1
|
Hu Y, Flessa H, Vos C, Fuß R, Schmidhalter U. Successful NH 3 abatement policies and regulations in German agriculture. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 956:177362. [PMID: 39505035 DOI: 10.1016/j.scitotenv.2024.177362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/25/2024] [Accepted: 11/01/2024] [Indexed: 11/08/2024]
Abstract
Anthropogenic ammonia (NH3) emissions, of which about 95 % are from agriculture, have led to environmental pollution, resulting in tremendous damage to human health and ecosystems. Thus, the NEC Directive 2016/2284/EU sets national reduction targets for NH3 emissions in individual EU countries. To implement the NEC Directive for NH3 emission targets, Germany amended the Fertilizer Application Ordinance in 2017 and 2020 (DüV_amended) and set the air pollution control regulation, Technical Instructions on Air Quality Control (TA_Luft). This study aimed to evaluate the impact of the DüV_amended on NH3 mitigation from applying livestock manure, digestates, synthetic nitrogen (N) fertilizers, and TA_Luft on housing and storage. This study showed that Germany reached the first national NH3 reduction target in 2020, as set by the NEC directive. The German DüV_amended, a significant policy change, has profoundly impacted NH3 emission mitigation from agriculture after 2017 by implementing measures aimed directly at NH3 reduction, reducing N surpluses, and improving N use efficiency. The reduction in NH3 emissions from synthetic N fertilizers between 2016 and 2022 contributed about 51 % to the decrease from the agricultural sector over the same period. Among the synthetic fertilizers, NH3 reduction from urea between 2016 and 2022 accounted for around 83 % of the total reduction from synthetic N, indicating that the NH3 emissions from urea fertilizer by reducing urea application and mandating urea to be incorporated immediately or to be stabilized with urease inhibitors played a crucial role in the sharp decrease in NH3 emissions over the last years in Germany. Achieving a high yield by lowering the synthetic N rate in this study strongly suggests that optimal reduction in N rate does not necessarily result in yield losses but rather in a pivotal relationship between the agronomic and environmental performance and indicates that the DüV_amended was an effective measure that can reduce the NH3 emissions. Over 80 % of Germany's annual agricultural NH3 emissions in 2021 and 2022 originated from livestock and digestates from energy crops. Mandatory close to the soil band application of slurry and digestates on cultivated cropland since 2020 reduced NH3 emissions. In addition, banning of broadcast application of slurry to grassland and manure incorporation within one hour on uncultivated soils will become mandatory in 2025 to comply with NEC 2030´s target of 29 % NH3 reduction relative to 2005. The recent German air pollution control regulation (TA_Luft) enforces abatement measures such as air purifiers in large poultry and pig housings and covered storage of slurry and digestate storages of large farms. The results of the German NH3 abatement strategy for synthetic N fertilizers may help reduce NH3 emissions worldwide, especially for countries consuming high amounts of urea fertilizers.
Collapse
Affiliation(s)
- Yuncai Hu
- Precision Agriculture Lab, School of Life Sciences, Technical University of Munich, D-85354 Freising, Germany.
| | - Heinz Flessa
- Thünen Institute of Climate-Smart Agriculture, D-38116 Braunschweig, Germany
| | - Cora Vos
- Thünen Institute of Climate-Smart Agriculture, D-38116 Braunschweig, Germany
| | - Roland Fuß
- Thünen Institute of Climate-Smart Agriculture, D-38116 Braunschweig, Germany
| | - Urs Schmidhalter
- Precision Agriculture Lab, School of Life Sciences, Technical University of Munich, D-85354 Freising, Germany
| |
Collapse
|
2
|
Zuo H, Shen H, Guo Q, Zhang R, Shi H, Zhang F, Xiao J, Dong S. Growth and physiological metabolic regulation mechanisms of the dominant plant Leymus secalinus in alpine meadow under nitrogen deposition. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109150. [PMID: 39342658 DOI: 10.1016/j.plaphy.2024.109150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 09/11/2024] [Accepted: 09/24/2024] [Indexed: 10/01/2024]
Abstract
Nitrogen (N) deposition is an important pathway that affects the growth and development of alpine grassland plants. Under N deposition, Leymus secalinus has become the most dominant species in the alpine meadow of the Qinghai-Tibetan Plateau. However, its adaptive mechanisms to N deposition are still unknown. Therefore, we analyzed the physiological indices of Leymus secalinus under different N deposition levels (CK, 0 kg N ha-1 yr-1; N1, 8 kg N ha-1 yr-1; N3, 40 kg N ha-1 yr-1; N5, 72 kg N ha-1 yr-1) and focused on its growth and metabolism. The results indicated that the leaf carbon (C), N, amino acid (AA), and photosynthetic pigment contents in Leymus secalinus were significantly increased under N deposition, its endogenous hormone levels were regulated and the activities of N metabolism-related enzymes were enhanced. Metabolomics analysis further showed that the metabolites changed significantly and were mostly enriched in the amino acid metabolic pathway. Among them, glutamine and aspartic acid played key roles in N deposition for dominant growth of Leymus secalinus by regulating N and amino acid metabolism. These analyses unveiled the physiological and biochemical changes of dominant species in response to N deposition, identifying critical metabolites involved in this process. Furthermore, these findings provide substantial evidence explaining the ecological phenomenon of Leymus secalinus emerging as a dominant species under N deposition, serving as a data reference for understanding the physiological response and adaptation to N deposition in alpine grassland plants.
Collapse
Affiliation(s)
- Hui Zuo
- School of Grassland Science, Beijing Forestry University, Beijing, 100083, China
| | - Hao Shen
- School of Grassland Science, Beijing Forestry University, Beijing, 100083, China; Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan; Japan Society for the Promotion of Science, Chiyoda-ku, Tokyo, 102-0083, Japan
| | - Qianqian Guo
- School of Grassland Science, Beijing Forestry University, Beijing, 100083, China
| | - Ran Zhang
- School of Grassland Science, Beijing Forestry University, Beijing, 100083, China
| | - Hang Shi
- School of Grassland Science, Beijing Forestry University, Beijing, 100083, China
| | - Feng Zhang
- School of Grassland Science, Beijing Forestry University, Beijing, 100083, China
| | - Jiannan Xiao
- School of Environment, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Beijing Normal University, Beijing, China
| | - Shikui Dong
- School of Grassland Science, Beijing Forestry University, Beijing, 100083, China; Department of Natural Resources, Cornell University, Ithaca, NY, 14853, United States.
| |
Collapse
|
3
|
Bakker W, Morel T, Ozinga W, Scheper J, Vergeer P. The relative importance of nitrogen deposition and climate change in driving plant diversity decline in roadside grasslands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176962. [PMID: 39423894 DOI: 10.1016/j.scitotenv.2024.176962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/11/2024] [Accepted: 10/14/2024] [Indexed: 10/21/2024]
Abstract
Nitrogen deposition and climate change have been identified as major threats to the biodiversity of semi-natural grasslands. Their relative contribution to recent biodiversity loss is however not fully understood, and may depend on local site conditions such as soil type, which hampers efforts to prevent further decline. We used data from >900 permanent plots in semi-natural grasslands in Dutch roadsides to investigate whether trends in plant diversity and community composition (2004-2020) could be explained by: (1) nitrogen deposition (NHx and NOy) and climate change (winter degree days and summer drought), (2) the interactive effect of nitrogen deposition and climate change, and (3) the interactive effect of nitrogen deposition and climate change with soil type. Overall we observed a decline in plant diversity and an increased dominance of tall species and grasses. These changes were linked to winter warming, but not to changes in summer drought and nitrogen deposition. The effect of winter warming was more pronounced in areas with higher NOy deposition, but was consistent across different soil types. Our results suggest that winter warming will become an important driver of plant diversity loss by altering competitive interactions, which could have major repercussions for other trophic levels and ecosystem services. Future conservation and restoration of grassland biodiversity therefore requires management regimes that are adapted to winter warming.
Collapse
Affiliation(s)
- Wiene Bakker
- Wageningen University and Research, Department of Plant Ecology and Nature Conservation, 6708 PB Wageningen, the Netherlands.
| | - Toine Morel
- Rijkswaterstaat, 3500 GE Utrecht, the Netherlands
| | - Wim Ozinga
- Wageningen Environmental Research, Department of Vegetation and Landscape Ecology, 6708 PB Wageningen, the Netherlands
| | - Jeroen Scheper
- Wageningen University and Research, Department of Plant Ecology and Nature Conservation, 6708 PB Wageningen, the Netherlands
| | - Philippine Vergeer
- Wageningen University and Research, Department of Plant Ecology and Nature Conservation, 6708 PB Wageningen, the Netherlands
| |
Collapse
|
4
|
Reich PB, Mohanbabu N, Isbell F, Hobbie SE, Butler EE. High CO 2 dampens then amplifies N-induced diversity loss over 24 years. Nature 2024:10.1038/s41586-024-08066-9. [PMID: 39415011 DOI: 10.1038/s41586-024-08066-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 09/18/2024] [Indexed: 10/18/2024]
Abstract
Rising levels of atmospheric carbon dioxide (CO2) and nitrogen (N) deposition affect plant communities in numerous ways1-11. Nitrogen deposition causes local biodiversity loss globally12-14, but whether, and if so how, rising CO2 concentrations amplify or dampen those losses remains unclear and is almost entirely unstudied. We addressed this knowledge gap with an open-air experiment in which 108 grassland plots were grown for 24 years under different CO2 and N regimes. We initially found that adding N reduced plant species richness less at elevated than at ambient CO2. Over time, however, this interaction reversed, and elevated CO2 amplified losses in diversity from enriched N, tripling reductions in species richness from N addition over the last eight years of the study. These interactions resulted from temporal changes in the drivers of diversity, especially light availability, that were in turn driven by CO2 and N inputs and associated changes in plant biomass. This mechanism is likely to be similar in many grasslands, because additions of the plant resources CO2 and N are likely to increase the abundance of the dominant species. If rising CO2 generally exacerbates the widespread negative impacts of N deposition on plant diversity, this bodes poorly for the conservation of grassland biodiversity worldwide.
Collapse
Affiliation(s)
- Peter B Reich
- Department of Forest Resources, University of Minnesota, St. Paul, MN, USA.
- Institute for Global Change Biology, School for Environment and Sustainability, University of Michigan, Ann Arbor, MI, USA.
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia.
| | - Neha Mohanbabu
- Department of Forest Resources, University of Minnesota, St. Paul, MN, USA
| | - Forest Isbell
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, MN, USA
| | - Sarah E Hobbie
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, MN, USA
| | - Ethan E Butler
- Department of Forest Resources, University of Minnesota, St. Paul, MN, USA
| |
Collapse
|
5
|
Namuhan, Wang J, Yang G, Song Y, Yu Y, Wang J, Wang X, Shi Y, Shen Y, Han X, Wuyunna, Zhang H. Mechanisms of biodiversity loss under nitrogen enrichment: unveiling a shift from light competition to cation toxicity. THE NEW PHYTOLOGIST 2024; 243:1966-1979. [PMID: 38970455 DOI: 10.1111/nph.19941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 06/16/2024] [Indexed: 07/08/2024]
Abstract
The primary mechanisms contributing to nitrogen (N) addition induced grassland biodiversity loss, namely light competition and soil cation toxicity, are often examined separately in various studies. However, their relative significance in governing biodiversity loss along N addition gradient remains unclear. We conducted a 4-yr field experiment with five N addition rates (0, 2, 10, 20, and 50 g N m-2 yr-1) and performed a meta-analysis using global data from 239 observations in N-fertilized grassland ecosystems. Results from our field experiment and meta-analysis indicate that both light competition and soil cation (e.g. Mn2+ and Al3+) toxicity contribute to plant diversity loss under N enrichment. The relative importance of these mechanisms varied with N enrichment intensity. Light competition played a more significant role in influencing species richness under low N addition (≤ 10 g m-2 yr-1), while cation toxicity became increasingly dominant in reducing biodiversity under high N addition (>10 g m-2 yr-1). Therefore, a transition from light competition to cation toxicity occurs with increasing N availability. These findings imply that the biodiversity loss along the N gradient is regulated by distinct mechanisms, necessitating the adoption of differential management strategies to mitigate diversity loss under varying intensities of N enrichment.
Collapse
Affiliation(s)
- Namuhan
- College of Environmental and Resource Sciences, Dalian Minzu University, Dalian, 116600, China
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China
| | - Jing Wang
- School of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
| | - Guojiao Yang
- College of Ecology and Environment, Hainan University, Hainan, 570228, China
| | - Yantao Song
- College of Environmental and Resource Sciences, Dalian Minzu University, Dalian, 116600, China
| | - Yunguang Yu
- College of Environmental and Resource Sciences, Dalian Minzu University, Dalian, 116600, China
| | - Jidong Wang
- College of Environmental and Resource Sciences, Dalian Minzu University, Dalian, 116600, China
| | - Xiaoguang Wang
- College of Environmental and Resource Sciences, Dalian Minzu University, Dalian, 116600, China
| | - Yiping Shi
- College of Environmental and Resource Sciences, Dalian Minzu University, Dalian, 116600, China
| | - Yue Shen
- College of Environmental and Resource Sciences, Dalian Minzu University, Dalian, 116600, China
| | - Xingguo Han
- School of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Wuyunna
- College of Environmental and Resource Sciences, Dalian Minzu University, Dalian, 116600, China
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China
| | - Haiyang Zhang
- School of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
- School of Life Sciences, Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding, 071002, China
| |
Collapse
|
6
|
Sondej I, Puchlik M, Paluch R. Air pollution in Białowieża forest: Analysis of short-term trends from 2014 to 2021. ENVIRONMENTAL RESEARCH 2024; 255:119219. [PMID: 38782348 DOI: 10.1016/j.envres.2024.119219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 05/25/2024]
Abstract
Air pollution caused by sulphur dioxide (SO2) and nitrogen oxides (NOx) has negative impacts on forest health and can initiate forest dieback. Long-term monitoring and analysis of these pollution are carried out in Białowieża Forest in NE Poland due to the threats from abiotic, biotic and anthropogenic factors. The main objective of our study was to monitor the levels and trends of air pollutant deposition in Białowieża Forest. During a short-term monitoring period over six years (2014-2021), the concentration of SO2 in the air decreased significantly (from 2.03 μg m-3 in December 2015 to 0.20 μg m-3 in July 2016), while the concentration of NO2 in the air showed a non-significant decrease (from 8.24 μg m-3 in December 2015 to 1.61 μg m-3 May 2016). There was no significant linear trend in the wet deposition of S-SO4 anions. Mean monthly S-SO4 deposition varies between 4.54 and 94.14 mg m-2month-1. Wet nitrogen deposition, including oxidized nitrogen (N-NO3) and reduced nitrogen (N-NH4), showed a non-significant increase. Mean monthly precipitation of N-NO3 and N-N H4 ranged from 1.91 to 451.73 mg m-2month-1. Neither did total sulphur deposition nor total nitrogen deposition exceed the mean deposition values for forests in Europe (below 6 ha-1yr-1 and 3-15 ha-1yr-1, respectively). Our results indicate that air pollutants originate from local sources (households), especially from the village of Białowieża, as demonstrated by the level and spatial distribution of air pollutant deposition. This indicates that air pollutants from the village of Białowieża could spread to other parts of Białowieża Forest in the future and may have a negative impact on forest health and can initiate forest dieback. It is therefore important to continue monitoring air pollution to assess the threats to this valuable forest ecosystem.
