1
|
Kaspy MS, Hannaian SJ, Bell ZW, Churchward-Venne TA. The effects of branched-chain amino acids on muscle protein synthesis, muscle protein breakdown and associated molecular signalling responses in humans: an update. Nutr Res Rev 2024; 37:273-286. [PMID: 37681443 DOI: 10.1017/s0954422423000197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Branched-chain amino acids (BCAA: leucine, isoleucine and valine) are three of the nine indispensable amino acids, and are frequently consumed as a dietary supplement by athletes and recreationally active individuals alike. The popularity of BCAA supplements is largely predicated on the notion that they can stimulate rates of muscle protein synthesis (MPS) and suppress rates of muscle protein breakdown (MPB), the combination of which promotes a net anabolic response in skeletal muscle. To date, several studies have shown that BCAA (particularly leucine) increase the phosphorylation status of key proteins within the mechanistic target of rapamycin (mTOR) signalling pathway involved in the regulation of translation initiation in human muscle. Early research in humans demonstrated that BCAA provision reduced indices of whole-body protein breakdown and MPB; however, there was no stimulatory effect of BCAA on MPS. In contrast, recent work has demonstrated that BCAA intake can stimulate postprandial MPS rates at rest and can further increase MPS rates during recovery after a bout of resistance exercise. The purpose of this evidence-based narrative review is to critically appraise the available research pertaining to studies examining the effects of BCAA on MPS, MPB and associated molecular signalling responses in humans. Overall, BCAA can activate molecular pathways that regulate translation initiation, reduce indices of whole-body and MPB, and transiently stimulate MPS rates. However, the stimulatory effect of BCAA on MPS rates is less than the response observed following ingestion of a complete protein source providing the full complement of indispensable amino acids.
Collapse
Affiliation(s)
- Matthew S Kaspy
- Department of Kinesiology and Physical Education, McGill University, 475 Avenue Des Pins H2W 1S4, Montreal, QC, Canada
| | - Sarkis J Hannaian
- Department of Kinesiology and Physical Education, McGill University, 475 Avenue Des Pins H2W 1S4, Montreal, QC, Canada
- Research Institute of the McGill University Health Centre, Glen Site, 1001 Boul. Décarie, H4A 3J1 Montreal, QC, Canada
| | - Zachary W Bell
- Department of Kinesiology and Physical Education, McGill University, 475 Avenue Des Pins H2W 1S4, Montreal, QC, Canada
| | - Tyler A Churchward-Venne
- Department of Kinesiology and Physical Education, McGill University, 475 Avenue Des Pins H2W 1S4, Montreal, QC, Canada
- Division of Geriatric Medicine, McGill University, Montreal General Hospital, Room D6 237.F, 1650 Cedar Avenue, H3G 1A4, Montreal, QC, Canada
- Research Institute of the McGill University Health Centre, Glen Site, 1001 Boul. Décarie, H4A 3J1 Montreal, QC, Canada
| |
Collapse
|
2
|
Akkaya Fırat A, Özel A, Davutoğlu EA, Güngör ZB, Madazlı R. Maternal serum interleukin-1β, FoxO1 and Sestrin2 levels in predicting preterm delivery. J Matern Fetal Neonatal Med 2024; 37:2295807. [PMID: 38105533 DOI: 10.1080/14767058.2023.2295807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 12/12/2023] [Indexed: 12/19/2023]
Abstract
The study aimed to investigate whether serum IL-1β, FoxO1and Sesn2 concentrations differed between threatened preterm labor (TPL) and uncomplicated pregnancies. This study was conducted on 54 women with TPL pregnancies and 26 healthy pregnant women. The TPL group was further divided into two subgroups according to the gestational age at delivery. Patients who gave birth within 48-72 hours after the hospitalization were referred to as preterm delivery (PD) and those who gave birth at ≥37 weeks were referred to as term delivery (TD). Maternal levels of serum IL-1β, FoxO1 and Sesn2 were measured with the use of enzyme-linked immunosorbent assay kits. The mean maternal serum IL-1β and FoxO1 of PD were significantly higher than TD (p<.000*) and the control group (p < .000*). The mean maternal serum IL-1β, FoxO1 level of TD was significantly higher than the control group (p<.000*). The mean maternal serum Sesn2 levels of TD and the control group were significantly higher than the preterm group (p<.000*). The mean maternal serum Sesn2 level of the control group was significantly higher than the TD group (p <.000*). A negative correlation was found between serum concentration of serum IL-1β, and FoxO1 with the gestational week of delivery (r= -0.722, p< .000*for, IL-1β; r = -0.625, p < .000* for FoxO1). A positive correlation was found between the serum concentration of serum Sesn2 with the gestational week of delivery (r = 0.507, p<.000* for sesn2). High serum IL-1β, FoxO1 levels, and low Sesn2 levels may have the potential to be used as biomarkers for the differentiation of PD and TD.
Collapse
Affiliation(s)
- Asuman Akkaya Fırat
- Department of Medical Biochemistry, Istanbul University Cerrahpasa Faculty of Medicine, Istanbul, Türkiye
| | - Aysegül Özel
- Department of Obstetrics and Gynecology, Perinatology Clinic, Istanbul University Cerrahpasa Faculty of Medicine, Istanbul, Türkiye
| | - Ebru Alıcı Davutoğlu
- Department of Obstetrics and Gynecology, Perinatology Clinic, Istanbul University Cerrahpasa Faculty of Medicine, Istanbul, Türkiye
| | - Zeynep Banu Güngör
- Department of Medical Biochemistry, Istanbul University Cerrahpasa Faculty of Medicine, Istanbul, Türkiye
| | - Rıza Madazlı
- Department of Obstetrics and Gynecology, Perinatology Clinic, Istanbul University Cerrahpasa Faculty of Medicine, Istanbul, Türkiye
| |
Collapse
|
3
|
Wu T, Yu Z, Dai J, Li J, Ning F, Liu X, Zhu N, Zhang X. JPH203 alleviates peritoneal fibrosis via inhibition of amino acid-mediated mTORC1 signaling. Biochem Biophys Res Commun 2024; 734:150656. [PMID: 39362029 DOI: 10.1016/j.bbrc.2024.150656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/26/2024] [Accepted: 09/03/2024] [Indexed: 10/05/2024]
Abstract
BACKGROUND AND AIMS The mesothelial-mesenchymal transition (MMT) of mesothelial cells has been recognized as a critical process during progression of peritoneal fibrosis (PF). Despite its crucial role in amino acid transport and metabolism, the involvement of L-type amino acid transporter 1 (LAT1) and the potential therapeutic role of its inhibitor, JPH203, in fibrotic diseases remain unexplored. Considering the paucity of research on amino acid-mediated mTORC1 activation in PF, our study endeavors to elucidate the protective effects of JPH203 against PF and explore the involvement of amino acid-mediated mTORC1 signaling in this context. METHODS We established the transforming growth factor beta 1 (TGF-β1) induced MMT model in primary human mesothelial cells and the peritoneal dialysis fluid (PDF) induced PF model in mice. The therapeutic effects of JPH203 on PF were then examined on these two models by real-time quantitative polymerase chain reaction, western blotting, immunofluorescence staining, Masson's trichrome staining, H&E staining, picro-sirius red staining, and immunohistochemistry. The involvement of amino acid-mediated mTORC1 signaling was screened by RNA sequencing and further verified by western blotting in vitro. RESULTS LAT1 was significantly upregulated and JPH203 markedly attenuated fibrotic phenotype both in vitro and in vivo. RNA-seq unveiled a significant enrichment of mTOR signaling pathway in response to JPH203 treatment. Western blotting results indicated that JPH203 alleviates PF by inhibiting amino acid-mediated mTORC1 signaling, which differs from the direct inhibition observed with rapamycin. CONCLUSION JPH203 alleviates PF by inhibiting amino acid-mediated mTORC1 signaling.
Collapse
Affiliation(s)
- Tiangang Wu
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Zanzhe Yu
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Junhao Dai
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Jiayang Li
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Fengling Ning
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Xin Liu
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Nan Zhu
- Department of Nephrology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Xuemei Zhang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China; School of Pharmacy, East China Normal University, Shanghai, China.
| |
Collapse
|
4
|
Weston AH, Fernandes T, de Oliveira M, Gaskin S, Pilonero T, Hanigan MD. Effects of isoleucine, lysine, valine, and a group of nonessential amino acids on mammary amino acid metabolism in lactating dairy cows. J Dairy Sci 2024; 107:9155-9175. [PMID: 39067747 DOI: 10.3168/jds.2024-24774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 06/27/2024] [Indexed: 07/30/2024]
Abstract
Intracellular AA regulate milk protein synthesis within the mammary gland by modifying mammary plasma flow (MPF) and AA transporter activity. Amino acid transporters catalyze translocation using Na+ gradient, substrate gradient (uniporters), and exchange mechanisms; further, they exhibit specificity for individual AA or groups of AA with similar side-chain properties within each transport system. Nonessential AA are actively transported through Na+-dependent transporters and, thus, are often used as intracellular currencies for EAA transport through exchange transporters. Therefore, it was hypothesized that individual EAA supplementation would compete with other EAA for shared transporters, and supplementation with Ala, Gln, and Gly would stimulate EAA transport through exchange transporters. Ten primiparous lactating dairy cows were divided into 2 groups based on milk production and were randomly assigned to treatment sequences within 2 balanced 5 × 5 Latin squares by group. Period length was 14 d. Treatments were 9-d jugular infusions of (1) saline; (2) 34.5 g of Val per day; (3) a ratio of 32.7 g of Ala to 40 g of Gln to 26.7 g of Gly per day (AQG); (4) 43 g of Lys per day; or (5) 33.5 g of Ile per day. All cows were fed a common base diet formulated to contain 15.0% CP. Infusions of Ile, Lys, or AQG did not affect milk protein or milk production; however, Val infusion decreased both. The effects of Val infusion on milk protein production appeared to be partially driven by decreased DMI. The decline in milk protein percentage indicated that milk lactose production was also affected. Additionally, Val infusion increased MPF efficiency (MPF/milk; L/L) by approximately 44%. Infusion of Val tended to decrease or decreased mammary net uptakes of Lys, Leu, Met, and total AA. Infusion of Ile tended to increase its mammary net uptakes but did not affect any other AA. Infusions of Lys and AQG did not affect any mammary net uptakes. Infusion of Val tended to decrease Phe and total NEAA mammary clearance rates. Infusion with AQG stimulated Tyr clearance rates and tended to decline system N mammary clearance rates. Ratios of branched-chain AA mammary uptake to milk protein output (U:O) did not differ from 1 for Val-infused cows, which indicated that little intramammary catabolism was occurring. Additionally, the average NEAA U:O in response to all treatments except Val was 0.70, but Val-infused cows had NEAA U:O that averaged 0.09, indicating increased synthesis within the glands. The effects of Val on mammary net clearance rates of multiple EAA support the incorporation of AA limitations in ration optimizers to prevent AA imbalances. It is possible that oversupplementation of EAA other than Val may also decrease DMI and mammary activity. Identifying efficiency apexes for each of the EAA will allow more precise diet formulation and supplementation, leading to improved production efficiency.
