1
|
Hemker F, Ammelburger N, Jahns P. Intervening dark periods negatively affect the photosynthetic performance of Chlamydomonas reinhardtii during growth under fluctuating high light. PLANT, CELL & ENVIRONMENT 2024; 47:4246-4258. [PMID: 38946377 DOI: 10.1111/pce.15020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 06/11/2024] [Accepted: 06/17/2024] [Indexed: 07/02/2024]
Abstract
The acclimation of the green algae Chlamydomoas reinhardtii to high light (HL) has been studied predominantly under continuous illumination of the cells. Here, we investigated the impact of fluctuating HL in alternation with either low light (LL) or darkness on photosynthetic performance and on photoprotective responses. Compared to intervening LL phases, dark phases led to (1) more pronounced reduction of the photosystem II quantum efficiency, (2) reduced degradation of the PsbS protein, (3) lower energy dissipation capacity and (4) an increased pool size of the xanthophyll cycle pigments. These characteristics indicate increased photo-oxidative stress when HL periods are interrupted by dark phases instead of LL phases. This overall trend was similar when comparing long (8 h) and short (30 min) HL phases being interrupted by long (16 h) and short (60 min) phases of dark or low light, respectively. Only the degradation of PsbS was clearly more efficient during long (16 h) LL phases when compared to short (60 min) LL phases.
Collapse
Affiliation(s)
- Fritz Hemker
- Photosynthesis and Stress Physiology of Plants, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Nicolas Ammelburger
- Photosynthesis and Stress Physiology of Plants, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Peter Jahns
- Photosynthesis and Stress Physiology of Plants, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
2
|
Dong J, Hou J, Yao Q, Wang B, Wang J, Shen X, Lai K, Ge H, Wang Y, Xu M, Fu A, Wang F. The thylakoid phosphatase TEF8 is involved in state transition and high light stress resistance in Chlamydomonas. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024. [PMID: 39453967 DOI: 10.1111/tpj.17108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/06/2024] [Accepted: 10/10/2024] [Indexed: 10/27/2024]
Abstract
The sophisticated regulation of state transition is required to maintain optimal photosynthetic performance under fluctuating light condition, through balancing the absorbed light energy between photosystem II and photosystem I. This exquisite process incorporates phosphorylation and dephosphorylation of light-harvesting complexes and PSII core subunits, accomplished by thylakoid membrane-localized kinases and phosphatases that have not been fully identified. In this study, one Chlamydomonas high light response gene, THYLAKOID ENRICHED FRACTION 8 (TEF8), was characterized. The Chlamydomonas tef8 mutant showed high light sensitivity and defective state transition. The enzymatic activity assays showed that TEF8 is a bona fide phosphatase localized in thylakoid membranes. Biochemical assays, including BN-PAGE, pull-down, and phosphopeptide mass spectrometry, proved that TEF8 associates with photosystem II and is involved in the dephosphorylation of D2 and CP29 subunits during state 2 to state 1 transition. Taken together, our results identified TEF8 as a thylakoid phosphatase with multiple dephosphorylation targets on photosystem II, and provide new insight into the regulatory mechanism of state transition and high light resistance in Chlamydomonas.
Collapse
Affiliation(s)
- Jie Dong
- College of Life Sciences, Northwest University, No 229 Taibai North Road, Xi'an, 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, No 229 Taibai North Road, Xi'an, 710069, China
| | - Jinrong Hou
- College of Life Sciences, Northwest University, No 229 Taibai North Road, Xi'an, 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, No 229 Taibai North Road, Xi'an, 710069, China
| | - Qiang Yao
- College of Life Sciences, Northwest University, No 229 Taibai North Road, Xi'an, 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, No 229 Taibai North Road, Xi'an, 710069, China
| | - Baoxiang Wang
- College of Life Sciences, Northwest University, No 229 Taibai North Road, Xi'an, 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, No 229 Taibai North Road, Xi'an, 710069, China
| | - Jingyi Wang
- College of Life Sciences, Northwest University, No 229 Taibai North Road, Xi'an, 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, No 229 Taibai North Road, Xi'an, 710069, China
- Shaanxi Key Laboratory for Carbon Neutral Technology, No 229 Taibai North Road, Xi'an, 710069, China
| | - Xuan Shen
- College of Life Sciences, Northwest University, No 229 Taibai North Road, Xi'an, 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, No 229 Taibai North Road, Xi'an, 710069, China
| | - Ke Lai
- College of Life Sciences, Northwest University, No 229 Taibai North Road, Xi'an, 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, No 229 Taibai North Road, Xi'an, 710069, China
| | - Haitao Ge
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No.1 West Beichen Road, Beijing, 100101, China
| | - Yingchun Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No.1 West Beichen Road, Beijing, 100101, China
| | - Min Xu
- College of Life Sciences, Northwest University, No 229 Taibai North Road, Xi'an, 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, No 229 Taibai North Road, Xi'an, 710069, China
| | - Aigen Fu
- College of Life Sciences, Northwest University, No 229 Taibai North Road, Xi'an, 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, No 229 Taibai North Road, Xi'an, 710069, China
- Shaanxi Key Laboratory for Carbon Neutral Technology, No 229 Taibai North Road, Xi'an, 710069, China
| | - Fei Wang
- College of Life Sciences, Northwest University, No 229 Taibai North Road, Xi'an, 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, No 229 Taibai North Road, Xi'an, 710069, China
- Shaanxi Key Laboratory for Carbon Neutral Technology, No 229 Taibai North Road, Xi'an, 710069, China
| |
Collapse
|
3
|
Ibrahim IM, Lee JH, Weaver S, Kwizera R, Lohman JR, Puthiyaveetil S. Cysteine residues contribute to the regulation of Arabidopsis state transition 7 kinase. FEBS Lett 2024. [PMID: 39394396 DOI: 10.1002/1873-3468.15032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/03/2024] [Accepted: 09/09/2024] [Indexed: 10/13/2024]
Abstract
State transitions are an acclimatory response by which plants, algae, and cyanobacteria counteract photosynthetic inefficiency caused by changes in incident light quality. In plants and green algae, state transition 7 (STN7/STT7) kinase promotes state 2 transition. Conserved cysteine residues are implicated in STN7/STT7 regulation, but the precise nature of their involvement remains unclear. Here, an analysis of the STN7 thiols in vitro and a determination of their midpoint redox potential indicate that the lumenal disulfide linkage is unlikely to be redox regulated while the stromal cysteines form a regulatory intramolecular disulfide. We further show that thioredoxin f1 (Trx-f1) reduces the STN7 stromal disulfide linkage as consistent with a Trx-f1-mediated inhibition of the kinase under high light.
Collapse
Affiliation(s)
- Iskander M Ibrahim
- Department of Biochemistry and Center for Plant Biology, Purdue University, West Lafayette, IN, USA
| | - Ji H Lee
- Department of Biochemistry and Center for Plant Biology, Purdue University, West Lafayette, IN, USA
| | - Seth Weaver
- Department of Biochemistry and Center for Plant Biology, Purdue University, West Lafayette, IN, USA
| | - Ronard Kwizera
- Department of Biochemistry and Center for Plant Biology, Purdue University, West Lafayette, IN, USA
| | - Jeremy R Lohman
- Department of Biochemistry and Center for Plant Biology, Purdue University, West Lafayette, IN, USA
| | - Sujith Puthiyaveetil
- Department of Biochemistry and Center for Plant Biology, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
4
|
Eckardt NA, Allahverdiyeva Y, Alvarez CE, Büchel C, Burlacot A, Cardona T, Chaloner E, Engel BD, Grossman AR, Harris D, Herrmann N, Hodges M, Kern J, Kim TD, Maurino VG, Mullineaux CW, Mustila H, Nikkanen L, Schlau-Cohen G, Tronconi MA, Wietrzynski W, Yachandra VK, Yano J. Lighting the way: Compelling open questions in photosynthesis research. THE PLANT CELL 2024; 36:3914-3943. [PMID: 39038210 PMCID: PMC11449116 DOI: 10.1093/plcell/koae203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/29/2024] [Accepted: 07/15/2024] [Indexed: 07/24/2024]
Abstract
Photosynthesis-the conversion of energy from sunlight into chemical energy-is essential for life on Earth. Yet there is much we do not understand about photosynthetic energy conversion on a fundamental level: how it evolved and the extent of its diversity, its dynamics, and all the components and connections involved in its regulation. In this commentary, researchers working on fundamental aspects of photosynthesis including the light-dependent reactions, photorespiration, and C4 photosynthetic metabolism pose and discuss what they view as the most compelling open questions in their areas of research.
Collapse
Affiliation(s)
| | - Yagut Allahverdiyeva
- Molecular Plant Biology Unit, Department of Life Technologies, University of Turku, 20014 Turku, Finland
| | - Clarisa E Alvarez
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Facultad de Ciencias Bioquímicas y Farmacuticas, University of Rosario, Suipacha 570, 2000 Rosario, Argentina
| | - Claudia Büchel
- Institute of Molecular Biosciences, Goethe University Frankfurt, 60438 Frankfurt, Germany
| | - Adrien Burlacot
- Division of Bioscience and Engineering, Carnegie Institution for Science, 260 Panama Street, Stanford, CA 94305, USA
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Tanai Cardona
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Emma Chaloner
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Benjamin D Engel
- Biozentrum, University of Basel, Sptialstrasse 41, 4056 Basel, Switzerland
| | - Arthur R Grossman
- Division of Bioscience and Engineering, Carnegie Institution for Science, 260 Panama Street, Stanford, CA 94305, USA
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Dvir Harris
- Department of Chemistry, Massachusetts Institute of Technology, Massachusetts Ave, Cambridge, MA 02139, USA
| | - Nicolas Herrmann
- Institute of Molecular Biosciences, Goethe University Frankfurt, 60438 Frankfurt, Germany
| | - Michael Hodges
- Université Paris-Saclay, CNRS, INRAE, Université d’Evry, Université de Paris Cité, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France
| | - Jan Kern
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Tom Dongmin Kim
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Veronica G Maurino
- Molecular Plant Physiology, Institute for Cellular and Molecular Botany (IZMB), University of Bonn, Kirschallee 1, 53115 Bonn, Germany
| | - Conrad W Mullineaux
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Henna Mustila
- Molecular Plant Biology Unit, Department of Life Technologies, University of Turku, 20014 Turku, Finland
| | - Lauri Nikkanen
- Molecular Plant Biology Unit, Department of Life Technologies, University of Turku, 20014 Turku, Finland
| | - Gabriela Schlau-Cohen
- Department of Chemistry, Massachusetts Institute of Technology, Massachusetts Ave, Cambridge, MA 02139, USA
| | - Marcos A Tronconi
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Facultad de Ciencias Bioquímicas y Farmacuticas, University of Rosario, Suipacha 570, 2000 Rosario, Argentina
| | | | - Vittal K Yachandra
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Junko Yano
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
5
|
Riché A, Dumas L, Malesinski S, Bossan G, Madigou C, Zito F, Alric J. The stromal side of the cytochrome b6f complex regulates state transitions. THE PLANT CELL 2024; 36:4234-4244. [PMID: 38963887 PMCID: PMC11448884 DOI: 10.1093/plcell/koae190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/31/2024] [Accepted: 06/14/2024] [Indexed: 07/06/2024]
Abstract
In oxygenic photosynthesis, state transitions distribute light energy between PSI and PSII. This regulation involves reduction of the plastoquinone pool, activation of the state transitions 7 (STT7) protein kinase by the cytochrome (cyt) b6f complex, and phosphorylation and migration of light harvesting complexes II (LHCII). In this study, we show that in Chlamydomonas reinhardtii, the C-terminus of the cyt b6 subunit PetB acts on phosphorylation of STT7 and state transitions. We used site-directed mutagenesis of the chloroplast petB gene to truncate (remove L215b6) or elongate (add G216b6) the cyt b6 subunit. Modified complexes are devoid of heme ci and degraded by FTSH protease, revealing that salt bridge formation between cyt b6 (PetB) and Subunit IV (PetD) is essential to the assembly of the complex. In double mutants where FTSH is inactivated, modified cyt b6f accumulated but the phosphorylation cascade was blocked. We also replaced the arginine interacting with heme ci propionate (R207Kb6). In this modified complex, heme ci is present but the kinetics of phosphorylation are slower. We show that highly phosphorylated forms of STT7 accumulated transiently after reduction of the PQ pool and represent the active forms of the protein kinase. The phosphorylation of the LHCII targets is favored at the expense of the protein kinase, and the migration of LHCII toward PSI is the limiting step for state transitions.
Collapse
Affiliation(s)
- Alexis Riché
- Aix Marseille Univ, CEA, CNRS, BIAM, Photosynthesis and Environment, F-13115 Saint Paul-Lez-Durance, France
| | - Louis Dumas
- Aix Marseille Univ, CEA, CNRS, BIAM, Photosynthesis and Environment, F-13115 Saint Paul-Lez-Durance, France
| | - Soazig Malesinski
- Aix Marseille Univ, CEA, CNRS, BIAM, Photosynthesis and Environment, F-13115 Saint Paul-Lez-Durance, France
| | - Guillaume Bossan
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires Unité Mixte de Recherche 7099, Université Paris Cité, Centre National de la Recherche Scientifique, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, F-75005 Paris, France
| | - Céline Madigou
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires Unité Mixte de Recherche 7099, Université Paris Cité, Centre National de la Recherche Scientifique, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, F-75005 Paris, France
| | - Francesca Zito
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires Unité Mixte de Recherche 7099, Université Paris Cité, Centre National de la Recherche Scientifique, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, F-75005 Paris, France
| | - Jean Alric
- Aix Marseille Univ, CEA, CNRS, BIAM, Photosynthesis and Environment, F-13115 Saint Paul-Lez-Durance, France
| |
Collapse
|
6
|
Brünje A, Füßl M, Eirich J, Boyer JB, Heinkow P, Neumann U, Konert M, Ivanauskaite A, Seidel J, Ozawa SI, Sakamoto W, Meinnel T, Schwarzer D, Mulo P, Giglione C, Finkemeier I. The Plastidial Protein Acetyltransferase GNAT1 Forms a Complex With GNAT2, yet Their Interaction Is Dispensable for State Transitions. Mol Cell Proteomics 2024; 23:100850. [PMID: 39349166 DOI: 10.1016/j.mcpro.2024.100850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 07/12/2024] [Accepted: 08/18/2024] [Indexed: 10/02/2024] Open
Abstract
Protein N-acetylation is one of the most abundant co- and post-translational modifications in eukaryotes, extending its occurrence to chloroplasts within vascular plants. Recently, a novel plastidial enzyme family comprising eight acetyltransferases that exhibit dual lysine and N-terminus acetylation activities was unveiled in Arabidopsis. Among these, GNAT1, GNAT2, and GNAT3 reveal notable phylogenetic proximity, forming a subgroup termed NAA90. Our study focused on characterizing GNAT1, closely related to the state transition acetyltransferase GNAT2. In contrast to GNAT2, GNAT1 did not prove essential for state transitions and displayed no discernible phenotypic difference compared to the wild type under high light conditions, while gnat2 mutants were severely affected. However, gnat1 mutants exhibited a tighter packing of the thylakoid membranes akin to gnat2 mutants. In vitro studies with recombinant GNAT1 demonstrated robust N-terminus acetylation activity on synthetic substrate peptides. This activity was confirmed in vivo through N-terminal acetylome profiling in two independent gnat1 knockout lines. This attributed several acetylation sites on plastidial proteins to GNAT1, reflecting a subset of GNAT2's substrate spectrum. Moreover, co-immunoprecipitation coupled with mass spectrometry revealed a robust interaction between GNAT1 and GNAT2, as well as a significant association of GNAT2 with GNAT3 - the third acetyltransferase within the NAA90 subfamily. This study unveils the existence of at least two acetyltransferase complexes within chloroplasts, whereby complex formation might have a critical effect on the fine-tuning of the overall acetyltransferase activities. These findings introduce a novel layer of regulation in acetylation-dependent adjustments in plastidial metabolism.