Collapse
Affiliation(s)
- Izabela Sondej
- Department of Natural Forests, Forest Research Institute, Park Dyrekcyjny 6, 17-230, Białowieża, Poland.
| | - Monika Puchlik
- Department of Silviculture and Forest Utilization, Faculty of Construction and Environmental Sciences, Białystok University of Technology, Wiejska 45A, 15-351, Białystok, Poland
| | - Rafał Paluch
- Department of Natural Forests, Forest Research Institute, Park Dyrekcyjny 6, 17-230, Białowieża, Poland
| |
Collapse
|
7
|
Berihun Tenaw T, Gode TB, Lulekal Molla E, Woldemariam ZA. Topography and soil variables drive the plant community distribution pattern and species richness in the Arjo-Diga forest in western Ethiopia. PLoS One 2024; 19:e0307888. [PMID: 39106214 DOI: 10.1371/journal.pone.0307888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 07/12/2024] [Indexed: 08/09/2024] Open
Abstract
Understanding plant community characteristics, distributions, and environmental relationships is crucial for sustainable forest management. Thus, this study examined the relationships between plant community composition and topographic and soil variables within the Arjo-Diga forest. Vegetation data were collected from 72 nested plots (30 × 30 m2 and 2 × 2 m2) systematically laid along nine transects spaced 300 to 700 m apart. Environmental variables, including soil properties and anthropogenic disturbance, were recorded within each main plot. Agglomerative hierarchical cluster analysis and canonical correspondence analysis (CCA) using R software were employed to identify distinct plant community types and examine their relationships with environmental factors. The Shannon‒Wiener diversity index was calculated to quantify and compare species diversity among the identified community types. The analysis revealed five distinct plant community types: 1: Maesa lanceolata-Ehretia cymosa, 2: Trichilia dregeana-Flacourtia indica, 3: Acacia abyssinica-Millettia ferruginea, 4: Combretum collinum-Croton macrostachyus, and 5: Terminalia macroptera-Piliostigma thonningii. The CCA results highlighted the significant influence (p < 0.05) of altitude, CEC, TN, and disturbance on species distribution and plant community formation. The findings indicate that variation in plant communities is closely associated with altitude, TN, and CEC, as well as with disturbance factors such as human interventions, with elevation being the most influential factor. Based on these findings, it is recommended that conservation plans consider the effects of human interventions to address the challenges in conserving forests in the future. Additionally, further research efforts should focus on mitigating disturbance factors and understanding the environmental variables that affect forests to improve their protection.
Collapse
Affiliation(s)
- Tariku Berihun Tenaw
- Department of Biology, Dilla University, Dilla, Ethiopia
- Department of Plant Biology and Biodiversity Management, Addis Ababa University, Addis Ababa, Ethiopia
| | - Tamrat Bekele Gode
- Department of Plant Biology and Biodiversity Management, Addis Ababa University, Addis Ababa, Ethiopia
| | - Ermias Lulekal Molla
- Department of Plant Biology and Biodiversity Management, Addis Ababa University, Addis Ababa, Ethiopia
| | - Zemede Asfaw Woldemariam
- Department of Plant Biology and Biodiversity Management, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
8
|
van der Plas F, Hautier Y, Ceulemans T, Alard D, Bobbink R, Diekmann M, Dise NB, Dorland E, Dupré C, Gowing D, Stevens C. Atmospheric nitrogen deposition is related to plant biodiversity loss at multiple spatial scales. GLOBAL CHANGE BIOLOGY 2024; 30:e17445. [PMID: 39166455 DOI: 10.1111/gcb.17445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/09/2024] [Accepted: 07/12/2024] [Indexed: 08/23/2024]
Abstract
Due to various human activities, including intensive agriculture, traffic, and the burning of fossil fuels, in many parts of the world, current levels of reactive nitrogen emissions strongly exceed pre-industrial levels. Previous studies have shown that the atmospheric deposition of these excess nitrogen compounds onto semi-natural terrestrial environments has negative consequences for plant diversity. However, these previous studies mostly investigated biodiversity loss at local spatial scales, that is, at the scales of plots of typically a few square meters. Whether increased atmospheric nitrogen deposition also affects plant diversity at larger spatial scales remains unknown. Here, using grassland plant community data collected in 765 plots, across 153 different sites and 9 countries in northwestern Europe, we investigate whether relationships between atmospheric nitrogen deposition and plant biodiversity are scale-dependent. We found that high levels of atmospheric nitrogen deposition were associated with low levels of plant species richness at the plot scale but also at the scale of sites and regions. The presence of 39% of plant species was negatively associated with increasing levels of nitrogen deposition at large (site) scales, while only 1.5% of the species became more common with increasing nitrogen deposition, indicating that large-scale biodiversity changes were mostly driven by "loser" species, while "winner" species profiting from high N deposition were rare. Some of the "loser" species whose site presence was negatively associated with atmospheric nitrogen deposition are listed as "threatened" in at least some EU member states, suggesting that nitrogen deposition may be a key contributor to their threat status. Hence, reductions in reactive nitrogen emissions will likely benefit plant diversity not only at local but also at larger spatial scales.
Collapse
Affiliation(s)
- Fons van der Plas
- Plant Ecology and Nature Conservation Group, Wageningen University, Wageningen, The Netherlands
| | - Yann Hautier
- Ecology and Biodiversity Group, Department of Biology, Utrecht University, Utrecht, The Netherlands
| | | | - Didier Alard
- Université de Bordeaux, INRAE, BIOGECO, Pessac, France
| | - Roland Bobbink
- B-WARE Research Centre, Radboud University, Nijmegen, The Netherlands
| | - Martin Diekmann
- Institute of Ecology, FB 2, University of Bremen, Bremen, Germany
| | - Nancy B Dise
- UK Centre for Ecology & Hydrology, Bush Estate, Edinburgh, UK
| | - Edu Dorland
- KWR Water Research Institute, Nieuwegein, Netherlands
| | - Cecilia Dupré
- Institute of Ecology, FB 2, University of Bremen, Bremen, Germany
| | - David Gowing
- School of Environment, Earth and Ecosystem Sciences, Open University, Milton Keynes, UK
| | - Carly Stevens
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| |
Collapse
|
9
|
Trotta G, Vuerich M, Pellegrini E, Vilà M, Asquini E, Cingano P, Boscutti F. Containing alien plants in coastal dunes: Evidence from a soil manipulation experiment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121780. [PMID: 38996603 DOI: 10.1016/j.jenvman.2024.121780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/25/2024] [Accepted: 07/05/2024] [Indexed: 07/14/2024]
Abstract
Biological invasion is recognised as one of the major threats to biodiversity, particularly in disturbance-prone ecosystems such as costal dunes. Many studies have associated alien plant invasion of dune ecosystem to human disturbances, but less is known about the role of soil properties in invasion after disturbance. Soil properties are crucial filters during plant succession and soil-related changes in the initial stage of species colonization might shape the final success of the invaders. We performed a manipulative experiment aimed at elucidating the effects of soil properties on plant colonization processes in highly invaded dune systems, as a proxy for plausible management actions to curb the success of exotic plant species over native ones, which was measured through species richness and abundance. In a barrier island of the Marano and Grado lagoon, Northern Adriatic Sea, we mechanically removed all the native and alien vegetation present in the back dune (also known as secondary dune), triggering a new ecological succession and further altered, for the following three months, soil properties by adding salt, nitrogen, and organic matter in a full factorial design with randomized blocks. The soil treatments reduced the overall species richness and abundance of alien plants. Further, soil treatment interactions strongly shaped community evenness and species richness. Soil salinity had a positive effect on native cover while decreasing the overall number of alien species, especially in soil with added organic matter. Our findings suggest that soil salinity, and its interplay with organic matter, might significantly reduce the initial success of alien species propagule pressure (i.e. alien plant germination), with likely implications for the trajectories of future plant communities. This study highlights that alien plant containment should be focused on early stages of succession, giving new perspective on future environmental management actions for dune restoration and conservation.
Collapse
Affiliation(s)
- Giacomo Trotta
- Department of Environmental and Life Sciences (DSV), University of Trieste, Via Licio Giorgieri 5, 34127, Trieste, Italy; Department of Agricultural, Food, Environmental and Animal Sciences (DI4A), University of Udine, Via delle Scienze 99, 33100, Udine, Italy.
| | - Marco Vuerich
- Department of Agricultural, Food, Environmental and Animal Sciences (DI4A), University of Udine, Via delle Scienze 99, 33100, Udine, Italy; NBFC, National Biodiversity Future Center, 90133, Palermo, Italy
| | - Elisa Pellegrini
- Department of Agricultural, Food, Environmental and Animal Sciences (DI4A), University of Udine, Via delle Scienze 99, 33100, Udine, Italy
| | - Montserrat Vilà
- Doñana Biological Station - Spanish National Research Council (EBD-CSIC), 41092, Sevilla, Spain; Department of Plant Biology and Ecology, Universidad de Sevilla, 41012, Sevilla, Spain
| | - Edoardo Asquini
- Department of Agricultural, Food, Environmental and Animal Sciences (DI4A), University of Udine, Via delle Scienze 99, 33100, Udine, Italy; NBFC, National Biodiversity Future Center, 90133, Palermo, Italy; University of Palermo, 90133, Palermo, Italy
| | - Paolo Cingano
- Department of Environmental and Life Sciences (DSV), University of Trieste, Via Licio Giorgieri 5, 34127, Trieste, Italy; Department of Agricultural, Food, Environmental and Animal Sciences (DI4A), University of Udine, Via delle Scienze 99, 33100, Udine, Italy
| | - Francesco Boscutti
- Department of Agricultural, Food, Environmental and Animal Sciences (DI4A), University of Udine, Via delle Scienze 99, 33100, Udine, Italy; NBFC, National Biodiversity Future Center, 90133, Palermo, Italy
| |
Collapse
|
10
|
Chen M, Zheng Y, Zhai X, Ma F, Chen J, Stevens C, Zhang WH, Tian Q. Metal ions steer the duality in microbial community recovery from nitrogen enrichment by shaping functional groups. GLOBAL CHANGE BIOLOGY 2024; 30:e17475. [PMID: 39149922 DOI: 10.1111/gcb.17475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/17/2024] [Accepted: 07/17/2024] [Indexed: 08/17/2024]
Abstract
Atmospheric nitrogen (N) deposition has been substantially reduced due to declines in the reactive N emission in major regions of the world. Nevertheless, the impact of reduced N deposition on soil microbial communities and the mechanisms by which they are regulated remain largely unknown. Here, we examined the effects of N addition and cessation of N addition on plant and soil microbial communities through a 17-year field experiment in a temperate grassland. We found that extreme N input did not irreversibly disrupt the ecosystem, but ceasing high levels of N addition led to greater resilience in bacterial and fungal communities. Fungi exhibited diminished resilience compared to bacteria due to their heightened reliance on changes in plant communities. Neither bacterial nor fungal diversity fully recovered to their original states. Their sensitivity and resilience were mainly steered by toxic metal ions and soil pH differentially regulating on functional taxa. Specifically, beneficial symbiotic microbes such as N-fixing bacteria and arbuscular mycorrhizal fungi experienced detrimental effects from toxic metal ions and lower pH, hindering their recovery. The bacterial functional groups involved in carbon decomposition, and ericoid mycorrhizal and saprotrophic fungi were positively influenced by soil metals, and demonstrated gradual recovery. These findings could advance our mechanistic understanding of microbial community dynamics under ongoing global changes, thereby informing management strategies to mitigate the adverse effects of N enrichment on soil function.
Collapse
Affiliation(s)
- Mengmeng Chen
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- College of Resource and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Yao Zheng
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- College of Resource and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Xiufeng Zhai
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- College of Resource and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Fangling Ma
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- College of Resource and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Ji Chen
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China
| | - Carly Stevens
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - Wen-Hao Zhang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- College of Resource and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Qiuying Tian
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
11
|
Wang Z, Chen L, Pan Y, Zhao D, Yang Y, Li X, Wang H. Responses in species diversity in the Hulunbuir grassland to phosphorus addition under nitrogen-limiting and non-limiting conditions. FRONTIERS IN PLANT SCIENCE 2024; 15:1393471. [PMID: 39086909 PMCID: PMC11288950 DOI: 10.3389/fpls.2024.1393471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 07/04/2024] [Indexed: 08/02/2024]
Abstract
The phenomenon of nitrogen deposition resulting in species loss in terrestrial ecosystems has been demonstrated in several experiments. Nitrogen (N) and phosphorus (P), as major nutrients required for plant growth, exhibit ecological stoichiometric coupling in many ecosystems. The increased availability of nitrogen can exacerbate the ecological effects of phosphorus. To reveal the ecological effects of phosphorus under nitrogen-limiting and non-limiting conditions, we conducted a controlled N-P interaction experiment over 5 years in the Hulunbuir meadow steppe, where two nitrogen addition levels were implemented: 0 g N·m-2·a-1 (nitrogen-limiting condition) and 10 g N·m-2·a-1 (nitrogen-non-limiting condition), together with six levels of phosphorus addition (0, 2, 4, 6, 8, and 10 g P·m-2·a-1). The results showed that nitrogen addition (under nitrogen-non-limiting conditions) significantly decreased species diversity in the steppe community, which was exacerbated under phosphorus addition. Under nitrogen-limiting conditions, phosphorus addition had no marked impact on species diversity compared to the control; however, there were substantial differences between different levels of phosphorus addition, exhibiting a unimodal change. Under both experimental nitrogen conditions, the addition of 6 g P·m-2·a-1 was the threshold for affecting the community species diversity. Nitrogen addition reduced the relative biomass of legumes, bunch grasses, and forbs, but substantially increased the relative biomass of rhizomatous grasses. In contrast, phosphorus addition only markedly affected the relative biomass of forbs and rhizomatous grasses, with the former showing a unimodal pattern of first increasing and then decreasing with increasing phosphorus addition level, and the latter exhibiting the opposite pattern. The different responses of rhizomatous grasses and other functional groups to nitrogen and phosphorus addition were observed to have a regulatory effect on the changes in grassland community structure. Phosphorus addition may increase the risk of nitrogen deposition-induced species loss. Both nitrogen and phosphorus addition lead to soil acidification and an increase in the dominance of the already-dominant species, and the consequent species loss in the forb functional group represents the main mechanism for the reduction in community species diversity.
