1
|
Cano-Argüelles AL, Oleaga A, González-Sánchez M, Vizcaíno-Marín R, Pérez-Sánchez R. Vaccinomics-driven selection and validation of protective salivary antigens from the argasid tick Ornithodoros moubata. Ticks Tick Borne Dis 2025; 16:102483. [PMID: 40306020 DOI: 10.1016/j.ttbdis.2025.102483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 04/21/2025] [Accepted: 04/23/2025] [Indexed: 05/02/2025]
Abstract
Ornithodoros moubata serves as primary vector of African swine fever and tick-borne human relapsing fever in Africa. Developing an effective vaccine targeting this argasid tick would significantly enhance disease control measures. To identify potential vaccine targets, the recently characterised sialome of O. moubata was analysed using a vaccinomics approach. This led to the identification of a set of salivary secreted proteins predicted to be antigenic and implicated in the regulation of blood-feeding and host immune defences. The objective of this study was to evaluate the protective potential of seven of these proteins, namely Complement inhibitor (OmCI), Cyclophilin (OmCPH), Hypothetical protein 275 (OmH275), Peroxiredoxin (OmPXR), Calreticulin (OmCLR), Neprilysin (OmNEP), and Superoxide dismutase (OmSOD). These candidates were produced as recombinant proteins, formulated with Montanide adjuvant, and administered individually to different groups of rabbits. Adult and nymphal-3 specimens of O. moubata and Ornithodoros erraticus (the Mediterranean vector of ASF and TBRF) were allowed to feed on the vaccinated rabbits, and the ticks' feeding performance, survival, and reproduction rates were assessed. OmH275, OmPXR, OmCPH, and OmCLR conferred 20 %-32 % protection against O. moubata and/or O. erraticus, whereas OmCI, OmNEP, and OmSOD afforded 2 %-17 % protection against one or both tick species. Consequently, OmH275, OmPXR, OmCPH, and OmCLR were deemed suitable candidates for inclusion in the development of anti-Ornithodoros cocktail vaccines, while OmCI, OmNEP, and OmSOD were considered less promising for tick vaccine development. These findings validate the vaccinomics pipeline, identifying four of seven candidates (57 %) as viable antigens for Ornithodoros tick vaccines.
Collapse
Affiliation(s)
- Ana Laura Cano-Argüelles
- Parasitología Animal, Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA, CSIC), Cordel de Merinas, 40-52, 37008 Salamanca, Spain.
| | - Ana Oleaga
- Parasitología Animal, Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA, CSIC), Cordel de Merinas, 40-52, 37008 Salamanca, Spain.
| | - María González-Sánchez
- Parasitología Animal, Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA, CSIC), Cordel de Merinas, 40-52, 37008 Salamanca, Spain.
| | - Rocío Vizcaíno-Marín
- Parasitología Animal, Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA, CSIC), Cordel de Merinas, 40-52, 37008 Salamanca, Spain.
| | - Ricardo Pérez-Sánchez
- Parasitología Animal, Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA, CSIC), Cordel de Merinas, 40-52, 37008 Salamanca, Spain.
| |
Collapse
|
2
|
Busch JD, Stone NE, Pemberton GL, Roberts ML, Turner RE, Thornton NB, Sahl JW, Lemmer D, Buckmeier G, Davis SK, Guerrero-Solorio RI, Karim S, Klafke G, Thomas DB, Olafson PU, Ueti M, Mosqueda J, Scoles GA, Wagner DM. Fourteen anti-tick vaccine targets are variably conserved in cattle fever ticks. Parasit Vectors 2025; 18:140. [PMID: 40234925 PMCID: PMC12001435 DOI: 10.1186/s13071-025-06683-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 01/23/2025] [Indexed: 04/17/2025] Open
Abstract
BACKGROUND Rhipicephalus (Boophilus) microplus causes significant cattle production losses worldwide because it transmits Babesia bovis and B. bigemina, the causative agents of bovine babesiosis. Control of these ticks has primarily relied on treatment of cattle with chemical acaricides, but frequent use, exacerbated by the one-host lifecycle of these ticks, has led to high-level resistance to multiple classes of acaricides. Consequently, new approaches for control, such as anti-tick vaccines, are critically important. Key to this approach is targeting highly conserved antigenic epitopes to reduce the risk of vaccine escape in heterologous tick populations. METHODS We evaluated amino acid conservation within 14 tick proteins across 167 R. microplus collected from geographically diverse locations in the Americas and Pakistan using polymerase chain reaction (PCR) amplicon sequencing and in silico translation of exons. RESULTS We found that amino acid conservation varied considerably across these proteins. Only the voltage-dependent anion channel (VDAC) was fully conserved in all R. microplus samples (protein similarity 1.0). Four other proteins were highly conserved: the aquaporin RmAQP1 (0.989), vitellogenin receptor (0.985), serpin-1 (0.985), and subolesin (0.981). In contrast, the glycoprotein Bm86 was one of the least conserved (0.889). The Bm86 sequence used in the original Australian TickGARD vaccine carried many amino acid replacements compared with the R. microplus populations examined here, supporting the hypothesis that this vaccine target is not optimal for use in the Americas. By mapping amino acid replacements onto predicted three-dimensional (3D) protein models, we also identified amino acid changes within several small-peptide vaccines targeting portions of the aquaporin RmAQP2, chitinase, and Bm86. CONCLUSIONS These findings emphasize the importance of thoroughly analyzing protein variation within anti-tick vaccine targets across diverse tick populations before selecting candidate vaccine antigens. When considering protein conservation alone, RmAQP1, vitellogenin receptor, serpin-1, subolesin, and especially VDAC rank as high-priority anti-tick vaccine candidates for use in the Americas and perhaps globally.
Collapse
Affiliation(s)
- Joseph D Busch
- Pathogen and Microbiome Institute, Northern Arizona University, 1395 S. Knoles Dr. Bldg 56, Flagstaff, AZ, 86011-4073, USA.
| | - Nathan E Stone
- Pathogen and Microbiome Institute, Northern Arizona University, 1395 S. Knoles Dr. Bldg 56, Flagstaff, AZ, 86011-4073, USA
| | - Grant L Pemberton
- Pathogen and Microbiome Institute, Northern Arizona University, 1395 S. Knoles Dr. Bldg 56, Flagstaff, AZ, 86011-4073, USA
| | - Mackenzie L Roberts
- Pathogen and Microbiome Institute, Northern Arizona University, 1395 S. Knoles Dr. Bldg 56, Flagstaff, AZ, 86011-4073, USA
| | - Rebekah E Turner
- Pathogen and Microbiome Institute, Northern Arizona University, 1395 S. Knoles Dr. Bldg 56, Flagstaff, AZ, 86011-4073, USA
| | - Natalie B Thornton
- Pathogen and Microbiome Institute, Northern Arizona University, 1395 S. Knoles Dr. Bldg 56, Flagstaff, AZ, 86011-4073, USA
| | - Jason W Sahl
- Pathogen and Microbiome Institute, Northern Arizona University, 1395 S. Knoles Dr. Bldg 56, Flagstaff, AZ, 86011-4073, USA
| | - Darrin Lemmer
- TGen-North, 3051 W. Shamrell Blvd #106, Flagstaff, AZ, 86005, USA
| | - Greta Buckmeier
- USDA, ARS, KBUSLIRL-LAPRU, 2700 Fredericksburg Rd., Kerrville, TX, 78028-9184, USA
| | - Sara K Davis
- USDA, ARS, ADRU, Washington State University, 3003 ADBF, Pullman, WA, 99164-6630, USA
| | - Roberto I Guerrero-Solorio
- Immunology and Vaccine Research Laboratory, Natural Sciences College, Autonomous University of Querétaro, 76230, Querétaro, Mexico
| | - Shahid Karim
- School of Biological, Environmental, and Earth Sciences, University of Southern Mississippi, 118 College Drive, Hattiesburg, MS, 39406, USA
| | - Guilherme Klafke
- Instituto de Pesquisas Veterinarias Desidério Finamor, Estrada do conde, 6000, Eldorado do sul, 92990-000, Brazil
| | - Donald B Thomas
- Cattle Fever Tick Research Laboratory, USDA, ARS, Moore Air Base, Building 6419, 22675 N. Moorefield Road, Edinburg, TX, 78541, USA
| | - Pia U Olafson
- USDA, ARS, KBUSLIRL-LAPRU, 2700 Fredericksburg Rd., Kerrville, TX, 78028-9184, USA
| | - Massaro Ueti
- USDA, ARS, ADRU, Washington State University, 3003 ADBF, Pullman, WA, 99164-6630, USA
| | - Juan Mosqueda
- Immunology and Vaccine Research Laboratory, Natural Sciences College, Autonomous University of Querétaro, 76230, Querétaro, Mexico
| | - Glen A Scoles
- USDA, ARS, IIBBL, Beltsville Agricultural Research Center, 10300 Baltimore Ave., Beltsville, MD, 20705, USA
| | - David M Wagner
- Pathogen and Microbiome Institute, Northern Arizona University, 1395 S. Knoles Dr. Bldg 56, Flagstaff, AZ, 86011-4073, USA
| |
Collapse
|
3
|
Gonzalez J, Harvey C, Ribeiro-Silva CDS, Leal-Galvan B, Persinger KA, Olafson PU, Johnson TL, Oliva Chavez A. Evaluation of tick salivary and midgut extracellular vesicles as anti-tick vaccines in White-tailed deer (Odocoileus virginianus). Ticks Tick Borne Dis 2025; 16:102420. [PMID: 39667072 DOI: 10.1016/j.ttbdis.2024.102420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 12/14/2024]
Abstract
Current tick control measures are focused on the use of synthetic acaricides and personal protective measures. However, the emergence of acaricide resistance and the maintenance of tick populations in wildlife has precluded the efficient management of ticks. Thus, host-targeted, non-chemical control measures are needed to reliably reduce ticks parasitizing sylvatic reservoirs. This project aimed to evaluate extracellular vesicles (EVs) from Amblyomma americanum as vaccine candidates for white-tailed deer (Odocoileus virginianus; WTD). Salivary gland (SG) and midgut (MG) EVs were isolated by ultracentrifugation. Three deer were vaccinated with SG and MG EVs and received two boosters at days 28 and 50. Two control deer were injected with adjuvant and PBS only. On day 58, WTD were infested with 100 A. americanum nymphs, 50 females, and 50 males that were allowed to feed to repletion. On-host and off-host mortality, tick engorgement weight, nymph molting, time to oviposition, and egg hatchability were evaluated. Serum samples were recovered every seven days until the last day of tick drop off, and then at one year (Y1) and 1-year and 1-month (Y1M1). Vaccination resulted in seroconversion and significant increases in total IgG levels that remained significantly higher than controls and pre-vaccination levels at Y1 and Y1M1. No negative effects were observed in nymphs, but on-host mortality of female A. americanum was significantly higher in vaccinated animals. No effects were observed on reproductive parameters. These results indicate that proteins within female tick SG and MG vesicles are not good candidates for vaccine design against nymphs; however, the on-host adult mortality suggests that tick EVs harbor protective antigens against A. americanum females.
Collapse
Affiliation(s)
- Julia Gonzalez
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA
| | - Cristina Harvey
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA
| | - Cárita de Souza Ribeiro-Silva
- Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO 74690-900, Brazil
| | - Brenda Leal-Galvan
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA
| | | | - Pia U Olafson
- USDA-ARS, Knipling-Bushland United States Livestock Insects Research Laboratory, Kerrville, TX 78028, USA
| | | | - Adela Oliva Chavez
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
4
|
de Albuquerque PMM, Kotál J, Juliano MA, Tirloni L, da Silva Vaz I. In vitro identification of neutralizing epitopes of Rhipicephalus microplus serpin 17 (RmS-17). Vaccine 2024; 42:126161. [PMID: 39060200 PMCID: PMC11456362 DOI: 10.1016/j.vaccine.2024.126161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/27/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024]
Abstract
BACKGROUND Rhipicephalus microplus poses a significant problem for livestock worldwide and is primarily controlled with synthetic acaricides. The continuous use of acaricides results in the selection of resistance and causes environmental harm. Vaccination presents an alternative solution to this problem, although searching for the suitable antigen is still a work in progress. Salivary proteins hold promise for inclusion in vaccine formulation due to their roles in modulating host responses, assisting blood feeding and pathogen transmission. Serpins are a class of proteinase inhibitors and are among the molecules found in tick saliva that modulate host blood coagulation, inflammation, and adaptive immune responses. Previous studies have demonstrated the potential of R. microplus serpin 17 (RmS-17) to interfere with the host's defenses, and antibodies have been shown to neutralize its effects. This makes RmS-17 an putative target for vaccine development. METHODS Epitope mapping of RmS-17 was achieved using in silico approach combining linear B-cell epitope and antigenicity predictor. In addition, epitope mapping using overlapping peptides in an ELISA screening was used. The serpin tridimensional structure and the epitopes spatial location within the molecule were determined. Peptides were synthetized based on the predictions and used for the production of rabbit anti-sera. Purified IgG's were used to assess the antibodies capacity to neutralize RmS-17. RESULTS Through in silico mapping, nine potential B cell epitope regions were screened, with p1RmS-17 and p2RmS-17 selected for the experiment based on antigen prediction. In the ELISA screening using overlapping peptides, eight antibody-binding regions were identified, and p3RmS-17 and p4RmS-17 were chosen. Antibodies raised against p3RmS-17 and p4RmS-17 partially neutralized RmS-17 activity. CONCLUSION It was found that antibodies against a single epitope are sufficient to partially neutralize RmS-17 activity. These findings support the possibility of using an epitope-based vaccine for immunization against R. microplus.
