1
|
Tochon L, Henkous N, Besson M, Maskos U, David V. Distinct Chrna5 mutations link excessive alcohol use to types I/II vulnerability profiles and IPN GABAergic neurons. Transl Psychiatry 2024; 14:461. [PMID: 39505853 DOI: 10.1038/s41398-024-03164-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/08/2024] [Accepted: 10/11/2024] [Indexed: 11/08/2024] Open
Abstract
Genome wide association and animal studies have implicated genetic variations in CHRNΑ5, encoding the α5 subunit-containing nicotinic acetylcholine receptors (α5*nAChRs), as a risk factor for developing alcohol use disorders (AUDs). To understand how α5*nAChR mutations may influence alcohol (EtOH) drinking behavior, we used a two-bottle choice procedure with intermittent access to alcohol in male and female transgenic mice expressing either the highly frequent human single nucleotide polymorphism (α5SNP/rs16969968) or a deletion of the Chrna5 gene (α5KO). AUDs-related preconsommatory traits (anxiety, sensation-seeking and impulsivity) were assessed with a battery of relevant tasks (elevated-plus maze, novel place preference and step-down inhibitory avoidance). The implication of the α5-expressing IPN GABAergic neurons in AUDs and related behavioral traits was verified using neurospecific lentiviral (LV)-induced reexpression of the α5 subunit in α5KOxGAD-Cre mice. Both α5SNP and α5KO mice showed over-consumption of EtOH, but displayed opposite vulnerability profiles consistent with Cloninger's subtypes of human AUDs. α5SNP mice showed Type I-like characteristics, i.e., high anxiety, novelty avoidance, whereas α5KOs exhibited Type II-like features such as low anxiety and high impulsivity. LV re-expression of the α5 subunit in IPN GABAergic neurons restored the control of EtOH intake and improved the impulsive phenotype. We demonstrate that the SNP (rs16969968) or null mutation of Chrna5 result in increased volitional EtOH consumption but opposite effects on anxiety, novelty-seeking and impulsive-like behaviors that match Cloninger type I and II of AUDs, including sex-related variations. IPN GABAergic neurons expressing α5*nAChRs play a key role in limiting both EtOH drinking and motor impulsivity.
Collapse
Affiliation(s)
- Léa Tochon
- Univ. Bordeaux, CNRS, EPHE, INCIA, UMR 5287, Bordeaux, France.
| | - Nadia Henkous
- Univ. Bordeaux, CNRS, EPHE, INCIA, UMR 5287, Bordeaux, France
| | - Morgane Besson
- Institut Pasteur, Université Paris Cité, CNRS UMR 3571, Integrative Neurobiology of Cholinergic Systems, Paris, France
| | - Uwe Maskos
- Institut Pasteur, Université Paris Cité, CNRS UMR 3571, Integrative Neurobiology of Cholinergic Systems, Paris, France
| | - Vincent David
- Univ. Bordeaux, CNRS, EPHE, INCIA, UMR 5287, Bordeaux, France.
| |
Collapse
|
2
|
Venkatesh SK, Stangl BL, Yan J, Quijano Cardé NA, Stein EA, Diazgranados N, Schwandt ML, Sun H, Momenan R, Goldman D, De Biasi M, Ramchandani VA. Smoking-Related Increases in Alcohol Outcomes and Preliminary Evidence for the Protective Effect of a Functional Nicotine Receptor Gene (CHRNA5) Variant on Alcohol Consumption in Individuals Without Alcohol Use Disorder. Int J Neuropsychopharmacol 2024; 27:pyae035. [PMID: 39208422 PMCID: PMC11450629 DOI: 10.1093/ijnp/pyae035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Alcohol and nicotine interact with the nicotinic acetylcholine receptor system to alter reward-related responses, thereby contributing to the co-use and misuse of these drugs. A missense polymorphism rs16969968 (G>A) in the CHRNA5 gene has shown a strong association with nicotine-related phenotypes. However, less is known about the impact of this variant on alcohol-related phenotypes. METHODS We assessed the main and interactive effect of smoking and rs16969968 polymorphism on alcohol consumption using the Alcohol Use Disorders Identification Test (AUDIT), Timeline Follow Back (TLFB), and Lifetime Drinking History (LDH) in 980 healthy adults without alcohol use disorder. We further examined the effect of the rs16969968 polymorphism on acute alcohol consumption using a free-access i.v. alcohol self-administration (IV-ASA) human laboratory paradigm in a subset of 153 nonsmoking participants. Subjective alcohol responses, alcohol sensitivity, and expectancy measures were compared between genotype groups (GG; AA/AG). RESULTS We observed a significant association of smoking with AUDIT, TLFB, and LDH measures across genotype groups, with smokers showing higher scores compared with nonsmokers. Additionally, we found an association between genotype and TLFB-total drinks in the IV-ASA subset, with the GG group showing higher scores than AA/AG group. Relatedly, the alcohol negative expectancy score was significantly lower in the GG group than the AA/AG group. CONCLUSIONS Our findings underscore the association of smoking with alcohol measures. We found preliminary evidence for the protective effect of the functional CHRNA5 polymorphism on alcohol consumption and its association with increased negative alcohol expectancies, which highlights the substantial heterogeneity in alcohol responses.
Collapse
Affiliation(s)
- Shyamala K Venkatesh
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Human Psychopharmacology Laboratory, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Bethany L Stangl
- Human Psychopharmacology Laboratory, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Jia Yan
- Human Psychopharmacology Laboratory, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Natalia A Quijano Cardé
- Pharmacology Graduate Group, Biomedical Graduate Studies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Elliot A Stein
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland, USA
| | - Nancy Diazgranados
- Office of the Clinical Director, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Melanie L Schwandt
- Office of the Clinical Director, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Hui Sun
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Reza Momenan
- Clinical Neuroimaging Research Core, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - David Goldman
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
- Office of the Clinical Director, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Mariella De Biasi
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Vijay A Ramchandani
- Human Psychopharmacology Laboratory, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
3
|
Zuo Y, Rose JE, Davis JM, Behrens KA, Golaub AA, Chandra UU, Aarons EK, Morgan-Glover JD, Mukhin AG. Nicotinic Receptor Alpha-5 Subunit Gene Polymorphism is Associated With Heavy Smoking Under a Range of Nicotine Dosing Conditions. Nicotine Tob Res 2024; 26:1296-1304. [PMID: 38654694 PMCID: PMC11417125 DOI: 10.1093/ntr/ntae075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 01/26/2024] [Accepted: 04/08/2024] [Indexed: 04/26/2024]
Abstract
INTRODUCTION This study aimed to assess the role of the rs16969968 variant of nicotinic receptor alpha-5 subunit in regulating smoking behavior and nicotine intake in response to nicotine manipulations among dependent smokers in a naturalistic environment. AIMS AND METHODS Sixty-nine adults (19 females) smoking 10 or more cigarettes per day (CPD) were asked to complete four 2-week study phases during which they smoked exclusively one of two types of Spectrum nicotine research cigarettes (FTC nicotine yield 0.8 and 1.6 mg, respectively), their usual brand of cigarettes, or their usual brand of cigarettes while wearing a 21-mg nicotine patch. Measurements included rs16969968 genotype, number of CPD, smoking topography, and plasma cotinine. RESULTS Compared to controls (G/G carriers), A allele carriers reported smoking 4 to 5 more CPD across all conditions (all ps < .05). Mean total smoke volume per day and cotinine were greater in A allele carriers than in controls (ps = .05, .046, respectively). No significant genotype differences were found in smoking compensation indices for the switch from medium to high-nicotine-yield cigarettes. Nicotine patch-induced reductions in cigarettes smoked per day and total smoke volume per day showed significant interactions between genotype and pre-patch levels, with heavier smokers showing greater effects of genotype (p = .052 and p = .006, respectively). CONCLUSIONS Results suggest that the rs16969968 variants regulate the heaviness of smoking primarily by their impact on daily numbers of cigarettes smoked, but no genotype differences were found in smoking compensation after switching from medium to high-nicotine cigarettes. IMPLICATIONS The differences in daily cigarette consumption between rs16969968 risk-allele carriers and controls are shown to be consistent regardless of manipulations of cigarette nicotine content and transdermal nicotine supplementation and markedly greater among dependent smokers than those observed in the general smoker populations. G/G allele carriers, relative to A allele carriers, appeared to be more sensitive to the nicotine patch manipulation, reducing their smoking to a greater extent. These findings support continued efforts in the development of personalized intervention strategies to reduce the rs16969968-conveyed genetic propensity for heavy smoking.
Collapse
Affiliation(s)
- Yantao Zuo
- Department Psychiatry and Behavioral Sciences, School of Medicine, Duke University, Durham, NC, USA
| | - Jed E Rose
- Department Psychiatry and Behavioral Sciences, School of Medicine, Duke University, Durham, NC, USA
| | - James M Davis
- Department of Medicine, School of Medicine, Duke University, Durham, NC, USA
- Duke Cancer Institute, School of Medicine, Duke University, Durham NC, USA
| | - Kelsey A Behrens
- Department Psychiatry and Behavioral Sciences, School of Medicine, Duke University, Durham, NC, USA
| | - Aisha A Golaub
- Department Psychiatry and Behavioral Sciences, School of Medicine, Duke University, Durham, NC, USA
| | - Upasana U Chandra
- Department Psychiatry and Behavioral Sciences, School of Medicine, Duke University, Durham, NC, USA
| | - Emily K Aarons
- Department Psychiatry and Behavioral Sciences, School of Medicine, Duke University, Durham, NC, USA
| | - Janiece D Morgan-Glover
- Department Psychiatry and Behavioral Sciences, School of Medicine, Duke University, Durham, NC, USA
| | - Alexey G Mukhin
- Department Psychiatry and Behavioral Sciences, School of Medicine, Duke University, Durham, NC, USA
| |
Collapse
|
4
|
Rybnicek J, Chen Y, Milic M, Tio ES, McLaurin J, Hohman TJ, De Jager PL, Schneider JA, Wang Y, Bennett DA, Tripathy S, Felsky D, Lambe EK. CHRNA5 links chandelier cells to severity of amyloid pathology in aging and Alzheimer's disease. Transl Psychiatry 2024; 14:83. [PMID: 38331937 PMCID: PMC10853183 DOI: 10.1038/s41398-024-02785-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/09/2024] [Accepted: 01/16/2024] [Indexed: 02/10/2024] Open
Abstract
Changes in high-affinity nicotinic acetylcholine receptors are intricately connected to neuropathology in Alzheimer's Disease (AD). Protective and cognitive-enhancing roles for the nicotinic α5 subunit have been identified, but this gene has not been closely examined in the context of human aging and dementia. Therefore, we investigate the nicotinic α5 gene CHRNA5 and the impact of relevant single nucleotide polymorphisms (SNPs) in prefrontal cortex from 922 individuals with matched genotypic and post-mortem RNA sequencing in the Religious Orders Study and Memory and Aging Project (ROS/MAP). We find that a genotype robustly linked to increased expression of CHRNA5 (rs1979905A2) predicts significantly reduced cortical β-amyloid load. Intriguingly, co-expression analysis suggests CHRNA5 has a distinct cellular expression profile compared to other nicotinic receptor genes. Consistent with this prediction, single nucleus RNA sequencing from 22 individuals reveals CHRNA5 expression is disproportionately elevated in chandelier neurons, a distinct subtype of inhibitory neuron known for its role in excitatory/inhibitory (E/I) balance. We show that chandelier neurons are enriched in amyloid-binding proteins compared to basket cells, the other major subtype of PVALB-positive interneurons. Consistent with the hypothesis that nicotinic receptors in chandelier cells normally protect against β-amyloid, cell-type proportion analysis from 549 individuals reveals these neurons show amyloid-associated vulnerability only in individuals with impaired function/trafficking of nicotinic α5-containing receptors due to homozygosity of the missense CHRNA5 SNP (rs16969968A2). Taken together, these findings suggest that CHRNA5 and its nicotinic α5 subunit exert a neuroprotective role in aging and Alzheimer's disease centered on chandelier interneurons.
Collapse
Affiliation(s)
- Jonas Rybnicek
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Yuxiao Chen
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Milos Milic
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Earvin S Tio
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - JoAnne McLaurin
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Timothy J Hohman
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Philip L De Jager
- Center for Translational & Computational Neuroimmunology, Department of Neurology and the Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | - Julie A Schneider
- Department of Pathology, Rush University, Chicago, IL, USA
- Department of Neurological Sciences, Rush University, Chicago, IL, USA
| | - Yanling Wang
- Department of Neurological Sciences, Rush University, Chicago, IL, USA
| | - David A Bennett
- Department of Neurological Sciences, Rush University, Chicago, IL, USA
| | - Shreejoy Tripathy
- Department of Physiology, University of Toronto, Toronto, ON, Canada.
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON, Canada.
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada.
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| | - Daniel Felsky
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON, Canada.
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada.
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| | - Evelyn K Lambe
- Department of Physiology, University of Toronto, Toronto, ON, Canada.
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
- Department of OBGYN, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
5
|
Papke RL. The many enigmas of nicotine. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2023; 99:327-354. [PMID: 38467485 DOI: 10.1016/bs.apha.2023.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
This review discusses the diverse effects of nicotine on the various nicotinic acetylcholine receptors of the central and peripheral nervous system and how those effects may promote the usage and addiction to tobacco products.
