1
|
Alu A, Han X, Ma X, Wu M, Wei Y, Wei X. The role of lysosome in regulated necrosis. Acta Pharm Sin B 2020; 10:1880-1903. [PMID: 33163342 PMCID: PMC7606114 DOI: 10.1016/j.apsb.2020.07.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/29/2020] [Accepted: 04/24/2020] [Indexed: 02/06/2023] Open
Abstract
Lysosome is a ubiquitous acidic organelle fundamental for the turnover of unwanted cellular molecules, particles, and organelles. Currently, the pivotal role of lysosome in regulating cell death is drawing great attention. Over the past decades, we largely focused on how lysosome influences apoptosis and autophagic cell death. However, extensive studies showed that lysosome is also prerequisite for the execution of regulated necrosis (RN). Different types of RN have been uncovered, among which, necroptosis, ferroptosis, and pyroptosis are under the most intensive investigation. It becomes a hot topic nowadays to target RN as a therapeutic intervention, since it is important in many patho/physiological settings and contributing to numerous diseases. It is promising to target lysosome to control the occurrence of RN thus altering the outcomes of diseases. Therefore, we aim to give an introduction about the common factors influencing lysosomal stability and then summarize the current knowledge on the role of lysosome in the execution of RN, especially in that of necroptosis, ferroptosis, and pyroptosis.
Collapse
Affiliation(s)
- Aqu Alu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xuejiao Han
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xuelei Ma
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Min Wu
- Department of Biochemistry and Molecular Biology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
2
|
Tenkorang MAA, Duong P, Cunningham RL. NADPH Oxidase Mediates Membrane Androgen Receptor-Induced Neurodegeneration. Endocrinology 2019; 160:947-963. [PMID: 30811529 PMCID: PMC6435014 DOI: 10.1210/en.2018-01079] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 02/22/2019] [Indexed: 12/21/2022]
Abstract
Oxidative stress (OS) is a common characteristic of several neurodegenerative disorders, including Parkinson disease (PD). PD is more prevalent in men than in women, indicating the possible involvement of androgens. Androgens can have either neuroprotective or neurodamaging effects, depending on the presence of OS. Specifically, in an OS environment, androgens via a membrane-associated androgen receptor (mAR) exacerbate OS-induced damage. To investigate the role of androgens on OS signaling and neurodegeneration, the effects of testosterone and androgen receptor activation on the major OS signaling cascades, the reduced form of NAD phosphate (NADPH) oxidase (NOX)1 and NOX2 and the Gαq/inositol trisphosphate receptor (InsP3R), were examined. To create an OS environment, an immortalized neuronal cell line was exposed to H2O2 prior to cell-permeable/cell-impermeable androgens. Different inhibitors were used to examine the role of G proteins, mAR, InsP3R, and NOX1/2 on OS generation and cell viability. Both testosterone and DHT/3-O-carboxymethyloxime (DHT)-BSA increased H2O2-induced OS and cell death, indicating the involvement of an mAR. Furthermore, classical AR antagonists did not block testosterone's negative effects in an OS environment. Because there are no known antagonists specific for mARs, an AR protein degrader, ASC-J9, was used to block mAR action. ASC-J9 blocked testosterone's negative effects. To determine OS-related signaling mediated by mAR, this study examined NOX1, NOX2, Gαq. NOX1, NOX2, and the Gαq complex with mAR. Only NOX inhibition blocked testosterone-induced cell loss and OS. No effects of blocking either Gαq or G protein activation were observed on testosterone's negative effects. These results indicate that androgen-induced OS is via the mAR-NOX complex and not the mAR-Gαq complex.
Collapse
Affiliation(s)
- Mavis A A Tenkorang
- Department of Physiology and Anatomy, Institute for Healthy Aging, University of North Texas Health Science Center, Fort Worth, Texas
| | - Phong Duong
- Department of Physiology and Anatomy, Institute for Healthy Aging, University of North Texas Health Science Center, Fort Worth, Texas
| | - Rebecca L Cunningham
- Department of Physiology and Anatomy, Institute for Healthy Aging, University of North Texas Health Science Center, Fort Worth, Texas
- Correspondence: Rebecca L. Cunningham, PhD, Department of Physiology and Anatomy, University of North Texas Health Science Center, 3400 Camp Bowie Boulevard, Fort Worth, Texas 76107. E-mail:
| |
Collapse
|
3
|
Reyes-Corral M, Sørensen NM, Thrasivoulou C, Dasgupta P, Ashmore JF, Ahmed A. Differential Free Intracellular Calcium Release by Class II Antiarrhythmics in Cancer Cell Lines. J Pharmacol Exp Ther 2019; 369:152-162. [PMID: 30655298 DOI: 10.1124/jpet.118.254375] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 01/02/2019] [Indexed: 12/31/2022] Open
Abstract
Class II antiarrhythmics or β-blockers are antisympathetic nervous system agents that act by blocking β-adrenoceptors. Despite their common clinical use, little is known about the effects of β-blockers on free intracellular calcium (Ca2+ i), an important cytosolic second messenger and a key regulator of cell function. We investigated the role of four chemical analogs, commonly prescribed β-blockers (atenolol, metoprolol, propranolol, and sotalol), on Ca2+ i release and whole-cell currents in mammalian cancer cells (PC3 prostate cancer and MCF7 breast cancer cell lines). We discovered that only propranolol activated free Ca2+ i release with distinct kinetics, whereas atenolol, metoprolol, and sotalol did not. The propranolol-induced Ca2+ i release was significantly inhibited by the chelation of extracellular calcium with ethylene glycol tetraacetic acid (EGTA) and by dantrolene, an inhibitor of the endoplasmic reticulum (ER) ryanodine receptor channels, and it was completely abolished by 2-aminoethoxydiphenyl borate, an inhibitor of the ER inositol-1,4,5-trisphosphate (IP3) receptor channels. Exhaustion of ER stores with 4-chloro-m-cresol, a ryanodine receptor activator, or thapsigargin, a sarco/ER Ca2+ ATPase inhibitor, precluded the propranolol-induced Ca2+ i release. Finally, preincubation of cells with sotalol or timolol, nonselective blockers of β-adrenoceptors, also reduced the Ca2+ i release activated by propranolol. Our results show that different β-blockers have differential effects on whole-cell currents and free Ca2+ i release and that propranolol activates store-operated Ca2+ i release via a mechanism that involves calcium-induced calcium release and putative downstream transducers such as IP3 The differential action of class II antiarrhythmics on Ca2+ i release may have implications on the pharmacology of these drugs.
Collapse
Affiliation(s)
- Marta Reyes-Corral
- Centre for Stem Cells and Regenerative Medicine (M.R.-C., A.A.) and MRC Centre for Transplantation (P.D.), King's College London, London, United Kingdom; Sophion Bioscience A/S, Ballerup, Denmark (N.M.S.); and Departments of Cell and Developmental Biology (C.T.) and Neuroscience, Physiology and Pharmacology, and The Ear Institute (J.F.A.), University College London, London, United Kingdom
| | - Naja M Sørensen
- Centre for Stem Cells and Regenerative Medicine (M.R.-C., A.A.) and MRC Centre for Transplantation (P.D.), King's College London, London, United Kingdom; Sophion Bioscience A/S, Ballerup, Denmark (N.M.S.); and Departments of Cell and Developmental Biology (C.T.) and Neuroscience, Physiology and Pharmacology, and The Ear Institute (J.F.A.), University College London, London, United Kingdom
| | - Christopher Thrasivoulou
- Centre for Stem Cells and Regenerative Medicine (M.R.-C., A.A.) and MRC Centre for Transplantation (P.D.), King's College London, London, United Kingdom; Sophion Bioscience A/S, Ballerup, Denmark (N.M.S.); and Departments of Cell and Developmental Biology (C.T.) and Neuroscience, Physiology and Pharmacology, and The Ear Institute (J.F.A.), University College London, London, United Kingdom
| | - Prokar Dasgupta
- Centre for Stem Cells and Regenerative Medicine (M.R.-C., A.A.) and MRC Centre for Transplantation (P.D.), King's College London, London, United Kingdom; Sophion Bioscience A/S, Ballerup, Denmark (N.M.S.); and Departments of Cell and Developmental Biology (C.T.) and Neuroscience, Physiology and Pharmacology, and The Ear Institute (J.F.A.), University College London, London, United Kingdom
| | - Jonathan F Ashmore
- Centre for Stem Cells and Regenerative Medicine (M.R.-C., A.A.) and MRC Centre for Transplantation (P.D.), King's College London, London, United Kingdom; Sophion Bioscience A/S, Ballerup, Denmark (N.M.S.); and Departments of Cell and Developmental Biology (C.T.) and Neuroscience, Physiology and Pharmacology, and The Ear Institute (J.F.A.), University College London, London, United Kingdom
| | - Aamir Ahmed
- Centre for Stem Cells and Regenerative Medicine (M.R.-C., A.A.) and MRC Centre for Transplantation (P.D.), King's College London, London, United Kingdom; Sophion Bioscience A/S, Ballerup, Denmark (N.M.S.); and Departments of Cell and Developmental Biology (C.T.) and Neuroscience, Physiology and Pharmacology, and The Ear Institute (J.F.A.), University College London, London, United Kingdom
| |
Collapse
|
4
|
Myeong J, Kwak M, Jeon JP, Hong C, Jeon JH, So I. Close spatio-association of the transient receptor potential canonical 4 (TRPC4) channel with Gαi in TRPC4 activation process. Am J Physiol Cell Physiol 2015; 308:C879-89. [PMID: 25788576 DOI: 10.1152/ajpcell.00374.2014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 03/12/2015] [Indexed: 01/03/2023]
Abstract
TPRC channels are Ca(2+)-permeable, nonselective cation channels that are activated by a wide variety of stimuli, including G protein-coupled receptors (GPCRs). TRPC4 is commonly assumed to be activated by Gq/phospholipase C-coupled receptors. However, the other molecular mechanisms by which Gα proteins regulate TRPC4 remain unclear. Here, we found that Gαi2 regulates TRPC4 activation by direct binding. To investigate this mechanism, we used whole patch clamp and fluorescence resonance energy transfer (FRET). We tagged an isoform of mTRPC4 and G protein with CFP and YFP, respectively, and transiently transfected cells with the FRET pair. The FRET efficiency between TRPC4β-CFP and the constitutively active mutant form of Gαi2 was nearly 15% and was greater than that observed with wild-type Gαi2 (nearly 5%). Gβγ and the TRPC4 channel showed a FRET efficiency lower than 6%. In HEK293 cells transfected with the M2 muscarinic receptor, the application of carbachol increased the FRET efficiency between TRPC4β-CFP and Gαi2(WT)-YFP from 4.7 ± 0.4% (n = 7) to 12.6 ± 1.4% (n = 7). We also found that the TRPC4 channel directly interacts with Gαi2, but not with Gαq, when the channel is open. We analyzed the calcium levels in HEK293 cells expressing the channels and Gαi2 or Gαq using the calcium indicator YC6.1 (Yellow Cameleon 6.1). In response to the muscarinic agonist carbachol, M2-, Gαi2-, and TRPC4-expressing cells showed a prolonged Ca(2+) influx compared with cells expressing only M2. Together, these data suggest that Gαi2 activates the TRPC4 channel by direct binding, which then induces Ca(2+) entry.
