Accepted: 03/18/2020] [Indexed: 05/12/2023]
Abstract
A mechanistic understanding of how trees balance the trade-offs between growth, storage and defense is limited but crucial for predicting tree responses to abiotic and biotic stresses. Here we investigated how trees allocate storage of non-structural carbohydrates (NSC) to growth and constitutive and induced secondary metabolites (SM). We exposed Norway spruce (Picea abies) saplings to 5 weeks of complete darkness to induce light and/or carbon limitation and then applied methyl jasmonate (MeJA) to simulate biotic attack. We measured changes in biomass, NSC (sum of soluble sugars and starches), and constitutive and induced SM (sum of phenolic compounds and terpenoids) in current-year developing and previous-year mature needles and branches, as well as volatiles emitted from the canopy. Under darkness, NSC storage was preferentially used for constitutive biosynthesis of monoterpenes rather than biosynthesis of stilbenes and growth of developing organs, while SM stored in mature organs cannot be remobilized and recycled. Furthermore, MeJA-induced production of SM was constrained by low NSC availability in developing organs but not in mature organs grown in the dark. Emissions of volatiles were suppressed in the dark but after 1 h of re-illumination, emissions of both constitutive and induced monoterpene hydrocarbons recovered rapidly, whereas emissions of linalool and sesquiterpene produced via de novo synthesis did not recover. Our results highlight that light and/or carbon limitation may constrain constitutive and JA-induced biosynthesis of SM in coordination with growth, NSC storage and mobilization.
Collapse
Affiliation(s)
- Jianbei Huang
- Department of Biogeochemical Processes, Max Planck Institute for Biogeochemistry, Hans-Knöll-Str. 10, Jena 07745, Germany
- Corresponding author ()
| | - Alexander Rücker
- Department of Biogeochemical Processes, Max Planck Institute for Biogeochemistry, Hans-Knöll-Str. 10, Jena 07745, Germany
| | - Axel Schmidt
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, Jena 07745, Germany
| | - Gerd Gleixner
- Department of Biogeochemical Processes, Max Planck Institute for Biogeochemistry, Hans-Knöll-Str. 10, Jena 07745, Germany
| | - Jonathan Gershenzon
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, Jena 07745, Germany
| | - Susan Trumbore
- Department of Biogeochemical Processes, Max Planck Institute for Biogeochemistry, Hans-Knöll-Str. 10, Jena 07745, Germany
| | - Henrik Hartmann
- Department of Biogeochemical Processes, Max Planck Institute for Biogeochemistry, Hans-Knöll-Str. 10, Jena 07745, Germany
| |
Collapse
|
50
|
López‐Goldar X, Zas R, Sampedro L. Resource availability drives microevolutionary patterns of plant defences. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13610] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Xosé López‐Goldar
- Department of Ecology and Evolutionary Biology Cornell University Ithaca NY USA
- Misión Biológica de Galicia Consejo Superior de Investigaciones Científicas Pontevedra Spain
| | - Rafael Zas
- Misión Biológica de Galicia Consejo Superior de Investigaciones Científicas Pontevedra Spain
| | - Luis Sampedro
- Misión Biológica de Galicia Consejo Superior de Investigaciones Científicas Pontevedra Spain
| |
Collapse
|