Collapse
Affiliation(s)
- Pedro Machado Medeiros de Albuquerque
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), RS, Brazil; Tick-Pathogen Transmission Unit, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, Hamilton, MT, USA
| | - Jan Kotál
- Tick-Pathogen Transmission Unit, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, Hamilton, MT, USA
| | | | - Lucas Tirloni
- Tick-Pathogen Transmission Unit, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, Hamilton, MT, USA
| | - Itabajara da Silva Vaz
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), RS, Brazil; Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul (UFRGS), RS, Brazil; Instituto Nacional de Ciência e Tecnologia - Entomologia Molecular, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
5
|
Silva FAA, Costa GCA, Parizi LF, Silva Vaz Junior ID, Tanaka AS. Biochemical characterization of a novel sphingomyelinase-like protein from the Rhipicephalus microplus tick. Exp Parasitol 2023; 254:108616. [PMID: 37696328 DOI: 10.1016/j.exppara.2023.108616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/21/2023] [Accepted: 09/08/2023] [Indexed: 09/13/2023]
Abstract
Sphingomyelinase D is a toxin present in venomous spiders and bacteria and is associated with infection symptoms in patients affected by spider bites. It was observed that in Ixodes scapularis ticks, sphingomyelinase-like protein secreted in saliva can modulate the host immune response, affecting the transmission of flavivirus to the host via exosomes. In this work, a sphingomyelinase D-like protein (RmSMase) from R. microplus, a tick responsible for economic losses and a vector of pathogens for cattle, was investigated. The amino acid sequence revealed the lack of important residues for enzymatic activity, but the recombinant protein showed sphingomyelinase D activity. RmSMase shows Ca2+ and Mg2+ dependence in acidic pH, differing from IsSMase, which has Mg2+ dependence in neutral pH. Due to the difference between RmSMase and other SMases described, the data suggest that RmSMase belongs to SMase D class IIc. RmSMase mRNA transcription levels are upregulated during tick feeding, and the recombinant protein was recognized by host antibodies elicited after heavy tick infestation, indicating that RmSMase is present in tick saliva and may play a role in the tick feeding process.
Collapse
Affiliation(s)
- Fernando A A Silva
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade de Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Gabriel C A Costa
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade de Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Luís F Parizi
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), RS, Brazil
| | - Itabajara da Silva Vaz Junior
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), RS, Brazil; Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul (UFRGS), RS, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), RJ, Brazil
| | - Aparecida S Tanaka
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade de Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), RJ, Brazil.
| |
Collapse
|
6
|
Carnero-Morán Á, Oleaga A, Cano-Argüelles AL, Pérez-Sánchez R. Function-guided selection of salivary antigens from Ornithodoros erraticus argasid ticks and assessment of their protective efficacy in rabbits. Ticks Tick Borne Dis 2023; 14:102218. [PMID: 37364364 DOI: 10.1016/j.ttbdis.2023.102218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/05/2023] [Accepted: 06/13/2023] [Indexed: 06/28/2023]
Abstract
The identification of new protective antigens for the development of tick vaccines may be approached by selecting antigen candidates that have key biological functions. Bioactive proteins playing key functions for tick feeding and pathogen transmission are secreted into the host via tick saliva. Adult argasid ticks must resynthesise and replace these proteins after each feeding to be able to repeat new trophogonic cycles. Therefore, these proteins are considered interesting antigen targets for tick vaccine development. In this study, the salivary gland transcriptome and saliva proteome of Ornithodoros erraticus females were inspected to select and test new vaccine candidate antigens. For this, we focused on transcripts overexpressed after feeding that encoded secretory proteins predicted to be immunogenic and annotated with functions related to blood ingestion and modulation of the host defensive response. Completeness of the transcript sequence, as well as a high expression level and a high fold-change after feeding were also scored resulting in the selection of four candidates, an acid tail salivary protein (OeATSP), a multiple coagulation factor deficiency protein 2 homolog (OeMCFD2), a Cu/Zn-superoxide dismutase (OeSOD) and a sulfotransferase (OeSULT), which were later produced as recombinant proteins. Vaccination of rabbits with each individual recombinant antigen induced strong humoral responses that reduced blood feeding and female reproduction, providing, respectively, 46.8%, 45.7%, 54.3% and 31.9% protection against O. erraticus infestations and 0.7%, 3.9%, 3.1% and 8.7% cross-protection against infestations by the African tick, Ornithodoros moubata. The joint protective efficacy of these antigens was tested in a second vaccine trial reaching 58.3% protection against O. erraticus and 18.6% cross-protection against O. moubata. These results (i) provide four new protective salivary antigens from argasid ticks that might be included in multi-antigenic vaccines designed for the control of multiple tick species; (ii) reveal four functional protein families never tested before as a source of protective antigens in ticks; and (iii) show that multi-antigenic vaccines increase vaccine efficacy compared with individual antigens. Finally, our data add value to the salivary glands as a protective antigen source in argasids for the control of tick infestations.
Collapse
Affiliation(s)
- Ángel Carnero-Morán
- Parasitología Animal, Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA, CSIC), Cordel de Merinas, 40-52, Salamanca 37008, Spain
| | - Ana Oleaga
- Parasitología Animal, Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA, CSIC), Cordel de Merinas, 40-52, Salamanca 37008, Spain
| | - Ana Laura Cano-Argüelles
- Parasitología Animal, Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA, CSIC), Cordel de Merinas, 40-52, Salamanca 37008, Spain
| | - Ricardo Pérez-Sánchez
- Parasitología Animal, Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA, CSIC), Cordel de Merinas, 40-52, Salamanca 37008, Spain.
| |
Collapse
|
7
|
Kotze AC, Hunt PW. The current status and outlook for insecticide, acaricide and anthelmintic resistances across the Australian ruminant livestock industries: assessing the threat these resistances pose to the livestock sector. Aust Vet J 2023; 101:321-333. [PMID: 37401786 DOI: 10.1111/avj.13267] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/06/2023] [Accepted: 06/14/2023] [Indexed: 07/05/2023]
Abstract
The Australian ruminant livestock industries are faced with the need to control parasitic infectious diseases that can seriously impact the health of animals. However, increasing levels of resistance to insecticides, anthelmintics and acaricides are substantially reducing the ability to control some of these parasites. Here we review the current situation with regard to chemical resistances in parasites across the various sectors of the Australian ruminant livestock industries and assess the level of threat that these resistances pose to the sustainability of these sectors in the short to long terms. We also look at the extent to which testing for resistance occurs across the various industry sectors, and hence how well-informed these sectors are of the extent of chemical resistance. We examine on-farm management practices, breeding of parasite-resistant animals, and non-chemical therapeutics that may act as short to long term means to reduce the current reliance on chemicals for parasite control. Finally, we look at the balance between the prevalence and magnitude of current resistances and the availability and adoption rates of management, breeding and therapeutic alternatives in order to assess the parasite control outlook for the various industry sectors.
Collapse
Affiliation(s)
- A C Kotze
- CSIRO Agriculture and Food, Brisbane, Queensland, Australia
| | - P W Hunt
- CSIRO Agriculture and Food, Armidale, New South Wales, Australia
| |
Collapse
|
8
|
C A Costa G, A A Silva F, M Manzato V, S Torquato RJ, G Gonzalez Y, Parizi LF, da Silva Vaz Junior I, Tanaka AS. A multiepitope chimeric antigen from Rhipicephalus microplus-secreted salivary proteins elicits anti-tick protective antibodies in rabbit. Vet Parasitol 2023; 318:109932. [PMID: 37060790 DOI: 10.1016/j.vetpar.2023.109932] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/27/2023] [Accepted: 04/05/2023] [Indexed: 04/17/2023]
Abstract
Rhipicephalus (Boophilus) microplus, the Cattle Fever Tick, causes significant economic losses in livestock in tropical and subtropical regions of the world. As the usual control strategy based on chemical acaricides presents different drawbacks, alternative control strategies have been considered for tick control. In recent decades, several tick proteins have been evaluated as targets for the development of anti-tick vaccines. Thus, in the present work, coding sequences from three different proteins present in tick saliva were employed together to construct a recombinant chimeric protein that was evaluated as an antigen in rabbit immunization. Then, the elicited antibodies were tested in a tick artificial feeding experiment to verify the protective effect against the parasites. In addition to Rhipicephalus microplus subtilisin inhibitor 7 (RmSI-7), a serine protease inhibitor member of the TIL (Trypsin Inhibitory Like) family, an interdomain region from the Kunitz inhibitor BmTI-A, and a new cysteine-rich AMP-like microplusin, called RmSEI (previously identified as an elastase inhibitor), were selected to compose the chimeric protein. Anti-chimeric IgG antibodies were able to affect R. microplus female egg production after artificial feeding. Moreover, antibodies elicited in infested tick-resistant and tick-susceptible cattle recognized the recombinant chimera. Additionally, the functional characterization of recombinant RmSEI was performed and revealed antimicrobial activity against gram-positive bacteria. Moreover, the antimicrobial protein was also recognized by antibodies elicited in sera from cattle previously exposed to R. microplus bites. Together, these data suggest that the chimeric protein composed of three salivary antigens is suitable for anti-tick vaccine development.
Collapse
Affiliation(s)
- Gabriel C A Costa
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade de Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Fernando A A Silva
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade de Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Verônica M Manzato
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade de Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Ricardo J S Torquato
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade de Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Yamile G Gonzalez
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade de Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Luís F Parizi
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), RS, Brazil
| | - Itabajara da Silva Vaz Junior
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), RS, Brazil; Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul (UFRGS), RS, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), RJ, Brazil
| | - Aparecida S Tanaka
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade de Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), RJ, Brazil.
| |
Collapse
|
9
|
The Ixodes ricinus salivary gland proteome during feeding and B. Afzelii infection: New avenues for an anti-tick vaccine. Vaccine 2023; 41:1951-1960. [PMID: 36797101 DOI: 10.1016/j.vaccine.2023.02.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/16/2023]
Abstract
INTRODUCTION Borrelia burgdorferi sensu lato, the causative agents of Lyme borreliosis, are transmitted by Ixodes ticks. Tick saliva proteins are instrumental for survival of both the vector and spirochete and have been investigated as targets for vaccine targeting the vector. In Europe, the main vector for Lyme borreliosis is Ixodes ricinus, which predominantly transmits Borrelia afzelii. We here investigated the differential production of I. ricinus tick saliva proteins in response to feeding and B. afzelii infection. METHOD Label-free Quantitative Proteomics and Progenesis QI software was used to identify, compare, and select tick salivary gland proteins differentially produced during tick feeding and in response to B. afzelii infection. Tick saliva proteins were selected for validation, recombinantly expressed and used in both mouse and guinea pig vaccination and tick-challenge studies. RESULTS We identified 870 I. ricinus proteins from which 68 were overrepresented upon 24-hours of feeding and B. afzelii infection. Selected tick proteins were successfully validated by confirming their expression at the RNA and native protein level in independent tick pools. When used in a recombinant vaccine formulation, these tick proteins significantly reduced the post-engorgement weights of I. ricinus nymphs in two experimental animal models. Despite the reduced ability of ticks to feed on vaccinated animals, we observed efficient transmission of B. afzelii to the murine host. CONCLUSION Using quantitative proteomics, we identified differential protein production in I. ricinus salivary glands in response to B. afzelii infection and different feeding conditions. These results provide novel insights into the process of I. ricinus feeding and B. afzelii transmission and revealed novel candidates for an anti-tick vaccine.
Collapse
|
10
|
Antunes S, Domingos A. Tick Vaccines and Concealed versus Exposed Antigens. Pathogens 2023; 12:pathogens12030374. [PMID: 36986295 PMCID: PMC10056810 DOI: 10.3390/pathogens12030374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 03/03/2023] Open
Abstract
Anti-tick vaccines development mainly depends on the identification of suitable antigens, which ideally should have different features. These should be key molecules in tick biology, encoded by a single gene, expressed across life stages and tick tissues, capable of inducing B and T cells to promote an immunological response without allergenic, hemolytic, and toxic effects; and should not be homologous to the mammalian host. The discussion regarding this subject and the usefulness of “exposed” and “concealed” antigens was effectively explored in the publication by Nuttall et al. (2006). The present commentary intends to debate the relevance of such study in the field of tick immunological control.
Collapse
Affiliation(s)
- Sandra Antunes
- Global Health and Tropical Medicine, Institute of Hygiene and Tropical Medicine, NOVA University of Lisbon, Rua da Junqueira, 100, 1349-008 Lisboa, Portugal
- Institute of Hygiene and Tropical Medicine, NOVA University of Lisbon, Rua da Junqueira, 100, 1349-008 Lisboa, Portugal
| | - Ana Domingos
- Global Health and Tropical Medicine, Institute of Hygiene and Tropical Medicine, NOVA University of Lisbon, Rua da Junqueira, 100, 1349-008 Lisboa, Portugal
- Institute of Hygiene and Tropical Medicine, NOVA University of Lisbon, Rua da Junqueira, 100, 1349-008 Lisboa, Portugal
- Correspondence:
| |
Collapse
|
11
|
Bonnet SI, Vourc’h G, Raffetin A, Falchi A, Figoni J, Fite J, Hoch T, Moutailler S, Quillery E. The control of Hyalomma ticks, vectors of the Crimean–Congo hemorrhagic fever virus: Where are we now and where are we going? PLoS Negl Trop Dis 2022; 16:e0010846. [PMCID: PMC9671348 DOI: 10.1371/journal.pntd.0010846] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
At a time of major global, societal, and environmental changes, the shifting distribution of pathogen vectors represents a real danger in certain regions of the world as generating opportunities for emergency. For example, the recent arrival of the Hyalomma marginatum ticks in southern France and the concurrent appearance of cases of Crimean–Congo hemorrhagic fever (CCHF)—a disease vectored by this tick species—in neighboring Spain raises many concerns about the associated risks for the European continent. This context has created an urgent need for effective methods for control, surveillance, and risk assessment for ticks and tick-borne diseases with a particular concern regarding Hyalomma sp. Here, we then review the current body of knowledge on different methods of tick control—including chemical, biological, genetical, immunological, and ecological methods—and the latest developments in the field, with a focus on those that have been tested against ticks from the genus Hyalomma. In the absence of a fully and unique efficient approach, we demonstrated that integrated pest management combining several approaches adapted to the local context and species is currently the best strategy for tick control together with a rational use of acaricide. Continued efforts are needed to develop and implement new and innovative methods of tick control. Disease-bearing Hyalomma ticks are an increasingly emerging threat to humans and livestock worldwide. Various chemical, biological, genetic, and ecological methods for tick control have been developed, with variable efficiencies. Today, the best tick control strategy involves an integrated pest management approach.