Collapse
Affiliation(s)
- JongYun Myeong
- Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea; and
| | - Misun Kwak
- Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea; and
| | - Jae-Pyo Jeon
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Chansik Hong
- Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea; and
| | - Ju-Hong Jeon
- Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea; and
| | - Insuk So
- Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea; and
| |
Collapse
|
5
|
Paez PM, Fulton D, Spreuer V, Handley V, Campagnoni AT. Modulation of canonical transient receptor potential channel 1 in the proliferation of oligodendrocyte precursor cells by the golli products of the myelin basic protein gene. J Neurosci 2011; 31:3625-37. [PMID: 21389218 PMCID: PMC3076512 DOI: 10.1523/jneurosci.4424-10.2011] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Revised: 11/22/2010] [Accepted: 01/03/2011] [Indexed: 12/18/2022] Open
Abstract
Golli proteins, products of the myelin basic protein gene, function as a new type of modulator of intracellular Ca(2+) levels in oligodendrocyte progenitor cells (OPCs). Because of this, they affect a number of Ca(2+)-dependent functions, such as OPC migration and process extension. To examine further the Ca(2+) channels regulated by golli, we studied the store-operated Ca(2+) channels (SOCCs) in OPCs and acute brain slice preparations from golli knock-out and golli-overexpressing mice. Our results showed that pharmacologically induced Ca(2+) release from intracellular stores evoked a significant extracellular Ca(2+) entry after store depletion in OPCs. They also indicated that, under these pharmacological conditions, golli promoted activation of Ca(2+) influx by SOCCs in cultured OPCs as well as in tissue slices. The canonical transient receptor potential family of Ca(2+) channels (TRPCs) has been postulated to be SOCC subunits in oligodendrocytes. Using a small interfering RNA knockdown approach, we provided direct evidence that TRPC1 is involved in store-operated Ca(2+) influx in OPCs and that it is modulated by golli. Furthermore, our data indicated that golli is probably associated with TRPC1 at OPC processes. Additionally, we found that TRPC1 expression is essential for the effects of golli on OPC proliferation. In summary, our data indicate a key role for golli proteins in the regulation of TRPC-mediated Ca(2+) influx, a finding that has profound consequences for the regulation of multiple biological processes in OPCs. More important, we have shown that extracellular Ca(2+) uptake through TRPC1 is an essential component in the mechanism of OPC proliferation.
Collapse
Affiliation(s)
- Pablo M Paez
- Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California at Los Angeles, California 90095-7332, USA.
| | | | | | | | | |
Collapse
|
6
|
Kouzaki H, Iijima K, Kobayashi T, O'Grady SM, Kita H. The danger signal, extracellular ATP, is a sensor for an airborne allergen and triggers IL-33 release and innate Th2-type responses. THE JOURNAL OF IMMUNOLOGY 2011; 186:4375-87. [PMID: 21357533 DOI: 10.4049/jimmunol.1003020] [Citation(s) in RCA: 388] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The molecular mechanisms underlying the initiation of innate and adaptive proallergic Th2-type responses in the airways are not well understood. IL-33 is a new member of the IL-1 family of molecules that is implicated in Th2-type responses. Airway exposure of naive mice to a common environmental aeroallergen, the fungus Alternaria alternata, induces rapid release of IL-33 into the airway lumen, followed by innate Th2-type responses. Biologically active IL-33 is constitutively stored in the nuclei of human airway epithelial cells. Exposing these epithelial cells to A. alternata releases IL-33 extracellularly in vitro. Allergen exposure also induces acute extracellular accumulation of a danger signal, ATP; autocrine ATP sustains increases in intracellular Ca(2+) concentration and releases IL-33 through activation of P2 purinergic receptors. Pharmacological inhibitors of purinergic receptors or deficiency in the P2Y2 gene abrogate IL-33 release and Th2-type responses in the Alternaria-induced airway inflammation model in naive mice, emphasizing the essential roles for ATP and the P2Y(2) receptor. Thus, ATP and purinergic signaling in the respiratory epithelium are critical sensors for airway exposure to airborne allergens, and they may provide novel opportunities to dampen the hypersensitivity response in Th2-type airway diseases such as asthma.
Collapse
Affiliation(s)
- Hideaki Kouzaki
- Division of Allergic Diseases, Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | | | |
Collapse
|
7
|
Zhang ZY, Wang WJ, Pan LJ, Xu Y, Zhang ZM. Measuring Ca2+ influxes of TRPC1-dependent Ca2+ channels in HL-7702 cells with non-invasive micro-test technique. World J Gastroenterol 2009; 15:4150-5. [PMID: 19725149 PMCID: PMC2738811 DOI: 10.3748/wjg.15.4150] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM To explore the possibility of using the Non-invasive Micro-test Technique (NMT) to investigate the role of Transient Receptor Potential Canonical 1 (TRPC1) in regulating Ca(2+) influxes in HL-7702 cells, a normal human liver cell line. METHODS Net Ca(2+) fluxes were measured with NMT, a technology that can obtain dynamic information of specific/selective ionic/molecular activities on material surfaces, non-invasively. The expression levels of TRPC1 were increased by liposomal transfection, whose effectiveness was evaluated by Western-blotting and single cell reverse transcription-polymerase chain reaction. RESULTS Ca(2+) influxes could be elicited by adding 1 mmol/L CaCl(2) to the test solution of HL-7702 cells. They were enhanced by addition of 20 micromol/L noradrenaline and inhibited by 100 micromol/L LaCl(3) (a non-selective Ca(2+) channel blocker); 5 micromol/L nifedipine did not induce any change. Overexpression of TRPC1 caused increased Ca(2+) influx. Five micromoles per liter nifedipine did not inhibit this elevation, whereas 100 micromol/L LaCl(3) did. CONCLUSION In HL-7702 cells, there is a type of TRPC1-dependent Ca(2+) channel, which could be detected via NMT and inhibited by La(3+).
Collapse
Affiliation(s)
- Zhen-Ya Zhang
- Department of General Surgery, Digestive Medical Center, the First Affiliated Hospital, Medical School, Tsinghua University, Beijing 100016, China
| | | | | | | | | |
Collapse
|
8
|
Toh TB, Chen MJ, Armugam A, Peng ZF, Li QT, Jeyaseelan K, Cheung NS. Antioxidants: promising neuroprotection against cardiotoxin-4b-induced cell death which triggers oxidative stress with early calpain activation. Toxicon 2007; 51:964-73. [PMID: 18377942 DOI: 10.1016/j.toxicon.2007.11.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2007] [Revised: 11/20/2007] [Accepted: 11/20/2007] [Indexed: 11/25/2022]
Abstract
Cardiotoxin-4b (CTX-4b), isolated from Naja naja sputatrix venom, shows lethality in several cell types. Employing murine primary cortical neurons, this study was undertaken to investigate the molecular mechanisms of CTX-4b in the induction of neuronal death. CTX-4b induced a dose- and time-dependent neuronal death. Strong induction of calpains as early as 4h post-CTX-4b 75 nM treatment was detected in neurons with negligible caspase 3 activation. For the first time in cultured murine primary cortical neurons, it was noted that CTX-4b-mediated cell death triggered oxidative stress with an increase in reactive oxygen species (ROS) levels, and that application of antioxidants showed effective attenuation of cell death. Taken together, these results indicate that CTX-4b-mediated neuronal death is associated with (i) early calpain activation and (ii) oxidative stress. Most importantly, antioxidants have proved to be a promising therapeutic avenue against CTX-4b-induced neuronal death.
Collapse
Affiliation(s)
- Tan Boon Toh
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore 117597, Singapore
| | | | | | | | | | | | | |
Collapse
|
9
|
Chakraborti S, Das S, Kar P, Ghosh B, Samanta K, Kolley S, Ghosh S, Roy S, Chakraborti T. Calcium signaling phenomena in heart diseases: a perspective. Mol Cell Biochem 2006; 298:1-40. [PMID: 17119849 DOI: 10.1007/s11010-006-9355-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2006] [Accepted: 10/12/2006] [Indexed: 01/24/2023]
Abstract
Ca(2+) is a major intracellular messenger and nature has evolved multiple mechanisms to regulate free intracellular (Ca(2+))(i) level in situ. The Ca(2+) signal inducing contraction in cardiac muscle originates from two sources. Ca(2+) enters the cell through voltage dependent Ca(2+) channels. This Ca(2+) binds to and activates Ca(2+) release channels (ryanodine receptors) of the sarcoplasmic reticulum (SR) through a Ca(2+) induced Ca(2+) release (CICR) process. Entry of Ca(2+) with each contraction requires an equal amount of Ca(2+) extrusion within a single heartbeat to maintain Ca(2+) homeostasis and to ensure relaxation. Cardiac Ca(2+) extrusion mechanisms are mainly contributed by Na(+)/Ca(2+) exchanger and ATP dependent Ca(2+) pump (Ca(2+)-ATPase). These transport systems are important determinants of (Ca(2+))(i) level and cardiac contractility. Altered intracellular Ca(2+) handling importantly contributes to impaired contractility in heart failure. Chronic hyperactivity of the beta-adrenergic signaling pathway results in PKA-hyperphosphorylation of the cardiac RyR/intracellular Ca(2+) release channels. Numerous signaling molecules have been implicated in the development of hypertrophy and failure, including the beta-adrenergic receptor, protein kinase C, Gq, and the down stream effectors such as mitogen activated protein kinases pathways, and the Ca(2+) regulated phosphatase calcineurin. A number of signaling pathways have now been identified that may be key regulators of changes in myocardial structure and function in response to mutations in structural components of the cardiomyocytes. Myocardial structure and signal transduction are now merging into a common field of research that will lead to a more complete understanding of the molecular mechanisms that underlie heart diseases. Recent progress in molecular cardiology makes it possible to envision a new therapeutic approach to heart failure (HF), targeting key molecules involved in intracellular Ca(2+) handling such as RyR, SERCA2a, and PLN. Controlling these molecular functions by different agents have been found to be beneficial in some experimental conditions.
Collapse
Affiliation(s)
- Sajal Chakraborti
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, 741235, West Bengal, India.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Casanova M, Furlán C, Sterin-Borda L, Borda ES. Muscarinic cholinoceptor activation modulates DNA synthesis and CD40 expression in fibroblast cells. ACTA ACUST UNITED AC 2006; 26:293-301. [PMID: 16879495 DOI: 10.1111/j.1474-8673.2006.00369.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
1 The aim of the present work was to examine the role of muscarinic acetylcholine receptors (mAChR) on DNA synthesis and CD40 expression in human fibroblast cells. Neonatal human skin fibroblast cultures were stimulated with carbachol in presence or absence of specific antagonists and the following parameters were measured: identification of mAChR subtypes, DNA synthesis, inositol phosphates (InsP) production and CD40 expression. 2 Human fibroblasts express mAChR with Kd 0.47 +/- 0.11 nm and Bmax 236 +/- 22 fmol mg protein(-1). Carbachol stimulates DNA synthesis, InsP and the expression of CD40. All these effects were inhibited by atropine, mustard hydrochloride (4-DAMP) and pirenzepine but not by AF-DX 116 and tropicamide, indicating that M3 and M1 mAChR are implicated in carbachol action. The relative Ki of the antagonists obtained by competition binding assay was in parallel to the relative potency for blocking both carbachol-stimulated InsP accumulation and DNA synthesis. 3 The intracellular pathway leading to carbachol-induced biological effects involved phospholipase C and calcium/calmodulin, as U-73122 and trifluoroperazine blocked carbachol effects, respectively. Calphostin C, a protein kinase C inhibitor, had no effect, indicating that this enzyme does not participate in the system. 4 These results may contribute to a better understanding of the modulatory role of the parasympathetic muscarinic system on normal human fibroblast function.