Collapse
Affiliation(s)
- Roger L Papke
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, United States.
| |
Collapse
|
6
|
Yang K, McLaughlin I, Shaw JK, Quijano-Cardé N, Dani JA, De Biasi M. CHRNA5 gene variation affects the response of VTA dopaminergic neurons during chronic nicotine exposure and withdrawal. Neuropharmacology 2023; 235:109547. [PMID: 37116611 PMCID: PMC10249248 DOI: 10.1016/j.neuropharm.2023.109547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/07/2023] [Accepted: 04/13/2023] [Indexed: 04/30/2023]
Abstract
Nicotine is the principal psychoactive component in tobacco that drives addiction through its action on neuronal nicotinic acetylcholine receptors (nAChR). The nicotinic receptor gene CHRNA5, which encodes the α5 subunit, is associated with nicotine use and dependence. In humans, the CHRNA5 missense variant rs16969968 (G > A) is associated with increased risk for nicotine dependence and other smoking-related phenotypes. In rodents, α5-containing nAChRs in dopamine (DA) neurons within the ventral tegmental area (VTA) powerfully modulate nicotine reward and reinforcement. Although the neuroadaptations caused by long-term nicotine exposure are being actively delineated at both the synaptic and behavioral levels, the contribution of α5-containing nAChRs to the cellular adaptations associated with long-term nicotine exposure remain largely unknown. To gain insight into the mechanisms behind the influence of α5-containing nAChRs and the rs16969968 polymorphism on nicotine use and dependence, we used electrophysiological approaches to examine changes in nAChR function arising in VTA neurons during chronic nicotine exposure and multiple stages of nicotine withdrawal. Our results demonstrate that CHRNA5 mutation leads to profound changes in VTA nAChR function at baseline, during chronic nicotine exposure, and during short-term and prolonged withdrawal. Whereas nAChR function was suppressed in DA neurons from WT mice undergoing withdrawal relative to drug-naïve or nicotine-drinking mice, α5-null mice exhibited an increase in nAChR function during nicotine exposure that persisted throughout 5-10 weeks of withdrawal. Re-expressing the hypofunctional rs16969968 CHRNA5 variant in α5-null VTA DA neurons did not rescue the phenotype, with α5-SNP neurons displaying a similar increased response to ACh during nicotine exposure and early stages of withdrawal. These results demonstrate the importance of VTA α5-nAChRs in the response to nicotine and implicate them in the time course of withdrawal.
Collapse
Affiliation(s)
- Kechun Yang
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ian McLaughlin
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jessica K Shaw
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Natalia Quijano-Cardé
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Pharmacology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - John A Dani
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Mariella De Biasi
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
7
|
Souf YM, Lokaj G, Kuruva V, Saed Y, Raviglione D, Brik A, Nicke A, Inguimbert N, Dutertre S. Synthesis and Biological Activity of Novel α-Conotoxins Derived from Endemic Polynesian Cone Snails. Mar Drugs 2023; 21:356. [PMID: 37367681 DOI: 10.3390/md21060356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/28/2023] Open
Abstract
α-Conotoxins are well-known probes for the characterization of the various subtypes of nicotinic acetylcholine receptors (nAChRs). Identifying new α-conotoxins with different pharmacological profiles can provide further insights into the physiological or pathological roles of the numerous nAChR isoforms found at the neuromuscular junction, the central and peripheral nervous systems, and other cells such as immune cells. This study focuses on the synthesis and characterization of two novel α-conotoxins obtained from two species endemic to the Marquesas Islands, namely Conus gauguini and Conus adamsonii. Both species prey on fish, and their venom is considered a rich source of bioactive peptides that can target a wide range of pharmacological receptors in vertebrates. Here, we demonstrate the versatile use of a one-pot disulfide bond synthesis to achieve the α-conotoxin fold [Cys 1-3; 2-4] for GaIA and AdIA, using the 2-nitrobenzyl (NBzl) protecting group of cysteines for effective regioselective oxidation. The potency and selectivity of GaIA and AdIA against rat nicotinic acetylcholine receptors were investigated electrophysiologically and revealed potent inhibitory activities. GaIA was most active at the muscle nAChR (IC50 = 38 nM), whereas AdIA was most potent at the neuronal α6/3 β2β3 subtype (IC50 = 177 nM). Overall, this study contributes to a better understanding of the structure-activity relationships of α-conotoxins, which may help in the design of more selective tools.
Collapse
Affiliation(s)
- Yazid Mohamed Souf
- CRIOBE, UAR CNRS-EPHE-UPVD 3278, Université de Perpignan Via Domitia, 58 Avenue Paul Alduy, 66860 Perpignan, France
| | - Gonxhe Lokaj
- Faculty of Medicine, Walther Straub Institute of Pharmacology and Toxicology, Ludwig Maximilian University of Munich, Nußbaumstraße 26, 80336 Munich, Germany
| | - Veeresh Kuruva
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 3200008, Israel
| | - Yakop Saed
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 3200008, Israel
| | - Delphine Raviglione
- CRIOBE, UAR CNRS-EPHE-UPVD 3278, Université de Perpignan Via Domitia, 58 Avenue Paul Alduy, 66860 Perpignan, France
| | - Ashraf Brik
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 3200008, Israel
| | - Annette Nicke
- Faculty of Medicine, Walther Straub Institute of Pharmacology and Toxicology, Ludwig Maximilian University of Munich, Nußbaumstraße 26, 80336 Munich, Germany
| | - Nicolas Inguimbert
- CRIOBE, UAR CNRS-EPHE-UPVD 3278, Université de Perpignan Via Domitia, 58 Avenue Paul Alduy, 66860 Perpignan, France
| | | |
Collapse
|
8
|
Jung HU, Kim DJ, Baek EJ, Chung JY, Ha TW, Kim HK, Kang JO, Lim JE, Oh B. Gene-environment interaction explains a part of missing heritability in human body mass index. Commun Biol 2023; 6:324. [PMID: 36966243 PMCID: PMC10039928 DOI: 10.1038/s42003-023-04679-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 03/07/2023] [Indexed: 03/27/2023] Open
Abstract
Gene-environment (G×E) interaction could partially explain missing heritability in traits; however, the magnitudes of G×E interaction effects remain unclear. Here, we estimate the heritability of G×E interaction for body mass index (BMI) by subjecting genome-wide interaction study data of 331,282 participants in the UK Biobank to linkage disequilibrium score regression (LDSC) and linkage disequilibrium adjusted kinships-software for estimating SNP heritability from summary statistics (LDAK-SumHer) analyses. Among 14 obesity-related lifestyle factors, MET score, pack years of smoking, and alcohol intake frequency significantly interact with genetic factors in both analyses, accounting for the partial variance of BMI. The G×E interaction heritability (%) and standard error of these factors by LDSC and LDAK-SumHer are as follows: MET score, 0.45% (0.12) and 0.65% (0.24); pack years of smoking, 0.52% (0.13) and 0.93% (0.26); and alcohol intake frequency, 0.32% (0.10) and 0.80% (0.17), respectively. Moreover, these three factors are partially validated for their interactions with genetic factors in other obesity-related traits, including waist circumference, hip circumference, waist-to-hip ratio adjusted with BMI, and body fat percentage. Our results suggest that G×E interaction may partly explain the missing heritability in BMI, and two G×E interaction loci identified could help in understanding the genetic architecture of obesity.
Collapse
Affiliation(s)
- Hae-Un Jung
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, South Korea
| | - Dong Jun Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, South Korea
| | - Eun Ju Baek
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, South Korea
| | - Ju Yeon Chung
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, South Korea
| | - Tae Woong Ha
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, South Korea
| | - Han-Kyul Kim
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, South Korea
| | - Ji-One Kang
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, South Korea
| | - Ji Eun Lim
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, South Korea.
| | - Bermseok Oh
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, South Korea.
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, South Korea.
| |
Collapse
|
9
|
Quijano Cardé NA, Shaw J, Carter C, Kim S, Stitzel JA, Venkatesh SK, Ramchandani VA, De Biasi M. Mutation of the α5 nicotinic acetylcholine receptor subunit increases ethanol and nicotine consumption in adolescence and impacts adult drug consumption. Neuropharmacology 2022; 216:109170. [PMID: 35752273 PMCID: PMC9308728 DOI: 10.1016/j.neuropharm.2022.109170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 06/16/2022] [Accepted: 06/19/2022] [Indexed: 10/17/2022]
Abstract
Alcohol and nicotine are commonly used during adolescence, establishing long-lasting neuroplastic alterations that influence subsequent drug use and abuse. Drinking- and smoking-related traits have been extensively associated with variation in CHRNA5 - the gene that encodes the α5 subunit of neuronal nicotinic acetylcholine receptors (nAChRs). The single nucleotide polymorphism (SNP) rs16969968 in CHRNA5 encodes an amino acid substitution (D398N) that alters the function and pharmacokinetics of α5-containing nAChR. When expressed in rodents, this variant results in increased ethanol and nicotine operant self-administration. How disruption of α5-containing nAChRs influences adolescent ethanol and nicotine intake, and how it modulates interactions between these drugs has not been previously explored. In the present study, we examined volitional ethanol and nicotine consumption in adolescent mice (post-natal day 30-43) of both sexes with mutated (SNP) or lacking (KO) the α5 nAChR subunit. The effect of adolescent alcohol or nicotine exposure on home cage consumption of the opposite drug in adulthood and its modulation by Chrna5 mutation and sex were examined. During adolescence, we found that α5 nAChR disruption increases nicotine intake in mice of both sexes, but the effect on alcohol intake was only observed in females. The sex-specific increase in alcohol consumption in α5 SNP and KO was replicated in adulthood. The effect of adolescent alcohol or nicotine exposure on subsequent intake of the opposite drug in adulthood is modulated by sex and Chrna5 mutation. These observations suggest sex differences in the genetic architecture of alcohol dependence, and modulators of alcohol and nicotine interactions.
Collapse
Affiliation(s)
- Natalia A Quijano Cardé
- Pharmacology Graduate Group, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Jessica Shaw
- Department of Psychiatry, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Christina Carter
- Department of Psychiatry, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Seung Kim
- Neuroscience Program, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Jerry A Stitzel
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA
| | - Shyamala K Venkatesh
- Department of Psychiatry, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA; Laboratory of Human Psychopharmacology, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Vijay A Ramchandani
- Laboratory of Human Psychopharmacology, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Mariella De Biasi
- Pharmacology Graduate Group, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA; Department of Psychiatry, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
10
|
Chmielowiec K, Chmielowiec J, Strońska-Pluta A, Trybek G, Śmiarowska M, Suchanecka A, Woźniak G, Jaroń A, Grzywacz A. Association of Polymorphism CHRNA5 and CHRNA3 Gene in People Addicted to Nicotine. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:10478. [PMID: 36078193 PMCID: PMC9517777 DOI: 10.3390/ijerph191710478] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/19/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
Smoking is a chronic and relapsing addictive trait that harms public health. Among the many identified genetic variants of nicotine dependence, the variants in the CHRNA5/A3/B4 gene cluster on chromosome 15 that encode the α5, α3, and β4 subunits have recently received a lot of attention. Importantly, variants in this gene cluster have been associated with nicotine addiction. Among the many significant variants in this cluster, the polymorphism SNP rs16969968 seems to be the most interesting factor in nicotine addiction. This polymorphism causes an amino acid change from aspartate to asparagine at position 398 of the α5 nicotinic receptor protein sequence. Our study aimed to analyze three polymorphic variants: the rs16969968 located in the CHRNA5 gene, the rs578776 and rs1051730 located in the CHRNA3 gene in nicotine-addicted subjects, and in controls. Our study encompasses an association analysis of genotypes and haplotypes. A group of 401 volunteers was recruited for the study and divided into two groups: the study group consisted of addicted smokers and a control group of 200 unrelated non-smokers who were not dependent on any substance and healthy. A statistically significant difference was observed in the frequency of genotypes of the rs1051730 polymorphism of the CHRNA3 gene (χ2 = 6.704 p = 0.035). The T/T genotype was statistically significantly more frequent in the group of nicotine-dependent subjects. The haplotypes rs16969968, rs578776, and rs1051730 were distinguished, of which the G-T-T and G-C-T haplotypes were present only in the study group. With differences in frequencies, statistical significance was noted-for the G-T-T haplotype p = 0.01284 and the G-C-T haplotype p = 0.00775. The research stated that novel haplotypes G-T-T and G-C-T, though with very low-frequency variants in CHRNA3, were associated with nicotine addiction.
Collapse
Affiliation(s)
- Krzysztof Chmielowiec
- Department of Hygiene and Epidemiology, Collegium Medicum, University of Zielona Góra, 28 Zyty St., 65-046 Zielona Gora, Poland
| | - Jolanta Chmielowiec
- Department of Hygiene and Epidemiology, Collegium Medicum, University of Zielona Góra, 28 Zyty St., 65-046 Zielona Gora, Poland
| | - Aleksandra Strońska-Pluta
- Independent Laboratory of Health Promotion, Pomeranian Medical University in Szczecin, 70-204 Szczecin, Poland
| | - Grzegorz Trybek
- Department of Oral Surgery, Pomeranian Medical University in Szczecin, 72 Powstanców Wlkp. St., 70-111 Szczecin, Poland
| | - Małgorzata Śmiarowska
- Department of Pharmacokinetics and Therapeutic Drug Monitoring, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Aleksandra Suchanecka
- Independent Laboratory of Health Promotion, Pomeranian Medical University in Szczecin, 70-204 Szczecin, Poland
| | - Grzegorz Woźniak
- Private Dental Practice, 9 Bahnhofstrasse, 3940 Steg, Switzerland
| | - Aleksandra Jaroń
- Department of Oral Surgery, Pomeranian Medical University in Szczecin, 72 Powstanców Wlkp. St., 70-111 Szczecin, Poland
| | - Anna Grzywacz
- Independent Laboratory of Health Promotion, Pomeranian Medical University in Szczecin, 70-204 Szczecin, Poland
| |
Collapse
|
11
|
Brynildsen JK, Yang K, Lemchi C, Dani JA, De Biasi M, Blendy JA. A common SNP in Chrna5 enhances morphine reward in female mice. Neuropharmacology 2022; 218:109218. [PMID: 35973602 DOI: 10.1016/j.neuropharm.2022.109218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 08/01/2022] [Accepted: 08/08/2022] [Indexed: 11/25/2022]
Abstract
The single nucleotide polymorphism (SNP) D398N (rs16969968) in CHRNA5, the gene encoding the α5 subunit of the nicotinic acetylcholine receptors (nAChR), has been associated with both nicotine and opiate dependence in human populations. Expression of this SNP on presynaptic VTA dopaminergic (DA) neurons is known to cause a reduction in calcium signaling, leading to alterations in transmitter signaling and altered responses to drugs of abuse. To examine the impact of the Chrna5 SNP on opiate reward and underlying dopaminergic mechanisms, mice harboring two copies of the risk-associated allele (Chrna5 A/A) at a location equivalent to human rs16969968 were generated via CRISPR/cas9 genome editing. We sought to determine whether Chrna5 A/A mice show differences in sensitivity to rewarding properties of morphine using the conditioned place preference paradigm. When mice were tested two weeks after conditioning, female Chrna5 A/A mice showed significantly enhanced preference for the morphine-paired chamber relative to WT females, suggesting that this genotype may enhance opioid reward specifically in females. In contrast, Chrna5 genotype had no effect on locomotor sensitization in male or female mice. Relative to WT females, peak amplitude of ACh-gated currents recorded from VTA DA neurons in Chrna5 A/A females was potentiated 1 day after conditioning with morphine. Increased FOS expression was also observed in Chrna5 A/A mice relative to WT mice following exposure to the morphine CPP chamber. We propose that impaired α5 nAChR subunit function alters DA neuron response following repeated morphine exposures, and that this early cellular response could contribute to enhanced opiate reward two weeks after conditioning.