Collapse
Affiliation(s)
- Sarah I. Bonnet
- Animal Health Department, INRAE, Nouzilly, France
- Ecology and Emergence of Arthropod-borne Pathogens Unit, Institut Pasteur, CNRS UMR 2000, Université Paris-cité, Paris, France
- * E-mail:
| | - Gwenaël Vourc’h
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR EPIA, Saint-Genès-Champanelle, France
- Université de Lyon, INRAE, VetAgro Sup, UMR EPIA, Marcy l’Etoile, France
| | - Alice Raffetin
- Reference Centre for Tick-Borne Diseases, Paris and Northern Region, Department of Infectious Diseases, General Hospital of Villeneuve-Saint-Georges, 40 allée de la Source, Villeneuve-Saint-Georges, France
- EA 7380 Dynamyc, UPEC, Créteil, France
- Unité de recherche EpiMAI, USC ANSES, Ecole Nationale Vétérinaire d’Alfort, Maisons-Alfort, France
| | - Alessandra Falchi
- UR7310, Faculté de Sciences, Campus Grimaldi, Université de Corse, Corte, France
| | - Julie Figoni
- Santé publique France, 94410 Saint-Maurice, France
| | - Johanna Fite
- French Agency for Food, Environmental and Occupational Health & Safety, 14 rue Pierre et Marie Curie, Maisons-Alfort Cedex, France
| | | | - Sara Moutailler
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Elsa Quillery
- French Agency for Food, Environmental and Occupational Health & Safety, 14 rue Pierre et Marie Curie, Maisons-Alfort Cedex, France
| |
Collapse
|
12
|
Ali A, Zeb I, Alouffi A, Zahid H, Almutairi MM, Ayed Alshammari F, Alrouji M, Termignoni C, Vaz IDS, Tanaka T. Host Immune Responses to Salivary Components - A Critical Facet of Tick-Host Interactions. Front Cell Infect Microbiol 2022; 12:809052. [PMID: 35372098 PMCID: PMC8966233 DOI: 10.3389/fcimb.2022.809052] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 02/04/2022] [Indexed: 12/15/2022] Open
Abstract
Tick sialome is comprised of a rich cocktail of bioactive molecules that function as a tool to disarm host immunity, assist blood-feeding, and play a vibrant role in pathogen transmission. The adaptation of the tick's blood-feeding behavior has lead to the evolution of bioactive molecules in its saliva to assist them to overwhelm hosts' defense mechanisms. During a blood meal, a tick secretes different salivary molecules including vasodilators, platelet aggregation inhibitors, anticoagulants, anti-inflammatory proteins, and inhibitors of complement activation; the salivary repertoire changes to meet various needs such as tick attachment, feeding, and modulation or impairment of the local dynamic and vigorous host responses. For instance, the tick's salivary immunomodulatory and cement proteins facilitate the tick's attachment to the host to enhance prolonged blood-feeding and to modulate the host's innate and adaptive immune responses. Recent advances implemented in the field of "omics" have substantially assisted our understanding of host immune modulation and immune inhibition against the molecular dynamics of tick salivary molecules in a crosstalk between the tick-host interface. A deep understanding of the tick salivary molecules, their substantial roles in multifactorial immunological cascades, variations in secretion, and host immune responses against these molecules is necessary to control these parasites. In this article, we reviewed updated knowledge about the molecular mechanisms underlying host responses to diverse elements in tick saliva throughout tick invasion, as well as host defense strategies. In conclusion, understanding the mechanisms involved in the complex interactions between the tick salivary components and host responses is essential to decipher the host defense mechanisms against the tick evasion strategies at tick-host interface which is promising in the development of effective anti-tick vaccines and drug therapeutics.
Collapse
Affiliation(s)
- Abid Ali
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Ismail Zeb
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Abdulaziz Alouffi
- King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Hafsa Zahid
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Mashal M. Almutairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Fahdah Ayed Alshammari
- College of Sciences and Literature Microbiology, Nothern Border University, Rafha, Saudi Arabia
| | - Mohammed Alrouji
- College of Applied Medical Sciences, Shaqra University, Shaqra, Saudi Arabia
| | - Carlos Termignoni
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Itabajara da Silva Vaz
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Tetsuya Tanaka
- Laboratory of Infectious Diseases, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
13
|
Ruiling Z, Wenjuan L, Kexin Z, Xuejun W, Zhong Z. Developmental transcriptomics throughout the embryonic developmental process of Rhipicephalus turanicus reveals stage-specific gene expression profiles. Parasit Vectors 2022; 15:89. [PMID: 35292089 PMCID: PMC8922761 DOI: 10.1186/s13071-022-05214-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 02/20/2022] [Indexed: 11/10/2022] Open
Abstract
Background Ticks are important vectors and transmit diverse pathogens, including protozoa, viruses, and bacteria. Tick-borne diseases can cause damage to both human health and the livestock industries. The control and prevention of ticks and tick-borne diseases has relied heavily on acaricides. Methods In the present study, using a high-throughput RNA sequencing (RNA-Seq) technique, we performed a comprehensive time-series transcriptomic analysis throughout the embryogenesis period of Rhipicephalus turanicus. Results Altogether, 127,157 unigenes were assembled and clustered. Gene expression differences among the embryonic stages demonstrated that the most differentially expressed genes (DEGs) were observed in the comparisons of early embryonic stages (RTE5 vs. RTE10, 9726 genes), and there were far fewer DEGs in later stages (RTE25 vs. RTE30, 2751 genes). Furthermore, 16 distinct gene modules were identified according to weighted gene co-expression network analysis (WGCNA), and genes in different modules displayed stage-specific characteristics. Gene Ontology (GO) annotations and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment suggested that some genes involved in organ and tissue formation were significantly upregulated in the early embryonic developmental stages, whereas metabolism-related pathways were more enriched in the later embryonic developmental stages. Conclusions These transcriptome studies revealed gene expression profiles at different stages of embryonic development, which would be useful for interrupting the embryonic development of ticks and disrupting the transmission of tick-borne diseases. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05214-w.
Collapse
Affiliation(s)
- Zhang Ruiling
- Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Shandong First Medical University (Shandong Academy of Medical Sciences), Tai'an, China. .,School of Basic Medical Sciences, Shandong First Medical University (Shandong Academy of Medical Sciences), Tai'an, China.
| | - Liu Wenjuan
- Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Shandong First Medical University (Shandong Academy of Medical Sciences), Tai'an, China.,School of Basic Medical Sciences, Shandong First Medical University (Shandong Academy of Medical Sciences), Tai'an, China
| | - Zhang Kexin
- Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Shandong First Medical University (Shandong Academy of Medical Sciences), Tai'an, China.,School of Basic Medical Sciences, Shandong First Medical University (Shandong Academy of Medical Sciences), Tai'an, China
| | - Wang Xuejun
- Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Shandong First Medical University (Shandong Academy of Medical Sciences), Tai'an, China. .,Shandong Provincial Center for Disease Control and Prevention, Jinan, China.
| | - Zhang Zhong
- Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Shandong First Medical University (Shandong Academy of Medical Sciences), Tai'an, China. .,School of Basic Medical Sciences, Shandong First Medical University (Shandong Academy of Medical Sciences), Tai'an, China.
| |
Collapse
|
14
|
Challenges in Veterinary Vaccine Development. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2411:3-34. [PMID: 34816396 DOI: 10.1007/978-1-0716-1888-2_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Animals provide food and clothing in addition to other value-added products. Changes in diet and lifestyle have increased the consumption and the use of animal products. Infectious diseases in animals are a major threat to global animal health and its welfare; their effective control is crucial for agronomic health, for safeguarding food security and also alleviating rural poverty. Development of vaccines has led to increased production of healthy poultry, livestock, and fish. Animal production increases have alleviated food insecurity. In addition, development of effective vaccines has led to healthier companion animals. However, challenges remain including climate change that has led to enhancement in vectors and pathogens that may lead to emergent diseases in animals. Preventing transmission of emerging infectious diseases at the animal-human interface is critically important for protecting the world population from epizootics and pandemics. Hence, there is a need to develop new vaccines to prevent diseases in animals. This review describes the broad challenges to be considered in the development of vaccines for animals.
Collapse
|
15
|
Ferreira Leal B, Sanchez Ferreira CA. Ticks and antibodies: May parasite density and tick evasion influence the outcomes following immunization protocols? Vet Parasitol 2021; 300:109610. [PMID: 34735848 DOI: 10.1016/j.vetpar.2021.109610] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 09/07/2021] [Accepted: 10/19/2021] [Indexed: 11/30/2022]
Abstract
Ticks are a major concern to human health and livestock worldwide, being responsible for economic losses that go beyond billions of US dollars per year. This scenario instigates the development of vaccines against these ectoparasites, emphasized by the fact that the main method of controlling ticks still relies on the use of acaricides, what increases costs and may affect the environment as well as human and animal health. The first commercial vaccines against ectoparasites were produced against the tick Rhipicephalus microplus and their efficacy were based on antibodies. Many additional attempts have been conducted to produce protective immune responses against ticks by immunization with specific antigens and the antibody response has usually been the main target of evaluation. But some controversy still populates the roles possibly performed by humoral responses in tick-mammalian host relationships. This review focuses on the analysis of specific aspects concerning antibodies and ticks, especially the influence of parasite density and evasion/modulation. The immunization trials already described against R. microplus were also compiled and analyzed based on the characteristics of the molecules tested, protocols of immunization and tick challenge. Within these issues, it is discussed if or when antibody levels can be directly correlated with the development of tick resistance, and whether anti-tick protective immune responses generated by infestations may become ineffective under a different tick density. Also, higher titers of antibodies can be correlated with protection or susceptibility to tick infestations, what may be altered following continuous or repeated infestations and differ greatly comparing hosts with distinct genetic backgrounds. Regarding evasion, ticks present a sophisticated mechanism for dealing with antibodies, including Immunoglobulin Binding Proteins (IGBPs), that capture, transport and inject them back into the host, while keeping their properties within the parasite. The comparison of immunization protocols shows a total of 22 molecules already tested in cattle vaccination trials against R. microplus, with the predominance of concealed and dual antigens as well as marked differences in tick challenge schemes. The presence of an antibody evasion apparatus and variable levels of tick resistance when facing different densities of parasites are concerns that should be considered when testing vaccine candidates. Ultimately, more refinement may be necessary to effectively design a cocktail vaccine with tick molecules, which may be needed to be altered and combined in non-competing immune contexts to be universally secure and protective.
Collapse
Affiliation(s)
- Bruna Ferreira Leal
- Laboratório de Imunologia e Microbiologia, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Av. Ipiranga, 6681, 90619-900, Porto Alegre, RS, Brazil.
| | - Carlos Alexandre Sanchez Ferreira
- Laboratório de Imunologia e Microbiologia, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Av. Ipiranga, 6681, 90619-900, Porto Alegre, RS, Brazil.
| |
Collapse
|
16
|
Ndawula C. From Bench to Field: A Guide to Formulating and Evaluating Anti-Tick Vaccines Delving beyond Efficacy to Effectiveness. Vaccines (Basel) 2021; 9:vaccines9101185. [PMID: 34696291 PMCID: PMC8539545 DOI: 10.3390/vaccines9101185] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 01/04/2023] Open
Abstract
Ticks are ubiquitous blood-sucking ectoparasites capable of transmitting a wide range of pathogens such as bacteria, viruses, protozoa, and fungi to animals and humans. Although the use of chemicals (acaricides) is the predominant method of tick-control, there are increasing incidents of acaricide tick resistance. Furthermore, there are concerns over accumulation of acaricide residues in meat, milk and in the environment. Therefore, alternative methods of tick-control have been proposed, of which anti-tick cattle vaccination is regarded as sustainable and user-friendly. Over the years, tremendous progress has been made in identifying and evaluating novel candidate tick vaccines, yet none of them have reached the global market. Until now, Bm86-based vaccines (Gavac™ in Cuba and TickGARDPLUS™ Australia-ceased in 2010) are still the only globally commercialized anti-tick vaccines. In contrast to Bm86, often, the novel candidate anti-tick vaccines show a lower protection efficacy. Why is this so? In response, herein, the potential bottlenecks to formulating efficacious anti-tick vaccines are examined. Aside from Bm86, the effectiveness of other anti-tick vaccines is rarely assessed. So, how can the researchers assess anti-tick vaccine effectiveness before field application? The approaches that are currently used to determine anti-tick vaccine efficacy are re-examined in this review. In addition, a model is proposed to aid in assessing anti-tick vaccine effectiveness. Finally, based on the principles for the development of general veterinary vaccines, a pipeline is proposed to guide in the development of anti-tick vaccines.
Collapse
Affiliation(s)
- Charles Ndawula
- National Agricultural Research Organization, P.O. Box 295, Entebbe, Wakiso 256, Uganda;
- National Livestock Resources Research Institute, Vaccinology Research Programme, P.O. Box 5704, Nakyesasa, Wakiso 256, Uganda
| |
Collapse
|
17
|
Mihaljica D, Marković D, Repac J, Božić B, Radulović Ž, Veinović G, Sukara R, Ristanović E, Chochlakis D, Nedeljković BB, Tomanović S. Exploring immunogenicity of tick salivary AV422 protein in persons exposed to ticks: prospects for utilization. EXPERIMENTAL & APPLIED ACAROLOGY 2021; 85:83-99. [PMID: 34432178 DOI: 10.1007/s10493-021-00653-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 08/03/2021] [Indexed: 06/13/2023]
Abstract
In order to determine whether conserved tick salivary protein AV422 is immunogenic, the goal of our study was to detect specific IgG response within at-risk populations. Study groups included 76 individuals, differing in occurrence of recently recorded tick bites and health status. Western blotting with recombinant (r) protein derived from Ixodes ricinus (Ir) was performed. IgG response to Borrelia/Rickettsia, as indicators of previous tick infestations, was also assessed. Additionally, a detailed in silico AV422 protein sequence analysis was performed, followed by modelling of the interactions between peptides and corresponding MHC II molecules by molecular docking. Anti-rIrAV422 seroprevalences among individuals exposed to ticks were high (62.5, 57.9 and 66.7%) and anti-Borrelia/Rickettsia seroprevalences were 54.2, 15.8 and 44.4% among individuals with/without recent tick bite and patients suspected of tick-borne disease, respectively. In silico analysis of AV422 protein sequence showed a high level of conservation across tick genera, including also the predicted antigenic determinants specific for T and B cells. Docking to the restricted MHC II molecules was performed for all predicted AV422 T cell epitopes, and the most potent (highly immunogenic) epitope determinants were suggested. The epitope prediction reveals that tick salivary protein AV422 may elicit humoral immune response in humans, which is consistent with the high anti-rIrAV422 seroprevalence in tested at-risk subjects. Tick-borne diseases are a growing public health concern worldwide, and AV422 is potentially useful in clinical practice and epidemiological studies.