Collapse
Affiliation(s)
- Zhihui Wang
- College of Horticulture and Landscape Architecture, Heilongjiang Bayi Agricultural University, Daqin, China
- Key Laboratory of Low-carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs, Daqing, China
- Agricultural Products and Processed Products Supervision and Testing Center, Ministry of Agriculture, Daqing, China
| | - Li Chen
- College of Horticulture and Landscape Architecture, Heilongjiang Bayi Agricultural University, Daqin, China
| | - Yuzhen Pan
- College of Horticulture and Landscape Architecture, Heilongjiang Bayi Agricultural University, Daqin, China
| | - Dan Zhao
- College of Horticulture and Landscape Architecture, Heilongjiang Bayi Agricultural University, Daqin, China
| | - Yunrui Yang
- College of Horticulture and Landscape Architecture, Heilongjiang Bayi Agricultural University, Daqin, China
| | - Xinyu Li
- College of Horticulture and Landscape Architecture, Heilongjiang Bayi Agricultural University, Daqin, China
| | - Hongyi Wang
- College of Horticulture and Landscape Architecture, Heilongjiang Bayi Agricultural University, Daqin, China
- Key Laboratory of Low-carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs, Daqing, China
| |
Collapse
|
12
|
Martin S, Roscher C. Strengths of fertilizer and litter effects on seedling recruitment and growth of grassland species differ depending on functional groups and seed size. Ecol Evol 2024; 14:e11650. [PMID: 38962027 PMCID: PMC11220832 DOI: 10.1002/ece3.11650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/10/2024] [Accepted: 06/14/2024] [Indexed: 07/05/2024] Open
Abstract
Agricultural grasslands play an important role in conserving the biodiversity of the European cultural landscape. Both, litter cover and soil nutrient availability, change with grassland management, but it is not well-studied how seedling recruitment and growth of multiple grassland species are influenced by their single or combined effects. Therefore, we studied the effects of nitrogen fertilization (100 kg N per year and ha) and litter cover (250 gdw per m2) on seedling recruitment and growth of 75 temperate grassland species (16 graminoid species, 51 forb species, 8 legume species) in a full factorial microcosm experiment. Overall, fertilizer reduced seedling emergence, while litter cover increased it even when combined with fertilization. Fertilization increased seedling height and biomass, and the combination of fertilizer and litter resulted in even stronger responses. Litter cover alone did not influence seedling biomass or seedling height. While the overall direction of treatment effects was similar across functional groups, their strengths were mostly weaker in graminoids than in non-legume forbs and legumes. Positive litter effects on seedling emergence were stronger in large-seeded species. Positive fertilization effects on seedling growth were stronger in small-seeded species, while their seedling biomass was negatively affected by litter cover. In summary, our results show for multiple grassland species that the combination of litter cover and fertilization modulates their single effects. The varying sensitivity of how grassland species representing different functional groups and seed sizes respond with their seedling emergence and growth to litter cover and nitrogen fertilization indicates that the consequences of land-use change on grassland diversity and composition already start to manifest in the earliest stages of the plant life cycle.
Collapse
Affiliation(s)
- Sarah Martin
- Department of Physiological DiversityUFZ, Helmholtz Centre for Environmental ResearchLeipzigGermany
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
| | - Christiane Roscher
- Department of Physiological DiversityUFZ, Helmholtz Centre for Environmental ResearchLeipzigGermany
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
| |
Collapse
|
13
|
Zhou X, Ouyang S, Saurer M, Feng M, Bose AK, Duan H, Tie L, Shen W, Gessler A. Species-specific responses of C and N allocation to N addition: evidence from dual 13C and 15N labeling in three tree species. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172164. [PMID: 38580112 DOI: 10.1016/j.scitotenv.2024.172164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/29/2024] [Accepted: 03/31/2024] [Indexed: 04/07/2024]
Abstract
Soil nitrogen (N) availability affects plant carbon (C) utilization. However, it is unclear how various tree functional types respond to N addition in terms of C assimilation, allocation, and storage. Here, a microcosm experiment with dual 13C and 15N labeling was conducted to study the effects of N addition (i.e., control, 0 g N kg-1; moderate N addition, 1.68 g N kg-1; and high N addition, 3.36 g N kg-1 soil) on morphological traits, on changes in nonstructural carbohydrates (NSC) in different organs, as well as on C and N uptake and allocation in three European temperate forest tree species (i.e., Acer pseudoplatanus, Picea abies and Abies alba). Our results demonstrated that root N uptake rates of the three tree species increased by N addition. In A. pseudoplatanus, N uptake by roots, N allocation to aboveground organs, and aboveground biomass allocation significantly improved by moderate and high N addition. In A. alba, only the high N addition treatment considerably raised aboveground N and C allocation. In contrast, biomass as well as C and N allocation between above and belowground tissues were not altered by N addition in P. abies. Meanwhile, NSC content as well as C and N coupling (represented by the ratio of relative 13C and 15N allocation rates in organs) were affected by N addition in A. pseudoplantanus and P. abies but not in A. alba. Overall, A. pseudoplatanus displayed the highest sensitivity to N addition and the highest N requirement among the three species, while P. abies had a lower N demand than A. alba. Our findings highlight that the responses of C and N allocation to soil N availability are species-specific and vary with the amount of N addition.
Collapse
Affiliation(s)
- Xiaoqian Zhou
- Institute for Forest Resources and Environment of Guizhou, Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, College of Forestry, Guizhou University, Guiyang 550025, China
| | - Shengnan Ouyang
- Institute for Forest Resources and Environment of Guizhou, Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, College of Forestry, Guizhou University, Guiyang 550025, China; Swiss Federal Institute for Forest, Snow and Landscape Research, Birmensdorf 8903, Switzerland.
| | - Matthias Saurer
- Swiss Federal Institute for Forest, Snow and Landscape Research, Birmensdorf 8903, Switzerland
| | - Mei Feng
- Institute for Forest Resources and Environment of Guizhou, Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, College of Forestry, Guizhou University, Guiyang 550025, China
| | - Arun K Bose
- Swiss Federal Institute for Forest, Snow and Landscape Research, Birmensdorf 8903, Switzerland; Forestry and Wood Technology Discipline, Khulna University, Khulna 9208, Bangladesh
| | - Honglang Duan
- Institute for Forest Resources and Environment of Guizhou, Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, College of Forestry, Guizhou University, Guiyang 550025, China
| | - Liehua Tie
- Institute for Forest Resources and Environment of Guizhou, Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, College of Forestry, Guizhou University, Guiyang 550025, China
| | - Weijun Shen
- Guangxi Key Laboratory of Forest Ecology and Conservation, State Key Laboratory for Conservation and Utilization of Agro-bioresources, College of Forestry, Guangxi University, Nanning, Guangxi 530004, China
| | - Arthur Gessler
- Swiss Federal Institute for Forest, Snow and Landscape Research, Birmensdorf 8903, Switzerland; Institute of Terrestrial Ecosystems, ETH Zurich, Zurich 8902, Switzerland
| |
Collapse
|
14
|
Gitzel J, Kampen H, Sellmann J, Schwarz J, Hoffmann LM, Kühne S, Ulrichs C, Werner D. Enhancing arthropod occurrence in wheat cropping systems: the role of non-chemical pest management and nitrogen optimization. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:572. [PMID: 38777911 PMCID: PMC11111577 DOI: 10.1007/s10661-024-12709-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 05/04/2024] [Indexed: 05/25/2024]
Abstract
This study analyzes arthropod biomass and abundance to track the changes in arthropod occurrence in relation to pesticide use in three winter wheat cropping systems managed at different intensities (organic, conventional, and hybrid). Arthropod occurrence was surveyed using three collection tools: sweeping nets, eclector traps, and yellow traps. Sampling was conducted over three years from 2020 to 2022 with 588 samples collected. The wet weight of the captured organisms was determined and arthropod abundance calculated. The application of a NOcsPS (no chemical-synthetic pesticides) strategy, a new hybrid cultivation method realized with optimized use of nitrogen fertilizers but without chemical-synthetic pesticides, showed a higher arthropod occurrence and performed more convincingly regarding produced arthropod biomass and abundance than the other cropping variants. The results also demonstrate a dependence of the obtained insect indices on the collection method. Although arthropod biomass and abundance correlated for all collection methods, the combination of various methods as well as multiple procedures of sample analysis gives a more realistic and comprehensive view of the impact of the wheat cultivation systems on the arthropod fauna than one-factor analyses.
Collapse
Affiliation(s)
- Julia Gitzel
- Leibniz Centre for Agricultural Landscape Research, Müncheberg, Germany.
- Humboldt-Universität zu Berlin, Thaer-Institute, Urban Plant Ecophysiology, Berlin, Germany.
- Institute for Strategies and Technology Assessment, Julius Kühn-Institut, Kleinmachnow, Germany.
| | - Helge Kampen
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald, Germany
| | - Jörg Sellmann
- Institute for Strategies and Technology Assessment, Julius Kühn-Institut, Kleinmachnow, Germany
| | - Jürgen Schwarz
- Institute for Strategies and Technology Assessment, Julius Kühn-Institut, Kleinmachnow, Germany
| | | | - Stefan Kühne
- Institute for Strategies and Technology Assessment, Julius Kühn-Institut, Kleinmachnow, Germany
| | - Christian Ulrichs
- Humboldt-Universität zu Berlin, Thaer-Institute, Urban Plant Ecophysiology, Berlin, Germany
| | - Doreen Werner
- Leibniz Centre for Agricultural Landscape Research, Müncheberg, Germany
| |
Collapse
|
15
|
Yang W, Zhang S, Li A, Yang J, Pang S, Hu Z, Wang Z, Han X, Zhang X. Nitrogen deposition mediates more stochastic processes in structuring plant community than soil microbial community in the Eurasian steppe. SCIENCE CHINA. LIFE SCIENCES 2024; 67:778-788. [PMID: 38212459 DOI: 10.1007/s11427-023-2416-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/08/2023] [Indexed: 01/13/2024]
Abstract
Anthropogenic environmental changes may affect community assembly through mediating both deterministic (e.g., competitive exclusion and environmental filtering) and stochastic processes (e.g., birth/death and dispersal/colonization). It is traditionally thought that environmental changes have a larger mediation effect on stochastic processes in structuring soil microbial community than aboveground plant community; however, this hypothesis remains largely untested. Here we report an unexpected pattern that nitrogen (N) deposition has a larger mediation effect on stochastic processes in structuring plant community than soil microbial community (those <2 mm in diameter, including archaea, bacteria, fungi, and protists) in the Eurasian steppe. We performed a ten-year nitrogen deposition experiment in a semiarid grassland ecosystem in Inner Mongolia, manipulating nine rates (0-50 g N m-2 per year) at two frequencies (nitrogen added twice or 12 times per year) under two grassland management strategies (fencing or mowing). We separated the compositional variation of plant and soil microbial communities caused by each treatment into the deterministic and stochastic components with a recently-developed method. As nitrogen addition rate increased, the relative importance of stochastic component of plant community first increased and then decreased, while that of soil microbial community first decreased and then increased. On the whole, the relative importance of stochastic component was significantly larger in plant community (0.552±0.035; mean±standard error) than in microbial community (0.427±0.035). Consistently, the proportion of compositional variation explained by the deterministic soil and community indices was smaller for plant community (0.172-0.186) than microbial community (0.240-0.767). Meanwhile, as nitrogen addition rate increased, the linkage between plant and microbial community composition first became weaker and then became stronger. The larger stochasticity in plant community relative to microbial community assembly suggested that more stochastic strategies (e.g., seeds addition) should be adopted to maintain above- than below-ground biodiversity under the pressure of nitrogen deposition.
Collapse
Affiliation(s)
- Wei Yang
- Key Laboratory of Dryland Agriculture, Ministry of Agriculture, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shuhan Zhang
- Key Laboratory of Dryland Agriculture, Ministry of Agriculture, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ang Li
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Junjie Yang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Shuang Pang
- Key Laboratory of Dryland Agriculture, Ministry of Agriculture, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zonghao Hu
- Key Laboratory of Dryland Agriculture, Ministry of Agriculture, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhiping Wang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Xingguo Han
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
| | - Ximei Zhang
- Key Laboratory of Dryland Agriculture, Ministry of Agriculture, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
16
|
He M, Barry KE, Soons MB, Allan E, Cappelli SL, Craven D, Doležal J, Isbell F, Lanta V, Lepš J, Liang M, Mason N, Palmborg C, Pichon NA, da Silveira Pontes L, Reich PB, Roscher C, Hautier Y. Cumulative nitrogen enrichment alters the drivers of grassland overyielding. Commun Biol 2024; 7:309. [PMID: 38467761 PMCID: PMC10928195 DOI: 10.1038/s42003-024-05999-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 03/01/2024] [Indexed: 03/13/2024] Open
Abstract
Effects of plant diversity on grassland productivity, or overyielding, are found to be robust to nutrient enrichment. However, the impact of cumulative nitrogen (N) addition (total N added over time) on overyielding and its drivers are underexplored. Synthesizing data from 15 multi-year grassland biodiversity experiments with N addition, we found that N addition decreases complementarity effects and increases selection effects proportionately, resulting in no overall change in overyielding regardless of N addition rate. However, we observed a convex relationship between overyielding and cumulative N addition, driven by a shift from complementarity to selection effects. This shift suggests diminishing positive interactions and an increasing contribution of a few dominant species with increasing N accumulation. Recognizing the importance of cumulative N addition is vital for understanding its impacts on grassland overyielding, contributing essential insights for biodiversity conservation and ecosystem resilience in the face of increasing N deposition.