Collapse
Affiliation(s)
- Annika Brünje
- Plant Physiology, Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Münster, Germany
| | - Magdalena Füßl
- Plant Physiology, Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Münster, Germany
| | - Jürgen Eirich
- Plant Physiology, Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Münster, Germany
| | - Jean-Baptiste Boyer
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Paulina Heinkow
- Plant Physiology, Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Münster, Germany
| | - Ulla Neumann
- Central Microscopy, Max Planck Institute for Plant Breeding Research, Köln, Germany
| | - Minna Konert
- Department of Life Technologies, Molecular Plant Biology, University of Turku, Turku, Finland
| | - Aiste Ivanauskaite
- Department of Life Technologies, Molecular Plant Biology, University of Turku, Turku, Finland
| | - Julian Seidel
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Shin-Ichiro Ozawa
- Institute of Plant Science and Resources (IPSR) Okayama University, Kurashiki, Okayama, Japan
| | - Wataru Sakamoto
- Institute of Plant Science and Resources (IPSR) Okayama University, Kurashiki, Okayama, Japan
| | - Thierry Meinnel
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Dirk Schwarzer
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Paula Mulo
- Department of Life Technologies, Molecular Plant Biology, University of Turku, Turku, Finland
| | - Carmela Giglione
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Iris Finkemeier
- Plant Physiology, Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Münster, Germany.
| |
Collapse
|
7
|
Liu S, Wu Z, Yang T, Xu J, Aishan S, Qin E, Ma K, Liu J, Qin R, Wang J, Tie J, Liu H. The Chrysosplenium sinicum genome provides insights into adaptive evolution of shade plants. Commun Biol 2024; 7:1004. [PMID: 39152309 PMCID: PMC11329650 DOI: 10.1038/s42003-024-06701-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 08/08/2024] [Indexed: 08/19/2024] Open
Abstract
Chrysosplenium sinicum, a traditional Tibetan medicinal plant, can successfully thrive in low-light environments for long periods of time. To investigate the adaptive evolution of shade plants in low-light environments, we generated a chromosome-scale genome assembly (~320 Mb) for C. sinicum by combining PacBio sequencing and Hi-C technologies. Based on our results, gene families related to photosynthesis and cell respiration greatly expanded and evolved in C. sinicum genome due to intracellular DNA transfer from organelle genome to nuclear genome. Under positive selective pressure, adaptive evolution of light-harvesting complex II (LHCII) component protein CsLhcb1s resulted in the expansion of threonine residues at the phosphorylation site of STN7 kinase, potentially establishing a crucial genomic foundation for enhancing C. sinicum's adaptability in low-light environments. Through transcriptome and metabolome analysis, we identified chrysosplenol and chrysosplenoside as predominant flavonoid metabolites of C. sinicum and predicted their synthesis pathways. In addition, analysis of alternative splicing (AS) revealed that AS events help regulate state transition and flavonoid biosynthesis. The present study provides new insights into the genomes of shade plants exposed to low-light conditions and adaptive evolution of these genomes; in addition, the results improve our current knowledge on the biosynthetic and regulatory processes of chrysosplenol and chrysosplenoside.
Collapse
Affiliation(s)
- Shuo Liu
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, China
| | - Zhihua Wu
- College of Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Tiange Yang
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, China
| | - Jindong Xu
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, China
| | - Saimire Aishan
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, China
| | - Erdai Qin
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, China
| | - Kang Ma
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, China
| | - Jiao Liu
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, China
| | - Rui Qin
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, China
| | - Jiangqing Wang
- College of Computer Science, South-Central Minzu University, Wuhan, China
| | - Jun Tie
- College of Computer Science, South-Central Minzu University, Wuhan, China.
| | - Hong Liu
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, China.
| |
Collapse
|
8
|
Hippler M, Khosravitabar F. Light-Driven H 2 Production in Chlamydomonas reinhardtii: Lessons from Engineering of Photosynthesis. PLANTS (BASEL, SWITZERLAND) 2024; 13:2114. [PMID: 39124233 PMCID: PMC11314271 DOI: 10.3390/plants13152114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/22/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024]
Abstract
In the green alga Chlamydomonas reinhardtii, hydrogen production is catalyzed via the [FeFe]-hydrogenases HydA1 and HydA2. The electrons required for the catalysis are transferred from ferredoxin (FDX) towards the hydrogenases. In the light, ferredoxin receives its electrons from photosystem I (PSI) so that H2 production becomes a fully light-driven process. HydA1 and HydA2 are highly O2 sensitive; consequently, the formation of H2 occurs mainly under anoxic conditions. Yet, photo-H2 production is tightly coupled to the efficiency of photosynthetic electron transport and linked to the photosynthetic control via the Cyt b6f complex, the control of electron transfer at the level of photosystem II (PSII) and the structural remodeling of photosystem I (PSI). These processes also determine the efficiency of linear (LEF) and cyclic electron flow (CEF). The latter is competitive with H2 photoproduction. Additionally, the CBB cycle competes with H2 photoproduction. Consequently, an in-depth understanding of light-driven H2 production via photosynthetic electron transfer and its competition with CO2 fixation is essential for improving photo-H2 production. At the same time, the smart design of photo-H2 production schemes and photo-H2 bioreactors are challenges for efficient up-scaling of light-driven photo-H2 production.
Collapse
Affiliation(s)
- Michael Hippler
- Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, 48143 Münster, Germany
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan
| | - Fatemeh Khosravitabar
- Department of Biological and Environmental Sciences, University of Gothenburg, 40530 Gothenburg, Sweden
| |
Collapse
|
9
|
Milrad Y, Mosebach L, Buchert F. Regulation of Microalgal Photosynthetic Electron Transfer. PLANTS (BASEL, SWITZERLAND) 2024; 13:2103. [PMID: 39124221 PMCID: PMC11314055 DOI: 10.3390/plants13152103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024]
Abstract
The global ecosystem relies on the metabolism of photosynthetic organisms, featuring the ability to harness light as an energy source. The most successful type of photosynthesis utilizes a virtually inexhaustible electron pool from water, but the driver of this oxidation, sunlight, varies on time and intensity scales of several orders of magnitude. Such rapid and steep changes in energy availability are potentially devastating for biological systems. To enable a safe and efficient light-harnessing process, photosynthetic organisms tune their light capturing, the redox connections between core complexes and auxiliary electron mediators, ion passages across the membrane, and functional coupling of energy transducing organelles. Here, microalgal species are the most diverse group, featuring both unique environmental adjustment strategies and ubiquitous protective mechanisms. In this review, we explore a selection of regulatory processes of the microalgal photosynthetic apparatus supporting smooth electron flow in variable environments.
Collapse
Affiliation(s)
- Yuval Milrad
- Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, 48143 Münster, Germany
| | - Laura Mosebach
- Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, 48143 Münster, Germany
| | - Felix Buchert
- Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, 48143 Münster, Germany
| |
Collapse
|
10
|
Mosebach L, Ozawa SI, Younas M, Xue H, Scholz M, Takahashi Y, Hippler M. Chemical Protein Crosslinking-Coupled Mass Spectrometry Reveals Interaction of LHCI with LHCII and LHCSR3 in Chlamydomonas reinhardtii. PLANTS (BASEL, SWITZERLAND) 2024; 13:1632. [PMID: 38931064 PMCID: PMC11207971 DOI: 10.3390/plants13121632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/16/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024]
Abstract
The photosystem I (PSI) of the green alga Chlamydomonas reinhardtii associates with 10 light-harvesting proteins (LHCIs) to form the PSI-LHCI complex. In the context of state transitions, two LHCII trimers bind to the PSAL, PSAH and PSAO side of PSI to produce the PSI-LHCI-LHCII complex. In this work, we took advantage of chemical crosslinking of proteins in conjunction with mass spectrometry to identify protein-protein interactions between the light-harvesting proteins of PSI and PSII. We detected crosslinks suggesting the binding of LHCBM proteins to the LHCA1-PSAG side of PSI as well as protein-protein interactions of LHCSR3 with LHCA5 and LHCA3. Our data indicate that the binding of LHCII to PSI is more versatile than anticipated and imply that LHCSR3 might be involved in the regulation of excitation energy transfer to the PSI core via LHCA5/LHCA3.
Collapse
Affiliation(s)
- Laura Mosebach
- Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, 48143 Münster, Germany; (L.M.); (M.Y.); (M.S.)
| | - Shin-Ichiro Ozawa
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan;
| | - Muhammad Younas
- Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, 48143 Münster, Germany; (L.M.); (M.Y.); (M.S.)
| | - Huidan Xue
- Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, 48143 Münster, Germany; (L.M.); (M.Y.); (M.S.)
| | - Martin Scholz
- Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, 48143 Münster, Germany; (L.M.); (M.Y.); (M.S.)
| | - Yuichiro Takahashi
- Research Institute for Interdisciplinary Science, Okayama University, Okayama 700-8530, Japan;
| | - Michael Hippler
- Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, 48143 Münster, Germany; (L.M.); (M.Y.); (M.S.)
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan;
| |
Collapse
|
11
|
Kim RG, Huang W, Findinier J, Bunbury F, Redekop P, Shrestha R, Grismer TS, Vilarrasa-Blasi J, Jinkerson RE, Fakhimi N, Fauser F, Jonikas MC, Onishi M, Xu SL, Grossman AR. Chloroplast Methyltransferase Homolog RMT2 is Involved in Photosystem I Biogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.21.572672. [PMID: 38187728 PMCID: PMC10769443 DOI: 10.1101/2023.12.21.572672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Oxygen (O2), a dominant element in the atmosphere and essential for most life on Earth, is produced by the photosynthetic oxidation of water. However, metabolic activity can cause accumulation of reactive O2 species (ROS) and severe cell damage. To identify and characterize mechanisms enabling cells to cope with ROS, we performed a high-throughput O2 sensitivity screen on a genome-wide insertional mutant library of the unicellular alga Chlamydomonas reinhardtii. This screen led to identification of a gene encoding a protein designated Rubisco methyltransferase 2 (RMT2). Although homologous to methyltransferases, RMT2 has not been experimentally demonstrated to have methyltransferase activity. Furthermore, the rmt2 mutant was not compromised for Rubisco (first enzyme of Calvin-Benson Cycle) levels but did exhibit a marked decrease in accumulation/activity of photosystem I (PSI), which causes light sensitivity, with much less of an impact on other photosynthetic complexes. This mutant also shows increased accumulation of Ycf3 and Ycf4, proteins critical for PSI assembly. Rescue of the mutant phenotype with a wild-type (WT) copy of RMT2 fused to the mNeonGreen fluorophore indicates that the protein localizes to the chloroplast and appears to be enriched in/around the pyrenoid, an intrachloroplast compartment present in many algae that is packed with Rubisco and potentially hypoxic. These results indicate that RMT2 serves an important role in PSI biogenesis which, although still speculative, may be enriched around or within the pyrenoid.
Collapse
Affiliation(s)
- Rick G. Kim
- Department of Biosphere Science and Engineering, Carnegie Institution for Science, Stanford, CA 94305, USA
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Weichao Huang
- Department of Biosphere Science and Engineering, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Justin Findinier
- Department of Biosphere Science and Engineering, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Freddy Bunbury
- Department of Biosphere Science and Engineering, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Petra Redekop
- Department of Biosphere Science and Engineering, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Ruben Shrestha
- Department of Biosphere Science and Engineering, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - TaraBryn S Grismer
- Department of Biosphere Science and Engineering, Carnegie Institution for Science, Stanford, CA 94305, USA
| | | | - Robert E. Jinkerson
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521, USA
| | - Neda Fakhimi
- Department of Biosphere Science and Engineering, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Friedrich Fauser
- Department of Biosphere Science and Engineering, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Martin C. Jonikas
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540, USA
| | - Masayuki Onishi
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Shou-Ling Xu
- Department of Biosphere Science and Engineering, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Arthur R. Grossman
- Department of Biosphere Science and Engineering, Carnegie Institution for Science, Stanford, CA 94305, USA
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
12
|
Mehra HS, Wang X, Russell BP, Kulkarni N, Ferrari N, Larson B, Vinyard DJ. Assembly and Repair of Photosystem II in Chlamydomonas reinhardtii. PLANTS (BASEL, SWITZERLAND) 2024; 13:811. [PMID: 38592843 PMCID: PMC10975043 DOI: 10.3390/plants13060811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 04/11/2024]
Abstract
Oxygenic photosynthetic organisms use Photosystem II (PSII) to oxidize water and reduce plastoquinone. Here, we review the mechanisms by which PSII is assembled and turned over in the model green alga Chlamydomonas reinhardtii. This species has been used to make key discoveries in PSII research due to its metabolic flexibility and amenability to genetic approaches. PSII subunits originate from both nuclear and chloroplastic gene products in Chlamydomonas. Nuclear-encoded PSII subunits are transported into the chloroplast and chloroplast-encoded PSII subunits are translated by a coordinated mechanism. Active PSII dimers are built from discrete reaction center complexes in a process facilitated by assembly factors. The phosphorylation of core subunits affects supercomplex formation and localization within the thylakoid network. Proteolysis primarily targets the D1 subunit, which when replaced, allows PSII to be reactivated and completes a repair cycle. While PSII has been extensively studied using Chlamydomonas as a model species, important questions remain about its assembly and repair which are presented here.