Collapse
Affiliation(s)
- Darko Mihaljica
- Group for Medical Entomology, Centre of Excellence for Food- and Vector-Borne Zoonoses, Institute for Medical Research, University of Belgrade, Belgrade, Serbia.
| | - Dragana Marković
- Group for Immunology, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - Jelena Repac
- Institute for Physiology and Biochemistry "Ivan Djaja", University of Belgrade, Belgrade, Serbia
| | - Bojan Božić
- Institute for Physiology and Biochemistry "Ivan Djaja", University of Belgrade, Belgrade, Serbia
| | - Željko Radulović
- Department of Biology, College of Sciences and Mathematics, Stephen F. Austin State University, Nacogdoches, TX, USA
| | - Gorana Veinović
- Group for Medical Entomology, Centre of Excellence for Food- and Vector-Borne Zoonoses, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - Ratko Sukara
- Group for Medical Entomology, Centre of Excellence for Food- and Vector-Borne Zoonoses, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - Elizabeta Ristanović
- Institute for Microbiology, University of Defense, Military Medical Academy, Belgrade, Serbia
| | - Dimosthenis Chochlakis
- Laboratory of Clinical Microbiology and Microbial Pathogenesis, School of Medicine, University of Crete, Heraklion, Crete, Greece
| | | | - Snežana Tomanović
- Group for Medical Entomology, Centre of Excellence for Food- and Vector-Borne Zoonoses, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
18
|
Ojha R, Prajapati VK. Cognizance of posttranslational modifications in vaccines: A way to enhanced immunogenicity. J Cell Physiol 2021; 236:8020-8034. [PMID: 34170014 PMCID: PMC8427110 DOI: 10.1002/jcp.30483] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/21/2021] [Accepted: 06/14/2021] [Indexed: 12/25/2022]
Abstract
Vaccination is a significant advancement or preventative strategy for controlling the spread of various severe infectious and noninfectious diseases. The purpose of vaccination is to stimulate or activate the immune system by injecting antigens, i.e., either whole microorganisms or using the pathogen's antigenic part or macromolecules. Over time, researchers have made tremendous efforts to reduce vaccine side effects or failure by developing different strategies combining with immunoinformatic and molecular biology. These newly designed vaccines are composed of single or several antigenic molecules derived from a pathogenic organism. Although, whole‐cell vaccines are still in use against various diseases but due to their ineffectiveness, other vaccines like DNA‐based, RNA‐based, and protein‐based vaccines, with the addition of immunostimulatory agents, are in the limelight. Despite this, many researchers escape the most common fundamental phenomenon of protein posttranslational modifications during the development of vaccines, which regulates protein functional behavior, evokes immunogenicity and stability, etc. The negligence about post translational modification (PTM) during vaccine development may affect the vaccine's efficacy and immune responses. Therefore, it becomes imperative to consider these modifications of macromolecules before finalizing the antigenic vaccine construct. Here, we have discussed different types of posttranslational/transcriptional modifications that are usually considered during vaccine construct designing: Glycosylation, Acetylation, Sulfation, Methylation, Amidation, SUMOylation, Ubiquitylation, Lipidation, Formylation, and Phosphorylation. Based on the available research information, we firmly believe that considering these modifications will generate a potential and highly immunogenic antigenic molecule against communicable and noncommunicable diseases compared to the unmodified macromolecules.
Collapse
Affiliation(s)
- Rupal Ojha
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Vijay Kumar Prajapati
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| |
Collapse
|
19
|
Delpietro HA, Russo RG, Rupprecht CE, Delpietro GL. Towards Development of an Anti-Vampire Bat Vaccine for Rabies Management: Inoculation of Vampire Bat Saliva Induces Immune-Mediated Resistance. Viruses 2021; 13:515. [PMID: 33804644 PMCID: PMC8003692 DOI: 10.3390/v13030515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/12/2021] [Accepted: 03/12/2021] [Indexed: 01/02/2023] Open
Abstract
The common vampire bat (Desmodus rotundus) is a hematophagous species responsible for paralytic rabies and bite damage that affects livestock, humans and wildlife from Mexico to Argentina. Current measures to control vampires, based upon coumarin-derived poisons, are not used extensively due in part to the high cost of application, risks for bats that share roosts with vampires and residual environmental contamination. Observations that vampire bat bites may induce resistance in livestock against vampire bat salivary anticoagulants encourage research into novel vaccine-based alternatives particularly focused upon increasing livestock resistance to vampire salivary components. We evaluated the action of vampire bat saliva-Freund's incomplete adjuvant administered to sheep with anticoagulant responses induced by repeated vampire bites in a control group and examined characteristics of vampire bat salivary secretion. We observed that injections induced a response against vampire bat salivary anticoagulants stronger than by repeated vampire bat bites. Based upon these preliminary findings, we hypothesize the utility of developing a control technique based on induction of an immunologically mediated resistance against vampire bat anticoagulants and rabies virus via dual delivery of appropriate host and pathogen antigens. Fundamental characteristics of host biology favor alternative strategies than simple culling by poisons for practical, economical, and ecologically relevant management of vampire populations within a One Health context.
Collapse
Affiliation(s)
- Horacio A. Delpietro
- Servicio Nacional de Sanidad y Calidad Agroalimentaria (SENASA), Padre Serrano 1116, 3300 Posadas, Argentina; (R.G.R.); (G.L.D.)
| | - Roberto G. Russo
- Servicio Nacional de Sanidad y Calidad Agroalimentaria (SENASA), Padre Serrano 1116, 3300 Posadas, Argentina; (R.G.R.); (G.L.D.)
| | | | - Gabriela L. Delpietro
- Servicio Nacional de Sanidad y Calidad Agroalimentaria (SENASA), Padre Serrano 1116, 3300 Posadas, Argentina; (R.G.R.); (G.L.D.)
| |
Collapse
|
20
|
van Oosterwijk JG. Anti-tick and pathogen transmission blocking vaccines. Parasite Immunol 2021; 43:e12831. [PMID: 33704804 DOI: 10.1111/pim.12831] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 03/06/2021] [Accepted: 03/09/2021] [Indexed: 12/30/2022]
Abstract
Ticks and tick-borne diseases are a challenge for medical and veterinary public health and often controlled through the use of repellents and acaricides. Research on vaccination strategies to protect humans, companion animals, and livestock from ticks and tick-transmitted pathogens has accelerated through the use of proteomic and transcriptomic analyses. Comparative analyses of unfed versus engorged and uninfected versus infected ticks have provided valuable insights into candidates for anti-tick and pathogen transmission blocking vaccines. An intricate interplay between tick saliva and the host's immune system has revealed potential antigens to be used in vaccination strategies. Immunization of hosts with targeted anti-tick vaccines would ideally lead to a reduction in tick numbers and prevent transmission of tick-borne pathogens. Comprehensive control of tick-borne diseases would come from successful anti-tick vaccination, vaccination preventing transmission of tick-borne diseases or a combination. Due to the close interaction with wildlife and ticks, with wildlife reservoirs enabling propagation of pathogens between ticks, the vaccination of these reservoirs is an attractive target to reduce human contact with ticks and tick-borne diseases through a one-health approach. Wildlife vaccination presents formulation and regulatory challenges which should be considered early in the development of reservoir-targeted vaccines.
Collapse
|
21
|
Changes in Serum Biomarkers of Oxidative Stress in Cattle Vaccinated with Tick Recombinant Antigens: A Pilot Study. Vaccines (Basel) 2020; 9:vaccines9010005. [PMID: 33374141 PMCID: PMC7824418 DOI: 10.3390/vaccines9010005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/17/2020] [Accepted: 12/19/2020] [Indexed: 11/17/2022] Open
Abstract
Tick vaccination is an environmentally friendly alternative for tick control, pathogen infection, and transmission. Tick vaccine protection is sometimes incomplete, which may be due to problems in the stability, conformation, and activity of antibodies. This might be related to oxidative stress, but more studies are needed about the possible relationships between oxidative stress and immune function. The objective of this study was to evaluate and compare various serum biomarkers of antioxidant response and oxidative damage in cattle vaccinated with two recombinant antigens, the chimera of Subolesin- BM95 (homologue antigen of BM86)-MSP1a and BM86, and a control consisting in the adjuvant of the vaccines. Cupric reducing antioxidant capacity (CUPRAC), ferric reducing ability of the plasma (FRAP), trolox equivalent antioxidant capacity (TEAC), total thiol concentrations, and uric acid were evaluated in serum to determine the antioxidant response. To evaluate oxidative status, ferrous oxidation-xylenol orange (FOX), total oxidant status (TOS), advanced oxidation protein products (AOPP) and hydrogen peroxide (H2O2) concentrations in serum were determined. In addition, correlations between biomarkers of oxidative stress and antibody titers were evaluated. A significant decrease in all antioxidant biomarkers, with exception of thiol, and also a decrease in the oxidant markers TOS, AOPP and H2O2 was observed in cattle vaccinated with BM86, that also showed the highest antibody titers response whereas no significant differences in any of the biomarkers were detected in the Subolesin-Bm95-MSP1a and control groups. In addition, the dynamics of Cuprac and H2O2 with time showed significant differences between the groups. Although this is a pilot study and the results should be interpreted with caution and corroborated by studies involving a large number of animals, our results indicate that, in our experimental conditions, those vaccines able to induce a lower oxidative stress produce a higher concentration of antigen-specific antibodies. Overall, the results of the study provided information on the behavior of different biomarkers related to antioxidant defense, and the oxidative damage in cattle in response to vaccination.
Collapse
|
22
|
Almazán C, Šimo L, Fourniol L, Rakotobe S, Borneres J, Cote M, Peltier S, Mayé J, Versillé N, Richardson J, Bonnet SI. Multiple Antigenic Peptide-Based Vaccines Targeting Ixodes ricinus Neuropeptides Induce a Specific Antibody Response but Do Not Impact Tick Infestation. Pathogens 2020; 9:pathogens9110900. [PMID: 33126686 PMCID: PMC7693490 DOI: 10.3390/pathogens9110900] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/22/2020] [Accepted: 10/27/2020] [Indexed: 02/06/2023] Open
Abstract
Synthetic peptide vaccines were designed to target the neuropeptides innervating Ixodes ricinus salivary glands and hindgut and they were tested for their capacity to afford protective immunity against nymphs or larvae and Anaplasma phagocytophilum-infected nymph infestation, in mice and sheep, respectively. In both models, the assembly of SIFamide (SIFa) or myoinhibitory peptide (MIP) neuropeptides into multiple antigenic peptide constructs (MAPs) elicited a robust IgG antibody response following immunization. Nevertheless, no observable detrimental impact on nymphs was evidenced in mice, and, unfortunately, the number of engorged nymphs on sheep was insufficient for firm conclusions to be drawn, including for bacterial transmission. Regarding larvae, while vaccination of the sheep did not globally diminish tick feeding success or development, analyses of animals at the individual level revealed a negative correlation between anti-SIFa and MIP antibody levels and larva-to-nymph molting success for both antigens. Our results provide a proof of principle and precedent for the use of MAPs for the induction of immunity against tick peptide molecules. Although the present study did not provide the expected level of protection, it inaugurates a new strategy for protection against ticks based on the immunological targeting of key components of their nervous system.
Collapse
Affiliation(s)
- Consuelo Almazán
- UMR BIPAR 0956, INRAE, National Veterinary School of Alfort, ANSES, Paris-Est University, 94700 Maisons-Alfort, France; (C.A.); (L.Š.); (L.F.); (S.R.); (M.C.)
| | - Ladislav Šimo
- UMR BIPAR 0956, INRAE, National Veterinary School of Alfort, ANSES, Paris-Est University, 94700 Maisons-Alfort, France; (C.A.); (L.Š.); (L.F.); (S.R.); (M.C.)
| | - Lisa Fourniol
- UMR BIPAR 0956, INRAE, National Veterinary School of Alfort, ANSES, Paris-Est University, 94700 Maisons-Alfort, France; (C.A.); (L.Š.); (L.F.); (S.R.); (M.C.)
| | - Sabine Rakotobe
- UMR BIPAR 0956, INRAE, National Veterinary School of Alfort, ANSES, Paris-Est University, 94700 Maisons-Alfort, France; (C.A.); (L.Š.); (L.F.); (S.R.); (M.C.)
| | - Jérémie Borneres
- SEPPIC Paris La Défense, 92250 La Garenne Colombes, France; (J.B.); (S.P.); (J.M.); (N.V.)
| | - Martine Cote
- UMR BIPAR 0956, INRAE, National Veterinary School of Alfort, ANSES, Paris-Est University, 94700 Maisons-Alfort, France; (C.A.); (L.Š.); (L.F.); (S.R.); (M.C.)
| | - Sandy Peltier
- SEPPIC Paris La Défense, 92250 La Garenne Colombes, France; (J.B.); (S.P.); (J.M.); (N.V.)
| | - Jennifer Mayé
- SEPPIC Paris La Défense, 92250 La Garenne Colombes, France; (J.B.); (S.P.); (J.M.); (N.V.)
| | - Nicolas Versillé
- SEPPIC Paris La Défense, 92250 La Garenne Colombes, France; (J.B.); (S.P.); (J.M.); (N.V.)
| | - Jennifer Richardson
- UMR Virologie 1161, INRAE, National Veterinary School of Alfort, ANSES, Paris-Est University, 94700 Maisons-Alfort, France;
| | - Sarah I. Bonnet
- UMR BIPAR 0956, INRAE, National Veterinary School of Alfort, ANSES, Paris-Est University, 94700 Maisons-Alfort, France; (C.A.); (L.Š.); (L.F.); (S.R.); (M.C.)
- Correspondence:
| |
Collapse
|
23
|
Failed Disruption of Tick Feeding, Viability, and Molting after Immunization of Mice and Sheep with Recombinant Ixodes ricinus Salivary Proteins IrSPI and IrLip1. Vaccines (Basel) 2020; 8:vaccines8030475. [PMID: 32858821 PMCID: PMC7564719 DOI: 10.3390/vaccines8030475] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/20/2020] [Accepted: 08/24/2020] [Indexed: 12/11/2022] Open
Abstract
To identify potential vaccine candidates against Ixodes ricinus and tick-borne pathogen transmission, we have previously sequenced the salivary gland transcriptomes of female ticks infected or not with Bartonella henselae. The hypothesized potential of both IrSPI (I. ricinus serine protease inhibitor) and IrLip1 (I. ricinus lipocalin 1) as protective antigens decreasing tick feeding and/or the transmission of tick-borne pathogens was based on their presumed involvement in dampening the host immune response to tick feeding. Vaccine endpoints included tick larval and nymphal mortality, feeding, and molting in mice and sheep. Whether the antigens were administered individually or in combination, the vaccination of mice or sheep elicited a potent antigen-specific antibody response. However, and contrary to our expectations, vaccination failed to afford protection against the infestation of mice and sheep by I. ricinus nymphs and larvae, respectively. Rather, vaccination with IrSPI and IrLip1 appeared to enhance tick engorgement and molting and decrease tick mortality. To the best of our knowledge, these observations represent the first report of induction of vaccine-mediated enhancement in relation to anti-tick vaccination.