Collapse
Affiliation(s)
- Miao He
- Ecology and Biodiversity group, Department of Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
- Department of Ecology, Evolution, and Behavior, University of Minnesota, 1479 Gortner Ave, St Paul, MN, 55108, USA.
| | - Kathryn E Barry
- Ecology and Biodiversity group, Department of Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Merel B Soons
- Ecology and Biodiversity group, Department of Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Eric Allan
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013, Bern, Switzerland
- Centre for Development and Environment CDE, University of Bern, Mittelstrasse 43, 3012, Bern, Switzerland
| | - Seraina L Cappelli
- Department of Ecology, Evolution, and Behavior, University of Minnesota, 1479 Gortner Ave, St Paul, MN, 55108, USA
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013, Bern, Switzerland
| | - Dylan Craven
- GEMA Center for Genomics, Ecology & Environment, Universidad Mayor, Camino La Pirámide, 5750, Huechuraba, Santiago, Chile
- Data Observatory Foundation, ANID Technology Center No. DO210001, Eliodoro Yáñez 2990, 7510277, Providencia, Santiago, Chile
| | - Jiří Doležal
- Department of Functional Ecology, Institute of Botany of the Czech Academy of Sciences, Zámek 1, 252 43, Průhonice, Czech Republic
- Department of Botany, Faculty of Science, University of South Bohemia, Na Zlaté stoce 1, 370 05, České Budějovice, Czech Republic
| | - Forest Isbell
- Department of Ecology, Evolution, and Behavior, University of Minnesota, 1479 Gortner Ave, St Paul, MN, 55108, USA
| | - Vojtěch Lanta
- Department of Functional Ecology, Institute of Botany of the Czech Academy of Sciences, Zámek 1, 252 43, Průhonice, Czech Republic
| | - Jan Lepš
- Department of Botany, Faculty of Science, University of South Bohemia, Na Zlaté stoce 1, 370 05, České Budějovice, Czech Republic
| | - Maowei Liang
- Cedar Creek Ecosystem Science Reserve, University of Minnesota, 2660 Fawn Lake Dr NE, East Bethel, MN, 55005, USA
| | - Norman Mason
- Landcare Research, Private Bag 3127, Hamilton, 3240, New Zealand
| | - Cecilia Palmborg
- Department of Crop production Ecology, Swedish University of Agricultural Sciences, 901 83, Umeå, Sweden
| | - Noémie A Pichon
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013, Bern, Switzerland
- Swiss Federal Research Institute WSL, Zürcherstrasse 111, CH-8903, Birmensdorf, Switzerland
| | - Laíse da Silveira Pontes
- Rural Development Institute of Paraná - IAPAR-EMATER, Av. Euzébio de Queirós, s/n°, CP 129, CEP 84001-970, Ponta Grossa, PR, Brazil
| | - Peter B Reich
- Department of Forest Resources, University of Minnesota, 1479 Gortner Ave, St Paul, MN, 55108, USA
- Institute for Global Change Biology, and School for the Environment and Sustainability, University of Michigan, 440 Church Street, Ann Arbor, MI, 48109, USA
| | - Christiane Roscher
- UFZ, Helmholtz Centre for Environmental Research, Physiological Diversity, Permoserstrasse 15, 04318, Leipzig, Germany
- German Centre for Integrative Biodiversity Research (iDiv), Puschstrasse 4, 04103, Leipzig, Germany
| | - Yann Hautier
- Ecology and Biodiversity group, Department of Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| |
Collapse
|
17
|
Li S, Tu T, Li S, Yang X, Zheng Y, Guo LD, Zhang D, Jiang L. Different mechanisms underlie similar species-area relationships in two tropical archipelagoes. PLANT DIVERSITY 2024; 46:238-246. [PMID: 38807910 PMCID: PMC11128831 DOI: 10.1016/j.pld.2023.08.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/26/2023] [Accepted: 08/31/2023] [Indexed: 05/30/2024]
Abstract
Despite much research in the field of island biogeography, mechanisms regulating insular diversity remain elusive. Here, we aim to explore mechanisms underlying plant species-area relationships in two tropical archipelagoes in the South China Sea. We found positive plant species-area relationships for both coral and continental archipelagoes. However, our results showed that different mechanisms contributed to similar plant species-area relationships between the two archipelagoes. For coral islands, soil nutrients and spatial distance among communities played major roles in shaping plant community structure and species diversity. By contrast, the direct effect of island area, and to a lesser extent, soil nutrients determined plant species richness on continental islands. Intriguingly, increasing soil nutrients availability (N, P, K) had opposite effects on plant diversity between the two archipelagoes. In summary, the habitat quality effect and dispersal limitation are important for regulating plant diversity on coral islands, whereas the passive sampling effect, and to a lesser extent, the habitat quality effect are important for regulating plant diversity on continental islands. More generally, our findings indicate that island plant species-area relationships are outcomes of the interplay of both niche and neutral processes, but the driving mechanisms behind these relationships depends on the type of islands.
Collapse
Affiliation(s)
- Shengchun Li
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- ECNU-Alberta Joint Lab for Biodiversity Study, Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Jiangxi Academy of Forestry, Nanchang 330032, China
| | - Tieyao Tu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Shaopeng Li
- ECNU-Alberta Joint Lab for Biodiversity Study, Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Institute of Eco-Chongming (IEC), Shanghai 202162, China
| | - Xian Yang
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Guangzhou 510275, China
| | - Yong Zheng
- School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China
| | - Liang-Dong Guo
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Dianxiang Zhang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Lin Jiang
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
18
|
Chen X, Lu H, Ren Z, Zhang Y, Liu R, Zhang Y, Han X. Reproductive height determines the loss of clonal grasses with nitrogen enrichment in a temperate grassland. PLANT DIVERSITY 2024; 46:256-264. [PMID: 38807914 PMCID: PMC11128833 DOI: 10.1016/j.pld.2023.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/19/2023] [Accepted: 04/25/2023] [Indexed: 05/30/2024]
Abstract
Tall clonal grasses commonly display competitive advantages with nitrogen (N) enrichment. However, it is currently unknown whether the height is derived from the vegetative or reproductive module. Moreover, it is unclear whether the height of the vegetative or reproductive system regulates the probability of extinction and colonization, and determines species diversity. In this study, the impacts on clonal grasses were studied in a field experiment employing two frequencies (twice a year vs. monthly) crossing with nine N addition rates in a temperate grassland, China. We found that the N addition decreased species frequency and increased extinction probability, but did not change the species colonization probability. A low frequency of N addition decreased species frequency and colonization probability, but increased extinction probability. Moreover, we found that species reproductive height was the best index to predict the extinction probability of clonal grasses in N-enriched conditions. The low frequency of N addition may overestimate the negative effect from N deposition on clonal grass diversity, suggesting that a higher frequency of N addition is more suitable in assessing the ecological effects of N deposition. Overall, this study illustrates that reproductive height was associated with the clonal species extinction probability under N-enriched environment.
Collapse
Affiliation(s)
- Xu Chen
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Yuquan Road, Beijing 100049, China
| | - Haining Lu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Yuquan Road, Beijing 100049, China
| | - Zhengru Ren
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Yuquan Road, Beijing 100049, China
| | - Yuqiu Zhang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Yuquan Road, Beijing 100049, China
| | - Ruoxuan Liu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Yuquan Road, Beijing 100049, China
| | - Yunhai Zhang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Yuquan Road, Beijing 100049, China
| | - Xingguo Han
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Yuquan Road, Beijing 100049, China
| |
Collapse
|
19
|
Mekhrovar O, Li YM, Abdullo M, Sino Y, Fan L. Nutrient addition alters plant community productivity but not the species diversity of a mountain meadow in Tajikistan. FRONTIERS IN PLANT SCIENCE 2024; 14:1235388. [PMID: 38288411 PMCID: PMC10822985 DOI: 10.3389/fpls.2023.1235388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 12/21/2023] [Indexed: 01/31/2024]
Abstract
Introduction Tajikistan is a typical mountainous country covered by different mountain grasslands that are important pasture resources. Recently, grassland degradation has become widespread due to climate change and human activities and fertilization has been used to improve grassland production. However, fertilizer inputs can substantially alter species diversity, but it is uncl\ear how productivity and species diversity respond to nutrient enrichment in the mountain meadows of Tajikistan. Methods Therefore, a 5-year (2018-2022) continuous in-situ mineral fertilizer experiment was conducted to examine the effects of three nitrogen (N) levels (0, 30, and 90 kg N ha-1 year-1), two phosphorus (P) levels (0 and 30 kg P ha-1 year-1), and their combinations on above-ground biomass (AGB) and species diversity in a mountain meadow grassland in Ziddi, Varzob region, Tajikistan. Five species diversity metrics-Margalef's species richness (Dma), the Shannon-Wiener index (H), the Simpson index (C), Pielou's equitability index (Epi), and the Evar Species Evenness index (Evar)-were used to measure species diversity. Results and discussions The results indicated that the addition of different N and P amounts and their various combinations considerably increased both total and dominant species AGB, with the highest increase occurring in the N90P30 (90 kg N ha-1 year-1 combined with 30 kg P ha-1 year-1) treatment in 2022; during the experiment, the importance value of Prangos pabularia (dominant species) first decreased and then increased, but its dominant status did not change or fluctuate among the years. Furthermore, N, P, and their different combinations had no significant effect on species diversity (Dma, H, C, Epi, and Evar). All the species diversity indexes fluctuated among years, but there was no interaction with mineral fertilizer addition. Total AGB had a negative relationship with species diversity and low concentration N fertilizer addition (N30; P30) strengthened this negative trend. However, this trend decreased under the high N fertilizer condition (N90P30). Overall, nutrient addition to the natural mountain grassland of the Varzob region improved AGB, which meant that there was more forage for local animals. Mineral fertilizers had no significant effect on species diversity, but may enhance P. pabularia dominance in the future, which will help maintain the stability of the plant community and improve the quality of the forage because P. pabularia is an excellent and important winter fodder. Our study suggests that scientific nutrient management could effectively promote grassland production, conserve plant variety, and regenerate degraded grassland, which will counteract the desertification process in northwest Tajikistan mountain meadows.
Collapse
Affiliation(s)
- Okhonniyozov Mekhrovar
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Research Center for Ecology and Environment of Central Asia, Chinese Academy of Sciences, Urumqi, China
- Research Center for Ecology and Environment of Central Asia, Dushanbe, Tajikistan
- University of Chinese Academy of Sciences, Beijing, China
| | - Yao-ming Li
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Research Center for Ecology and Environment of Central Asia, Chinese Academy of Sciences, Urumqi, China
- Research Center for Ecology and Environment of Central Asia, Dushanbe, Tajikistan
- University of Chinese Academy of Sciences, Beijing, China
| | - Madaminov Abdullo
- Institute of Botany, Physiology and Plant Genetics of the Academy of Sciences of the Republic of Tajikistan, Dushanbe, Tajikistan
| | - Yusupov Sino
- Institute of Botany, Physiology and Plant Genetics of the Academy of Sciences of the Republic of Tajikistan, Dushanbe, Tajikistan
| | - Lianlian Fan
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Research Center for Ecology and Environment of Central Asia, Chinese Academy of Sciences, Urumqi, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
20
|
Taylor CR, England LC, Keane JB, Davies JAC, Leake JR, Hartley IP, Smart SM, Janes-Bassett V, Phoenix GK. Elevated CO 2 interacts with nutrient inputs to restructure plant communities in phosphorus-limited grasslands. GLOBAL CHANGE BIOLOGY 2024; 30:e17104. [PMID: 38273555 DOI: 10.1111/gcb.17104] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 12/01/2023] [Accepted: 12/02/2023] [Indexed: 01/27/2024]
Abstract
Globally pervasive increases in atmospheric CO2 and nitrogen (N) deposition could have substantial effects on plant communities, either directly or mediated by their interactions with soil nutrient limitation. While the direct consequences of N enrichment on plant communities are well documented, potential interactions with rising CO2 and globally widespread phosphorus (P) limitation remain poorly understood. We investigated the consequences of simultaneous elevated CO2 (eCO2 ) and N and P additions on grassland biodiversity, community and functional composition in P-limited grasslands. We exposed soil-turf monoliths from limestone and acidic grasslands that have received >25 years of N additions (3.5 and 14 g m-2 year-1 ) and 11 (limestone) or 25 (acidic) years of P additions (3.5 g m-2 year-1 ) to eCO2 (600 ppm) for 3 years. Across both grasslands, eCO2 , N and P additions significantly changed community composition. Limestone communities were more responsive to eCO2 and saw significant functional shifts resulting from eCO2 -nutrient interactions. Here, legume cover tripled in response to combined eCO2 and P additions, and combined eCO2 and N treatments shifted functional dominance from grasses to sedges. We suggest that eCO2 may disproportionately benefit P acquisition by sedges by subsidising the carbon cost of locally intense root exudation at the expense of co-occurring grasses. In contrast, the functional composition of the acidic grassland was insensitive to eCO2 and its interactions with nutrient additions. Greater diversity of P-acquisition strategies in the limestone grassland, combined with a more functionally even and diverse community, may contribute to the stronger responses compared to the acidic grassland. Our work suggests we may see large changes in the composition and biodiversity of P-limited grasslands in response to eCO2 and its interactions with nutrient loading, particularly where these contain a high diversity of P-acquisition strategies or developmentally young soils with sufficient bioavailable mineral P.
Collapse
Affiliation(s)
- Christopher R Taylor
- Soil and Ecosystem Ecology, Earth and Environmental Sciences, University of Manchester, Manchester, UK
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Sheffield, UK
| | - Luke C England
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Sheffield, UK
| | - J Ben Keane
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Sheffield, UK
- Department of Environment and Geography, Wentworth Way, University of York, Heslington, York, UK
| | | | - Jonathan R Leake
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Sheffield, UK
| | - Iain P Hartley
- Geography, Faculty of Environment, Science and Economy, University of Exeter, Exeter, UK
| | | | - Victoria Janes-Bassett
- Geography and Planning, School of Environmental Sciences, University of Liverpool, Liverpool, UK
| | - Gareth K Phoenix
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Sheffield, UK
| |
Collapse
|
21
|
Shen H, Dong S, DiTommaso A, Westbrook AS, Li S, Zheng H, Zhi Y, Zuo H, Wang Q, Liu J. Physiological factors contribute to increased competitiveness of grass relative to sedge, forb and legume species under different N application levels. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167466. [PMID: 37788779 DOI: 10.1016/j.scitotenv.2023.167466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/20/2023] [Accepted: 09/28/2023] [Indexed: 10/05/2023]
Abstract
In alpine grasslands, increased N deposition is increasing the dominance of grasses relative to other functional types according to our previous study Shen et al. (2022). However, the mechanisms that drive this compositional change are not fully understood. We measured the effects of 4-6 years' N addition to simulate N deposition at rates of 0 (CK), 8 (N1), 24 (N2), 40 (N3), 56 (N4), and 72 (N5) kg N ha-1 year-1 on dominant representatives of four functional types, Leymus secalinus (grass), Carex capillifolia (sedge), Potentilla multifidi (non-leguminous forb), and Medicago ruthenica (legume), in the alpine grassland on the Qinghai-Tibetan Plateau (QTP). In-situ experiment showed that N addition increased aboveground biomass in L. secalinus but had negative or neutral effects on aboveground biomass in the other species. Consistent with this finding, N addition increased net photosynthesis, chlorophyll content, and rubisco activity in L. secalinus with less positive effects on the other species. Nitrogen addition increased leaf N content in L. secalinus and C. capillifolia and reduced leaf non-structural carbohydrate content in all four species. In L. secalinus, the highest N addition rate (N5) reduced MDA content, a marker of oxidative stress, by enhancing antioxidant enzyme activity. Overall, our findings suggested that physiological factors can contribute to increased competitiveness of grass relative to sedge, forb and legume species under high N application levels. The rapid growth of this grass species reduces resource availability to non-grass species, increasing its dominance in the alpine meadow.
Collapse
Affiliation(s)
- Hao Shen
- School of Grassland Science, Beijing Forestry University, Beijing, 100083, China
| | - Shikui Dong
- School of Grassland Science, Beijing Forestry University, Beijing, 100083, China; School of Environment, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Beijing Normal University, Beijing, 100875, China; Department of Natural Resources, Cornell University, Ithaca, NY 14853, United States.
| | - Antonio DiTommaso
- Soil and Crop Sciences, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, United States
| | - Anna S Westbrook
- Soil and Crop Sciences, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, United States
| | - Shuai Li
- College of Resource and Environment, Shanxi Agricultural University, Taigu 030801, China
| | - Hanzhong Zheng
- Department of Environmental Science, Radboud University, 6526 AJ Nijmegen, The Netherlands
| | - Yangliu Zhi
- School of Environment, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Beijing Normal University, Beijing, 100875, China
| | - Hui Zuo
- School of Grassland Science, Beijing Forestry University, Beijing, 100083, China
| | - Qiyun Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Junxiang Liu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| |
Collapse
|
22
|
Zhang M, Zhang F, Guo L, Dong P, Cheng C, Kumar P, Johnson BA, Chan NW, Shi J. Contributions of climate change and human activities to grassland degradation and improvement from 2001 to 2020 in Zhaosu County, China. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119465. [PMID: 37924697 DOI: 10.1016/j.jenvman.2023.119465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/24/2023] [Accepted: 10/24/2023] [Indexed: 11/06/2023]
Abstract
Grassland degradation poses a serious threat to biodiversity, ecosystem services, and human well-being. In this study, we investigated grassland degradation in Zhaosu County, China, between 2001 and 2020, and analyzed the impacts of climate change and human activities using the Miami model. The actual net primary productivity (ANPP) obtained with CASA (Carnegie-Ames-Stanford Approach) modeling, showed a decreasing trend, reflecting the significant degradation that the grasslands in Zhaosu County have experienced in the past 20 years. Grassland degradation was found to be highest in 2018, while the degraded area continuously decreased in the last 3 years (2018-2020). Climatic factors for found to be the dominant factor affecting grassland degradation, particularly the decrease in precipitation. On the other hand, human activities were found to be the main factor affecting improvement of grasslands, especially in recent years. This finding profoundly elucidates the underlying causes of grassland degradation and improvement and helps implement ecological conservation and restoration measures. From a practical perspective, the research results provide an important reference for the formulation of policies and management strategies for sustainable land use.
