1
|
Xu J, Ruan X. Schwann cell autotransplantation for the treatment of peripheral nerve injury. Life Sci 2024; 358:123129. [PMID: 39393574 DOI: 10.1016/j.lfs.2024.123129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 10/03/2024] [Accepted: 10/08/2024] [Indexed: 10/13/2024]
Abstract
Peripheral nerve injury occurs in a relatively large proportion of trauma patients, in whom it generally results in severe functional impairment and permanent disability. At present, however, there are no effective treatments available. Studies have shown that Schwann cells play an indispensable role in removing myelin debris and guiding axonal regeneration, and transplantation using autologous Schwann cells has shown good efficacy for patients with peripheral nerve injury. In recent years, Schwann cell autologous transplantation therapy has become an area of intensive research and is anticipated to provide a new strategy for the clinical treatment of peripheral nerve injury. In this article, we review the rationale for selecting Schwann cell autotransplantation therapy and the latest progress in key aspects of cell transplantation and clinical efficacy, and also summarize the future directions of research on this therapy. All of the above provide a strong basis for the further improvement and clinical promotion of this therapy.
Collapse
Affiliation(s)
- Jialiang Xu
- China Medical University, Shenyang, Liaoning 110122, People's Republic of China.
| | - Xuelei Ruan
- Department of Neurobiology, China Medical University, Shenyang, Liaoning 110122, People's Republic of China.
| |
Collapse
|
2
|
Guest JD, Santamaria AJ, Solano JP, de Rivero Vaccari JP, Dietrich WD, Pearse DD, Khan A, Levi AD. Challenges in advancing Schwann cell transplantation for spinal cord injury repair. Cytotherapy 2024:S1465-3249(24)00827-2. [PMID: 39387736 DOI: 10.1016/j.jcyt.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 08/05/2024] [Accepted: 08/09/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND AIMS In this article we aimed to provide an expert synthesis of the current status of Schwann cell (SC)therapeutics and potential steps to increase their clinical utility. METHODS We provide an expert synthesis based on preclinical, clinical and manufacturing experience. RESULTS Schwann cells (SCs) are essential for peripheral nerve regeneration and are of interest in supporting axonal repair after spinal cord injury (SCI). SCs can be isolated and cultivated in tissue culture from adult nerve biopsies or generated from precursors and neural progenitors using specific differentiation protocols leading to expanded quantities. In culture, they undergo dedifferentiation to a state similar to "repair" SCs. The known repertoire of SC functions is increasing beyond axon maintenance, myelination, and axonal regeneration to include immunologic regulation and the release of potentially therapeutic extracellular vesicles. Recently, autologous human SC cultures purified under cGMP conditions have been tested in both nerve repair and subacute and chronic SCI clinical trials. Although the effects of SCs to support nerve regeneration are indisputable, their efficacy for clinical SCI has been limited according to the outcomes examined. CONCLUSIONS This review discusses the current limitations of transplanted SCs within the damaged spinal cord environment. Limitations include limited post-transplant cell survival, the inability of SCs to migrate within astrocytic parenchyma, and restricted axonal regeneration out of SC-rich graft regions. We describe steps to amplify the survival and integration of transplanted SCs and to expand the repertoire of uses of SCs, including SC-derived extracellular vesicles. The relative merits of transplanting autologous versus allogeneic SCs and the role that endogenous SCs play in spinal cord repair are described. Finally, we briefly describe the issues requiring solutions to scale up SC manufacturing for commercial use.
Collapse
Affiliation(s)
- James D Guest
- The Miami Project to Cure Paralysis and Neurological Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA.
| | - Andrea J Santamaria
- The Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Juan P Solano
- Pediatric Critical Care, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Juan P de Rivero Vaccari
- The Miami Project to Cure Paralysis and Neurological Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - William D Dietrich
- The Miami Project to Cure Paralysis and Neurological Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Damien D Pearse
- The Miami Project to Cure Paralysis and Neurological Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Aisha Khan
- The Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Allan D Levi
- The Miami Project to Cure Paralysis and Neurological Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA
| |
Collapse
|
3
|
Agarwal G, Shumard S, McCrary MW, Osborne O, Santiago JM, Ausec B, Schmidt CE. Decellularized porcine peripheral nerve based injectable hydrogels as a Schwann cell carrier for injured spinal cord regeneration. J Neural Eng 2024; 21:046002. [PMID: 38885674 DOI: 10.1088/1741-2552/ad5939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 06/17/2024] [Indexed: 06/20/2024]
Abstract
Objective.To develop a clinically relevant injectable hydrogel derived from decellularized porcine peripheral nerves and with mechanical properties comparable to native central nervous system (CNS) tissue to be used as a delivery vehicle for Schwann cell transplantation to treat spinal cord injury (SCI).Approach.Porcine peripheral nerves (sciatic and peroneal) were decellularized by chemical decellularization using a sodium deoxycholate and DNase (SDD) method previously developed by our group. The decellularized nerves were delipidated using dichloromethane and ethanol solvent and then digested using pepsin enzyme to form injectable hydrogel formulations. Genipin was used as a crosslinker to enhance mechanical properties. The injectability, mechanical properties, and gelation kinetics of the hydrogels were further analyzed using rheology. Schwann cells encapsulated within the injectable hydrogel formulations were passed through a 25-gauge needle and cell viability was assessed using live/dead staining. The ability of the hydrogel to maintain Schwann cell viability against an inflammatory milieu was assessedin vitrousing inflamed astrocytes co-cultured with Schwann cells.Mainresults. The SDD method effectively removes cells and retains extracellular matrix in decellularized tissues. Using rheological studies, we found that delipidation of decellularized porcine peripheral nerves using dichloromethane and ethanol solvent improves gelation kinetics and mechanical strength of hydrogels. The delipidated and decellularized hydrogels crosslinked using genipin mimicked the mechanical strength of CNS tissue. The hydrogels were found to have shear thinning properties desirable for injectable formulations and they also maintained higher Schwann cell viability during injection compared to saline controls. Usingin vitroco-culture experiments, we found that the genipin-crosslinked hydrogels also protected Schwann cells from astrocyte-mediated inflammation.Significance. Injectable hydrogels developed using delipidated and decellularized porcine peripheral nerves are a potential clinically relevant solution to deliver Schwann cells, and possibly other therapeutic cells, at the SCI site by maintaining higher cellular viability and increasing therapeutic efficacy for SCI treatment.
Collapse
Affiliation(s)
- Gopal Agarwal
- J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL 32610, United States of America
| | - Samantha Shumard
- J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL 32610, United States of America
| | - Michaela W McCrary
- J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL 32610, United States of America
| | - Olivia Osborne
- J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL 32610, United States of America
| | - Jorge Mojica Santiago
- J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL 32610, United States of America
| | - Breanna Ausec
- J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL 32610, United States of America
| | - Christine E Schmidt
- J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL 32610, United States of America
| |
Collapse
|
4
|
Roman A, Huntemer-Silveira A, Waldron MA, Khalid Z, Blake J, Parr AM, Low WC. Cell Transplantation for Repair of the Spinal Cord and Prospects for Generating Region-Specific Exogenic Neuronal Cells. Cell Transplant 2024; 33:9636897241241998. [PMID: 38590295 PMCID: PMC11005494 DOI: 10.1177/09636897241241998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 03/05/2024] [Accepted: 03/11/2024] [Indexed: 04/10/2024] Open
Abstract
Spinal cord injury (SCI) is associated with currently irreversible consequences in several functional components of the central nervous system. Despite the severity of injury, there remains no approved treatment to restore function. However, with a growing number of preclinical studies and clinical trials, cell transplantation has gained significant potential as a treatment for SCI. Researchers have identified several cell types as potential candidates for transplantation. To optimize successful functional outcomes after transplantation, one key factor concerns generating neuronal cells with regional and subtype specificity, thus calling on the developmental transcriptome patterning of spinal cord cells. A potential source of spinal cord cells for transplantation is the generation of exogenic neuronal progenitor cells via the emerging technologies of gene editing and blastocyst complementation. This review highlights the use of cell transplantation to treat SCI in the context of relevant developmental gene expression patterns useful for producing regionally specific exogenic spinal cells via in vitro differentiation and blastocyst complementation.
Collapse
Affiliation(s)
- Alex Roman
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, USA
- Department of Neurosurgery, Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
| | - Anne Huntemer-Silveira
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - Madison A. Waldron
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - Zainab Khalid
- Department of Neurosurgery, Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
| | - Jeffrey Blake
- Department of Neurosurgery, Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
| | - Ann M. Parr
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, USA
- Department of Neurosurgery, Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
| | - Walter C. Low
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, USA
- Department of Neurosurgery, Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
5
|
David BT, Curtin JJ, Brown JL, Scorpio K, Kandaswamy V, Coutts DJC, Vivinetto A, Bianchimano P, Karuppagounder SS, Metcalfe M, Cave JW, Hill CE. Temporary induction of hypoxic adaptations by preconditioning fails to enhance Schwann cell transplant survival after spinal cord injury. Glia 2023; 71:648-666. [PMID: 36565279 DOI: 10.1002/glia.24302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 10/26/2022] [Accepted: 11/01/2022] [Indexed: 12/25/2022]
Abstract
Hypoxic preconditioning is protective in multiple models of injury and disease, but whether it is beneficial for cells transplanted into sites of spinal cord injury (SCI) is largely unexplored. In this study, we analyzed whether hypoxia-related preconditioning protected Schwann cells (SCs) transplanted into the contused thoracic rat spinal cord. Hypoxic preconditioning was induced in SCs prior to transplantation by exposure to either low oxygen (1% O2 ) or pharmacological agents (deferoxamine or adaptaquin). All preconditioning approaches induced hypoxic adaptations, including increased expression of HIF-1α and its target genes. These adaptations, however, were transient and resolved within 24 h of transplantation. Pharmacological preconditioning attenuated spinal cord oxidative stress and enhanced transplant vascularization, but it did not improve either transplanted cell survival or recovery of sensory or motor function. Together, these experiments show that hypoxia-related preconditioning is ineffective at augmenting either cell survival or the functional outcomes of SC-SCI transplants. They also reveal that the benefits of hypoxia-related adaptations induced by preconditioning for cell transplant therapies are not universal.
Collapse
Affiliation(s)
- Brian T David
- Burke Neurological Institute, White Plains, New York, USA
- The Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, USA
| | - Jessica J Curtin
- Burke Neurological Institute, White Plains, New York, USA
- The Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, USA
| | - Jennifer L Brown
- Burke Neurological Institute, White Plains, New York, USA
- The Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, USA
| | - Kerri Scorpio
- Burke Neurological Institute, White Plains, New York, USA
- The Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, USA
| | - Veena Kandaswamy
- Burke Neurological Institute, White Plains, New York, USA
- The Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, USA
| | - David J C Coutts
- Burke Neurological Institute, White Plains, New York, USA
- The Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, USA
| | - Ana Vivinetto
- Burke Neurological Institute, White Plains, New York, USA
- The Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, USA
| | - Paola Bianchimano
- Burke Neurological Institute, White Plains, New York, USA
- The Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, USA
| | - Saravanan S Karuppagounder
- Burke Neurological Institute, White Plains, New York, USA
- The Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, USA
| | - Mariajose Metcalfe
- Burke Neurological Institute, White Plains, New York, USA
- The Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, USA
| | - John W Cave
- InVitro Cell Research, LLC, Englewood, New Jersey, USA
| | - Caitlin E Hill
- Burke Neurological Institute, White Plains, New York, USA
- The Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, USA
- Neural Stem Cell Institute, Rensselaer, New York, USA
| |
Collapse
|
6
|
Davaa G, Hong JY, Lee JH, Kim MS, Buitrago JO, Li YM, Lee HH, Han DW, Leong KW, Hyun JK, Kim HW. Delivery of Induced Neural Stem Cells Through Mechano-Tuned Silk-Collagen Hydrogels for the Recovery of Contused Spinal Cord in Rats. Adv Healthc Mater 2023; 12:e2201720. [PMID: 36447307 DOI: 10.1002/adhm.202201720] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/16/2022] [Indexed: 12/02/2022]
Abstract
Neural stem cells (NSC) have tremendous potential for therapeutic regeneration of diseased or traumatized neural tissues, including injured spinal cord. However, transplanted NSC suffer from low cell survival and uncontrolled differentiation, limiting in vivo efficacy. Here, this issue is tackled by delivery through silk-collagen protein hydrogels that are stiffness-matched, stress-relaxing, and shear-thinning. The mechanically-tuned hydrogels protect NSC reprogrammed from fibroblasts (iNSC) initially from injection shear-stress, and enhance long-term survival over 12 weeks. Hydrogel-iNSC treatment alleviates neural inflammation, with reduced inflammatory cells and lesions than NSC-only. The iNSC migrate from the hydrogel into surrounding tissues, secrete up-regulated neurotrophic factors, and differentiate into neural cell subtypes, forming synapses. More serotonergic axons are observed in the lesion cavity, and locomotor functions are improved in hydrogel-iNSC than in iNSC-only. This study highlights the ability of mechanically-tuned protein hydrogels to protect iNSC from the injection stress and severe inflammatory environment, allowing them to differentiate and function to recover the injured spinal cord.