Collapse
Affiliation(s)
- A H Weston
- School of Animal Sciences, Virginia Tech, Blacksburg, VA 24060
| | - T Fernandes
- School of Animal Sciences, Virginia Tech, Blacksburg, VA 24060
| | - M de Oliveira
- School of Animal Sciences, Virginia Tech, Blacksburg, VA 24060
| | - S Gaskin
- School of Animal Sciences, Virginia Tech, Blacksburg, VA 24060
| | - T Pilonero
- School of Animal Sciences, Virginia Tech, Blacksburg, VA 24060
| | - M D Hanigan
- School of Animal Sciences, Virginia Tech, Blacksburg, VA 24060.
| |
Collapse
|
5
|
Seale B, Slotabec L, Nguyen JD, Wang H, Patterson C, Filho F, Rouhi N, Adenawoola MI, Li J. Sestrin2 serves as a scaffold protein to maintain cardiac energy and metabolic homeostasis during pathological stress. FASEB J 2024; 38:e70106. [PMID: 39404019 DOI: 10.1096/fj.202401404r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/23/2024] [Accepted: 09/30/2024] [Indexed: 10/25/2024]
Abstract
Cardiovascular diseases (CVDs) are a leading cause of morbidity and mortality worldwide. Metabolic imbalances and pathological stress often contribute to increased mortality. Sestrin2 (Sesn2) is a stress-inducible protein crucial in maintaining cardiac energy and metabolic homeostasis under pathological conditions. Sesn2 is upregulated in response to various stressors, including oxidative stress, hypoxia, and energy depletion, and mediates multiple cellular pathways to enhance antioxidant defenses, promote autophagy, and inhibit inflammation. This review explores the mechanisms through which Sesn2 regulates these pathways, focusing on the AMPK-mTORC1, Sesn2-Nrf2, and HIF1α-Sesn2 pathways, among others. We can identify the potential therapeutic targets for treating CVDs and related metabolic disorders by comprehending these complex mechanisms. Sesn2's unique ability to respond thoroughly to metabolic challenges, oxidative stress, and inflammation makes it a promising prospect for enhancing cardiac health and resilience against pathological stress.
Collapse
Affiliation(s)
- Blaise Seale
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Lily Slotabec
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, Mississippi, USA
- Research, G.V. (Sonny) Montgomery VA Medical Center, Jackson, Mississippi, USA
| | - Jennie D Nguyen
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Hao Wang
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Cory Patterson
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Fernanda Filho
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Nadiyeh Rouhi
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Michael I Adenawoola
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Ji Li
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, Mississippi, USA
- Research, G.V. (Sonny) Montgomery VA Medical Center, Jackson, Mississippi, USA
| |
Collapse
|
6
|
Sousa JN, Sousa BVDO, Santos EPD, Ribeiro GHM, Pereira APM, Guimarães VHD, Queiroz LDRP, Motta-Santos D, Farias LC, Guimarães ALS, de Paula AMB, Santos SHS. Effects of gallic acid and physical training on liver damage, force, and anxiety in obese mice: Hepatic modulation of Sestrin 2 (SESN2) and PGC-α expression. Gene 2024; 926:148606. [PMID: 38788813 DOI: 10.1016/j.gene.2024.148606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 05/14/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
Obesity and overweight are multifactorial diseases affecting more than one-third of the world's population. Physical inactivity contributes to a positive energy balance and the onset of obesity. Exercise combined with a balanced diet is an effective non-pharmacological strategy to improve obesity-related disorders. Gallic acid (GA), is a natural endogenous polyphenol found in a variety of fruits, vegetables, and wines, with beneficial effects on energetic homeostasis. The present study aims to investigate the effects of exercise training on obese mice supplemented with GA. Animal experimentation was performed with male Swiss mice divided into five groups: ST (standard control), HFD (obese control), HFD + GA (GA supplement), HFD + Trained (training), and HFD + GA + Trained (GA and training). The groups are treated for eight weeks with 200 mg/kg/body weight of the feed compound and, if applicable, physical training. The main findings of the present study show that GA supplementation improves liver fat, body weight, adiposity, and plasma insulin levels. In addition, animals treated with the GA and a physical training program demonstrate reduced levels of anxiety. Gene expression analyses show that Sesn2 is activated via PGC-1α independent of the GATOR2 protein, which is activated by GA in the context of physical activity. These data are corroborated by molecular docking analysis, demonstrating the interaction of GA with GATOR2. The present study contributes to understanding the metabolic effects of GA and physical training and demonstrates a new hepatic mechanism of action via Sestrin 2 and PGC-1α.
Collapse
Affiliation(s)
- Jaciara Neves Sousa
- Laboratory of Health Science, Post graduate Program in Health Science, Universidade Estadual de Montes Claros (Unimontes), Minas Gerais, Brazil
| | - Berenilde Valéria de Oliveira Sousa
- Laboratory of Health Science, Post graduate Program in Health Science, Universidade Estadual de Montes Claros (Unimontes), Minas Gerais, Brazil
| | - Eduardo Pinheiro Dos Santos
- Laboratory of Health Science, Post graduate Program in Health Science, Universidade Estadual de Montes Claros (Unimontes), Minas Gerais, Brazil
| | - Guilherme Henrique Mendes Ribeiro
- Laboratory of Health Science, Post graduate Program in Health Science, Universidade Estadual de Montes Claros (Unimontes), Minas Gerais, Brazil; Institute of Agricultural Sciences (ICA), Post graduate Program in Food and Health, Universidade Federal de Minas Gerais (UFMG), Montes Claros, Minas Gerais, Brazil
| | - Ana Paula Maciel Pereira
- Laboratory of Health Science, Post graduate Program in Health Science, Universidade Estadual de Montes Claros (Unimontes), Minas Gerais, Brazil; Institute of Agricultural Sciences (ICA), Post graduate Program in Food and Health, Universidade Federal de Minas Gerais (UFMG), Montes Claros, Minas Gerais, Brazil
| | - Victor Hugo Dantas Guimarães
- Laboratory of Health Science, Post graduate Program in Health Science, Universidade Estadual de Montes Claros (Unimontes), Minas Gerais, Brazil
| | - Lorena Dos Reis Pereira Queiroz
- Laboratory of Health Science, Post graduate Program in Health Science, Universidade Estadual de Montes Claros (Unimontes), Minas Gerais, Brazil
| | - Daisy Motta-Santos
- Sports Department, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Lucyana Conceição Farias
- Laboratory of Health Science, Post graduate Program in Health Science, Universidade Estadual de Montes Claros (Unimontes), Minas Gerais, Brazil
| | - André Luiz Sena Guimarães
- Laboratory of Health Science, Post graduate Program in Health Science, Universidade Estadual de Montes Claros (Unimontes), Minas Gerais, Brazil
| | - Alfredo Maurício Batista de Paula
- Laboratory of Health Science, Post graduate Program in Health Science, Universidade Estadual de Montes Claros (Unimontes), Minas Gerais, Brazil
| | - Sérgio Henrique Sousa Santos
- Laboratory of Health Science, Post graduate Program in Health Science, Universidade Estadual de Montes Claros (Unimontes), Minas Gerais, Brazil; Institute of Agricultural Sciences (ICA), Post graduate Program in Food and Health, Universidade Federal de Minas Gerais (UFMG), Montes Claros, Minas Gerais, Brazil.
| |
Collapse
|
7
|
Liu Z, Wang H, Liang Y, Liu M, Huang Q, Wang M, Zhou J, Bu Q, Zhou H, Lu L. E2F2 Reprograms Macrophage Function By Modulating Material and Energy Metabolism in the Progression of Metabolic Dysfunction-Associated Steatohepatitis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2410880. [PMID: 39465673 DOI: 10.1002/advs.202410880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 09/30/2024] [Indexed: 10/29/2024]
Abstract
Macrophages are essential for the development of steatosis, hepatic inflammation, and fibrosis in metabolic dysfunction-associated steatohepatitis(MASH). However, the roles of macrophage E2F2 in the progression of MASH have not been elucidated. This study reveals that the expression of macrophage E2F2 is dramatically downregulated in MASH livers from mice and humans, and that this expression is adversely correlated with the severity of the disease. Myeloid-specific E2F2 depletion aggravates intrahepatic inflammation, hepatic stellate cell activation, and hepatocyte lipid accumulation during MASH progression. Mechanistically, E2F2 can inhibit the SLC7A5 transcription directly. E2F2 deficiency upregulates the expression of SLC7A5 to mediate amino acids flux, resulting in enhanced glycolysis, impaired mitochondrial function, and increased macrophages proinflammatory response in a Leu-mTORC1-dependent manner. Moreover, bioinformatics analysis and CUT &Tag assay identify the direct binding of Nrf2 to E2F2 promoter to promote its transcription and nuclear translocation. Genetic or pharmacological activation of Nrf2 effectively activates E2F2 to attenuate the MASH progression. Finally, patients treated with CDK4/6 inhibitors demonstrate reduced E2F2 activity but increased SLC7A5 activity in PBMCs. These findings indicated macrophage E2F2 suppresses MASH progression by reprogramming amino acid metabolism via SLC7A5- Leu-mTORC1 signaling pathway. Activating E2F2 holds promise as a therapeutic strategy for MASH.