Collapse
Affiliation(s)
| | | | | | | | | | | | - David J. Vinyard
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA; (H.S.M.); (X.W.); (B.P.R.); (N.K.); (N.F.); (B.L.)
| |
Collapse
|
13
|
Tikhonov AN. The cytochrome b 6f complex: plastoquinol oxidation and regulation of electron transport in chloroplasts. PHOTOSYNTHESIS RESEARCH 2024; 159:203-227. [PMID: 37369875 DOI: 10.1007/s11120-023-01034-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023]
Abstract
In oxygenic photosynthetic systems, the cytochrome b6f (Cytb6f) complex (plastoquinol:plastocyanin oxidoreductase) is a heart of the hub that provides connectivity between photosystems (PS) II and I. In this review, the structure and function of the Cytb6f complex are briefly outlined, being focused on the mechanisms of a bifurcated (two-electron) oxidation of plastoquinol (PQH2). In plant chloroplasts, under a wide range of experimental conditions (pH and temperature), a diffusion of PQH2 from PSII to the Cytb6f does not limit the intersystem electron transport. The overall rate of PQH2 turnover is determined mainly by the first step of the bifurcated oxidation of PQH2 at the catalytic site Qo, i.e., the reaction of electron transfer from PQH2 to the Fe2S2 cluster of the high-potential Rieske iron-sulfur protein (ISP). This point has been supported by the quantum chemical analysis of PQH2 oxidation within the framework of a model system including the Fe2S2 cluster of the ISP and surrounding amino acids, the low-potential heme b6L, Glu78 and 2,3,5-trimethylbenzoquinol (the tail-less analog of PQH2). Other structure-function relationships and mechanisms of electron transport regulation of oxygenic photosynthesis associated with the Cytb6f complex are briefly outlined: pH-dependent control of the intersystem electron transport and the regulatory balance between the operation of linear and cyclic electron transfer chains.
Collapse
Affiliation(s)
- Alexander N Tikhonov
- Department of Biophysics, Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow, Russian Federation, 119991.
| |
Collapse
|
14
|
Broderson M, Niyogi KK, Iwai M. Macroscale structural changes of thylakoid architecture during high light acclimation in Chlamydomonas reinhardtii. PHOTOSYNTHESIS RESEARCH 2024:10.1007/s11120-023-01067-1. [PMID: 38180578 DOI: 10.1007/s11120-023-01067-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 12/04/2023] [Indexed: 01/06/2024]
Abstract
Photoprotection mechanisms are ubiquitous among photosynthetic organisms. The photoprotection capacity of the green alga Chlamydomonas reinhardtii is correlated with protein levels of stress-related light-harvesting complex (LHCSR) proteins, which are strongly induced by high light (HL). However, the dynamic response of overall thylakoid structure during acclimation to growth in HL has not been fully understood. Here, we combined live-cell super-resolution microscopy and analytical membrane subfractionation to investigate macroscale structural changes of thylakoid membranes during HL acclimation in Chlamydomonas. Subdiffraction-resolution live-cell imaging revealed that the overall thylakoid structures became thinned and shrunken during HL acclimation. The stromal space around the pyrenoid also became enlarged. Analytical density-dependent membrane fractionation indicated that the structural changes were partly a consequence of membrane unstacking. The analysis of both an LHCSR loss-of-function mutant, npq4 lhcsr1, and a regulatory mutant that over-expresses LHCSR, spa1-1, showed that structural changes occurred independently of LHCSR protein levels, demonstrating that LHCSR was neither necessary nor sufficient to induce the thylakoid structural changes associated with HL acclimation. In contrast, stt7-9, a mutant lacking a kinase of major light-harvesting antenna proteins, had a slower thylakoid structural response to HL relative to all other lines tested but still showed membrane unstacking. These results indicate that neither LHCSR- nor antenna-phosphorylation-dependent HL acclimation are required for the observed macroscale structural changes of thylakoid membranes in HL conditions.
Collapse
Affiliation(s)
- Mimi Broderson
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA, 94720, USA
| | - Krishna K Niyogi
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA, 94720, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Masakazu Iwai
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA.
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| |
Collapse
|
15
|
Avenson TJ, McDermitt DK. Shining Light into a "Black Box": Essential Rationale Underlying Multiphase Flash Methodology. Methods Mol Biol 2024; 2790:269-292. [PMID: 38649576 DOI: 10.1007/978-1-0716-3790-6_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
The world we live in is very fragile. Sustainable food production is increasingly under intense pressure due to changing environmental conditions on many levels. Understanding the complexities of how to optimize food production under increasingly deleterious environmental conditions is dependent upon accurate and detailed analyses of plant productivity from the molecular-to-the-remote scales. One method that can link many of these scales has been around for decades, namely, pulse amplitude modulation (PAM) chlorophyll a fluorescence. This technique is used to measure an assortment of important parameters based on chlorophyll a fluorescence. One of the parameters measured by this method is termed the steady state maximum fluorescence yield ( Φ Fm ' ). This parameter, while extremely informative when used to quantify an assortment of processes of intense scientific interest, is nonetheless subject to intrinsic underestimation. A clever approach has evolved over several decades to more accurately estimate Φ Fm ' . The underlying rationale of the methodology requires a thorough and nuanced explanation, which is lacking in the literature. Herein, we systematically develop the essential rationale for accurately measuring Φ Fm ' based on the latest evolution of this approach, called multiphase flash (MPF) methodology.
Collapse
|
16
|
Su J, Jiao Q, Jia T, Hu X. The photosystem-II repair cycle: updates and open questions. PLANTA 2023; 259:20. [PMID: 38091081 DOI: 10.1007/s00425-023-04295-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 11/15/2023] [Indexed: 12/18/2023]
Abstract
MAIN CONCLUSION The photosystem-II (PSII) repair cycle is essential for the maintenance of photosynthesis in plants. A number of novel findings have illuminated the regulatory mechanisms of the PSII repair cycle. Photosystem II (PSII) is a large pigment-protein complex embedded in the thylakoid membrane. It plays a vital role in photosynthesis by absorbing light energy, splitting water, releasing molecular oxygen, and transferring electrons for plastoquinone reduction. However, PSII, especially the PsbA (D1) core subunit, is highly susceptible to oxidative damage. To prevent irreversible damage, plants have developed a repair cycle. The main objective of the PSII repair cycle is the degradation of photodamaged D1 and insertion of newly synthesized D1 into the PSII complex. While many factors are known to be involved in PSII repair, the exact mechanism is still under investigation. In this review, we discuss the primary steps of PSII repair, focusing on the proteolytic degradation of photodamaged D1 and the factors involved.
Collapse
Affiliation(s)
- Jinling Su
- International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
- Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Qingsong Jiao
- International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
- Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Ting Jia
- International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China.
- Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China.
| | - Xueyun Hu
- International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China.
- Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China.
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
17
|
Wu J, Chen S, Wang C, Lin W, Huang C, Fan C, Han D, Lu D, Xu X, Sui S, Zhang L. Regulatory dynamics of the higher-plant PSI-LHCI supercomplex during state transitions. MOLECULAR PLANT 2023; 16:1937-1950. [PMID: 37936349 DOI: 10.1016/j.molp.2023.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 09/12/2023] [Accepted: 11/06/2023] [Indexed: 11/09/2023]
Abstract
State transition is a fundamental light acclimation mechanism of photosynthetic organisms in response to the environmental light conditions. This process rebalances the excitation energy between photosystem I (PSI) and photosystem II through regulated reversible binding of the light-harvesting complex II (LHCII) to PSI. However, the structural reorganization of PSI-LHCI, the dynamic binding of LHCII, and the regulatory mechanisms underlying state transitions are less understood in higher plants. In this study, using cryoelectron microscopy we resolved the structures of PSI-LHCI in both state 1 (PSI-LHCI-ST1) and state 2 (PSI-LHCI-LHCII-ST2) from Arabidopsis thaliana. Combined genetic and functional analyses revealed novel contacts between Lhcb1 and PsaK that further enhanced the binding of the LHCII trimer to the PSI core with the known interactions between phosphorylated Lhcb2 and the PsaL/PsaH/PsaO subunits. Specifically, PsaO was absent in the PSI-LHCI-ST1 supercomplex but present in the PSI-LHCI-LHCII-ST2 supercomplex, in which the PsaL/PsaK/PsaA subunits undergo several conformational changes to strengthen the binding of PsaO in ST2. Furthermore, the PSI-LHCI module adopts a more compact configuration with shorter Mg-to-Mg distances between the chlorophylls, which may enhance the energy transfer efficiency from the peripheral antenna to the PSI core in ST2. Collectively, our work provides novel structural and functional insights into the mechanisms of light acclimation during state transitions in higher plants.
Collapse
Affiliation(s)
- Jianghao Wu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Jinming Avenue, Kaifeng 475004, China
| | - Shuaijiabin Chen
- School of Life Science, Southern University of Science and Technology, Shenzhen 518055, China; State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Chao Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Jinming Avenue, Kaifeng 475004, China
| | - Weijun Lin
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Jinming Avenue, Kaifeng 475004, China; Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Chao Huang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Jinming Avenue, Kaifeng 475004, China
| | - Chengxu Fan
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Jinming Avenue, Kaifeng 475004, China
| | - Dexian Han
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Jinming Avenue, Kaifeng 475004, China
| | - Dandan Lu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Jinming Avenue, Kaifeng 475004, China
| | - Xiumei Xu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Jinming Avenue, Kaifeng 475004, China
| | - SenFang Sui
- School of Life Science, Southern University of Science and Technology, Shenzhen 518055, China; State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China; Cryo-EM Center, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Lixin Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Jinming Avenue, Kaifeng 475004, China.
| |
Collapse
|
18
|
Hehenberger E, Guo J, Wilken S, Hoadley K, Sudek L, Poirier C, Dannebaum R, Susko E, Worden AZ. Phosphate Limitation Responses in Marine Green Algae Are Linked to Reprogramming of the tRNA Epitranscriptome and Codon Usage Bias. Mol Biol Evol 2023; 40:msad251. [PMID: 37987557 PMCID: PMC10735309 DOI: 10.1093/molbev/msad251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 11/14/2023] [Accepted: 11/16/2023] [Indexed: 11/22/2023] Open
Abstract
Marine algae are central to global carbon fixation, and their productivity is dictated largely by resource availability. Reduced nutrient availability is predicted for vast oceanic regions as an outcome of climate change; however, there is much to learn regarding response mechanisms of the tiny picoplankton that thrive in these environments, especially eukaryotic phytoplankton. Here, we investigate responses of the picoeukaryote Micromonas commoda, a green alga found throughout subtropical and tropical oceans. Under shifting phosphate availability scenarios, transcriptomic analyses revealed altered expression of transfer RNA modification enzymes and biased codon usage of transcripts more abundant during phosphate-limiting versus phosphate-replete conditions, consistent with the role of transfer RNA modifications in regulating codon recognition. To associate the observed shift in the expression of the transfer RNA modification enzyme complement with the transfer RNAs encoded by M. commoda, we also determined the transfer RNA repertoire of this alga revealing potential targets of the modification enzymes. Codon usage bias was particularly pronounced in transcripts encoding proteins with direct roles in managing phosphate limitation and photosystem-associated proteins that have ill-characterized putative functions in "light stress." The observed codon usage bias corresponds to a proposed stress response mechanism in which the interplay between stress-induced changes in transfer RNA modifications and skewed codon usage in certain essential response genes drives preferential translation of the encoded proteins. Collectively, we expose a potential underlying mechanism for achieving growth under enhanced nutrient limitation that extends beyond the catalog of up- or downregulated protein-encoding genes to the cell biological controls that underpin acclimation to changing environmental conditions.
Collapse
Affiliation(s)
- Elisabeth Hehenberger
- Ocean EcoSystems Biology Unit, RD3, GEOMAR Helmholtz Centre for Ocean Research, 24148 Kiel, DE
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 370 05 České Budějovice, CZ
| | - Jian Guo
- Ocean Sciences Department, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Susanne Wilken
- Ocean Sciences Department, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Kenneth Hoadley
- Ocean EcoSystems Biology Unit, RD3, GEOMAR Helmholtz Centre for Ocean Research, 24148 Kiel, DE
| | - Lisa Sudek
- Ocean Sciences Department, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Camille Poirier
- Ocean EcoSystems Biology Unit, RD3, GEOMAR Helmholtz Centre for Ocean Research, 24148 Kiel, DE
| | - Richard Dannebaum
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Edward Susko
- Department of Mathematics and Statistics, Dalhousie University, Halifax, Nova Scotia B3H 4R2, CA
| | - Alexandra Z Worden
- Ocean EcoSystems Biology Unit, RD3, GEOMAR Helmholtz Centre for Ocean Research, 24148 Kiel, DE
- Ocean Sciences Department, University of California Santa Cruz, Santa Cruz, CA 95064, USA
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA 02543, USA
- Max Planck Institute for Evolutionary Biology, 24306 Plön, DE
| |
Collapse
|
19
|
Leverne L, Roach T, Perreau F, Maignan F, Krieger-Liszkay A. Increased drought resistance in state transition mutants is linked to modified plastoquinone pool redox state. PLANT, CELL & ENVIRONMENT 2023; 46:3737-3747. [PMID: 37614199 DOI: 10.1111/pce.14695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 08/01/2023] [Accepted: 08/07/2023] [Indexed: 08/25/2023]
Abstract
Identifying traits that exhibit improved drought resistance is highly important to cope with the challenges of predicted climate change. We investigated the response of state transition mutants to drought. Compared with the wild type, state transition mutants were less affected by drought. Photosynthetic parameters in leaves probed by chlorophyll fluorescence confirmed that mutants possess a more reduced plastoquinone (PQ) pool, as expected due to the absence of state transitions. Seedlings of the mutants showed an enhanced growth of the primary root and more lateral root formation. The photosystem II inhibitor 3-(3,4-dichlorophenyl)-1,1-dimethylurea, leading to an oxidised PQ pool, inhibited primary root growth in wild type and mutants, while the cytochrome b6 f complex inhibitor 2,5-dibromo-3-methyl-6-isopropylbenzoquinone, leading to a reduced PQ pool, stimulated root growth. A more reduced state of the PQ pool was associated with a slight but significant increase in singlet oxygen production. Singlet oxygen may trigger a, yet unknown, signalling cascade promoting root growth. We propose that photosynthetic mutants with a deregulated ratio of photosystem II to photosystem I activity can provide a novel path for improving crop drought resistance.