Collapse
|
24
|
Ndawula C, Tabor AE. Cocktail Anti-Tick Vaccines: The Unforeseen Constraints and Approaches toward Enhanced Efficacies. Vaccines (Basel) 2020; 8:E457. [PMID: 32824962 PMCID: PMC7564958 DOI: 10.3390/vaccines8030457] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/12/2020] [Accepted: 08/13/2020] [Indexed: 12/17/2022] Open
Abstract
Ticks are second to mosquitoes as vectors of disease. Ticks affect livestock industries in Asia, Africa and Australia at ~$1.13 billion USD per annum. For instance, 80% of the global cattle population is at risk of infestation by the Rhipicephalus microplus species-complex, which in 2016 was estimated to cause $22-30 billion USD annual losses. Although the management of tick populations mainly relies on the application of acaricides, this raises concerns due to tick resistance and accumulation of chemical residues in milk, meat, and the environment. To counteract acaricide-resistant tick populations, immunological tick control is regarded among the most promising sustainable strategies. Indeed, immense efforts have been devoted toward identifying tick vaccine antigens. Until now, Bm86-based vaccines have been the most effective under field conditions, but they have shown mixed success worldwide. Currently, of the two Bm86 vaccines commercialized in the 1990s (GavacTM in Cuba and TickGARDPLUSTM in Australia), only GavacTM is available. There is thus growing consensus that combining antigens could broaden the protection range and enhance the efficacies of tick vaccines. Yet, the anticipated outcomes have not been achieved under field conditions. Therefore, this review demystifies the potential limitations and proposes ways of sustaining enhanced cocktail tick vaccine efficacy.
Collapse
Affiliation(s)
- Charles Ndawula
- Vaccinology Research program, National Livestock Resources Research Institute, P O. Box 5746, Nakyesasa 256, Uganda
| | - Ala E. Tabor
- Centre for Animal Science, Queensland Alliance for Agriculture & Food Innovation, The University of Queensland Australia, St Lucia 4072, Queensland, Australia
- School of Chemistry & Molecular Biosciences, The University of Queensland, St Lucia 4072, Queensland, Australia
| |
Collapse
|
25
|
Garcia GR, Chaves Ribeiro JM, Maruyama SR, Gardinassi LG, Nelson K, Ferreira BR, Andrade TG, de Miranda Santos IKF. A transcriptome and proteome of the tick Rhipicephalus microplus shaped by the genetic composition of its hosts and developmental stage. Sci Rep 2020; 10:12857. [PMID: 32732984 PMCID: PMC7393499 DOI: 10.1038/s41598-020-69793-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 07/15/2020] [Indexed: 11/18/2022] Open
Abstract
The cattle tick, Rhipicephalus microplus, is a monoxenous tick that co-evolved with indicine cattle on the Indian subcontinent. It causes massive damage to livestock worldwide. Cattle breeds present heritable, contrasting phenotypes of tick loads, taurine breeds carrying higher loads of the parasite than indicine breeds. Thus, a useful model is available to analyze mechanisms that determine outcomes of parasitism. We sought to gain insights on these mechanisms and used RNA sequencing and Multidimensional Protein Identification Technology (MudPIT) to generate a transcriptome from whole larvae and salivary glands from nymphs, males and females feeding on genetically susceptible and resistant bovine hosts and their corresponding proteomes. 931,698 reads were annotated into 11,676 coding sequences (CDS), which were manually curated into 116 different protein families. Male ticks presented the most diverse armamentarium of mediators of parasitism. In addition, levels of expression of many genes encoding mediators of parasitism were significantly associated with the level and stage of host immunity and/or were temporally restricted to developmental stages of the tick. These insights should assist in developing novel, sustainable technologies for tick control.
Collapse
Affiliation(s)
- Gustavo R Garcia
- Department of Biochemistry and Immunology, Ribeirão Preto School of Medicine, University of São Paulo, Avenida Bandeirantes 3900, Ribeirão Preto, SP, 14049-900, Brazil.,Superintendence of the São Paulo State Technical and Scientific Police, Ribeirão Preto, SP, Brazil
| | - José Marcos Chaves Ribeiro
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sandra Regina Maruyama
- Department of Biochemistry and Immunology, Ribeirão Preto School of Medicine, University of São Paulo, Avenida Bandeirantes 3900, Ribeirão Preto, SP, 14049-900, Brazil.,Department of Genetics and Evolution, Center for Biological Sciences and Health, Federal University of São Carlos, São Carlos, SP, Brazil
| | - Luiz Gustavo Gardinassi
- Department of Biochemistry and Immunology, Ribeirão Preto School of Medicine, University of São Paulo, Avenida Bandeirantes 3900, Ribeirão Preto, SP, 14049-900, Brazil.,Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, GO, Brazil
| | - Kristina Nelson
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, VA, USA
| | - Beatriz R Ferreira
- Department of Biochemistry and Immunology, Ribeirão Preto School of Medicine, University of São Paulo, Avenida Bandeirantes 3900, Ribeirão Preto, SP, 14049-900, Brazil.,Department of Maternal-Child Nursing and Public Health, Ribeirão Preto School of Nursing, USP, Ribeirão Preto, SP, Brazil
| | - Thales Galdino Andrade
- Department of Biochemistry and Immunology, Ribeirão Preto School of Medicine, University of São Paulo, Avenida Bandeirantes 3900, Ribeirão Preto, SP, 14049-900, Brazil.,Department of Maternal-Child Nursing and Public Health, Ribeirão Preto School of Nursing, USP, Ribeirão Preto, SP, Brazil
| | - Isabel K Ferreira de Miranda Santos
- Department of Biochemistry and Immunology, Ribeirão Preto School of Medicine, University of São Paulo, Avenida Bandeirantes 3900, Ribeirão Preto, SP, 14049-900, Brazil.
| |
Collapse
|
26
|
Catalogue of stage-specific transcripts in Ixodes ricinus and their potential functions during the tick life-cycle. Parasit Vectors 2020; 13:311. [PMID: 32546252 PMCID: PMC7296661 DOI: 10.1186/s13071-020-04173-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 06/05/2020] [Indexed: 12/15/2022] Open
Abstract
Background The castor bean tick Ixodes ricinus is an important vector of several clinically important diseases, whose prevalence increases with accelerating global climate changes. Characterization of a tick life-cycle is thus of great importance. However, researchers mainly focus on specific organs of fed life stages, while early development of this tick species is largely neglected. Methods In an attempt to better understand the life-cycle of this widespread arthropod parasite, we sequenced the transcriptomes of four life stages (egg, larva, nymph and adult female), including unfed and partially blood-fed individuals. To enable a more reliable identification of transcripts and their comparison in all five transcriptome libraries, we validated an improved-fit set of five I. ricinus-specific reference genes for internal standard normalization of our transcriptomes. Then, we mapped biological functions to transcripts identified in different life stages (clusters) to elucidate life stage-specific processes. Finally, we drew conclusions from the functional enrichment of these clusters specifically assigned to each transcriptome, also in the context of recently published transcriptomic studies in ticks. Results We found that reproduction-related transcripts are present in both fed nymphs and fed females, underlining the poorly documented importance of ovaries as moulting regulators in ticks. Additionally, we identified transposase transcripts in tick eggs suggesting elevated transposition during embryogenesis, co-activated with factors driving developmental regulation of gene expression. Our findings also highlight the importance of the regulation of energetic metabolism in tick eggs during embryonic development and glutamate metabolism in nymphs. Conclusions Our study presents novel insights into stage-specific transcriptomes of I. ricinus and extends the current knowledge of this medically important pathogen, especially in the early phases of its development.![]()
Collapse
|
27
|
Patarroyo S JH, de Sousa Neves E, Fidelis CF, Tafur-Gómez GA, de Araujo L, Vargas MI, Sossai S, Prates-Patarroyo PA. Bovine immunisation with a recombinant peptide derived from synthetic SBm7462® (Bm86 epitope construct) immunogen for Rhipicephalus microplus control. Ticks Tick Borne Dis 2020; 11:101461. [PMID: 32723656 DOI: 10.1016/j.ttbdis.2020.101461] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 04/27/2020] [Accepted: 04/30/2020] [Indexed: 10/24/2022]
Abstract
RHIPICEPHALUS MICROPLUS: is the most important ectoparasite of livestock in tropical and subtropical areas around the world. Research focused on developing an efficient vaccine for cattle tick control is a high priority. The aim of this study was to evaluate the rSBm7462® peptide (Bm86-B and T cell epitopes) regarding its properties of immunogenicity, protective effect in cattle and efficacy against R. microplus. This peptide was produced by a fermentative process in the yeast culture system of Komagataella (Pichia) pastoris strain Km 71. The vaccination assay was conducted in a tick-free area using non-splenectomised Holstein Friesian calves, separated into immunisation and control groups. These animals individually received the recombinant peptide and the inoculum without peptide using saponin as an adjuvant at three time points. The calves were challenged 21 days after the last immunisation using 4500 larvae per animal. An indirect ELISA was used to identify the IgG kinetics of serum samples from the calves studied. The qPCR was performed to determine the cytokine gene expression from the total RNA of the cultured PBMCs. Histomorphometry of the germinal centres (GCs) was performed measuring slides with haematoxylin-eosin staining of surgically removed lymph nodes from immunised calves. The antibody response showed a significant induction of high-affinity IgGs in calves immunised with the recombinant peptide in comparison to the controls. The kinetics of antibodies in immunised calves showed a significant increase during the experiment. This increase in high-affinity IgGs correlated with a gradual increase of the GC diameter following each peptide vaccination. Cytokine expression profiles demonstrating an adaptive immune response in calves immunised with rSBm7462® confirmed the T-dependent response. Vaccine efficacy was calculated at 72.4 % following the analysis and fecundity of collected adult female ticks, compared between control and vaccinated groups. These findings demonstrate that this new recombinant peptide is an option for control of R. microplus infestations.
Collapse
Affiliation(s)
- Joaquín H Patarroyo S
- Universidade Federal de Viçosa - UFV, Departamento de Veterinária, Laboratório de Biologia e Controle de Hematozoários e Vetores, Instituto de Biotecnologia Aplicada à Agropecuária - BIOAGRO, Viçosa - MG, CEP 36570-900, Brasil.
| | - Elisangela de Sousa Neves
- Universidade Federal de Viçosa - UFV, Departamento de Veterinária, Laboratório de Biologia e Controle de Hematozoários e Vetores, Instituto de Biotecnologia Aplicada à Agropecuária - BIOAGRO, Viçosa - MG, CEP 36570-900, Brasil
| | - Cintia Fernandes Fidelis
- Universidade Federal de Viçosa - UFV, Departamento de Veterinária, Laboratório de Biologia e Controle de Hematozoários e Vetores, Instituto de Biotecnologia Aplicada à Agropecuária - BIOAGRO, Viçosa - MG, CEP 36570-900, Brasil
| | | | - Leandro de Araujo
- Universidade Federal de Viçosa - UFV, Departamento de Veterinária, Laboratório de Biologia e Controle de Hematozoários e Vetores, Instituto de Biotecnologia Aplicada à Agropecuária - BIOAGRO, Viçosa - MG, CEP 36570-900, Brasil
| | - Marlene I Vargas
- Universidade Federal de Viçosa - UFV, Departamento de Veterinária, Laboratório de Biologia e Controle de Hematozoários e Vetores, Instituto de Biotecnologia Aplicada à Agropecuária - BIOAGRO, Viçosa - MG, CEP 36570-900, Brasil
| | - Sidimar Sossai
- Universidade Federal de Viçosa - UFV, Departamento de Veterinária, Laboratório de Biologia e Controle de Hematozoários e Vetores, Instituto de Biotecnologia Aplicada à Agropecuária - BIOAGRO, Viçosa - MG, CEP 36570-900, Brasil
| | - Pablo A Prates-Patarroyo
- Universidade Federal de Viçosa - UFV, Departamento de Veterinária, Laboratório de Biologia e Controle de Hematozoários e Vetores, Instituto de Biotecnologia Aplicada à Agropecuária - BIOAGRO, Viçosa - MG, CEP 36570-900, Brasil
| |
Collapse
|
28
|
Ndawula C, Amaral Xavier M, Villavicencio B, Cortez Lopes F, Juliano MA, Parizi LF, Verli H, da Silva Vaz I, Ligabue-Braun R. Prediction, mapping and validation of tick glutathione S-transferase B-cell epitopes. Ticks Tick Borne Dis 2020; 11:101445. [PMID: 32354639 DOI: 10.1016/j.ttbdis.2020.101445] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 04/02/2020] [Accepted: 04/10/2020] [Indexed: 10/24/2022]
Abstract
In search of ways to address the increasing incidence of global acaricide resistance, tick control through vaccination is regarded as a sustainable alternative approach. Recently, a novel cocktail antigen tick-vaccine was developed based on the recombinant glutathione S-transferase (rGST) anti-sera cross-reaction to glutathione S-transferases of Rhipicephalus appendiculatus (GST-Ra), Amblyomma variegatum (GST-Av), Haemaphysalis longicornis (GST-Hl), Rhipicephalus decoloratus (GST-Rd) and Rhipicephalus microplus (GST-Rm). Therefore, the current study aimed to predict the shared B-cell epitopes within the GST sequences of these tick species. Prediction of B-cell epitopes and proteasomal cleavage sites were performed using immunoinformatics algorithms. The conserved epitopes predicted within the sequences were mapped on the homodimers of the respective tick GSTs, and the corresponding peptides were independently used for rabbit immunization experiments. Based on the dot blot assay, the immunogenicity of the peptides and their potential to be recognized by corresponding rGST anti-sera raised by rabbit immunization in a previous work were investigated. This study revealed that the predicted conserved B-cell epitopes within the five tick GST sequences were localized on the surface of the respective GST homodimers. The epitopes of GST-Ra, GST-Rd, GST-Av, and GST-Hl were also shown to contain a seven residue-long peptide sequence with no proteasomal cleavage sites, whereas proteasomal digestion of GST-Rm was predicted to yield a 4-residue fragment. Given that a few proteasomal cleavage sites were found within the conserved epitope sequences of the four GSTs, the sequences could also contain a T-cell epitope. Finally, the peptide and rGST anti-sera reacted against the corresponding peptide, confirming their immunogenicity. These data support the claim that the rGSTs, used in the previous study, contain conserved B-cell epitopes, which elucidates why the rGST anti-sera cross-reacted to non-homologous tick GSTs. Taken together, the data suggest that the B-cell epitopes predicted in this study could be useful for constituting epitope-based GST tick vaccines.