Collapse
Affiliation(s)
- Ganchimeg Davaa
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea.,Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Jin Young Hong
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea.,Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Jung-Hwan Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea.,Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea.,Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea.,Cell & Matter Institute, Dankook University, Cheonan, 31116, Republic of Korea.,UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea.,Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
| | - Min Soo Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea.,Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Jennifer O Buitrago
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea.,Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea.,Basic Sciences Department, International University of Catalonia (UIC), Barcelona, 08017, Spain
| | - Yu-Meng Li
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea.,Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Hae-Hyoung Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea.,Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea.,Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea.,Cell & Matter Institute, Dankook University, Cheonan, 31116, Republic of Korea
| | - Dong Wook Han
- Konkuk University Open-Innovation Center, Institute of Biomedical Science & Technology, Konkuk University, Seoul, 143701, Republic of Korea
| | - Kam W Leong
- Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea.,Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA.,Department of Systems Biology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Jung Keun Hyun
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea.,Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea.,Department of Rehabilitation Medicine, College of Medicine, Dankook University, Cheonan, 31116, Republic of Korea.,Wiregene Co., Ltd., Cheonan, 31116, Republic of Korea
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea.,Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea.,Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea.,Cell & Matter Institute, Dankook University, Cheonan, 31116, Republic of Korea.,UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea.,Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
| |
Collapse
|
7
|
Khaing ZZ, Chen JY, Safarians G, Ezubeik S, Pedroncelli N, Duquette RD, Prasse T, Seidlits SK. Clinical Trials Targeting Secondary Damage after Traumatic Spinal Cord Injury. Int J Mol Sci 2023; 24:3824. [PMID: 36835233 PMCID: PMC9960771 DOI: 10.3390/ijms24043824] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
Spinal cord injury (SCI) often causes loss of sensory and motor function resulting in a significant reduction in quality of life for patients. Currently, no therapies are available that can repair spinal cord tissue. After the primary SCI, an acute inflammatory response induces further tissue damage in a process known as secondary injury. Targeting secondary injury to prevent additional tissue damage during the acute and subacute phases of SCI represents a promising strategy to improve patient outcomes. Here, we review clinical trials of neuroprotective therapeutics expected to mitigate secondary injury, focusing primarily on those in the last decade. The strategies discussed are broadly categorized as acute-phase procedural/surgical interventions, systemically delivered pharmacological agents, and cell-based therapies. In addition, we summarize the potential for combinatorial therapies and considerations.
Collapse
Affiliation(s)
- Zin Z. Khaing
- Department of Neurological Surgery, University of Washington, Seattle, WA 98195, USA
| | - Jessica Y. Chen
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Gevick Safarians
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Sohib Ezubeik
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Nicolas Pedroncelli
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Rebecca D. Duquette
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX 78712, USA
| | - Tobias Prasse
- Department of Neurological Surgery, University of Washington, Seattle, WA 98195, USA
- Department of Orthopedics and Trauma Surgery, University of Cologne, 50931 Cologne, Germany
| | - Stephanie K. Seidlits
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
8
|
Wu Y, Tang Z, Zhang J, Wang Y, Liu S. Restoration of spinal cord injury: From endogenous repairing process to cellular therapy. Front Cell Neurosci 2022; 16:1077441. [PMID: 36523818 PMCID: PMC9744968 DOI: 10.3389/fncel.2022.1077441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 11/08/2022] [Indexed: 09/26/2023] Open
Abstract
Spinal cord injury (SCI) disrupts neurological pathways and impacts sensory, motor, and autonomic nerve function. There is no effective treatment for SCI currently. Numerous endogenous cells, including astrocytes, macrophages/microglia, and oligodendrocyte, are involved in the histological healing process following SCI. By interfering with cells during the SCI repair process, some advancements in the therapy of SCI have been realized. Nevertheless, the endogenous cell types engaged in SCI repair and the current difficulties these cells confront in the therapy of SCI are poorly defined, and the mechanisms underlying them are little understood. In order to better understand SCI and create new therapeutic strategies and enhance the clinical translation of SCI repair, we have comprehensively listed the endogenous cells involved in SCI repair and summarized the six most common mechanisms involved in SCI repair, including limiting the inflammatory response, protecting the spared spinal cord, enhancing myelination, facilitating neovascularization, producing neurotrophic factors, and differentiating into neural/colloidal cell lines.
Collapse
Affiliation(s)
| | | | | | | | - Shengwen Liu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
9
|
Mondal P, Chakraborty I, Chatterjee K. Injectable Adhesive Hydrogels for Soft tissue Reconstruction: A Materials Chemistry Perspective. CHEM REC 2022; 22:e202200155. [PMID: 35997710 DOI: 10.1002/tcr.202200155] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/30/2022] [Indexed: 11/09/2022]
Abstract
Injectable bioadhesives offer several advantages over conventional staples and sutures in surgery to seal and close incisions or wounds. Despite the growing research in recent years few injectable bioadhesives are available for clinical use. This review summarizes the key chemical features that enable the development and improvements in the use of polymeric injectable hydrogels as bioadhesives or sealants, their design requirements, the gelation mechanism, synthesis routes, and the role of adhesion mechanisms and strategies in different biomedical applications. It is envisaged that developing a deep understanding of the underlying materials chemistry principles will enable researchers to effectively translate bioadhesive technologies into clinically-relevant products.
Collapse
Affiliation(s)
- Pritiranjan Mondal
- Department of Materials Engineering, Indian Institute of Science, C.V. Raman Avenue, Bangalore, 560012, India
| | - Indranil Chakraborty
- Department of Materials Engineering, Indian Institute of Science, C.V. Raman Avenue, Bangalore, 560012, India
| | - Kaushik Chatterjee
- Department of Materials Engineering, Indian Institute of Science, C.V. Raman Avenue, Bangalore, 560012, India
| |
Collapse
|
10
|
Intramuscular Stem Cell Injection in Combination with Bioengineered Nerve Repair or Nerve Grafting Reduces Muscle Atrophy. Plast Reconstr Surg 2022; 149:905e-913e. [PMID: 35271540 DOI: 10.1097/prs.0000000000009031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Peripheral nerve injuries represent a clinical challenge, especially when they are accompanied by loss of neural tissue. In this study, the authors attempted to attain a better outcome after a peripheral nerve injury by both repairing the nerve lesion and treating the denervated muscle at the same time. METHODS Rat sciatic nerves were transected to create 10-mm gaps. Repair was performed in five groups (n = 5 rats for each), as follows: group 1, nerve repair using poly-3-hydroxybutyrate strips to connect the proximal and distal stumps, in combination with control growth medium injection in the gastrocnemius muscle; group 2, nerve repair with poly-3-hydroxybutyrate strip seeded with Schwann cell-like differentiated adipose stem cells (differentiated adipose stem cell strip) in combination with growth medium intramuscular injection; group 3, differentiated adipose stem cell strip in combination with intramuscular injection of differentiated adipose stem cells; group 4, repair using autograft (reverse sciatic nerve graft) in combination with intramuscular injection of growth medium; and group 5, autograft in combination with intramuscular injection of differentiated adipose stem cells. Six weeks after nerve injury, the effects of the stem cells on muscle atrophy were assessed. RESULTS Poly-3-hydroxybutyrate strips seeded with differentiated adipose stem cells showed a high number of βIII-tubulin-positive axons entering the distal stump and abundant endothelial cells. Group 1 animals exhibited more muscle atrophy than all the other groups, and group 5 animals had the greatest muscle weights and muscle fibers size. CONCLUSION Bioengineering nerve repair in combination with intramuscular stem cell injection is a promising technique to treat nerve lesions and associated muscle atrophy. CLINICAL RELEVANCE STATEMENT Nerve injuries and resulting muscle atrophy are a clinical challenge. To optimize functional recovery after a nerve lesion, the authors treated the nerve and muscle at the same time by using regenerative medicine with adipose stem cells and obtained encouraging results for future clinical applications.
Collapse
|
11
|
Fu H, Hu D, Chen J, Wang Q, Zhang Y, Qi C, Yu T. Repair of the Injured Spinal Cord by Schwann Cell Transplantation. Front Neurosci 2022; 16:800513. [PMID: 35250447 PMCID: PMC8891437 DOI: 10.3389/fnins.2022.800513] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 01/27/2022] [Indexed: 01/12/2023] Open
Abstract
Spinal cord injury (SCI) can result in sensorimotor impairments or disability. Studies of the cellular response to SCI have increased our understanding of nerve regenerative failure following spinal cord trauma. Biological, engineering and rehabilitation strategies for repairing the injured spinal cord have shown impressive results in SCI models of both rodents and non-human primates. Cell transplantation, in particular, is becoming a highly promising approach due to the cells’ capacity to provide multiple benefits at the molecular, cellular, and circuit levels. While various cell types have been investigated, we focus on the use of Schwann cells (SCs) to promote SCI repair in this review. Transplantation of SCs promotes functional recovery in animal models and is safe for use in humans with subacute SCI. The rationales for the therapeutic use of SCs for SCI include enhancement of axon regeneration, remyelination of newborn or sparing axons, regulation of the inflammatory response, and maintenance of the survival of damaged tissue. However, little is known about the molecular mechanisms by which transplanted SCs exert a reparative effect on SCI. Moreover, SC-based therapeutic strategies face considerable challenges in preclinical studies. These issues must be clarified to make SC transplantation a feasible clinical option. In this review, we summarize the recent advances in SC transplantation for SCI, and highlight proposed mechanisms and challenges of SC-mediated therapy. The sparse information available on SC clinical application in patients with SCI is also discussed.
Collapse
Affiliation(s)
- Haitao Fu
- Department of Sports Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Die Hu
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao Eye Hospital, Shandong Eye Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Qingdao, China
| | - Jinli Chen
- Department of Sports Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Qizun Wang
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yingze Zhang
- Key Laboratory of Biomechanics of Hebei Province, Department of Trauma Emergency Center, The Third Hospital of Hebei Medical University, Orthopaedics Research Institution of Hebei Province, Shijiazhuang, China
| | - Chao Qi
- Department of Sports Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- *Correspondence: Chao Qi,
| | - Tengbo Yu
- Department of Sports Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- Tengbo Yu,
| |
Collapse
|
12
|
Monje PV, Bacallao K, Aparicio GI, Lalwani A. Heregulin Activity Assays for Residual Testing of Cell Therapy Products. Biol Proced Online 2021; 23:22. [PMID: 34772336 PMCID: PMC8590303 DOI: 10.1186/s12575-021-00157-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 10/16/2021] [Indexed: 11/15/2022] Open
Abstract
Background Heregulin is a ligand for the protooncogene product ErbB/HER that acts as a key mitogenic factor for human Schwann cells (hSCs). Heregulin is required for sustained hSC growth in vitro but must be thoroughly removed before cell collection for transplantation due to potential safety concerns. The goal of this study was to develop simple cell-based assays to assess the effectiveness of heregulin addition to and removal from aliquots of hSC culture medium. These bioassays were based on the capacity of a β1-heregulin peptide to elicit ErbB/HER receptor signaling in adherent ErbB2+/ErbB3+ cells. Results Western blotting was used to measure the activity of three different β1-heregulin/ErbB-activated kinases (ErbB3/HER3, ERK/MAPK and Akt/PKB) using phospho-specific antibodies against key activating residues. The duration, dose-dependency and specificity of β1-heregulin-initiated kinase phosphorylation were investigated, and controls were implemented for assay optimization and reproducibility to detect β1-heregulin activity in the nanomolar range. Results from these assays showed that the culture medium from transplantable hSCs elicited no detectable activation of the aforementioned kinases in independent rounds of testing, indicating that the implemented measures can ensure that the final hSC product is devoid of bioactive β1-heregulin molecules prior to transplantation. Conclusions These assays may be valuable to detect impurities such as undefined soluble factors or factors for which other biochemical or biological assays are not yet available. Our workflow can be modified as necessary to determine the presence of ErbB/HER, ERK, and Akt activators other than β1-heregulin using native samples, such as fresh isolates from cell- or tissue extracts in addition to culture medium.