Collapse
Affiliation(s)
- Lucas Leverne
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Thomas Roach
- Department of Botany, University of Innsbruck, Innsbruck, Austria
| | - François Perreau
- INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Université Paris-Saclay, Versailles, France
| | - Fabienne Maignan
- Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Anja Krieger-Liszkay
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| |
Collapse
|
20
|
Okegawa Y. PCP Research Highlights: Regulatory Role of Three Important Post-Translational Modifications in Chloroplast Proteins. PLANT & CELL PHYSIOLOGY 2023; 64:1119-1123. [PMID: 37655986 DOI: 10.1093/pcp/pcad097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/23/2023] [Accepted: 08/30/2023] [Indexed: 09/02/2023]
Affiliation(s)
- Yuki Okegawa
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, 710-0046 Japan
| |
Collapse
|
21
|
Gutsch A, Berni R, Hausman JF, Sutera FM, Dehsorkhi A, Torabi-Pour N, Saffie-Siebert S, Guerriero G. A Study on the Use of the Phyto-Courier Technology in Tobacco Leaves Infected by Agrobacterium tumefaciens. Int J Mol Sci 2023; 24:14153. [PMID: 37762454 PMCID: PMC10531687 DOI: 10.3390/ijms241814153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/01/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Climate change results in exceptional environmental conditions and drives the migration of pathogens to which local plants are not adapted. Biotic stress disrupts plants' metabolism, fitness, and performance, ultimately impacting their productivity. It is therefore necessary to develop strategies for improving plant resistance by promoting stress responsiveness and resilience in an environmentally friendly and sustainable way. The aim of this study was to investigate whether priming tobacco plants with a formulation containing silicon-stabilised hybrid lipid nanoparticles functionalised with quercetin (referred to as GS3 phyto-courier) can protect against biotic stress triggered by Agrobacterium tumefaciens leaf infiltration. Tobacco leaves were primed via infiltration or spraying with the GS3 phyto-courier, as well as with a buffer (B) and free quercetin (Q) solution serving as controls prior to the biotic stress. Leaves were then sampled four days after bacterial infiltration for gene expression analysis and microscopy. The investigated genes increased in expression after stress, both in leaves treated with the phyto-courier and control solutions. A trend towards lower values was observed in the presence of the GS3 phyto-courier for genes encoding chitinases and pathogenesis-related proteins. Agroinfiltrated leaves sprayed with GS3 confirmed the significant lower expression of the pathogenesis-related gene PR-1a and showed higher expression of peroxidase and serine threonine kinase. Microscopy revealed swelling of the chloroplasts in the parenchyma of stressed leaves treated with B; however, GS3 preserved the chloroplasts' mean area under stress. Furthermore, the UV spectrum of free Q solution and of quercetin freshly extracted from GS3 revealed a different spectral signature with higher values of maximum absorbance (Amax) of the flavonoid in the latter, suggesting that the silicon-stabilised hybrid lipid nanoparticles protect quercetin against oxidative degradation.
Collapse
Affiliation(s)
- Annelie Gutsch
- Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, 5, Rue Bommel, L-4940 Hautcharage, Luxembourg; (A.G.); (R.B.); (J.-F.H.)
| | - Roberto Berni
- Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, 5, Rue Bommel, L-4940 Hautcharage, Luxembourg; (A.G.); (R.B.); (J.-F.H.)
| | - Jean-Francois Hausman
- Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, 5, Rue Bommel, L-4940 Hautcharage, Luxembourg; (A.G.); (R.B.); (J.-F.H.)
| | - Flavia Maria Sutera
- SiSaf Ltd., Surrey Research Park, Guildford GU2 7RE, UK; (F.M.S.); (A.D.); (N.T.-P.)
| | - Ashkan Dehsorkhi
- SiSaf Ltd., Surrey Research Park, Guildford GU2 7RE, UK; (F.M.S.); (A.D.); (N.T.-P.)
| | - Nissim Torabi-Pour
- SiSaf Ltd., Surrey Research Park, Guildford GU2 7RE, UK; (F.M.S.); (A.D.); (N.T.-P.)
| | | | - Gea Guerriero
- Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, 5, Rue Bommel, L-4940 Hautcharage, Luxembourg; (A.G.); (R.B.); (J.-F.H.)
| |
Collapse
|
22
|
Wang L, Patena W, Van Baalen KA, Xie Y, Singer ER, Gavrilenko S, Warren-Williams M, Han L, Harrigan HR, Hartz LD, Chen V, Ton VTNP, Kyin S, Shwe HH, Cahn MH, Wilson AT, Onishi M, Hu J, Schnell DJ, McWhite CD, Jonikas MC. A chloroplast protein atlas reveals punctate structures and spatial organization of biosynthetic pathways. Cell 2023; 186:3499-3518.e14. [PMID: 37437571 DOI: 10.1016/j.cell.2023.06.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 05/06/2023] [Accepted: 06/11/2023] [Indexed: 07/14/2023]
Abstract
Chloroplasts are eukaryotic photosynthetic organelles that drive the global carbon cycle. Despite their importance, our understanding of their protein composition, function, and spatial organization remains limited. Here, we determined the localizations of 1,034 candidate chloroplast proteins using fluorescent protein tagging in the model alga Chlamydomonas reinhardtii. The localizations provide insights into the functions of poorly characterized proteins; identify novel components of nucleoids, plastoglobules, and the pyrenoid; and reveal widespread protein targeting to multiple compartments. We discovered and further characterized cellular organizational features, including eleven chloroplast punctate structures, cytosolic crescent structures, and unexpected spatial distributions of enzymes within the chloroplast. We also used machine learning to predict the localizations of other nuclear-encoded Chlamydomonas proteins. The strains and localization atlas developed here will serve as a resource to accelerate studies of chloroplast architecture and functions.
Collapse
Affiliation(s)
- Lianyong Wang
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Weronika Patena
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Kelly A Van Baalen
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Yihua Xie
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Emily R Singer
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Sophia Gavrilenko
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | | | - Linqu Han
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA; MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI 48824, USA
| | - Henry R Harrigan
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Linnea D Hartz
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Vivian Chen
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Vinh T N P Ton
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Saw Kyin
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Henry H Shwe
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Matthew H Cahn
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Alexandra T Wilson
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Masayuki Onishi
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Jianping Hu
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA; MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI 48824, USA
| | - Danny J Schnell
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Claire D McWhite
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Martin C Jonikas
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA; Howard Hughes Medical Institute, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
23
|
Youssef WA, Feil R, Saint-Sorny M, Johnson X, Lunn JE, Grimm B, Brzezowski P. Singlet oxygen-induced signalling depends on the metabolic status of the Chlamydomonas reinhardtii cell. Commun Biol 2023; 6:529. [PMID: 37193883 DOI: 10.1038/s42003-023-04872-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 04/24/2023] [Indexed: 05/18/2023] Open
Abstract
Using a mutant screen, we identified trehalose 6-phosphate phosphatase 1 (TSPP1) as a functional enzyme dephosphorylating trehalose 6-phosphate (Tre6P) to trehalose in Chlamydomonas reinhardtii. The tspp1 knock-out results in reprogramming of the cell metabolism via altered transcriptome. As a secondary effect, tspp1 also shows impairment in 1O2-induced chloroplast retrograde signalling. From transcriptomic analysis and metabolite profiling, we conclude that accumulation or deficiency of certain metabolites directly affect 1O2-signalling. 1O2-inducible GLUTATHIONE PEROXIDASE 5 (GPX5) gene expression is suppressed by increased content of fumarate and 2-oxoglutarate, intermediates in the tricarboxylic acid cycle (TCA cycle) in mitochondria and dicarboxylate metabolism in the cytosol, but also myo-inositol, involved in inositol phosphate metabolism and phosphatidylinositol signalling system. Application of another TCA cycle intermediate, aconitate, recovers 1O2-signalling and GPX5 expression in otherwise aconitate-deficient tspp1. Genes encoding known essential components of chloroplast-to-nucleus 1O2-signalling, PSBP2, MBS, and SAK1, show decreased transcript levels in tspp1, which also can be rescued by exogenous application of aconitate. We demonstrate that chloroplast retrograde signalling involving 1O2 depends on mitochondrial and cytosolic processes and that the metabolic status of the cell determines the response to 1O2.
Collapse
Affiliation(s)
- Waeil Al Youssef
- Pflanzenphysiologie, Institut für Biologie, Humboldt-Universität zu Berlin, 10115, Berlin, Germany
| | - Regina Feil
- Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam-Golm, Germany
| | - Maureen Saint-Sorny
- Photosynthesis and Environment Team, Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), CNRS, Institut de Biosciences et Biotechnologies d'Aix-Marseille, Aix-Marseille Université, UMR 7265, CEA Cadarache, F-13108, Saint-Paul-lez-Durance, France
| | - Xenie Johnson
- Photosynthesis and Environment Team, Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), CNRS, Institut de Biosciences et Biotechnologies d'Aix-Marseille, Aix-Marseille Université, UMR 7265, CEA Cadarache, F-13108, Saint-Paul-lez-Durance, France
| | - John E Lunn
- Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam-Golm, Germany
| | - Bernhard Grimm
- Pflanzenphysiologie, Institut für Biologie, Humboldt-Universität zu Berlin, 10115, Berlin, Germany
| | - Pawel Brzezowski
- Pflanzenphysiologie, Institut für Biologie, Humboldt-Universität zu Berlin, 10115, Berlin, Germany.
| |
Collapse
|
24
|
Zhuang J, Chi Y, Wang Y, Zhou L. Trade-off of leaf-scale resource-use efficiencies along the vertical canopy of the subtropical forest. JOURNAL OF PLANT PHYSIOLOGY 2023; 286:154004. [PMID: 37209459 DOI: 10.1016/j.jplph.2023.154004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 04/26/2023] [Accepted: 05/07/2023] [Indexed: 05/22/2023]
Abstract
Leaf resource-use efficiencies are key indicators of plant adaptability to climate change, as they depend on both photosynthetic carbon assimilation and available resources. However, accurately quantifying the response of the coupled carbon and water cycles is challenging due to the canopy vertical variability in resource-use efficiencies, which introduces greater uncertainty into the calculations. Here we experimented to ascertain the vertical variations of leaf resource-use efficiencies along three canopy gradients of coniferous (Pinus elliottii Engelmann.) and broad-leaved (Schima Superba Gardn & Champ.) forests over one year in the subtropical region of China. The efficiency of water (WUE), and nitrogen (NUE) showed higher values in the top canopy level for the two species. The maximum efficiency of light (LUE) occurred in the bottom canopy level for both species. The impact of photosynthetic photon flux density (PPFD), leaf temperature (Tleaf), and vapor pressure deficit (VPD) on leaf resource-use efficiencies varied with canopy gradients in slash pine and schima superba. We also observed a trade-off between NUE and LUE for slash pine and between NUE and WUE for schima superba. Moreover, the variation in the correlation between LUE and WUE indicated a change in resource-use strategies for slash pine. These results emphasize the significance of vertical variations in resource-use efficiencies to enhance the prediction of future carbon-water dynamics in the subtropical forest.
Collapse
Affiliation(s)
- Jie Zhuang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Yonggang Chi
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Yonglin Wang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China; National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lei Zhou
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| |
Collapse
|
25
|
Ozawa SI, Buchert F, Reuys R, Hippler M, Takahashi Y. Algal PETC-Pro171-Leu suppresses electron transfer in cytochrome b6f under acidic lumenal conditions. PLANT PHYSIOLOGY 2023; 191:1803-1817. [PMID: 36516417 PMCID: PMC10022631 DOI: 10.1093/plphys/kiac575] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Linear photosynthetic electron flow (LEF) produces NADPH and generates a proton electrochemical potential gradient across the thylakoid membrane to synthesize ATP, both of which are required for CO2 fixation. As cellular demand for ATP and NADPH varies, cyclic electron flow (CEF) between Photosystem I and the cytochrome b6f complex (b6f) produces extra ATP. b6f regulates LEF and CEF via photosynthetic control, which is a pH-dependent b6f slowdown of plastoquinol oxidation at the lumenal site. This protection mechanism is triggered at more alkaline lumen pH in the pgr1 (proton gradient regulation 1) mutant of the vascular plant Arabidopsis (Arabidopsis thaliana), which contains a Pro194Leu substitution in the b6f Rieske Iron-sulfur protein Photosynthetic Electron Transfer C (PETC) subunit. In this work, we introduced the equivalent pgr1 mutation in the green alga Chlamydomonas reinhardtii to generate PETC-P171L. Consistent with the pgr1 phenotype, PETC-P171L displayed impaired NPQ induction along with slower photoautotrophic growth under high light conditions. Our data provide evidence that the ΔpH component in PETC-P171L depends on oxygen availability. Only under low oxygen conditions was the ΔpH component sufficient to trigger a phenotype in algal PETC-P171L where the mutant b6f was more restricted to oxidize the plastoquinol pool and showed diminished electron flow through the b6f complex. These results demonstrate that photosynthetic control of different stringency are established in C. reinhardtii depending on the cellular metabolism, and the lumen pH-sensitive PETC-P171L was generated to read out various associated effects.