Collapse
Affiliation(s)
- Zheng Liu
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Hao Wang
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Yuan Liang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, & Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, 210029, China
- School of Biological Science & Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Mu Liu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, & Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, 210029, China
| | - Qiyuan Huang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, & Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, 210029, China
| | - Mingming Wang
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Jinren Zhou
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, & Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, 210029, China
| | - Qingfa Bu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, & Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, 210029, China
| | - Haoming Zhou
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, & Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, 210029, China
| | - Ling Lu
- Affiliated Hospital of Xuzhou Medical University, Xuzhou, 220005, China
| |
Collapse
|
8
|
Mansoori S, Ho MYM, Ng KKW, Cheng KKY. Branched-chain amino acid metabolism: Pathophysiological mechanism and therapeutic intervention in metabolic diseases. Obes Rev 2024:e13856. [PMID: 39455059 DOI: 10.1111/obr.13856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 09/02/2024] [Accepted: 10/01/2024] [Indexed: 10/28/2024]
Abstract
Branched-chain amino acids (BCAAs), including leucine, isoleucine, and valine, are essential for maintaining physiological functions and metabolic homeostasis. However, chronic elevation of BCAAs causes metabolic diseases such as obesity, type 2 diabetes (T2D), and metabolic-associated fatty liver disease (MAFLD). Adipose tissue, skeletal muscle, and the liver are the three major metabolic tissues not only responsible for controlling glucose, lipid, and energy balance but also for maintaining BCAA homeostasis. Under obese and diabetic conditions, different pathogenic factors like pro-inflammatory cytokines, lipotoxicity, and reduction of adiponectin and peroxisome proliferator-activated receptors γ (PPARγ) disrupt BCAA metabolism, leading to excessive accumulation of BCAAs and their downstream metabolites in metabolic tissues and circulation. Mechanistically, BCAAs and/or their downstream metabolites, such as branched-chain ketoacids (BCKAs) and 3-hydroxyisobutyrate (3-HIB), impair insulin signaling, inhibit adipogenesis, induce inflammatory responses, and cause lipotoxicity in the metabolic tissues, resulting in multiple metabolic disorders. In this review, we summarize the latest studies on the metabolic regulation of BCAA homeostasis by the three major metabolic tissues-adipose tissue, skeletal muscle, and liver-and how dysregulated BCAA metabolism affects glucose, lipid, and energy balance in these active metabolic tissues. We also summarize therapeutic approaches to restore normal BCAA metabolism as a treatment for metabolic diseases.
Collapse
Affiliation(s)
- Shama Mansoori
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Melody Yuen-Man Ho
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Kelvin Kwun-Wang Ng
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Kenneth King-Yip Cheng
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
- Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China
| |
Collapse
|
9
|
Xia K, Hui Y, Zhang L, Qiu Q, Zhong J, Chen H, Liu X, Wang L, Chen Z. SETDB1 targeting SESN2 regulates mitochondrial damage and oxidative stress in renal ischemia-reperfusion injury. BMC Biol 2024; 22:246. [PMID: 39443993 PMCID: PMC11515507 DOI: 10.1186/s12915-024-02048-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 10/16/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND The role of histone methyltransferase SETDB1 in renal ischemia-reperfusion (I/R) injury has not been explored yet. This study aims to investigate the potential mechanism of SETDB1 in regulating renal I/R injury and its impact on mitochondrial damage and oxidative stress. METHODS The in vivo model of renal I/R in mice and the in vitro model of hypoxia/reoxygenation (H/R) in human renal tubular epithelial cells (HK-2) were constructed to detect the expression of SETDB1. Next, the specific inhibitor (R,R)-59 and knockdown viruses were used to inhibit SETDB1 and verify its effects on mitochondrial damage and oxidative stress. Chromatin immunoprecipitation (ChIP) and coimmunoprecipitation (CoIP) were implemented to explore the in-depth mechanism of SETDB1 regulating renal I/R injury. RESULTS The study found that SETDB1 had a regulatory role in mitochondrial damage and oxidative stress during renal I/R injury. Notably, SESN2 was identified as a target of SETDB1, and its expression was under the influence of SETDB1. Besides, SESN2 mediated the regulation of SETDB1 on renal I/R injury. Through deeper mechanistic studies, we uncovered that SETDB1 collaborates with heterochromatin HP1β, facilitating the labeling of H3K9me3 on the SESN2 promoter and impeding SESN2 expression. CONCLUSIONS The SETDB1/HP1β-SESN2 axis emerges as a potential therapeutic strategy for mitigating renal I/R injury.
Collapse
Affiliation(s)
- Kang Xia
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Wuhan University Institute of Urological Disease, Wuhan, Hubei, China
| | - Yumin Hui
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Wuhan University Institute of Urological Disease, Wuhan, Hubei, China
| | - Long Zhang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Wuhan University Institute of Urological Disease, Wuhan, Hubei, China
| | - Qiangmin Qiu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Wuhan University Institute of Urological Disease, Wuhan, Hubei, China
| | - Jiacheng Zhong
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Wuhan University Institute of Urological Disease, Wuhan, Hubei, China
| | - Hui Chen
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Wuhan University Institute of Urological Disease, Wuhan, Hubei, China
| | - Xiuheng Liu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.
- Wuhan University Institute of Urological Disease, Wuhan, Hubei, China.
| | - Lei Wang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.
- Wuhan University Institute of Urological Disease, Wuhan, Hubei, China.
| | - Zhiyuan Chen
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.
- Wuhan University Institute of Urological Disease, Wuhan, Hubei, China.
| |
Collapse
|
10
|
Wohlfert AJ, Phares J, Granholm AC. The mTOR Pathway: A Common Link Between Alzheimer's Disease and Down Syndrome. J Clin Med 2024; 13:6183. [PMID: 39458132 PMCID: PMC11508835 DOI: 10.3390/jcm13206183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/12/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Down syndrome (DS) is a chromosomal condition that causes many systemic dysregulations, leading to several possible age-related diseases including Alzheimer's disease (AD). This may be due to the triplication of the Amyloid precursor protein (APP) gene or other alterations in mechanistic pathways, such as the mTOR pathway. Impairments to upstream regulators of mTOR, such as insulin, PI3K/AKT, AMPK, and amino acid signaling, have been linked to amyloid beta plaques (Aβ) and neurofibrillary tangles (NFT), the most common AD pathologies. However, the mechanisms involved in the progression of pathology in human DS-related AD (DS-AD) are not fully investigated to date. Recent advancements in omics platforms are uncovering new insights into neurodegeneration. Genomics, spatial transcriptomics, proteomics, and metabolomics are novel methodologies that provide more data in greater detail than ever before; however, these methods have not been used to analyze the mTOR pathways in connection to DS-AD. Using these new techniques can unveil unexpected insights into pathological cellular mechanisms through an unbiased approach.
Collapse
Affiliation(s)
- Abigail J. Wohlfert
- Department of Modern Human Anatomy and Cell & Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| | - Jeremiah Phares
- Department of Neurosurgery, University of Colorado Anschutz Medical Center, Aurora, CO 80045, USA;
| | - Ann-Charlotte Granholm
- Department of Neurosurgery, University of Colorado Anschutz Medical Center, Aurora, CO 80045, USA;
| |
Collapse
|
11
|
Kolaczkowski OM, Goodson BA, Vazquez VM, Jia J, Bhat AQ, Kim TH, Pu J. Synergistic Role of Amino Acids in Enhancing mTOR Activation Through Lysosome Positioning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.12.618047. [PMID: 39416115 PMCID: PMC11482915 DOI: 10.1101/2024.10.12.618047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Lysosome positioning, or lysosome cellular distribution, is critical for lysosomal functions in response to both extracellular and intracellular cues. Amino acids, as essential nutrients, have been shown to promote lysosome movement toward the cell periphery. Peripheral lysosomes are involved in processes such as lysosomal exocytosis, cell migration, and metabolic signaling-functions that are particularly important for cancer cell motility and growth. However, the specific types of amino acids that regulate lysosome positioning, their underlying mechanisms, and their connection to amino acid-regulated metabolic signaling remain poorly understood. In this study, we developed a high-content imaging system for unbiased, quantitative analysis of lysosome positioning. We examined the 15 amino acids present in cell culture media and found that 10 promoted lysosome redistribution toward the cell periphery to varying extents, with aromatic amino acids showing the strongest effect. This redistribution was mediated by promoting outward transport through SLC38A9-BORC-kinesin 1/3 axis and simultaneously reducing inward transport via inhibiting the recruitment of Rab7 and JIP4 onto lysosomes. When examining the effects of amino acids on mTOR activation-a central regulator of cell metabolism-we found that the amino acids most strongly promoting lysosome dispersal, such as phenylalanine, did not activate mTOR on their own. However, combining phenylalanine with arginine, which activates mTOR without affecting lysosome positioning, synergistically enhanced mTOR activity. This synergy was lost when lysosomes failed to localize to the cell periphery, as observed in kinesin 1/3 knockout (KO) cells. Furthermore, breast cancer cells exhibited heightened sensitivity to phenylalanine-induced lysosome dispersal compared to noncancerous breast cells. Inhibition of LAT1, the amino acid transporter responsible for phenylalanine uptake, reduced peripheral lysosomes and impaired cancer cell migration and proliferation, highlighting the importance of lysosome positioning in these coordinated cellular activities. In summary, amino acid-regulated lysosome positioning and mTOR signaling depend on distinct sets of amino acids. Combining lysosome-dispersing amino acids with mTOR-activating amino acids synergistically enhances mTOR activation, which may be particularly relevant in cancer cells.