Collapse
Affiliation(s)
- Mengru Zhang
- College of Geography and Remote Sensing Sciences, Xinjiang University, Urumqi, 830017, China
| | - Fei Zhang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Liyang Guo
- College of Geography and Remote Sensing Sciences, Xinjiang University, Urumqi, 830017, China
| | - Ping Dong
- College of Grassland Science, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Chunyan Cheng
- College of Geography and Remote Sensing Sciences, Xinjiang University, Urumqi, 830017, China
| | - Pankaj Kumar
- Adaptation and Water, Institute for Global Environmental Strategies, Hayama, Kanagawa, 240-0115, Japan
| | - Brian Alan Johnson
- Adaptation and Water, Institute for Global Environmental Strategies, Hayama, Kanagawa, 240-0115, Japan
| | - Ngai Weng Chan
- GeoInformatic Unit, Geography Section, School of Humanities, Universiti Sains Malaysia, Penang, 11800, Malaysia
| | - Jingchao Shi
- Departments of Earth Sciences, the University of Memphis, Memphis, TN, 38152, USA
| |
Collapse
|
23
|
Chen H, Lv W, Zhang W, Zhao J, Zhang Q, Zhang Z. Integrated comparative transcriptome and physiological analysis reveals the metabolic responses underlying genotype variations in NH 4+ tolerance. FRONTIERS IN PLANT SCIENCE 2023; 14:1286174. [PMID: 38192699 PMCID: PMC10773859 DOI: 10.3389/fpls.2023.1286174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/16/2023] [Indexed: 01/10/2024]
Abstract
Several mechanisms have been proposed to explain NH4 + toxicity. However, the core information about the biochemical regulation of plants in response to NH4 + toxicity is still lacking. In this study, the tissue NH4 + concentration is an important factor contributing to variations in plant growth even under nitrate nutrition and NH4 + tolerance under ammonium nutrition. Furthermore, NH4 + led to the reprogramming of the transcriptional profile, as genes related to trehalose-6-phosphate and zeatin biosynthesis were downregulated, whereas genes related to nitrogen metabolism, camalexin, stilbenoid and phenylpropanoid biosynthesis were upregulated. Further analysis revealed that a large number of genes, which enriched in phenylpropanoid and stilbenoid biosynthesis, were uniquely upregulated in the NH4 +- tolerant ecotype Or-1. These results suggested that the NH4 +-tolerant ecotype showed a more intense response to NH4 + by activating defense processes and pathways. Importantly, the tolerant ecotype had a higher 15NH4 + uptake and nitrogen utilization efficiency, but lower NH4 +, indicating the tolerant ecotype maintained a low NH4 + level, mainly by promoting NH4 + assimilation rather than inhibiting NH4 + uptake. The carbon and nitrogen metabolism analysis revealed that the tolerant ecotype had a stronger carbon skeleton production capacity with higher levels of hexokinase, pyruvate kinase, and glutamate dehydrogenase activity to assimilate free NH4 +, Taken together, the results revealed the core mechanisms utilized by plants in response to NH4 +, which are consequently of ecological and agricultural importance.
Collapse
Affiliation(s)
- Haifei Chen
- College of Resources, Hunan Agricultural University, Changsha, China
| | - Wei Lv
- College of Resources, Hunan Agricultural University, Changsha, China
| | - Wenqi Zhang
- College of Resources, Hunan Agricultural University, Changsha, China
| | - Jie Zhao
- College of Resources, Hunan Agricultural University, Changsha, China
| | - Quan Zhang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Zhenhua Zhang
- College of Resources, Hunan Agricultural University, Changsha, China
| |
Collapse
|
24
|
Wang Y, Wang C, Ren F, Jing X, Ma W, He JS, Jiang L. Asymmetric response of aboveground and belowground temporal stability to nitrogen and phosphorus addition in a Tibetan alpine grassland. GLOBAL CHANGE BIOLOGY 2023; 29:7072-7084. [PMID: 37795748 DOI: 10.1111/gcb.16967] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 09/19/2023] [Accepted: 09/19/2023] [Indexed: 10/06/2023]
Abstract
Anthropogenic eutrophication is known to impair the stability of aboveground net primary productivity (ANPP), but its effects on the stability of belowground (BNPP) and total (TNPP) net primary productivity remain poorly understood. Based on a nitrogen and phosphorus addition experiment in a Tibetan alpine grassland, we show that nitrogen addition had little impact on the temporal stability of ANPP, BNPP, and TNPP, whereas phosphorus addition reduced the temporal stability of BNPP and TNPP, but not ANPP. Significant interactive effects of nitrogen and phosphorus addition were observed on the stability of ANPP because of the opposite phosphorus effects under ambient and enriched nitrogen conditions. We found that the stability of TNPP was primarily driven by that of BNPP rather than that of ANPP. The responses of BNPP stability cannot be predicted by those of ANPP stability, as the variations in responses of ANPP and BNPP to enriched nutrient, with ANPP increased while BNPP remained unaffected, resulted in asymmetric responses in their stability. The dynamics of grasses, the most abundant plant functional group, instead of community species diversity, largely contributed to the ANPP stability. Under the enriched nutrient condition, the synchronization of grasses reduced the grass stability, while the latter had a significant but weak negative impact on the BNPP stability. These findings challenge the prevalent view that species diversity regulates the responses of ecosystem stability to nutrient enrichment. Our findings also suggest that the ecological consequences of nutrient enrichment on ecosystem stability cannot be accurately predicted from the responses of aboveground components and highlight the need for a better understanding of the belowground ecosystem dynamics.
Collapse
Affiliation(s)
- Yonghui Wang
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Chao Wang
- Department of Ecology, College of Urban and Environmental Sciences, Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, China
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing, China
| | - Fei Ren
- Key Laboratory of Restoration Ecology for Cold Regions in Qinghai Province, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
| | - Xin Jing
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu, China
| | - Wenhong Ma
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Jin-Sheng He
- Department of Ecology, College of Urban and Environmental Sciences, Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, China
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu, China
| | - Lin Jiang
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
25
|
Wilcox KR, Chen A, Avolio ML, Butler EE, Collins S, Fisher R, Keenan T, Kiang NY, Knapp AK, Koerner SE, Kueppers L, Liang G, Lieungh E, Loik M, Luo Y, Poulter B, Reich P, Renwick K, Smith MD, Walker A, Weng E, Komatsu KJ. Accounting for herbaceous communities in process-based models will advance our understanding of "grassy" ecosystems. GLOBAL CHANGE BIOLOGY 2023; 29:6453-6477. [PMID: 37814910 DOI: 10.1111/gcb.16950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/01/2023] [Indexed: 10/11/2023]
Abstract
Grassland and other herbaceous communities cover significant portions of Earth's terrestrial surface and provide many critical services, such as carbon sequestration, wildlife habitat, and food production. Forecasts of global change impacts on these services will require predictive tools, such as process-based dynamic vegetation models. Yet, model representation of herbaceous communities and ecosystems lags substantially behind that of tree communities and forests. The limited representation of herbaceous communities within models arises from two important knowledge gaps: first, our empirical understanding of the principles governing herbaceous vegetation dynamics is either incomplete or does not provide mechanistic information necessary to drive herbaceous community processes with models; second, current model structure and parameterization of grass and other herbaceous plant functional types limits the ability of models to predict outcomes of competition and growth for herbaceous vegetation. In this review, we provide direction for addressing these gaps by: (1) presenting a brief history of how vegetation dynamics have been developed and incorporated into earth system models, (2) reporting on a model simulation activity to evaluate current model capability to represent herbaceous vegetation dynamics and ecosystem function, and (3) detailing several ecological properties and phenomena that should be a focus for both empiricists and modelers to improve representation of herbaceous vegetation in models. Together, empiricists and modelers can improve representation of herbaceous ecosystem processes within models. In so doing, we will greatly enhance our ability to forecast future states of the earth system, which is of high importance given the rapid rate of environmental change on our planet.
Collapse
Affiliation(s)
- Kevin R Wilcox
- University of North Carolina Greensboro, Greensboro, North Carolina, USA
- University of Wyoming, Laramie, Wyoming, USA
| | - Anping Chen
- Department of Biology and Graduate Degree Program in Ecology, Colorado State University, Fort Collins, Colorado, USA
| | - Meghan L Avolio
- Earth and Planetary Sciences, Johns Hopkins University, Baltimore, Maryland, USA
| | - Ethan E Butler
- Department of Forest Resources, University of Minnesota, St. Paul, Minnesota, USA
| | - Scott Collins
- Department of Biology, University of New Mexico, Albuquerque, New Mexico, USA
| | - Rosie Fisher
- CICERO Centre for International Cimate Research, Forskningsparken, Oslo, Norway
| | - Trevor Keenan
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Nancy Y Kiang
- NASA Goddard Institute for Space Studies, New York, New York, USA
| | - Alan K Knapp
- Department of Biology and Graduate Degree Program in Ecology, Colorado State University, Fort Collins, Colorado, USA
| | - Sally E Koerner
- University of North Carolina Greensboro, Greensboro, North Carolina, USA
| | - Lara Kueppers
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Guopeng Liang
- Department of Forest Resources, University of Minnesota, St. Paul, Minnesota, USA
| | - Eva Lieungh
- Natural History Museum, University of Oslo, Oslo, Norway
| | - Michael Loik
- Department of Environmental Studies, University of California, Santa Cruz, California, USA
| | - Yiqi Luo
- School of Integrative Plant Science, Cornell University, Ithaca, New York, USA
| | - Ben Poulter
- Biospheric Sciences Lab, NASA GSFC, Greenbelt, Maryland, USA
| | - Peter Reich
- Department of Forest Resources, University of Minnesota, St. Paul, Minnesota, USA
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| | | | - Melinda D Smith
- Department of Biology and Graduate Degree Program in Ecology, Colorado State University, Fort Collins, Colorado, USA
| | - Anthony Walker
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Ensheng Weng
- NASA Goddard Institute for Space Studies, New York, New York, USA
- Center for Climate Systems Research, Columbia University, New York, New York, USA
| | - Kimberly J Komatsu
- University of North Carolina Greensboro, Greensboro, North Carolina, USA
| |
Collapse
|
26
|
Xu J, Lu M, Guo Y, Zhang L, Chen Y, Liu Z, Zhou M, Lin W, Pu W, Ma Z, Song Y, Pan Y, Liu L, Ji D. Summertime Urban Ammonia Emissions May Be Substantially Underestimated in Beijing, China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:13124-13135. [PMID: 37616592 DOI: 10.1021/acs.est.3c05266] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Ammonia (NH3) is critical to the nitrogen cycle and PM2.5 formation, yet a great deal of uncertainty exists in its urban emission quantifications. Model-underestimated NH3 concentrations have been reported for cities, yet few studies have provided an explanation. Here, we explore reasons for severe WRF-Chem model underestimations of NH3 concentrations in Beijing in August 2018, including simulated gas-particle partitioning, meteorology, regional transport, and emissions, using spatially refined (3 km resolution) NH3 emission estimates in the agricultural sector for Beijing-Tianjin-Hebei and in the traffic sector for Beijing. We find that simulated NH3 concentrations are significantly lower than ground-based and satellite observations during August in Beijing, while wintertime underestimations are much more moderate. Further analyses and sensitivity experiments show that such discrepancies cannot be attributed to factors other than biases in NH3 emissions. Using site measurements as constraints, we estimate that both agricultural and non-agricultural NH3 emission totals in Beijing shall increase by ∼5 times to match the observations. Future research should be performed to allocate underestimations to urban fertilizer, power, traffic, or residential sources. Dense and regular urban NH3 observations are necessary to constrain and validate bottom-up inventories and NHx simulation.
Collapse
Affiliation(s)
- Jiayu Xu
- Laboratory for Climate and Ocean-Atmosphere Studies, Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing 100871, China
| | - Mengran Lu
- Laboratory for Climate and Ocean-Atmosphere Studies, Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing 100871, China
- Department of Ecology and Environment of Shanxi Province, Taiyuan 030024, China
| | - Yixin Guo
- Laboratory for Climate and Ocean-Atmosphere Studies, Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing 100871, China
| | - Lin Zhang
- Laboratory for Climate and Ocean-Atmosphere Studies, Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing 100871, China
| | - Youfan Chen
- Sichuan Academy of Environmental Policy and Planning, Chengdu 610041, China
| | - Zehui Liu
- Laboratory for Climate and Ocean-Atmosphere Studies, Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing 100871, China
| | - Mi Zhou
- Laboratory for Climate and Ocean-Atmosphere Studies, Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing 100871, China
- Princeton School of Public and International Affairs, Princeton University, Princeton, New Jersey 08540, United States
| | - Weili Lin
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing 100081, China
| | - WeiWei Pu
- Institute of Urban Meteorology, China Meteorological Administration, Beijing 100089, China
| | - Zhiqiang Ma
- Institute of Urban Meteorology, China Meteorological Administration, Beijing 100089, China
| | - Yu Song
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Yuepeng Pan
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Liu
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Dongsheng Ji
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| |
Collapse
|
27
|
Yang G, Zhang M, Jin G. Effects of nitrogen addition on species composition and diversity of early spring herbs in a Korean pine plantation. Ecol Evol 2023; 13:e10498. [PMID: 37674646 PMCID: PMC10480043 DOI: 10.1002/ece3.10498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 08/17/2023] [Accepted: 08/22/2023] [Indexed: 09/08/2023] Open
Abstract
Under the background of global nitrogen deposition, temperate forest ecosystems are suffering increasing threats, and species diversity is gradually decreasing. In this study, nitrogen addition experiments were conducted on Korean pine (Pinus koraiensis) plantations in Northeast China to explore the effect of long-term nitrogen addition on herb species diversity to test the following hypothesis: long-term nitrogen addition further reduced plant species diversity by affecting plant growth, which may be due to soil acidification caused by excessive nitrogen addition. Experimental nitrogen addition was conducted from 2014 to 2021, and the nitrogen treatment levels were as follows: N0 (control treatment, 0/(kg N ha-1 year-1)), N20 (low nitrogen treatment, 20/(kg N ha-1 year-1)), N40 (medium nitrogen treatment, 40/(kg N ha-1 year-1)) and N80 (high nitrogen treatment, 80/(kg N ha-1 year-1)). A herb community survey was conducted in the region from 2015 to 2021. The results showed that long-term nitrogen addition decreased soil pH, changed the species and composition of herbaceous plants, and decreased the species diversity of understory herbaceous plants. With the increase in nitrogen application years, middle- and high-nitrogen treatments significantly reduced the diversity of early-spring flowering herbs and early-spring foliating herbs, and their diversity decreased with the decrease in soil pH, indicating that soil acidification caused by long-term nitrogen addition may lead to the decrease of plant diversity. However, for early-spring growing herbs, adequate nitrogen addition may promote their growth. Our results show that plants have evolved different life-history strategies based on their adaptation mechanisms to the environment, and different life-history strategies have different responses to long-term nitrogen addition. However, for most plants, long-term nitrogen application will have a negative impact on the growth and diversity of herbs in temperate forests.