Collapse
Affiliation(s)
| | - Felix Buchert
- Institute of Plant Biology and Biotechnology, University of Münster, 48143 Münster, Germany
| | - Ruby Reuys
- Institute of Plant Biology and Biotechnology, University of Münster, 48143 Münster, Germany
| | - Michael Hippler
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan
- Institute of Plant Biology and Biotechnology, University of Münster, 48143 Münster, Germany
| | - Yuichiro Takahashi
- Research Institute for Interdisciplinary Science, Okayama University, Okayama 700-8530, Japan
| |
Collapse
|
26
|
Burgess AJ, Retkute R, Murchie EH. Photoacclimation and entrainment of photosynthesis by fluctuating light varies according to genotype in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2023; 14:1116367. [PMID: 36968397 PMCID: PMC10034362 DOI: 10.3389/fpls.2023.1116367] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Acclimation of photosynthesis to light intensity (photoacclimation) takes days to achieve and so naturally fluctuating light presents a potential challenge where leaves may be exposed to light conditions that are beyond their window of acclimation. Experiments generally have focused on unchanging light with a relatively fixed combination of photosynthetic attributes to confer higher efficiency in those conditions. Here a controlled LED experiment and mathematical modelling was used to assess the acclimation potential of contrasting Arabidopsis thaliana genotypes following transfer to a controlled fluctuating light environment, designed to present frequencies and amplitudes more relevant to natural conditions. We hypothesize that acclimation of light harvesting, photosynthetic capacity and dark respiration are controlled independently. Two different ecotypes were selected, Wassilewskija-4 (Ws), Landsberg erecta (Ler) and a GPT2 knock out mutant on the Ws background (gpt2-), based on their differing abilities to undergo dynamic acclimation i.e. at the sub-cellular or chloroplastic scale. Results from gas exchange and chlorophyll content indicate that plants can independently regulate different components that could optimize photosynthesis in both high and low light; targeting light harvesting in low light and photosynthetic capacity in high light. Empirical modelling indicates that the pattern of 'entrainment' of photosynthetic capacity by past light history is genotype-specific. These data show flexibility of photoacclimation and variation useful for plant improvement.
Collapse
Affiliation(s)
| | - Renata Retkute
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Erik H. Murchie
- School of Biosciences, University of Nottingham, Loughborough, United Kingdom
| |
Collapse
|
27
|
Shang H, Li M, Pan X. Dynamic Regulation of the Light-Harvesting System through State Transitions in Land Plants and Green Algae. PLANTS (BASEL, SWITZERLAND) 2023; 12:1173. [PMID: 36904032 PMCID: PMC10005731 DOI: 10.3390/plants12051173] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/01/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
Photosynthesis constitutes the only known natural process that captures the solar energy to convert carbon dioxide and water into biomass. The primary reactions of photosynthesis are catalyzed by the photosystem II (PSII) and photosystem I (PSI) complexes. Both photosystems associate with antennae complexes whose main function is to increase the light-harvesting capability of the core. In order to maintain optimal photosynthetic activity under a constantly changing natural light environment, plants and green algae regulate the absorbed photo-excitation energy between PSI and PSII through processes known as state transitions. State transitions represent a short-term light adaptation mechanism for balancing the energy distribution between the two photosystems by relocating light-harvesting complex II (LHCII) proteins. The preferential excitation of PSII (state 2) results in the activation of a chloroplast kinase which in turn phosphorylates LHCII, a process followed by the release of phosphorylated LHCII from PSII and its migration to PSI, thus forming the PSI-LHCI-LHCII supercomplex. The process is reversible, as LHCII is dephosphorylated and returns to PSII under the preferential excitation of PSI. In recent years, high-resolution structures of the PSI-LHCI-LHCII supercomplex from plants and green algae were reported. These structural data provide detailed information on the interacting patterns of phosphorylated LHCII with PSI and on the pigment arrangement in the supercomplex, which is critical for constructing the excitation energy transfer pathways and for a deeper understanding of the molecular mechanism of state transitions progress. In this review, we focus on the structural data of the state 2 supercomplex from plants and green algae and discuss the current state of knowledge concerning the interactions between antenna and the PSI core and the potential energy transfer pathways in these supercomplexes.
Collapse
Affiliation(s)
- Hui Shang
- College of Life Science, Capital Normal University, Beijing 100048, China
| | - Mei Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaowei Pan
- College of Life Science, Capital Normal University, Beijing 100048, China
| |
Collapse
|
28
|
Fu W, Cui Z, Guo J, Cui X, Han G, Zhu Y, Hu J, Gao X, Li Y, Xu M, Fu A, Wang F. Immunophilin CYN28 is required for accumulation of photosystem II and thylakoid FtsH protease in Chlamydomonas. PLANT PHYSIOLOGY 2023; 191:1002-1016. [PMID: 36417279 PMCID: PMC9922407 DOI: 10.1093/plphys/kiac524] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Excess light causes severe photodamage to photosystem II (PSII) where the primary charge separation for electron transfer takes place. Dissection of mechanisms underlying the PSII maintenance and repair cycle in green algae promotes the usage of genetic engineering and synthetic biology to improve photosynthesis and biomass production. In this study, we systematically analyzed the high light (HL) responsive immunophilin genes in Chlamydomonas (Chlamydomonas reinhardtii) and identified one chloroplast lumen-localized immunophilin, CYN28, as an essential player in HL tolerance. Lack of CYN28 caused HL hypersensitivity, severely reduced accumulation of PSII supercomplexes and compromised PSII repair in cyn28. The thylakoid FtsH (filamentation temperature-sensitive H) is an essential AAA family metalloprotease involved in the degradation of photodamaged D1 during the PSII repair cycle and was identified as one potential target of CYN28. In the cyn28 mutant, the thylakoid FtsH undergoes inefficient turnover under HL conditions. The CYN28-FtsH1/2 interaction relies on the FtsH N-terminal proline residues and is strengthened particularly under HL. Further analyses demonstrated CYN28 displays peptidyl-prolyl isomerase (PPIase) activity, which is necessary for its physiological function. Taken together, we propose that immunophilin CYN28 participates in PSII maintenance and regulates the homeostasis of FtsH under HL stress via its PPIase activity.
Collapse
Affiliation(s)
- Weihan Fu
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi’an, China
| | - Zheng Cui
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi’an, China
| | - Jia Guo
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi’an, China
| | - Xiayu Cui
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi’an, China
| | - Guomao Han
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi’an, China
| | - Yunpeng Zhu
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi’an, China
| | - Jinju Hu
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi’an, China
| | - Xiaoling Gao
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi’an, China
| | - Yeqing Li
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi’an, China
| | - Min Xu
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi’an, China
| | - Aigen Fu
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi’an, China
| | - Fei Wang
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi’an, China
| |
Collapse
|
29
|
Herdean A, Hall C, Hughes DJ, Kuzhiumparambil U, Diocaretz BC, Ralph PJ. Temperature mapping of non-photochemical quenching in Chlorella vulgaris. PHOTOSYNTHESIS RESEARCH 2023; 155:191-202. [PMID: 36417105 PMCID: PMC9879819 DOI: 10.1007/s11120-022-00981-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
Light intensity and temperature independently impact all parts of the photosynthetic machinery in plants and algae. Yet to date, the vast majority of pulse amplitude modulated (PAM) chlorophyll a fluorescence measurements have been performed at well-defined light intensities, but rarely at well-defined temperatures. In this work, we show that PAM measurements performed at various temperatures produce vastly different results in the chlorophyte Chlorella vulgaris. Using a recently developed Phenoplate technique to map quantum yield of Photosystem II (Y(II)) and non-photochemical quenching (NPQ) as a function of temperature, we show that the fast-relaxing NPQ follows an inverse normal distribution with respect to temperature and appears insensitive to previous temperature acclimation. The slow-relaxing or residual NPQ after 5 minutes of dark recovery follows a normal distribution similar to Y(II) but with a peak in the higher temperature range. Surprisingly, higher slow- and fast-relaxing NPQ values were observed in high-light relative to low-light acclimated cultures. Y(II) values peaked at the adaptation temperature regardless of temperature or light acclimation. Our novel findings show the complete temperature working spectrum of Y(II) and how excess energy quenching is managed across a wide range of temperatures in the model microalgal species C. vulgaris. Finally, we draw attention to the fact that the effect of the temperature component in PAM measurements has been wildly underestimated, and results from experiments at room temperature can be misleading.
Collapse
Affiliation(s)
- Andrei Herdean
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
| | - Christopher Hall
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - David J Hughes
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | | | | | - Peter J Ralph
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| |
Collapse
|
30
|
Remodeling of algal photosystem I through phosphorylation. Biosci Rep 2023; 43:232211. [PMID: 36477263 PMCID: PMC9874419 DOI: 10.1042/bsr20220369] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/29/2022] [Accepted: 12/07/2022] [Indexed: 12/12/2022] Open
Abstract
Photosystem I (PSI) with its associated light-harvesting system is the most important generator of reducing power in photosynthesis. The PSI core complex is highly conserved, whereas peripheral subunits as well as light-harvesting proteins (LHCI) reveal a dynamic plasticity. Moreover, in green alga, PSI-LHCI complexes are found as monomers, dimers, and state transition complexes, where two LHCII trimers are associated. Herein, we show light-dependent phosphorylation of PSI subunits PsaG and PsaH as well as Lhca6. Potential consequences of the dynamic phosphorylation of PsaG and PsaH are structurally analyzed and discussed in regard to the formation of the monomeric, dimeric, and LHCII-associated PSI-LHCI complexes.
Collapse
|
31
|
Devadasu E, Kanna SD, Neelam S, Yadav RM, Nama S, Akhtar P, Polgár TF, Ughy B, Garab G, Lambrev PH, Subramanyam R. Long- and short-term acclimation of the photosynthetic apparatus to salinity in Chlamydomonas reinhardtii. The role of Stt7 protein kinase. FRONTIERS IN PLANT SCIENCE 2023; 14:1051711. [PMID: 37089643 PMCID: PMC10113551 DOI: 10.3389/fpls.2023.1051711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 03/03/2023] [Indexed: 05/03/2023]
Abstract
Salt stress triggers an Stt7-mediated LHCII-phosphorylation signaling mechanism similar to light-induced state transitions. However, phosphorylated LHCII, after detaching from PSII, does not attach to PSI but self-aggregates instead. Salt is a major stress factor in the growth of algae and plants. Here, our study mainly focuses on the organization of the photosynthetic apparatus to the long-term responses of Chlamydomonas reinhardtii to elevated NaCl concentrations. We analyzed the physiological effects of salt treatment at a cellular, membrane, and protein level by microscopy, protein profile analyses, transcripts, circular dichroism spectroscopy, chlorophyll fluorescence transients, and steady-state and time-resolved fluorescence spectroscopy. We have ascertained that cells that were grown in high-salinity medium form palmelloids sphere-shaped colonies, where daughter cells with curtailed flagella are enclosed within the mother cell walls. Palmelloid formation depends on the presence of a cell wall, as it was not observed in a cell-wall-less mutant CC-503. Using the stt7 mutant cells, we show Stt7 kinase-dependent phosphorylation of light-harvesting complex II (LHCII) in both short- and long-term treatments of various NaCl concentrations-demonstrating NaCl-induced state transitions that are similar to light-induced state transitions. The grana thylakoids were less appressed (with higher repeat distances), and cells grown in 150 mM NaCl showed disordered structures that formed diffuse boundaries with the flanking stroma lamellae. PSII core proteins were more prone to damage than PSI. At high salt concentrations (100-150 mM), LHCII aggregates accumulated in the thylakoid membranes. Low-temperature and time-resolved fluorescence spectroscopy indicated that the stt7 mutant was more sensitive to salt stress, suggesting that LHCII phosphorylation has a role in the acclimation and protection of the photosynthetic apparatus.
Collapse
Affiliation(s)
- Elsinraju Devadasu
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Sai Divya Kanna
- Institute of Plant Biology, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
- Doctoral School of Biology, University of Szeged, Szeged, Hungary
| | - Satyabala Neelam
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Ranay Mohan Yadav
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Srilatha Nama
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Parveen Akhtar
- Institute of Plant Biology, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
| | - Tamás F. Polgár
- Institute of Biophysics, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
- Theoretical Medicine Doctoral School, University of Szeged, Szeged, Hungary
| | - Bettina Ughy
- Institute of Plant Biology, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
| | - Győző Garab
- Institute of Plant Biology, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
- Department of Physics, Faculty of Science, University of Ostrava, Ostrava, Czechia
| | - Petar H. Lambrev
- Institute of Plant Biology, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
| | - Rajagopal Subramanyam
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, India
- *Correspondence: Rajagopal Subramanyam,
| |
Collapse
|
32
|
Virtanen O, Tyystjärvi E. Plastoquinone pool redox state and control of state transitions in Chlamydomonas reinhardtii in darkness and under illumination. PHOTOSYNTHESIS RESEARCH 2023; 155:59-76. [PMID: 36282464 PMCID: PMC9792418 DOI: 10.1007/s11120-022-00970-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Movement of LHCII between two photosystems has been assumed to be similarly controlled by the redox state of the plastoquinone pool (PQ-pool) in plants and green algae. Here we show that the redox state of the PQ-pool of Chlamydomonas reinhardtii can be determined with HPLC and use this method to compare the light state in C. reinhardtii with the PQ-pool redox state in a number of conditions. The PQ-pool was at least moderately reduced under illumination with all tested types of visible light and oxidation was achieved only with aerobic dark treatment or with far-red light. Although dark incubations and white light forms with spectral distribution favoring one photosystem affected the redox state of PQ-pool differently, they induced similar Stt7-dependent state transitions. Thus, under illumination the dynamics of the PQ-pool and its connection with light state appears more complicated in C. reinhardtii than in plants. We suggest this to stem from the larger number of LHC-units and from less different absorption profiles of the photosystems in C. reinhardtii than in plants. The data demonstrate that the two different control mechanisms required to fulfill the dual function of state transitions in C. reinhardtii in photoprotection and in balancing light utilization are activated via different means.
Collapse
Affiliation(s)
- Olli Virtanen
- Department of Life Technologies/Molecular Plant Biology, University of Turku, 20014, Turku, Finland
| | - Esa Tyystjärvi
- Department of Life Technologies/Molecular Plant Biology, University of Turku, 20014, Turku, Finland.
| |
Collapse
|
33
|
Song Q, Wang X, Liu Y, Brestic M, Yang X. StLTO1, a lumen thiol oxidoreductase in Solanum tuberosum L., enhances the cold resistance of potato plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 325:111481. [PMID: 36181944 DOI: 10.1016/j.plantsci.2022.111481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 09/19/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Cold stress reduces plant photosynthesis and increases the accumulation of reactive oxygen species (ROS) in plants, thereby dramatically affecting plant growth, crop productivity and quality. Here, we report that lumen thiol oxidoreductase 1 (StLTO1), a vitamin K epoxide reductase (VKOR)-like protein in the thylakoid membrane of Solanum tuberosum L., enhances the cold tolerance of potato plants. Under normal conditions, overexpression of StLTO1 in plants promoted plant growth. In addition, potato plants overexpressing StLTO1 displayed enhanced photosynthetic capacity and increased capacity for scavenging ROS compared to StLTO1 knockdown and wild-type potato plants under cold conditions. Overexpression of StLTO1 in potato plants also improved cold-regulated (COR) gene expression after cold stress. Our results suggest that StLTO1 acts as a positive regulator of cold resistance in potato plants.