Collapse
Affiliation(s)
- Oralia M. Kolaczkowski
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, 87131, USA
| | - Baley A. Goodson
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, 87131, USA
| | - Valeria Montenegro Vazquez
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, 87131, USA
| | - Jingyue Jia
- Autophagy, Inflammation, and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, 87131, USA
- Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, 87131, USA
| | - Aadil Qadir Bhat
- Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, 87131, USA
- Comprehensive Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, 87131, USA
| | - Tae-Hyung Kim
- Autophagy, Inflammation, and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, 87131, USA
- Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, 87131, USA
- Comprehensive Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, 87131, USA
| | - Jing Pu
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, 87131, USA
- Comprehensive Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, 87131, USA
| |
Collapse
|
12
|
Dyachenko EI, Bel’skaya LV. Salivary Transmembrane Mucins of the MUC1 Family (CA 15-3, CA 27.29, MCA) in Breast Cancer: The Effect of Human Epidermal Growth Factor Receptor 2 (HER2). Cancers (Basel) 2024; 16:3461. [PMID: 39456554 PMCID: PMC11506585 DOI: 10.3390/cancers16203461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/01/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
The MUC1 family of transmembrane glycoproteins (CA 15-3, CA 27.29, MCA) is aberrantly expressed among patients with breast cancer. Objectives: to measure the level of degradation products of MUC1, including CA 15-3, CA 27.29, and MCA, in the saliva of breast cancer patients and to describe the biochemical processes that influence their expression and the regulation of their biological functions. Methods: The case-control study included three groups (breast cancer, fibroadenomas, and healthy controls). All study participants provided saliva samples strictly before starting treatment. The levels of MUC1, including CA 15-3, CA 27.29, and MCA, free progesterone and estradiol, cytokines (MCP-1, VEGF, TNF-α, IL-1β, IL-2, IL-4, IL-6, IL-8, IL-10, IL-18), and amino acids (Asp, Gln, Gly, His, Leu + Ile, Orn, Phe, Pro, Tyr) were determined. Results: It was shown that the levels of the MUC1 family in the saliva of patients with HER2-positive breast cancer were significantly lower compared to the control group. The level of pro-inflammatory cytokines and the level of free estradiol affected the expression of MUC1. We obtained a reliable relationship between the aggressive nature of tumor growth, an increased level of pro-inflammatory cytokines, a low level of free estradiol, and the suppressed expression of salivary MUC1. Conclusions: Among patients with aggressive breast cancer, a high level of pro-inflammatory cytokines, and a low level of free estradiol, there was an inhibition of the expression of pathologically unchanged glycoprotein MUC1 in saliva.
Collapse
Affiliation(s)
| | - Lyudmila V. Bel’skaya
- Biochemistry Research Laboratory, Omsk State Pedagogical University, 644099 Omsk, Russia;
| |
Collapse
|
13
|
Arentson-Lantz EJ, Von Ruff Z, Connolly G, Albano F, Kilroe SP, Wacher A, Campbell WW, Paddon-Jones D. Meals Containing Equivalent Total Protein from Foods Providing Complete, Complementary, or Incomplete Essential Amino Acid Profiles do not Differentially Affect 24-h Skeletal Muscle Protein Synthesis in Healthy, Middle-Aged Women. J Nutr 2024:S0022-3166(24)01077-0. [PMID: 39396760 DOI: 10.1016/j.tjnut.2024.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 10/15/2024] Open
Abstract
BACKGROUND Dietary protein quality can be assessed by skeletal muscle protein synthesis (MPS) stimulation. Limited knowledge exists on how consuming isonitrogenous meals with varied protein qualities affects postprandial and 24-h MPS. OBJECTIVES We assessed the effects of protein quality and complementary proteins on MPS. We hypothesized that meals containing a moderate amount of high-quality, complete protein would stimulate postprandial and 24-h MPS. Meals containing two complementary, plant-based incomplete proteins would stimulate MPS less, and meals containing plant-based incomplete proteins at each meal, but complementary over 24 h would not stimulate MPS. METHODS This quasi-experimental study included a randomized, crossover design to assess protein quality and a nonrandomized low-protein control. We measured postprandial and 24-h MPS responses of healthy middle-aged women (n = 9, age 56 ± 4 y), to 3 dietary conditions: isonitrogenous meals containing 23 g protein/meal from 1) complete protein (lean beef), 2) 2 incomplete, but complementary protein sources (navy/black beans and whole wheat bread), and 3) single incomplete protein sources (black beans or whole wheat bread at 1 meal), but providing a complete amino acid profile over 24 h. In the low-protein group women (n = 8, 54 ± 5 y) consumed a single breakfast meal containing 5 g of protein. Venous blood and vastus lateralis samples were obtained during primed, constant infusions of L-[ring-13C6]phenylalanine to measure mixed muscle fractional synthetic rates (FSR). RESULTS Meals containing complete, complementary, or incomplete proteins did not differentially influence FSR responses after breakfast (P = 0.90) or 24 h (P = 0.38). At breakfast, the complete (P = 0.030) and complementary (P = 0.031) protein meals, but not the incomplete protein meal (P = 0.38), had greater FSR responses compared with the low-protein control meal. CONCLUSIONS Isonitrogenous meals containing a moderate serving of total protein from foods providing complete, complementary, or incomplete essential amino acid profiles do not differentially stimulate muscle protein synthesis after a meal and daily. TRIAL REGISTRATION NUMBER This clinical trial was registered at clinicaltrials.gov as NCT03816579. URL: https://www. CLINICALTRIALS gov/ct2/show/NCT03816579?term=NCT03816579&draw=2&rank=1.
Collapse
Affiliation(s)
- Emily J Arentson-Lantz
- Department of Nutrition Sciences and Health Behavior, University of Texas Medical Branch, Galveston, TX, United States; Center for Health Promotion, Performance and Rehabilitation Science, University of Texas Medical Branch, Galveston, TX, United States.
| | - Zachary Von Ruff
- Center for Health Promotion, Performance and Rehabilitation Science, University of Texas Medical Branch, Galveston, TX, United States
| | - Gavin Connolly
- Department of Nutrition Science, Purdue University, West Lafayette, IN, United States
| | - Frank Albano
- Department of Nutrition Sciences and Health Behavior, University of Texas Medical Branch, Galveston, TX, United States
| | - Sean P Kilroe
- Center for Health Promotion, Performance and Rehabilitation Science, University of Texas Medical Branch, Galveston, TX, United States
| | - Adam Wacher
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, United States
| | - Wayne W Campbell
- Department of Nutrition Science, Purdue University, West Lafayette, IN, United States
| | - Douglas Paddon-Jones
- Department of Nutrition Sciences and Health Behavior, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
14
|
Fernandes SA, Angelidaki DD, Nüchel J, Pan J, Gollwitzer P, Elkis Y, Artoni F, Wilhelm S, Kovacevic-Sarmiento M, Demetriades C. Spatial and functional separation of mTORC1 signalling in response to different amino acid sources. Nat Cell Biol 2024:10.1038/s41556-024-01523-7. [PMID: 39385049 DOI: 10.1038/s41556-024-01523-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 09/09/2024] [Indexed: 10/11/2024]
Abstract
Amino acid (AA) availability is a robust determinant of cell growth through controlling mechanistic/mammalian target of rapamycin complex 1 (mTORC1) activity. According to the predominant model in the field, AA sufficiency drives the recruitment and activation of mTORC1 on the lysosomal surface by the heterodimeric Rag GTPases, from where it coordinates the majority of cellular processes. Importantly, however, the teleonomy of the proposed lysosomal regulation of mTORC1 and where mTORC1 acts on its effector proteins remain enigmatic. Here, by using multiple pharmacological and genetic means to perturb the lysosomal AA-sensing and protein recycling machineries, we describe the spatial separation of mTORC1 regulation and downstream functions in mammalian cells, with lysosomal and non-lysosomal mTORC1 phosphorylating distinct substrates in response to different AA sources. Moreover, we reveal that a fraction of mTOR localizes at lysosomes owing to basal lysosomal proteolysis that locally supplies new AAs, even in cells grown in the presence of extracellular nutrients, whereas cytoplasmic mTORC1 is regulated by exogenous AAs. Overall, our study substantially expands our knowledge about the topology of mTORC1 regulation by AAs and hints at the existence of distinct, Rag- and lysosome-independent mechanisms that control its activity at other subcellular locations. Given the importance of mTORC1 signalling and AA sensing for human ageing and disease, our findings will probably pave the way towards the identification of function-specific mTORC1 regulators and thus highlight more effective targets for drug discovery against conditions with dysregulated mTORC1 activity in the future.
Collapse
Affiliation(s)
- Stephanie A Fernandes
- Max Planck Institute for Biology of Ageing, Cologne, Germany
- Cologne Graduate School of Ageing Research, Cologne, Germany
| | | | - Julian Nüchel
- Max Planck Institute for Biology of Ageing, Cologne, Germany
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany
| | - Jiyoung Pan
- Max Planck Institute for Biology of Ageing, Cologne, Germany
- Cologne Graduate School of Ageing Research, Cologne, Germany
| | | | - Yoav Elkis
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Filippo Artoni
- Max Planck Institute for Biology of Ageing, Cologne, Germany
- Cologne Graduate School of Ageing Research, Cologne, Germany
| | - Sabine Wilhelm
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | | | - Constantinos Demetriades
- Max Planck Institute for Biology of Ageing, Cologne, Germany.
- Cologne Graduate School of Ageing Research, Cologne, Germany.