Collapse
Affiliation(s)
- Paula V Monje
- Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA.
| | - Ketty Bacallao
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Gabriela I Aparicio
- Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Instituto de Investigaciones Biotecnológicas "Rodolfo A. Ugalde", Universidad Nacional de San Martín and Consejo Nacional de Investigaciones Científicas y Técnicas (IIBio-UNSAM-CONICET), Buenos Aires, Argentina
| | - Anil Lalwani
- Cell and Gene Therapy CMC and Regulatory Advisor, Boulder, CO, USA
| |
Collapse
|
13
|
Monje PV, Deng L, Xu XM. Human Schwann Cell Transplantation for Spinal Cord Injury: Prospects and Challenges in Translational Medicine. Front Cell Neurosci 2021; 15:690894. [PMID: 34220455 PMCID: PMC8249939 DOI: 10.3389/fncel.2021.690894] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 05/21/2021] [Indexed: 01/18/2023] Open
Abstract
The benefits of transplanting cultured Schwann cells (SCs) for the treatment of spinal cord injury (SCI) have been systematically investigated in experimental animals since the early 1990s. Importantly, human SC (hSC) transplantation for SCI has advanced to clinical testing and safety has been established via clinical trials conducted in the USA and abroad. However, multiple barriers must be overcome to enable accessible and effective treatments for SCI patients. This review presents available information on hSC transplantation for SCI with the intention to uncover gaps in our knowledge and discuss areas for future development. To this end, we introduce the historical progression of the work that supports existing and prospective clinical initiatives and explain the reasons for the choice of hSCs while also addressing their limitations as cell therapy products. A search of the relevant literature revealed that rat SCs have served as a preclinical model of reference since the onset of investigations, and that hSC transplants are relatively understudied, possibly due to the sophisticated resources and expertise needed for the traditional processing of hSC cultures from human nerves. In turn, we reason that additional experimentation and a reexamination of the available data are needed to understand the therapeutic value of hSC transplants taking into consideration that the manufacturing of the hSCs themselves may require further development for extended uses in basic research and clinical settings.
Collapse
Affiliation(s)
- Paula V. Monje
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Lingxiao Deng
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Xiao-Ming Xu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
14
|
David BT, Curtin JJ, Brown JL, Coutts DJC, Boles NC, Hill CE. Treatment with hypoxia-mimetics protects cultured rat Schwann cells against oxidative stress-induced cell death. Glia 2021; 69:2215-2234. [PMID: 34019306 DOI: 10.1002/glia.24019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 12/14/2022]
Abstract
Schwann cell (SC) grafts promote axon regeneration in the injured spinal cord, but transplant efficacy is diminished by a high death rate in the first 2-3 days postimplantation. Both hypoxic preconditioning and pharmacological induction of the cellular hypoxic response can drive cellular adaptations and improve transplant survival in a number of disease/injury models. Hypoxia-inducible factor 1 alpha (HIF-1α), a regulator of the cellular response to hypoxia, is implicated in preconditioning-associated protection. HIF-1α cellular levels are regulated by the HIF-prolyl hydroxylases (HIF-PHDs). Pharmacological inhibition of the HIF-PHDs mimics hypoxic preconditioning and provides a method to induce adaptive hypoxic responses without direct exposure to hypoxia. In this study, we show that hypoxia-mimetics, deferoxamine (DFO) and adaptaquin (AQ), enhance HIF-1α stability and HIF-1α target gene expression. Expression profiling of hypoxia-related genes demonstrates that HIF-dependent and HIF-independent expression changes occur. Analyses of transcription factor binding sites identify several candidate transcriptional co-regulators that vary in SCs along with HIF-1α. Using an in vitro model system, we show that hypoxia-mimetics are potent blockers of oxidative stress-induced death in SCs. In contrast, traditional hypoxic preconditioning was not protective. The robust protection induced by pharmacological preconditioning, particularly with DFO, indicates that pharmacological induction of hypoxic adaptations could be useful for promoting transplanted SC survival. These agents may also be more broadly useful for protecting SCs, as oxidative stress is a major pathway that drives cellular damage in the context of neurological injury and disease, including demyelinating diseases and peripheral neuropathies.
Collapse
Affiliation(s)
- Brian T David
- Burke Neurological Institute, White Plains, New York, USA.,Weill Cornell Medicine, Feil Family Brain and Mind Research Institute, New York, New York, USA
| | - Jessica J Curtin
- Burke Neurological Institute, White Plains, New York, USA.,Weill Cornell Medicine, Feil Family Brain and Mind Research Institute, New York, New York, USA
| | - Jennifer L Brown
- Burke Neurological Institute, White Plains, New York, USA.,Weill Cornell Medicine, Feil Family Brain and Mind Research Institute, New York, New York, USA
| | - David J C Coutts
- Burke Neurological Institute, White Plains, New York, USA.,Weill Cornell Medicine, Feil Family Brain and Mind Research Institute, New York, New York, USA
| | | | - Caitlin E Hill
- Burke Neurological Institute, White Plains, New York, USA.,Weill Cornell Medicine, Feil Family Brain and Mind Research Institute, New York, New York, USA.,Neural Stem Cell Institute, Rensselaer, New York, USA
| |
Collapse
|
15
|
Hypoxia-Inducible Factor 1α (HIF-1α) Counteracts the Acute Death of Cells Transplanted into the Injured Spinal Cord. eNeuro 2020; 7:ENEURO.0092-19.2019. [PMID: 31488552 PMCID: PMC7215587 DOI: 10.1523/eneuro.0092-19.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 08/10/2019] [Accepted: 08/19/2019] [Indexed: 01/13/2023] Open
Abstract
Cellular transplantation is in clinical testing for a number of central nervous system disorders, including spinal cord injury (SCI). One challenge is acute transplanted cell death. To prevent this death, there is a need to both establish when the death occurs and develop approaches to mitigate its effects. Here, using luciferase (luc) and green fluorescent protein (GFP) expressing Schwann cell (SC) transplants in the contused thoracic rat spinal cord 7 d postinjury, we establish via in vivo bioluminescent (IVIS) imaging and stereology that cell death occurs prior to 2–3 d postimplantation. We then test an alternative approach to the current paradigm of enhancing transplant survival by including multiple factors along with the cells. To stimulate multiple cellular adaptive pathways concurrently, we activate the hypoxia-inducible factor 1α (HIF-1α) transcriptional pathway. Retroviral expression of VP16-HIF-1α in SCs increased HIF-α by 5.9-fold and its target genes implicated in oxygen transport and delivery (VEGF, 2.2-fold) and cellular metabolism (enolase, 1.7-fold). In cell death assays in vitro, HIF-1α protected cells from H2O2-induced oxidative damage. It also provided some protection against camptothecin-induced DNA damage, but not thapsigargin-induced endoplasmic reticulum stress or tunicamycin-induced unfolded protein response. Following transplantation, VP16-HIF-1α increased SC survival by 34.3%. The increase in cell survival was detectable by stereology, but not by in vivo luciferase or ex vivo GFP IVIS imaging. The results support the hypothesis that activating adaptive cellular pathways enhances transplant survival and identifies an alternative pro-survival approach that, with optimization, could be amenable to clinical translation.
Collapse
|
16
|
Marquardt LM, Doulames VM, Wang AT, Dubbin K, Suhar RA, Kratochvil MJ, Medress ZA, Plant GW, Heilshorn SC. Designer, injectable gels to prevent transplanted Schwann cell loss during spinal cord injury therapy. SCIENCE ADVANCES 2020; 6:eaaz1039. [PMID: 32270042 PMCID: PMC7112763 DOI: 10.1126/sciadv.aaz1039] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 01/08/2020] [Indexed: 05/09/2023]
Abstract
Transplantation of patient-derived Schwann cells is a promising regenerative medicine therapy for spinal cord injuries; however, therapeutic efficacy is compromised by inefficient cell delivery. We present a materials-based strategy that addresses three common causes of transplanted cell death: (i) membrane damage during injection, (ii) cell leakage from the injection site, and (iii) apoptosis due to loss of endogenous matrix. Using protein engineering and peptide-based assembly, we designed injectable hydrogels with modular cell-adhesive and mechanical properties. In a cervical contusion model, our hydrogel matrix resulted in a greater than 700% improvement in successful Schwann cell transplantation. The combination therapy of cells and gel significantly improved the spatial distribution of transplanted cells within the endogenous tissue. A reduction in cystic cavitation and neuronal loss were also observed with substantial increases in forelimb strength and coordination. Using an injectable hydrogel matrix, therefore, can markedly improve the outcomes of cellular transplantation therapies.
Collapse
Affiliation(s)
- Laura M. Marquardt
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Vanessa M. Doulames
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Alice T. Wang
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
| | - Karen Dubbin
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
| | - Riley A. Suhar
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
| | - Michael J. Kratochvil
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
- Division of Infectious Diseases, Stanford University School of Medicine, Stanford CA 94305, USA
| | - Zachary A. Medress
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Giles W. Plant
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
- Corresponding author. (G.W.P.); (S.C.H.)
| | - Sarah C. Heilshorn
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
- Corresponding author. (G.W.P.); (S.C.H.)
| |
Collapse
|
17
|
Zhou P, Guan J, Xu P, Zhao J, Zhang C, Zhang B, Mao Y, Cui W. Cell Therapeutic Strategies for Spinal Cord Injury. Adv Wound Care (New Rochelle) 2019; 8:585-605. [PMID: 31637103 PMCID: PMC6798812 DOI: 10.1089/wound.2019.1046] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 08/27/2019] [Indexed: 12/13/2022] Open
Abstract
Significance: Spinal cord injury (SCI) is a neurological disorder that resulted from destroyed long axis of spinal cord, affecting thousands of people every year. With the occurrence of SCI, the lesions can form cystic cavities and produce glial scar, myelin inhibitor, and inflammation that negatively impact repair of spinal cord. Therefore, SCI remains a difficult problem to overcome with present therapeutics. This review of cell therapeutics in SCI provides a systematic review of combinatory therapeutics of SCI and helps the realization of regeneration of spinal cord in the future. Recent Advances: With major breakthroughs in neurobiology in recent years, present therapeutic strategies for SCI mainly aim at nerve regeneration or neuroprotection. For nerve regeneration, the application approaches are tissue engineering and cell transplantation, while drug therapeutics is applied for neuroprotection. Cell therapeutics is a new approach that treats SCI by cell transplantation. Cell therapeutics possesses advantages of neuroprotection, immune regulation, axonal regeneration, neuron relay formation, and remyelination. Critical Issues: Neurons cannot regenerate at the site of injury. Therefore, it is essential to find a repair strategy for remyelination, axon regeneration, and functional recovery. Cell therapeutics is emerging as the most promising approach for treating SCI. Future Directions: The future application of SCI therapy in clinical practice may require a combination of multiple strategies. A comprehensive treatment of injury of spinal cord is the focus of the present research. With the combination of different cell therapy strategies, future experiments will achieve more dramatic success in spinal cord repair.
Collapse
Affiliation(s)
- Pinghui Zhou
- Department of Orthopedics, First Affiliated Hospital of Bengbu Medical College, Bengbu, P.R. China
- Anhui Province Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, P.R. China
| | - Jingjing Guan
- Department of Orthopedics, First Affiliated Hospital of Bengbu Medical College, Bengbu, P.R. China
| | - Panpan Xu
- Department of Orthopedics, First Affiliated Hospital of Bengbu Medical College, Bengbu, P.R. China
| | - Jingwen Zhao
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Changchun Zhang
- Department of Orthopedics, First Affiliated Hospital of Bengbu Medical College, Bengbu, P.R. China
| | - Bin Zhang
- Department of Orthopedics, First Affiliated Hospital of Bengbu Medical College, Bengbu, P.R. China
| | - Yingji Mao
- Department of Orthopedics, First Affiliated Hospital of Bengbu Medical College, Bengbu, P.R. China
- School of Life Science, Bengbu Medical College, Bengbu, P.R. China
| | - Wenguo Cui
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| |
Collapse
|
18
|
Spinal cord injury: pathophysiology, treatment strategies, associated challenges, and future implications. Cell Tissue Res 2019; 377:125-151. [PMID: 31065801 DOI: 10.1007/s00441-019-03039-1] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 04/01/2019] [Indexed: 12/16/2022]
Abstract
Axonal regeneration and formation of tripartite (axo-glial) junctions at damaged sites is a prerequisite for early repair of injured spinal cord. Transplantation of stem cells at such sites of damage which can generate both neuronal and glial population has gained impact in terms of recuperation upon infliction with spinal cord injury. In spite of the fact that a copious number of pre-clinical studies using different stem/progenitor cells have shown promising results at acute and subacute stages, at the chronic stages of injury their recovery rates have shown a drastic decline. Therefore, developing novel therapeutic strategies are the need of the hour in order to assuage secondary morbidity and effectuate improvement of the spinal cord injury (SCI)-afflicted patients' quality of life. The present review aims at providing an overview of the current treatment strategies and also gives an insight into the potential cell-based therapies for the treatment of SCI.