Collapse
Affiliation(s)
- Qiping Song
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, 271018, China
| | - Xipan Wang
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, 271018, China
| | - Yang Liu
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, 271018, China
| | - Marian Brestic
- Department of Plant Physiology, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic
| | - Xinghong Yang
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, 271018, China.
| |
Collapse
|
34
|
Joliot P, Sellés J, Wollman FA, Verméglio A. High efficient cyclic electron flow and functional supercomplexes in Chlamydomonas cells. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2022; 1863:148909. [PMID: 35952798 DOI: 10.1016/j.bbabio.2022.148909] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
A very high rate for cyclic electron flow (CEF) around PSI (~180 s-1 or 210 s-1 in minimum medium or in the presence of a carbon source respectively) is measured in the presence of methyl viologen (MV) in intact cells of Chlamydomonas reinhardtii under anaerobic conditions. The observation of an efficient CEF in the presence of methyl viologen is in agreement with the previous results reports of Asada et al. in broken chloroplasts (Plant Cell Physiol. 31(4) (1990) 557-564). From the analysis of the P700 and PC absorbance changes, we propose that a confinement between 2 PC molecules, 1 PSI and 1 cytb6f corresponding to a functional supercomplex is responsible for these high rates of CEF. Supercomplex formation is also observed in the absence of methyl viologen, but with lower maximal CEF rate (about 100 s-1) suggesting that this compound facilitates the mediation of electron transfer from PSI acceptors to the stromal side of cytb6f. Further analysis of CEF in mutants of Chlamydomonas defective in state transitions shows the requirement of a kinase-driven transition to state 2 to establish this functional supercomplex configuration. However, a movement of the LHCII antennae is not involved in this process. We discuss the possible involvement of auxiliary proteins, among which is a small cytb6f-associated polypeptide, the PETO protein, which is one of the targets of the STT7 kinase.
Collapse
Affiliation(s)
- Pierre Joliot
- Laboratoire de Biologie du Chloroplaste et Perception de la Lumière Chez les Microalgues, Institut de Biologie Physico-Chimique, CNRS UMR 7141, Sorbonne Université, Paris, France.
| | - Julien Sellés
- Laboratoire de Biologie du Chloroplaste et Perception de la Lumière Chez les Microalgues, Institut de Biologie Physico-Chimique, CNRS UMR 7141, Sorbonne Université, Paris, France.
| | - Françis-André Wollman
- Laboratoire de Biologie du Chloroplaste et Perception de la Lumière Chez les Microalgues, Institut de Biologie Physico-Chimique, CNRS UMR 7141, Sorbonne Université, Paris, France
| | - André Verméglio
- Laboratoire de Biologie du Chloroplaste et Perception de la Lumière Chez les Microalgues, Institut de Biologie Physico-Chimique, CNRS UMR 7141, Sorbonne Université, Paris, France
| |
Collapse
|
35
|
Zhang X, Fujita Y, Kaneda N, Tokutsu R, Ye S, Minagawa J, Shibata Y. State transition is quiet around pyrenoid and LHCII phosphorylation is not essential for thylakoid deformation in Chlamydomonas 137c. Proc Natl Acad Sci U S A 2022; 119:e2122032119. [PMID: 36067315 PMCID: PMC9478649 DOI: 10.1073/pnas.2122032119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 08/10/2022] [Indexed: 11/18/2022] Open
Abstract
Photosynthetic organisms have developed a regulation mechanism called state transition (ST) to rapidly adjust the excitation balance between the two photosystems by light-harvesting complex II (LHCII) movement. Though many researchers have assumed coupling of the dynamic transformations of the thylakoid membrane with ST, evidence of that remains elusive. To clarify the above-mentioned coupling in a model organism Chlamydomonas, here we used two advanced microscope techniques, the excitation-spectral microscope (ESM) developed recently by us and the superresolution imaging based on structured-illumination microscopy (SIM). The ESM observation revealed ST-dependent spectral changes upon repeated ST inductions. Surprisingly, it clarified a less significant ST occurrence in the region surrounding the pyrenoid, which is a subcellular compartment specialized for the carbon-fixation reaction, than that in the other domains. Further, we found a species dependence of this phenomenon: 137c strain showed the significant intracellular inhomogeneity of ST occurrence, whereas 4A+ strain hardly did. On the other hand, the SIM observation resolved partially irreversible fine thylakoid transformations caused by the ST-inducing illumination. This fine, irreversible thylakoid transformation was also observed in the STT7 kinase-lacking mutant. This result revealed that the fine thylakoid transformation is not induced solely by the LHCII phosphorylation, suggesting the highly susceptible nature of the thylakoid ultrastructure to the photosynthetic light reactions.
Collapse
Affiliation(s)
- XianJun Zhang
- Department of Chemistry, Graduate School of Sciences, Tohoku University, 980-8578 Sendai, Japan
- Division for Interdisciplinary Advanced Research and Education, Tohoku University, 980-8578 Sendai, Japan
| | - Yuki Fujita
- Department of Chemistry, Graduate School of Sciences, Tohoku University, 980-8578 Sendai, Japan
| | - Naoya Kaneda
- Department of Chemistry, Graduate School of Sciences, Tohoku University, 980-8578 Sendai, Japan
| | - Ryutaro Tokutsu
- Division of Environmental Photobiology, National Institute for Basic Biology, 444-8585 Okazaki, Japan
| | - Shen Ye
- Department of Chemistry, Graduate School of Sciences, Tohoku University, 980-8578 Sendai, Japan
| | - Jun Minagawa
- Division of Environmental Photobiology, National Institute for Basic Biology, 444-8585 Okazaki, Japan
| | - Yutaka Shibata
- Department of Chemistry, Graduate School of Sciences, Tohoku University, 980-8578 Sendai, Japan
| |
Collapse
|
36
|
Gerotto C, Trotta A, Bajwa AA, Morosinotto T, Aro EM. Role of serine/threonine protein kinase STN7 in the formation of two distinct photosystem I supercomplexes in Physcomitrium patens. PLANT PHYSIOLOGY 2022; 190:698-713. [PMID: 35736511 PMCID: PMC9434285 DOI: 10.1093/plphys/kiac294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
Reversible thylakoid protein phosphorylation provides most flowering plants with dynamic acclimation to short-term changes in environmental light conditions. Here, through generating Serine/Threonine protein kinase 7 (STN7)-depleted mutants in the moss Physcomitrella (Physcomitrium patens), we identified phosphorylation targets of STN7 kinase and their roles in short- and long-term acclimation of the moss to changing light conditions. Biochemical and mass spectrometry analyses revealed STN7-dependent phosphorylation of N-terminal Thr in specific Light-Harvesting Complex II (LHCII) trimer subunits (LHCBM2 and LHCBM4/8) and provided evidence that phospho-LHCBM accumulation is responsible for the assembly of two distinct Photosystem I (PSI) supercomplexes (SCs), both of which are largely absent in STN7-depleted mutants. Besides the canonical state transition complex (PSI-LHCI-LHCII), we isolated the larger moss-specific PSI-Large (PSI-LHCI-LHCB9-LHCII) from stroma-exposed thylakoids. Unlike PSI-LHCI-LHCII, PSI-Large did not demonstrate short-term dynamics for balancing the distribution of excitation energy between PSII and PSI. Instead, PSI-Large contributed to a more stable increase in PSI antenna size in Physcomitrella, except under prolonged high irradiance. Additionally, the STN7-depleted mutants revealed altered light-dependent phosphorylation of a monomeric antenna protein, LHCB6, whose phosphorylation displayed a complex regulation by multiple kinases. Collectively, the unique phosphorylation plasticity and dynamics of Physcomitrella monomeric LHCB6 and trimeric LHCBM isoforms, together with the presence of PSI SCs with different antenna sizes and responsiveness to light changes, reflect the evolutionary position of mosses between green algae and vascular plants, yet with clear moss-specific features emphasizing their adaptation to terrestrial low-light environments.
Collapse
Affiliation(s)
| | | | - Azfar Ali Bajwa
- Department of Life Technologies, Molecular Plant Biology, University of Turku, Turku, FI-20014, Finland
| | | | | |
Collapse
|
37
|
Suslichenko IS, Trubitsin BV, Vershubskii AV, Tikhonov AN. The noninvasive monitoring of the redox status of photosynthetic electron transport chains in Hibiscus rosa-sinensis and Tradescantia leaves. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 185:233-243. [PMID: 35716433 DOI: 10.1016/j.plaphy.2022.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 05/13/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
We present an approach to the noninvasive determination of the electron capacity of the intersystem pool of electron carriers in chloroplasts in situ. As apt experimental models, we used the leaves of Hibiscus rosa-sinensis and Tradescantia species. Electron paramagnetic resonance and optical response of P700 (the primary electron donor in Photosystem I) were applied to measuring electron transport in chloroplasts. Electron capacities of the intersystem electron transport chain (ETC) were determined from redox transients of P700 upon chromatic transitions (white light → far-red light). During the induction period, we observed the nonmonotonic changes in the number of electron equivalents in the intersystem ETC per P700 (parameter Q). In Hibiscus rosa-sinensis, the light-induced rise of Q from ≈2.5 (in the dark) to Q ≈ 12 was followed by its decrease to Q ≈ 6. The data obtained are discussed in the context of pH-dependent regulation of electron transport in chloroplasts, which provides the well-balanced operation of the intersystem ETC. The decay of Q is explained by the attenuation of Photosystem II activity due to the lumen acidification and the acceleration of plastoquinol re-oxidation as a result of the Calvin-Benson cycle activation. Our computer model of electron and proton transport coupled to ATP synthesis in chloroplasts was used to analyze the up and down feedbacks responsible for pH-dependent regulation of electron transport in chloroplasts. The procedures introduced here may be important for subsequent works aimed at defining the plastoquinone participation in regulation of photosynthetic processes in chloroplasts in situ.
Collapse
Affiliation(s)
- Igor S Suslichenko
- Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Boris V Trubitsin
- Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow, Russia
| | | | | |
Collapse
|
38
|
Steen CJ, Burlacot A, Short AH, Niyogi KK, Fleming GR. Interplay between LHCSR proteins and state transitions governs the NPQ response in Chlamydomonas during light fluctuations. PLANT, CELL & ENVIRONMENT 2022; 45:2428-2445. [PMID: 35678230 PMCID: PMC9540987 DOI: 10.1111/pce.14372] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/27/2022] [Accepted: 05/28/2022] [Indexed: 05/19/2023]
Abstract
Photosynthetic organisms use sunlight as the primary energy source to fix CO2 . However, in nature, light energy is highly variable, reaching levels of saturation for periods ranging from milliseconds to hours. In the green microalga Chlamydomonas reinhardtii, safe dissipation of excess light energy by nonphotochemical quenching (NPQ) is mediated by light-harvesting complex stress-related (LHCSR) proteins and redistribution of light-harvesting antennae between the photosystems (state transition). Although each component underlying NPQ has been documented, their relative contributions to NPQ under fluctuating light conditions remain unknown. Here, by monitoring NPQ in intact cells throughout high light/dark cycles of various illumination periods, we find that the dynamics of NPQ depend on the timescales of light fluctuations. We show that LHCSRs play a major role during the light phases of light fluctuations and describe their role in growth under rapid light fluctuations. We further reveal an activation of NPQ during the dark phases of all high light/dark cycles and show that this phenomenon arises from state transition. Finally, we show that LHCSRs and state transition synergistically cooperate to enable NPQ response during light fluctuations. These results highlight the dynamic functioning of photoprotection under light fluctuations and open a new way to systematically characterize the photosynthetic response to an ever-changing light environment.
Collapse
Affiliation(s)
- Collin J. Steen
- Department of ChemistryUniversity of CaliforniaBerkeleyCaliforniaUSA
- Molecular Biophysics and Integrated Bioimaging Division Lawrence Berkeley National LaboratoryBerkeleyCaliforniaUSA
- Kavli Energy Nanoscience InstituteBerkeleyCaliforniaUSA
| | - Adrien Burlacot
- Howard Hughes Medical InstituteUniversity of CaliforniaBerkeleyCaliforniaUSA
- Department of Plant and Microbial BiologyUniversity of CaliforniaBerkeleyCaliforniaUSA
- Department of Plant BiologyCarnegie Institution for ScienceStanfordCaliforniaUSA
| | - Audrey H. Short
- Molecular Biophysics and Integrated Bioimaging Division Lawrence Berkeley National LaboratoryBerkeleyCaliforniaUSA
- Kavli Energy Nanoscience InstituteBerkeleyCaliforniaUSA
- Graduate Group in BiophysicsUniversity of CaliforniaBerkeleyCaliforniaUSA
| | - Krishna K. Niyogi
- Molecular Biophysics and Integrated Bioimaging Division Lawrence Berkeley National LaboratoryBerkeleyCaliforniaUSA
- Howard Hughes Medical InstituteUniversity of CaliforniaBerkeleyCaliforniaUSA
- Department of Plant and Microbial BiologyUniversity of CaliforniaBerkeleyCaliforniaUSA
| | - Graham R. Fleming
- Department of ChemistryUniversity of CaliforniaBerkeleyCaliforniaUSA
- Molecular Biophysics and Integrated Bioimaging Division Lawrence Berkeley National LaboratoryBerkeleyCaliforniaUSA
- Kavli Energy Nanoscience InstituteBerkeleyCaliforniaUSA
- Graduate Group in BiophysicsUniversity of CaliforniaBerkeleyCaliforniaUSA
| |
Collapse
|
39
|
Wang D, Gao Y, Sun S, Li L, Wang K. Expression Profiles and Characteristics of Apple lncRNAs in Roots, Phloem, Leaves, Flowers, and Fruit. Int J Mol Sci 2022; 23:ijms23115931. [PMID: 35682639 PMCID: PMC9180697 DOI: 10.3390/ijms23115931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/17/2022] [Accepted: 05/23/2022] [Indexed: 12/29/2022] Open
Abstract
LncRNAs impart crucial effects on various biological processes, including biotic stress responses, abiotic stress responses, fertility and development. The apple tree is one of the four major fruit trees in the world. However, lncRNAs's roles in different tissues of apple are unknown. We identified the lncRNAs in five tissues of apples including the roots, phloem, leaves, flowers, and fruit, and predicted the intricate regulatory networks. A total of 9440 lncRNAs were obtained. LncRNA target prediction revealed 10,628 potential lncRNA-messenger RNA (mRNA) pairs, 9410 pairs functioning in a cis-acting fashion, and 1218 acting in a trans-acting fashion. Functional enrichment analysis showed that the targets were significantly enriched in molecular functions related to photosynthesis-antenna proteins, single-organism metabolic process and glutathione metabolism. Additionally, a total of 88 lncRNAs have various functions related to microRNAs (miRNAs) as miRNA precursors. Interactions between lncRNAs and miRNAs were predicted, 1341 possible interrelations between 187 mdm-miRNAs and 174 lncRNAs (1.84%) were identified. MSTRG.121644.5, MSTRG.121644.8, MSTRG.2929.2, MSTRG.3953.2, MSTRG.63448.2, MSTRG.9870.2, and MSTRG.9870.3 could participate in the functions in roots as competing endogenous RNAs (ceRNAs). MSTRG.11457.2, MSTRG.138614.2, and MSTRG.60895.2 could adopt special functions in the fruit by working with miRNAs. A further analysis showed that different tissues formed special lncRNA-miRNA-mRNA networks. MSTRG.60895.2-mdm-miR393-MD17G1009000 may participate in the anthocyanin metabolism in the fruit. These findings provide a comprehensive view of potential functions for lncRNAs, corresponding target genes, and related lncRNA-miRNA-mRNA networks, which will increase our knowledge of the underlying development mechanism in apple.