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany.
| |
Collapse
|
15
|
Cui L, Li Z, Liu X, Li Z, Li J, Guo Y, Zhou H, Yang X, Zhang Z, Gao Y, Ren L, Hua L. Association between serum branched chain amino acids, mammalian target of rapamycin levels and the risk of gestational diabetes mellitus: a 1:1 matched case control study. BMC Pregnancy Childbirth 2024; 24:633. [PMID: 39358711 PMCID: PMC11446021 DOI: 10.1186/s12884-024-06815-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 09/10/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND To investigate the association between serum branched chain amino acids (BCAAs), mammalian target of rapamycin (mTOR) levels and the risk of gestational diabetes mellitus (GDM) in pregnant women. METHODS 1:1 matched case-control study was conducted including 66 GDM patients and 66 matched healthy pregnant women (± 3 years) in 2019, in China. Fasting bloods of pregnant women were collected in pregnancy at 24 ~ 28 weeks gestation. And the serum levels of valine (Val), leucine (Leu), isoleucine (Ile) and mTOR were determined. Conditional logistic regressions models were used to estimate the associations of BCAAs and mTOR concentrations with the risk of GDM. RESULTS Concentrations of serum Val and mTOR in cases were significantly higher than that in controls (P < 0.05). After adjusted for the confounded factors, both the second tertile and the third tertile of mTOR increased the risk of GDM (OR = 11.771, 95%CI: 3.949-35.083; OR = 4.869 95%CI: 1.742-13.611, respectively) compared to the first tertile of mTOR. However, the second tertile of serum Val (OR = 0.377, 95%CI:0.149-0.954) and the second tertile of serum Leu (OR = 0.322, 95%CI: 0.129-0.811) decreased the risk of GDM compared to the first tertile of serum Val and Leu, respectively. The restricted cubic spline indicated a significant nonlinear association between the serum levels of mTOR and the risk of GDM (P values for non-linearity = 0.0058). CONCLUSION We confirmed the association of higher mTOR with the increased risk of GDM in pregnant women. Pregnant women who were in the certain range level of Val and Leu were at lower risk of GDM. Our findings provided epidemiological evidence for the relation of serum BCAAs and mTOR with risk of GDM.
Collapse
Affiliation(s)
- Lingling Cui
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Zhiqian Li
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Xinxin Liu
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Zhonglei Li
- Department of Nutrition, Huaihe Hospital of Henan University, Kaifeng, Henan, 475000, China
| | - Jiaxin Li
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Yingying Guo
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Huijun Zhou
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Xiaoli Yang
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Zhengya Zhang
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Yuting Gao
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Lina Ren
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Linlin Hua
- Department of Advanced Medical Research, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450001, China.
| |
Collapse
|
16
|
Livneh I, Fabre B, Goldhirsh G, Lulu C, Zinger A, Shammai Vainer Y, Kaduri M, Dahan A, Ziv T, Schroeder A, Ben-Neriah Y, Zohar Y, Cohen-Kaplan V, Ciechanover A. Inhibition of nucleo-cytoplasmic proteasome translocation by the aromatic amino acids or silencing Sestrin3-their sensing mediator-is tumor suppressive. Cell Death Differ 2024; 31:1242-1254. [PMID: 39266717 PMCID: PMC11445514 DOI: 10.1038/s41418-024-01370-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/11/2024] [Accepted: 08/27/2024] [Indexed: 09/14/2024] Open
Abstract
The proteasome, the catalytic arm of the ubiquitin system, is regulated via its dynamic compartmentation between the nucleus and the cytoplasm, among other mechanisms. Under amino acid shortage, the proteolytic complex is translocated to the cytoplasm, where it stimulates proteolysis to supplement recycled amino acids for essential protein synthesis. This response is mediated via the mTOR pathway and the lack of the three aromatic amino acids Tyr, Trp, and Phe (YWF). mTOR activation by supplementation of the triad inhibits proteasome translocation, leading to cell death. We now show that tumoral inherent stress conditions result in translocation of the proteasome from the nucleus to the cytosol. We further show that the modulation of the signaling cascade governed by YWF is applicable also to non-starved cells by using higher concentration of the triad to achieve a surplus relative to all other amino acids. Based on these two phenomena, we found that the modulation of stress signals via the administration of YWF leads to nuclear proteasome sequestration and inhibition of growth of xenograft, spontaneous, and metastatic mouse tumor models. In correlation with the observed effect of YWF on tumors, we found - using transcriptomic and proteomic analyses - that the triad affects various cellular processes related to cell proliferation, migration, and death. In addition, Sestrin3-a mediator of YWF sensing upstream of mTOR-is essential for proteasome translocation, and therefore plays a pro-tumorigenic role, positioning it as a potential oncogene. This newly identified approach for hijacking the cellular "satiety center" carries therefore potential therapeutic implications for cancer.
Collapse
Affiliation(s)
- Ido Livneh
- The Rappaport Technion Integrated Cancer Center (R-TICC) and the Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa, Israel.
- Institute of Pathology and Cytology, Rambam Health Care Campus, Haifa, Israel.
| | - Bertrand Fabre
- The Rappaport Technion Integrated Cancer Center (R-TICC) and the Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa, Israel
- Laboratoire de Recherche en Sciences Végétales, UMR5546, Université de Toulouse 3, INP, CNRS, Auzeville-Tolosane, France
| | - Gilad Goldhirsh
- The Rappaport Technion Integrated Cancer Center (R-TICC) and the Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa, Israel
| | - Chen Lulu
- The Rappaport Technion Integrated Cancer Center (R-TICC) and the Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa, Israel
| | - Adar Zinger
- The Lautenberg Center for Immunology and Cancer Research, Institute of Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Yael Shammai Vainer
- The Louis Family Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Faculty of Chemical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Maya Kaduri
- The Louis Family Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Faculty of Chemical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Aviva Dahan
- Institute of Pathology and Cytology, Rambam Health Care Campus, Haifa, Israel
| | - Tamar Ziv
- Smoler Proteomic Center, Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Avi Schroeder
- The Louis Family Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Faculty of Chemical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Yinon Ben-Neriah
- The Lautenberg Center for Immunology and Cancer Research, Institute of Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Yaniv Zohar
- The Rappaport Technion Integrated Cancer Center (R-TICC) and the Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa, Israel
- Institute of Pathology and Cytology, Rambam Health Care Campus, Haifa, Israel
| | - Victoria Cohen-Kaplan
- The Rappaport Technion Integrated Cancer Center (R-TICC) and the Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa, Israel
| | - Aaron Ciechanover
- The Rappaport Technion Integrated Cancer Center (R-TICC) and the Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
17
|
Yang J, Chen Y, Li X, Qin H, Bao J, Wang C, Dong X, Xu D. Complex Interplay Between Metabolism and CD4 + T-Cell Activation, Differentiation, and Function: a Novel Perspective for Atherosclerosis Immunotherapy. Cardiovasc Drugs Ther 2024; 38:1033-1046. [PMID: 37199882 DOI: 10.1007/s10557-023-07466-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/06/2023] [Indexed: 05/19/2023]
Abstract
Atherosclerosis is a complex pathological process that results from the chronic inflammatory reaction of the blood vessel wall and involves various immune cells and cytokines. An imbalance in the proportion and function of the effector CD4+ T-cell (Teff) and regulatory T-cell (Treg) subsets is an important cause of the occurrence and development of atherosclerotic plaques. Teff cells depend on glycolytic metabolism and glutamine catabolic metabolism for energy, while Treg cells mainly rely on fatty acid oxidation (FAO), which is crucial for determining the fate of CD4+ T cells during differentiation and maintaining their respective immune functions. Here, we review recent research achievements in the field of immunometabolism related to CD4+ T cells, focusing on the cellular metabolic pathways and metabolic reprogramming involved in the activation, proliferation, and differentiation of CD4+ T cells. Subsequently, we discuss the important roles of mTOR and AMPK signaling in regulating CD4+ T-cell differentiation. Finally, we evaluated the links between CD4+ T-cell metabolism and atherosclerosis, highlighting the potential of targeted modulation of CD4+ T-cell metabolism in the prevention and treatment of atherosclerosis in the future.
Collapse
Affiliation(s)
- Jingmin Yang
- Department of Cardiology, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410000, Hunan, China
| | - Yanying Chen
- Department of Cardiology, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410000, Hunan, China
| | - Xiao Li
- Department of Cardiology, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410000, Hunan, China
| | - Huali Qin
- Department of Cardiology, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410000, Hunan, China
| | - Jinghui Bao
- Department of Cardiology, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410000, Hunan, China
| | - Chunfang Wang
- Department of Cardiology, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410000, Hunan, China
| | - Xiaochen Dong
- Department of Cardiology, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410000, Hunan, China
| | - Danyan Xu
- Department of Cardiology, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410000, Hunan, China.
| |
Collapse
|
18
|
Swaroop V, Ozkan E, Herrmann L, Thurman A, Kopasz-Gemmen O, Kunamneni A, Inoki K. mTORC1 signaling and diabetic kidney disease. Diabetol Int 2024; 15:707-718. [PMID: 39469564 PMCID: PMC11512951 DOI: 10.1007/s13340-024-00738-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/26/2024] [Indexed: 10/30/2024]
Abstract
Diabetic kidney disease (DKD) represents the most lethal complication in both type 1 and type 2 diabetes. The disease progresses without obvious symptoms and is often refractory when apparent symptoms have emerged. Although the molecular mechanisms underlying the onset/progression of DKD have been extensively studied, only a few effective therapies are currently available. Pathogenesis of DKD involves multifaced events caused by diabetes, which include alterations of metabolisms, signals, and hemodynamics. While the considerable efficacy of sodium/glucose cotransporter-2 (SGLT2) inhibitors or angiotensin II receptor blockers (ARBs) for DKD has been recognized, the ever-increasing number of patients with diabetes and DKD warrants additional practical therapeutic approaches that prevent DKD from diabetes. One plausible but promising target is the mechanistic target of the rapamycin complex 1 (mTORC1) signaling pathway, which senses cellular nutrients to control various anabolic and catabolic processes. This review introduces the current understanding of the mTOR signaling pathway and its roles in the development of DKD and other chronic kidney diseases (CKDs), and discusses potential therapeutic approaches targeting this pathway for the future treatment of DKD.