Collapse
|
19
|
Abstract
Regulating the intrinsic interactions between blood vessels and nerve cells has the potential to enhance repair and regeneration of the central nervous system. Here, we evaluate the efficacy of aligned microvessels to induce and control directional axon growth from neural progenitor cells in vitro and host axons in a rat spinal cord injury model. Interstitial fluid flow aligned microvessels generated from co-cultures of cerebral-derived endothelial cells and pericytes in a three-dimensional scaffold. The endothelial barrier function was evaluated by immunostaining for tight junction proteins and quantifying the permeability coefficient (~10−7 cm/s). Addition of neural progenitor cells to the co-culture resulted in the extension of Tuj-positive axons in the direction of the microvessels. To validate these findings in vivo, scaffolds were transplanted into an acute spinal cord hemisection injury with microvessels aligned with the rostral-caudal direction. At three weeks post-surgery, sagittal sections indicated close alignment between the host axons and the transplanted microvessels. Overall, this work demonstrates the efficacy of exploiting neurovascular interaction to direct axon growth in the injured spinal cord and the potential to use this strategy to facilitate central nervous system regeneration.
Collapse
|
20
|
Cerqueira SR, Lee YS, Cornelison RC, Mertz MW, Wachs RA, Schmidt CE, Bunge MB. Decellularized peripheral nerve supports Schwann cell transplants and axon growth following spinal cord injury. Biomaterials 2018; 177:176-185. [PMID: 29929081 PMCID: PMC6034707 DOI: 10.1016/j.biomaterials.2018.05.049] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 05/25/2018] [Accepted: 05/28/2018] [Indexed: 01/10/2023]
Abstract
Schwann cell (SC) transplantation has been comprehensively studied as a strategy for spinal cord injury (SCI) repair. SCs are neuroprotective and promote axon regeneration and myelination. Nonetheless, substantial SC death occurs post-implantation, which limits therapeutic efficacy. The use of extracellular matrix (ECM)-derived matrices, such as Matrigel, supports transplanted SC survival and axon growth, resulting in improved motor function. Because appropriate matrices are needed for clinical translation, we test here the use of an acellular injectable peripheral nerve (iPN) matrix. Implantation of SCs in iPN into a contusion lesion did not alter immune cell infiltration compared to injury only controls. iPN implants were larger and contained twice as many SC-myelinated axons as Matrigel grafts. SC/iPN animals performed as well as the SC/Matrigel group in the BBB locomotor test, and made fewer errors on the grid walk at 4 weeks, equalizing at 8 weeks. The fact that this clinically relevant iPN matrix is immunologically tolerated and supports SC survival and axon growth within the graft offers a highly translational possibility for improving efficacy of SC treatment after SCI. To our knowledge, it is the first time that an injectable PN matrix is being evaluated to improve the efficacy of SC transplantation in SCI repair.
Collapse
Affiliation(s)
- Susana R Cerqueira
- The Miami Project to Cure Paralysis, University of Miami, Miller School of Medicine, Miami, FL, USA.
| | - Yee-Shuan Lee
- The Miami Project to Cure Paralysis, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Robert C Cornelison
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Michaela W Mertz
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Rebecca A Wachs
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Christine E Schmidt
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Mary Bartlett Bunge
- The Miami Project to Cure Paralysis, University of Miami, Miller School of Medicine, Miami, FL, USA; Department of Cell Biology, University of Miami, Miller School of Medicine, Miami, FL, USA; Department of Neurological Surgery, University of Miami, Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
21
|
Tickle JA, Poptani H, Taylor A, Chari DM. Noninvasive imaging of nanoparticle-labeled transplant populations within polymer matrices for neural cell therapy. Nanomedicine (Lond) 2018; 13:1333-1348. [PMID: 29949467 PMCID: PMC6220152 DOI: 10.2217/nnm-2017-0347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 03/29/2018] [Indexed: 12/15/2022] Open
Abstract
AIM To develop a 3D neural cell construct for encapsulated delivery of transplant cells; develop hydrogels seeded with magnetic nanoparticle (MNP)-labeled cells suitable for cell tracking by MRI. MATERIALS & METHODS Astrocytes were exogenously labeled with MRI-compatible iron-oxide MNPs prior to intra-construct incorporation within a 3D collagen hydrogel. RESULTS A connective, complex cellular network was clearly observable within the 3D constructs, with high cellular viability. MNP accumulation in astrocytes provided a hypointense MRI signal at 24 h & 14 days. CONCLUSION Our findings support the concept of developing a 3D construct possessing the dual advantages of (i) support of long-term cell survival of neural populations with (ii) the potential for noninvasive MRI-tracking of intra-construct cells for neuroregenerative applications.
Collapse
Affiliation(s)
- Jacqueline A Tickle
- Institute for Science & Technology in Medicine, Keele University, Keele, ST5 5BG, UK
| | - Harish Poptani
- Institute of Translational Medicine, University of Liverpool, Liverpool, L69 3BX, UK
| | - Arthur Taylor
- Institute of Translational Medicine, University of Liverpool, Liverpool, L69 3BX, UK
| | - Divya M Chari
- Institute for Science & Technology in Medicine, Keele University, Keele, ST5 5BG, UK
| |
Collapse
|
22
|
McGrath AM, Brohlin M, Wiberg R, Kingham PJ, Novikov LN, Wiberg M, Novikova LN. Long-Term Effects of Fibrin Conduit with Human Mesenchymal Stem Cells and Immunosuppression after Peripheral Nerve Repair in a Xenogenic Model. CELL MEDICINE 2018; 10:2155179018760327. [PMID: 32634185 PMCID: PMC6172997 DOI: 10.1177/2155179018760327] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 01/07/2018] [Accepted: 01/12/2018] [Indexed: 12/22/2022]
Abstract
Introduction: Previously we showed that a fibrin glue conduit with human mesenchymal stem cells
(hMSCs) and cyclosporine A (CsA) enhanced early nerve regeneration. In this study long
term effects of this conduit are investigated. Methods: In a rat model, the sciatic nerve was repaired with fibrin conduit containing fibrin
matrix, fibrin conduit containing fibrin matrix with CsA treatment and fibrin conduit
containing fibrin matrix with hMSCs and CsA treatment, and also with nerve graft as
control. Results: At 12 weeks 34% of motoneurons of the control group regenerated axons through the
fibrin conduit. CsA treatment alone or with hMSCs resulted in axon regeneration of 67%
and 64% motoneurons respectively. The gastrocnemius muscle weight was reduced in the
conduit with fibrin matrix. The treatment with CsA or CsA with hMSCs induced recovery of
the muscle weight and size of fast type fibers towards the levels of the nerve graft
group. Discussion: The transplantation of hMSCs for peripheral nerve injury should be optimized to
demonstrate their beneficial effects. The CsA may have its own effect on nerve
regeneration.
Collapse
Affiliation(s)
- Aleksandra M McGrath
- Department of Integrative Medical Biology, Section for Anatomy, Umeå University, Umeå, Sweden.,Department of Surgical and Perioperative Science, Section for Hand and Plastic Surgery, Norrland's University Hospital, Umeå, Sweden
| | - Maria Brohlin
- Department of Integrative Medical Biology, Section for Anatomy, Umeå University, Umeå, Sweden.,Department of Clinical Microbiology, Infection and Immunology, Umeå University, Umeå, Sweden
| | - Rebecca Wiberg
- Department of Integrative Medical Biology, Section for Anatomy, Umeå University, Umeå, Sweden.,Department of Surgical and Perioperative Science, Section for Hand and Plastic Surgery, Norrland's University Hospital, Umeå, Sweden
| | - Paul J Kingham
- Department of Integrative Medical Biology, Section for Anatomy, Umeå University, Umeå, Sweden
| | - Lev N Novikov
- Department of Integrative Medical Biology, Section for Anatomy, Umeå University, Umeå, Sweden
| | - Mikael Wiberg
- Department of Integrative Medical Biology, Section for Anatomy, Umeå University, Umeå, Sweden.,Department of Surgical and Perioperative Science, Section for Hand and Plastic Surgery, Norrland's University Hospital, Umeå, Sweden
| | - Liudmila N Novikova
- Department of Integrative Medical Biology, Section for Anatomy, Umeå University, Umeå, Sweden
| |
Collapse
|
23
|
Wu S, Chen MS, Maurel P, Lee YS, Bunge MB, Arinzeh TL. Aligned fibrous PVDF-TrFE scaffolds with Schwann cells support neurite extension and myelination in vitro. J Neural Eng 2018; 15:056010. [PMID: 29794323 DOI: 10.1088/1741-2552/aac77f] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
OBJECTIVE Polyvinylidene fluoride-trifluoroethylene (PVDF-TrFE), which is a piezoelectric, biocompatible polymer, holds promise as a scaffold in combination with Schwann cells (SCs) for spinal cord repair. Piezoelectric materials can generate electrical activity in response to mechanical deformation, which could potentially stimulate spinal cord axon regeneration. Our goal in this study was to investigate PVDF-TrFE scaffolds consisting of aligned fibers in supporting SC growth and SC-supported neurite extension and myelination in vitro. APPROACH Aligned fibers of PVDF-TrFE were fabricated using the electrospinning technique. SCs and dorsal root ganglion (DRG) explants were co-cultured to evaluate SC-supported neurite extension and myelination on PVDF-TrFE scaffolds. MAIN RESULTS PVDF-TrFE scaffolds supported SC growth and neurite extension, which was further enhanced by coating the scaffolds with Matrigel. SCs were oriented and neurites extended along the length of the aligned fibers. SCs in co-culture with DRGs on PVDF-TrFE scaffolds promoted longer neurite extension as compared to scaffolds without SCs. In addition to promoting neurite extension, SCs also formed myelin around DRG neurites on PVDF-TrFE scaffolds. SIGNIFICANCE This study demonstrated PVDF-TrFE scaffolds containing aligned fibers supported SC-neurite extension and myelination. The combination of SCs and PVDF-TrFE scaffolds may be a promising tissue engineering strategy for spinal cord repair.
Collapse
Affiliation(s)
- Siliang Wu
- Materials Science and Engineering Program, New Jersey Institute of Technology, Newark, NJ 07102, United States of America
| | | | | | | | | | | |
Collapse
|
24
|
Abstract
Adult Schwann cells (SCs) can provide both a permissive substrate for axonal growth and a source of cells to ensheath and myelinate axons when transplanted into the injured spinal cord. Multiple studies have demonstrated that SC transplants can be used as part of a combinatorial approach to repairing the injured spinal cord. Here, we describe the protocols for collection and transplantation of adult rat primary SCs into the injured spinal cord. Protocols are included for the tissue culture procedures necessary for collection, quantification, and suspension of the cells for transplantation and for the surgical procedures for spinal cord injury at thoracic level nine (T9), reexposure of the injury site for delayed transplantation, and injection of the cells into the spinal cord.
Collapse
Affiliation(s)
- Ying Dai
- Burke Medical Research Institute, White Plains, NY, USA.,Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Caitlin E Hill
- Burke Medical Research Institute, White Plains, NY, USA. .,Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
25
|
Abstract
Cell transplant-mediated tissue repair of the damaged spinal cord is being tested in several clinical trials. The current candidates are neural stem cells, stromal cells, and autologous Schwann cells (aSC). Due to their peripheral origin and limited penetration of astrocytic regions, aSC are transplanted intralesionally as compared to neural stem cells that are transplanted into intact spinal cord. Injections into either location can cause iatrogenic injury, and thus technical precision is important in the therapeutic risk-benefit equation. In this chapter, we discuss how we bridged from transplant studies in large animals to human application for two Phase 1 aSC transplant studies, one subacute and one chronic. Preclinical SC transplant studies conducted at the University of Miami in 2009-2012 in rodents, minipigs, and primates supported a successful Investigational New Drug (IND) submission for a Phase 1 trial in subacute complete spinal cord injury (SCI). Our studies optimized the safety and efficiency of intralesional cell delivery for subacute human SCI and led to the development of new simpler techniques for cell delivery into subjects with chronic SCI. Key parameters of delivery methodology include precision localization of the injury site, stereotaxic devices to control needle trajectory, method of entry into the spinal cord, spinal cord motion reduction, the volume and density of the cell suspension, rate of delivery, and control of shear stresses on cells.