Collapse
Affiliation(s)
| | | | - Crystal Lemchi
- Department of Systems Pharmacology and Translational Therapeutics, USA
| | | | - Mariella De Biasi
- Department of Neuroscience, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Julie A Blendy
- Department of Systems Pharmacology and Translational Therapeutics, USA.
| |
Collapse
|
12
|
CHRNA5 rs16969968 and CHRNA3 rs578776 polymorphisms are associated with multiple nicotine dependence phenotypes in Bangladeshi smokers. Heliyon 2022; 8:e09947. [PMID: 35865987 PMCID: PMC9293740 DOI: 10.1016/j.heliyon.2022.e09947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/14/2021] [Accepted: 07/08/2022] [Indexed: 11/23/2022] Open
Abstract
Background A recent study has identified the role of CHRNA5-A3-B4 gene cluster variants rs16969968 and rs578776 of nicotinic acetylcholine receptors (nAChRs) on smoking status in Bengali ethnicity. The aim of the current study was to investigate whether these rs16969968-rs578776-rs11072768 single nucleotide polymorphisms (SNPs) of CHRNA5-A3-B4 gene cluster were associated with nicotine dependence (ND) and related phenotypes. Methods The Fagerstrom Test for Nicotine Dependence (FTND) and Cigarette Dependence Scale (CDS-12) were used to assess the degree of ND, and genotyping was done using the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method on a cohort of 129 male smokers participating in a structured questionnaire-based survey. Results Smokers with AA genotype of CHRNA5 rs16969968 SNP were at significantly increased risk of developing ND compared to its wild type variant with odds ratio (ORs) of 1.20 (FTND: 95% CI 0.25–5.37, p = 0.253) and 2.48 (CDS-12: 95% CI 0.46–13.26, p = 0.081), respectively. Conversely, smokers with AA genotype of CHRNA3 rs578776 variant had a strong protective effect against ND development (ORs = 0.27, 95% CI 0.09–0.80, p = 0.076). There was no such link reported in CHRNB4 rs11072768 variant carriers. Similarly, G-A/G-A diplotype of rs16969968_rs578776 variants was discovered to be a protective factor against ND. Moreover, demographic features such as age, occupation and dwelling status were found to be significantly associated with ND. Conclusion Taken together, CHRNA5-A3-B4 gene cluster variants rs16969968 and rs578776 as well as specific demographic characteristics regulate ND and related smoking phenotypes in Bangladeshi male smokers. Further studies with large sample sizes are required to substantially validate the significance.
Collapse
|
13
|
Wills L, Ables JL, Braunscheidel KM, Caligiuri SPB, Elayouby KS, Fillinger C, Ishikawa M, Moen JK, Kenny PJ. Neurobiological Mechanisms of Nicotine Reward and Aversion. Pharmacol Rev 2022; 74:271-310. [PMID: 35017179 PMCID: PMC11060337 DOI: 10.1124/pharmrev.121.000299] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 08/24/2021] [Indexed: 12/27/2022] Open
Abstract
Neuronal nicotinic acetylcholine receptors (nAChRs) regulate the rewarding actions of nicotine contained in tobacco that establish and maintain the smoking habit. nAChRs also regulate the aversive properties of nicotine, sensitivity to which decreases tobacco use and protects against tobacco use disorder. These opposing behavioral actions of nicotine reflect nAChR expression in brain reward and aversion circuits. nAChRs containing α4 and β2 subunits are responsible for the high-affinity nicotine binding sites in the brain and are densely expressed by reward-relevant neurons, most notably dopaminergic, GABAergic, and glutamatergic neurons in the ventral tegmental area. High-affinity nAChRs can incorporate additional subunits, including β3, α6, or α5 subunits, with the resulting nAChR subtypes playing discrete and dissociable roles in the stimulatory actions of nicotine on brain dopamine transmission. nAChRs in brain dopamine circuits also participate in aversive reactions to nicotine and the negative affective state experienced during nicotine withdrawal. nAChRs containing α3 and β4 subunits are responsible for the low-affinity nicotine binding sites in the brain and are enriched in brain sites involved in aversion, including the medial habenula, interpeduncular nucleus, and nucleus of the solitary tract, brain sites in which α5 nAChR subunits are also expressed. These aversion-related brain sites regulate nicotine avoidance behaviors, and genetic variation that modifies the function of nAChRs in these sites increases vulnerability to tobacco dependence and smoking-related diseases. Here, we review the molecular, cellular, and circuit-level mechanisms through which nicotine elicits reward and aversion and the adaptations in these processes that drive the development of nicotine dependence. SIGNIFICANCE STATEMENT: Tobacco use disorder in the form of habitual cigarette smoking or regular use of other tobacco-related products is a major cause of death and disease worldwide. This article reviews the actions of nicotine in the brain that contribute to tobacco use disorder.
Collapse
Affiliation(s)
- Lauren Wills
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York
| | - Jessica L Ables
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York
| | - Kevin M Braunscheidel
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York
| | - Stephanie P B Caligiuri
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York
| | - Karim S Elayouby
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York
| | - Clementine Fillinger
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York
| | - Masago Ishikawa
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York
| | - Janna K Moen
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York
| | - Paul J Kenny
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York
| |
Collapse
|
14
|
Meyers E, Werner Z, Wichman D, Mathews HL, Radcliffe RA, Nadeau JH, Stitzel JA. Genetic Modifiers of Oral Nicotine Consumption in Chrna5 Null Mutant Mice. Front Psychiatry 2021; 12:773400. [PMID: 34803779 PMCID: PMC8601376 DOI: 10.3389/fpsyt.2021.773400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/07/2021] [Indexed: 11/13/2022] Open
Abstract
The gene CHRNA5 is strongly associated with the level of nicotine consumption in humans and manipulation of the expression or function of Chrna5 similarly alters nicotine consumption in rodents. In both humans and rodents, reduced or complete loss of function of Chrna5 leads to increased nicotine consumption. However, the mechanism through which decreased function of Chrna5 increases nicotine intake is not well-understood. Toward a better understanding of how loss of function of Chrna5 increases nicotine consumption, we have initiated efforts to identify genetic modifiers of Chrna5 deletion-dependent oral nicotine consumption in mice. For this, we introgressed the Chrna5 knockout (KO) mutation onto a panel of C57BL/6J-Chr#A/J/NAJ chromosome substitution strains (CSS) and measured oral nicotine consumption in 18 CSS and C57BL/6 (B6) mice homozygous for the Chrna5 KO allele as well as their Chrna5 wild type littermates. As expected, nicotine consumption was significantly increased in Chrna5 KO mice relative to Chrna5 wildtype mice on a B6 background. Among the CSS homozygous for the Chrna5 KO allele, several exhibited altered nicotine consumption relative to B6 Chrna5 KO mice. Sex-independent modifiers were detected in CSS possessing A/J chromosomes 5 and 11 and a male-specific modifier was found on chromosome 15. In all cases nicotine consumption was reduced in the CSS Chrna5 KO mice relative to B6 Chrna5 KO mice and consumption in the CSS KO mice was indistinguishable from their wild type littermates. Nicotine consumption was also reduced in both Chrna5 KO and wildtype CSS mice possessing A/J chromosome 1 and increased in both KO and wild type chromosome 17 CSS relative to KO and wild type B6 mice. These results demonstrate the presence of several genetic modifiers of nicotine consumption in Chrna5 KO mice as well as identify loci that may affect nicotine consumption independent of Chrna5 genotype. Identification of the genes that underlie the altered nicotine consumption may provide novel insight into the mechanism through which Chrna5 deletion increases nicotine consumption and, more generally, a better appreciation of the neurobiology of nicotine intake.
Collapse
Affiliation(s)
- Erin Meyers
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, United States
| | - Zachary Werner
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, United States
| | - David Wichman
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, United States
| | - Hunter L. Mathews
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, United States
| | - Richard A. Radcliffe
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Joseph H. Nadeau
- Maine Medical Center Research Institute, Scarborough, ME, United States
| | - Jerry A. Stitzel
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, United States
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
| |
Collapse
|
15
|
Veerappa A, Pendyala G, Guda C. A systems omics-based approach to decode substance use disorders and neuroadaptations. Neurosci Biobehav Rev 2021; 130:61-80. [PMID: 34411560 PMCID: PMC8511293 DOI: 10.1016/j.neubiorev.2021.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/23/2021] [Accepted: 08/14/2021] [Indexed: 11/15/2022]
Abstract
Substance use disorders (SUDs) are a group of neuropsychiatric conditions manifesting due to excessive dependence on potential drugs of abuse such as psychostimulants, opioids including prescription opioids, alcohol, inhalants, etc. Experimental studies have generated enormous data in the area of SUDs, but outcomes from such data have remained largely fragmented. In this review, we attempt to coalesce these data points providing an important first step towards our understanding of the etiology of SUDs. We propose and describe a 'core addictome' pathway that behaves central to all SUDs. Besides, we also have made some notable observations paving way for several hypotheses; MECP2 behaves as a master switch during substance use; five distinct gene clusters were identified based on respective substance addiction; a central cluster of genes serves as a hub of the addiction pathway connecting all other substance addiction clusters. In addition to describing these findings, we have emphasized the importance of some candidate genes that are of substantial interest for further investigation and serve as high-value targets for translational efforts.
Collapse
Affiliation(s)
- Avinash Veerappa
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Gurudutt Pendyala
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, 68198, USA; Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE, 68198, USA; Child Health Research Institute, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Chittibabu Guda
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, 68198, USA; Center for Biomedical Informatics Research and Innovation, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
16
|
Adjangba C, Border R, Romero Villela PN, Ehringer MA, Evans LM. Little Evidence of Modified Genetic Effect of rs16969968 on Heavy Smoking Based on Age of Onset of Smoking. Nicotine Tob Res 2021; 23:1055-1063. [PMID: 33165565 DOI: 10.1093/ntr/ntaa229] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 11/03/2020] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Tobacco smoking is the leading cause of preventable death globally. Smoking quantity, measured in cigarettes per day, is influenced both by the age of onset of regular smoking (AOS) and by genetic factors, including a strong effect of the nonsynonymous single-nucleotide polymorphism rs16969968. A previous study by Hartz et al. reported an interaction between these two factors, whereby rs16969968 risk allele carriers who started smoking earlier showed increased risk for heavy smoking compared with those who started later. This finding has yet to be replicated in a large, independent sample. METHODS We performed a preregistered, direct replication attempt of the rs16969968 × AOS interaction on smoking quantity in 128 383 unrelated individuals from the UK Biobank, meta-analyzed across ancestry groups. We fit statistical association models mirroring the original publication as well as formal interaction tests on multiple phenotypic and analytical scales. RESULTS We replicated the main effects of rs16969968 and AOS on cigarettes per day but failed to replicate the interaction using previous methods. Nominal significance of the rs16969968 × AOS interaction term depended strongly on the scale of analysis and the particular phenotype, as did associations stratified by early/late AOS. No interaction tests passed genome-wide correction (α = 5e-8), and all estimated interaction effect sizes were much smaller in magnitude than previous estimates. CONCLUSIONS We failed to replicate the strong rs16969968 × AOS interaction effect previously reported. If such gene-moderator interactions influence complex traits, they likely depend on scale of measurement, and current biobanks lack the power to detect significant genome-wide associations given the minute effect sizes expected. IMPLICATIONS We failed to replicate the strong rs16969968 × AOS interaction effect on smoking quantity previously reported. If such gene-moderator interactions influence complex traits, current biobanks lack the power to detect significant genome-wide associations given the minute effect sizes expected. Furthermore, many potential interaction effects are likely to depend on the scale of measurement employed.
Collapse
Affiliation(s)
- Christine Adjangba
- Institute for Behavioral Genetics, University of Colorado-Boulder, Boulder, CO
| | - Richard Border
- Institute for Behavioral Genetics, University of Colorado-Boulder, Boulder, CO.,Department of Applied Mathematics, University of Colorado-Boulder, Boulder, CO
| | - Pamela N Romero Villela
- Institute for Behavioral Genetics, University of Colorado-Boulder, Boulder, CO.,Department of Psychology and Neuroscience, University of Colorado-Boulder, Boulder, CO
| | - Marissa A Ehringer
- Institute for Behavioral Genetics, University of Colorado-Boulder, Boulder, CO.,Department of Integrative Physiology, University of Colorado-Boulder, Boulder, CO
| | - Luke M Evans
- Institute for Behavioral Genetics, University of Colorado-Boulder, Boulder, CO.,Department of Ecology and Evolutionary Biology, University of Colorado-Boulder, Boulder, CO
| |
Collapse
|
17
|
Lallai V, Manca L, Fowler CD. E-cigarette vape and lung ACE2 expression: Implications for coronavirus vulnerability. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 86:103656. [PMID: 33838329 PMCID: PMC8025581 DOI: 10.1016/j.etap.2021.103656] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/01/2021] [Accepted: 04/02/2021] [Indexed: 05/15/2023]
Abstract
Evidence in humans suggests a correlation between nicotine smoking and severe respiratory symptoms with COVID-19 infection. In lung tissue, angiotensin-converting enzyme 2 (ACE2) appears to mechanistically underlie viral entry. Here, we investigated whether e-cigarette vapor inhalation alters ACE2 and nicotinic acetylcholine receptor (nAChR) expression in male and female mice. In male lung, nicotine vapor inhalation induced a significant increase in ACE2 mRNA and protein, but surprisingly, these differences were not found in females. Further, both vehicle and nicotine vapor inhalation downregulated α5 nAChR subunits in both sexes, while differences were not found in α7 nAChR subunit expression. Finally, blood ACE2 levels did not differ with exposure, indicating that blood sampling is not a sufficient indicator of lung ACE2 changes. Together, these data indicate a direct link between e-cigarette vaping and increased ACE2 expression in male lung tissue, which thereby reveals an underlying mechanism of increased vulnerability to coronavirus infection in individuals vaping nicotine.