Collapse
Affiliation(s)
- Vinamra Swaroop
- Life Sciences Institute, University of Michigan, Ann Arbor, USA
| | - Eden Ozkan
- Life Sciences Institute, University of Michigan, Ann Arbor, USA
| | - Lydia Herrmann
- Life Sciences Institute, University of Michigan, Ann Arbor, USA
| | - Aaron Thurman
- Life Sciences Institute, University of Michigan, Ann Arbor, USA
| | | | | | - Ken Inoki
- Life Sciences Institute, University of Michigan, Ann Arbor, USA
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, USA
- Department of Internal Medicine, Division of Nephrology, University of Michigan Medical School, Ann Arbor, USA
| |
Collapse
|
19
|
Li H, La SK, Zhang LY, Li S, Yu ZB, Ao LM, Gao TY, Huang HT. Metabolomics and amino acid profiling of plasma reveals the metabolite profiles associated with nitrogen utilisation efficiency in primiparous dairy cows. Animal 2024; 18:101202. [PMID: 39270357 DOI: 10.1016/j.animal.2024.101202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 05/14/2024] [Accepted: 05/17/2024] [Indexed: 09/15/2024] Open
Abstract
Nitrogen (N) utilisation efficiency (NUE, milk N yield [g/d]/N intake [g/d]) is an important performance indicator in dairy farming. Determining the NUE-associated blood metabolite profile will contribute to the optimisation of nutritional strategies to further improve NUE among dairy cows. Here, 20 primiparous lactating cows with days in milk ranging from 95 to 115 days were selected from a total of 1 221 cows. Each cow's N intake and milk N yield were measured for 7 days. Subsequently, blood samples were collected before morning feeding. Based on analysis and calculations, cows were retrospectively classified into two groups based on their NUE values, namely, a low NUE group (LNUE, NUE = 24.8 ± 1.6%, n = 10, mean ± SD) and a high NUE group (HNUE, NUE = 35.2 ± 1.7%, n = 10, mean ± SD). Plasma samples were selected from six cows in each group for metabolomics and amino acid profiling. Among the 41 differential metabolites (DMs) identified in the metabolomic analysis, sucrose, MG(0:0/22:1(13Z)/0:0), 2-amino-6-hydroxyhexanoic acid, and L-glutamine exhibited significant correlations with NUE, milk yield, and BW (P < 0.05). Moreover, the five differential amino acids and amino acid metabolites (DAAs) identified in the amino acid profiling and 5 of the 6 differential amino acids and amino acid conjugates identified by plasma metabolomics were found to be less abundant in the HNUE group (P < 0.05). Specifically, there was a 39.4% decrease in L-arginine content and a 29.2% decrease in L-glutamine content (P < 0.05). Pathway analysis indicated that the DMs and DAAs were mainly involved in arginine biosynthesis, glutathione metabolism, arginine and proline metabolism, and tryptophan metabolism (pathway impact > 0.1). These results provided new insights into the new blood metabolite profile associated with NUE in dairy cows. These new insights can provide foundational information for the formulation of new strategies to further enhance NUE in dairy cows.
Collapse
Affiliation(s)
- H Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, Henan Province, PR China; Henan International Joint Laboratory of Nutrition Regulation and Ecological Raising of Domestic Animal, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, PR China
| | - S K La
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, Henan Province, PR China
| | - L Y Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, Henan Province, PR China; Henan International Joint Laboratory of Nutrition Regulation and Ecological Raising of Domestic Animal, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, PR China
| | - S Li
- ZhongLi (Hinggan League) Animal Husbandry Co. LTD, Ulanhot 137400, Inner Mongolia Autonomous Region, PR China
| | - Z B Yu
- ZhongLi (Hinggan League) Animal Husbandry Co. LTD, Ulanhot 137400, Inner Mongolia Autonomous Region, PR China
| | - L M Ao
- ZhongLi (Hinggan League) Animal Husbandry Co. LTD, Ulanhot 137400, Inner Mongolia Autonomous Region, PR China
| | - T Y Gao
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, Henan Province, PR China; Henan International Joint Laboratory of Nutrition Regulation and Ecological Raising of Domestic Animal, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, PR China
| | - H T Huang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, Henan Province, PR China; Henan International Joint Laboratory of Nutrition Regulation and Ecological Raising of Domestic Animal, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, PR China.
| |
Collapse
|
20
|
Tang X, Liu H, Wang X, Chang L, Liu Q, Xia Q, Zhao P. BmSLC7A5 is essential for silk protein synthesis and larval development in Bombyx mori. INSECT SCIENCE 2024; 31:1425-1439. [PMID: 38284747 DOI: 10.1111/1744-7917.13314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 11/10/2023] [Accepted: 11/14/2023] [Indexed: 01/30/2024]
Abstract
Insects produce silk to form cocoons, nests, and webs, which are important for their survival and reproduction. However, little is known about the molecular mechanism of silk protein synthesis at the translation level. The solute carrier family 7 (SLC7) genes are involved in activating the target of rapamycin complex 1 (TORC1) signaling pathway and protein translation process, but the physiological roles of SLC7 genes in silk-producing insects have not been reported. Here, we found that amino acid signaling regulates silk protein synthesis and larval development via the L-type amino acid transporter 1 (LAT1; also known as SLC7A5) in Bombyx mori. A total of 12 SLC7 homologs were identified in the silkworm genome, among which BmSLC7A5 was found to be a silk gland-enriched gene and may be involved in leucine transport. Bioinformatics analysis indicated that SLC7A5 displays high homology and a close phylogenetic relationship in silk-producing insects. Subsequently, we found that leucine treatment significantly increased silk protein synthesis by improving the transcription and protein levels of silk genes. Furthermore, systemic and silk gland-specific knockout of BmSLC7A5 led to decreased silk protein synthesis by inhibiting TORC1 signaling, and somatic mutation also resulted in arrested development from the 5th instar to the early pupal stage. Altogether, our study reveals that BmSLC7A5 is involved in regulating silk protein synthesis and larval development by affecting the TORC1 signaling pathway, which provides a new strategy and target for improving silk yield.
Collapse
Affiliation(s)
- Xin Tang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Chinese Medicine & Health Science, Chongqing Academy of Chinese Materia Medica, Chongqing College of Traditional Chinese Medicine, Chongqing, China
| | - Huawei Liu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
- Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing, China
| | - Xin Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
- Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing, China
| | - Li Chang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
- Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing, China
| | - Qingsong Liu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
- Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing, China
| | - Qingyou Xia
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
- Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing, China
| | - Ping Zhao
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
- Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing, China
| |
Collapse
|
21
|
Haidurov A, Budanov AV. Locked in Structure: Sestrin and GATOR-A Billion-Year Marriage. Cells 2024; 13:1587. [PMID: 39329768 PMCID: PMC11429811 DOI: 10.3390/cells13181587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024] Open
Abstract
Sestrins are a conserved family of stress-responsive proteins that play a crucial role in cellular metabolism, stress response, and ageing. Vertebrates have three Sestrin genes (SESN1, SESN2, and SESN3), while invertebrates encode only one. Initially identified as antioxidant proteins that regulate cell viability, Sestrins are now recognised as crucial inhibitors of the mechanistic target of rapamycin complex 1 kinase (mTORC1), a central regulator of anabolism, cell growth, and autophagy. Sestrins suppress mTORC1 through an inhibitory interaction with the GATOR2 protein complex, which, in concert with GATOR1, signals to inhibit the lysosomal docking of mTORC1. A leucine-binding pocket (LBP) is found in most vertebrate Sestrins, and when bound with leucine, Sestrins do not bind GATOR2, prompting mTORC1 activation. This review examines the evolutionary conservation of Sestrins and their functional motifs, focusing on their origins and development. We highlight that the most conserved regions of Sestrins are those involved in GATOR2 binding, and while analogues of Sestrins exist in prokaryotes, the unique feature of eukaryotic Sestrins is their structural presentation of GATOR2-binding motifs.
Collapse
Affiliation(s)
- Alexander Haidurov
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Pearse Street, D02 R590 Dublin, Ireland
| | - Andrei V. Budanov
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Pearse Street, D02 R590 Dublin, Ireland
| |
Collapse
|
22
|
Tanigawa M, Maeda T, Isono E. FYVE1/FREE1 is involved in glutamine-responsive TORC1 activation in plants. iScience 2024; 27:110814. [PMID: 39297172 PMCID: PMC11409180 DOI: 10.1016/j.isci.2024.110814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/06/2024] [Accepted: 08/22/2024] [Indexed: 09/21/2024] Open
Abstract
Target of rapamycin complex 1 (TORC1) integrates nutrient availability, growth factors, and stress signals to regulate cellular metabolism according to its environment. Similar to mammals, amino acids have been shown to activate TORC1 in plants. However, as the Rag complex that controls amino acid-responsive TORC1 activation mechanisms in many eukaryotes is not conserved in plants, the amino acid-sensing mechanisms upstream of TORC1 in plants remain unknown. In this study, we report that Arabidopsis FYVE1/FREE1 is involved in glutamine-induced TORC1 activation, independent of its previously reported function in ESCRT-dependent processes. FYVE1/FREE1 has a domain structure similar to that of the yeast glutamine sensor Pib2 that directly activates TORC1. Similar to Pib2, FYVE1/FREE1 interacts with TORC1 in response to glutamine. Furthermore, overexpression of a FYVE1/FREE1 variant lacking the presumptive TORC1 activation motif hindered the glutamine-responsive activation of TORC1. Overall, these observations suggest that FYVE1/FREE1 acts as an intracellular amino acid sensor that triggers TORC1 activation in plants.
Collapse
Affiliation(s)
- Mirai Tanigawa
- Departments of Biology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3125, Japan
- Department of Biology, Faculty of Sciences, University of Konstanz, 78457 Konstanz, Germany
| | - Tatsuya Maeda
- Departments of Biology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3125, Japan
| | - Erika Isono
- Department of Biology, Faculty of Sciences, University of Konstanz, 78457 Konstanz, Germany
- Division of Molecular Cell Biology, National Institute for Basic Biology, Okazaki 444-8585, Aichi, Japan
| |
Collapse
|
23
|
Tucker SK, Eberhart JK. The convergence of mTOR signaling and ethanol teratogenesis. Reprod Toxicol 2024; 130:108720. [PMID: 39306261 DOI: 10.1016/j.reprotox.2024.108720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 10/04/2024]
Abstract
Ethanol is one of the most common teratogens and causes of human developmental disabilities. Fetal alcohol spectrum disorders (FASD), which describes the wide range of deficits due to prenatal ethanol exposure, are estimated to affect between 1.1 % and 5.0 % of births in the United States. Ethanol dysregulates numerous cellular mechanisms such as programmed cell death (apoptosis), protein synthesis, autophagy, and various aspects of cell signaling, all of which contribute to FASD. The mechanistic target of rapamycin (mTOR) regulates these cellular mechanisms via sensing of nutrients like amino acids and glucose, DNA damage, and growth factor signaling. Despite an extensive literature on ethanol teratogenesis and mTOR signaling, there has been less attention paid to their interaction. Here, we discuss the impact of ethanol teratogenesis on mTORC1's ability to coordinate growth factor and amino acid sensing with protein synthesis, autophagy, and apoptosis. Notably, the effect of ethanol exposure on mTOR signaling depends on the timing and dose of ethanol as well as the system studied. Overall, the overlap between the functions of mTORC1 and the phenotypes observed in FASD suggest a mechanistic interaction. However, more work is required to fully understand the impact of ethanol teratogenesis on mTOR signaling.