Collapse
|
26
|
Liu S, Sandner B, Schackel T, Nicholson L, Chtarto A, Tenenbaum L, Puttagunta R, Müller R, Weidner N, Blesch A. Regulated viral BDNF delivery in combination with Schwann cells promotes axonal regeneration through capillary alginate hydrogels after spinal cord injury. Acta Biomater 2017; 60:167-180. [PMID: 28735026 DOI: 10.1016/j.actbio.2017.07.024] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 07/05/2017] [Accepted: 07/18/2017] [Indexed: 12/24/2022]
Abstract
Grafting of cell-seeded alginate capillary hydrogels into a spinal cord lesion site provides an axonal bridge while physically directing regenerating axonal growth in a linear pattern. However, without an additional growth stimulus, bridging axons fail to extend into the distal host spinal cord. Here we examined whether a combinatory strategy would support regeneration of descending axons across a cervical (C5) lateral hemisection lesion in the rat spinal cord. Following spinal cord transections, Schwann cell (SC)-seeded alginate hydrogels were grafted to the lesion site and AAV5 expressing brain-derived neurotrophic factor (BDNF) under control of a tetracycline-regulated promoter was injected caudally. In addition, we examined whether SC injection into the caudal spinal parenchyma would further enhance regeneration of descending axons to re-enter the host spinal cord. Our data show that both serotonergic and descending axons traced by biotinylated dextran amine (BDA) extend throughout the scaffolds. The number of regenerating axons is significantly increased when caudal BDNF expression is activated and transient BDNF delivery is able to sustain axons after gene expression is switched off. Descending axons are confined to the caudal graft/host interface even with continuous BDNF expression for 8weeks. Only with a caudal injection of SCs, a pathway facilitating axonal regeneration through the host/graft interface is generated allowing axons to successfully re-enter the caudal spinal cord. STATEMENT OF SIGNIFICANCE Recovery from spinal cord injury is poor due to the limited regeneration observed in the adult mammalian central nervous system. Biomaterials, cell transplantation and growth factors that can guide axons across a lesion site, provide a cellular substrate, stimulate axon growth and have shown some promise in increasing the growth distance of regenerating axons. In the present study, we combined an alginate biomaterial with linear channels with transplantation of Schwann cells within and beyond the lesion site and injection of a regulatable vector for the transient expression of brain-derived neurotrophic factor (BDNF). Our data show that only with the full combination axons extend across the lesion site and that expression of BDNF beyond 4weeks does not further increase the number of regenerating axons.
Collapse
Affiliation(s)
- Shengwen Liu
- Spinal Cord Injury Center, Heidelberg University Hospital, Heidelberg, Germany; Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Beatrice Sandner
- Spinal Cord Injury Center, Heidelberg University Hospital, Heidelberg, Germany
| | - Thomas Schackel
- Spinal Cord Injury Center, Heidelberg University Hospital, Heidelberg, Germany
| | - LaShae Nicholson
- Spinal Cord Injury Center, Heidelberg University Hospital, Heidelberg, Germany
| | - Abdelwahed Chtarto
- Experimental Neurosurgery Laboratory and I.R.I.B.H.M., Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Liliane Tenenbaum
- Department of Clinical Neurosciences, University Hospital of Lausanne, Lausanne, Switzerland
| | - Radhika Puttagunta
- Spinal Cord Injury Center, Heidelberg University Hospital, Heidelberg, Germany
| | - Rainer Müller
- Department of Physical and Theoretical Chemistry, University of Regensburg, Regensburg, Germany
| | - Norbert Weidner
- Spinal Cord Injury Center, Heidelberg University Hospital, Heidelberg, Germany
| | - Armin Blesch
- Spinal Cord Injury Center, Heidelberg University Hospital, Heidelberg, Germany; Stark Neurosciences Research Institute, Indiana University School of Medicine, Dept. of Neurological Surgery and Goodman Campbell Brain and Spine, Indianapolis, USA.
| |
Collapse
|
27
|
Bastidas J, Athauda G, De La Cruz G, Chan WM, Golshani R, Berrocal Y, Henao M, Lalwani A, Mannoji C, Assi M, Otero PA, Khan A, Marcillo AE, Norenberg M, Levi AD, Wood PM, Guest JD, Dietrich WD, Bartlett Bunge M, Pearse DD. Human Schwann cells exhibit long-term cell survival, are not tumorigenic and promote repair when transplanted into the contused spinal cord. Glia 2017; 65:1278-1301. [PMID: 28543541 DOI: 10.1002/glia.23161] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Revised: 04/07/2017] [Accepted: 04/10/2017] [Indexed: 12/26/2022]
Abstract
The transplantation of rodent Schwann cells (SCs) provides anatomical and functional restitution in a variety of spinal cord injury (SCI) models, supporting the recent translation of SCs to phase 1 clinical trials for human SCI. Whereas human (Hu)SCs have been examined experimentally in a complete SCI transection paradigm, to date the reported behavior of SCs when transplanted after a clinically relevant contusive SCI has been restricted to the use of rodent SCs. Here, in a xenotransplant, contusive SCI paradigm, the survival, biodistribution, proliferation and tumorgenicity as well as host responses to HuSCs, cultured according to a protocol analogous to that developed for clinical application, were investigated. HuSCs persisted within the contused nude rat spinal cord through 6 months after transplantation (longest time examined), exhibited low cell proliferation, displayed no evidence of tumorigenicity and showed a restricted biodistribution to the lesion. Neuropathological examination of the CNS revealed no adverse effects of HuSCs. Animals exhibiting higher numbers of surviving HuSCs within the lesion showed greater volumes of preserved white matter and host rat SC and astrocyte ingress as well as axon ingrowth and myelination. These results demonstrate the safety of HuSCs when employed in a clinically relevant experimental SCI paradigm. Further, signs of a potentially positive influence of HuSC transplants on host tissue pathology were observed. These findings show that HuSCs exhibit a favorable toxicity profile for up to 6 months after transplantation into the contused rat spinal cord, an important outcome for FDA consideration of their use in human clinical trials.
Collapse
Affiliation(s)
- Johana Bastidas
- The Miami Project to Cure Paralysis, The Department of Neurological Surgery, The University of Miami Miller School of Medicine, Miami, Florida, 33136
| | - Gagani Athauda
- The Department of Cellular Biology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, 33199.,The Department of Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, 33199
| | - Gabriela De La Cruz
- Translational Pathology Laboratory, Lineberger Comprehensive Cancer Center, Department of Pathology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, 27599
| | - Wai-Man Chan
- The Miami Project to Cure Paralysis, The Department of Neurological Surgery, The University of Miami Miller School of Medicine, Miami, Florida, 33136
| | - Roozbeh Golshani
- The Miami Project to Cure Paralysis, The Department of Neurological Surgery, The University of Miami Miller School of Medicine, Miami, Florida, 33136
| | - Yerko Berrocal
- The Department of Cellular Biology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, 33199.,The Department of Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, 33199
| | - Martha Henao
- The Miami Project to Cure Paralysis, The Department of Neurological Surgery, The University of Miami Miller School of Medicine, Miami, Florida, 33136
| | - Anil Lalwani
- The Miami Project to Cure Paralysis, The Department of Neurological Surgery, The University of Miami Miller School of Medicine, Miami, Florida, 33136
| | - Chikato Mannoji
- The Department of Orthopedic Surgery, Chiba University School of Medicine, Chiba, Japan
| | - Mazen Assi
- The Miami Project to Cure Paralysis, The Department of Neurological Surgery, The University of Miami Miller School of Medicine, Miami, Florida, 33136
| | - P Anthony Otero
- The Miami Project to Cure Paralysis, The Department of Neurological Surgery, The University of Miami Miller School of Medicine, Miami, Florida, 33136
| | - Aisha Khan
- The Miami Project to Cure Paralysis, The Department of Neurological Surgery, The University of Miami Miller School of Medicine, Miami, Florida, 33136
| | - Alexander E Marcillo
- The Miami Project to Cure Paralysis, The Department of Neurological Surgery, The University of Miami Miller School of Medicine, Miami, Florida, 33136
| | - Michael Norenberg
- The Department of Pathology, The University of Miami Miller School of Medicine, Miami, Florida, 33136
| | - Allan D Levi
- The Miami Project to Cure Paralysis, The Department of Neurological Surgery, The University of Miami Miller School of Medicine, Miami, Florida, 33136.,The Department of Neurological Surgery, The University of Miami Miller School of Medicine, Miami, Florida, 33136
| | - Patrick M Wood
- The Miami Project to Cure Paralysis, The Department of Neurological Surgery, The University of Miami Miller School of Medicine, Miami, Florida, 33136
| | - James D Guest
- The Miami Project to Cure Paralysis, The Department of Neurological Surgery, The University of Miami Miller School of Medicine, Miami, Florida, 33136.,The Department of Neurological Surgery, The University of Miami Miller School of Medicine, Miami, Florida, 33136
| | - W Dalton Dietrich
- The Miami Project to Cure Paralysis, The Department of Neurological Surgery, The University of Miami Miller School of Medicine, Miami, Florida, 33136.,The Department of Neurological Surgery, The University of Miami Miller School of Medicine, Miami, Florida, 33136.,The Department of Neurology, The University of Miami Miller School of Medicine, Miami, Florida, 33136.,The Neuroscience Program, The University of Miami Miller School of Medicine, Miami, Florida, 33136.,The Interdisciplinary Stem Cell Institute, The University of Miami Miller School of Medicine, Miami, Florida, 33136.,The Department of Cell Biology, The University of Miami Miller School of Medicine, Miami, Florida, 33136
| | - Mary Bartlett Bunge
- The Miami Project to Cure Paralysis, The Department of Neurological Surgery, The University of Miami Miller School of Medicine, Miami, Florida, 33136.,The Department of Neurological Surgery, The University of Miami Miller School of Medicine, Miami, Florida, 33136.,The Neuroscience Program, The University of Miami Miller School of Medicine, Miami, Florida, 33136.,The Interdisciplinary Stem Cell Institute, The University of Miami Miller School of Medicine, Miami, Florida, 33136.,The Department of Cell Biology, The University of Miami Miller School of Medicine, Miami, Florida, 33136
| | - Damien D Pearse
- The Miami Project to Cure Paralysis, The Department of Neurological Surgery, The University of Miami Miller School of Medicine, Miami, Florida, 33136.,The Department of Neurological Surgery, The University of Miami Miller School of Medicine, Miami, Florida, 33136.,The Neuroscience Program, The University of Miami Miller School of Medicine, Miami, Florida, 33136.,The Interdisciplinary Stem Cell Institute, The University of Miami Miller School of Medicine, Miami, Florida, 33136.,Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, Florida, 33136
| |
Collapse
|
28
|
Kennelly KP, Holmes TM, Wallace DM, O'Farrelly C, Keegan DJ. Early Subretinal Allograft Rejection Is Characterized by Innate Immune Activity. Cell Transplant 2017; 26:983-1000. [PMID: 28105976 DOI: 10.3727/096368917x694697] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Successful subretinal transplantation is limited by considerable early graft loss despite pharmacological suppression of adaptive immunity. We postulated that early innate immune activity is a dominant factor in determining graft survival and chose a nonimmunosuppressed mouse model of retinal pigment epithelial (RPE) cell transplantation to explore this. Expression of almost all measured cytokines by DH01 RPE cells increased significantly following graft preparation, and the neutrophil chemoattractant KC/GRO/CINC was most significantly increased. Subretinal allografts of DH01 cells (C57BL/10 origin) into healthy, nonimmunosuppressed C57BL/6 murine eyes were harvested and fixed at 1, 3, 7, and 28 days postoperatively and subsequently cryosectioned and stained. Graft cells were detected using SV40 large T antigen (SV40T) immunolabeling and apoptosis/necrosis by terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL). Sections were also immunolabeled for macrophage (CD11b and F4/80), neutrophil (Gr1 Ly-6G), and T-lymphocyte (CD3-ɛ) infiltration. Images captured with an Olympus FV1000 confocal microscope were analyzed using the Imaris software. The proportion of the subretinal bolus comprising graft cells (SV40T+) was significantly (p < 0.001) reduced between postoperative day (POD) 3 (90 ± 4%) and POD 7 (20 ± 7%). CD11b+, F4/80+, and Gr1 Ly-6G+ cells increased significantly (p < 0.05) from POD 1 and predominated over SV40T+ cells by POD 7. Colabeling confocal microscopic analysis demonstrated graft engulfment by neutrophils and macrophages at POD 7, and reconstruction of z-stacked confocal images confirmed SV40T inside Gr1 Ly-6G+ cells. Expression of CD3-ɛ was low and did not differ significantly between time points. By POD 28, no graft cells were detectable and few inflammatory cells remained. These studies reveal, for the first time, a critical role for innate immune mechanisms early in subretinal graft rejection. The future success of subretinal transplantation will require more emphasis on techniques to limit innate immune-mediated graft loss, rather than focusing exclusively on suppression of the adaptive immune response.
Collapse
|
29
|
Chao PY, Lin JA, Ye JC, Hwang JM, Ting WJ, Huang CY, Liu JY. Attenuation of Oxidative Stress-Induced Cell Apoptosis in Schwann RSC96 Cells by Ocimum Gratissimum Aqueous Extract. Int J Med Sci 2017; 14:764-771. [PMID: 28824312 PMCID: PMC5562131 DOI: 10.7150/ijms.19535] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 06/18/2017] [Indexed: 12/29/2022] Open
Abstract
Objectives: Cell transplantation therapy of Schwann cells (SCs) is a promising therapeutic strategy after spinal cord injury. However, challenges such as oxidative stress hinder satisfactory cell viability and intervention for enhancing SCs survival is critical throughout the transplantation procedures. Ocimum gratissimum, widely used as a folk medicine in many countries, has therapeutic and anti-oxidative properties and may protect SCs survival. Methods: We examined the protective effects of aqueous O. gratissimum extract (OGE) against cell damage caused by H2O2-induced oxidative stress in RSC96 Schwann cells. Results: Our results showed that the RSC96 cells, damaged by H2O2 oxidative stress, decreased their viability up to 32% after treatment with different concentrations of up to 300 μM H2O2, but OGE pretreatment (150 or 200 μg/mL) increased cell viability by approximately 62% or 66%, respectively. Cell cycle analysis indicated a high (43%) sub-G1 cell population in the H2O2-treated RSC96 cells compared with untreated cells (1%); whereas OGE pretreatment (150 and 200 μg/mL) of RSC96 cells significantly reduced the sub-G1 cells (7% and 8%, respectively). Furthermore, Western blot analysis revealed that OGE pretreatment inhibited H2O2-induced apoptotic protein caspase-3 activation and PARP cleavage, as well as it reversed Bax up-regulation and Bcl-2 down-regulation. The amelioration of OGE of cell stress and stress-induced apoptosis was proved by the HSP70 and HSP72 decrease. Conclusion: Our data suggest that OGE may minimize the cytotoxic effects of H2O2-induced SCs apoptosis by modulating the apoptotic pathway and could potentially supplement cell transplantation therapy.