Collapse
Affiliation(s)
- Guanghui Yang
- Center for Ecological ResearchNortheast Forestry UniversityHarbinChina
| | - Mengmeng Zhang
- Center for Ecological ResearchNortheast Forestry UniversityHarbinChina
- College of Life ScienceHeilongjiang UniversityHarbinChina
| | - Guangze Jin
- Center for Ecological ResearchNortheast Forestry UniversityHarbinChina
- Key Laboratory of Sustainable Forest Ecosystem Management‐Ministry of EducationNortheast Forestry UniversityHarbinChina
- Northeast Asia Biodiversity Research CenterNortheast Forestry UniversityHarbinChina
| |
Collapse
|
28
|
Bhattarai H, Wu G, Zheng X, Zhu H, Gao S, Zhang YL, Widory D, Ram K, Chen X, Wan X, Pei Q, Pan Y, Kang S, Cong Z. Wildfire-Derived Nitrogen Aerosols Threaten the Fragile Ecosystem in Himalayas and Tibetan Plateau. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37311057 DOI: 10.1021/acs.est.3c01541] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Himalayas and Tibetan Plateau (HTP) is important for global biodiversity and regional sustainable development. While numerous studies have revealed that the ecosystem in this unique and pristine region is changing, their exact causes are still poorly understood. Here, we present a year-round (23 March 2017 to 19 March 2018) ground- and satellite-based atmospheric observation at the Qomolangma monitoring station (QOMS, 4276 m a.s.l.). Based on a comprehensive chemical and stable isotope (15N) analysis of nitrogen compounds and satellite observations, we provide unequivocal evidence that wildfire emissions in South Asia can come across the Himalayas and threaten the HTP's ecosystem. Such wildfire episodes, mostly occurring in spring (March-April), not only substantially enhanced the aerosol nitrogen concentration but also altered its composition (i.e., rendering it more bioavailable). We estimated a nitrogen deposition flux at QOMS of ∼10 kg N ha-1 yr-1, which is approximately twice the lower value of the critical load range reported for the Alpine ecosystem. Such adverse impact is particularly concerning, given the anticipated increase of wildfire activities in the future under climate change.
Collapse
Affiliation(s)
- Hemraj Bhattarai
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Guangming Wu
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Xiaoyan Zheng
- China National Environmental Monitoring Center, Beijing 100012, China
| | - Hongxia Zhu
- China National Environmental Monitoring Center, Beijing 100012, China
| | - Shaopeng Gao
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Yan-Lin Zhang
- Yale-NUIST Center on Atmospheric Environment, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - David Widory
- Geotop/Université du Québec à; Montréal (UQAM), 201 Ave Président Kennedy, Montréal QC H2X 3Y7, Canada
| | - Kirpa Ram
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi 221005, India
| | - Xintong Chen
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, CAS, Lanzhou 730000, China
| | - Xin Wan
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Qiaomin Pei
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Yuepeng Pan
- LAPC, Institute of Atmospheric Physics, CAS, Beijing 100029, China
| | - Shichang Kang
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, CAS, Lanzhou 730000, China
| | - Zhiyuan Cong
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences (CAS), Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| |
Collapse
|
29
|
Wang Y, Yao Z, Wang Y, Yan G, Janz B, Wang X, Zhan Y, Wang R, Zheng X, Zhou M, Zhu B, Kiese R, Wolf B, Butterbach-Bahl K. Characteristics of annual NH 3 emissions from a conventional vegetable field under various nitrogen management strategies. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 342:118276. [PMID: 37276627 DOI: 10.1016/j.jenvman.2023.118276] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 05/21/2023] [Accepted: 05/25/2023] [Indexed: 06/07/2023]
Abstract
High N-fertilizer applications to conventional vegetable production systems are associated with substantial emissions of NH3, a key substance that triggers haze pollution and ecosystem eutrophication and thus, causing considerable damage to human and ecosystem health. While N fertilization effects on NH3 volatilization from cereal crops have been relatively well studied, little is known about the magnitude and yield-scaled emissions of NH3 from vegetable systems. Here we report on a 2-year field study investigating the effect of various types and rates of fertilizer application on NH3 emissions and crop yields for a pepper-lettuce-cabbage rotation system in southwest China. Our results show that both NH3 emissions and direct emission factors of applied N varied largely across seasons over the 2-year period, highlighting the importance of measurements spanning entire cropping years. Across all treatments varying from solely applying urea fertilizers to only using organic manures, annual NH3 emissions ranged from 0.64 to 92.4 kg N ha-1 yr-1 (or 0.07-6.84 g N kg-1 dry matter), equivalent to 0.05-5.99% of the applied N. At annual scale, NH3 emissions correlated positively with soil δ15N values, indicating that soil δ15N may be used as an indicator for NH3 losses. NH3 emissions from treatments fertilized partially or fully with manure were significantly lower compared with the urea fertilized treatment, while vegetable yields remained unaffected. Moreover, full substitution of urea by manure as compared to the partial substitution further reduced the yield-scaled annual NH3 emissions by 79.0-92.4%. Across all vegetable seasons, there is a significant negative relationship between yield-scaled NH3 emissions and crop N use efficiency. Overall, our results suggest that substituting urea by manure and reducing total N inputs by 30-50% allows to reduce NH3 emissions without jeopardizing yields. Such a change in management provides a feasible option to achieve environmental sustainability and food security in conventional vegetable systems.
Collapse
Affiliation(s)
- Yan Wang
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, PR China; College of Earth and Planetary Science, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Zhisheng Yao
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, PR China; College of Earth and Planetary Science, University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| | - Yanqiang Wang
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, PR China
| | - Guangxuan Yan
- Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, School of Environment, Henan Normal University, Xinxiang, 453007, PR China
| | - Baldur Janz
- Institute for Meteorology and Climate Research, Atmospheric Environmental Research, Karlsruhe Institute of Technology, Garmisch-Partenkirchen, 82467, Germany
| | - Xiaogang Wang
- Sichuan Institute of Nuclear Geological Survey, Chengdu, 610061, PR China
| | - Yang Zhan
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, PR China; College of Earth and Planetary Science, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Rui Wang
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, PR China
| | - Xunhua Zheng
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, PR China; College of Earth and Planetary Science, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Minghua Zhou
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, PR China
| | - Bo Zhu
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, PR China
| | - Ralf Kiese
- Institute for Meteorology and Climate Research, Atmospheric Environmental Research, Karlsruhe Institute of Technology, Garmisch-Partenkirchen, 82467, Germany
| | - Benjamin Wolf
- Institute for Meteorology and Climate Research, Atmospheric Environmental Research, Karlsruhe Institute of Technology, Garmisch-Partenkirchen, 82467, Germany
| | - Klaus Butterbach-Bahl
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, PR China; Institute for Meteorology and Climate Research, Atmospheric Environmental Research, Karlsruhe Institute of Technology, Garmisch-Partenkirchen, 82467, Germany; Pioneer Center Land-CRAFT, Department of Agroecology, Aarhus University, 8000, Aarhus C, Denmark
| |
Collapse
|
30
|
Zhang LZ, He W, Huang FY, He W, Zhou P, Chen C, Rensing C, Brandt KK, He J, Liu F, Zhao Y, Guo H. Response of microbial taxonomic and nitrogen functional attributes to elevated nitrate in suburban groundwater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162524. [PMID: 36868285 DOI: 10.1016/j.scitotenv.2023.162524] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 02/05/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Anthropogenic nitrogen (N) input has led to elevated levels of nitrate nitrogen (NO3--N) in the groundwater. However, insights into the responses of the microbial community and its N metabolic functionality to elevated NO3--N in suburban groundwater are still limited. Here, we explored the microbial taxonomy, N metabolic attributes, and their responses to NO3--N pollution in groundwaters from Chaobai River catchment (CR) and Huai River catchment (HR) in Beijing, China. Results showed that average NO3--N and NH4+-N concentrations in CR groundwater were 1.7 and 3.0 folds of those in HR. NO3--N was the dominant nitrogen specie both in HR and CR groundwater (over 80 %). Significantly different structures and compositions of the microbial communities and N cycling gene profiles were found between CR groundwater and HR groundwater (p < 0.05), with CR groundwater harboring significantly lower microbial richness and abundance of N metabolic genes. However, denitrification was the dominant microbial N cycling process in both CR and HR groundwater. Strong associations among NO3--N, NH4+-N, microbial taxonomic, and N functional attributes were found (p < 0.05), suggesting denitrifiers and Candidatus_Brocadia might serve as potential featured biomarkers for the elevated NO3--N and NH4+-N concentration in groundwater. Path analysis further revealed the significant effect of NO3--N on the overall microbial N functionality and microbial denitrification (p < 0.05). Collectively, our results provide field evidence that elevated levels of NO3--N and NH4+-N under different hydrogeologic conditions had a significant effect on the microbial taxonomic and N functional attributes in groundwater, with potential implications for improving sustainable N management and risk assessment of groundwater.
Collapse
Affiliation(s)
- Ling-Zhi Zhang
- School of Water Resources and Environment & Key Laboratory of Groundwater Conservation of MWR, China University of Geosciences (Beijing), Beijing 100083, China
| | - Wei He
- Beijing Municipal Research Institute of Eco-Environmental Protection, Beijing 100037, China
| | - Fu-Yi Huang
- Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
| | - Wei He
- School of Water Resources and Environment & Key Laboratory of Groundwater Conservation of MWR, China University of Geosciences (Beijing), Beijing 100083, China
| | - Pengpeng Zhou
- School of Water Resources and Environment & Key Laboratory of Groundwater Conservation of MWR, China University of Geosciences (Beijing), Beijing 100083, China
| | - Cuibai Chen
- School of Water Resources and Environment & Key Laboratory of Groundwater Conservation of MWR, China University of Geosciences (Beijing), Beijing 100083, China
| | - Christopher Rensing
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Kristian Koefoed Brandt
- Department of Plant and Environmental Science, Faculty of Science, University of Copenhagen, Frederiksberg 1871, Denmark; Sino-Danish Center for Education and Research, Beijing, China
| | - Jiangtao He
- School of Water Resources and Environment & Key Laboratory of Groundwater Conservation of MWR, China University of Geosciences (Beijing), Beijing 100083, China
| | - Fei Liu
- School of Water Resources and Environment & Key Laboratory of Groundwater Conservation of MWR, China University of Geosciences (Beijing), Beijing 100083, China
| | - Yi Zhao
- School of Water Resources and Environment & Key Laboratory of Groundwater Conservation of MWR, China University of Geosciences (Beijing), Beijing 100083, China.
| | - Huaming Guo
- School of Water Resources and Environment & Key Laboratory of Groundwater Conservation of MWR, China University of Geosciences (Beijing), Beijing 100083, China.
| |
Collapse
|
31
|
Zhang Y, Ma X, Tang A, Fang Y, Misselbrook T, Liu X. Source Apportionment of Atmospheric Ammonia at 16 Sites in China Using a Bayesian Isotope Mixing Model Based on δ 15N-NH x Signatures. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:6599-6608. [PMID: 37039455 DOI: 10.1021/acs.est.2c09796] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Reducing atmospheric ammonia (NH3) emissions is critical to mitigating poor air quality. However, the contributions of major agricultural and non-agricultural source emissions to NH3 at receptor sites remain uncertain in many regions, hindering the assessment and implementation of effective NH3 reduction strategies. This study conducted simultaneous measurements of the monthly concentrations and stable nitrogen isotopes of NHx (gaseous NH3 plus particulate NH4+) at 16 sites across China. Ambient NHx concentrations averaged 21.7 ± 19.6 μg m-3 at rural sites, slightly higher than those at urban (19.2 ± 6.0 μg m-3) and three times of those at background (7.0 ± 6.9 μg m-3) sites. Based on revised δ15N values of the initial NH3, source apportionment results indicated that non-agricultural sources (traffic and waste) and agricultural sources (fertilizer and livestock) contributed 54 and 46% to NH3 at urban sites, 51 and 49% at rural sites, and 61 and 39% at background sites, respectively. Non-agricultural sources contributed more to NH3 at rural and background sites in cold than warm seasons, arising from traffic and waste, but were similar across seasons at urban sites. We concluded that non-agricultural sources need to be addressed when reducing ambient NH3 across China, even in rural regions.
Collapse
Affiliation(s)
- Yangyang Zhang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, Beijing 100193, China
| | - Xin Ma
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, Beijing 100193, China
| | - Aohan Tang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, Beijing 100193, China
| | - Yunting Fang
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110164, China
| | | | - Xuejun Liu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, Beijing 100193, China
| |
Collapse
|
32
|
Garces KR, Bell-Dereske L, Rudgers JA, Emery SM. Nitrogen addition and fungal symbiosis alter early dune plant succession. Oecologia 2023; 201:1067-1077. [PMID: 36941448 PMCID: PMC10027266 DOI: 10.1007/s00442-023-05362-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 03/12/2023] [Indexed: 03/23/2023]
Abstract
Anthropogenic nitrogen (N) enrichment can have complex effects on plant communities. In low-nutrient, primary successional systems such as sand dunes, N enrichment may alter the trajectory of plant community assembly or the dominance of foundational, ecosystem-engineering plants. Predicting the consequences of N enrichment may be complicated by plant interactions with microbial symbionts because increases in a limiting resource, such as N, could alter the costs and benefits of symbiosis. To evaluate the direct and interactive effects of microbial symbiosis and N addition on plant succession, we established a long-term field experiment in Michigan, USA, manipulating the presence of the symbiotic fungal endophyte Epichloë amarillans in Ammophila breviligulata, a dominant ecosystem-engineering dune grass species. From 2016 to 2020, we implemented N fertilization treatments (control, low, high) in a subset of the long-term experiment. N addition suppressed the accumulation of plant diversity over time mainly by reducing species richness of colonizing plants. However, this suppression occurred only when the endophyte was present in Ammophila. Although Epichloë enhanced Ammophila tiller density over time, N addition did not strongly interact with Epichloë symbiosis to influence vegetative growth of Ammophila. Instead, N addition directly altered plant community composition by increasing the abundance of efficient colonizers, especially C4 grasses. In conclusion, hidden microbial symbionts can alter the consequences of N enrichment on plant primary succession.