Collapse
Affiliation(s)
- Scott K Tucker
- Department of Molecular Biosciences, Waggoner Center for Alcohol and Addiction Research and Institute for Neuroscience, University of Texas, Austin, TX, USA
| | - Johann K Eberhart
- Department of Molecular Biosciences, Waggoner Center for Alcohol and Addiction Research and Institute for Neuroscience, University of Texas, Austin, TX, USA.
| |
Collapse
|
24
|
Li S, Guo Y, Zhu G, Sun L, Zhou F. Identify BCAT1 plays an oncogenic role and promotes EMT in KIRC via single cell RNA-seq and experiment. Front Oncol 2024; 14:1446324. [PMID: 39324007 PMCID: PMC11422235 DOI: 10.3389/fonc.2024.1446324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 08/26/2024] [Indexed: 09/27/2024] Open
Abstract
Background Kidney renal clear cell carcinoma (KIRC) is a major subtype of renal cell carcinoma with poor prognosis due to its invasive and metastatic nature. Despite advances in understanding the molecular underpinnings of various cancers, the role of branched-chain amino acid transferase 1 (BCAT1) in KIRC remains underexplored. This study aims to fill this gap by investigating the oncogenic role of BCAT1 in KIRC using single-cell RNA-seq data and experimental validation. Methods Single-cell transcriptomic data GSE159115 was utilized to investigate potential biomarkers in KIRC. After screening, we used BCAT1 as a target gene and investigated its function and mechanism in KIRC through databases such as TCGA-GTEx, using genome enrichment analysis (GSEA), genome variation analysis (GSVA), gene ontology (GO) and Kyoto Encyclopedia of the Genome (KEGG). BCAT1 expression was detected in clinical tissue samples using Western Blotting (WB) and immunohistochemical (IHC) staining techniques. We established cell lines stably overexpressing and knocking down BCAT1 and performed WB, qRT-PCR, cell scratch assay and transwell assay. Results BCAT1 was highly expressed in KIRC and was associated with disease prognosis and TME. Patients with mutations in the BCAT1 gene had shorter overall survival (OS) and disease-free survival (DFS). patients with high BCAT1 expression had shorter OS, progression-free interval (PFI), and disease-specific survival (DSS). GSEA showed that BCAT1 was significantly enriched in epithelial mesenchymal transition (EMT). Bioinformatics analysis and WB and IHC staining showed that BCAT1 expression was higher in KIRC than in paracancerous tissues. In vitro experiments confirmed that BCAT1 in KIRC cells may promote EMT affecting its invasion, migration. We constructed a protein interaction network (PPI) to hypothesize proteins that may interact with BCAT1. Single-sample gene set enrichment analysis (ssGSEA) revealed the immune infiltration environment of BCAT1. Furthermore, hypomethylation of the BCAT1 promoter region in KIRC may contribute to disease progression by promoting BCAT1 expression. Conclusion BCAT1 promotes KIRC invasion and metastasis through EMT and has prognostic predictive value and potential as a biomarker. It may become a novel biomarker.
Collapse
Affiliation(s)
- Shiqing Li
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yinsheng Guo
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Guanhua Zhu
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Lu Sun
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Feng Zhou
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
25
|
Xing J, Bou G, Liu G, Li X, Shen Y, Akhtar MF, Bai D, Zhao Y, Dugarjaviin M, Zhang X. Leucine promotes energy metabolism and stimulates slow-twitch muscle fibers expression through AMPK/mTOR signaling in equine skeletal muscle satellite cells. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 51:101249. [PMID: 38776751 DOI: 10.1016/j.cbd.2024.101249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
Previous research has shown that leucine (Leu) can stimulate and enhance the proliferation of equine skeletal muscle satellite cells (SCs). The gene expression profile associated with Leu-induced proliferation of equine SCs has also been documented. However, the specific role of Leu in regulating the expression of slow-twitch muscle fibers (slow-MyHC) and mitochondrial function in equine SCs, as well as the underlying mechanism, remains unclear. During this investigation, equine SCs underwent culturing in differentiation medium and were subjected to varying concentrations of Leu (0 mM, 0.5 mM, 1 mM, 2 mM, 5 mM, and 10 mM) over a span of 3 days. AMP-activated protein kinase (AMPK) inhibitor Compound C and mammalian target of rapamycin complex (mTOR) inhibitor Rapamycin were utilized to explore its underlying mechanism. Here we showed that the expression of slow-MyHC at 2 mM Leu level was significantly higher than the concentration levels of 0 mM,0.5 mM and 10 mM (P <0.01), and there was no significant difference compared to other groups (P > 0.05); the basal respiration, maximum respiration, standby respiration and the expression of slow-MyHC, PGC-1α, Cytc, ND1, TFAM, and COX1 were significantly increased with Leu supplementation (P < 0.01). We also found that Leu up-regulated the expression of key proteins on AMPK and mTOR signaling pathways, including LKB1, p-LKB1, AMPK, p-AMPK, S6, p-S6, 4EBP1, p-4EBP1, mTOR and p-mTOR (P < 0.05 or P < 0.01). Notably, when we treated the equine SCs with the AMPK inhibitor Compound C and the mTOR inhibitor Rapamycin, we observed a reduction in the beneficial effects of Leu on the expression of genes related to slow-MyHC and signaling pathway-related gene expressions. This study provides novel evidence that Leu promotes slow-MyHC expression and enhances mitochondrial function in equine SCs through the AMPK/mTOR signaling pathways, shedding light on the underlying mechanisms involved in these processes for the first time.
Collapse
Affiliation(s)
- Jingya Xing
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China; College of Animal Science, Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, Equine Research Center, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Gerelchimeg Bou
- College of Animal Science, Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, Equine Research Center, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Guiqin Liu
- College of Agronomy, Liaocheng University, Liaocheng 252059, Shandong Province, China
| | - Xinyu Li
- College of Animal Science, Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, Equine Research Center, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Yingchao Shen
- College of Animal Science, Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, Equine Research Center, Inner Mongolia Agricultural University, Hohhot 010018, China
| | | | - Dongyi Bai
- College of Animal Science, Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, Equine Research Center, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Yiping Zhao
- College of Animal Science, Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, Equine Research Center, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Manglai Dugarjaviin
- College of Animal Science, Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, Equine Research Center, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Xinzhuang Zhang
- College of Animal Science, Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, Equine Research Center, Inner Mongolia Agricultural University, Hohhot 010018, China.
| |
Collapse
|
26
|
Presti N, Mansouri T, Maloney MK, Hostler D. The Impact Plant-Based Diets Have on Athletic Performance and Body Composition: A Systematic Review. JOURNAL OF THE AMERICAN NUTRITION ASSOCIATION 2024; 43:636-643. [PMID: 38913935 DOI: 10.1080/27697061.2024.2365755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 05/29/2024] [Accepted: 06/05/2024] [Indexed: 06/26/2024]
Abstract
Plant-based diets have gained popularity among athletes in recent years. Some believe that plant-based diets will improve performance owing to higher intakes of carbohydrates and antioxidants. Some believe it that will harm performance due to lower intakes of complete protein and creatine. This systemic review was conducted using Covidence software. A literature search of PubMed, Embase (Elsevier), CINAHL Plus (EBSCO), and Web of Science was completed on 22 March 2022. Following the development of clear objectives and a research question that identified the population, intervention, comparison, and outcomes, initial search criteria and keywords were identified. Extracted results totaled 2249, including 797 duplicates. The initial screening resulted in 1437 articles being excluded. The remaining 15 articles proceeded to full-text screening. A final 8 articles were included in the review, with 7 excluded. This paper will review the impact plant-based diets have on athletic performance and body composition in healthy young adults aged 18 to 45 years.
Collapse
Affiliation(s)
- Nicole Presti
- Department of Exercise and Nutrition Sciences, Center for Research and Education in Special Environments, University at Buffalo, Buffalo, New York, USA
| | - Tegan Mansouri
- Department of Exercise and Nutrition Sciences, Center for Research and Education in Special Environments, University at Buffalo, Buffalo, New York, USA
| | - Molly K Maloney
- University Libraries, University at Buffalo, Buffalo, New York, USA
| | - David Hostler
- Department of Exercise and Nutrition Sciences, Center for Research and Education in Special Environments, University at Buffalo, Buffalo, New York, USA
| |
Collapse
|
27
|
Feng L, Chen Y, Mei X, Wang L, Zhao W, Yao J. Prognostic Signature in Osteosarcoma Based on Amino Acid Metabolism-Associated Genes. Cancer Biother Radiopharm 2024; 39:517-531. [PMID: 38512709 DOI: 10.1089/cbr.2024.0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024] Open
Abstract
Background: Osteosarcoma (OS) is undeniably a formidable bone malignancy characterized by a scarcity of effective treatment options. Reprogramming of amino acid (AA) metabolism has been associated with OS development. The present study was designed to identify metabolism-associated genes (MAGs) that are differentially expressed in OS and to construct a MAG-based prognostic risk signature for this disease. Methods: Expression profiles and clinicopathological data were downloaded from Gene Expression Omnibus (GEO) and UCSC Xena databases. A set of AA MAGs was obtained from the MSigDB database. Differentially expressed genes (DEGs) in GEO dataset were identified using "limma." Prognostic MAGs from UCSC Xena database were determined through univariate Cox regression and used in the prognostic signature development. This signature was validated using another dataset from GEO database. Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, single sample gene set enrichment analysis, and GDSC2 analyses were performed to explore the biological functions of the MAGs. A MAG-based nomogram was established to predict 1-, 3-, and 5-year survival. Real-time quantitative polymerase chain reaction, Western blot, and immunohistochemical staining confirmed the expression of MAGs in primary OS and paired adjacent normal tissues. Results: A total of 790 DEGs and 62 prognostic MAGs were identified. A MAG-based signature was constructed based on four MAGs: PIPOX, PSMC2, SMOX, and PSAT1. The prognostic value of this signature was successfully validated, with areas under the receiver operating characteristic curves for 1-, 3-, and 5-year survival of 0.714, 0.719, and 0.715, respectively. This MAG-based signature was correlated with the infiltration of CD56dim natural killer cells and resistance to several antiangiogenic agents. The nomogram was accurate in predictions, with a C-index of 0.77. The expression of MAGs verified by experiment was consistent with the trends observed in GEO database. Conclusion: Four AA MAGs were prognostic of survival in OS patients. This MAG-based signature has the potential to offer valuable insights into the development of treatments for OS.