Collapse
MESH Headings
- Atropine/pharmacology
- CD40 Antigens/biosynthesis
- Calmodulin/antagonists & inhibitors
- Calmodulin/metabolism
- Carbachol/pharmacology
- Cells, Cultured
- DNA/biosynthesis
- Dose-Response Relationship, Drug
- Enzyme Inhibitors/pharmacology
- Estrenes/pharmacology
- Fibroblasts/drug effects
- Fibroblasts/immunology
- Fibroblasts/metabolism
- Flow Cytometry
- Humans
- Inositol Phosphates/metabolism
- Muscarinic Agonists/pharmacology
- Muscarinic Antagonists/pharmacology
- Pirenzepine/pharmacology
- Pyrrolidinones/pharmacology
- Quinuclidinyl Benzilate
- Radioligand Assay
- Receptor, Muscarinic M1/analysis
- Receptor, Muscarinic M1/drug effects
- Receptor, Muscarinic M1/metabolism
- Receptor, Muscarinic M3/analysis
- Receptor, Muscarinic M3/drug effects
- Receptor, Muscarinic M3/metabolism
- Receptors, Muscarinic/analysis
- Receptors, Muscarinic/drug effects
- Receptors, Muscarinic/metabolism
- Trifluoperazine/pharmacology
- Type C Phospholipases/antagonists & inhibitors
- Type C Phospholipases/metabolism
Collapse
Affiliation(s)
- M Casanova
- Argentine National Research Council (CONICET), Buenos Aires, Argentina
| | | | | | | |
Collapse
|
11
|
Stamatakis M, Mantzaris NV. Modeling of ATP-mediated signal transduction and wave propagation in astrocytic cellular networks. J Theor Biol 2006; 241:649-68. [PMID: 16460762 DOI: 10.1016/j.jtbi.2006.01.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2005] [Revised: 11/12/2005] [Accepted: 01/03/2006] [Indexed: 11/17/2022]
Abstract
Astrocytes, a special type of glial cells, were considered to have supporting role in information processing in the brain. However, several recent studies have shown that they can be chemically stimulated by neurotransmitters and use a form of signaling, in which ATP acts as an extracellular messenger. Pathological conditions, such as spreading depression, have been linked to abnormal range of wave propagation in astrocytic cellular networks. Nevertheless, the underlying intra- and inter-cellular signaling mechanisms remain unclear. Motivated by the above, we constructed a model to understand the relationship between single-cell signal transduction mechanisms and wave propagation and blocking in astrocytic networks. The model incorporates ATP-mediated IP3 production, the subsequent Ca2+ release from the ER through IP3R channels and ATP release into the extracellular space. For the latter, two hypotheses were tested: Ca2+- or IP3-dependent ATP release. In the first case, single astrocytes can exhibit excitable behavior and frequency-encoded oscillations. Homogeneous, one-dimensional astrocytic networks can propagate waves with infinite range, while in two dimensions, spiral waves can be generated. However, in the IP3-dependent ATP release case, the specific coupling of the driver ATP-IP3 system with the driven Ca2+ subsystem leads to one- and two-dimensional wave patterns with finite range of propagation.
Collapse
Affiliation(s)
- Michail Stamatakis
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX 77005, USA
| | | |
Collapse
|
12
|
Abstract
Several epidemiologic studies have shown that moderate intake of alcohol is associated with a lower risk of cardiovascular disease (CVD), but the mechanism is not fully elucidated. One of the proposed mechanisms of the protective effect of moderate alcohol intake is its beneficial effect on hemostasis. The aim of this review is to summarize the effect of ethanol intake on platelet aggregation and activation, coagulation factors including von Willebrand factor (vWF), and the fibrinolytic system. With regard to the effect of alcohol on platelet function, evidence in the literature suggests both platelet activation and platelet inhibition by ethanol. A unifying hypothesis is that platelets are partially activated by ethanol, with partial degranulation allowing for continued circulation of platelets with impaired function. Evidence also exists showing that ethanol intake decreases fibrinogen, factor VII, and vWF levels. In addition, alcohol intake has been found to increase fibrinolysis by increasing tissue plasminogen activator activity. The effect of ethanol on platelets, coagulation factors, and the fibrinolytic system is likely to contribute to protection against CVD.
Collapse
Affiliation(s)
- Raneem O Salem
- Division of Laboratory Medicine, Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
13
|
Yamashima T. Ca2+-dependent proteases in ischemic neuronal death: a conserved 'calpain-cathepsin cascade' from nematodes to primates. Cell Calcium 2005; 36:285-93. [PMID: 15261484 DOI: 10.1016/j.ceca.2004.03.001] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2004] [Indexed: 12/15/2022]
Abstract
From rodents to primates, transient global brain ischemia is a well known cause of delayed neuronal death of the vulnerable neurons including cornu Ammonis 1 (CA1) pyramidal cells of the hippocampus. Previous reports using the rodent experimental paradigm indicated that apoptosis is a main contributor to such ischemic neuronal death. In primates, however, the detailed molecular mechanism of ischemic neuronal death still remains obscure. Recent data suggest that necrosis rather than apoptosis appear to be the crucial component of the damage to the nervous system during human ischemic injuries and neurodegenerative diseases. Currently, necrotic neuronal death mediated by Ca2+-dependent cysteine proteases, is becoming accepted to underlie the pathology of neurodegenerative conditions from the nematode Caenorhabditis elegans to primates. This paper reviews the role of cysteine proteases such as caspase, calpain and cathepsin in order to clarify the mechanism of ischemic neuronal death being triggered by the unspecific digestion of lysosomal proteases.
Collapse
Affiliation(s)
- Tetsumori Yamashima
- Department of Neurosurgery, Division of Neuroscience, Kanazawa University Graduate School of Medical Science, Takara-machi 13-1, Kanazawa 920-8641, Japan.
| |
Collapse
|
14
|
Fioretti B, Franciolini F, Catacuzzeno L. A model of intracellular Ca2+ oscillations based on the activity of the intermediate-conductance Ca2+-activated K+ channels. Biophys Chem 2005; 113:17-23. [PMID: 15617807 DOI: 10.1016/j.bpc.2004.07.037] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2004] [Revised: 07/15/2004] [Accepted: 07/21/2004] [Indexed: 11/25/2022]
Abstract
Intracellular Ca2+ oscillations are observed in a large number of non-excitable cells. While most appear to reflect an intermittent Ca2+ release from intracellular stores, in some instances intracellular Ca2+ oscillations strongly depend on Ca2+ influx, and are coupled to oscillations of the membrane potential, suggesting that a plasma membrane-based mechanism may be involved. We have developed a theoretical model for the latter type of intracellular Ca2+ oscillations based on the Ca2+-dependent modulation of the intermediate-conductance, Ca2+-activated K+ (IKCa) channel. The functioning of this model relies on the Ca2+-dependent activation, and the much slower Ca2+-dependent rundown of this channel. We have shown that Ca2+-dependent activation of the IKCa channels, the consequent membrane hyperpolarization and the resulting increase in Ca2+ influx may confer the positive feedback mechanism required for the ascending phase of the oscillation. The much slower Ca2+-dependent rundown process will conversely halt this positive loop, and establish the descending phase of the intracellular Ca2+ oscillation. We found that this simple model gives rise to intracellular Ca2+ oscillations when using physiologically reasonable parameters, suggesting that IKCa channels could participate in the generation of intracellular Ca2+ oscillations.
Collapse
Affiliation(s)
- Bernard Fioretti
- Dipartimento di Biologia Cellulare e Molecolare Universita' di Perugia via Pascoli 1, I-06123 Perugia, Italy
| | | | | |
Collapse
|
15
|
Jo DG, Jun JI, Chang JW, Hong YM, Song S, Cho DH, Shim SM, Lee HJ, Cho C, Kim DH, Jung YK. Calcium binding of ARC mediates regulation of caspase 8 and cell death. Mol Cell Biol 2004; 24:9763-70. [PMID: 15509781 PMCID: PMC525473 DOI: 10.1128/mcb.24.22.9763-9770.2004] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Apoptosis repressor with CARD (ARC) possesses the ability not only to block activation of caspase 8 but to modulate caspase-independent mitochondrial events associated with cell death. However, it is not known how ARC modulates both caspase-dependent and caspase-independent cell death. Here, we report that ARC is a Ca(2+)-dependent regulator of caspase 8 and cell death. We found that in Ca(2+) overlay and Stains-all assays, ARC protein bound to Ca(2+) through the C-terminal proline/glutamate-rich (P/E-rich) domain. ARC expression reduced not only cytosolic Ca(2+) transients but also cytotoxic effects of thapsigargin, A23187, and ionomycin, for which the Ca(2+)-binding domain of ARC was indispensable. Conversely, direct interference of endogenous ARC synthesis by targeting ARC enhanced such Ca(2+)-mediated cell death. In addition, binding and immunoprecipitation analyses revealed that the protein-protein interaction between ARC and caspase 8 was decreased by the increase of Ca(2+) concentration in vitro and by the treatment of HEK293 cells with thapsigargin in vivo. Caspase 8 activation was also required for the thapsigargin-induced cell death and suppressed by the ectopic expression of ARC. These results suggest that calcium binding mediates regulation of caspase 8 and cell death by ARC.
Collapse
Affiliation(s)
- Dong-Gyu Jo
- Department of Life Science, Gwangju Institute of Science and Technology, 1 Oryongdong, Bukgu, Gwangju 500-712, South Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Fusco FR, Martorana A, Giampà C, De March Z, Vacca F, Tozzi A, Longone P, Piccirilli S, Paolucci S, Sancesario G, Mercuri NB, Bernardi G. Cellular localization of TRPC3 channel in rat brain: preferential distribution to oligodendrocytes. Neurosci Lett 2004; 365:137-42. [PMID: 15245795 DOI: 10.1016/j.neulet.2004.04.070] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2004] [Revised: 04/20/2004] [Accepted: 04/28/2004] [Indexed: 10/26/2022]
Abstract
In the present work we describe the cellular localization of TRPC3 in non-excitable cells as compared to the neurons in normal rat brain. We performed a double labeling study for TRPC3 and one of the following cell-specific markers: mouse anti-glial fibrillary acidic protein (GFAP) for astrocytes; mouse anti-RIP for oligodendrocytes, or mouse anti-OX42 for microglia, or mouse anti-NeUN for neuronal nuclei or mouse anti-tyrosine hydroxylase (TH) for detection of dopaminergic neurons of the substantia nigra. Our double label immunofluorescence study showed that that TRPC3 is mainly localized in oligodendrocytes. These result were confirmed by the electron microscopy study, which showed TRPC3 immunoreactivity in oligodendrocytes. Consistent with the evidence that calcium homeostasis is important to oligodendrocytes for development, myelination, and demyelination [Microsc. Res. Tech. 52 (2001) 672], we can speculate that the distribution of TRPC3 in oligodendrocytes plays a role in myelination and or demyelination processes.