Collapse
Affiliation(s)
- Kylea R Garces
- Department of Biology, University of Louisville, 139 Life Sciences Bldg, Louisville, KY, 40292, USA.
| | - Lukas Bell-Dereske
- Laboratory of Environmental Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Jennifer A Rudgers
- Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Sarah M Emery
- Department of Biology, University of Louisville, 139 Life Sciences Bldg, Louisville, KY, 40292, USA
| |
Collapse
|
33
|
Issaka DS, Gross O, Ayilara I, Schabes T, DeMalach N. Density‐dependent and independent mechanisms jointly reduce species performance under nitrogen enrichment. OIKOS 2023. [DOI: 10.1111/oik.09838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Affiliation(s)
- David Sampson Issaka
- Inst. of Plant Sciences and Genetics in Agriculture, The Hebrew Univ. of Jerusalem Rehovot Israel
| | - Or Gross
- Inst. of Plant Sciences and Genetics in Agriculture, The Hebrew Univ. of Jerusalem Rehovot Israel
| | - Itunuoluwa Ayilara
- Inst. of Plant Sciences and Genetics in Agriculture, The Hebrew Univ. of Jerusalem Rehovot Israel
| | - Tal Schabes
- Inst. of Plant Sciences and Genetics in Agriculture, The Hebrew Univ. of Jerusalem Rehovot Israel
| | - Niv DeMalach
- Inst. of Plant Sciences and Genetics in Agriculture, The Hebrew Univ. of Jerusalem Rehovot Israel
| |
Collapse
|
34
|
Granjel RR, Allan E, Godoy O. Nitrogen enrichment and foliar fungal pathogens affect the mechanisms of multispecies plant coexistence. THE NEW PHYTOLOGIST 2023; 237:2332-2346. [PMID: 36527234 DOI: 10.1111/nph.18689] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
Changes in resources (e.g. nitrogen) and enemies (e.g. foliar pathogens) are key drivers of plant diversity and composition. However, their effects have not been connected to the niche and fitness differences that determine multispecies coexistence. Here, we combined a structuralist theoretical approach with a detailed grassland experiment factorially applying nitrogen addition and foliar fungal pathogen suppression to evaluate the joint effect of nitrogen and pathogens on niche and fitness differences, across a gradient from two to six interacting species. Nitrogen addition and pathogen suppression modified species interaction strengths and intrinsic growth rates, leading to reduced multispecies fitness differences. However, contrary to expected, we also observed that they promote stabilising niche differences. Although these modifications did not substantially alter species richness, they predicted major changes in community composition. Indirect interactions between species explained these community changes in smaller assemblages (three and four species) but lost importance in favour of direct pairwise interactions when more species were involved (five and six). Altogether, our work shows that explicitly considering the number of interacting species is critical for better understanding the direct and indirect processes by which nitrogen enrichment and pathogen communities shape coexistence in grasslands.
Collapse
Affiliation(s)
- Rodrigo R Granjel
- Departamento de Biología Vegetal y Ecología, Universidad de Sevilla, 41012, Sevilla, Spain
| | - Eric Allan
- Institute of Plant Sciences, University of Bern, Alterbergrain 21, 3013, Bern, Switzerland
| | - Oscar Godoy
- Departamento de Biología, Instituto Universitario de Investigación Marina (INMAR), Universidad de Cádiz, 11510, Puerto Real, Spain
| |
Collapse
|
35
|
Morphological and physiological responses of critically endangered Acer catalpifolium to nitrogen deposition levels. Glob Ecol Conserv 2023. [DOI: 10.1016/j.gecco.2023.e02431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023] Open
|
36
|
Wang Y, Niu G, Wang R, Rousk K, Li A, Hasi M, Wang C, Xue J, Yang G, Lü X, Jiang Y, Han X, Huang J. Enhanced foliar 15 N enrichment with increasing nitrogen addition rates: Role of plant species and nitrogen compounds. GLOBAL CHANGE BIOLOGY 2023; 29:1591-1605. [PMID: 36515451 DOI: 10.1111/gcb.16555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 05/28/2023]
Abstract
Determining the abundance of N isotope (δ15 N) in natural environments is a simple but powerful method for providing integrated information on the N cycling dynamics and status in an ecosystem under exogenous N inputs. However, whether the input of different N compounds could differently impact plant growth and their 15 N signatures remains unclear. Here, the response of 15 N signatures and growth of three dominant plants (Leymus chinensis, Carex duriuscula, and Thermopsis lanceolata) to the addition of three N compounds (NH4 HCO3 , urea, and NH4 NO3 ) at multiple N addition rates were assessed in a meadow steppe in Inner Mongolia. The three plants showed different initial foliar δ15 N values because of differences in their N acquisition strategies. Particularly, T. lanceolata (N2 -fixing species) showed significantly lower 15 N signatures than L. chinensis (associated with arbuscular mycorrhizal fungi [AMF]) and C. duriuscula (associated with AMF). Moreover, the foliar δ15 N of all three species increased with increasing N addition rates, with a sharp increase above an N addition rate of ~10 g N m-2 year-1 . Foliar δ15 N values were significantly higher when NH4 HCO3 and urea were added than when NH4 NO3 was added, suggesting that adding weakly acidifying N compounds could result in a more open N cycle. Overall, our results imply that assessing the N transformation processes in the context of increasing global N deposition necessitates the consideration of N deposition rates, forms of the deposited N compounds, and N utilization strategies of the co-existing plant species in the ecosystem.
Collapse
Affiliation(s)
- Yinliu Wang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Guoxiang Niu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Ruzhen Wang
- School of Life Sciences, Hebei University, Baoding, China
| | - Kathrin Rousk
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Ang Li
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Sciences, Beijing, China
| | - Muqier Hasi
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| | - Changhui Wang
- Grassland College, Shanxi Agriculture University, Taigu, China
| | - Jianguo Xue
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Sciences, Beijing, China
| | - Guojiao Yang
- Erguna Forest-Steppe Ecotone Research Station, CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- College of Ecology and Environment, Hainan University, Haikou, China
| | - Xiaotao Lü
- Erguna Forest-Steppe Ecotone Research Station, CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Yong Jiang
- School of Life Sciences, Hebei University, Baoding, China
| | - Xingguo Han
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jianhui Huang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
37
|
Ecological Risks from Atmospheric Deposition of Nitrogen and Sulphur in Jack Pine forests of Northwestern Canada. NITROGEN 2023. [DOI: 10.3390/nitrogen4010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
Abstract
Chronic elevated nitrogen (N) deposition can have adverse effects on terrestrial ecosystems. For large areas of northern Canada distant from emissions sources, long-range atmospheric transport of N may impact plant species diversity, even at low deposition levels. The objective of this study was to establish plant species community thresholds for N deposition under multiple environmental gradients using gradient forest analysis. Plant species abundance data for 297 Jack pine (Pinus banksiana Lamb.)-dominant forest plots across Alberta and Saskatchewan, Canada, were evaluated against 43 bioclimatic and deposition variables. Bioclimatic variables were overwhelmingly the most important drivers of community thresholds. Nonetheless, dry N oxide (DNO) and dry N dioxide deposition inferred a total deposited N (TDN) community threshold of 1.4–2.1 kg N ha−1 yr−1. This range was predominantly associated with changes in several lichen species, including Cladina mitis, Vulpicida pinastri, Evernia mesomorpha and Lecanora circumborealis, some of which are known bioindicators of N deposition. A secondary DNO threshold appeared to be driving changes in several vascular species and was equivalent to 2.45–3.15 kg N ha−1 yr−1 on the TDN gradient. These results suggest that in low deposition ‘background’ regions a biodiversity-based empirical critical load of 1.4–3.15 kg N ha−1 yr−1 will protect lichen communities and other N-sensitive species in Jack pine forests across Northwestern Canada. Nitrogen deposition above the critical load may lead to adverse effects on plant species biodiversity within these forests.
Collapse
|
38
|
Wang R, Wang Y, Zhang Z, Pan H, Lan L, Huang R, Deng X, Peng Y. Effects of Exponential N Application on Soil Exchangeable Base Cations and the Growth and Nutrient Contents of Clonal Chinese Fir Seedlings. PLANTS (BASEL, SWITZERLAND) 2023; 12:851. [PMID: 36840198 PMCID: PMC9965595 DOI: 10.3390/plants12040851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 06/18/2023]
Abstract
Nitrogen (N) is an essential macronutrient for plant function and growth and a key component of amino acids, which form the building blocks of plant proteins and enzymes. However, misuse and overuse of N can have many negative impacts on the ecosystem, such as reducing soil exchangeable base cations (BCs) and causing soil acidification. In this research, we evaluated clonal Chinese fir (Cunninghamia lanceolata (Lamb.) Hook) seedlings grown with exponentially increasing N fertilization (0, 0.5, 1, 2 g N seedling-1) for a 100-day trial in a greenhouse. The growth of seedlings, their nutrient contents, and soil exchangeable cations were measured. We found that N addition significantly increased plant growth and N content but decreased phosphorous (P) and potassium (K) contents in plant seedlings. The high nitrogen (2 g N seedling-1) treated seedlings showed a negative effect on growth, indicating that excessive nitrogen application caused damage to the seedlings. Soil pH, soil exchangeable base cations (BCs), soil total exchangeable bases (TEB), soil cation exchange capacity (CEC), and soil base saturation (BS) significantly decreased following N application. Our results implied that exponential fertilization resulted in soil acidification and degradation of soil capacity for supplying nutrient cations to the soil solution for plant uptake. In addition, the analysis of plants and BCs revealed that Na+ is an important base cation for BCs and for plant growth in nitrogen-induced acidified soils. Our results provide scientific insights for nitrogen application in seedling cultivation in soils and for further studies on the relationship between BCs and plant growth to result in high-quality seedlings while minimizing fertilizer input and mitigating potential soil pollution.
Collapse
Affiliation(s)
- Renjie Wang
- Guangxi Forestry Research Institute, Nanning 530002, China
| | - Yong Wang
- Guangxi Forestry Research Institute, Nanning 530002, China
- School of Automation, Central South University of Forestry and Technology, Changsha 410004, China
| | - Zeyao Zhang
- Huangmian State-Owned Forest Farm in Guangxi, Liuzhou 545000, China
| | - Huibiao Pan
- Huangmian State-Owned Forest Farm in Guangxi, Liuzhou 545000, China
| | - Liufeng Lan
- Huangmian State-Owned Forest Farm in Guangxi, Liuzhou 545000, China
| | - Ronglin Huang
- Guangxi Forestry Research Institute, Nanning 530002, China
| | - Xiaojun Deng
- Guangxi Forestry Research Institute, Nanning 530002, China
- School of Automation, Central South University of Forestry and Technology, Changsha 410004, China
| | - Yuanying Peng
- College of Arts and Sciences, Lewis University, Romeoville, IL 60446, USA
| |
Collapse
|
39
|
Zhao W, Cao X, Li J, Xie Z, Sun Y, Peng Y. Novel Weighting Method for Evaluating Forest Soil Fertility Index: A Structural Equation Model. PLANTS (BASEL, SWITZERLAND) 2023; 12:410. [PMID: 36679123 PMCID: PMC9867313 DOI: 10.3390/plants12020410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Understanding nutrient quantity and quality in forest soils is important for sustainable management of forest resources and maintaining forest ecosystem services. In this study, six soil nutrient indicators, including soil organic matter (SOM), total nitrogen (TN), total phosphorus (TP), available nitrogen (AN), available phosphorus (AP), and available potassium (AK) were measured in five different aged stands of Chinese fir forests in subtropical China. A structural equation model (SEM) was developed based on these soil nutrients indicators in order to better evaluate the soil fertility index (SFI) in these studied forests. The results show that soil nutrient contents changed with the soil depth in different age groups. The SOM decreased in a specific order: over mature > mature > near mature > middle > young stands. The TN content of the soil gradually decreased with increased soil depth throughout all age groups. The SEM indicated that the TN had the highest weight of 0.4154, while the TP had the lowest weight at 0.1991 for estimating the SFI. The weights of other indicators (AN, SOM, AP, and AK) ranged 0.2138−0.3855 in our study. The established SEM satisfied the fitness reference values and was able to accurately describe the forest soil nutrient status through the SFI. The overall SFI values were significantly higher in over mature stands than in young-aged stands and in topsoil than in deeper soil in all examined forests. Soil TN, AP, and AK were the most important nutrient indicators to the evaluation of the SFI in the study sites. The results confirmed that the SEM was suitable to estimate the weights of the SFI and better describe the soil nutrient status in forests. Our research provides an innovative approach to assess a soil nutrient status and soil fertility and provides a scientific basis for accurate implementation of soil nutrient assessment in forest ecosystems.
Collapse
Affiliation(s)
- Wenfei Zhao
- Faculty of Forestry, Central South University of Forestry and Technology, Changsha 410004, China
| | - Xiaoyu Cao
- Faculty of Forestry, Central South University of Forestry and Technology, Changsha 410004, China
- Key Laboratory of State Forestry Administration on Forest Resources Management and Monitoring in Southern Area, Changsha 410004, China
| | - Jiping Li
- Faculty of Forestry, Central South University of Forestry and Technology, Changsha 410004, China
- Key Laboratory of State Forestry Administration on Forest Resources Management and Monitoring in Southern Area, Changsha 410004, China
| | - Zhengchang Xie
- Faculty of Forestry, Central South University of Forestry and Technology, Changsha 410004, China
| | - Yaping Sun
- Faculty of Forestry, Central South University of Forestry and Technology, Changsha 410004, China
| | - Yuanying Peng
- College of Arts and Sciences, Lewis University, Romeoville, IL 60446, USA
| |
Collapse
|
40
|
McDonough AM, Watmough SA. Interactive effects of precipitation and above canopy nitrogen deposition on understorey vascular plants in a jack pine (Pinus banksiana) forest in northern Alberta, Canada. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 855:158708. [PMID: 36099949 DOI: 10.1016/j.scitotenv.2022.158708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 09/08/2022] [Accepted: 09/08/2022] [Indexed: 06/15/2023]
Abstract
Elevated nitrogen (N) deposition in the bituminous sands region of northern Alberta, Canada is localized but expected to increase over time. Here we seek to determine the effects of above canopy N deposition on understorey vascular plants in a jack pine (Pinus banksiana) stand in a five-year experimental study. Aqueous N (ammonium nitrate) was applied four times annually (May through October) via helicopter above the canopy between 2011 and 2015 across a narrow but environmentally relevant N deposition gradient (0, 5, 10, 15, 20 and 25 kg N ha-1 yr-1). Changes in vascular plant species richness, diversity and total vascular cover were best explained by throughfall water flux, but the positive responses to precipitation decreased with increasing N application. Arctostaphylos uva-ursi and Maianthemum canadense showed positive cover increases in wet years; however, the positive cover expansion at ≥5 kg N ha-1 yr-1 treatments was suppressed relative to controls. Total cover expansion was muted in low precipitation years in treatments ≥10 kg N ha-1 yr-1. In contrast, Vaccinium vitis-idaea cover changes ≥10 kg N ha-1 yr-1 were consistently negative. There were no differences in soil net N mineralization rates, plant foliar N or NO3- leaching among treatments. We conjecture the extensive moss/lichen layer of the forest floor that accumulates most of incoming N in throughfall allows them to outcompete vascular plants for water during higher precipitation years, effectively reducing vascular cover expansion relative to controls. This work suggests the response of vascular plants in xeric jack pine ecosystems may interact with climate and these interactions should be considered in risk assessment studies.