Collapse
Affiliation(s)
- Valeria Lallai
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, 92697, USA
| | - Letizia Manca
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, 92697, USA
| | - Christie D Fowler
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, 92697, USA.
| |
Collapse
|
18
|
Buck JM, O'Neill HC, Stitzel JA. The Intergenerational Transmission of Developmental Nicotine Exposure-Induced Neurodevelopmental Disorder-Like Phenotypes is Modulated by the Chrna5 D397N Polymorphism in Adolescent Mice. Behav Genet 2021; 51:665-684. [PMID: 34159514 DOI: 10.1007/s10519-021-10071-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 06/07/2021] [Indexed: 12/01/2022]
Abstract
Maternal tobacco smoking during pregnancy constitutes developmental nicotine exposure (DNE) and is associated with nicotine dependence and neurodevelopmental disorders in both children and grandchildren as well as animal models thereof. Genetic variants such as the CHRNA5 single nucleotide polymorphism (SNP) rs16969968, which leads to an aspartic acid to asparagine substitution at amino acid position 398 (D398N) in the alpha-5 nicotinic acetylcholine receptor subunit, can also confer risk for nicotine dependence and neurodevelopmental disorders in the absence of DNE. However, the degrees to which, the consequences of maternal smoking on offspring outcomes are influenced by genetic variants and interactions therewith are not well understood. Addressing this void in the literature, the present study utilizes a DNE mouse model engineered to possess the equivalent of the human D398N SNP in CHRNA5 (D397N SNP in mice) to assess how the N397 risk allele impacts the induction and intergenerational transmission of a range of neurodevelopmental disorder-related behavioral phenotypes in first- and second-generation DNE offspring. Results reveal that offspring possessing the N397 variant in the absence of DNE as well as DNE offspring and grand offspring possessing theD397 variant exhibit analogous neurodevelopmental disorder-like phenotypes including hyperactivity, risk-taking behaviors, aberrant rhythmicity of activity, and enhanced nicotine consumption. DNE amplified these behavioral anomalies in first-generation N397 progeny, but the severity of DNE-evoked behavioral perturbations did not significantly differ between first-generation D397 and N397 DNE mice for any measure. Remarkably, the behavioral profiles of second-generation N397 DNE progeny closely resembled DNE-naive D397 mice, suggesting that the N397 variant may protect against the intergenerational transmission of DNE-induced neurodevelopmental disorder-like behaviors.
Collapse
Affiliation(s)
- Jordan M Buck
- Institute for Behavioral Genetics, University of Colorado Boulder, 1480 30th Street, Boulder, CO, 80309-0447, USA
- Department of Integrative Physiology, University of Colorado, Boulder, USA
| | - Heidi C O'Neill
- Institute for Behavioral Genetics, University of Colorado Boulder, 1480 30th Street, Boulder, CO, 80309-0447, USA
| | - Jerry A Stitzel
- Institute for Behavioral Genetics, University of Colorado Boulder, 1480 30th Street, Boulder, CO, 80309-0447, USA.
- Department of Integrative Physiology, University of Colorado, Boulder, USA.
| |
Collapse
|
19
|
Genetically Targeted Connectivity Tracing Excludes Dopaminergic Inputs to the Interpeduncular Nucleus from the Ventral Tegmentum and Substantia Nigra. eNeuro 2021; 8:ENEURO.0127-21.2021. [PMID: 34088738 PMCID: PMC8223495 DOI: 10.1523/eneuro.0127-21.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/16/2021] [Accepted: 04/21/2021] [Indexed: 12/15/2022] Open
Abstract
The “habenulopeduncular system” consists of the medial habenula (MHb) and its principal target of innervation, the interpeduncular nucleus (IP). Neurons in the ventral MHb (MHbV) express acetylcholine along with glutamate, and both the MHb and IP are rich in nicotinic acetylcholine receptors. Much of the work on this system has focused on nicotinic mechanisms and their clinical implications for nicotine use, particularly because the IP expresses the α5 nicotinic receptor subunit, encoded by the CHRNA5 gene, which is genetically linked to smoking risk. A working model has emerged in which nicotine use may be determined by the balance of reinforcement mediated in part by nicotine effects on dopamine reward pathways, and an aversive “brake” on nicotine consumption encoded in the MHb-IP pathway. However, recent work has proposed that the IP also receives direct dopaminergic input from the ventral tegmental area (VTA). If correct, this would significantly impact the prevailing model of IP function. Here, we have used Chrna5Cre mice to perform rabies virus-mediated retrograde tracing of global inputs to the IP. We have also used Cre-dependent adeno-associated virus (AAV) anterograde tracing using Slc6a3Cre (DATCre) mice to map VTA dopaminergic efferents, and we have examined tract-tracing data using other transgenic models for dopaminergic neurons available in a public database. Consistent with the existing literature using non-genetic tracing methods, none of these experiments show a significant anatomic connection from the VTA or substantia nigra (SN) to the IP, and thus do not support a model of direct dopaminergic input to the habenulopeduncular system.
Collapse
|
20
|
Brynildsen JK, Blendy JA. Linking the CHRNA5 SNP to drug abuse liability: From circuitry to cellular mechanisms. Neuropharmacology 2021; 186:108480. [PMID: 33539855 PMCID: PMC7958463 DOI: 10.1016/j.neuropharm.2021.108480] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/10/2020] [Accepted: 01/28/2021] [Indexed: 10/22/2022]
Abstract
Genetics are known to be a significant risk factor for drug abuse. In human populations, the single nucleotide polymorphism (SNP) D398N in the gene CHRNA5 has been associated with addiction to nicotine, opioids, cocaine, and alcohol. In this paper, we review findings from studies in humans, rodent models, and cell lines and provide evidence that collectively suggests that the Chrna5 SNP broadly influences the response to drugs of abuse in a manner that is not substance-specific. This finding has important implications for our understanding of the role of the cholinergic system in reward and addiction vulnerability. This article is part of the special issue on 'Vulnerabilities to Substance Abuse.'
Collapse
Affiliation(s)
- Julia K Brynildsen
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Julie A Blendy
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
21
|
Nicotinic acetylcholine gene cluster CHRNA5-A3-B4 variants influence smoking status in a Bangladeshi population. Pharmacol Rep 2021; 73:574-582. [PMID: 33675519 DOI: 10.1007/s43440-021-00243-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/16/2021] [Accepted: 02/20/2021] [Indexed: 12/23/2022]
Abstract
BACKGROUND Past studies have established the association of CHRNA5-A3-B4 gene cluster variants with various smoking behaviors in different ethnicities, yet no such study has been reported in Bengali ethnicity to date. METHODS A case-control study with 129 smokers and 111 non-smokers was conducted and genotyped using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method aimed to manifest the association of three SNPs in this gene cluster with smoking status (SS) in a Bangladeshi population. RESULTS The non-synonymous CHRNA5 rs1s6969968 and 3'-UTR variant CHRNA3 rs578776 polymorphisms were found to have a strong association with SS. Carriers of polymorphic 'A' allele of rs16969968 showed 1.51-fold more risk of being smokers (adjusted OR = 1.51, 95% CI 0.88-2.57, p = 0.128); whereas, rs578776 polymorphic 'A' allele carriers showed 0.595-fold less risk of being smokers (adjusted OR = 1.51, 95% CI 0.88-2.57, p = 0.006). Comparing smokers and non-smokers, A/A mutant homozygous genotypes of rs578776 and rs16969968 variants pose 0.369-fold (95% CI 0.177-0.77, p = 0.008) and 3.3-fold (95% CI 0.66-16.46, p = 0.14) more risk for positive SS, respectively. No genotypic association for SS was found with intronic variant CHRNB4 rs11072768 (T/G; adjusted OR = 0.827, 95% CI 0.457-1.499, p = 0.532 and G/G; adjusted OR = 0.992, 95% CI 0.455-2.167, p = 0.985). Combination of rs16969968-positive/rs578776-negative polymorphic variants possesses the risk of positive SS in young adults. Furthermore, two new haplotypes (AAT and AAG) were identified in Bangladeshi population and GAG (OR = 0.45, 95% CI 0.25-0.8, p = 0.006) haplotype was found to be a protective factor for SS. CONCLUSION Nicotinic acetylcholine gene cluster CHRNA5-A3-B4 variants rs16969968 and rs578776 are associated with SS in a Bangladeshi population. Large-scale studies are warranted to establish this genotype-phenotype correlation.
Collapse
|
22
|
Perez-Paramo YX, Lazarus P. Pharmacogenetics factors influencing smoking cessation success; the importance of nicotine metabolism. Expert Opin Drug Metab Toxicol 2021; 17:333-349. [PMID: 33322962 PMCID: PMC8049967 DOI: 10.1080/17425255.2021.1863948] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/10/2020] [Indexed: 01/12/2023]
Abstract
Introduction: Smoking remains a worldwide epidemic, and despite an increase in public acceptance of the harms of tobacco use, it remains the leading cause of preventable death. It is estimated that up to 70% of all smokers express a desire to quit, but only 3-5% of them are successful.Areas covered: The goal of this review was to evaluate the current status of smoking cessation treatments and the feasibility of implementing personalized-medicine approaches to these pharmacotherapies. We evaluated the genetics associated with higher levels of nicotine addiction and follow with an analysis of the genetic variants that affect the nicotine metabolic ratio (NMR) and the FDA approved treatments for smoking cessation. We also highlighted the gaps in the process of translating current laboratory understanding into clinical practice, and the benefits of personalized treatment approaches for a successful smoking cessation strategy.Expert opinion: Evidence supports the use of tailored therapies to ensure that the most efficient treatments are utilized in an individual's smoking cessation efforts. An understanding of the genetic effects on the efficacy of individualized smoking cessation pharmacotherapies is key to smoking cessation, ideally utilizing a polygenetic risk score that considers all genetic variation.
Collapse
Affiliation(s)
- Yadira X. Perez-Paramo
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington, USA
| | - Philip Lazarus
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington, USA
| |
Collapse
|
23
|
Prevost MS, Bouchenaki H, Barilone N, Gielen M, Corringer PJ. Concatemers to re-investigate the role of α5 in α4β2 nicotinic receptors. Cell Mol Life Sci 2021; 78:1051-1064. [PMID: 32472188 PMCID: PMC11071962 DOI: 10.1007/s00018-020-03558-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 05/15/2020] [Accepted: 05/22/2020] [Indexed: 01/08/2023]
Abstract
Nicotinic acetylcholine receptors (nAChRs) are pentameric ion channels expressed in the central nervous systems. nAChRs containing the α4, β2 and α5 subunits are specifically involved in addictive processes, but their functional architecture is poorly understood due to the intricacy of assembly of these subunits. Here we constrained the subunit assembly by designing fully concatenated human α4β2 and α4β2α5 receptors and characterized their properties by two-electrodes voltage-clamp electrophysiology in Xenopus oocytes. We found that α5-containing nAChRs are irreversibly blocked by methanethiosulfonate (MTS) reagents through a covalent reaction with a cysteine present only in α5. MTS-block experiments establish that the concatemers are expressed in intact form at the oocyte surface, but that reconstitution of nAChRs from loose subunits show inefficient and highly variable assembly of α5 with α4 and β2. Mutational analysis shows that the concatemers assemble both in clockwise and anticlockwise orientations, and that α5 does not contribute to ACh binding from its principal (+) site. Reinvestigation of suspected α5-ligands such as galantamine show no specific effect on α5-containing concatemers. Analysis of the α5-D398N mutation that is linked to smoking and lung cancer shows no significant effect on the electrophysiological function, suggesting that its effect might arise from alteration of other cellular processes. The concatemeric strategy provides a well-characterized platform for mechanistic analysis and screening of human α5-specific ligands.
Collapse
Affiliation(s)
- Marie S Prevost
- Unité Récepteurs-Canaux, Institut Pasteur, UMR 3571, CNRS, 75015, Paris, France
| | - Hichem Bouchenaki
- Unité Récepteurs-Canaux, Institut Pasteur, UMR 3571, CNRS, 75015, Paris, France
| | - Nathalie Barilone
- Unité Récepteurs-Canaux, Institut Pasteur, UMR 3571, CNRS, 75015, Paris, France
| | - Marc Gielen
- Unité Récepteurs-Canaux, Institut Pasteur, UMR 3571, CNRS, 75015, Paris, France.
- Sorbonne Université, 21, rue de l'école de médecine, 75006, Paris, France.
| | | |
Collapse
|
24
|
Scholze P, Huck S. The α5 Nicotinic Acetylcholine Receptor Subunit Differentially Modulates α4β2 * and α3β4 * Receptors. Front Synaptic Neurosci 2020; 12:607959. [PMID: 33343327 PMCID: PMC7744819 DOI: 10.3389/fnsyn.2020.607959] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/11/2020] [Indexed: 11/30/2022] Open
Abstract
Nicotine, the principal reinforcing compound in tobacco, acts in the brain by activating neuronal nicotinic acetylcholine receptors (nAChRs). This review summarizes our current knowledge regarding how the α5 accessory nAChR subunit, encoded by the CHRNA5 gene, differentially modulates α4β2* and α3β4* receptors at the cellular level. Genome-wide association studies have linked a gene cluster in chromosomal region 15q25 to increased susceptibility to nicotine addiction, lung cancer, chronic obstructive pulmonary disease, and peripheral arterial disease. Interestingly, this gene cluster contains a non-synonymous single-nucleotide polymorphism (SNP) in the human CHRNA5 gene, causing an aspartic acid (D) to asparagine (N) substitution at amino acid position 398 in the α5 nAChR subunit. Although other SNPs have been associated with tobacco smoking behavior, efforts have focused predominantly on the D398 and N398 variants in the α5 subunit. In recent years, significant progress has been made toward understanding the role that the α5 nAChR subunit—and the role of the D398 and N398 variants—plays on nAChR function at the cellular level. These insights stem primarily from a wide range of experimental models, including receptors expressed heterologously in Xenopus oocytes, various cell lines, and neurons derived from human induced pluripotent stem cells (iPSCs), as well as endogenous receptors in genetically engineered mice and—more recently—rats. Despite providing a wealth of available data, however, these studies have yielded conflicting results, and our understanding of the modulatory role that the α5 subunit plays remains incomplete. Here, we review these reports and the various techniques used for expression and analysis in order to examine how the α5 subunit modulates key functions in α4β2* and α3β4* receptors, including receptor trafficking, sensitivity, efficacy, and desensitization. In addition, we highlight the strikingly different role that the α5 subunit plays in Ca2+ signaling between α4β2* and α3β4* receptors, and we discuss whether the N398 α5 subunit variant can partially replace the D398 variant.