Collapse
Affiliation(s)
- Pei-Yu Chao
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - James A Lin
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Je-Chiuan Ye
- Bachelor Program of Senior Services, Southern Taiwan University of Science and Technology, Tainan, Taiwan
| | - Jin-Ming Hwang
- Department of Medical Applied Chemistry, College of Health Care and Management, Chung Shan Medical University, Taichung, Taiwan
| | - Wei-Jen Ting
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Chih-Yang Huang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan.,Graduate Institute of Chinese Medical Science, School of Chinese Medicine, China Medical University, Taichung, Taiwan.,Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan
| | - Jer-Yuh Liu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.,Center for Molecular Medicine, China Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
30
|
Combination of grafted Schwann cells and lentiviral-mediated prevention of glial scar formation improve recovery of spinal cord injured rats. J Chem Neuroanat 2016; 76:48-60. [DOI: 10.1016/j.jchemneu.2015.12.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 11/26/2015] [Accepted: 12/25/2015] [Indexed: 01/03/2023]
|
31
|
Levine J. The reactions and role of NG2 glia in spinal cord injury. Brain Res 2016; 1638:199-208. [PMID: 26232070 PMCID: PMC4732922 DOI: 10.1016/j.brainres.2015.07.026] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 07/02/2015] [Accepted: 07/18/2015] [Indexed: 01/06/2023]
Abstract
Oligodendrocyte precursor cells (OPCs) react rapidly to brain and spinal cord injuries. This reaction is characterized by the retraction of cell processes, cell body swelling and increased expression of the NG2 chondroitin sulfate proteoglycan. Reactive OPCs rapidly divide and accumulate surrounding the injury site where they become major cellular components of the glial scar. The glial reaction to injury is an attempt to restore normal homeostasis and re-establish the glia limitans but the exact role of reactive OPCs in these processes is not well understood. Traumatic injury results in extensive oligodendrocyte cell death and the proliferating OPCs generate the large number of precursor cells necessary for remyelination. Reactive OPCs, however, also are a source of axon-growth inhibitory proteoglycans and may interact with invading inflammatory cells in complex ways. Here, I discuss these and other properties of OPCs after spinal cord injury. Understanding the regulation of these disparate properties may lead to new therapeutic approaches to devastating injuries of the spinal cord. This article is part of a Special Issue entitled SI:NG2-glia(Invited only).
Collapse
Affiliation(s)
- Joel Levine
- Department of Neurobiology and Behavior, Stonybrook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
32
|
Carrasco DI, Bahr BA, Seburn KL, Pinter MJ. Abnormal response of distal Schwann cells to denervation in a mouse model of motor neuron disease. Exp Neurol 2016; 278:116-26. [PMID: 26853136 PMCID: PMC4788963 DOI: 10.1016/j.expneurol.2016.02.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 01/27/2016] [Accepted: 02/02/2016] [Indexed: 01/22/2023]
Abstract
In several animal models of motor neuron disease, degeneration begins in the periphery. Clarifying the possible role of Schwann cells remains a priority. We recently showed that terminal Schwann cells (TSCs) exhibit abnormalities in postnatal mice that express mutations of the SOD1 enzyme found in inherited human motor neuron disease. TSC abnormalities appeared before disease-related denervation commenced and the extent of TSC abnormality at P30 correlated with the extent of subsequent denervation. Denervated neuromuscular junctions (NMJs) were also observed that lacked any labeling for TSCs. This suggested that SOD1 TSCs may respond differently than wildtype TSCs to denervation which remain at denervated NMJs for several months. In the present study, the response of SOD1 TSCs to experimental denervation was examined. At P30 and P60, SC-specific S100 labeling was quickly lost from SOD1 NMJs and from preterminal regions. Evidence indicates that this loss eventually becomes complete at most SOD1 NMJs before reinnervation occurs. The loss of labeling was not specific for S100 and did not depend on loss of activity. Although some post-denervation labeling loss occurred at wildtype NMJs, this loss was never complete. Soon after denervation, large cells appeared near SOD1 NMJ bands which colabeled for SC markers as well as for activated caspase-3 suggesting that distal SOD1 SCs may experience cell death following denervation. Denervated SOD1 NMJs viewed 7 days after denervation with the electron microscope confirmed the absence of TSCs overlying endplates. These observations demonstrate that SOD1 TSCs and distal SCs respond abnormally to denervation. This behavior can be expected to hinder reinnervation and raises further questions concerning the ability of SOD1 TSCs to support normal functioning of motor terminals.
Collapse
Affiliation(s)
| | - Ben A Bahr
- Biotechnology Research and Training Center, University of North Carolina at Pembroke, Pembroke, NC, USA
| | | | - Martin J Pinter
- Department of Physiology, Emory University, Atlanta, GA, USA.
| |
Collapse
|
33
|
Jin Y, Bouyer J, Shumsky JS, Haas C, Fischer I. Transplantation of neural progenitor cells in chronic spinal cord injury. Neuroscience 2016; 320:69-82. [PMID: 26852702 DOI: 10.1016/j.neuroscience.2016.01.066] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 01/07/2016] [Accepted: 01/29/2016] [Indexed: 01/24/2023]
Abstract
Previous studies demonstrated that neural progenitor cells (NPCs) transplanted into a subacute contusion injury improve motor, sensory, and bladder function. In this study we tested whether transplanted NPCs can also improve functional recovery after chronic spinal cord injury (SCI) alone or in combination with the reduction of glial scar and neurotrophic support. Adult rats received a T10 moderate contusion. Thirteen weeks after the injury they were divided into four groups and received either: 1. Medium (control), 2. NPC transplants, 3. NPC+lentivirus vector expressing chondroitinase, or 4. NPC+lentivirus vectors expressing chondroitinase and neurotrophic factors. During the 8 weeks post-transplantation the animals were tested for functional recovery and eventually analyzed by anatomical and immunohistochemical assays. The behavioral tests for motor and sensory function were performed before and after injury, and weekly after transplantation, with some animals also tested for bladder function at the end of the experiment. Transplant survival in the chronic injury model was variable and showed NPCs at the injury site in 60% of the animals in all transplantation groups. The NPC transplants comprised less than 40% of the injury site, without significant anatomical or histological differences among the groups. All groups also showed similar patterns of functional deficits and recovery in the 12 weeks after injury and in the 8 weeks after transplantation using the Basso, Beattie, and Bresnahan rating score, the grid test, and the Von Frey test for mechanical allodynia. A notable exception was group 4 (NPC together with chondroitinase and neurotrophins), which showed a significant improvement in bladder function. This study underscores the therapeutic challenges facing transplantation strategies in a chronic SCI in which even the inclusion of treatments designed to reduce scarring and increase neurotrophic support produce only modest functional improvements. Further studies will have to identify the combination of acute and chronic interventions that will augment the survival and efficacy of neural cell transplants.
Collapse
Affiliation(s)
- Y Jin
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia PA 19129, United States.
| | - J Bouyer
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia PA 19129, United States
| | - J S Shumsky
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia PA 19129, United States
| | - C Haas
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia PA 19129, United States
| | - I Fischer
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia PA 19129, United States.
| |
Collapse
|
34
|
Allard J, Li K, Lopez XM, Blanchard S, Barbot P, Rorive S, Decaestecker C, Pochet R, Bohl D, Lepore AC, Salmon I, Nicaise C. Immunohistochemical toolkit for tracking and quantifying xenotransplanted human stem cells. Regen Med 2015; 9:437-52. [PMID: 25159062 DOI: 10.2217/rme.14.26] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
AIM Biomarker-based tracking of human stem cells xenotransplanted into animal models is crucial for studying their fate in the field of cell therapy or tumor xenografting. MATERIALS & METHODS Using immunohistochemistry and in situ hybridization, we analyzed the expression of three human-specific biomarkers: Ku80, human mitochondria (hMito) and Alu. RESULTS We showed that Ku80, hMito and Alu biomarkers are broadly expressed in human tissues with no or low cross-reactivity toward rat, mouse or pig tissues. In vitro, we demonstrated that their expression is stable over time and does not change along the differentiation of human-derived induced pluripotent stem cells or human glial-restricted precursors. We tracked in vivo these cell populations after transplantation in rodent spinal cords using aforementioned biomarkers and human-specific antibodies detecting apoptotic, proliferating or neural-committed cells. CONCLUSION This study assesses the human-species specificity of Ku80, hMito and Alu, and proposes useful biomarkers for characterizing human stem cells in xenotransplantation paradigms.
Collapse
Affiliation(s)
- Justine Allard
- Department of Pathology, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Grochmal J, Midha R. Recent advances in stem cell-mediated peripheral nerve repair. Cells Tissues Organs 2015; 200:13-22. [PMID: 25825283 DOI: 10.1159/000369450] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2014] [Indexed: 11/19/2022] Open
Abstract
A major advance in the field of peripheral nerve repair has been the advent of stem and progenitor cell use to supplement the regenerative environment in animal models of nerve injury. As Schwann cell replacements, stem cells may be even better suited to promoting regeneration in these scenarios. We review the recent literature detailing the search for the definitive Schwann cell replacement cell, including a look at genetic modification of transplanted cells for nerve injury repair.
Collapse
|
36
|
Kanno H, Pearse DD, Ozawa H, Itoi E, Bunge MB. Schwann cell transplantation for spinal cord injury repair: its significant therapeutic potential and prospectus. Rev Neurosci 2015; 26:121-8. [DOI: 10.1515/revneuro-2014-0068] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 10/16/2014] [Indexed: 11/15/2022]
Abstract
AbstractTransplantation of Schwann cells (SCs) is a promising therapeutic strategy for spinal cord repair. The introduction of SCs into the injured spinal cord has been shown to reduce tissue loss, promote axonal regeneration, and facilitate myelination of axons for improved sensorimotor function. The pathology of spinal cord injury (SCI) comprises multiple processes characterized by extensive cell death, development of a milieu inhibitory to growth, and glial scar formation, which together limits axonal regeneration. Many studies have suggested that significant functional recovery following SCI will not be possible with a single therapeutic strategy. The use of additional approaches with SC transplantation may be needed for successful axonal regeneration and sufficient functional recovery after SCI. An example of such a combination strategy with SC transplantation has been the complementary administration of neuroprotective agents/growth factors, which improves the effect of SCs after SCI. Suspension of SCs in bioactive matrices can also enhance transplanted SC survival and increase their capacity for supporting axonal regeneration in the injured spinal cord. Inhibition of glial scar formation produces a more permissive interface between the SC transplant and host spinal cord for axonal growth. Co-transplantation of SCs and other types of cells such as olfactory ensheathing cells, bone marrow mesenchymal stromal cells, and neural stem cells can be a more effective therapy than transplantation of SCs alone following SCI. This article reviews some of the evidence supporting the combination of SC transplantation with additional strategies for SCI repair and presents a prospectus for achieving better outcomes for persons with SCI.