Collapse
Affiliation(s)
- Charles Ndawula
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Marina Amaral Xavier
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Bianca Villavicencio
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Fernanda Cortez Lopes
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Maria Aparecida Juliano
- Departamento de Biofísica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Luís Fernando Parizi
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Hugo Verli
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Itabajara da Silva Vaz
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | - Rodrigo Ligabue-Braun
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Departamento de Farmacociências, Universidade Federal das Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| |
Collapse
|
29
|
Ixodes scapularis saliva components that elicit responses associated with acquired tick-resistance. Ticks Tick Borne Dis 2020; 11:101369. [PMID: 31924502 DOI: 10.1016/j.ttbdis.2019.101369] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 12/20/2019] [Accepted: 12/23/2019] [Indexed: 02/07/2023]
Abstract
Ticks and tick-borne diseases are on the rise world-wide and vaccines to prevent transmission of tick-borne diseases is an urgent public health need. Tick transmission of pathogens to the mammalian host occurs during tick feeding. Therefore, it is reasoned that vaccine targeting of tick proteins essential for feeding would thwart tick feeding and consequently prevent pathogen transmission. The phenomenon of acquired tick-immunity, wherein, repeated tick infestations of non-natural hosts results in the development of host immune responses detrimental to tick feeding has served as a robust paradigm in the pursuit of tick salivary antigens that may be vaccine targeted. While several salivary antigens have been identified, immunity elicited against these antigens have only provided modest tick rejection. This has raised the possibility that acquired tick-immunity is directed against tick components other than tick salivary antigens. Using Ixodes scapularis, the blacklegged tick, that vectors several human pathogens, we demonstrate that immunity directed against tick salivary glycoproteins is indeed sufficient to recapitulate the phenomenon of tick-resistance. These observations emphasize the utility of tick salivary glycoproteins as viable vaccine targets to thwart tick feeding and direct our search for anti-tick vaccine candidates.
Collapse
|
30
|
Tafur-Gómez GA, Patarroyo Salcedo JH, Vargas MI, Araújo L, Fidelis CF, Prates-Patarroyo PA, Cortes-Vecino JA, Portela RW. Intestinal changes and performance parameters in ticks feeding on calves immunized with subunits of immunogens against Rhipicephalus microplus. EXPERIMENTAL & APPLIED ACAROLOGY 2020; 80:91-107. [PMID: 31845063 DOI: 10.1007/s10493-019-00451-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 12/11/2019] [Indexed: 06/10/2023]
Abstract
We describe the intestinal changes and biological parameters of the tick species Rhipicephalus microplus exposed to the immune response of calves vaccinated with two subunits of immunogens. The first group of Bos taurus calves was immunized with a synthetic peptide (SBm7462), whereas the second group received an inoculum for synthetic control. The third group was immunized with a recombinant peptide (rSBm7462); an inoculum was injected into a fourth group of calves for recombinant control. Each formulation was administered to these calves during three times at intervals of 30 days. At 21 days after the last immunization, the calves were challenged using a total of 4500 larvae per animal. Indirect ELISA was realized to identify the kinetics of IgGs from samples of calves studied. Naturally detaching ticks were collected for analyses of biological performance and histological changes in the midgut. We dissected randomly detached ticks. The midgut of each of these ticks was removed and processed routinely for histology, stained with hematoxylin-eosin (H&E) and slow Giemsa. Slides were also subjected to immunohistochemistry. The antibody response showed significant induction of high-affinity IgGs in calves immunized with both peptides in comparison to calves of the control groups. Histological changes included damage of the intestinal epithelium in ticks fed on immunized hosts and intense immunostaining in midgut cells, using the serum of calves immunized with recombinant peptide. There were significant differences in all biological performing parameters of ticks detached from vaccinated calves in comparison with ticks of the control groups. We identified reductions of 87.7 and 93.5% in engorged ticks detached from calves immunized with a synthetic and recombinant peptides, respectively, a 28 and 8.60% lower egg mass in groups immunized with synthetic and recombinant peptides, respectively, and a 38.4% reduction of the value of nutrient index/tick in the group immunized with the recombinant peptide. Our findings show that the immune response induced by small peptides in cattle can modify the digestion and metabolism of ticks fed on vaccinated animals, resulting in changes in tick performance.
Collapse
Affiliation(s)
| | - Joaquín H Patarroyo Salcedo
- Departamento de Veterinária, Laboratório de Biologia e Controle de Hematozoários e Vetores, Instituto de Biotecnologia Aplicada à Agropecuária - BIOAGRO, Universidade Federal de Viçosa - UFV, Viçosa, MG, CEP 36570-900, Brasil.
| | - Marlene I Vargas
- Departamento de Veterinária, Laboratório de Biologia e Controle de Hematozoários e Vetores, Instituto de Biotecnologia Aplicada à Agropecuária - BIOAGRO, Universidade Federal de Viçosa - UFV, Viçosa, MG, CEP 36570-900, Brasil
| | - Leandro Araújo
- Departamento de Veterinária, Laboratório de Biologia e Controle de Hematozoários e Vetores, Instituto de Biotecnologia Aplicada à Agropecuária - BIOAGRO, Universidade Federal de Viçosa - UFV, Viçosa, MG, CEP 36570-900, Brasil
| | - Cintia F Fidelis
- Departamento de Veterinária, Laboratório de Biologia e Controle de Hematozoários e Vetores, Instituto de Biotecnologia Aplicada à Agropecuária - BIOAGRO, Universidade Federal de Viçosa - UFV, Viçosa, MG, CEP 36570-900, Brasil
| | - Pablo A Prates-Patarroyo
- Departamento de Veterinária, Laboratório de Biologia e Controle de Hematozoários e Vetores, Instituto de Biotecnologia Aplicada à Agropecuária - BIOAGRO, Universidade Federal de Viçosa - UFV, Viçosa, MG, CEP 36570-900, Brasil
| | - Jesus A Cortes-Vecino
- Laboratorio de Parasitología Veterinaria, Departamento de Salud Animal, Facultad de Medicina Veterinaria y de Zootecnia, Universidad Nacional de Colombia, Bogotá, 11001, Colombia
| | - Ricardo W Portela
- Departamento de Biointeração, Instituto de Ciências da Saúde, Universidade Federal da Bahia - UFBA, Salvador, BA, CEP 40110-903, Brasil
| |
Collapse
|
31
|
Blisnick AA, Šimo L, Grillon C, Fasani F, Brûlé S, Le Bonniec B, Prina E, Marsot M, Relmy A, Blaise-Boisseau S, Richardson J, Bonnet SI. The Immunomodulatory Effect of IrSPI, a Tick Salivary Gland Serine Protease Inhibitor Involved in Ixodes ricinus Tick Feeding. Vaccines (Basel) 2019; 7:vaccines7040148. [PMID: 31614804 PMCID: PMC6963187 DOI: 10.3390/vaccines7040148] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/02/2019] [Accepted: 10/04/2019] [Indexed: 12/31/2022] Open
Abstract
Ticks are the most important vectors of pathogens affecting both domestic and wild animals worldwide. Hard tick feeding is a slow process—taking up to several days—and necessitates extended control over the host response. The success of the feeding process depends upon injection of tick saliva, which not only controls host hemostasis and wound healing, but also subverts the host immune response to avoid tick rejection that creates a favorable niche for the survival and propagation of diverse tick-borne pathogens. Here, we report on the molecular and biochemical features and functions of an Ixodes ricinus serine protease inhibitor (IrSPI). We characterize IrSPI as a Kunitz elastase inhibitor that is overexpressed in several tick organs—especially salivary glands—during blood-feeding. We also demonstrated that when IrSPI is injected into the host through saliva, it had no impact on tissue factor pathway-induced coagulation, fibrinolysis, endothelial cell angiogenesis or apoptosis, but the protein exhibits immunomodulatory activity. In particular, IrSPI represses proliferation of CD4+ T lymphocytes and proinflammatory cytokine secretion from both splenocytes and macrophages. Our study contributes valuable knowledge to tick-host interactions and provides insights that could be further exploited to design anti-tick vaccines targeting this immunomodulator implicated in I. ricinus feeding.
Collapse
Affiliation(s)
- Adrien A Blisnick
- UMR BIPAR, Animal Health Laboratory, INRA, ANSES, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, 94701 Maisons-Alfort CEDEX, France.
| | - Ladislav Šimo
- UMR BIPAR, Animal Health Laboratory, INRA, ANSES, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, 94701 Maisons-Alfort CEDEX, France.
| | - Catherine Grillon
- Centre de Biophysique Moléculaire-UPR 4301 CNRS, 45000 Orléans, France.
| | - Fabienne Fasani
- Centre de Biophysique Moléculaire-UPR 4301 CNRS, 45000 Orléans, France.
| | - Sébastien Brûlé
- Plateforme de Biophysique moléculaire, Institut Pasteur, UMR 3528 CNRS, 75015 Paris, France.
| | - Bernard Le Bonniec
- INSERM UMR-S1140, Faculté de Pharmacie Université Paris Descartes, Sorbonne Paris Cité, 75270 Paris CEDEX 06, France.
| | - Eric Prina
- Unité de Parasitologie moléculaire et Signalisation-INSERM U1201, Institut Pasteur, 75015 Paris, France.
| | - Maud Marsot
- Unité EPI, Animal Health Laboratory, INRA, ANSES, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, 94701 Maisons-Alfort CEDEX, France.
| | - Anthony Relmy
- UMR Virologie 1161, Animal Health Laboratory, INRA, ANSES, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, 94701 Maisons-Alfort CEDEX, France.
| | - Sandra Blaise-Boisseau
- UMR Virologie 1161, Animal Health Laboratory, INRA, ANSES, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, 94701 Maisons-Alfort CEDEX, France.
| | - Jennifer Richardson
- UMR Virologie 1161, Animal Health Laboratory, INRA, ANSES, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, 94701 Maisons-Alfort CEDEX, France.
| | - Sarah I Bonnet
- UMR BIPAR, Animal Health Laboratory, INRA, ANSES, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, 94701 Maisons-Alfort CEDEX, France.
| |
Collapse
|
32
|
Mans BJ. Chemical Equilibrium at the Tick-Host Feeding Interface:A Critical Examination of Biological Relevance in Hematophagous Behavior. Front Physiol 2019; 10:530. [PMID: 31118903 PMCID: PMC6504839 DOI: 10.3389/fphys.2019.00530] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 04/15/2019] [Indexed: 12/14/2022] Open
Abstract
Ticks secrete hundreds to thousands of proteins into the feeding site, that presumably all play important functions in the modulation of host defense mechanisms. The current review considers the assumption that tick proteins have functional relevance during feeding. The feeding site may be described as a closed system and could be treated as an ideal equilibrium system, thereby allowing modeling of tick-host interactions in an equilibrium state. In this equilibrium state, the concentration of host and tick proteins and their affinities will determine functional relevance at the tick-host interface. Using this approach, many characterized tick proteins may have functional relevant concentrations and affinities at the feeding site. Conversely, the feeding site is not an ideal closed system, but is dynamic and changing, leading to possible overestimation of tick protein concentration at the feeding site and consequently an overestimation of functional relevance. Ticks have evolved different possible strategies to deal with this dynamic environment and overcome the barrier that equilibrium kinetics poses to tick feeding. Even so, cognisance of the limitations that equilibrium binding place on deductions of functional relevance should serve as an important incentive to determine both the concentration and affinity of tick proteins proposed to be functional at the feeding site.
Collapse
Affiliation(s)
- Ben J. Mans
- Epidemiology, Parasites and Vectors, Agricultural Research Council-Onderstepoort Veterinary Research, Pretoria, South Africa
- Department of Veterinary Tropical Diseases, University of Pretoria, Pretoria, South Africa
- Department of Life and Consumer Sciences, University of South Africa, Pretoria, South Africa
| |
Collapse
|
33
|
Ghosh M, Sangwan N, Chakravarti S, Banerjee S, Ghosh A, Kumar R, Sangwan AK. Molecular Characterization and Immunogenicity Analysis of 4D8 Protective Antigen of Hyalomma anatolicum Ticks Collected from Western India. Int J Pept Res Ther 2018. [DOI: 10.1007/s10989-018-9776-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
34
|
In Silico Characterization and Structural Modeling of Dermacentor andersoni p36 Immunosuppressive Protein. Adv Bioinformatics 2018; 2018:7963401. [PMID: 29849611 PMCID: PMC5911333 DOI: 10.1155/2018/7963401] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Accepted: 02/14/2018] [Indexed: 01/13/2023] Open
Abstract
Ticks cause approximately $17–19 billion economic losses to the livestock industry globally. Development of recombinant antitick vaccine is greatly hindered by insufficient knowledge and understanding of proteins expressed by ticks. Ticks secrete immunosuppressant proteins that modulate the host's immune system during blood feeding; these molecules could be a target for antivector vaccine development. Recombinant p36, a 36 kDa immunosuppressor from the saliva of female Dermacentor andersoni, suppresses T-lymphocytes proliferation in vitro. To identify potential unique structural and dynamic properties responsible for the immunosuppressive function of p36 proteins, this study utilized bioinformatic tool to characterize and model structure of D. andersoni p36 protein. Evaluation of p36 protein family as suitable vaccine antigens predicted a p36 homolog in Rhipicephalus appendiculatus, the tick vector of East Coast fever, with an antigenicity score of 0.7701 that compares well with that of Bm86 (0.7681), the protein antigen that constitute commercial tick vaccine Tickgard™. Ab initio modeling of the D. andersoni p36 protein yielded a 3D structure that predicted conserved antigenic region, which has potential of binding immunomodulating ligands including glycerol and lactose, found located within exposed loop, suggesting a likely role in immunosuppressive function of tick p36 proteins. Laboratory confirmation of these preliminary results is necessary in future studies.