Collapse
Affiliation(s)
- Francesca R Fusco
- Laboratory of Experimental Neurorehabilitation, Basal Ganglia Section, Santa Lucia Foundation I.R.C.C.S, Via Ardeatina 306, 00179 Rome, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Kim HJ, Yum KS, Sung JH, Rhie DJ, Kim MJ, Min DS, Hahn SJ, Kim MS, Jo YH, Yoon SH. Epigallocatechin-3-gallate increases intracellular [Ca2+] in U87 cells mainly by influx of extracellular Ca2+ and partly by release of intracellular stores. Naunyn Schmiedebergs Arch Pharmacol 2003; 369:260-7. [PMID: 14647974 DOI: 10.1007/s00210-003-0852-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2003] [Accepted: 10/30/2003] [Indexed: 10/26/2022]
Abstract
Green tea has been receiving considerable attention as a possible preventive agent against cancer and cardiovascular disease. Epigallocatechin-3-gallate (EGCG) is a major polyphenol component of green tea. Using digital calcium imaging and an assay for [3H]-inositol phosphates, we determined whether EGCG increases intracellular [Ca2+] ([Ca2+]i) in non-excitable human astrocytoma U87 cells. EGCG induced concentration-dependent increases in [Ca2+]i. The EGCG-induced [Ca2+]i increases were reduced to 20.9% of control by removal of extracellular Ca2+. The increases were also inhibited markedly by treatment with the non-specific Ca2+ channel inhibitors cobalt (3 mM) for 3 min and lanthanum (1 mM) for 5 min. The increases were not significantly inhibited by treatment for 10 min with the L-type Ca2+ channel blocker nifedipine (100 nM). Treatment with the inhibitor of endoplasmic reticulum Ca2+-ATPase thapsigargin (1 micro M) also significantly inhibited the EGCG-induced [Ca2+]i increases. Treatment for 15 min with the phospholipase C (PLC) inhibitor neomycin (300 micro M) attenuated the increases significantly, while the tyrosine kinase inhibitor genistein (30 micro M) had no effect. EGCG increased [3H]-inositol phosphates formation via PLC activation. Treatment for 10 min with mefenamic acid (100 micro M) and flufenamic acid (100 micro M), derivatives of diphenylamine-2-carboxylate, blocked the EGCG-induced [Ca2+]i increase in non-treated and thapsigargin-treated cells but indomethacin (100 micro M) did not affect the increases. Collectively, these data suggest that EGCG increases [Ca2+]i in non-excitable U87 cells mainly by eliciting influx of extracellular Ca2+ and partly by mobilizing intracellular Ca2+ stores by PLC activation. The EGCG-induced [Ca2+]i influx is mediated mainly through channels sensitive to diphenylamine-2-carboxylate derivatives.
Collapse
Affiliation(s)
- Hee Jung Kim
- Department of Physiology, College of Medicine, The Catholic University of Korea, 505 Banpo-dong, Socho-gu, 137-701 Seoul, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Kanellis J, Bick R, Garcia G, Truong L, Tsao CC, Etemadmoghadam D, Poindexter B, Feng L, Johnson RJ, Sheikh-Hamad D. Stanniocalcin-1, an inhibitor of macrophage chemotaxis and chemokinesis. Am J Physiol Renal Physiol 2003; 286:F356-62. [PMID: 14570698 DOI: 10.1152/ajprenal.00138.2003] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In macrophages, changes in intracellular calcium have been associated with activation of cellular processes that regulate cell adhesion and motility and are important for the response of macrophages to antigenic stimuli. The mammalian counterpart of the fish calcium-regulating hormone stanniocalcin-1 (STC1) is expressed in multiple organs including the thymus and spleen, and hence, we hypothesized that it may have a role in modulating the immune/inflammatory response. Using murine macrophage-like (RAW264.7) and human monoblast-like (U937) cells to study chemotaxis in vitro, we found that STC1 attenuated chemokinesis and diminished the chemotactic response to monocyte chemotactic protein-1 (MCP-1) and stromal cell-derived factor-1alpha. Consistent with these findings, STC1 blunted the rise in intracellular calcium following MCP-1 stimulation in RAW264.7 cells. In vivo studies suggested differential expression of STC1 in obstructed kidney and localization to macrophages. MCP-1 and STC1 transcripts were both upregulated following ureteric obstruction, suggesting a functional association between the two genes. Our data suggest a role for mammalian STC1 in modulating the immune/inflammatory response.
Collapse
Affiliation(s)
- John Kanellis
- Renal Section, Deptartment of Pathology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Dewaste V, Moreau C, De Smedt F, Bex F, De Smedt H, Wuytack F, Missiaen L, Erneux C. The three isoenzymes of human inositol-1,4,5-trisphosphate 3-kinase show specific intracellular localization but comparable Ca2+ responses on transfection in COS-7 cells. Biochem J 2003; 374:41-9. [PMID: 12747803 PMCID: PMC1223573 DOI: 10.1042/bj20021963] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2002] [Revised: 04/24/2003] [Accepted: 05/15/2003] [Indexed: 12/16/2022]
Abstract
Inositol 1,4,5-trisphosphate [Ins(1,4,5) P3] 3-kinase catalyses the phosphorylation of InsP3 to inositol 1,3,4,5-tetrakisphosphate. cDNAs encoding three human isoenzymes of InsP3 3-kinase (A, B and C) have been reported previously [Choi, Kim, Lee, Moon, Sim, Kim, Chung and Rhee (1990) Science 248, 64-66; Dewaste, Pouillon, Moreau, Shears, Takazawa and Erneux (2000) Biochem. J. 352, 343-351; Dewaste, Roymans, Moreau and Erneux (2002) Biochem. Biophys. Res. Commun. 291, 400-405; Takazawa, Perret, Dumont and Erneux (1991) Biochem. Biophys. Res. Commun. 174, 529-535]. The localization of InsP3 3-kinase isoenzymes fused at their N-terminus to the green fluorescent protein has been studied by confocal microscopy. The A isoform appeared to associate with the cytoskeleton, whereas the C isoform was totally cytoplasmic. The B isoform had a more complex localization: it appeared in the plasma membrane, cytoskeleton and in the endoplasmic reticulum. The three human isoenzymes of InsP3 3-kinase can thus be distinguished by their N-terminal sequence, sensitivity to Ca2+/calmodulin and localization on transfection in COS-7 cells. We have compared the cytosolic Ca2+ responses induced by ATP in COS-7 cells transfected with the three isoenzymes. Cells expressing high levels of any of the three isoforms no longer respond to ATP, whereas cells expressing low levels of each enzyme showed a reduced response consisting of one to three Ca2+ spikes in response to 100 microM ATP. These effects were seen only in wild-type InsP3 3-kinase-transfected cells. 3-Kinase-dead mutant cells behaved as vector-transfected cells. The results highlight the potential role of the three isoforms of InsP3 3-kinase as direct InsP3 metabolizing enzymes and direct regulators of Ca2+ responses to extracellular signals.
Collapse
Affiliation(s)
- Valérie Dewaste
- Institute of Interdisciplinary Research, Université Libre de Bruxelles, Campus Erasme, Bldg. C, 808 route de Lennik, B-1070 Brussels, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Syntichaki P, Tavernarakis N. The biochemistry of neuronal necrosis: rogue biology? Nat Rev Neurosci 2003; 4:672-84. [PMID: 12894242 DOI: 10.1038/nrn1174] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Popi Syntichaki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Vassilika Vouton, P.O. Box 1527, Heraklion 71110, Crete, Greece
| | | |
Collapse
|
21
|
Koizumi T, Hikiji H, Shin WS, Takato T, Fukuda S, Abe T, Koshikiya N, Iwasawa K, Toyo-oka T. Cell density and growth-dependent down-regulation of both intracellular calcium responses to agonist stimuli and expression of smooth-surfaced endoplasmic reticulum in MC3T3-E1 osteoblast-like cells. J Biol Chem 2003; 278:6433-9. [PMID: 12471030 DOI: 10.1074/jbc.m210243200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A two-dimensional intracellular Ca(2+) ([Ca(2+)](i)) imaging system was used to examine the relationship between [Ca(2+)](i) handling and the proliferation of MC3T3-E1 osteoblast-like cells. The resting [Ca(2+)](i) level in densely cultured cells was 1.5 times higher than the [Ca(2+)](i) level in sparsely cultured cells or in other cell types (mouse fibroblasts, rat vascular smooth muscle cells, and bovine endothelial cells). A high resting [Ca(2+)](i) level may be specific for MC3T3-E1 cells. MC3T3-E1 cells were stimulated with ATP (10 microM), caffeine (10 mM), thapsigargin (1 microM), or ionomycin (10 microM), and the effect on the [Ca(2+)](i) level of MC3T3-E1 cells was studied. The percentage of responding cells and the degree of [Ca(2+)](i) elevation were high in the sparsely cultured cells and low in densely cultured cells. The rank order for the percentage of responding cells and magnitude of the Ca(2+) response to the stimuli was ionomycin > thapsigargin = ATP > caffeine and suggests the existence of differences among the various [Ca(2+)](i) channels. All Ca(2+) responses in the sparsely cultured MC3T3-E1 cells, unlike in other cell types, disappeared after the cells reached confluence. Heptanol treatment of densely cultured cells restored the Ca(2+) response, suggesting that cell-cell contact is involved with the confluence-dependent disappearance of the Ca(2+) response. Immunohistological analysis of type 1 inositol trisphosphate receptors and electron microscopy showed distinct expression of inositol trisphosphate receptor proteins and smooth-surfaced endoplasmic reticulum in sparsely cultured cells but reduced levels in densely cultured cells. These results indicate that the underlying basis of confluence-dependent [Ca(2+)](i) regulation is down-regulation of smooth-surfaced endoplasmic reticulum by cell-cell contacts.
Collapse
Affiliation(s)
- Toshiyuki Koizumi
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, and Health Service Centre, University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Hsieh YC, Yang EC, Hsu EL, Chow YS, Kou R. Voltage-dependent calcium channels in the corpora allata of the adult male loreyi leafworm, Mythimna loreyi. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2002; 32:547-557. [PMID: 11891131 DOI: 10.1016/s0965-1748(01)00133-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
In the corpora allata (CA) of the adult male loreyi leafworm, Mythimna loreyi, juvenile hormone acid (JHA) biosynthesis and release show a dose dependence on extracellular Ca(2+) concentration. Maxima are obtained with Ca(2+) concentrations of 2-10 mM, and synthesis and release are significantly inhibited under a Ca(2+)-free condition. The Ca(2+)-free inhibition of JHA release can be reversed by returning the glands to medium at 5 mM Ca(2+). The cytosolic free Ca(2+) concentration ([Ca(2+)](i)), which was measured with fura-2, in individual CA cells also shows a dose dependence on extracellular Ca(2+) concentration, with significant [Ca(2+)](i) depression being observed in the absence of extracellular Ca(2+). High K(+) significantly increases the JHA release and causes a transient [Ca(2+)](i) increase within seconds in CA cells. High-K(+)-stimulated JHA release is partially inhibited by the benzothiazepine (BTZ)-, dihydropyridine (DHP)- and phenylalkylamine (PAA)-sensitive L-type voltage-dependent calcium channel (VDCC) antagonists diltiazem, nifedipine and verapamil, respectively; by the N- and P/Q-type VDCC antagonist omega-conotoxin (omega-CgTx) MVIIC; and by the T-type VDCC antagonist amiloride. The N-type antagonist omega-CgTx GVIA is the most potent in inhibiting the high-K(+)-stimulated JHA release. No inhibitory effect is shown by the P-type antagonist omega-agatoxin TK (omega-Aga TK). The high-K(+)-induced transient [Ca(2+)](i) increase is largely inhibited by the L-type antagonists (diltiazem, nifedipine, verapamil), by the N- and P/Q-type antagonist omega-CgTx MVIIC and by the T-type antagonist amiloride, and is totally inhibited by the N-type antagonist omega-CgTx GVIA. No inhibitory effect is shown by the P-type antagonist omega-Aga TK. We hypothesize that L-type, N-type and T-type VDCCs may be involved to different degrees in the high-K(+)-stimulated JHA release and transient [Ca(2+)](i) increase in the individual CA cells of the adult male M. loreyi, and that the N-type VDCCs may play important roles in these cellular events.