Collapse
Affiliation(s)
| | | | | | | | - Kun Wang
- Correspondence: ; Tel.: +86-429-359-8120
| |
Collapse
|
40
|
Coupel‐Ledru A, Pallas B, Delalande M, Segura V, Guitton B, Muranty H, Durel C, Regnard J, Costes E. Tree architecture, light interception and water-use related traits are controlled by different genomic regions in an apple tree core collection. THE NEW PHYTOLOGIST 2022; 234:209-226. [PMID: 35023155 PMCID: PMC9305758 DOI: 10.1111/nph.17960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 12/19/2021] [Indexed: 05/17/2023]
Abstract
Tree architecture shows large genotypic variability, but how this affects water-deficit responses is poorly understood. To assess the possibility of reaching ideotypes with adequate combinations of architectural and functional traits in the face of climate change, we combined high-throughput field phenotyping and genome-wide association studies (GWAS) on an apple tree (Malus domestica) core-collection. We used terrestrial light detection and ranging (T-LiDAR) scanning and airborne multispectral and thermal imagery to monitor tree architecture, canopy shape, light interception, vegetation indices and transpiration on 241 apple cultivars submitted to progressive field soil drying. GWAS was performed with single nucleotide polymorphism (SNP)-by-SNP and multi-SNP methods. Large phenotypic and genetic variability was observed for all traits examined within the collection, especially canopy surface temperature in both well-watered and water deficit conditions, suggesting control of water loss was largely genotype-dependent. Robust genomic associations revealed independent genetic control for the architectural and functional traits. Screening associated genomic regions revealed candidate genes involved in relevant pathways for each trait. We show that multiple allelic combinations exist for all studied traits within this collection. This opens promising avenues to jointly optimize tree architecture, light interception and water use in breeding strategies. Genotypes carrying favourable alleles depending on environmental scenarios and production objectives could thus be targeted.
Collapse
Affiliation(s)
- Aude Coupel‐Ledru
- AGAP InstitutUniv Montpellier, CIRAD, INRAE, Institut Agro34398MontpellierFrance
| | - Benoît Pallas
- AGAP InstitutUniv Montpellier, CIRAD, INRAE, Institut Agro34398MontpellierFrance
| | - Magalie Delalande
- AGAP InstitutUniv Montpellier, CIRAD, INRAE, Institut Agro34398MontpellierFrance
| | - Vincent Segura
- AGAP InstitutUniv Montpellier, CIRAD, INRAE, Institut Agro34398MontpellierFrance
| | - Baptiste Guitton
- AGAP InstitutUniv Montpellier, CIRAD, INRAE, Institut Agro34398MontpellierFrance
| | - Hélène Muranty
- IRHSSFR QuaSaVUniversité d’Angers, Institut Agro, INRAE49000AngersFrance
| | - Charles‐Eric Durel
- IRHSSFR QuaSaVUniversité d’Angers, Institut Agro, INRAE49000AngersFrance
| | - Jean‐Luc Regnard
- AGAP InstitutUniv Montpellier, CIRAD, INRAE, Institut Agro34398MontpellierFrance
| | - Evelyne Costes
- AGAP InstitutUniv Montpellier, CIRAD, INRAE, Institut Agro34398MontpellierFrance
| |
Collapse
|
41
|
Zuo G, Aiken RM, Feng N, Zheng D, Zhao H, Avenson TJ, Lin X. Fresh perspectives on an established technique: Pulsed amplitude modulation chlorophyll a fluorescence. PLANT-ENVIRONMENT INTERACTIONS (HOBOKEN, N.J.) 2022; 3:41-59. [PMID: 37284008 PMCID: PMC10168060 DOI: 10.1002/pei3.10073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 02/22/2022] [Accepted: 02/25/2022] [Indexed: 06/08/2023]
Abstract
Pulsed amplitude modulation (PAM) chlorophyll a fluorescence provides information about photosynthetic energy transduction. When reliably measured, chlorophyll a fluorescence provides detailed information about critical in vivo photosynthetic processes. Such information has recently provided novel and critical insights into how the yield potential of crops can be improved and it is being used to understand remotely sensed fluorescence, which is termed solar-induced fluorescence and will be solely measured by a satellite scheduled to be launched this year. While PAM chlorophyll a fluorometers measure fluorescence intensity per se, herein we articulate the axiomatic criteria by which instrumentally detected intensities can be assumed to assess fluorescence yield, a phenomenon quite different than fluorescence intensity and one that provides critical insight about how solar energy is variably partitioned into the biosphere. An integrated mathematical, phenomenological, and practical discussion of many useful chlorophyll a fluorescence parameters is presented. We draw attention to, and provide examples of, potential uncertainties that can result from incorrect methodological practices and potentially problematic instrumental design features. Fundamentals of fluorescence measurements are discussed, including the major assumptions underlying the signals and the methodological caveats about taking measurements during both dark- and light-adapted conditions. Key fluorescence parameters are discussed in the context of recent applications under environmental stress. Nuanced information that can be gleaned from intra-comparisons of fluorescence-derived parameters and intercomparisons of fluorescence-derived parameters with those based on other techniques is elucidated.
Collapse
Affiliation(s)
- Guanqiang Zuo
- Department of AgronomyKansas State UniversityManhattanKansasUSA
| | - Robert M. Aiken
- Department of AgronomyKansas State UniversityManhattanKansasUSA
- Northwest Research‐Extension CenterKansas State UniversityColbyKansasUSA
| | - Naijie Feng
- College of Coastal Agricultural ScienceGuangdong Ocean UniversityZhanjiangChina
- Shenzhen Research Institute of Guangdong Ocean UniversityShenzhenChina
| | - Dianfeng Zheng
- College of Coastal Agricultural ScienceGuangdong Ocean UniversityZhanjiangChina
- Shenzhen Research Institute of Guangdong Ocean UniversityShenzhenChina
| | - Haidong Zhao
- Department of AgronomyKansas State UniversityManhattanKansasUSA
| | | | - Xiaomao Lin
- Department of AgronomyKansas State UniversityManhattanKansasUSA
| |
Collapse
|
42
|
Zhang N, Pazouki L, Nguyen H, Jacobshagen S, Bigge BM, Xia M, Mattoon EM, Klebanovych A, Sorkin M, Nusinow DA, Avasthi P, Czymmek KJ, Zhang R. Comparative Phenotyping of Two Commonly Used Chlamydomonas reinhardtii Background Strains: CC-1690 (21gr) and CC-5325 (The CLiP Mutant Library Background). PLANTS (BASEL, SWITZERLAND) 2022; 11:585. [PMID: 35270055 PMCID: PMC8912731 DOI: 10.3390/plants11050585] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/07/2022] [Accepted: 02/14/2022] [Indexed: 05/02/2023]
Abstract
The unicellular green alga Chlamydomonas reinhardtii is an excellent model organism to investigate many essential cellular processes in photosynthetic eukaryotes. Two commonly used background strains of Chlamydomonas are CC-1690 and CC-5325. CC-1690, also called 21gr, has been used for the Chlamydomonas genome project and several transcriptome analyses. CC-5325 is the background strain for the Chlamydomonas Library Project (CLiP). Photosynthetic performance in CC-5325 has not been evaluated in comparison with CC-1690. Additionally, CC-5325 is often considered to be cell-wall deficient, although detailed analysis is missing. The circadian rhythms in CC-5325 are also unclear. To fill these knowledge gaps and facilitate the use of the CLiP mutant library for various screens, we performed phenotypic comparisons between CC-1690 and CC-5325. Our results showed that CC-5325 grew faster heterotrophically in dark and equally well in mixotrophic liquid medium as compared to CC-1690. CC-5325 had lower photosynthetic efficiency and was more heat-sensitive than CC-1690. Furthermore, CC-5325 had an intact cell wall which had comparable integrity to that in CC-1690 but appeared to have reduced thickness. Additionally, CC-5325 could perform phototaxis, but could not maintain a sustained circadian rhythm of phototaxis as CC1690 did. Finally, in comparison to CC-1690, CC-5325 had longer cilia in the medium with acetate but slower swimming speed in the medium without nitrogen and acetate. Our results will be useful for researchers in the Chlamydomonas community to choose suitable background strains for mutant analysis and employ the CLiP mutant library for genome-wide mutant screens under appropriate conditions, especially in the areas of photosynthesis, thermotolerance, cell wall, and circadian rhythms.
Collapse
Affiliation(s)
- Ningning Zhang
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA; (N.Z.); (L.P.); (H.N.); (M.X.); (E.M.M.); (A.K.); (M.S.); (D.A.N.); (K.J.C.)
| | - Leila Pazouki
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA; (N.Z.); (L.P.); (H.N.); (M.X.); (E.M.M.); (A.K.); (M.S.); (D.A.N.); (K.J.C.)
| | - Huong Nguyen
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA; (N.Z.); (L.P.); (H.N.); (M.X.); (E.M.M.); (A.K.); (M.S.); (D.A.N.); (K.J.C.)
| | - Sigrid Jacobshagen
- Department of Biology, Western Kentucky University, Bowling Green, KY 42101, USA;
| | - Brae M. Bigge
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA; (B.M.B.); (P.A.)
| | - Ming Xia
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA; (N.Z.); (L.P.); (H.N.); (M.X.); (E.M.M.); (A.K.); (M.S.); (D.A.N.); (K.J.C.)
| | - Erin M. Mattoon
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA; (N.Z.); (L.P.); (H.N.); (M.X.); (E.M.M.); (A.K.); (M.S.); (D.A.N.); (K.J.C.)
- Plant and Microbial Biosciences Program, Division of Biology and Biomedical Sciences, Washington University in Saint Louis, St. Louis, MO 63130, USA
| | - Anastasiya Klebanovych
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA; (N.Z.); (L.P.); (H.N.); (M.X.); (E.M.M.); (A.K.); (M.S.); (D.A.N.); (K.J.C.)
| | - Maria Sorkin
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA; (N.Z.); (L.P.); (H.N.); (M.X.); (E.M.M.); (A.K.); (M.S.); (D.A.N.); (K.J.C.)
- Plant and Microbial Biosciences Program, Division of Biology and Biomedical Sciences, Washington University in Saint Louis, St. Louis, MO 63130, USA
| | - Dmitri A. Nusinow
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA; (N.Z.); (L.P.); (H.N.); (M.X.); (E.M.M.); (A.K.); (M.S.); (D.A.N.); (K.J.C.)
| | - Prachee Avasthi
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA; (B.M.B.); (P.A.)
| | - Kirk J. Czymmek
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA; (N.Z.); (L.P.); (H.N.); (M.X.); (E.M.M.); (A.K.); (M.S.); (D.A.N.); (K.J.C.)
| | - Ru Zhang
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA; (N.Z.); (L.P.); (H.N.); (M.X.); (E.M.M.); (A.K.); (M.S.); (D.A.N.); (K.J.C.)
| |
Collapse
|
43
|
Electron transfer via cytochrome b6f complex displays sensitivity to Antimycin A upon STT7 kinase activation. Biochem J 2022; 479:111-127. [PMID: 34981811 DOI: 10.1042/bcj20210802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/23/2021] [Accepted: 01/04/2022] [Indexed: 11/17/2022]
Abstract
The cytochrome b6f complex (b6f) has been initially considered as the ferredoxin-plastoquinone reductase (FQR) during cyclic electron flow (CEF) with photosystem I that is inhibited by antimycin A (AA). The binding of AA to the b6f Qi-site is aggravated by heme-ci, which challenged the FQR function of b6f during CEF. Alternative models suggest that PROTON GRADIENT REGULATION5 (PGR5) is involved in a b6f-independent, AA-sensitive FQR. Here, we show in Chlamydomonas reinhardtii that the b6f is conditionally inhibited by AA in vivo and that the inhibition did not require PGR5. Instead, activation of the STT7 kinase upon anaerobic treatment induced the AA sensitivity of b6f which was absent in stt7-1. However, a lock in State 2 due to persisting phosphorylation in the phosphatase double mutant pph1;pbcp did not increase AA sensitivity of electron transfer. The latter required a redox poise, supporting the view that state transitions and CEF are not coercively coupled. This suggests that the b6f-interacting kinase is required for structure-function modulation of the Qi-site under CEF favoring conditions. We propose that PGR5 and STT7 independently sustain AA-sensitive FQR activity of the b6f. Accordingly, PGR5-mediated electron injection into an STT7-modulated Qi-site drives a Mitchellian Q cycle in CEF conditions.