Collapse
|
35
|
Comparison of Protein Gut Samples from Rhipicephalus spp. Using a Crude and an Innovative Preparation Method for Proteome Analysis. Vet Sci 2018. [PMID: 29538322 PMCID: PMC5876555 DOI: 10.3390/vetsci5010030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Tick populations are controlled through the application of chemical pesticides. However, the rise in chemical resistance has prompted the investigation of other control methods such as the use of tick vaccines. Proteomic analysis provides valuable information about the possible function and localization of proteins, as candidate vaccine proteins are often either secreted or localized on the cell-surface membrane. Progress in the utilization of proteomics for the identification of novel treatment targets has been significant. However, their use in tick-specific investigations is still quite novel, with the continual development of tick-specific methodologies essential. In this study, an innovative sample preparation method was utilized to isolate epithelial cells from tick midguts to identify the membrane-bound proteins. Proteomic analysis was conducted comparing crude and innovative sample preparation methods with 692 and 1242 tick-specific proteins, 108 and 314 surface proteins respectively, isolated from the midguts of semi-engorged Rhipicephalus microplus adult female ticks. This research reports a novel preparation protocol for the analysis of tick midgut proteins which reduces host protein contamination.
Collapse
|
36
|
Grabowski JM, Offerdahl DK, Bloom ME. The Use of Ex Vivo Organ Cultures in Tick-Borne Virus Research. ACS Infect Dis 2018; 4:247-256. [PMID: 29473735 DOI: 10.1021/acsinfecdis.7b00274] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Each year there are more than 15 000 cases of human disease caused by infections with tick-borne viruses (TBVs). These illnesses occur worldwide and can range from very mild illness to severe encephalitis and hemorrhagic fever. Although TBVs are currently identified as neglected vector-borne pathogens and receive less attention than mosquito-borne viruses, TBVs are expanding into new regions, and infection rates are increasing. Furthermore, effective vaccines, diagnostic tools, and other countermeasures are limited. The application of contemporary technologies to TBV infections presents an excellent opportunity to develop improved, effective countermeasures. Experimental tick and mammal models of infection can be used to characterize determinants of infection, transmission, and virulence and to test candidate countermeasures. The use of ex vivo tick cultures in TBV research provides a unique way to look at infection in specific tick organs. Mammal ex vivo organ slice and, more recently, organoid cultures are additional models that can be used to elucidate direct tissue-specific responses to infection. These ex vivo model systems are convenient for testing methods involving transcript knockdown and small molecules under tightly controlled conditions. They can also be combined with in vitro and in vivo studies to tease out possible host factors and potential vaccine or therapeutic candidates. In this brief perspective, we describe how ex vivo cultures can be combined with modern technologies to advance research on TBV infections.
Collapse
Affiliation(s)
- Jeffrey M. Grabowski
- Biology of Vector-Borne Viruses Section, Laboratory of Virology, Rocky Mountain Laboratories, NIAID/NIH, 903 South Fourth Street, Hamilton, Montana 59840, United States
| | - Danielle K. Offerdahl
- Biology of Vector-Borne Viruses Section, Laboratory of Virology, Rocky Mountain Laboratories, NIAID/NIH, 903 South Fourth Street, Hamilton, Montana 59840, United States
| | - Marshall E. Bloom
- Biology of Vector-Borne Viruses Section, Laboratory of Virology, Rocky Mountain Laboratories, NIAID/NIH, 903 South Fourth Street, Hamilton, Montana 59840, United States
| |
Collapse
|
37
|
Grabowski JM, Hill CA. A Roadmap for Tick-Borne Flavivirus Research in the "Omics" Era. Front Cell Infect Microbiol 2017; 7:519. [PMID: 29312896 PMCID: PMC5744076 DOI: 10.3389/fcimb.2017.00519] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 12/05/2017] [Indexed: 12/30/2022] Open
Abstract
Tick-borne flaviviruses (TBFs) affect human health globally. Human vaccines provide protection against some TBFs, and antivirals are available, yet TBF-specific control strategies are limited. Advances in genomics offer hope to understand the viral complement transmitted by ticks, and to develop disruptive, data-driven technologies for virus detection, treatment, and control. The genome assemblies of Ixodes scapularis, the North American tick vector of the TBF, Powassan virus, and other tick vectors, are providing insights into tick biology and pathogen transmission and serve as nucleation points for expanded genomic research. Systems biology has yielded insights to the response of tick cells to viral infection at the transcript and protein level, and new protein targets for vaccines to limit virus transmission. Reverse vaccinology approaches have moved candidate tick antigenic epitopes into vaccine development pipelines. Traditional drug and in silico screening have identified candidate antivirals, and target-based approaches have been developed to identify novel acaricides. Yet, additional genomic resources are required to expand TBF research. Priorities include genome assemblies for tick vectors, “omic” studies involving high consequence pathogens and vectors, and emphasizing viral metagenomics, tick-virus metabolomics, and structural genomics of TBF and tick proteins. Also required are resources for forward genetics, including the development of tick strains with quantifiable traits, genetic markers and linkage maps. Here we review the current state of genomic research on ticks and tick-borne viruses with an emphasis on TBFs. We outline an ambitious 10-year roadmap for research in the “omics era,” and explore key milestones needed to accomplish the goal of delivering three new vaccines, antivirals and acaricides for TBF control by 2030.
Collapse
Affiliation(s)
- Jeffrey M Grabowski
- Biology of Vector-Borne Viruses Section, Laboratory of Virology, Rocky Mountain Laboratories, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States
| | - Catherine A Hill
- Department of Entomology, Purdue University, West Lafayette, IN, United States.,Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
38
|
Karbanowicz T, Dover E, Mu X, Tabor A, Rodriguez-Valle M. Extracellular expression of the HT1 neurotoxin from the Australian paralysis tick in two Saccharomyces cerevisiae strains. Toxicon 2017; 140:1-10. [DOI: 10.1016/j.toxicon.2017.10.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 10/09/2017] [Accepted: 10/13/2017] [Indexed: 12/20/2022]
|
39
|
Characterization of a glycine-rich protein from Rhipicephalus microplus: tissue expression, gene silencing and immune recognition. Parasitology 2017; 145:927-938. [DOI: 10.1017/s0031182017001998] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
AbstractSalivary molecules, as glycine-rich proteins (GRPs), are essential to tick attachment and feeding on the host and are suggested to be involved in the host's immune system evasion, therefore representing natural candidates in the search for protective vaccine antigens. This work shows the molecular characterization of a GRP from Rhipicephalus microplus (RmGRP). The cDNA and putative amino acid sequences were analysed, as well as the transcription level in tick tissues/developmental stages, showing the highest levels of gene expression in 1-day-old larvae and salivary glands of fully engorged females. RmGRP gene silencing resulted in a lower hatching rate of larvae from treated females. In addition, recombinant RmGRP (rRmGRP) was recognized by sera from naturally and experimentally infested bovines, displaying considerable differences among the individuals tested. rRmGRP was recognized by anti-saliva and anti-salivary glands sera, while anti-rRmGRP serum recognized RmGRP in saliva and salivary glands, indicating its secretion into the host. The data collected indicate that RmGRP may present roles other than in the tick–host relationship, especially in embryo development. In addition, the high expression in adult females, antigenicity and presence of shared characteristics with other tick protective GRPs turns RmGRP a potential candidate to compose an anti-tick vaccine cocktail.
Collapse
|
40
|
Kazimírová M, Thangamani S, Bartíková P, Hermance M, Holíková V, Štibrániová I, Nuttall PA. Tick-Borne Viruses and Biological Processes at the Tick-Host-Virus Interface. Front Cell Infect Microbiol 2017; 7:339. [PMID: 28798904 PMCID: PMC5526847 DOI: 10.3389/fcimb.2017.00339] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 07/11/2017] [Indexed: 01/08/2023] Open
Abstract
Ticks are efficient vectors of arboviruses, although less than 10% of tick species are known to be virus vectors. Most tick-borne viruses (TBV) are RNA viruses some of which cause serious diseases in humans and animals world-wide. Several TBV impacting human or domesticated animal health have been found to emerge or re-emerge recently. In order to survive in nature, TBV must infect and replicate in both vertebrate and tick cells, representing very different physiological environments. Information on molecular mechanisms that allow TBV to switch between infecting and replicating in tick and vertebrate cells is scarce. In general, ticks succeed in completing their blood meal thanks to a plethora of biologically active molecules in their saliva that counteract and modulate different arms of the host defense responses (haemostasis, inflammation, innate and acquired immunity, and wound healing). The transmission of TBV occurs primarily during tick feeding and is a complex process, known to be promoted by tick saliva constituents. However, the underlying molecular mechanisms of TBV transmission are poorly understood. Immunomodulatory properties of tick saliva helping overcome the first line of defense to injury and early interactions at the tick-host skin interface appear to be essential in successful TBV transmission and infection of susceptible vertebrate hosts. The local host skin site of tick attachment, modulated by tick saliva, is an important focus of virus replication. Immunomodulation of the tick attachment site also promotes co-feeding transmission of viruses from infected to non-infected ticks in the absence of host viraemia (non-viraemic transmission). Future research should be aimed at identification of the key tick salivary molecules promoting virus transmission, and a molecular description of tick-host-virus interactions and of tick-mediated skin immunomodulation. Such insights will enable the rationale design of anti-tick vaccines that protect against disease caused by tick-borne viruses.
Collapse
Affiliation(s)
- Mária Kazimírová
- Department of Medical Zoology, Institute of Zoology, Slovak Academy of SciencesBratislava, Slovakia
| | - Saravanan Thangamani
- Department of Pathology, University of Texas Medical BranchGalveston, TX, United States
- Institute for Human Infections and Immunity, University of Texas Medical BranchGalveston, TX, United States
- Center for Tropical Diseases, University of Texas Medical BranchGalveston, TX, United States
| | - Pavlína Bartíková
- Biomedical Research Center, Institute of Virology, Slovak Academy of SciencesBratislava, Slovakia
| | - Meghan Hermance
- Department of Pathology, University of Texas Medical BranchGalveston, TX, United States
- Institute for Human Infections and Immunity, University of Texas Medical BranchGalveston, TX, United States
- Center for Tropical Diseases, University of Texas Medical BranchGalveston, TX, United States
| | - Viera Holíková
- Biomedical Research Center, Institute of Virology, Slovak Academy of SciencesBratislava, Slovakia
| | - Iveta Štibrániová
- Biomedical Research Center, Institute of Virology, Slovak Academy of SciencesBratislava, Slovakia
| | - Patricia A. Nuttall
- Department of Zoology, University of OxfordOxford, United Kingdom
- Centre for Ecology and HydrologyWallingford, United Kingdom
| |
Collapse
|
41
|
Kuleš J, Horvatić A, Guillemin N, Galan A, Mrljak V, Bhide M. New approaches and omics tools for mining of vaccine candidates against vector-borne diseases. MOLECULAR BIOSYSTEMS 2017; 12:2680-94. [PMID: 27384976 DOI: 10.1039/c6mb00268d] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Vector-borne diseases (VBDs) present a major threat to human and animal health, as well as place a substantial burden on livestock production. As a way of sustainable VBD control, focus is set on vaccine development. Advances in genomics and other "omics" over the past two decades have given rise to a "third generation" of vaccines based on technologies such as reverse vaccinology, functional genomics, immunomics, structural vaccinology and the systems biology approach. The application of omics approaches is shortening the time required to develop the vaccines and increasing the probability of discovery of potential vaccine candidates. Herein, we review the development of new generation vaccines for VBDs, and discuss technological advancement and overall challenges in the vaccine development pipeline. Special emphasis is placed on the development of anti-tick vaccines that can quell both vectors and pathogens.
Collapse
Affiliation(s)
- Josipa Kuleš
- ERA Chair VetMedZg project, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000 Zagreb, Croatia.
| | - Anita Horvatić
- ERA Chair VetMedZg project, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000 Zagreb, Croatia.
| | - Nicolas Guillemin
- ERA Chair VetMedZg project, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000 Zagreb, Croatia.
| | - Asier Galan
- ERA Chair VetMedZg project, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000 Zagreb, Croatia.
| | - Vladimir Mrljak
- ERA Chair VetMedZg project, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000 Zagreb, Croatia.
| | - Mangesh Bhide
- ERA Chair VetMedZg project, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000 Zagreb, Croatia. and Laboratory of Biomedical Microbiology and Immunology, Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, Kosice, Slovakia and Institute of Neuroimmunology, Slovakia Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
42
|
Bartley K, Turnbull F, Wright HW, Huntley JF, Palarea-Albaladejo J, Nath M, Nisbet AJ. Field evaluation of poultry red mite (Dermanyssus gallinae) native and recombinant prototype vaccines. Vet Parasitol 2017; 244:25-34. [PMID: 28917313 PMCID: PMC5613835 DOI: 10.1016/j.vetpar.2017.06.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 06/20/2017] [Accepted: 06/24/2017] [Indexed: 11/10/2022]
Abstract
Field trial testing of a native and recombinant poultry red mite vaccines. Vaccination with a soluble mite extract (SME) resulted in a 78% reduction in mite numbers. Poor antibody persistence may relate to lack of effect of a recombinant cocktail vaccine. A semi-protective naturally acquired immunity may develop.
Vaccination is a desirable emerging strategy to combat poultry red mite (PRM), Dermanyssus gallinae. We performed trials, in laying hens in a commercial-style cage facility, to test the vaccine efficacy of a native preparation of soluble mite extract (SME) and of a recombinant antigen cocktail vaccine containing bacterially-expressed versions of the immunogenic SME proteins Deg-SRP-1, Deg-VIT-1 and Deg-PUF-1. Hens (n = 384 per group) were injected with either vaccine or adjuvant only (control group) at 12 and 17 weeks of age and then challenged with PRM 10 days later. PRM counts were monitored and, at the termination of the challenge period (17 weeks post challenge), average PRM counts in cages containing birds vaccinated with SME were reduced by 78% (p < 0.001), compared with those in the adjuvant-only control group. When the trial was repeated using the recombinant antigen cocktail vaccine, no statistically significant differences in mean PRM numbers were observed in cages containing vaccinated or adjuvant-only immunised birds. The roles of antigen-specific antibody levels and duration in providing vaccine-induced and exposure-related protective immunity are discussed.