Collapse
Affiliation(s)
- Yi-Chun Hsieh
- Department of Entomology, National Taiwan University, Taipei, Taiwan, ROC
| | | | | | | | | |
Collapse
|
23
|
Wakabayashi I, Marumo M. Ethanol inhibits store-operated Ca2+ entry of platelets. PHARMACOLOGY & TOXICOLOGY 2002; 90:226-8. [PMID: 12076319 DOI: 10.1034/j.1600-0773.2002.900410.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Ichiro Wakabayashi
- Department of Hygiene and Preventive Medicine, School of Medicine, Yamagata University, Iida-Nishi 2-2-2, Yamagata 990-9585, Japan.
| | | |
Collapse
|
24
|
Vargas MA, Cisneros M, Joseph-Bravo P, Charli JL. Thyrotropin-releasing hormone-induced down-regulation of pyroglutamyl aminopeptidase II activity involves L-type calcium channels and cam kinase activities in cultures of adenohypophyseal cells. J Neuroendocrinol 2002; 14:184-93. [PMID: 11999717 DOI: 10.1046/j.0007-1331.2001.00755.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Released thyrotropin-releasing hormone (TRH) is inactivated by a narrow specificity ectopeptidase, pyroglutamyl aminopeptidase II (PPII), present in brain and lactotrophs. Various hypothalamic/paracrine factors, including TRH, slowly (in hours) regulate the activity of PPII on the surface of adenohypophyseal cells. TRH-induced down-regulation was mimicked by protein kinase C (PKC) activation but was not affected by inhibition of PKC. Adenylate cyclase activation can also down-regulate PPII. The purpose of this study was to identify elements of the transduction pathway used by TRH to regulate PPII activity. In primary cultures of female adenohypophyseal cells, activation of the stimulatory G protein or adenylate cyclase produced an effect additive to that of TRH; inhibition of protein kinase A activity did not interfere with TRH action. However, regulation of PPII activity by TRH was inhibited by a phospholipase C beta inhibitor or chelation of intracellular calcium. L-type calcium channels (LCC) agonists mimicked TRH action and their effect was not additive with that of TRH. Antagonists of LCC channels and inhibitors of calmodulin or calcium/calmodulin-dependent protein kinase blocked TRH action. Therefore, TRH-induced calcium entry through L-type calcium channels and the activity of calcium/calmodulin-dependent protein kinase are required for TRH effect on PPII activity in primary cultures of adenohypophyseal cells. This pathway may coregulate PPII and prolactin biosynthesis in response to TRH.
Collapse
Affiliation(s)
- M A Vargas
- Instituto de Biotecnologia, Universidad Nacional Autónoma de México, Cuernavaca, Mor
| | | | | | | |
Collapse
|
25
|
Buchli R, Ndoye A, Arredondo J, Webber RJ, Grando SA. Identification and characterization of muscarinic acetylcholine receptor subtypes expressed in human skin melanocytes. Mol Cell Biochem 2001; 228:57-72. [PMID: 11855742 DOI: 10.1023/a:1013368509855] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The present study was designed to identify and characterize muscarinic acetylcholine receptors in normal human melanocytes. We used subtype-specific oligonucleotide primers to localize the five genetically defined mAChR mRNAs (ml through m5) by reverse transcription-polymerase chain reaction. These experiments showed that all five mAChR subtype mRNAs are expressed in melanocytes. The PCR products were verified by restriction analysis and Southern blotting. Receptors were visualized in cultures of normal human melanocytes and specimens of normal human skin by subtype-specific rabbit anti-receptor polyclonal antibodies. Radioligand binding assays with the lipophilic drug [3H]quinuclidinyl benzilate demonstrated approximately 9,000 high affinity binding sites/cell. Micromolar concentrations of muscarine or carbachol transiently increased intracellular Ca2+, which could be attenuated by atropine, demonstrating coupling of the receptors to mobilization of intracellular free Ca2+. Lower concentrations of muscarine induced spontaneous repetitive spike-like increases of intracellular Ca2+ which is characteristic for the activation of muscarinic receptors. These results indicate that normal human skin melanocytes express the ml, m2, m3, m4, and m5 subtypes of classic muscarinic acetylcholine receptors on their cell membrane and that these receptors regulate the concentration of intracellular free Ca2+, which may play an important physiologic role in melanocyte behavior and skin pigmentation.
Collapse
Affiliation(s)
- R Buchli
- Department of Dermatology, University of California, Davis, Sacramento 95817, USA
| | | | | | | | | |
Collapse
|
26
|
Moorthy AK, Singh SK, Gopal B, Surolia A, Murthy MR. Variability of calcium binding to EF-hand motifs probed by electrospray ionization mass spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2001; 12:1296-1301. [PMID: 11766756 DOI: 10.1016/s1044-0305(01)00317-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The modulation of calcium binding by the EF-hand motifs present in a calmodulin (CAM) homologue, a calcium binding protein (CaBP) from Entamoeba histolytica by three external parameters-pH, ligand coordinator EGTA, and fragmentor voltage was investigated by mass spectrometry. Calcium binding follows expected patterns at highly acidic and alkaline pH with the preponderance of the apo and the completely saturated forms, respectively. Surprisingly, additional nonspecific binding is observed near neutral pH. Studies on EGTA chelation and effects of fragmentor voltage showed cooperativity in calcium removal in at least one of the domains. Similar studies on a smaller construct containing the two high affinity carboxy terminal sites revealed interesting differences and provided an estimate of the specificity and tolerance of the EF-hand motifs to calcium binding and removal.
Collapse
Affiliation(s)
- A K Moorthy
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore
| | | | | | | | | |
Collapse
|
27
|
Sée V, Loeffler JP. Oxidative stress induces neuronal death by recruiting a protease and phosphatase-gated mechanism. J Biol Chem 2001; 276:35049-59. [PMID: 11443132 DOI: 10.1074/jbc.m104988200] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Reactive oxygen species (ROS) cause death of cerebellar granule neurons. Here, a 15-min pulse of H(2)O(2) (100 microm) induced an active process of neuronal death distinct from apoptosis. Oxidative stress activated a caspase-independent but calpain-dependent decline of calcium/calmodulin-dependent protein kinase IV and cAMP- responsive element-binding protein (CREB). Calpain inhibitors restored calcium/calmodulin-dependent protein kinase IV and CREB but did not influence phosphorylated CREB levels or survival, indicating recruitment of an additional dephosphorylation process. Co-treatment with calpain and serine/threonine phosphatase inhibitors restored pCREB levels and rescued neurons. This phosphatase-activated signaling pathway was shown to be dependent on de novo protein synthesis. Further, gene transfer studies revealed that CREB is a common final effector of both apoptosis and ROS-induced death. Our data indicate that dephosphorylation and proteolytic signaling mechanisms underlie ROS-induced programmed cell death.
Collapse
Affiliation(s)
- V Sée
- Université Louis Pasteur, Faculty of Medicine, E. A. Molecular Signaling and Neurodegeneration, 11 rue Humann, Strasbourg 67000, France
| | | |
Collapse
|
28
|
Abstract
Calcium plays a key role in cellular signal transduction. Calmodulin, a protein binding four calcium ions, is found in all eukaryotic cells and is believed to activate such processes. The calcium binding loop found in this protein, the canonical EF-hand, is also found in a large number of other proteins such as troponins, parvalbumins, calbindins etc. Earlier analysis of the amino acid sequences of these proteins with a view of understanding evolution of protein families and signaling mechanisms have provided extensive evidence for a characteristic double gene duplication event in this family of proteins. These analyses have been extended here to the three dimensional structures and the biophysical properties of the sequence segments of calmodulin EF-hands. The clear evolutionary history that shows up in sequences is not reflected as clearly in the conformation of individual EF-hands, which may be a consequence of the much higher conservation pressure on the structure. Some evidence for the proposed gene duplication is implicit in the apo-holo structural transitions of the EF-hands. The profile of amino acid properties that might be significant for calcium binding, however, clearly reflects the gene duplication. These profiles might also provide insightful information on the calcium affinity of the EF-hand motifs and the nature of amino acid residues that constitute them.
Collapse
Affiliation(s)
- A K Moorthy
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore
| | | |
Collapse
|
29
|
Huang SC, Chien C, Hsiao L, Wang C, Chiu C, Liang K, Yang C. Mechanisms of bradykinin-mediated Ca(2+) signalling in canine cultured corneal epithelial cells. Cell Signal 2001; 13:565-74. [PMID: 11483409 DOI: 10.1016/s0898-6568(01)00170-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Experiments were designed to differentiate the mechanisms of bradykinin receptors mediating the changes in intracellular Ca(2+) concentration ([Ca(2+)](i)) in canine cultured corneal epithelial cells (CECs). Bradykinin and Lys-bradykinin caused an initial transient peak of [Ca(2+)](i) in a concentration-dependent manner, with half-maximal stimulation (pEC(50)) obtained at 6.9 and 7.1, respectively. Pretreatment of CECs with pertussis toxin (PTX) or cholera toxin (CTX) for 24 h did not affect the bradykinin-induced [Ca(2+)](i) changes. Application of Ca(2+) channel blockers, diltiazem and Ni(2+), inhibited the bradykinin-induced Ca(2+) mobilization, indicating that Ca(2+) influx was required for the bradykinin-induced responses. Addition of thapsigargin (TG), which is known to deplete intracellular Ca(2+) stores, transiently increased [Ca(2+)](i) in Ca(2+)-free buffer, and subsequently induced Ca(2+) influx when Ca(2+) was readded to this buffer. Pretreatment of CECs with TG completely abolished bradykinin-induced initial transient [Ca(2+)](i), but had slight effect on bradykinin-induced Ca(2+) influx. Pretreatment of CECs with 1-[beta-[3-(4-methoxyphenyl)propoxy]-4-methoxyphenethyl]-1H-imidazole (SKF96365) and 1-(6-((17beta-3-methoxyestra-1,3,5(10)-trien-17-yl)amino)hexyl)-1H-pyrrole-2,5-dione (U73122) inhibited the bradykinin-induced Ca(2+) release and Ca(2+) influx, consistent with the inhibition of receptor-gated Ca(2+) channels and phospholipase C (PLC) in CECs, respectively. These results demonstrate that bradykinin directly stimulates B(2) receptors and subsequently Ca(2+) mobilization via a PTX-insensitive G protein in canine CECs. These results suggest that bradykinin-induced Ca(2+) influx into the cells is not due to depletion of these Ca(2+) stores, as prior depletion of these pools by TG has no effect on the bradykinin-induced Ca(2+) influx that is dependent on extracellular Ca(2+) in CECs.
Collapse
Affiliation(s)
- S C Huang
- Department of Ophthalmology, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan, ROC
| | | | | | | | | | | | | |
Collapse
|
30
|
Hodgson L, Dong C. [Ca2+]i as a potential downregulator of alpha2beta1-integrin-mediated A2058 tumor cell migration to type IV collagen. Am J Physiol Cell Physiol 2001; 281:C106-13. [PMID: 11401832 PMCID: PMC2796124 DOI: 10.1152/ajpcell.2001.281.1.c106] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have investigated cellular Ca2+ regulation during A2058 human melanoma cell chemotaxis to type IV collagen (CIV). We have identified alpha2beta1-integrin as the primary mediator of A2058 cell response to CIV in vitro. Integrin ligation initiated a characteristic intracellular Ca2+ concentration ([Ca2+]i) response consisting of an internal release and a receptor-mediated Ca2+ entry. Thapsigargin (TG) pretreatment drained overlapping and CIV-inducible internal Ca2+ stores while initiating a store-operated Ca2+ release (SOCR). CIV-mediated Ca2+ entry was additive to TG-SOCR, suggesting an independent signaling mechanism. Similarly, ionophore application in a basal medium containing Ca2+ initiated a sustained influx. Elevated [Ca2+]i from TG-SOCR or ionophore significantly attenuated cell migration to CIV by recruiting the Ca2+/calcineurin-mediated signaling pathway. Furthermore, low [Ca2+]i induced by EGTA application in the presence of ionophore fully restored cell motility to CIV. Together, these results suggest that [Ca2+]i signaling accompanying A2058 cell response to alpha2beta1-integrin ligation is neither necessary nor sufficient and that elevated [Ca2+]i downregulates cell motility via a calcineurin-mediated mechanism in A2058 cell chemotaxis to CIV.