Collapse
Affiliation(s)
- Petra Scholze
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Sigismund Huck
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
25
|
Forget B, Icick R, Robert J, Correia C, Prevost MS, Gielen M, Corringer PJ, Bellivier F, Vorspan F, Besson M, Maskos U. Alterations in nicotinic receptor alpha5 subunit gene differentially impact early and later stages of cocaine addiction: a translational study in transgenic rats and patients. Prog Neurobiol 2020; 197:101898. [PMID: 32841724 DOI: 10.1016/j.pneurobio.2020.101898] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/06/2020] [Accepted: 08/14/2020] [Indexed: 12/13/2022]
Abstract
Cocaine addiction is a chronic and relapsing disorder with an important genetic component. Human candidate gene association studies showed that the single nucleotide polymorphism (SNP) rs16969968 in the α5 subunit (α5SNP) of nicotinic acetylcholine receptors (nAChRs), previously associated with increased tobacco dependence, was linked to a lower prevalence of cocaine use disorder (CUD). Three additional SNPs in the α5 subunit, previously shown to modify α5 mRNA levels, were also associated with CUD, suggesting an important role of the subunit in this pathology. To investigate the link between this subunit and CUD, we submitted rats knockout for the α5 subunit gene (α5KO), or carrying the α5SNP, to cocaine self-administration (SA) and showed that the acquisition of cocaine-SA was impaired in α5SNP rats while α5KO rats exhibited enhanced cocaine-induced relapse associated with altered neuronal activity in the nucleus accumbens. In addition, we observed in a human cohort of patients with CUD that the α5SNP was associated with a slower transition from first cocaine use to CUD. We also identified a novel SNP in the β4 nAChR subunit, part of the same gene cluster in the human genome and potentially altering CHRNA5 expression, associated with shorter time to relapse to cocaine use in patients. In conclusion, the α5SNP is protective against CUD by influencing early stages of cocaine exposure while CHRNA5 expression levels may represent a biomarker for the risk to relapse to cocaine use. Drugs modulating α5 containing nAChR activity may thus represent a novel therapeutic strategy against CUD.
Collapse
Affiliation(s)
- Benoît Forget
- Neurobiologie Intégrative des Systèmes Cholinergiques, CNRS UMR3571, Institut Pasteur, 25 rue du Dr Roux, 75724, Paris Cedex 15, France.
| | - Romain Icick
- Neurobiologie Intégrative des Systèmes Cholinergiques, CNRS UMR3571, Institut Pasteur, 25 rue du Dr Roux, 75724, Paris Cedex 15, France; Département de Psychiatrie et de Médecine Addictologique, Groupe Hospitalier Saint-Louis - Lariboisière - Fernand Widal, Assistance-Publique Hôpitaux de Paris, 75010, Paris, France; INSERM UMR_S1144, 4 avenue de l'Observatoire, 75006, Paris, France; Université Sorbonne - Paris - Cité, Paris, France
| | - Jonathan Robert
- Neurobiologie Intégrative des Systèmes Cholinergiques, CNRS UMR3571, Institut Pasteur, 25 rue du Dr Roux, 75724, Paris Cedex 15, France
| | - Caroline Correia
- Neurobiologie Intégrative des Systèmes Cholinergiques, CNRS UMR3571, Institut Pasteur, 25 rue du Dr Roux, 75724, Paris Cedex 15, France
| | - Marie S Prevost
- Unité Récepteurs-Canaux, CNRS UMR3571, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Marc Gielen
- Université Sorbonne - Paris - Cité, Paris, France; Unité Récepteurs-Canaux, CNRS UMR3571, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Pierre-Jean Corringer
- Unité Récepteurs-Canaux, CNRS UMR3571, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Frank Bellivier
- Département de Psychiatrie et de Médecine Addictologique, Groupe Hospitalier Saint-Louis - Lariboisière - Fernand Widal, Assistance-Publique Hôpitaux de Paris, 75010, Paris, France; Université Sorbonne - Paris - Cité, Paris, France; Unité Récepteurs-Canaux, CNRS UMR3571, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Florence Vorspan
- Département de Psychiatrie et de Médecine Addictologique, Groupe Hospitalier Saint-Louis - Lariboisière - Fernand Widal, Assistance-Publique Hôpitaux de Paris, 75010, Paris, France; INSERM UMR_S1144, 4 avenue de l'Observatoire, 75006, Paris, France; Université Sorbonne - Paris - Cité, Paris, France
| | - Morgane Besson
- Neurobiologie Intégrative des Systèmes Cholinergiques, CNRS UMR3571, Institut Pasteur, 25 rue du Dr Roux, 75724, Paris Cedex 15, France.
| | - Uwe Maskos
- Neurobiologie Intégrative des Systèmes Cholinergiques, CNRS UMR3571, Institut Pasteur, 25 rue du Dr Roux, 75724, Paris Cedex 15, France.
| |
Collapse
|
26
|
Moerke MJ, McMahon LR, Wilkerson JL. More than Smoke and Patches: The Quest for Pharmacotherapies to Treat Tobacco Use Disorder. Pharmacol Rev 2020; 72:527-557. [PMID: 32205338 DOI: 10.1124/pr.119.018028] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Tobacco use is a persistent public health issue. It kills up to half its users and is the cause of nearly 90% of all lung cancers. The main psychoactive component of tobacco is nicotine, primarily responsible for its abuse-related effects. Accordingly, most pharmacotherapies for smoking cessation target nicotinic acetylcholine receptors (nAChRs), nicotine's major site of action in the brain. The goal of the current review is twofold: first, to provide a brief overview of the most commonly used behavioral procedures for evaluating smoking cessation pharmacotherapies and an introduction to pharmacokinetic and pharmacodynamic properties of nicotine important for consideration in the development of new pharmacotherapies; and second, to discuss current and potential future pharmacological interventions aimed at decreasing tobacco use. Attention will focus on the potential for allosteric modulators of nAChRs to offer an improvement over currently approved pharmacotherapies. Additionally, given increasing public concern for the potential health consequences of using electronic nicotine delivery systems, which allow users to inhale aerosolized solutions as an alternative to smoking tobacco, an effort will be made throughout this review to address the implications of this relatively new form of nicotine delivery, specifically as it relates to smoking cessation. SIGNIFICANCE STATEMENT: Despite decades of research that have vastly improved our understanding of nicotine and its effects on the body, only a handful of pharmacotherapies have been successfully developed for use in smoking cessation. Thus, investigation of alternative pharmacological strategies for treating tobacco use disorder remains active; allosteric modulators of nicotinic acetylcholine receptors represent one class of compounds currently under development for this purpose.
Collapse
Affiliation(s)
- M J Moerke
- Division of Preclinical Pharmacology, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland (M.J.M.) and Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida (L.R.M., J.L.W.)
| | - L R McMahon
- Division of Preclinical Pharmacology, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland (M.J.M.) and Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida (L.R.M., J.L.W.)
| | - J L Wilkerson
- Division of Preclinical Pharmacology, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland (M.J.M.) and Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida (L.R.M., J.L.W.)
| |
Collapse
|
27
|
Zhang Y, Sun Y, Jia Y, Zhang Q, Zhu P, Ma X. α5-nAChR and survivin: Two potential biological targets in lung adenocarcinoma. J Cell Physiol 2020; 236:1787-1797. [PMID: 33196129 DOI: 10.1002/jcp.29956] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 07/06/2020] [Accepted: 07/09/2020] [Indexed: 12/11/2022]
Abstract
Recent studies have shown that the overexpression of α5 nicotinic acetylcholine receptor (α5-nAChR) is associated with nicotine-related lung carcinogenesis. Survivin is one of the biomarkers of a worse prognosis for smoking-related lung cancer. The aim of this study is to investigate the association of α5-nAChR, survivin, and clinical outcomes in lung adenocarcinoma (LUAD). We analyzed the expression level and correlation of CHRNA5 (encoding α5-nAChR) and BIRC5 (encoding survivin) in LUAD with The Cancer Genome Atlas data set. The relationship between overall survival (OS) and the expression of CHRNA5 or/and BIRC5 was evaluated by the Kaplan-Meier method and Cox proportional hazards model. Moreover, our results showed that the expression of α5-nAChR mediated survivin expression in lung cancer cells and in lung tumor xenografts. Relationships between the expression of α5-nAChR and/or survivin with clinical-pathological characteristics were analyzed using LUAD tissue samples. The results showed that expression of α5-nAChR was correlated with survivin expression in vitro and in vivo. The group coexpressing α5-nAChR and survivin had a worse prognosis than other subgroups in LUAD (p < .05). In conclusion, ascertaining the expression of both α5-nAChR and survivin provides a better measure of prognosis for LUAD patients. The combined inhibition of α5-nAChR and survivin may be a promising multitargeted gene therapeutic strategy in LUAD diagnosis.
Collapse
Affiliation(s)
- Yujie Zhang
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China.,Department of Medical Laboratory, Weifang Medical University, Weifang, China
| | - Yilin Sun
- College of Science, Northwest A&F University, Yangling, Xianyang, China
| | - Yanfei Jia
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Qian Zhang
- Research Center of Basic Medicine, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ping Zhu
- Department of Medical Laboratory, Weifang Medical University, Weifang, China
| | - Xiaoli Ma
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China.,Research Center of Basic Medicine, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
28
|
Maskos U. The nicotinic receptor alpha5 coding polymorphism rs16969968 as a major target in disease: Functional dissection and remaining challenges. J Neurochem 2020; 154:241-250. [PMID: 32078158 DOI: 10.1111/jnc.14989] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 02/13/2020] [Accepted: 02/19/2020] [Indexed: 12/19/2022]
Abstract
Nicotinic acetylcholine receptors (nAChRs) are major signalling molecules in the central and peripheral nervous system. Over the last decade, they have been linked to a number of major human psychiatric and neurological conditions, like smoking, schizophrenia, Alzheimer's disease and many others. Human Genome-Wide Association Studies (GWAS) have robustly identified genetic alterations at a locus of chromosome 15q to several of these diseases. In this review, we discuss a major coding polymorphism in the alpha5 subunit, referred to as α5SNP, and its functional dissection in vitro and in vivo. Its presence at high frequency in many human populations lends itself to pharmaceutical intervention in the context of 'positive allosteric modulators' (PAMs). We will present the prospects of this novel treatment, and the remaining challenges to identify suitable molecules.
Collapse
Affiliation(s)
- Uwe Maskos
- Department of Neuroscience, Institut Pasteur, Paris, France
| |
Collapse
|
29
|
Aroche AP, Rovaris DL, Grevet EH, Stolf AR, Sanvicente-Vieira B, Kessler FHP, von Diemen L, Grassi-Oliveira R, Bau CHD, Schuch JB. Association of CHRNA5 Gene Variants with Crack Cocaine Addiction. Neuromolecular Med 2020; 22:384-390. [PMID: 32152934 DOI: 10.1007/s12017-020-08596-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 02/27/2020] [Indexed: 12/15/2022]
Abstract
Genome-wide studies provide increasing evidence of association of genetic variants with different behaviors. However, there is a growing need for replication and subsequent characterization of specific findings. In this sense, the CHRNA5 gene has been associated with nicotine (with genome-wide significance), alcohol and cocaine addictions. So far, this gene has not been evaluated in smoked (crack) cocaine. We aimed to analyze the influence of CHRNA5 variants in crack addiction susceptibility and severity. The sample includes 300 crack-addicted patients and 769 non-addicted individuals. The CHRNA5 SNPs evaluated were rs588765, rs16969968, and rs514743. Homozygosity for rs16969968 and rs588765 major alleles was nominally associated with a risk to crack addiction (GG, P = 0.032; CC, P = 0.036, respectively). Haplotype analyses reveal significant associations (rs588765|rs16969968|rs514743 pglobal-corrected = 7.66 × 10-5) and suggest a substantial role for rs16969968. These findings corroborate previous reports in cocaine addiction-in line with the expected effects of cocaine in the cholinergic system-and in the opposite direction of significant GWAS findings for nicotine addiction susceptibility. These results are strengthened by the first report of an association of rs588765 with crack addiction and by the haplotype findings. In summary, our study highlights the relevance of the α5 subunit on crack cocaine addiction, replicating previous results relating CHRNA5 with the genetics and pathophysiology of addiction of different drugs.
Collapse
Affiliation(s)
- Angelita P Aroche
- Department of Genetics, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Diego L Rovaris
- Instituto de Ciencias Biomedicas, Departamento de Fisiologia e Biofisica, Universidade de Sao Paulo, São Paulo, Brazil.,Department of Psychiatry, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,ADHD Outpatient Program, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Eugenio H Grevet
- Department of Psychiatry, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,ADHD Outpatient Program, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Anderson R Stolf
- Center for Drug and Alcohol Research, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande Do Sul, Porto Alegre, Brazil
| | - Breno Sanvicente-Vieira
- Developmental Cognitive Neuroscience Lab, Biomedical Research Institute, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Felix H P Kessler
- Center for Drug and Alcohol Research, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande Do Sul, Porto Alegre, Brazil
| | - Lisia von Diemen
- Center for Drug and Alcohol Research, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande Do Sul, Porto Alegre, Brazil
| | - Rodrigo Grassi-Oliveira
- Developmental Cognitive Neuroscience Lab, Biomedical Research Institute, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Claiton H D Bau
- Department of Genetics, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil. .,Department of Psychiatry, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| | - Jaqueline B Schuch
- Department of Genetics, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Department of Psychiatry, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Center for Drug and Alcohol Research, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande Do Sul, Porto Alegre, Brazil
| |
Collapse
|
30
|
Abstract
Human behavior can be controlled by physical or psychological dependencies associated with addiction. One of the most insidious addictions in our society is the use of tobacco products which contain nicotine. This addiction can be associated with specific receptors in the brain that respond to the natural neurotransmitter acetylcholine. These nicotinic acetylcholine receptors (nAChR) are ligand-gated ion channels formed by the assembly of one or multiple types of nAChR receptor subunits. In this paper, we review the structure and diversity of nAChR subunits and our understanding for how different nAChR subtypes play specific roles in the phenomenon of nicotine addiction. We focus on receptors containing β2 and/or α6 subunits and the special significance of α5-containing receptors. These subtypes all have roles in regulating dopamine-mediated neurotransmission in the mesolimbic reward pathways of the brain. We also discuss the unique roles of homomeric α7 nAChR in behavioral responses to nicotine and how our knowledge of nAChR functional diversity may help guide pharmacotherapeutic approaches for treating nicotine addiction. While nicotine addiction is a truly global problem, the use of areca nut (betel) products is also a serious addiction associated with public health issues across most of South Asia, impacting as many as 600 million people. We discuss how cholinergic receptors of the brain are also involved with areca addiction and the unique challenges for dealing with addiction to this substance.