Collapse
Affiliation(s)
- Andrew M McDonough
- Ontario Ministry of the Environment, Conservation and Parks, 125 Resources Road, Etobicoke, Ontario MP9 3V6, Canada.
| | - Shaun A Watmough
- School of the Environment, Trent University, 1600 West Bank Drive, Peterborough, Ontario K9J 7B8, Canada
| |
Collapse
|
41
|
Zhang J, Zuo X, Lv P. Effects of Grazing, Extreme Drought, Extreme Rainfall and Nitrogen Addition on Vegetation Characteristics and Productivity of Semiarid Grassland. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:960. [PMID: 36673715 PMCID: PMC9859310 DOI: 10.3390/ijerph20020960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
Grassland use patterns, water and nutrients are the main determinants of ecosystem structure and function in semiarid grasslands. However, few studies have reported how the interactive effects of rainfall changes and nitrogen deposition influence the recovery of semiarid grasslands degraded by grazing. In this study, a simulated grazing, increasing and decreasing rainfall, nitrogen deposition test platform was constructed, and the regulation mechanism of vegetation characteristics and productivity were studied. We found that grazing decreased plant community height (CWMheight) and litter and increased plant density. Increasing rainfall by 60% from May to August (+60%) increased CWMheight; decreasing rainfall by 60% from May to August (-60%) and by 100% from May to June (-60 d) decreased CWMheight and coverage; -60 d, +60% and increasing rainfall by 100% from May to June (+60 d) increased plant density; -60% increased the Simpson dominance index (D index) but decreased the Shannon-Wiener diversity index (H index); -60 d decreased the aboveground biomass (ABG), and -60% increased the underground biomass (BGB) in the 10-60 cm layer. Nitrogen addition decreased species richness and the D index and increased the H index and AGB. Rainfall and soil nitrogen directly affect AGB; grazing and rainfall can also indirectly affect AGB by inducing changes in CWMheight; grazing indirectly affects BGB by affecting plant density and soil nitrogen. The results of this study showed that in the semiarid grassland of Inner Mongolia, grazing in the nongrowing season and grazing prohibition in the growing season can promote grassland recovery, continuous drought in the early growing season will have dramatic impacts on productivity, nitrogen addition has a certain impact on the species composition of vegetation, and the impact on productivity will not appear in the short term.
Collapse
Affiliation(s)
| | - Xiaoan Zuo
- Northwest Institute of Eco-Environmental and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | | |
Collapse
|
42
|
Number of simultaneously acting global change factors affects composition, diversity and productivity of grassland plant communities. Nat Commun 2022; 13:7811. [PMID: 36535931 PMCID: PMC9763497 DOI: 10.1038/s41467-022-35473-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
Plant communities experience impacts of increasing numbers of global change factors (e.g., warming, eutrophication, pollution). Consequently, unpredictable global change effects could arise. However, information about multi-factor effects on plant communities is scarce. To test plant-community responses to multiple global change factors (GCFs), we subjected sown and transplanted-seedling communities to increasing numbers (0, 1, 2, 4, 6) of co-acting GCFs, and assessed effects of individual factors and increasing numbers of GCFs on community composition and productivity. GCF number reduced species diversity and evenness of both community types, whereas none of the individual factors alone affected these measures. In contrast, GCF number positively affected the productivity of the transplanted-seedling community. Our findings show that simultaneously acting GCFs can affect plant communities in ways differing from those expected from single factor effects, which may be due to biological effects, sampling effects, or both. Consequently, exploring the multifactorial nature of global change is crucial to better understand ecological impacts of global change.
Collapse
|
43
|
Rodríguez A, de Vries FT, Manning P, Sebastià MT, Bardgett RD. Soil Abiotic Properties Shape Plant Functional Diversity Across Temperate Grassland Plant Communities. Ecosystems 2022. [DOI: 10.1007/s10021-022-00812-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
44
|
Damgaard C. Selection against ruderals in Danish grasslands over an eight-year period. ECOL INFORM 2022. [DOI: 10.1016/j.ecoinf.2022.101864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
45
|
Jiang X, Song M, Qiao Y, Liu M, Ma L, Fu S. Long-term water use efficiency and non-structural carbohydrates of dominant tree species in response to nitrogen and water additions in a warm temperate forest. FRONTIERS IN PLANT SCIENCE 2022; 13:1025162. [PMID: 36420022 PMCID: PMC9676439 DOI: 10.3389/fpls.2022.1025162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Nitrogen (N) deposition tends to accompany precipitation in temperate forests, and vegetation productivity is mostly controlled by water and N availability. Many studies showed that tree species response to precipitation or N deposition alone influences, while the N deposition and precipitation interactive effects on the traits of tree physiology, especially in non-structural carbohydrates (NSCs) and long-term water use efficiency (WUE), are still unclear. In this study, we measured carbon stable isotope (δ13C), total soluble sugar and starch content, total phenols, and other physiological traits (e.g., leaf C:N:P stoichiometry, lignin, and cellulose content) of two dominant tree species (Quercus variabilis Blume and Liquidambar formosana Hance) under canopy-simulated N deposition and precipitation addition to analyze the changes of long-term WUE and NSC contents and to explain the response strategies of dominant trees to abiotic environmental changes. This study showed that N deposition decreased the root NSC concentrations of L. formosana and the leaf lignin content of Q. variabilis. The increased precipitation showed a negative effect on specific leaf area (SLA) and a positive effect on leaf WUE of Q. variabilis, while it increased the leaf C and N content and decreased the leaf cellulose content of L. formosana. The nitrogen-water interaction reduced the leaf lignin and total phenol content of Q. variabilis and decreased the leaf total phenol content of L. formosana, but it increased the leaf C and N content of L. formosana. Moreover, the response of L. formosana to the nitrogen-water interaction was greater than that of Q. variabilis, highlighting the differences between the two dominant tree species. The results showed that N deposition and precipitation obviously affected the tree growth strategies by affecting the NSC contents and long-term WUE. Canopy-simulated N deposition and precipitation provide a new insight into the effect of the nitrogen-water interaction on tree growth traits in a temperate forest ecosystem, enabling a better prediction of the response of dominant tree species to global change.
Collapse
Affiliation(s)
- Xiyan Jiang
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, College of Geography and Environmental Science, Henan University, Kaifeng, China
| | - Mengya Song
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, College of Geography and Environmental Science, Henan University, Kaifeng, China
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Yaqi Qiao
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, College of Geography and Environmental Science, Henan University, Kaifeng, China
| | - Mengzhou Liu
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, College of Geography and Environmental Science, Henan University, Kaifeng, China
| | - Lei Ma
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, College of Geography and Environmental Science, Henan University, Kaifeng, China
| | - Shenglei Fu
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, College of Geography and Environmental Science, Henan University, Kaifeng, China
- Henan Key Laboratory of Integrated Air Pollution Control and Ecological Security, College of Geography and Environmental Science, Henan University, Kaifeng, China
| |
Collapse
|
46
|
Veldhuis E, Skinkis J, Verheyen K, Smolders A, Smit C. Mycorrhizal fungi improve growth of Juniperus communis but only at sufficiently high soil element concentrations. Basic Appl Ecol 2022. [DOI: 10.1016/j.baae.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
47
|
Xu Q, Yang X, Song J, Ru J, Xia J, Wang S, Wan S, Jiang L. Nitrogen enrichment alters multiple dimensions of grassland functional stability via changing compositional stability. Ecol Lett 2022; 25:2713-2725. [DOI: 10.1111/ele.14119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/07/2022] [Accepted: 09/19/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Qianna Xu
- School of Biological Sciences Georgia Institute of Technology Atlanta Georgia USA
| | - Xian Yang
- State Key Laboratory of Biocontrol, School of Ecology Sun Yat‐sen University Guangzhou P. R. China
| | - Jian Song
- School of Life Sciences, Institute of Life Science and Green Development Hebei University Baoding P. R. China
| | - Jingyi Ru
- School of Life Sciences, Institute of Life Science and Green Development Hebei University Baoding P. R. China
| | - Jianyang Xia
- Research Center for Global Change and Complex Ecosystems, State Key Laboratory of Estuarine and Coastal Research, School of Ecological and Environmental Sciences East China Normal University Shanghai China
| | - Shaopeng Wang
- Institute of Ecology, College of Urban and Environmental Science, and Key Laboratory for Earth Surface Processes of the Ministry of Education Peking University Beijing P. R. China
| | - Shiqiang Wan
- School of Life Sciences, Institute of Life Science and Green Development Hebei University Baoding P. R. China
| | - Lin Jiang
- School of Biological Sciences Georgia Institute of Technology Atlanta Georgia USA
| |
Collapse
|
48
|
Fluctuating insect diversity, abundance and biomass across agricultural landscapes. Sci Rep 2022; 12:17706. [PMID: 36271271 PMCID: PMC9587014 DOI: 10.1038/s41598-022-20989-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 09/21/2022] [Indexed: 01/18/2023] Open
Abstract
Habitat destruction and deterioration of habitat quality caused a severe decline of biodiversity, such as insect diversity. In this study, we analyze insect diversity and biomass across agro-environments. We collected flying insects with 20 malaise traps across a landscape mosaic consisting of organic (eight traps) and conventional (four traps) farmland, as well as across agricultural land that has been recently converted from conventional to organic farming (eight traps). Sampling was conducted over 2 years, in 2019 and 2020, with in total 340 sampling events. We measured the dry weight of the captured organisms and identified species diversity by analyzing Operational Taxonomic Units (OTUs) and Barcode Index Numbers (BINs) via metabarcoding. The results obtained show temporal dynamics. The number of OTUs were always higher than the number of BINs. OTUs and BINs were moderately to highly correlated, while the number of OTUs and BINs were only moderately positively correlated with dry biomass. OTUs and BINs as well as biomass were highest in the recently transformed farmland if compared with pure organic and conventional farmland sites, which showed no significant differences in respect of insect diversity. OTU and BIN numbers but not the OTU/BIN ratio significantly decreased with increasing distance from the nearest forest fringe. The numbers of OTUs, BINs and the OTU/BIN proportion, as well as OTU and BIN/biomass proportions varied strongly over seasons, irrespective of agricultural practice. Based on our findings, we suggest to combine data on insect species richness and biomass measured over a period of time, to derive a largely complete and meaningful assessment of biodiversity for a specific region.
Collapse
|
49
|
Lu Y, Tao Y, Yin B, Li Y, Tucker C, Zhou X, Zhang Y. Nitrogen deposition stimulated winter nitrous oxide emissions from bare sand more than biological soil crusts in cold desert ecosystem. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 841:156779. [PMID: 35724796 DOI: 10.1016/j.scitotenv.2022.156779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
Dryland ecosystems are often nitrogen-limited, and small nitrogen inputs may produce large responses to dryland ecological processes, such as gaseous nitrogen emission. The effect of increased anthropogenic nitrogen deposition on N2O and NO emissions in desert ecosystems is unclear, especially in non-growing seasons when the surface is covered with snow. In this study, nitrogen applications were performed on biological soil crusts (lichen crust and moss crust, bare sand for control) in the Gurbantunggut Desert, Northwest China. We measured the fluxes of N2O and NO and related nitrogen cycle functional gene abundances in winter for three-years period. Nitrogen addition significantly affected N2O emissions and increased the abundances of key functional gene for nitrogen cycle, while it only slightly influenced NO emissions. These effects of nitrogen addition depended on composition of biological soil crusts. For bare sand and lichen crust, nitrogen addition significantly increased N2O emissions, whereas for moss crust, only a negligible effect was observed. Meanwhile, significant differences in nitrogen cycle functional gene abundances were found among different composition of biological soil crusts. Abundance of amoA, narG, and nosZ genes were highly related to N2O and NO emissions. Thus, our results indicate that gaseous nitrogen emissions were generally increased by nitrogen addition through their effects on related functional microbial groups. The effects were regulated by composition of biological soil crusts which can buffer the effects of increasing nitrogen addition during winter.
Collapse
Affiliation(s)
- Yongxing Lu
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, 830011 Urumqi, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Ye Tao
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, 830011 Urumqi, China
| | - Benfeng Yin
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, 830011 Urumqi, China
| | - Yonggang Li
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, 830011 Urumqi, China
| | - Colin Tucker
- USDA Forest Service Northern Research Station, Houghton, MI, United States
| | - Xiaobing Zhou
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, 830011 Urumqi, China.
| | - Yuanming Zhang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, 830011 Urumqi, China.
| |
Collapse
|
50
|
Li W, Gan X, Jiang Y, Cao F, Lü XT, Ceulemans T, Zhao C. Nitrogen effects on grassland biomass production and biodiversity are stronger than those of phosphorus. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 309:119720. [PMID: 35810985 DOI: 10.1016/j.envpol.2022.119720] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/29/2022] [Accepted: 07/02/2022] [Indexed: 06/15/2023]
Abstract
Human-induced nitrogen (N) and phosphorus (P) enrichment have profound effects on grassland net primary production (NPP) and species richness. However, a comprehensive understanding of the relative contribution of N vs. P addition and their interaction on grassland NPP increase and species loss remains elusive. We compiled data from 80 field manipulative studies and conducted a meta-analysis (2107 observations world-wide) to evaluate the individual and combined effects of N and P addition on grassland NPP and species richness. We found that both N addition and P addition significantly enhanced grassland above-ground NPP (ANPP; 33.2% and 14.2%, respectively), but did not affect total NPP, below-ground NPP (BNPP), and species evenness. Species richness significantly decreased with N addition (11.7%; by decreasing forbs) probably due to strong decreased soil pH, but not with P addition. The combined effects of N and P addition were generally stronger than the individual effects of N or P addition, and we found the synergistic effects on ANPP, and additive effects on total NPP, BNPP, species richness, and evenness within the combinations of N and P addition. In addition, N and P addition effects were strongly affected by moderator variables (e.g. climate and fertilization type, duration and amount of fertilizer addition). These results demonstrate a higher relative contribution of N than P addition to grassland NPP increase and species loss, although the effects varied across climate and fertilization types. The existing data also reveals that more long-term (≥5 years) experimental studies that combine N and P and test multifactor effects in different climate zones (particularly in boreal grasslands) are needed to provide a more solid basis for forecasting grassland community response and C sequestration response to nutrient enrichment at the global scale.
Collapse
Affiliation(s)
- Weibin Li
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China.
| | - Xiaoling Gan
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Yuan Jiang
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Fengfeng Cao
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Xiao-Tao Lü
- Erguna Forest-Steppe Ecotone Research Station, CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Tobias Ceulemans
- Plant Conservation and Population Biology, Department of Biology, University of Leuven, Kasteelpark Arenberg 31, B-3001, Leuven, Belgium
| | - Chuanyan Zhao
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| |
Collapse
|