Collapse
Affiliation(s)
- L Hodgson
- Department of Bioengineering, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | |
Collapse
|
31
|
Zach D, Windischhofer W, Leis HJ. Endothelin- and sarafotoxin-induced receptor-mediated calcium mobilization in a clonal murine osteoblast-like cell line, MC3T3-E1/B. Bone 2001; 28:595-602. [PMID: 11425647 DOI: 10.1016/s8756-3282(01)00461-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Previous studies have demonstrated that, in osteoblast-like MC3T3-E1 cells, various endothelin peptides and their homologous sarafotoxins generate prostaglandin E(2) (PGE(2)) release through an ET(A) receptor subtype. In this study, biphasic Ca(2+) signals elicited with endothelin (ET)-1, ET-2, ET-3, beta-ET, S6a1, and S6b (ET/S6) were measured by microspectrofluorimetric methods in cell suspensions loaded with Fura-2 acetoxymethylester (Fura-2 AM). Phospholipase C (PLC)-dependent calcium activation mechanisms seem to be involved. We found evidence of Ca(2+) release from thapsigargin-sensitive and non-thapsigargin-sensitive intracellular Ca(2+) stores as well as Ca(2+) transmembrane inflow through multiple voltage-independent and Ni(2+)-sensitive cation channels. Using an ET(A) receptor antagonist, BQ-123, we showed that this receptor was coupled to Ca(2+) mobilization. All agonists tested, except S6c (an ET(B)-receptor-specific agonist) induced receptor desensitization. Our results demonstrate that the ET/S6-induced Ca(2+) signaling pathway is mediated via an ET(A)-receptor subtype in MC3T3-E1/B cells.
Collapse
Affiliation(s)
- D Zach
- Department of Biochemical Analysis and Mass Spectrometry, University Children's Hospital, University of Graz, Graz, Austria.
| | | | | |
Collapse
|
32
|
Abstract
The kinetics of calcium entry through regulated calcium channels in cultured renal proximal tubule cells was studied with Fura-2 fluorescence ratio imaging in single cells. The calcium entry was activated by 1-oleoyl-2-acetyl-sn-glycerol (OAG) and phorbol-12-myristat-13-acetate (PMA), similar to that observed for activation by osmo-mechanical stress. OAG (2.5 microM) or PMA (0.5 microM) activated calcium entry is characterized by a significant latency between agonist application and the response, whereas the effect of osmo-mechanical stress was immediate. This pre-response latency was 260 +/- 70s with OAG stimulation and 79.2 +/- 17.3s with PMA stimulation. Once a cell responds, the intracellular calcium level reaches a peak value within seconds. The cell response to agonist is independent of the response of neighboring cells. The response kinetics resembles those of the calcium sparks in excitable cells, except the response is much slower. In all cases, the response appears to be an all-or-none event, that is characteristics of an elementary binary switch. It is suggested that the binary response and the lack of coordinated response of calcium entry in single cells results from limited availability of the calcium channels and/or PKC that activates the channel. The experimental data could be fit to a single binary response mathematical model assuming each response reflected an elementary event of a single channel opening or a co-ordinated opening of a cluster of several channels.
Collapse
Affiliation(s)
- M I Zhang
- Department of Integrative Biology, Pharmacology & Physiology, The University of Texas, Houston Health Science Center, Houston 77030, USA.
| | | |
Collapse
|
33
|
Braiman A, Gold'Shtein V, Priel Z. Feasibility of a sustained steep Ca(2+)Gradient in the cytosol of electrically non-excitable cells. J Theor Biol 2000; 206:115-30. [PMID: 10968942 DOI: 10.1006/jtbi.2000.2104] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In electrically non-excitable cells the predominant mode of calcium signaling is a biphasic rise in cytosolic calcium concentration. It results from Ca(2+)release from intracellular stores, followed by Ca(2+)influx across the plasma membrane. It has been hypothesized that prolonged calcium influx may result in a sustained local elevation of the cytosolic calcium concentration near the plasma membrane. The mathematical model presented here evaluates the cytosolic concentration of Ca(2+)as a function of time and distance from the plasma membrane. It consists of cytoplasmic calcium stores and a plasma membrane, both equipped with calcium channels and pumps, and an immobile cytoplasmic calcium buffer. The model has verified quantitatively the feasibility of a stable Ca(2+)gradient in the cytosol with high values of Ca(2+)concentration near the plasma membrane and evaluated its properties as a function of different cellular parameters. The formation of the gradient does not require special distribution of the intracellular contents, channels and pumps. However, it requires buffering of the cytosolic calcium by the intracellular stores and that the rate of calcium release from the stores near the plasma membrane be higher than in other parts of the cell. We suggest that this model can provide an adequate description of the elevated calcium plateau generally observed in electrically non-excitable cells.
Collapse
Affiliation(s)
- A Braiman
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel.
| | | | | |
Collapse
|
34
|
Abstract
Cell migration is an important facet of the life cycle of immune and other cell types. A complex set of events must take place at the leading edge of motile cells before these cells can migrate. Chemokines induce the motility of various cell types by activating multiple intracellular signaling pathways. These include the activation of chemokine receptors, which are coupled to the heterotrimeric G proteins. The release of G beta gamma subunits from chemokine receptors results in the recruitment to the plasma membrane, with subsequent activation of various down-stream signaling molecules. Among these molecules are the pleckstrin homology domain-containing proteins and the phosphoinositide 3-kinase gamma which phosphorylates phospholipids and activates members of the GTP exchange factors (GEFs). These GEFs facilitate the exchange of GTP for GDP in members of GTPases. The latter are important for reorganizing the cell cytoskeleton, and in inducing chemotaxis. Chemokines also induce the mobilization of intracellular calcium from intracellular stores. Second messengers such as inositol 1,4,5 trisphosphate, and cyclic adenosine diphosphate ribose are among those induced by chemokines. In addition, the G beta gamma subunits recruit members of the G protein-coupled receptor kinases, which phosphorylate chemokine receptors, resulting in desensitization and termination of the motility signals. This review will discuss the intracellular signaling pathways induced by chemokines, particularly those activated at the leading edge of migrating cells which lead to cell polarization, cytoskeleton reorganization and motility.
Collapse
Affiliation(s)
- A A Maghazachi
- Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, POB 1105 Blindern, N-0317 Oslo, Norway.
| |
Collapse
|
35
|
Røttingen J, Iversen JG. Ruled by waves? Intracellular and intercellular calcium signalling. ACTA PHYSIOLOGICA SCANDINAVICA 2000; 169:203-19. [PMID: 10886035 DOI: 10.1046/j.1365-201x.2000.00732.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The field of calcium signalling has evolved rapidly the last 20 years. Physiologists had worked with cytosolic Ca2+ as the coupler of excitation and contraction of muscles and as a secretory signal in exocrine glands and in the synapses of the brain for several decades before the discovery of cellular calcium as a second messenger. Development of powerful techniques for measuring the concentration of cytosolic free calcium ions in cell suspensions and later in single cells and even in different cellular compartments, has resulted in an upsurge in the knowledge of the cellular machinery involved in intracellular calcium signalling. However, the focus on intracellular mechanisms might have led this field of study away from physiology. During the last few years there is an increasing evidence for an important role of calcium also as an intercellular signal. Via gap junctions calcium is able to co-ordinate cell populations and even organs like the liver. Here we will give an overview of the general mechanisms of intracellular calcium signalling, and then review the recent data on intercellular calcium signals. A functional coupling of cells in different tissues and organs by the way of calcium might be an important mechanism for controlling and synchronizing physiological responses
Collapse
Affiliation(s)
- J Røttingen
- Laboratory of Intracellular Signalling, Department of Physiology, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | | |
Collapse
|
36
|
Wu S, Moore TM, Brough GH, Whitt SR, Chinkers M, Li M, Stevens T. Cyclic nucleotide-gated channels mediate membrane depolarization following activation of store-operated calcium entry in endothelial cells. J Biol Chem 2000; 275:18887-96. [PMID: 10764797 DOI: 10.1074/jbc.m002795200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Calcium agonists induce membrane depolarization in endothelial cells through an unknown mechanism. Present studies tested the hypothesis that pulmonary artery endothelial cells express a cyclic nucleotide-gated (CNG) cation channel activated by store-operated calcium entry to produce membrane depolarization. In the whole-cell configuration, voltage-clamped cells revealed a large non-inactivating, outwardly rectifying cationic current in the absence of extra- or intracellular Ca(2+) that was reduced upon replenishment of Ca(2+). The inward current was non-selective for K(+), Na(+), Cs(+), and Rb(+) and was not inhibited by high tetraethylammonium concentrations. cAMP and cGMP stimulated the current and changed the cation permeability to favor Na(+). Moreover, 8-bromo-cAMP stimulated the current in voltage-clamped cells in the perforated patch mode. The cationic current was inhibited by the CNG channel blocker LY83,583, and reverse transcriptase-polymerase chain reaction cloning identified expression of a CNG channel resembling that seen in olfactory neurons. Activation of store-operated calcium entry using thapsigargin increased a current through the CNG channel. Stimulation of the current paralleled pulmonary artery endothelial cell membrane depolarization, and both the current and membrane depolarization were abolished using LY83,583. Taken together, these data demonstrate activation of store-operated calcium entry stimulates a CNG channel producing membrane depolarization. Such membrane depolarization may contribute to slow feedback inhibition of store-operated calcium entry.
Collapse
Affiliation(s)
- S Wu
- Department of Pharmacology, University of South Alabama College of Medicine, Mobile, Alabama 36688, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Schaefer M, Plant TD, Obukhov AG, Hofmann T, Gudermann T, Schultz G. Receptor-mediated regulation of the nonselective cation channels TRPC4 and TRPC5. J Biol Chem 2000; 275:17517-26. [PMID: 10837492 DOI: 10.1074/jbc.275.23.17517] [Citation(s) in RCA: 326] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mammalian transient receptor potential channels (TRPCs) form a family of Ca(2+)-permeable cation channels currently consisting of seven members, TRPC1-TRPC7. These channels have been proposed to be molecular correlates for capacitative Ca(2+) entry channels. There are only a few studies on the regulation and properties of the subfamily consisting of TRPC4 and TRPC5, and there are contradictory reports concerning the possible role of intracellular Ca(2+) store depletion in channel activation. We therefore investigated the regulatory and biophysical properties of murine TRPC4 and TRPC5 (mTRPC4/5) heterologously expressed in human embryonic kidney cells. Activation of G(q/11)-coupled receptors or receptor tyrosine kinases induced Mn(2+) entry in fura-2-loaded mTRPC4/5-expressing cells. Accordingly, in whole-cell recordings, stimulation of G(q/11)-coupled receptors evoked large, nonselective cation currents, an effect mimicked by infusion of guanosine 5'-3-O-(thio)triphosphate (GTPgammaS). However, depletion of intracellular Ca(2+) stores failed to activate mTRPC4/5. In inside-out patches, single channels with conductances of 42 and 66 picosiemens at -60 mV for mTRPC4 and mTRPC5, respectively, were stimulated by GTPgammaS in a membrane-confined manner. Thus, mTRPC4 and mTRPC5 form nonselective cation channels that integrate signaling pathways from G-protein-coupled receptors and receptor tyrosine kinases independently of store depletion. Furthermore, the biophysical properties of mTRPC4/5 are inconsistent with those of I(CRAC), the most extensively characterized store-operated current.