Collapse
|
31
|
Prevalence of Some Genetic Risk Factors for Nicotine Dependence in Ukraine. GENETICS RESEARCH INTERNATIONAL 2019; 2019:2483270. [PMID: 31885928 PMCID: PMC6925678 DOI: 10.1155/2019/2483270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 08/22/2019] [Indexed: 11/17/2022]
Abstract
Tobacco smoking is known to be a strong risk factor for developing many diseases. The development and severity of smoking dependence results from interaction of environmental and lifestyle factors, psycho-emotional predispositions, and also from genetic susceptibility. In present study, we investigated polymorphic variants in genes contributed to nicotine dependence, as well as to increased impulsivity, known to be an important risk factor for substance use disorders, in Ukraine population. The genotype frequencies at CYP2A6, DNMT3B, DRD2, HTR2A, COMT, BDNF, GABRA2, CHRNA5, and DAT1 polymorphisms were determined in 171 Ukraine residents, and these data were compared with data for several other European populations and main ethnic groups. It has been found that genotype frequencies for all studied loci are in Hardy-Weinberg equilibrium in the Ukrainian population and correspond to the respective frequencies in European populations. These findings suggest a similar impact of these loci on nicotine dependence in Ukraine. Further studies with larger sample sizes are, however, needed to draw firm conclusions about the effect size of these polymorphisms.
Collapse
|
32
|
Translational Molecular Approaches in Substance Abuse Research. Handb Exp Pharmacol 2019; 258:31-60. [PMID: 31628598 DOI: 10.1007/164_2019_259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Excessive abuse of psychoactive substances is one of the leading contributors to morbidity and mortality worldwide. In this book chapter, we review translational research strategies that are applied in the pursuit of new and more effective therapeutics for substance use disorder (SUD). The complex, multidimensional nature of psychiatric disorders like SUD presents difficult challenges to investigators. While animal models are critical for outlining the mechanistic relationships between defined behaviors and genetic and/or molecular changes, the heterogeneous pathophysiology of brain diseases is uniquely human, necessitating the use of human studies and translational research schemes. Translational research describes a cross-species approach in which findings from human patient-based data can be used to guide molecular genetic investigations in preclinical animal models in order to delineate the mechanisms of reward circuitry changes in the addicted state. Results from animal studies can then inform clinical investigations toward the development of novel treatments for SUD. Here we describe the strategies that are used to identify and functionally validate genetic variants in the human genome which may contribute to increased risk for SUD, starting from early candidate gene approaches to more recent genome-wide association studies. We will next examine studies aimed at understanding how transcriptional and epigenetic dysregulation in SUD can persistently alter cellular function in the disease state. In our discussion, we then focus on examples from the literature illustrating molecular genetic methodologies that have been applied to studies of different substances of abuse - from alcohol and nicotine to stimulants and opioids - in order to exemplify how these approaches can both delineate the underlying molecular systems driving drug addiction and provide insights into the genetic basis of SUD.
Collapse
|
33
|
Bierut LJ. Using Genomic Profiling for Understanding and Improving Response to Smoking Cessation Treatment. CURR EPIDEMIOL REP 2019; 6:486-490. [DOI: 10.1007/s40471-019-00220-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
34
|
Besson M, Forget B, Correia C, Blanco R, Maskos U. Profound alteration in reward processing due to a human polymorphism in CHRNA5: a role in alcohol dependence and feeding behavior. Neuropsychopharmacology 2019; 44:1906-1916. [PMID: 31288250 PMCID: PMC6785024 DOI: 10.1038/s41386-019-0462-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/12/2019] [Accepted: 07/01/2019] [Indexed: 01/08/2023]
Abstract
Human genetic variation in the nicotinic receptor gene cluster CHRNA5/A3/B4, in particular the non-synonymous and frequent CHRNA5 variant rs16969968 (α5SNP), has an important consequence on smoking behavior in humans. A number of genetic association studies have additionally implicated the CHRNA5 gene in addictions to other drugs, and also body mass index (BMI). Here, we model the α5SNP, in a transgenic rat line, and establish its role in alcohol dependence, and feeding behavior. Rats expressing the α5SNP consume more alcohol, and exhibit increased relapse to alcohol seeking after abstinence. This high-relapsing phenotype is reflected in altered activity in the insula, linked to interoception, as established using c-Fos immunostaining. Similarly, relapse to food seeking is increased in the transgenic group, while a nicotine treatment reduces relapse in both transgenic and control rats. These findings point to a general role of this human polymorphism in reward processing, and multiple addictions other than smoking. This could pave the way for the use of medication targeting the nicotinic receptor in the treatment of alcohol use and eating disorders, and comorbid conditions in smokers.
Collapse
Affiliation(s)
- Morgane Besson
- Department of Neuroscience, Unité de Neurobiologie Intégrative des Systèmes Cholinergiques, CNRS UMR 3571, Institut Pasteur, 25 rue du Dr Roux, 75015, Paris, France.
| | - Benoît Forget
- Department of Neuroscience, Unité de Neurobiologie Intégrative des Systèmes Cholinergiques, CNRS UMR 3571, Institut Pasteur, 25 rue du Dr Roux, 75015, Paris, France
- Sorbonne Universités, UPMC Université Paris 06, INSERM, CNRS, Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005, Paris, France
| | - Caroline Correia
- Department of Neuroscience, Unité de Neurobiologie Intégrative des Systèmes Cholinergiques, CNRS UMR 3571, Institut Pasteur, 25 rue du Dr Roux, 75015, Paris, France
- Laboratoire de Neurosciences Cognitives et Adaptatives, CNRS UMR 7364, Université de Strasbourg, 67000, Strasbourg, France
| | - Rodolphe Blanco
- Department of Neuroscience, Unité de Neurobiologie Intégrative des Systèmes Cholinergiques, CNRS UMR 3571, Institut Pasteur, 25 rue du Dr Roux, 75015, Paris, France
| | - Uwe Maskos
- Department of Neuroscience, Unité de Neurobiologie Intégrative des Systèmes Cholinergiques, CNRS UMR 3571, Institut Pasteur, 25 rue du Dr Roux, 75015, Paris, France.
| |
Collapse
|
35
|
Morel C, Montgomery S, Han MH. Nicotine and alcohol: the role of midbrain dopaminergic neurons in drug reinforcement. Eur J Neurosci 2019; 50:2180-2200. [PMID: 30251377 PMCID: PMC6431587 DOI: 10.1111/ejn.14160] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 07/31/2018] [Accepted: 08/20/2018] [Indexed: 12/11/2022]
Abstract
Nicotine and alcohol addiction are leading causes of preventable death worldwide and continue to constitute a huge socio-economic burden. Both nicotine and alcohol perturb the brain's mesocorticolimbic system. Dopamine (DA) neurons projecting from the ventral tegmental area (VTA) to multiple downstream structures, including the nucleus accumbens, prefrontal cortex, and amygdala, are highly involved in the maintenance of healthy brain function. VTA DA neurons play a crucial role in associative learning and reinforcement. Nicotine and alcohol usurp these functions, promoting reinforcement of drug taking behaviors. In this review, we will first describe how nicotine and alcohol individually affect VTA DA neurons by examining how drug exposure alters the heterogeneous VTA microcircuit and network-wide projections. We will also examine how coadministration or previous exposure to nicotine or alcohol may augment the reinforcing effects of the other. Additionally, this review briefly summarizes the role of VTA DA neurons in nicotine, alcohol, and their synergistic effects in reinforcement and also addresses the remaining questions related to the circuit-function specificity of the dopaminergic system in mediating nicotine/alcohol reinforcement and comorbidity.
Collapse
Affiliation(s)
- Carole Morel
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Affective Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sarah Montgomery
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Affective Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ming-Hu Han
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Affective Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
36
|
Saccone NL, Emery LS, Sofer T, Gogarten SM, Becker DM, Bottinger EP, Chen LS, Culverhouse RC, Duan W, Hancock DB, Hosgood HD, Johnson EO, Loos RJF, Louie T, Papanicolaou G, Perreira KM, Rodriquez EJ, Schurmann C, Stilp AM, Szpiro AA, Talavera GA, Taylor KD, Thrasher JF, Yanek LR, Laurie CC, Pérez-Stable EJ, Bierut LJ, Kaplan RC. Genome-Wide Association Study of Heavy Smoking and Daily/Nondaily Smoking in the Hispanic Community Health Study/Study of Latinos (HCHS/SOL). Nicotine Tob Res 2019; 20:448-457. [PMID: 28520984 DOI: 10.1093/ntr/ntx107] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 05/11/2017] [Indexed: 02/07/2023]
Abstract
Introduction Genetic variants associated with nicotine dependence have previously been identified, primarily in European-ancestry populations. No genome-wide association studies (GWAS) have been reported for smoking behaviors in Hispanics/Latinos in the United States and Latin America, who are of mixed ancestry with European, African, and American Indigenous components. Methods We examined genetic associations with smoking behaviors in the Hispanic Community Health Study/Study of Latinos (HCHS/SOL) (N = 12 741 with smoking data, 5119 ever-smokers), using ~2.3 million genotyped variants imputed to the 1000 Genomes Project phase 3. Mixed logistic regression models accounted for population structure, sampling, relatedness, sex, and age. Results The known region of CHRNA5, which encodes the α5 cholinergic nicotinic receptor subunit, was associated with heavy smoking at genome-wide significance (p ≤ 5 × 10-8) in a comparison of 1929 ever-smokers reporting cigarettes per day (CPD) > 10 versus 3156 reporting CPD ≤ 10. The functional variant rs16969968 in CHRNA5 had a p value of 2.20 × 10-7 and odds ratio (OR) of 1.32 for the minor allele (A); its minor allele frequency was 0.22 overall and similar across Hispanic/Latino background groups (Central American = 0.17; South American = 0.19; Mexican = 0.18; Puerto Rican = 0.22; Cuban = 0.29; Dominican = 0.19). CHRNA4 on chromosome 20 attained p < 10-4, supporting prior findings in non-Hispanics. For nondaily smoking, which is prevalent in Hispanic/Latino smokers, compared to daily smoking, loci on chromosomes 2 and 4 achieved genome-wide significance; replication attempts were limited by small Hispanic/Latino sample sizes. Conclusions Associations of nicotinic receptor gene variants with smoking, first reported in non-Hispanic European-ancestry populations, generalized to Hispanics/Latinos despite different patterns of smoking behavior. Implications We conducted the first large-scale genome-wide association study (GWAS) of smoking behavior in a US Hispanic/Latino cohort, and the first GWAS of daily/nondaily smoking in any population. Results show that the region of the nicotinic receptor subunit gene CHRNA5, which in non-Hispanic European-ancestry smokers has been associated with heavy smoking as well as cessation and treatment efficacy, is also significantly associated with heavy smoking in this Hispanic/Latino cohort. The results are an important addition to understanding the impact of genetic variants in understudied Hispanic/Latino smokers.
Collapse
Affiliation(s)
- Nancy L Saccone
- Department of Genetics, Washington University School of Medicine, St. Louis, MO
| | - Leslie S Emery
- Department of Biostatistics, University of Washington, Seattle, WA
| | - Tamar Sofer
- Department of Biostatistics, University of Washington, Seattle, WA
| | | | - Diane M Becker
- GeneSTAR Research Program, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Erwin P Bottinger
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Li-Shiun Chen
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO
| | | | - Weimin Duan
- Department of Genetics, Washington University School of Medicine, St. Louis, MO
| | - Dana B Hancock
- Behavioral and Urban Health Program, Behavioral Health and Criminal Justice Division, RTI International, Research Triangle Park, NC
| | - H Dean Hosgood
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY
| | - Eric O Johnson
- Fellow Program and Behavioral Health and Criminal Justice Division, RTI International, Research Triangle Park, NC
| | - Ruth J F Loos
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Tin Louie
- Department of Biostatistics, University of Washington, Seattle, WA
| | - George Papanicolaou
- Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Krista M Perreira
- Department of Public Policy, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Erik J Rodriquez
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD.,Division of General Internal Medicine, University of California, San Francisco, San Francisco, CA
| | - Claudia Schurmann
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Adrienne M Stilp
- Department of Biostatistics, University of Washington, Seattle, WA
| | - Adam A Szpiro
- Department of Biostatistics, University of Washington, Seattle, WA
| | - Gregory A Talavera
- Graduate School of Public Health, San Diego State University, San Diego, CA
| | - Kent D Taylor
- Institute for Translational Genomics and Population Sciences, Los Angeles Biomedical Research Institute and Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, CA
| | - James F Thrasher
- Department of Health Promotion, Education and Behavior, University of South Carolina, Columbia, SC
| | - Lisa R Yanek
- GeneSTAR Research Program, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Cathy C Laurie
- Department of Biostatistics, University of Washington, Seattle, WA
| | - Eliseo J Pérez-Stable
- National Institute on Minority Health and Health Disparities, National Institutes of Health, Bethesda, MD
| | - Laura J Bierut
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO
| | - Robert C Kaplan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY
| |
Collapse
|
37
|
Garcia‐Rivas V, Deroche‐Gamonet V. Not all smokers appear to seek nicotine for the same reasons: implications for preclinical research in nicotine dependence. Addict Biol 2019; 24:317-334. [PMID: 29480575 DOI: 10.1111/adb.12607] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 12/11/2017] [Accepted: 01/15/2018] [Indexed: 01/08/2023]
Abstract
Tobacco use leads to 6 million deaths every year due to severe long-lasting diseases. The main component of tobacco, nicotine, is recognized as one of the most addictive drugs, making smoking cessation difficult, even when 70 percent of smokers wish to do so. Clinical and preclinical studies have demonstrated consistently that nicotine seeking is a complex behavior involving various psychopharmacological mechanisms. Evidence supports that the population of smokers is heterogeneous, particularly as regards the breadth of motives that determine the urge to smoke. Here, we review converging psychological, genetic and neurobiological data from clinical and preclinical studies supporting that the mechanisms controlling nicotine seeking may vary from individual to individual. It appears timely that basic neuroscience integrates this heterogeneity to refine our understanding of the neurobiology of nicotine seeking, as tremendous progress has been made in modeling the various psychopharmacological mechanisms driving nicotine seeking in rodents. For a better understanding of the mechanisms that drive nicotine seeking, we emphasize the need for individual-based research strategies in which nicotine seeking, and eventually treatment efficacy, are determined while taking into account individual variations in the mechanisms of nicotine seeking.