Collapse
Affiliation(s)
- Kathryn Bartley
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Edinburgh, Midlothian EH26 0PZ, United Kingdom.
| | - Frank Turnbull
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Edinburgh, Midlothian EH26 0PZ, United Kingdom
| | - Harry W Wright
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Edinburgh, Midlothian EH26 0PZ, United Kingdom
| | - John F Huntley
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Edinburgh, Midlothian EH26 0PZ, United Kingdom
| | - Javier Palarea-Albaladejo
- Biomathematics and Statistics Scotland, The King's Buildings, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, United Kingdom
| | - Mintu Nath
- Biomathematics and Statistics Scotland, The King's Buildings, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, United Kingdom
| | - Alasdair J Nisbet
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Edinburgh, Midlothian EH26 0PZ, United Kingdom
| |
Collapse
|
43
|
Šimo L, Kazimirova M, Richardson J, Bonnet SI. The Essential Role of Tick Salivary Glands and Saliva in Tick Feeding and Pathogen Transmission. Front Cell Infect Microbiol 2017; 7:281. [PMID: 28690983 PMCID: PMC5479950 DOI: 10.3389/fcimb.2017.00281] [Citation(s) in RCA: 206] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 06/08/2017] [Indexed: 12/30/2022] Open
Abstract
As long-term pool feeders, ticks have developed myriad strategies to remain discreetly but solidly attached to their hosts for the duration of their blood meal. The critical biological material that dampens host defenses and facilitates the flow of blood-thus assuring adequate feeding-is tick saliva. Saliva exhibits cytolytic, vasodilator, anticoagulant, anti-inflammatory, and immunosuppressive activity. This essential fluid is secreted by the salivary glands, which also mediate several other biological functions, including secretion of cement and hygroscopic components, as well as the watery component of blood as regards hard ticks. When salivary glands are invaded by tick-borne pathogens, pathogens may be transmitted via saliva, which is injected alternately with blood uptake during the tick bite. Both salivary glands and saliva thus play a key role in transmission of pathogenic microorganisms to vertebrate hosts. During their long co-evolution with ticks and vertebrate hosts, microorganisms have indeed developed various strategies to exploit tick salivary molecules to ensure both acquisition by ticks and transmission, local infection and systemic dissemination within the vertebrate host.
Collapse
Affiliation(s)
- Ladislav Šimo
- UMR BIPAR, INRA, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-EstMaisons-Alfort, France
| | - Maria Kazimirova
- Institute of Zoology, Slovak Academy of SciencesBratislava, Slovakia
| | - Jennifer Richardson
- UMR Virologie, INRA, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-EstMaisons-Alfort, France
| | - Sarah I. Bonnet
- UMR BIPAR, INRA, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-EstMaisons-Alfort, France
| |
Collapse
|
44
|
Maruyama SR, Garcia GR, Teixeira FR, Brandão LG, Anderson JM, Ribeiro JMC, Valenzuela JG, Horackova J, Veríssimo CJ, Katiki LM, Banin TM, Zangirolamo AF, Gardinassi LG, Ferreira BR, de Miranda-Santos IKF. Mining a differential sialotranscriptome of Rhipicephalus microplus guides antigen discovery to formulate a vaccine that reduces tick infestations. Parasit Vectors 2017; 10:206. [PMID: 28446245 PMCID: PMC5406933 DOI: 10.1186/s13071-017-2136-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 04/11/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Ticks cause massive damage to livestock and vaccines are one sustainable substitute for the acaricides currently heavily used to control infestations. To guide antigen discovery for a vaccine that targets the gamut of parasitic strategies mediated by tick saliva and enables immunological memory, we exploited a transcriptome constructed from salivary glands from all stages of Rhipicephalus microplus ticks feeding on genetically tick-resistant and susceptible bovines. RESULTS Different levels of host anti-tick immunity affected gene expression in tick salivary glands; we thus selected four proteins encoded by genes weakly expressed in ticks attempting to feed on resistant hosts or otherwise abundantly expressed in ticks fed on susceptible hosts; these sialoproteins mediate four functions of parasitism deployed by male ticks and that do not induce antibodies in naturally infected, susceptible bovines. We then evaluated in tick-susceptible heifers an alum-adjuvanted vaccine formulated with recombinant proteins. Parasite performance (i.e. weight and numbers of females finishing their parasitic cycle) and titres of antigen-specific antibodies were significantly reduced or increased, respectively, in vaccinated versus control heifers, conferring an efficacy of 73.2%; two of the antigens were strong immunogens, rich in predicted T-cell epitopes and challenge infestations boosted antibody responses against them. CONCLUSION Mining sialotranscriptomes guided by the immunity of tick-resistant hosts selected important targets and infestations boosted immune memory against salivary antigens.
Collapse
Affiliation(s)
- Sandra R Maruyama
- Departament of Biochemistry and Immunology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Gustavo R Garcia
- Departament of Biochemistry and Immunology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Felipe R Teixeira
- Department of Genetics and Evolution, Federal University of São Carlos, São Carlos, SP, 13565-905, Brazil
| | - Lucinda G Brandão
- Departament of Biochemistry and Immunology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil.,LGB: Faculdade de Tecnologia de Araçatuba, Araçatuba, SP, 16052045, Brazil
| | - Jennifer M Anderson
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Bethesda, MD, 20852, USA
| | - José M C Ribeiro
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Bethesda, MD, 20852, USA
| | - Jesus G Valenzuela
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Bethesda, MD, 20852, USA
| | - Jana Horackova
- Faculty of Biological Sciences, University of South Bohemia, Ceske Budejovice, 37005, Czech Republic
| | | | - Luciana M Katiki
- São Paulo Institute of Animal Science, Nova Odessa, SP, 13460-000, Brazil
| | - Tamy M Banin
- Departament of Biochemistry and Immunology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Amanda F Zangirolamo
- Departament of Biochemistry and Immunology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Luiz G Gardinassi
- Departament of Biochemistry and Immunology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil.,LGG: Division of Pulmonary Allergy & Critical Care Medicine, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Beatriz R Ferreira
- Ribeirão Preto School of Nursing, University of São Paulo, Ribeirão Preto, SP, 14049-902, Brazil
| | - Isabel K F de Miranda-Santos
- Departament of Biochemistry and Immunology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil.
| |
Collapse
|
45
|
Wesołowska A, Zawistowska-Deniziak A, Norbury LJ, Wilkowski P, Pyziel AM, Zygner W, Wędrychowicz H. Lymphocyte responses of rats vaccinated with cDNA encoding a phosphoglycerate kinase of Fasciola hepatica (FhPGK) and F. hepatica infection. Parasitol Int 2017; 67:85-92. [PMID: 28385589 DOI: 10.1016/j.parint.2017.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 02/08/2017] [Accepted: 04/03/2017] [Indexed: 11/15/2022]
Abstract
Lymphocyte responses in the blood, peritoneal fluid and both mesenteric and hepatic lymph nodes of cDNA-FhPGK/pCMV vaccinated and/or Fasciola hepatica infected rats of both sexes were investigated to provide an insight into the immune responses that develop in different body compartments. The immune response that developed in cDNA-FhPGK/pCMV vaccinated females contributed to partial protection against F. hepatica infection (54% reduction in fluke recovery), while more liver flukes were found in the livers and bile ducts of cDNA-FhPGK/pCMV vaccinated male rats than in unvaccinated animals (increase of 13%). Rat sex not only affected the ultimate effectiveness of vaccination but also lymphocyte responses following vaccination and/or infection. Different CD4+ and CD8+ T cell profiles were noted in peritoneal fluid and lymph nodes, but not in blood, during acute and chronic fasciolosis. Moreover, independent lymphocyte responses developed in distinct body compartments. Immune responses of rats were polarized towards Th2/Treg with lymphocytes isolated from male rats showing higher IL-4 and IL-10 production than females. Lymphocyte proliferative capacities in response to mitogen (PHA) or vaccine antigen (FhPGK) were impaired in both sexes with a considerably higher reduction observed for males and restored lymphocyte proliferative capacities reported for females vaccinated with cDNA-FhPGK/pCMV during chronic fasciolosis.
Collapse
Affiliation(s)
- Agnieszka Wesołowska
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Twarda 51/55, 00-818 Warsaw, Poland.
| | - Anna Zawistowska-Deniziak
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Twarda 51/55, 00-818 Warsaw, Poland
| | - Luke J Norbury
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Twarda 51/55, 00-818 Warsaw, Poland
| | - Przemysław Wilkowski
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Twarda 51/55, 00-818 Warsaw, Poland
| | - Anna M Pyziel
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Twarda 51/55, 00-818 Warsaw, Poland
| | - Wojciech Zygner
- Division of Parasitology, Warsaw University of Life Sciences, 8 Ciszewskiego, 02-786 Warsaw, Poland
| | - Halina Wędrychowicz
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Twarda 51/55, 00-818 Warsaw, Poland
| |
Collapse
|
46
|
Emergence of New Tickborne Infections. EMERGING ZOONOSES 2017. [PMCID: PMC7122411 DOI: 10.1007/978-3-319-50890-0_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
47
|
Spengler JR, Estrada-Peña A, Garrison AR, Schmaljohn C, Spiropoulou CF, Bergeron É, Bente DA. A chronological review of experimental infection studies of the role of wild animals and livestock in the maintenance and transmission of Crimean-Congo hemorrhagic fever virus. Antiviral Res 2016; 135:31-47. [PMID: 27713073 DOI: 10.1016/j.antiviral.2016.09.013] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 09/01/2016] [Accepted: 09/29/2016] [Indexed: 12/11/2022]
Abstract
This article provides a definitive review of experimental studies of the role of wild animals and livestock in the maintenance and transmission of Crimean-Congo hemorrhagic fever virus (CCHFV), the etiologic agent of Crimean-Congo hemorrhagic fever (CCHF), beginning with the first recognized outbreak of the human disease in Crimea in 1944. Published reports by researchers in the former Soviet Union, Bulgaria, South Africa, and other countries where CCHF has been observed show that CCHFV is maintained in nature in a tick-vertebrate-tick enzootic cycle. Human disease most commonly results from the bite of an infected tick, but may also follow crushing of infected ticks or exposure to the blood and tissues of infected animals during slaughter. Wild and domestic animals are susceptible to infection with CCHFV, but do not develop clinical illness. Vertebrates are important in CCHF epidemiology, as they provide blood meals to support tick populations, transport ticks across wide geographic areas, and transmit CCHFV to ticks and humans during the period of viremia. Many aspects of vertebrate involvement in the maintenance and spread of CCHFV are still poorly understood. Experimental investigations in wild animals and livestock provide important data to aid our understanding of CCHFV ecology. This article is the second in a series of reviews of more than 70 years of research on CCHF, summarizing important findings, identifying gaps in knowledge, and suggesting directions for future research.
Collapse
Affiliation(s)
- Jessica R Spengler
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | | | - Aura R Garrison
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, USA
| | - Connie Schmaljohn
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, USA
| | - Christina F Spiropoulou
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Éric Bergeron
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Dennis A Bente
- Department of Microbiology & Immunology, Galveston, TX, USA; Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
48
|
de Castro MH, de Klerk D, Pienaar R, Latif AA, Rees DJG, Mans BJ. De novo assembly and annotation of the salivary gland transcriptome of Rhipicephalus appendiculatus male and female ticks during blood feeding. Ticks Tick Borne Dis 2016; 7:536-48. [DOI: 10.1016/j.ttbdis.2016.01.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 12/23/2015] [Accepted: 01/20/2016] [Indexed: 01/19/2023]
|
49
|
Kim D, Urban J, Boyle DL, Park Y. Multiple functions of Na/K-ATPase in dopamine-induced salivation of the Blacklegged tick, Ixodes scapularis. Sci Rep 2016; 6:21047. [PMID: 26861075 PMCID: PMC4748274 DOI: 10.1038/srep21047] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 01/13/2016] [Indexed: 12/03/2022] Open
Abstract
Control of salivary secretion in ticks involves autocrine dopamine activating two dopamine receptors: D1 and Invertebrate-specific D1-like dopamine receptors. In this study, we investigated Na/K-ATPase as an important component of the secretory process. Immunoreactivity for Na/K-ATPase revealed basal infolding of lamellate cells in type-I, abluminal interstitial (epithelial) cells in type-II, and labyrinth-like infolding structures opening towards the lumen in type-III acini. Ouabain (10 μmol l(-1)), a specific inhibitor of Na/K-ATPase, abolished dopamine-induced salivary secretion by suppressing fluid transport in type III acini. At 1 μmol l(-1), ouabain, the secreted saliva was hyperosmotic. This suggests that ouabain also inhibits an ion resorptive function of Na/K-ATPase in the type I acini. Dopamine/ouabain were not involved in activation of protein secretion, while dopamine-induced saliva contained constitutively basal level of protein. We hypothesize that the dopamine-dependent primary saliva formation, mediated by Na/K-ATPase in type III and type II acini, is followed by a dopamine-independent resorptive function of Na/K-ATPase in type I acini located in the proximal end of the salivary duct.
Collapse
Affiliation(s)
- Donghun Kim
- Department of Entomology, Kansas State University, 123 Waters Hall, Manhattan, KS 66506, USA
| | - Joshua Urban
- Department of Entomology, Kansas State University, 123 Waters Hall, Manhattan, KS 66506, USA
| | - Daniel L. Boyle
- Division of Biology, Microscopy Facility, Kansas State University, Ackert Hall, Manhattan, Kansas 66506, USA
| | - Yoonseong Park
- Department of Entomology, Kansas State University, 123 Waters Hall, Manhattan, KS 66506, USA
| |
Collapse
|
50
|
Pritchard J, Kuster T, Sparagano O, Tomley F. Understanding the biology and control of the poultry red mite Dermanyssus gallinae: a review. Avian Pathol 2016; 44:143-53. [PMID: 25895578 DOI: 10.1080/03079457.2015.1030589] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Dermanyssus gallinae, the poultry red mite (PRM), is a blood-feeding ectoparasite capable of causing pathology in birds, amongst other animals. It is an increasingly important pathogen in egg layers and is responsible for substantial economic losses to the poultry industry worldwide. Even though PRM poses a serious problem, very little is known about the basic biology of the mite. Here we review the current body of literature describing red mite biology and discuss how this has been, or could be, used to develop methods to control PRM infestations. We focus primarily on the PRM digestive system, salivary glands, nervous system and exoskeleton and also explore areas of PRM biology which have to date received little or no study but have the potential to offer new control targets.
Collapse
Affiliation(s)
- James Pritchard
- a Department of Pathology and Pathogen Biology, The Royal Veterinary College , University of London , Hatfield , UK
| | | | | | | |
Collapse
|