Collapse
Affiliation(s)
- M Schaefer
- Institut für Pharmakologie, Freie Universität Berlin, Thielallee 69-73, 14195 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
38
|
Zhao DM, Xue HH, Chida K, Suda T, Oki Y, Kanai M, Uchida C, Ichiyama A, Nakamura H. Effect of erythromycin on ATP-induced intracellular calcium response in A549 cells. Am J Physiol Lung Cell Mol Physiol 2000; 278:L726-36. [PMID: 10749750 DOI: 10.1152/ajplung.2000.278.4.l726] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
ATP induced a biphasic increase in the intracellular Ca(2+)concentration ([Ca(2+)](i)), an initial spike, and a subsequent plateau in A549 cells. Erythromycin (EM) suppressed the ATP-induced [Ca(2+)](i) spike but only in the presence of extracellular calcium (Ca(2+)(o)). It was ineffective against ATP- and UTP-induced inositol 1,4,5-trisphosphate [Ins(1,4,5)P(3)] formation and UTP-induced [Ca(2+)](i) spike, implying that EM perturbs Ca(2+) influx from the extracellular space rather than Ca(2+)release from intracellular Ca(2+) stores via the G protein-phospholipase C-Ins(1,4,5)P(3) pathway. A verapamil-sensitive, KCl-induced increase in [Ca(2+)](i) and the Ca(2+) influx activated by Ca(2+) store depletion were insensitive to EM. 3'-O-(4-benzoylbenzoyl)-ATP evoked an Ca(2+)(o)-dependent [Ca(2+)](i) response even in the presence of verapamil or the absence of extracellular Na(+), and this response was almost completely abolished by EM pretreatment. RT-PCR analyses revealed that P2X(4) as well as P2Y(2), P2Y(4), and P2Y(6) are coexpressed in this cell line. These results suggest that in A549 cells 1) the coexpressed P2X(4) and P2Y(2)/P2Y(4) subtypes contribute to the ATP-induced [Ca(2+)](i) spike and 2) EM selectively inhibits Ca(2+) influx through the P2X channel. This action of EM may underlie its clinical efficacy in the treatment of airway inflammation.
Collapse
MESH Headings
- 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester/pharmacology
- Adenosine Triphosphate/pharmacology
- Anti-Bacterial Agents/pharmacology
- Calcium/metabolism
- Calcium Channel Agonists/pharmacology
- Calcium Channel Blockers/pharmacology
- Erythromycin/pharmacology
- Estrenes/pharmacology
- Humans
- Inositol 1,4,5-Trisphosphate/metabolism
- Intracellular Membranes/drug effects
- Intracellular Membranes/metabolism
- Lung/metabolism
- Lung/pathology
- Nickel/pharmacology
- Potassium Chloride/pharmacology
- Protein Isoforms/metabolism
- Pyrrolidinones/pharmacology
- Receptors, Purinergic P2/drug effects
- Receptors, Purinergic P2/metabolism
- Receptors, Purinergic P2X2
- Tumor Cells, Cultured
- Uridine Triphosphate/pharmacology
- Verapamil/pharmacology
Collapse
Affiliation(s)
- D M Zhao
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Jensen RL, Petr M, Wurster RD. Calcium channel antagonist effect on in vitro meningioma signal transduction pathways after growth factor stimulation. Neurosurgery 2000; 46:692-702; discussion 702-3. [PMID: 10719866 DOI: 10.1097/00006123-200003000-00032] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE We have previously demonstrated that calcium channel antagonists inhibit the growth of human meningiomas in culture after stimulation with growth factors. This study examined the effects of these drugs on signaling transduction pathways in an attempt to elucidate potential mechanisms by which this growth inhibition is mediated. METHODS Primary cell cultures from patients with intracranial meningiomas were established. Cell growth studies were performed with inhibitors and stimulators of tyrosine kinase signal transduction. Intracellular calcium changes and inositol phosphate production were measured after growth factor exposure, with or without pretreatment by calcium channel antagonists. RESULTS The growth of meningiomas in culture can be inhibited by tyrosine kinase receptor inhibitors. Inhibitors and stimulators of phospholipase C can stimulate or inhibit the growth of in vitro meningiomas, respectively. Calcium channel antagonists inhibit intracellular calcium changes induced by serum and epidermal growth factor. Inositol phosphate production is increased after growth factor stimulation, and calcium channel antagonists potentiate this effect. CONCLUSION Calcium channel antagonists interfere with intracellular signaling pathways of cultured meningioma cells. This inhibition is unrelated to voltage-sensitive calcium channels. The findings of this project may aid in the understanding of the signal transduction mechanisms involved in growth factor-mediated meningioma proliferation and may lead to clinically relevant strategies for growth inhibition.
Collapse
Affiliation(s)
- R L Jensen
- Department of Neurosurgery, University of Utah, Salt Lake City 84112, USA
| | | | | |
Collapse
|
40
|
Ishihara I, Minami Y, Nishizaki T, Matsuoka T, Yamamura H. Activation of calpain precedes morphological alterations during hydrogen peroxide-induced apoptosis in neuronally differentiated mouse embryonal carcinoma P19 cell line. Neurosci Lett 2000; 279:97-100. [PMID: 10674630 DOI: 10.1016/s0304-3940(99)00960-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In order to reveal neurodegeneration elicited by reactive oxygen intermediates (ROI), neuronally differentiated cells from mouse embryonal carcinoma P19 cell line were exposed to hydrogen peroxide (H2O2). Enhanced protein-phosphorylation on tyrosine residues was detectable within 5 min of exposure to H2O2, and gradual rises in intracellular free Ca2+ level and in calpain activity were observed. Furthermore, H2O2 stimulation of differentiated P19 cells for 24 h resulted in morphological alterations in somas as well as neurites. Also, within 6 h of H2O2 treatment DNA fragmentation has been detected. Taken together, these results suggest that oxidative stress induces degradation of cytoskeletal proteins presumably resulting from increased intracellular Ca2+ concentration and subsequent activation of calpain.
Collapse
Affiliation(s)
- I Ishihara
- Department of Biochemistry, Kobe University School of Medicine, Japan
| | | | | | | | | |
Collapse
|
41
|
Caride AJ, Chini EN, Penniston JT, Dousa TP. Selective decrease of mRNAs encoding plasma membrane calcium pump isoforms 2 and 3 in rat kidney. Kidney Int 1999; 56:1818-25. [PMID: 10571790 DOI: 10.1046/j.1523-1755.1999.00736.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Although the existence of multiple isoforms of plasma membrane calcium ATPase (PMCA) is now well documented, their biological functions are not yet known. In this study, we set out to investigate the potential role of PMCA isoforms, previously identified in renal cortical tissue, in tubular reabsorption of calcium (Ca2+). METHODS With use of reverse transcription-polymerase chain reaction analysis, we determined levels of mRNAs encoding isoforms of PMCA1 through PMCA4 in renal cortex, liver, and brain of rats with hypercalciuria induced by feeding with a low-phosphate diet (LPD) as compared with Ca2+-retaining rats that were fed a high-phosphate diet (HPD). RESULTS We observed that in hypercalciuric LPD-fed rats, the mRNAs encoding isoforms PMCA2b and PMCA3(a + c) are significantly lower (Delta approximately-50%) than in HPD-fed hypocalciuric rats, whereas no changes in mRNAs encoding isoforms PMCA1b and PMCA4 were observed, and mRNA encoding calbindin 28 kDa was increased. On the other hand, the content of mRNAs encoding PMCA2b and PMCA3(a + c) in liver and brain, respectively, was not changed. CONCLUSION These findings are evidence that expression of PMCA isoforms in the kidney can be selectively modulated in response to pathophysiologic stimuli. The association of a decrease in mRNA encoding PMCA2b and PMCA3(a + c) with hypercalciuria suggests that the two PMCA isoforms may be operant in tubular reabsorption of Ca2+ and its regulation.
Collapse
Affiliation(s)
- A J Caride
- Department of Biochemistry, Division of Nephrology, Mayo Medical School, Rochester, Minnesota, USA
| | | | | | | |
Collapse
|
42
|
Masiero L, Lapidos KA, Ambudkar I, Kohn EC. Regulation of the RhoA pathway in human endothelial cell spreading on type IV collagen: role of calcium influx. J Cell Sci 1999; 112 ( Pt 19):3205-13. [PMID: 10504326 DOI: 10.1242/jcs.112.19.3205] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have shown that nonvoltage-operated Ca(2+) entry regulates human umbilical vein endothelial cell adhesion, migration, and proliferation on type IV collagen. We now demonstrate a requirement for Ca(2+) influx for activation of the RhoA pathway during endothelial cell spreading on type IV collagen. Reorganization of actin into stress fibers was complete when the cells where fully spread at 90 minutes. No actin organization into stress fibers was seen in endothelial cells plated on type I collagen, indicating a permissive effect of type IV collagen. CAI, a blocker of nonvoltage-operated Ca(2+) channels, prevented development of stress fiber formation in endothelial cells on type IV collagen. This permissive effect was augmented by Ca(2+) influx, as stimulated by 0. 5 microM thapsigargin or 0.1 microM ionomycin, yielding faster development of actin stress fibers. Ca(2+) influx and actin rearrangement in response to thapsigargin and ionomycin were abrogated by CAI. Activated, membrane-bound RhoA is a substrate for C3 exoenzyme which ADP-ribosylates and inactivates RhoA, preventing actin stress fiber formation. Pretreatment of endothelial cells with C3 exoenzyme prevented basal and thapsigargin-augmented stress fiber formation. While regulation of Ca(2+) influx did not alter RhoA translocation, it reduced in vitro ADP-ribosylation of RhoA (P(2)<0. 05), suggesting Ca(2+) influx is needed for RhoA activation during spreading on type IV collagen; no Ca(2+) regulated change in RhoA was seen in HUVECs spreading on type I collagen matrix. Blockade of Ca(2+) influx of HUVEC spread on type IV collagen also reduced tyrosine phosphorylation of p190Rho-GAP and blocked thapsigargin-enhanced binding of p190Rho-GAP to focal adhesion kinase. Thus, Ca(2+) influx is necessary for RhoA activation and for linkage of the RhoA/stress fiber cascade to the focal adhesion/focal adhesion kinase pathway during human umbilical vein endothelial cell spreading on type IV collagen.
Collapse
Affiliation(s)
- L Masiero
- Molecular Signaling Section, Laboratory of Pathology, National Cancer Institute, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
43
|
Abstract
Nonvoltage-gated cation currents, which are activated following stimulation of phospholipase C (PLC), appear to be major modes for Ca2+ and Na+ entry in mammalian cells. The TRPC channels may mediate some of these conductances since their expression in vitro leads to PLC-dependent cation influx. We found that the TRPC3 protein was highly enriched in neurons of the central nervous system (CNS). The temporal and spatial distribution of TRPC3 paralleled that of the neurotrophin receptor TrkB. Activation of TrkB by brain-derived nerve growth factor (BDNF) led to production of a PLC-dependent, nonselective cation conductance in pontine neurons. Evidence is provided that TRPC3 contributes to this current in vivo. Thus, activation of TrkB and PLC leads to a TRPC3-dependent cation influx in CNS neurons.