Collapse
|
44
|
Shen JR. Structure, Function, and Variations of the Photosystem I-Antenna Supercomplex from Different Photosynthetic Organisms. Subcell Biochem 2022; 99:351-377. [PMID: 36151382 DOI: 10.1007/978-3-031-00793-4_11] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Photosystem I (PSI) is a protein complex functioning in light-induced charge separation, electron transfer, and reduction reactions of ferredoxin in photosynthesis, which finally results in the reduction of NAD(P)- to NAD(P)H required for the fixation of carbon dioxide. In eukaryotic algae, PSI is associated with light-harvesting complex I (LHCI) subunits, forming a PSI-LHCI supercomplex. LHCI harvests and transfers light energy to the PSI core, where charge separation and electron transfer reactions occur. During the course of evolution, the number and sequences of protein subunits and the pigments they bind in LHCI change dramatically depending on the species of organisms, which is a result of adaptation of organisms to various light environments. In this chapter, I will describe the structure of various PSI-LHCI supercomplexes from different organisms solved so far either by X-ray crystallography or by cryo-electron microscopy, with emphasis on the differences in the number, structures, and association patterns of LHCI subunits associated with the PSI core found in different organisms.
Collapse
Affiliation(s)
- Jian-Ren Shen
- Research Institute for Interdisciplinary Science, and Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan.
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
45
|
Nawrocki WJ, Liu X, Raber B, Hu C, de Vitry C, Bennett DIG, Croce R. Molecular origins of induction and loss of photoinhibition-related energy dissipation q I. SCIENCE ADVANCES 2021; 7:eabj0055. [PMID: 34936440 PMCID: PMC8694598 DOI: 10.1126/sciadv.abj0055] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 11/08/2021] [Indexed: 05/02/2023]
Abstract
Photosynthesis fuels life on Earth using sunlight as energy source. However, light has a simultaneous detrimental effect on the enzyme triggering photosynthesis and producing oxygen, photosystem II (PSII). Photoinhibition, the light-dependent decrease of PSII activity, results in a major limitation to aquatic and land photosynthesis and occurs upon all environmental stress conditions. In this work, we investigated the molecular origins of photoinhibition focusing on the paradoxical energy dissipation process of unknown nature coinciding with PSII damage. Integrating spectroscopic, biochemical, and computational approaches, we demonstrate that the site of this quenching process is the PSII reaction center. We propose that the formation of quenching and the closure of PSII stem from the same event. We lastly reveal the heterogeneity of PSII upon photoinhibition using structure-function modeling of excitation energy transfer. This work unravels the functional details of the damage-induced energy dissipation at the heart of photosynthesis.
Collapse
Affiliation(s)
- Wojciech J. Nawrocki
- Biophysics of Photosynthesis, Department of Physics and Astronomy, Faculty of Science, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, Netherlands
- LaserLaB Amsterdam, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, Netherlands
| | - Xin Liu
- Biophysics of Photosynthesis, Department of Physics and Astronomy, Faculty of Science, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, Netherlands
- LaserLaB Amsterdam, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, Netherlands
| | - Bailey Raber
- Department of Chemistry, Southern Methodist University, P.O. Box 750314, Dallas, TX, USA
| | - Chen Hu
- Biophysics of Photosynthesis, Department of Physics and Astronomy, Faculty of Science, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, Netherlands
- LaserLaB Amsterdam, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, Netherlands
| | - Catherine de Vitry
- Institut de Biologie Physico-Chimique, UMR 7141, CNRS-Sorbonne Université, 75005 Paris, France
| | - Doran I. G. Bennett
- Department of Chemistry, Southern Methodist University, P.O. Box 750314, Dallas, TX, USA
| | - Roberta Croce
- Biophysics of Photosynthesis, Department of Physics and Astronomy, Faculty of Science, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, Netherlands
- LaserLaB Amsterdam, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, Netherlands
| |
Collapse
|
46
|
The Assembly of Super-Complexes in the Plant Chloroplast. Biomolecules 2021; 11:biom11121839. [PMID: 34944483 PMCID: PMC8699064 DOI: 10.3390/biom11121839] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/02/2021] [Accepted: 12/02/2021] [Indexed: 11/17/2022] Open
Abstract
Increasing evidence has revealed that the enzymes of several biological pathways assemble into larger supramolecular structures called super-complexes. Indeed, those such as association of the mitochondrial respiratory chain complexes play an essential role in respiratory activity and promote metabolic fitness. Dynamically assembled super-complexes are able to alternate between participating in large complexes and existing in a free state. However, the functional significance of the super-complexes is not entirely clear. It has been proposed that the organization of respiratory enzymes into super-complexes could reduce oxidative damage and increase metabolism efficiency. There are several protein complexes that have been revealed in the plant chloroplast, yet little research has been focused on the formation of super-complexes in this organelle. The photosystem I and light-harvesting complex I super-complex’s structure suggests that energy absorbed by light-harvesting complex I could be efficiently transferred to the PSI core by avoiding concentration quenching. Here, we will discuss in detail core complexes of photosystem I and II, the chloroplast ATPase the chloroplast electron transport chain, the Calvin–Benson cycle and a plastid localized purinosome. In addition, we will also describe the methods to identify these complexes.
Collapse
|
47
|
Longoni FP, Goldschmidt-Clermont M. Thylakoid Protein Phosphorylation in Chloroplasts. PLANT & CELL PHYSIOLOGY 2021; 62:1094-1107. [PMID: 33768241 DOI: 10.1093/pcp/pcab043] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/19/2021] [Indexed: 06/12/2023]
Abstract
Because of their abundance and extensive phosphorylation, numerous thylakoid proteins stand out amongst the phosphoproteins of plants and algae. In particular, subunits of light-harvesting complex II (LHCII) and of photosystem II (PSII) are dynamically phosphorylated and dephosphorylated in response to light conditions and metabolic demands. These phosphorylations are controlled by evolutionarily conserved thylakoid protein kinases and counteracting protein phosphatases, which have distinct but partially overlapping substrate specificities. The best characterized are the kinases STATE TRANSITION 7 (STN7/STT7) and STATE TRANSITION 8 (STN8), and the antagonistic phosphatases PROTEIN PHOSPHATASE 1/THYLAKOID-ASSOCIATED PHOSPHATASE 38 (PPH1/TAP38) and PHOTOSYSTEM II CORE PHOSPHATASE (PBCP). The phosphorylation of LHCII is mainly governed by STN7 and PPH1/TAP38 in plants. LHCII phosphorylation is essential for state transitions, a regulatory feedback mechanism that controls the allocation of this antenna to either PSII or PSI, and thus maintains the redox balance of the electron transfer chain. Phosphorylation of several core subunits of PSII, regulated mainly by STN8 and PBCP, correlates with changes in thylakoid architecture, the repair cycle of PSII after photodamage as well as regulation of light harvesting and of alternative routes of photosynthetic electron transfer. Other kinases, such as the PLASTID CASEIN KINASE II (pCKII), also intervene in thylakoid protein phosphorylation and take part in the chloroplast kinase network. While some features of thylakoid phosphorylation were conserved through the evolution of photosynthetic eukaryotes, others have diverged in different lineages possibly as a result of their adaptation to varied environments.
Collapse
Affiliation(s)
- Fiamma Paolo Longoni
- Laboratory of Plant Physiology, Institute of Biology, University of Neuchâtel, Neuchâtel 2000, Switzerland
| | | |
Collapse
|
48
|
Zhang XJ, Fujita Y, Tokutsu R, Minagawa J, Ye S, Shibata Y. High-Speed Excitation-Spectral Microscopy Uncovers In Situ Rearrangement of Light-Harvesting Apparatus in Chlamydomonas during State Transitions at Submicron Precision. PLANT & CELL PHYSIOLOGY 2021; 62:872-882. [PMID: 33822212 DOI: 10.1093/pcp/pcab047] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 06/12/2023]
Abstract
Photosynthetic organisms adjust to fluctuating natural light under physiological ambient conditions through flexible light-harvesting ability of light-harvesting complex II (LHCII). A process called state transition is an efficient regulation mechanism to balance the excitations between photosystem II (PSII) and photosystem I (PSI) by shuttling mobile LHCII between them. However, in situ observation of the migration of LHCII in vivo remains limited. In this study, we investigated the in vivo reversible changes in the intracellular distribution of the chlorophyll (Chl) fluorescence during the light-induced state transitions in Chlamydomonas reinhardtii. The newly developed noninvasive excitation-spectral microscope provided powerful spectral information about excitation-energy transfer between Chl-a and Chl-b. The excitation spectra were detected through the fluorescence emission in the 700-750-nm spectral range, where PSII makes the main contribution, though PSI still makes a non-negligible contribution at room temperature. The technique is sensitive to the Chl-b spectral component specifically bound to LHCII. Using a PSI-specific 685-nm component also provided visualization of the local relative concentration of PSI within a chloroplast at room temperature. The decrease in the relative intensity of the Chl-b band in state 2 was more conspicuous in the PSII-rich region than in the PSI-rich region, reflecting the dissociation of LHCII from PSII. We observed intracellular redistributions of the Chl-b-related light-harvesting abilities within a chloroplast during the state transitions. This observation implies the association of the state transitions with the morphological changes in the thylakoid membrane.
Collapse
Affiliation(s)
- Xian Jun Zhang
- Department of Chemistry, Graduate School of Sciences, Tohoku University, Sendai, 980-8578 Japan
| | - Yuki Fujita
- Department of Chemistry, Graduate School of Sciences, Tohoku University, Sendai, 980-8578 Japan
| | - Ryutaro Tokutsu
- Division of Environmental Photobiology, National Institute for Basic Biology, Okazaki, 444-8585 Japan
| | - Jun Minagawa
- Division of Environmental Photobiology, National Institute for Basic Biology, Okazaki, 444-8585 Japan
| | - Shen Ye
- Department of Chemistry, Graduate School of Sciences, Tohoku University, Sendai, 980-8578 Japan
| | - Yutaka Shibata
- Department of Chemistry, Graduate School of Sciences, Tohoku University, Sendai, 980-8578 Japan
| |
Collapse
|
49
|
Cecchin M, Paloschi M, Busnardo G, Cazzaniga S, Cuine S, Li‐Beisson Y, Wobbe L, Ballottari M. CO 2 supply modulates lipid remodelling, photosynthetic and respiratory activities in Chlorella species. PLANT, CELL & ENVIRONMENT 2021; 44:2987-3001. [PMID: 33931891 PMCID: PMC8453743 DOI: 10.1111/pce.14074] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/20/2021] [Accepted: 04/23/2021] [Indexed: 05/28/2023]
Abstract
Microalgae represent a potential solution to reduce CO2 emission exploiting their photosynthetic activity. Here, the physiologic and metabolic responses at the base of CO2 assimilation were investigated in conditions of high or low CO2 availability in two of the most promising algae species for industrial cultivation, Chlorella sorokiniana and Chlorella vulgaris. In both species, high CO2 availability increased biomass accumulation with specific increase of triacylglycerols in C. vulgaris and polar lipids and proteins in C. sorokiniana. Moreover, high CO2 availability caused only in C. vulgaris a reduced NAD(P)H/NADP+ ratio and reduced mitochondrial respiration, suggesting a CO2 dependent increase of reducing power consumption in the chloroplast, which in turn influences the redox state of the mitochondria. Several rearrangements of the photosynthetic machinery were observed in both species, differing from those described for the model organism Chlamydomonas reinhardtii, where adaptation to carbon availability is mainly controlled by the translational repressor NAB1. NAB1 homologous protein could be identified only in C. vulgaris but lacked the regulation mechanisms previously described in C. reinhardtii. Acclimation strategies to cope with a fluctuating inorganic carbon supply are thus diverse among green microalgae, and these results suggest new biotechnological strategies to boost CO2 fixation.
Collapse
Affiliation(s)
- Michela Cecchin
- Dipartimento di BiotecnologieUniversità di VeronaVeronaItaly
| | - Matteo Paloschi
- Dipartimento di BiotecnologieUniversità di VeronaVeronaItaly
| | | | | | - Stephan Cuine
- Aix‐Marseille Univ., CEA, CNRSInstitute of Biosciences and Biotechnologies of Aix‐Marseille, UMR7265, CEA CadaracheSaint‐Paul‐lez DuranceFrance
| | - Yonghua Li‐Beisson
- Aix‐Marseille Univ., CEA, CNRSInstitute of Biosciences and Biotechnologies of Aix‐Marseille, UMR7265, CEA CadaracheSaint‐Paul‐lez DuranceFrance
| | - Lutz Wobbe
- Bielefeld UniversityCenter for Biotechnology (CeBiTec), Faculty of BiologyBielefeldGermany
| | | |
Collapse
|
50
|
Santhanagopalan I, Wong R, Mathur T, Griffiths H. Orchestral manoeuvres in the light: crosstalk needed for regulation of the Chlamydomonas carbon concentration mechanism. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:4604-4624. [PMID: 33893473 PMCID: PMC8320531 DOI: 10.1093/jxb/erab169] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/19/2021] [Indexed: 05/19/2023]
Abstract
The inducible carbon concentration mechanism (CCM) in Chlamydomonas reinhardtii has been well defined from a molecular and ultrastructural perspective. Inorganic carbon transport proteins, and strategically located carbonic anhydrases deliver CO2 within the chloroplast pyrenoid matrix where Rubisco is packaged. However, there is little understanding of the fundamental signalling and sensing processes leading to CCM induction. While external CO2 limitation has been believed to be the primary cue, the coupling between energetic supply and inorganic carbon demand through regulatory feedback from light harvesting and photorespiration signals could provide the original CCM trigger. Key questions regarding the integration of these processes are addressed in this review. We consider how the chloroplast functions as a crucible for photosynthesis, importing and integrating nuclear-encoded components from the cytoplasm, and sending retrograde signals to the nucleus to regulate CCM induction. We hypothesize that induction of the CCM is associated with retrograde signals associated with photorespiration and/or light stress. We have also examined the significance of common evolutionary pressures for origins of two co-regulated processes, namely the CCM and photorespiration, in addition to identifying genes of interest involved in transcription, protein folding, and regulatory processes which are needed to fully understand the processes leading to CCM induction.
Collapse
Affiliation(s)
- Indu Santhanagopalan
- Department of Plant Sciences, Downing Street, University of Cambridge, Cambridge, UK
| | - Rachel Wong
- Department of Plant Sciences, Downing Street, University of Cambridge, Cambridge, UK
| | - Tanya Mathur
- Department of Plant Sciences, Downing Street, University of Cambridge, Cambridge, UK
| | | |
Collapse
|