Collapse
Affiliation(s)
- Vernon Garcia‐Rivas
- Université de Bordeaux France
- INSERM U1215, Psychobiology of Drug AddictionNeuroCentre Magendie France
| | - Véronique Deroche‐Gamonet
- Université de Bordeaux France
- INSERM U1215, Psychobiology of Drug AddictionNeuroCentre Magendie France
| |
Collapse
|
38
|
Colangelo C, Shichkova P, Keller D, Markram H, Ramaswamy S. Cellular, Synaptic and Network Effects of Acetylcholine in the Neocortex. Front Neural Circuits 2019; 13:24. [PMID: 31031601 PMCID: PMC6473068 DOI: 10.3389/fncir.2019.00024] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 03/22/2019] [Indexed: 12/17/2022] Open
Abstract
The neocortex is densely innervated by basal forebrain (BF) cholinergic neurons. Long-range axons of cholinergic neurons regulate higher-order cognitive function and dysfunction in the neocortex by releasing acetylcholine (ACh). ACh release dynamically reconfigures neocortical microcircuitry through differential spatiotemporal actions on cell-types and their synaptic connections. At the cellular level, ACh release controls neuronal excitability and firing rate, by hyperpolarizing or depolarizing target neurons. At the synaptic level, ACh impacts transmission dynamics not only by altering the presynaptic probability of release, but also the magnitude of the postsynaptic response. Despite the crucial role of ACh release in physiology and pathophysiology, a comprehensive understanding of the way it regulates the activity of diverse neocortical cell-types and synaptic connections has remained elusive. This review aims to summarize the state-of-the-art anatomical and physiological data to develop a functional map of the cellular, synaptic and microcircuit effects of ACh in the neocortex of rodents and non-human primates, and to serve as a quantitative reference for those intending to build data-driven computational models on the role of ACh in governing brain states.
Collapse
Affiliation(s)
- Cristina Colangelo
- Blue Brain Project, Ecole Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
| | | | | | | | - Srikanth Ramaswamy
- Blue Brain Project, Ecole Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
| |
Collapse
|
39
|
Friedman JR, Richbart SD, Merritt JC, Brown KC, Nolan NA, Akers AT, Lau JK, Robateau ZR, Miles SL, Dasgupta P. Acetylcholine signaling system in progression of lung cancers. Pharmacol Ther 2019; 194:222-254. [PMID: 30291908 PMCID: PMC6348061 DOI: 10.1016/j.pharmthera.2018.10.002] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The neurotransmitter acetylcholine (ACh) acts as an autocrine growth factor for human lung cancer. Several lines of evidence show that lung cancer cells express all of the proteins required for the uptake of choline (choline transporter 1, choline transporter-like proteins) synthesis of ACh (choline acetyltransferase, carnitine acetyltransferase), transport of ACh (vesicular acetylcholine transport, OCTs, OCTNs) and degradation of ACh (acetylcholinesterase, butyrylcholinesterase). The released ACh binds back to nicotinic (nAChRs) and muscarinic receptors on lung cancer cells to accelerate their proliferation, migration and invasion. Out of all components of the cholinergic pathway, the nAChR-signaling has been studied the most intensely. The reason for this trend is due to genome-wide data studies showing that nicotinic receptor subtypes are involved in lung cancer risk, the relationship between cigarette smoke and lung cancer risk as well as the rising popularity of electronic cigarettes considered by many as a "safe" alternative to smoking. There are a small number of articles which review the contribution of the other cholinergic proteins in the pathophysiology of lung cancer. The primary objective of this review article is to discuss the function of the acetylcholine-signaling proteins in the progression of lung cancer. The investigation of the role of cholinergic network in lung cancer will pave the way to novel molecular targets and drugs in this lethal malignancy.
Collapse
Affiliation(s)
- Jamie R Friedman
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, 1700 Third Avenue, Huntington, WV 25755
| | - Stephen D Richbart
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, 1700 Third Avenue, Huntington, WV 25755
| | - Justin C Merritt
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, 1700 Third Avenue, Huntington, WV 25755
| | - Kathleen C Brown
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, 1700 Third Avenue, Huntington, WV 25755
| | - Nicholas A Nolan
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, 1700 Third Avenue, Huntington, WV 25755
| | - Austin T Akers
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, 1700 Third Avenue, Huntington, WV 25755
| | - Jamie K Lau
- Biology Department, Center for the Sciences, Box 6931, Radford University, Radford, Virginia 24142
| | - Zachary R Robateau
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, 1700 Third Avenue, Huntington, WV 25755
| | - Sarah L Miles
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, 1700 Third Avenue, Huntington, WV 25755
| | - Piyali Dasgupta
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, 1700 Third Avenue, Huntington, WV 25755.
| |
Collapse
|
40
|
Fowler CD, Turner JR, Imad Damaj M. Molecular Mechanisms Associated with Nicotine Pharmacology and Dependence. Handb Exp Pharmacol 2019; 258:373-393. [PMID: 31267166 DOI: 10.1007/164_2019_252] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tobacco dependence is a leading cause of preventable disease and death worldwide. Nicotine, the main psychoactive component in tobacco cigarettes, has also been garnering increased popularity in its vaporized form, as derived from e-cigarette devices. Thus, an understanding of the molecular mechanisms underlying nicotine pharmacology and dependence is required to ascertain novel approaches to treat drug dependence. In this chapter, we review the field's current understanding of nicotine's actions in the brain, the neurocircuitry underlying drug dependence, factors that modulate the function of nicotinic acetylcholine receptors, and the role of specific genes in mitigating the vulnerability to develop nicotine dependence. In addition to nicotine's direct actions in the brain, other constituents in nicotine and tobacco products have also been found to alter drug use, and thus, evidence is provided to highlight this issue. Finally, currently available pharmacotherapeutic strategies are discussed, along with an outlook for future therapeutic directions to achieve to the goal of long-term nicotine cessation.
Collapse
Affiliation(s)
- Christie D Fowler
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, USA
| | - Jill R Turner
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, USA
| | - M Imad Damaj
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA. .,Translational Research Initiative for Pain and Neuropathy at VCU, Richmond, VA, USA.
| |
Collapse
|
41
|
Han H, Liu Q, Yang Z, Wang M, Ma Y, Cao L, Cui W, Yuan W, Payne TJ, Li L, Li MD. Association and cis-mQTL analysis of variants in serotonergic genes associated with nicotine dependence in Chinese Han smokers. Transl Psychiatry 2018; 8:243. [PMID: 30405098 PMCID: PMC6221882 DOI: 10.1038/s41398-018-0290-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 10/04/2018] [Accepted: 10/05/2018] [Indexed: 12/11/2022] Open
Abstract
Variants in serotonergic genes are implicated in nicotine dependence (ND) in subjects of European and African origin, but their involvement with smoking in Asians is largely unknown. Moreover, mechanisms underlying the ND risk-associated single-nucleotide polymorphisms (SNPs) in these genes are rarely investigated. The Fagerström Test for Nicotine Dependence (FTND) score was used to assess ND in 2616 male Chinese Han smokers. Both association and interaction analysis were used to examine the association of variants in the serotonergic genes with FTND. Further, expression and methylation quantitative trait loci (cis-mQTL) analysis was employed to determine the association of individual SNPs with the extent of methylation of each CpG locus. Individual SNP-based association analysis revealed that rs1176744 in HTR3B was marginally associated with FTND (p = 0.042). Haplotype-based association analysis found that one major haplotype, T-T-A-G, formed by SNPs rs3758987-rs4938056-rs1176744-rs2276305, located in the 5' region of HTR3B, showed a significant association with FTND (p = 0.00025). Further, a significant genetic interactive effect affecting ND was detected among SNPs rs10160548 in HTR3A, and rs3758987, rs2276305, and rs1672717 in HTR3B (p = 0.0074). Finally, we found four CpG sites (CpG_4543549, CpG_4543464, CpG_4543682, and CpG_4546888) to be significantly associated with three cis-mQTL SNPs (i.e., rs3758987, rs4938056, and rs1176744) located in our detected haplotype within HTR3B. In sum, we showed SNP rs1176744 (Tyr129Ser) to be associated with ND. Together with the SNPs rs3758987 and rs4938056 in HTR3B, they formed a major haplotype, which had significant association with ND. We further showed these SNPs contribute to ND through four methylated sites in HTR3B. All these findings suggest that variants in the serotonergic system play an important role in ND in the Chinese Han population. More importantly, these findings demonstrated that the involvement of this system in ND is through gene-by-gene interaction and methylation.
Collapse
Affiliation(s)
- Haijun Han
- 0000 0004 1759 700Xgrid.13402.34State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiang Liu
- 0000 0004 1759 700Xgrid.13402.34State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhongli Yang
- 0000 0004 1759 700Xgrid.13402.34State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China
| | - Mu Wang
- 0000 0004 1759 700Xgrid.13402.34State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China
| | - Yunlong Ma
- 0000 0004 1759 700Xgrid.13402.34State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China
| | - Liyu Cao
- 0000 0004 1759 700Xgrid.13402.34State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenyan Cui
- 0000 0004 1759 700Xgrid.13402.34State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenji Yuan
- 0000 0004 1759 700Xgrid.13402.34State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China
| | - Thomas J. Payne
- 0000 0004 1937 0407grid.410721.1ACT Center for Tobacco Treatment, Education and Research, Department of Otolaryngology and Communicative Sciences, University of Mississippi Medical Center, Jackson, MS USA
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China.
| | - Ming D. Li
- 0000 0004 1759 700Xgrid.13402.34State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China ,0000 0004 1759 700Xgrid.13402.34Research Center for Air Pollution and Health, Zhejiang University, Hangzhou, China ,0000 0001 2172 0072grid.263379.aInstitute of Neuroimmune Pharmacology, Seton Hall University, South Orange, NJ USA
| |
Collapse
|
42
|
A Human Polymorphism in CHRNA5 Is Linked to Relapse to Nicotine Seeking in Transgenic Rats. Curr Biol 2018; 28:3244-3253.e7. [PMID: 30293722 DOI: 10.1016/j.cub.2018.08.044] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 07/09/2018] [Accepted: 08/20/2018] [Indexed: 12/26/2022]
Abstract
Tobacco addiction is a chronic and relapsing disorder with an important genetic component that represents a major public health issue. Meta-analysis of large-scale human genome-wide association studies (GWASs) identified a frequent non-synonymous SNP in the gene coding for the α5 subunit of nicotinic acetylcholine receptors (α5SNP), which significantly increases the risk for tobacco dependence and delays smoking cessation. To dissect the neuronal mechanisms underlying the vulnerability to nicotine addiction in carriers of the α5SNP, we created rats expressing this polymorphism using zinc finger nuclease technology and evaluated their behavior under the intravenous nicotine-self-administration paradigm. The electrophysiological responses of their neurons to nicotine were also evaluated. α5SNP rats self-administered more nicotine at high doses and exhibited higher nicotine-induced reinstatement of nicotine seeking than wild-type rats. Higher reinstatement was associated with altered neuronal activity in several discrete areas that are interconnected, including in the interpeduncular nucleus (IPN), a GABAergic structure that strongly expresses α5-containing nicotinic receptors. The altered reactivity of IPN neurons of α5SNP rats to nicotine was confirmed electrophysiologically. In conclusion, the α5SNP polymorphism is a major risk factor for nicotine intake at high doses and for relapse to nicotine seeking in rats, a dual effect that reflects the human condition. Our results also suggest an important role for the IPN in the higher relapse to nicotine seeking observed in α5SNP rats.
Collapse
|
43
|
Howe WM, Kenny PJ. Drug Addiction: Mechanisms of Nicotine Dependence Unmasked by Gene Editing. Curr Biol 2018; 28:R1205-R1207. [DOI: 10.1016/j.cub.2018.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
44
|
Gorwood P, Le Strat Y, Ramoz N. Genetics of addictive behavior: the example of nicotine dependence. DIALOGUES IN CLINICAL NEUROSCIENCE 2018. [PMID: 29302221 PMCID: PMC5741107 DOI: 10.31887/dcns.2017.19.3/pgorwood] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The majority of addictive disorders have a significant heritability—roughly around 50%. Surprisingly, the most convincing association (a nicotinic acetylcholine receptor CHRNA5-A3-B4 gene cluster in nicotine dependence), with a unique attributable risk of 14%, was detected through a genome-wide association study (GWAS) on lung cancer, although lung cancer has a low heritability. We propose some explanations of this finding, potentially helping to understand how a GWAS strategy can be successful. Many endophenotypes were also assessed as potentially modulating the effect of nicotine, indirectly facilitating the development of nicotine dependence. Challenging the involved phenotype led to the demonstration that other potentially overlapping disorders, such as schizophrenia and Parkinson disease, could also be involved, and further modulated by parent monitoring or the existence of a smoking partner. Such a complex mechanism of action is compatible with a gene-environment interaction, most clearly explained by epigenetic factors, especially as such factors were shown to be, at least partly, genetically driven.
Collapse
Affiliation(s)
- Philip Gorwood
- INSERM U894, Center of Psychiatry and Neuroscience, Paris, France; University Paris-Descartes; Paris, France; Sainte-Anne Hospital (CMME), Paris, France
| | - Yann Le Strat
- INSERM U894, Center of Psychiatry and Neuroscience, Paris, France; Hopital Louis Mourier (AP-HP), Colombes, France
| | - Nicolas Ramoz
- INSERM U894, Center of Psychiatry and Neuroscience, Paris, France; University Paris-Descartes
| |
Collapse
|
45
|
Liu W, Li MD. Insights Into Nicotinic Receptor Signaling in Nicotine Addiction: Implications for Prevention and Treatment. Curr Neuropharmacol 2018; 16:350-370. [PMID: 28762314 PMCID: PMC6018190 DOI: 10.2174/1570159x15666170801103009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 06/18/2017] [Accepted: 07/28/2017] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Nicotinic acetylcholine receptors (nAChRs) belong to the Cys-loop ligandgated ion-channel (LGIC) superfamily, which also includes the GABA, glycine, and serotonin receptors. Many nAChR subunits have been identified and shown to be involved in signal transduction on binding to them of either the neurotransmitter acetylcholine or exogenous ligands such as nicotine. The nAChRs are pentameric assemblies of homologous subunits surrounding a central pore that gates cation flux, and they are expressed at neuromuscular junctions throughout the nervous system. METHODS AND RESULTS Because different nAChR subunits assemble into a variety of pharmacologically distinct receptor subtypes, and different nAChRs are implicated in various physiological functions and pathophysiological conditions, nAChRs represent potential molecular targets for drug addiction and medical therapeutic research. This review intends to provide insights into recent advances in nAChR signaling, considering the subtypes and subunits of nAChRs and their roles in nicotinic cholinergic systems, including structure, diversity, functional allosteric modulation, targeted knockout mutations, and rare variations of specific subunits, and the potency and functional effects of mutations by focusing on their effects on nicotine addiction (NA) and smoking cessation (SC). Furthermore, we review the possible mechanisms of action of nAChRs in NA and SC based on our current knowledge. CONCLUSION Understanding these cellular and molecular mechanisms will lead to better translational and therapeutic operations and outcomes for the prevention and treatment of NA and other drug addictions, as well as chronic diseases, such as Alzheimer's and Parkinson's. Finally, we put forward some suggestions and recommendations for therapy and treatment of NA and other chronic diseases.