Collapse
Affiliation(s)
- H S Li
- Department of Biological Chemistry and Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | |
Collapse
|
44
|
Inngjerdingen M, Al-Aoukaty A, Damaj B, Maghazachi AA. Differential utilization of cyclic ADP-ribose pathway by chemokines to induce the mobilization of intracellular calcium in NK cells. Biochem Biophys Res Commun 1999; 262:467-72. [PMID: 10462498 DOI: 10.1006/bbrc.1999.1234] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We show here that cyclic adenosine diphosphate-ribose (cADPR) may be a second messenger for chemokines. Extracts collected from NK cells stimulated with IL-8 for 2 min were incubated with beta-NAD for an additional 2 min (designated as IL-8 extracts). This mixture elevated the mobilization of (Ca(2+))(i) in alpha-toxin permeabilized NK cells. This activity was inhibited upon prior incubation of these cells with ruthenium red but not with heparin. Purified cADPR and not Ins 1,4,5 P(3) desensitized NK cells to the calcium mobilization effect of IL-8 extracts. Further analysis showed that ruthenium red and heparin differentially inhibit RANTES-, SDF-1alpha-, or MDC-induced calcium mobilization in IL-2-activated NK cells. Also, introduction of anti-ryanodine receptor antibody inside streptolysin O-permeabilized NK cells resulted in complete inhibition of MDC, and only partial inhibition of RANTES and SDF-1alpha-induced calcium fluxes in NK cells. Collectively, these results suggest that chemokines may utilize the cADPR/ryanodine receptor pathway as well as the Ins 1,4,5 P(3)/Ins 1,4,5 P(3) receptor signaling pathway to induce the accumulation of calcium in NK cells.
Collapse
Affiliation(s)
- M Inngjerdingen
- Institute of Basic Medical Sciences, University of Oslo, Oslo, N-0317, Norway
| | | | | | | |
Collapse
|
45
|
Buchli R, Ndoye A, Rodriguez JG, Zia S, Webber RJ, Grando SA. Human skin fibroblasts express m2, m4, and m5 subtypes of muscarinic acetylcholine receptors. J Cell Biochem 1999. [DOI: 10.1002/(sici)1097-4644(19990801)74:2<264::aid-jcb11>3.0.co;2-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
46
|
Takemura H, Yamashina S, Segawa A. Millisecond analyses of Ca2+ initiation sites evoked by muscarinic receptor stimulation in exocrine acinar cells. Biochem Biophys Res Commun 1999; 259:656-60. [PMID: 10364474 DOI: 10.1006/bbrc.1999.0818] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
High speed laser confocal microscopy (8 ms/image) was applied to the dissociated parotid acini as a model to study Ca2+ signaling mechanisms in non-excitable exocrine secretory cells. Immunofluorescence microscopy showed the localization of IP3 receptor type 2 along the apical membrane region. Muscarinic stimulation with carbachol evoked a rise in [Ca2+]i that was initiated from apical region and propagated into basal region as Ca2+ waves. This was most clearly observed when extracellular Ca2+ was omitted. Carbachol also triggered the abrupt increase of [Ca2+]i simultaneously at both basal and apical regions in many acini. Within an acinus, each cell responded synchronously. The present results suggest that one Ca2+ initiation site in the rat parotid acinar cell is apical region, corresponding to the localization of IP3 receptors. Another Ca2+ initiation site is basal region, which seems to be related to Ca2+ entry from extracellular medium and/or Ca2+ release from basally located organelles such as nuclei and endoplasmic reticulum.
Collapse
Affiliation(s)
- H Takemura
- Department of Pharmacology, Sapporo Medical University, South 1, West 17, Sapporo, 060-8556, USA.
| | | | | |
Collapse
|
47
|
Lin YT, Wu BN, Horng CF, Huang YC, Hong SJ, Lo YC, Cheng CJ, Chen IJ. Isoeugenolol: a selective beta1-adrenergic antagonist with tracheal and vascular smooth muscle relaxant properties. JAPANESE JOURNAL OF PHARMACOLOGY 1999; 80:127-36. [PMID: 10440531 DOI: 10.1254/jjp.80.127] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Isoeugenolol (1.0, 3.0, 5.0 mg/kg, i.v.) produced a dose-dependent bradycardia and a decrease in blood pressure in anesthetized Wistar rats. Isoeugenolol inhibited the tachycardia effects induced by (-)isoproterenol, but had no blocking effect on the arterial pressor responses induced by (-)phenylephrine. In isolated guinea pig tissues, isoeugenolol antagonized (-)isoproterenol-induced positive inotropic and chronotropic effects on the atria and tracheal relaxations in a concentration-dependent manner. The apparent pA2 values for isoeugenolol on right atria, left atria and trachea were 7.63+/-0.03, 7.89+/-0.12 and 6.12+/-0.05, respectively, indicating that isoeugenolol was a highly selective beta1-adrenoceptor blocker. On the other hand, isoeugenolol produced a mild direct cardiac depression at high concentration and was without intrinsic sympathomimetic activity (ISA). In isolated rat thoracic aorta, isoeugenolol relaxed more potently the contractions induced by (-)phenylephrine (10 microM) and 5-HT (10 microM) than those by high K+ (75 mM). In isolated guinea pig trachea, isoeugenolol attenuated the carbachol (1 microM)-con-tracted trachea more significantly than those contracted with high K+. Furthermore, the binding characteristics of isoeugenolol and various beta-adrenoceptor antagonists were evaluated in [3H]CGP-12177 binding to rat ventricle, lung and interscapular brown adipose tissue (IBAT) membranes. The -log IC50 values of isoeugenolol for predominate beta1-, beta2- and beta3-adrenergic receptor sites were 5.82+/-0.09, 4.74+/-0.05 and 4.73+/-0.12, respectively. In conclusion, isoeugenolol was found to be a highly selective beta1-adrenoceptor antagonist with tracheal and vascular smooth muscle relaxant activities, but was devoid of alpha-adrenoceptor-blocking action.
Collapse
Affiliation(s)
- Y T Lin
- Department of Cardiovascular Surgery, Kaohsiung Medical College, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Hirose K, Kadowaki S, Tanabe M, Takeshima H, Iino M. Spatiotemporal dynamics of inositol 1,4,5-trisphosphate that underlies complex Ca2+ mobilization patterns. Science 1999; 284:1527-30. [PMID: 10348740 DOI: 10.1126/science.284.5419.1527] [Citation(s) in RCA: 401] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Inositol 1,4,5-trisphosphate (IP3) is a second messenger that elicits complex spatiotemporal patterns of calcium ion (Ca2+) mobilization and has essential roles in the regulation of many cellular functions. In Madin-Darby canine kidney epithelial cells, green fluorescent protein-tagged pleckstrin homology domain translocated from the plasma membrane to the cytoplasm in response to increased concentration of IP3. The detection of translocation enabled monitoring of IP3 concentration changes within single cells and revealed spatiotemporal dynamics in the concentration of IP3 synchronous with Ca2+ oscillations and intracellular and intercellular IP3 waves that accompanied Ca2+ waves. Such changes in IP3 concentration may be fundamental to Ca2+ signaling.
Collapse
Affiliation(s)
- K Hirose
- Department of Pharmacology, Faculty of Medicine, University of Tokyo and CREST, Japan Science and Technology Corporation, Tokyo 113-8654, Japan.
| | | | | | | | | |
Collapse
|
49
|
Zhang MI, O'Neil RG. The diversity of calcium channels and their regulation in epithelial cells. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 1999; 46:43-83. [PMID: 10332501 DOI: 10.1016/s1054-3589(08)60469-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- M I Zhang
- Department of Integrative Biology, Pharmacology, and Physiology, University of Texas-Houston Health Science Center 77030, USA
| | | |
Collapse
|
50
|
Luo SF, Pan SL, Wu WB, Wang CC, Chiu CT, Tsai YJ, Yang CM. Bradykinin-induced phosphoinositide hydrolysis and Ca2+ mobilization in canine cultured tracheal epithelial cells. Br J Pharmacol 1999; 126:1341-50. [PMID: 10217527 PMCID: PMC1565906 DOI: 10.1038/sj.bjp.0702431] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. Experiments were designed to differentiate the mechanisms and subtype of kinin receptors mediating the changes in intracellular Ca2+ concentration ([Ca2+]i) induced by bradykinin (BK) in canine cultured tracheal epithelial cells (TECs). 2. BK and Lys-BK caused an initial transient peak of [Ca2+]i in a concentration-dependent manner, with half-maximal stimulation (pEC50) obtained at 7.70 and 7.23, respectively. 3. Kinin B2 antagonists Hoe 140 (10 nM) and [D-Arg0, Hyp3, Thi5,8, D-Phe7]-BK (1 microM) had high affinity in antagonizing BK-induced Ca2+ response with pKB values of 8.90 and 6.99, respectively. 4. Pretreatment of TECs with pertussis toxin (100 ng ml(-1)) or cholera toxin (10 microg ml(-1)) for 24 h did not affect the BK-induced IP accumulation and [Ca2+]i changes in TECs. 5. Removal of Ca2+ by the addition of EGTA or application of Ca2+-channel blockers, verapamil, diltiazem, and Ni2+, inhibited the BK-induced IP accumulation and Ca2+ mobilization, indicating that Ca2+ influx was required for the BK-induced responses. 6. Addition of thapsigargin (TG), which is known to deplete intracellular Ca2+ stores, transiently increased [Ca2+]i in Ca2+-free buffer and subsequently induced Ca2+ influx when Ca2+ was re-added to this buffer. Pretreatment of TECs with TG completely abolished BK-induced initial transient [Ca2+]i, but had slight effect on BK-induced Ca2+ influx. 7. Pretreatment of TECs with SKF96365 and U73122 inhibited the BK-induced Ca2+ influx and Ca2+ release, consistent with the inhibition of receptor-gated Ca2+-channels and phospholipase C in TECs, respectively. 8. These results demonstrate that BK directly stimulates kinin B2 receptors and subsequently phospholipase C-mediated IP accumulation and Ca2+ mobilization via a pertussis toxin-insensitive G protein in canine TECs. These results also suggest that BK-induced Ca2+ influx into the cells is not due to depletion of these Ca2+ stores, as prior depletion of these pools by TG has no effect on the BK-induced Ca2+ influx that is dependent on extracellular Ca2+ in TECs.
Collapse
Affiliation(s)
- Shue-Fen Luo
- Department of Internal Medicine, College of Medicine, Chang Gung University, 259 Wen-Hwa 1 Road, Kwei-San, Tao-Yuan, Taiwan
| | - Shiow-Lin Pan
- Department of Pharmacology, College of Medicine, Chang Gung University, 259 Wen-Hwa 1 Road, Kwei-San, Tao-Yuan, Taiwan
| | - Wen-Bin Wu
- Department of Pharmacology, College of Medicine, Chang Gung University, 259 Wen-Hwa 1 Road, Kwei-San, Tao-Yuan, Taiwan
| | - Chuan-Chwan Wang
- Department of Internal Medicine, College of Medicine, Chang Gung University, 259 Wen-Hwa 1 Road, Kwei-San, Tao-Yuan, Taiwan
| | - Chi-Tso Chiu
- Department of Pharmacology, College of Medicine, Chang Gung University, 259 Wen-Hwa 1 Road, Kwei-San, Tao-Yuan, Taiwan
| | - Yih-Jeng Tsai
- Department of Pharmacology, College of Medicine, Chang Gung University, 259 Wen-Hwa 1 Road, Kwei-San, Tao-Yuan, Taiwan
| | - Chuen-Mao Yang
- Department of Pharmacology, College of Medicine, Chang Gung University, 259 Wen-Hwa 1 Road, Kwei-San, Tao-Yuan, Taiwan
- Author for correspondence:
| |
Collapse
|