Collapse
|
37
|
Walker CL, Wang X, Bullis C, Liu NK, Lu Q, Fry C, Deng L, Xu XM. Biphasic bisperoxovanadium administration and Schwann cell transplantation for repair after cervical contusive spinal cord injury. Exp Neurol 2014; 264:163-72. [PMID: 25510318 DOI: 10.1016/j.expneurol.2014.12.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Revised: 11/30/2014] [Accepted: 12/03/2014] [Indexed: 11/20/2022]
Abstract
Schwann cells (SCs) hold promise for spinal cord injury (SCI) repair; however, there are limitations for its use as a lone treatment. We showed that acute inhibition of the phosphatase and tensin homolog deleted on chromosome ten (PTEN) by bisperoxovanadium (bpV) was neuroprotective and enhanced function following cervical hemicontusion SCI. We hypothesized that combining acute bpV therapy and delayed SC engraftment would further improve neuroprotection and recovery after cervical SCI. Adult female Sprague-Dawley (SD) rats were randomly sorted into 5 groups: sham, vehicle, bpV, SC transplantation, and bpV+SC transplantation. SCs were isolated from adult green fluorescent protein (GFP)-expressing SD rats (GFP-SCs). 200 μg/kg bpV(pic) was administered intraperitoneally (IP) twice daily for 7 days post-SCI in bpV-treated groups. GFP-SCs (1×10(6) in 5 μl medium) were transplanted into the lesion epicenter at the 8th day post-SCI. Forelimb function was tested for 10 weeks and histology was assessed. bpV alone significantly reduced lesion (by 40%, p<0.05) and cavitation (by 65%, p<0.05) and improved functional recovery (p<0.05) compared to injury alone. The combination promoted similar neuroprotection (p<0.01 vs. injury); however, GFP-SCs alone did not. Both SC-transplanted groups exhibited remarkable long-term SC survival, SMI-31(+) axon ingrowth and RECA-1(+) vasculature presence in the SC graft; however, bpV+SCs promoted an 89% greater axon-to-lesion ratio than SCs only. We concluded that bpV likely contributed largely to the neuroprotective and functional benefits while SCs facilitated considerable host-tissue interaction and modification. The combination of the two shows promise as an attractive strategy to enhance recovery after SCI.
Collapse
Affiliation(s)
- Chandler L Walker
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Goodman Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Xiaofei Wang
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Goodman Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Carli Bullis
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Goodman Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Nai-Kui Liu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Goodman Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Qingbo Lu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Goodman Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Colin Fry
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Goodman Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Lingxiao Deng
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Xiao-Ming Xu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Goodman Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
38
|
White Matter Repair: Skin-Derived Precursors as a Source of Myelinating Cells. Can J Neurol Sci 2014; 37 Suppl 2:S34-41. [DOI: 10.1017/s0317167100022411] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
ABSTRACT:Stem cell based therapies hold great promise for repair and functional restoration following neurological injury and disease. Skin-derived precursors (or “SKPs”) are a novel, multipotent somatic stem cell that resides within the mammalian dermis. SKPs persist within the skin throughout adulthood and yet intriguingly, exhibit many similarities to embryonic neural crest stem cells (NCSCs). For example, SKPs give rise to both neural and mesodermal cell types, and the former appear biased to peripheral nervous system fates. As such, SKPs are capable of generating Schwann cells, the myelinating glial cell of the peripheral nervous system. Here we discuss our current understanding of the biological origin of SKPs and specifically the potential therapeutic utility of SKPs as a highly accessible and autologous source of Schwann cells for remyelination and repair of the injured or diseased nervous system.
Collapse
|
39
|
Wang Y, Wu X, Zhong Y, Shen J, Wu X, Ju S, Wang X. Effects of histone deacetylase inhibition on the survival, proliferation and migration of Schwann cells, as well as on the expression of neurotrophic factors and genes associated with myelination. Int J Mol Med 2014; 34:599-605. [PMID: 24888454 DOI: 10.3892/ijmm.2014.1792] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 05/06/2014] [Indexed: 11/06/2022] Open
Abstract
Trichostatin A (TSA), a histone deacetylase (HDAC) inhibitor, has been shown to have neuroprotective, neurotrophic and anti-inflammatory properties in both animal and cellular models of neurodegenerative disorders. In a previous study of ours, we demonstrated that TSA inhibited the proliferation and increased the differentiation of neuronal precursor cells (NPCs). However, the effects of TSA on Schwann cells (SCs) have not yet been fully elucidated. Thus, in the present study, using SCs derived from adult rat sciatic nerves, we investigated the effects of TSA on the survival, proliferation, migration and myelination of SCs. We found that TSA significantly induced SC death when used at high concentrations. We also observed that TSA promoted the proliferation of SCs in a time-dependent manner. In addition, TSA inhibited the migration of SCs. Moreover, RT-PCR revealed that TSA increased the mRNA expression of several neurotrophic factors and inhibited the expression of genes associated with myelination, including myelin basic protein (MBP) and myelin protein zero (MPZ). Taken together, our results suggest that TSA plays an important role in regulating the growth and biological function of SCs. These data may contribute to our understanding of TSA-based treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Yazhou Wang
- Laboratory Medicine Center, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Xingjun Wu
- Department of Neurology, Xuhui Central Hospital, Xuhui, Shanghai 200031, P.R. China
| | - Yueping Zhong
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Jianhong Shen
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Xinhua Wu
- Surgical Comprehensive Laboratory, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Shaoqing Ju
- Laboratory Medicine Center, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Xiaofei Wang
- Laboratory Medicine Center, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| |
Collapse
|
40
|
Effects of cerebrolysin on rat Schwann cells in vitro. Acta Histochem 2014; 116:820-30. [PMID: 24636538 DOI: 10.1016/j.acthis.2014.01.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 01/29/2014] [Accepted: 01/30/2014] [Indexed: 12/11/2022]
Abstract
Although the peripheral nervous system (PNS) is capable of regeneration, these processes are limited. As a potential means to augment PNS regeneration, the effects of cerebrolysin (CL), a proteolytic peptide fraction, were tested in vitro on Schwann cell (SC) proliferation, stress resistance, phagocytic and cluster-forming capacity. Primary SC/fibrocyte co-cultures were prepared from dorsal root ganglia of 5-7-day-old rats. SCs were subjected to mechanical stress by media change and metabolic stress by serum glucose deprivation (SGD). Cell survival was assessed using MTT test. SC proliferation was determined by counting BrdU-labeled cells. SC clustering was studied by ImageJ analysis of S100 immunostaining. Wallerian degeneration (WD) was evaluated by measuring acetylcholine-esterase staining within sciatic nerves in vitro. It was found that CL caused no effect on MTT turnover in the tested doses. CL inhibited SC proliferation in a dose-dependent manner. Media change and additional SGD stress inhibited SC clustering. CL enhanced the reorganization of SC clusters and was able to counteract SGD-induced cluster defects. Moreover, CL accelerated WD in vitro. CL was able to enhance the functions of SCs that are relevant to nerve regeneration. Thus, our findings suggest that CL may be suitable for therapeutic usage to enhance PNS regeneration/reconstruction.
Collapse
|
41
|
Wang X, Xu XM. Long-term survival, axonal growth-promotion, and myelination of Schwann cells grafted into contused spinal cord in adult rats. Exp Neurol 2014; 261:308-19. [PMID: 24873728 DOI: 10.1016/j.expneurol.2014.05.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 05/18/2014] [Accepted: 05/20/2014] [Indexed: 01/25/2023]
Abstract
Schwann cells (SCs) have been considered to be one of the most promising cell types for transplantation to treat spinal cord injury (SCI) due to their unique growth-promoting properties. Despite the extensive use as donor cells for transplantation in SCI models, the fate of SCs is controversial due in part to the lack of a reliable marker for tracing the grafted SCs. To precisely assess the fate and temporal profile of transplanted SCs, we isolated purified SCs from sciatic nerves of adult transgenic rats overexpressing GFP (SCs-GFP). SCs-GFP were directly injected into the epicenter of a moderate contusive SCI at the mid-thoracic level at 1week post-injury. The number of SCs-GFP or SCs-GFP labeled with Bromodeoxyuridine (BrdU) was quantified at 5min, 1day, and 1, 2, 4, 12 and 24weeks after cell injection. Basso, Beattie, and Bresnahan (BBB) locomotor rating scale, footfall error, thermal withdrawal latency, and footprint analysis were performed before and after the SCs-GFP transplantation. After transplantation, SCs-GFP quickly filled the lesion cavity. A remarkable survival of grafted SCs-GFP up to 24weeks post-grafting was observed with clearly identified SC individuals. SCs-GFP proliferated after injection, peaked at 2weeks (26% of total SCs-GFP), decreased thereafter, and ceased at 12weeks post-grafting. Although grafted SCs-GFP were mainly confined within the border of surrounding host tissue, they migrated along the central canal for up to 5.0mm at 4weeks post-grafting. Within the lesion site, grafted SCs-GFP myelinated regenerated axons and expressed protein zero (P0) and myelin basic protein (MBP). Within the SCs-GFP grafts, new blood vessels were formed. Except for a significant decrease of angle of rotation in the footprint analysis, we did not observe significant behavioral improvements in BBB locomotor rating scale, thermal withdrawal latency, or footfall errors, compared to the control animals that received no SCs-GFP. We conclude that SCs-GFP can survive remarkably well, proliferate, migrate along the central canal, and myelinate regenerated axons when being grafted into a clinically-relevant contusive SCI in adult rats. Combinatorial strategies, however, are essential to achieve a more meaningful functional regeneration of which SCs may play a significant role.
Collapse
Affiliation(s)
- Xiaofei Wang
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Xiao-Ming Xu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
42
|
Kanno H, Pressman Y, Moody A, Berg R, Muir EM, Rogers JH, Ozawa H, Itoi E, Pearse DD, Bunge MB. Combination of engineered Schwann cell grafts to secrete neurotrophin and chondroitinase promotes axonal regeneration and locomotion after spinal cord injury. J Neurosci 2014; 34:1838-55. [PMID: 24478364 PMCID: PMC3905147 DOI: 10.1523/jneurosci.2661-13.2014] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 11/14/2013] [Accepted: 12/19/2013] [Indexed: 11/21/2022] Open
Abstract
Transplantation of Schwann cells (SCs) is a promising therapeutic strategy for spinal cord repair. SCs introduced into lesions support axon regeneration, but because these axons do not exit the transplant, additional approaches with SCs are needed. Here, we transplanted SCs genetically modified to secrete a bifunctional neurotrophin (D15A) and chondroitinase ABC (ChABC) into a subacute contusion injury in rats. We examined the effects of these modifications on graft volume, SC number, degradation of chondroitin sulfate proteoglycans (CSPGs), astrogliosis, SC myelination of axons, propriospinal and supraspinal axon numbers, locomotor outcome (BBB scoring, CatWalk gait analysis), and mechanical and thermal sensitivity on the hind paws. D15A secreted from transplanted SCs increased graft volume and SC number and myelinated axon number. SCs secreting ChABC significantly decreased CSPGs, led to some egress of SCs from the graft, and increased propriospinal and 5-HT-positive axons in the graft. SCs secreting both D15A and ChABC yielded the best responses: (1) the largest number of SC myelinated axons, (2) more propriospinal axons in the graft and host tissue around and caudal to it, (3) more corticospinal axons closer to the graft and around and caudal to it, (4) more brainstem neurons projecting caudal to the transplant, (5) increased 5-HT-positive axons in the graft and caudal to it, (6) significant improvement in aspects of locomotion, and (7) improvement in mechanical and thermal allodynia. This is the first evidence that the combination of SC transplants engineered to secrete neurotrophin and chondroitinase further improves axonal regeneration and locomotor and sensory function.
Collapse
Affiliation(s)
- Haruo Kanno
- Miami Project to Cure Paralysis
- Department of Orthopaedic Surgery, Tohoku University School of Medicine, Sendai, Japan, 9808574
| | | | | | | | - Elizabeth M. Muir
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EG, United Kingdom, and
| | - John H. Rogers
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EG, United Kingdom, and
| | - Hiroshi Ozawa
- Department of Orthopaedic Surgery, Tohoku University School of Medicine, Sendai, Japan, 9808574
| | - Eiji Itoi
- Department of Orthopaedic Surgery, Tohoku University School of Medicine, Sendai, Japan, 9808574
| | - Damien D. Pearse
- Miami Project to Cure Paralysis
- Department of Neurological Surgery
- Neuroscience Program
- Interdisciplinary Stem Cell Institute, and
| | - Mary Bartlett Bunge
- Miami Project to Cure Paralysis
- Department of Neurological Surgery
- Neuroscience Program
- Interdisciplinary Stem Cell Institute, and
- Department of Cell Biology, University of Miami Miller School of Medicine, Miami, Florida 33136
| |
Collapse
|
43
|
Marques SA, de Almeida FM, Mostacada K, Martinez AMB. A highly reproducible mouse model of compression spinal cord injury. Methods Mol Biol 2014; 1162:149-56. [PMID: 24838965 DOI: 10.1007/978-1-4939-0777-9_12] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Experimental spinal cord injury (SCI) can maintain the continuity of the spinal cord, as in the contusion (e.g., weight-fall) or compression models, or not, when there is a partial or a complete transection. The majority of acute human SCI is not followed by complete transection, but there is a combination of contusion, compression, and possibly partial transection. The method described here is a compressive mouse model that presents a combination of contusion and compression components and has many facilities in its execution. This lesion was established by our group and represents a simple, reliable, and inexpensive clip compression model with functional and morphological reproducibility. In this chapter we describe, step by step, the protocol of this experimental SCI.