Collapse
Affiliation(s)
- Wuyi Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China.,School of Biological Sciences and Food Engineering, Fuyang Normal University, Fuyang, Anuhi 236041, China
| | - Ming D Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China.,Research Center for Air Pollution and Health, Zhejiang University, Hangzhou, China.,Institute of NeuroImmune Pharmacology, Seton Hall University, South Orange, NJ, United States
| |
Collapse
|
46
|
Bozinoff N, Le Foll B. Understanding the implications of the biobehavioral basis of nicotine addiction and its impact on the efficacy of treatment. Expert Rev Respir Med 2018; 12:793-804. [PMID: 30092681 DOI: 10.1080/17476348.2018.1507736] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Tobacco use remains the leading cause of preventable death in the United States. There are efficacious behavioral and pharmacological options for smoking cessation including three FDA approved therapies - nicotine replacement therapy, varenicline and bupropion. Nevertheless, uptake of smoking cessation treatments continues to be poor and there is a need for novel smoking cessation treatments. Areas covered: This article reviews the biobehavioral basis of nicotine addiction, its implications for smoking cessation treatments, the various neurotransmitter systems involved in nicotine addictive effects, and their potential therapeutic value. Included are discussions around the role of genetic factors in predicting response to pharmacotherapy and what we know about appropriate application of pharmacotherapy and behavioral interventions for tobacco use disorder. The evidence for harm reduction measures in individuals who are not willing or able to quit smoking is also reviewed. Expert commentary: Many neurotransmitter system targets have been investigated as a result of our understanding of the underlying neurobiology of tobacco use disorder, and there remain important targets that have yet to be fully explored. rTMS or combination therapies are proposed as possible novel strategies to improve smoking cessation.
Collapse
Affiliation(s)
- Nikki Bozinoff
- a Department of Family and Community Medicine , University of Toronto , Toronto , Canada.,b Addiction Medicine Service, Acute Care Program , Centre for Addiction and Mental Health , Toronto , Canada
| | - Bernard Le Foll
- a Department of Family and Community Medicine , University of Toronto , Toronto , Canada.,b Addiction Medicine Service, Acute Care Program , Centre for Addiction and Mental Health , Toronto , Canada.,c Department of Pharmacology and Toxicology, Psychiatry, Institute of Medical Sciences , University of Toronto , Toronto , Canada.,d Centre for Addiction and Mental Health , Campbell Family Mental Health Research Institute, CAMH , Toronto , Canada.,e Translational Addiction Research Laboratory, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health , Toronto , Canada
| |
Collapse
|
47
|
Morton G, Nasirova N, Sparks DW, Brodsky M, Sivakumaran S, Lambe EK, Turner EE. Chrna5-Expressing Neurons in the Interpeduncular Nucleus Mediate Aversion Primed by Prior Stimulation or Nicotine Exposure. J Neurosci 2018; 38:6900-6920. [PMID: 29954848 PMCID: PMC6070661 DOI: 10.1523/jneurosci.0023-18.2018] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 06/08/2018] [Accepted: 06/15/2018] [Indexed: 11/21/2022] Open
Abstract
Genetic studies have shown an association between smoking and variation at the CHRNA5/A3/B4 gene locus encoding the α5, α3, and β4 nicotinic receptor subunits. The α5 receptor has been specifically implicated because smoking-associated haplotypes contain a coding variant in the CHRNA5 gene. The Chrna5/a3/b4 locus is conserved in rodents and the restricted expression of these subunits suggests neural pathways through which the reinforcing and aversive properties of nicotine may be mediated. Here, we show that, in the interpeduncular nucleus (IP), the site of the highest Chrna5 mRNA expression in rodents, electrophysiological responses to nicotinic acetylcholine receptor stimulation are markedly reduced in α5-null mice. IP neurons differ markedly from their upstream ventral medial habenula cholinergic partners, which appear unaltered by loss of α5. To probe the functional role of α5-containing IP neurons, we used BAC recombineering to generate transgenic mice expressing Cre-recombinase from the Chrna5 locus. Reporter expression driven by Chrna5Cre demonstrates that transcription of Chrna5 is regulated independently from the Chrna3/b4 genes transcribed on the opposite strand. Chrna5-expressing IP neurons are GABAergic and project to distant targets in the mesopontine raphe and tegmentum rather than forming local circuits. Optogenetic stimulation of Chrna5-expressing IP neurons failed to elicit physical manifestations of withdrawal. However, after recent prior stimulation or exposure to nicotine, IP stimulation becomes aversive. These results using mice of both sexes support the idea that the risk allele of CHRNA5 may increase the drive to smoke via loss of IP-mediated nicotine aversion.SIGNIFICANCE STATEMENT Understanding the receptors and neural pathways underlying the reinforcing and aversive effects of nicotine may suggest new treatments for tobacco addiction. Part of the individual variability in smoking is associated with specific forms of the α5 nicotinic receptor subunit gene. Here, we show that deletion of the α5 subunit in mice markedly reduces the cellular response to nicotine and acetylcholine in the interpeduncular nucleus (IP). Stimulation of α5-expressing IP neurons using optogenetics is aversive, but this effect requires priming by recent prior stimulation or exposure to nicotine. These results support the idea that the smoking-associated variant of the α5 gene may increase the drive to smoke via loss of IP-mediated nicotine aversion.
Collapse
Affiliation(s)
- Glenn Morton
- Center for Integrative Brain Research, Seattle Children's Research Institute
| | - Nailyam Nasirova
- Center for Integrative Brain Research, Seattle Children's Research Institute
| | | | - Matthew Brodsky
- Center for Integrative Brain Research, Seattle Children's Research Institute
| | | | - Evelyn K Lambe
- Department of Physiology
- Department of Obstetrics and Gynecology, and
- Department of Psychiatry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Eric E Turner
- Center for Integrative Brain Research, Seattle Children's Research Institute,
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington 98101
| |
Collapse
|
48
|
Pierce RC, Fant B, Swinford-Jackson SE, Heller EA, Berrettini WH, Wimmer ME. Environmental, genetic and epigenetic contributions to cocaine addiction. Neuropsychopharmacology 2018; 43:1471-1480. [PMID: 29453446 PMCID: PMC5983541 DOI: 10.1038/s41386-018-0008-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 12/21/2017] [Accepted: 12/30/2017] [Indexed: 12/13/2022]
Abstract
Decades of research on cocaine has produced volumes of data that have answered many important questions about the nature of this highly addictive drug. Sadly, none of this information has translated into the development of effective therapies for the treatment of cocaine addiction. This review endeavors to assess the current state of cocaine research in an attempt to identify novel pathways for therapeutic development. For example, risk of cocaine addiction is highly heritable but genome-wide analyses comparing cocaine-dependent individuals to controls have not resulted in promising targets for drug development. Is this because the genetics of addiction is too complex or because the existing research methodologies are inadequate? Likewise, animal studies have revealed dozens of enduring changes in gene expression following prolonged exposure to cocaine, none of which have translated into therapeutics either because the resulting compounds were ineffective or produced intolerable side-effects. Recently, attention has focused on epigenetic modifications resulting from repeated cocaine intake, some of which appear to be heritable through changes in the germline. While epigenetic changes represent new vistas for therapeutic development, selective manipulation of epigenetic marks is currently challenging even in animals such that translational potential is a distant prospect. This review will reveal that despite the enormous progress made in understanding the molecular and physiological bases of cocaine addiction, there is much that remains a mystery. Continued advances in genetics and molecular biology hold potential for revealing multiple pathways toward the development of treatments for the continuing scourge of cocaine addiction.
Collapse
Affiliation(s)
- R. Christopher Pierce
- 0000 0004 1936 8972grid.25879.31Department of Psychiatry, Center for Neurobiology and Behavior, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Bruno Fant
- 0000 0004 1936 8972grid.25879.31Department of Psychiatry, Center for Neurobiology and Behavior, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Sarah E. Swinford-Jackson
- 0000 0004 1936 8972grid.25879.31Department of Psychiatry, Center for Neurobiology and Behavior, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Elizabeth A. Heller
- 0000 0004 1936 8972grid.25879.31Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Wade H. Berrettini
- 0000 0004 1936 8972grid.25879.31Department of Psychiatry, Center for Neurobiology and Behavior, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Mathieu E. Wimmer
- 0000 0001 2248 3398grid.264727.2Department of Psychology, Temple University, Philadelphia, PA 19122 USA
| |
Collapse
|
49
|
Association and cis-mQTL analysis of variants in CHRNA3-A5, CHRNA7, CHRNB2, and CHRNB4 in relation to nicotine dependence in a Chinese Han population. Transl Psychiatry 2018; 8:83. [PMID: 29666375 PMCID: PMC5904126 DOI: 10.1038/s41398-018-0130-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 12/30/2017] [Accepted: 02/18/2018] [Indexed: 12/22/2022] Open
Abstract
Nicotine dependence (ND) is a worldwide health problem. Numerous genetic studies have demonstrated a significant association of variants in nicotinic acetylcholine receptors (nAChRs) with smoking behaviors. However, most of these studies enrolled only subjects of European or African ancestry. In addition, although an increasing body of evidence implies a causal connection of single-nucleotide polymorphisms (SNPs) and epigenetic regulation of gene expression, few studies of this issue have been reported. In this study, we performed both association and interaction analysis for 67 SNPs in CHRNA3-A5, CHRNA7, CHRNB2, and CHRNB4 with ND in a Chinese Han population (N = 5055). We further analyzed cis-mQTL for the three most significant SNPs and 5580 potential methylation loci within these target gene regions. Our results indicated that the SNPs rs1948 and rs7178270 in CHRNB4 and rs3743075 in CHRNA3 were significantly associated with the Fagerström Test for Nicotine Dependence (FTND) score (p = 6.6 × 10-5; p = 2.0 × 10-4, and p = 7.0 × 10-4, respectively). Haplotype-based association analysis revealed that two major haplotypes, T-G and C-A, formed by rs3743075-rs3743074 in CHRNA3, and other two major haplotypes, A-G-C and G-C-C, formed by rs1948-rs7178270-rs17487223 in CHRNB4, were significantly associated with the FTND score (p ≤ 8.0 × 10-4). Further, we found evidence for the presence of significant interaction among variants within CHRNA3/B4/A5, CHRNA4/B2/A5, and CHRNA7 in affecting ND, with corresponding p values of 5.8 × 10-6, 8.0 × 10-5, and 0.012, respectively. Finally, we identified two CpG sites (CpG_2975 and CpG_3007) in CHRNA3 that are significantly associated with three cis-mQTL SNPs (rs1948, rs7178270, rs3743075) in the CHRNA5/A3/B4 cluster (p ≤ 1.9 × 10-6), which formed four significant CpG-SNP pairs in our sample. Together, we revealed at least three novel SNPs in CHRNA3 and CHRNB4 to be significantly associated with the FTND score. Further, we showed that these significant variants contribute to ND via two methylated sites, and we demonstrated significant interaction affecting ND among variants in CHRNA5/A3/B4, CHRNA7, and CHRNA4/B2/A5. In sum, these findings provide robust evidence that SNPs in nAChR genes convey a risk of ND in the Chinese Han population.
Collapse
|
50
|
O'Neill HC, Wageman CR, Sherman SE, Grady SR, Marks MJ, Stitzel JA. The interaction of the Chrna5 D398N variant with developmental nicotine exposure. GENES BRAIN AND BEHAVIOR 2018; 17:e12474. [PMID: 29573323 DOI: 10.1111/gbb.12474] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 02/26/2018] [Accepted: 03/14/2018] [Indexed: 12/14/2022]
Abstract
A single nucleotide polymorphism (SNP) in CHRNA5 (rs16969968, change from an aspartic acid [D] to asparagine [N] at position 398 of the human α5 nicotinic acetylcholine receptor subunit) has been associated with increased risk for nicotine dependence. Consequently, carriers of the risk variant may be at elevated risk for in utero nicotine exposure. To assess whether this gene-environment interaction might impact nicotine intake in developmental nicotine-exposed offspring, we utilized a mouse expressing this human SNP. D and N dams drank nicotine (100 μg/mL) in 0.2% saccharin water or 0.2% saccharin water alone (vehicle) as their sole source of fluid from 30 days prior to breeding until weaning of offspring. The nicotine (D Nic, N Nic) or vehicle (D Veh, N Veh) exposed offspring underwent a 2-bottle choice test between postnatal ages of 30 to 46 days. N Nic offspring consumed the most nicotine at the highest concentration (400 μg/mL) compared with all other groups. In contrast, D Nic offspring drank the least amount of nicotine at all concentrations tested. Nicotine-stimulated dopamine (DA) release measured from striatal synaptosomes was increased in D Nic offspring, while decreased in N Nic offspring relative to their genotype-matched controls. These data suggest that the α5 variant influences the effect of developmental nicotine exposure on nicotine intake of exposed offspring. This gene-environment interaction on striatal DA release may provide motivation for increased nicotine seeking in N Nic offspring and reduced consumption in D Nic offspring.
Collapse
Affiliation(s)
- H C O'Neill
- Institute for Behavioral Genetics, University of Colorado, Boulder, Colorado
| | - C R Wageman
- Institute for Behavioral Genetics, University of Colorado, Boulder, Colorado
| | - S E Sherman
- Institute for Behavioral Genetics, University of Colorado, Boulder, Colorado
| | - S R Grady
- Institute for Behavioral Genetics, University of Colorado, Boulder, Colorado
| | - M J Marks
- Institute for Behavioral Genetics, University of Colorado, Boulder, Colorado.,Department of Psychology and Neuroscience, University of Colorado, Boulder, Colorado
| | - J A Stitzel
- Institute for Behavioral Genetics, University of Colorado, Boulder, Colorado.,Department of Integrative Physiology, University of Colorado, Boulder, Colorado
| |
Collapse
|