Collapse
Affiliation(s)
- Suelen Adriani Marques
- Laboratório de Regeneração Neural e Função, Departamento de Neurobiologia, Fluminense Federal University, Niterói, RJ, Brazil
| | | | | | | |
Collapse
|
44
|
Zhou J, Lu P, Ren H, Zheng Z, Ji J, Liu H, Jiang F, Ling S, Heng BC, Hu X, Ouyang H. 17β-estradiol protects human eyelid-derived adipose stem cells against cytotoxicity and increases transplanted cell survival in spinal cord injury. J Cell Mol Med 2013; 18:326-43. [PMID: 24373095 PMCID: PMC3930419 DOI: 10.1111/jcmm.12191] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 10/17/2013] [Indexed: 01/09/2023] Open
Abstract
Stem cell transplantation represents a promising strategy for the repair of spinal cord injury (SCI). However, the low survival rate of the grafted cells is a major obstacle hindering clinical success because of ongoing secondary injury processes, which includes excitotoxicity, inflammation and oxidative stress. Previous studies have shown that 17b-estradiol (E2) protects several cell types against cytotoxicity. Thus, we examined the effects of E2 on the viability of human eyelid adipose-derived stem cells (hEASCs) in vitro with hydrogen peroxide (H2O2)-induced cell model and in vivo within a rat SCI model. Our results showed that E2 protected hEASCs against H2O2-induced cell death in vitro, and enhanced the survival of grafted hEASCs in vivo by reducing apoptosis. Additionally, E2 also enhanced the secretion of growth factors by hEASCs, thereby making the local microenvironment more conducive for tissue regeneration. Overall, E2 administration enhanced the therapeutic efficacy of hEASCs transplantation and facilitated motor function recovery after SCI. Hence, E2 administration may be an intervention of choice for enhancing survival of transplanted hEASCs after SCI.
Collapse
Affiliation(s)
- Jing Zhou
- Center for Stem Cell and Tissue Engineering, School of Medicine, Zhejiang University, Hangzhou, China; Zhejiang Provincial Key Laboratory of Tissue Engineering and Regenerative Medicine, Hangzhou, China; Institute of Anatomy and Cell Biology, Medical College, Zhejiang University, Hangzhou, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
The effect of a polyurethane-based reverse thermal gel on bone marrow stromal cell transplant survival and spinal cord repair. Biomaterials 2013; 35:1924-31. [PMID: 24331711 DOI: 10.1016/j.biomaterials.2013.11.062] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 11/21/2013] [Indexed: 01/09/2023]
Abstract
Cell therapy for nervous tissue repair is limited by low transplant survival. We investigated the effects of a polyurethane-based reverse thermal gel, poly(ethylene glycol)-poly(serinol hexamethylene urethane) (ESHU) on bone marrow stromal cell (BMSC) transplant survival and repair using a rat model of spinal cord contusion. Transplantation of BMSCs in ESHU at three days post-contusion resulted in a 3.5-fold increase in BMSC survival at one week post-injury and a 66% increase in spared nervous tissue volume at four weeks post-injury. These improvements were accompanied by enhanced hindlimb motor and sensorimotor recovery. In vitro, we found that ESHU protected BMSCs from hydrogen peroxide-mediated death, resulting in a four-fold increase in BMSC survival with two-fold fewer BMSCs expressing the apoptosis marker, caspase 3 and the DNA oxidation marker, 8-oxo-deoxyguanosine. We argue that ESHU protected BMSCs transplanted is a spinal cord contusion from death thereby augmenting their effects on neuroprotection leading to improved behavioral restoration. The data show that the repair effects of intraneural BMSC transplants depend on the degree of their survival and may have a widespread impact on cell-based regenerative medicine.
Collapse
|
46
|
Wills TE, Batchelor PE, Kerr NF, Sidon K, Katz M, Loy C, Howells DW. Corticospinal tract sprouting in the injured rat spinal cord stimulated by Schwann cell preconditioning of the motor cortex. Neurol Res 2013; 35:763-72. [DOI: 10.1179/1743132813y.0000000199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Affiliation(s)
- Taryn E Wills
- Florey Institute of Neuroscience & Mental HealthUniversity of Melbourne, Australia
| | - Peter E Batchelor
- Florey Institute of Neuroscience & Mental HealthUniversity of Melbourne, Australia
| | - Nicole F Kerr
- Florey Institute of Neuroscience & Mental HealthUniversity of Melbourne, Australia
| | - Kate Sidon
- Florey Institute of Neuroscience & Mental HealthUniversity of Melbourne, Australia
| | - Melissa Katz
- Florey Institute of Neuroscience & Mental HealthUniversity of Melbourne, Australia
| | - Candace Loy
- Florey Institute of Neuroscience & Mental HealthUniversity of Melbourne, Australia
| | - David W Howells
- Florey Institute of Neuroscience & Mental HealthUniversity of Melbourne, Australia
| |
Collapse
|
47
|
Faroni A, Rothwell SW, Grolla AA, Terenghi G, Magnaghi V, Verkhratsky A. Differentiation of adipose-derived stem cells into Schwann cell phenotype induces expression of P2X receptors that control cell death. Cell Death Dis 2013; 4:e743. [PMID: 23887634 PMCID: PMC3730438 DOI: 10.1038/cddis.2013.268] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Revised: 05/24/2013] [Accepted: 06/19/2013] [Indexed: 01/19/2023]
Abstract
Schwann cells (SCs) are fundamental for development, myelination and regeneration in the peripheral nervous system. Slow growth rate and difficulties in harvesting limit SC applications in regenerative medicine. Several molecules, including receptors for neurosteroids and neurotransmitters, have been suggested to be implicated in regulating physiology and regenerative potential of SCs. Adipose-derived stem cells (ASCs) can be differentiated into SC-like phenotype (dASC) sharing morphological and functional properties with SC, thus representing a valid SC alternative. We have previously shown that dASC express γ-aminobutyric-acid receptors, which modulate their proliferation and neurotrophic potential, although little is known about the role of other neurotransmitters in ASC. In this study, we investigated the expression of purinergic receptors in dASC. Using reverse transriptase (RT)-PCR, western blot analyses and immunocytochemistry, we have demonstrated that ASCs express P2X3, P2X4 and P2X7 purinoceptors. Differentiation of ASCs towards glial phenotype was accompanied by upregulation of P2X4 and P2X7 receptors. Using Ca(2+)-imaging techniques, we have shown that stimulation of purinoceptors with adenosine 5'-triphosphate (ATP) triggers intracellular Ca(2+) signals, indicating functional activity of these receptors. Whole-cell voltage clamp recordings showed that ATP and BzATP induced ion currents that can be fully inhibited with specific P2X7 antagonists. Finally, using cytotoxicity assays we have shown that the increase of intracellular Ca(2+) leads to dASC death, an effect that can be prevented using a specific P2X7 antagonist. Altogether, these results show, for the first time, the presence of functional P2X7 receptors in dASC and their link with critical physiological processes such as cell death and survival. The presence of these novel pharmacological targets in dASC might open new opportunities for the management of cell survival and neurotrophic potential in tissue engineering approaches using dASC for nerve repair.
Collapse
Affiliation(s)
- A Faroni
- Faculty of Medical and Human Sciences, The University of Manchester, Manchester, UK.
| | | | | | | | | | | |
Collapse
|
48
|
Zustiak SP, Pubill S, Ribeiro A, Leach JB. Hydrolytically degradable poly(ethylene glycol) hydrogel scaffolds as a cell delivery vehicle: characterization of PC12 cell response. Biotechnol Prog 2013; 29:1255-64. [PMID: 24474590 DOI: 10.1002/btpr.1761] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 05/08/2013] [Indexed: 12/19/2022]
Abstract
The central nervous system (CNS) has a low intrinsic potential for regeneration following injury and disease, yet neural stem/progenitor cell (NPC) transplants show promise to provide a dynamic therapeutic in this complex tissue environment. Moreover, biomaterial scaffolds may improve the success of NPC-based therapeutics by promoting cell viability and guiding cell response. We hypothesized that a hydrogel scaffold could provide a temporary neurogenic environment that supports cell survival during encapsulation, and degrades completely in a temporally controlled manner to allow progression of dynamic cellular processes such as neurite extension. We utilized PC12 cells as a model cell line with an inducible neuronal phenotype to define key properties of hydrolytically degradable poly(ethylene glycol) hydrogel scaffolds that impact cell viability and differentiation following release from the degraded hydrogel. Adhesive peptide ligands (RGDS, IKVAV, or YIGSR), were required to maintain cell viability during encapsulation; as compared to YIGSR, the RGDS, and IKVAV ligands were associated with a higher percentage of PC12 cells that differentiated to the neuronal phenotype following release from the hydrogel. Moreover, among the hydrogel properties examined (e.g., ligand type, concentration), total polymer density within the hydrogel had the most prominent effect on cell viability, with densities above 15% w/v leading to decreased cell viability likely due to a higher shear modulus. Thus, by identifying key properties of degradable hydrogels that affect cell viability and differentiation following release from the hydrogel, we lay the foundation for application of this system towards future applications of the scaffold as a neural cell delivery vehicle.
Collapse
Affiliation(s)
- Silviya P Zustiak
- Dept. of Chemical and Biochemical Engineering, UMBC, 1000 Hilltop Circle, Baltimore, MD, 21250
| | | | | | | |
Collapse
|
49
|
Hill CE, Brodak DM, Bartlett Bunge M. Dissociated predegenerated peripheral nerve transplants for spinal cord injury repair: a comprehensive assessment of their effects on regeneration and functional recovery compared to Schwann cell transplants. J Neurotrauma 2012; 29:2226-43. [PMID: 22655857 DOI: 10.1089/neu.2012.2377] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Several recent studies suggest that predegenerated nerves (PDNs) or dissociated PDNs (dPDNs) can improve behavioral and histological outcomes following transplantation into the injured rat spinal cord. In the current study we tested the efficacy of dPDN transplantation by grafting cells isolated from the sciatic nerve 7 days after crush. We did not replicate one study, but rather assessed what appeared, based on five published reports, to be a reported robust effect of dPDN grafts on corticospinal tract (CST) regeneration and locomotor recovery. Using a standardized rodent spinal cord injury model (200 kD IH contusion) and transplantation procedure (injection of GFP⁺ cells 7 days post-SCI), we demonstrate that dPDN grafts survive within the injured spinal cord and promote the ingrowth of axons to a similar extent as purified Schwann cell (SC) grafts. We also demonstrate for the first time that while both dPDN and SC grafts promote the ingrowth of CGRP axons, neither graft results in mechanical or thermal hyperalgesia. Unlike previous studies, dPDN grafts did not promote long-distance axonal growth of CST axons, brainstem spinal axons, or ascending dorsal column sensory axons. Moreover, using a battery of locomotor tests (Basso Beattie Bresnahan [BBB] score, BBB subscore, inked footprint, Catwalk, and ladderwalk), we failed to detect any beneficial effects of dPDN transplantation on the recovery of locomotor function after SCI. We conclude that dPDN transplants are not sufficient to promote CST regeneration or locomotor recovery after SCI.
Collapse
Affiliation(s)
- Caitlin E Hill
- The Burke Medical Research Institute, 785 Mamaroneck Avenue, White Plains, NY 10605, USA.
| | | | | |
Collapse
|
50
|
Roet KCD, Eggers R, Verhaagen J. Noninvasive Bioluminescence Imaging of Olfactory Ensheathing Glia and Schwann Cells following Transplantation into the Lesioned Rat Spinal Cord. Cell Transplant 2012; 21:1853-65. [DOI: 10.3727/096368911x627471] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In this study, we assess the feasibility of bioluminescence imaging to monitor the survival of Schwann cells (SCs) and olfactory ensheathing glia cells (OECs) after implantation in the lesioned spinal cord of adult rats. To this end, purified SCs and OECs were genetically modified with lentiviral vectors encoding luciferase-2 and GFP and implanted in the lesioned dorsal column. The bioluminescent signal was monitored for over 3 months, and at 7 and 98 days postsurgery, the signal was compared to standard histological analysis of GFP expression in the spinal cords. The temporal profile of the bioluminescent signal showed three distinct phases for both cell types. (I) A relatively stable signal in the first week. (II) A progressive decline in signal strength in the second and third week. (III) After the third week, the average bioluminescent signal stabilized for both cell types. Interestingly, in the first week, the peak of the bioluminescent signal after luciferin injection was delayed when compared to later time points. Similar to in vitro, our data indicated a linear relationship between the in vivo bioluminescent signal and the GFP signal of the SCs and OECs in the spinal cords when the results of both the 7 and 98 day time points are combined. This is the first report of the use of in vivo bioluminescence to monitor cell survival in the lesioned rat spinal cord. Bioluminescence could be a potentially powerful, non-invasive strategy to examine the efficacy of treatments that aim to improve the survival of proregenerative cells transplanted in the injured rat spinal cord.
Collapse
Affiliation(s)
- Kasper C. D. Roet
- Department of Neuroregeneration, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Ruben Eggers
- Department of Neuroregeneration, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Joost Verhaagen
- Department of Neuroregeneration, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, Amsterdam, The Netherlands
| |
Collapse
|