Collapse
Affiliation(s)
- Liwen Feng
- Department of Oncology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuting Chen
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangping Mei
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Wang
- Department of Oncology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wenjing Zhao
- Department of Oncology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Jiannan Yao
- Department of Oncology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
28
|
Liu Y, Li J, Ding C, Tong H, Yan Y, Li S, Li S, Cao Y. Leu promotes C2C12 cell differentiation by regulating the GSK3β/β-catenin signaling pathway through facilitating the interaction between SESN2 and RPN2. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:6696-6705. [PMID: 38551359 DOI: 10.1002/jsfa.13496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 03/02/2024] [Accepted: 03/29/2024] [Indexed: 04/25/2024]
Abstract
BACKGROUND Leucine (Leu) is an essential amino acid that facilitates skeletal muscle satellite cell differentiation, yet its mechanism remains underexplored. Sestrin2 (SESN2) serves as a Leu sensor, binding directly to Leu, while ribophorin II (RPN2) acts as a signaling factor in multiple pathways. This study aimed to elucidate Leu's impact on mouse C2C12 cell differentiation and skeletal muscle injury repair by modulating RPN2 expression through SESN2, offering a theoretical foundation for clinical skeletal muscle injury prevention and treatment. RESULTS Leu addition promoted C2C12 cell differentiation compared to the control, enhancing early differentiation via myogenic determinant (MYOD) up-regulation. Sequencing revealed SESN2 binding to and interacting with RPN2. RPN2 overexpression up-regulated MYOD, myogenin and myosin heavy chain 2, concurrently decreased p-GSK3β and increased nuclear β-catenin. Conversely, RPN2 knockdown yielded opposite results. Combining RPN2 knockdown with Leu rescued increased p-GSK3β and decreased nuclear β-catenin compared to Leu absence. Hematoxylin and eosin staining results showed that Leu addition accelerated mouse muscle damage repair, up-regulating Pax7, MYOD and RPN2 in the cytoplasm, and nuclear β-catenin, confirming that the role of Leu in muscle injury repair was consistent with the results for C2C12 cells. CONCLUSION Leu, bound with SESN2, up-regulated RPN2 expression, activated the GSK3β/β-catenin pathway, enhanced C2C12 differentiation and expedited skeletal muscle damage repair. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yifan Liu
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Laboratory of Cell and Development, Department of Life Science, Northeast Agricultural University, Harbin, China
| | - Jinping Li
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Laboratory of Cell and Development, Department of Life Science, Northeast Agricultural University, Harbin, China
| | - Cong Ding
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Laboratory of Cell and Development, Department of Life Science, Northeast Agricultural University, Harbin, China
| | - Huili Tong
- Laboratory of Cell and Development, Department of Life Science, Northeast Agricultural University, Harbin, China
| | - Yunqin Yan
- Laboratory of Cell and Development, Department of Life Science, Northeast Agricultural University, Harbin, China
| | - Shuang Li
- Laboratory of Cell and Development, Department of Life Science, Northeast Agricultural University, Harbin, China
| | - Shufeng Li
- Laboratory of Cell and Development, Department of Life Science, Northeast Agricultural University, Harbin, China
| | - Yunkao Cao
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Laboratory of Cell and Development, Department of Life Science, Northeast Agricultural University, Harbin, China
| |
Collapse
|
29
|
Reifenberg P, Zimmer A. Branched-chain amino acids: physico-chemical properties, industrial synthesis and role in signaling, metabolism and energy production. Amino Acids 2024; 56:51. [PMID: 39198298 PMCID: PMC11358235 DOI: 10.1007/s00726-024-03417-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/20/2024] [Indexed: 09/01/2024]
Abstract
Branched-chain amino acids (BCAAs)-leucine (Leu), isoleucine (Ile), and valine (Val)-are essential nutrients with significant roles in protein synthesis, metabolic regulation, and energy production. This review paper offers a detailed examination of the physico-chemical properties of BCAAs, their industrial synthesis, and their critical functions in various biological processes. The unique isomerism of BCAAs is presented, focusing on analytical challenges in their separation and quantification as well as their solubility characteristics, which are crucial for formulation and purification applications. The industrial synthesis of BCAAs, particularly using bacterial strains like Corynebacterium glutamicum, is explored, alongside methods such as genetic engineering aimed at enhancing production, detailing the enzymatic processes and specific precursors. The dietary uptake, distribution, and catabolism of BCAAs are reviewed as fundamental components of their physiological functions. Ultimately, their multifaceted impact on signaling pathways, immune function, and disease progression is discussed, providing insights into their profound influence on muscle protein synthesis and metabolic health. This comprehensive analysis serves as a resource for understanding both the basic and complex roles of BCAAs in biological systems and their industrial application.
Collapse
Affiliation(s)
- Philipp Reifenberg
- Merck Life Science KGaA, Upstream R&D, Frankfurter Strasse 250, 64293, Darmstadt, Germany
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich‑Weiss‑Strasse 4, 64287, Darmstadt, Germany
| | - Aline Zimmer
- Merck Life Science KGaA, Upstream R&D, Frankfurter Strasse 250, 64293, Darmstadt, Germany.
| |
Collapse
|
30
|
Valenstein ML, Lalgudi PV, Gu X, Kedir JF, Taylor MS, Chivukula RR, Sabatini DM. Rag-Ragulator is the central organizer of the physical architecture of the mTORC1 nutrient-sensing pathway. Proc Natl Acad Sci U S A 2024; 121:e2322755121. [PMID: 39163330 PMCID: PMC11363303 DOI: 10.1073/pnas.2322755121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 07/12/2024] [Indexed: 08/22/2024] Open
Abstract
The mechanistic target of rapamycin complex 1 (mTORC1) pathway regulates cell growth and metabolism in response to many environmental cues, including nutrients. Amino acids signal to mTORC1 by modulating the guanine nucleotide loading states of the heterodimeric Rag GTPases, which bind and recruit mTORC1 to the lysosomal surface, its site of activation. The Rag GTPases are tethered to the lysosome by the Ragulator complex and regulated by the GATOR1, GATOR2, and KICSTOR multiprotein complexes that localize to the lysosomal surface through an unknown mechanism(s). Here, we show that mTORC1 is completely insensitive to amino acids in cells lacking the Rag GTPases or the Ragulator component p18. Moreover, not only are the Rag GTPases and Ragulator required for amino acids to regulate mTORC1, they are also essential for the lysosomal recruitment of the GATOR1, GATOR2, and KICSTOR complexes, which stably associate and traffic to the lysosome as the "GATOR" supercomplex. The nucleotide state of RagA/B controls the lysosomal association of GATOR, in a fashion competitively antagonized by the N terminus of the amino acid transporter SLC38A9. Targeting of Ragulator to the surface of mitochondria is sufficient to relocalize the Rags and GATOR to this organelle, but not to enable the nutrient-regulated recruitment of mTORC1 to mitochondria. Thus, our results reveal that the Rag-Ragulator complex is the central organizer of the physical architecture of the mTORC1 nutrient-sensing pathway and underscore that mTORC1 activation requires signal transduction on the lysosomal surface.
Collapse
Affiliation(s)
- Max L. Valenstein
- Department of Medicine, Massachusetts General Hospital, Boston, MA 02114
- Whitehead Institute for Biomedical Research, Cambridge, MA02142
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA02139
- Harvard Medical School, Boston, MA02115
| | - Pranav V. Lalgudi
- Whitehead Institute for Biomedical Research, Cambridge, MA02142
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Xin Gu
- Whitehead Institute for Biomedical Research, Cambridge, MA02142
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA02139
- Harvard Medical School, Boston, MA02115
| | - Jibril F. Kedir
- Whitehead Institute for Biomedical Research, Cambridge, MA02142
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA02139
- Harvard Medical School, Boston, MA02115
| | - Martin S. Taylor
- Harvard Medical School, Boston, MA02115
- Department of Pathology, Massachusetts General Hospital, Boston, MA02114
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI02903
- Brown Center on the Biology of Aging, Brown University, Providence, RI02903
- Legorreta Cancer Center, Brown University, Providence, RI02903
| | - Raghu R. Chivukula
- Department of Medicine, Massachusetts General Hospital, Boston, MA 02114
- Harvard Medical School, Boston, MA02115
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA02114
- Department of Surgery, Massachusetts General Hospital, Boston, MA02114
- Broad Institute of Harvard and the Massachusetts Institute of Technology, Cambridge, MA02142
| | - David M. Sabatini
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague166 10, Czech Republic
| |
Collapse
|
31
|
De Leonibus C, Maddaluno M, Ferriero R, Besio R, Cinque L, Lim PJ, Palma A, De Cegli R, Gagliotta S, Montefusco S, Iavazzo M, Rohrbach M, Giunta C, Polishchuk E, Medina DL, Di Bernardo D, Forlino A, Piccolo P, Settembre C. Sestrin2 drives ER-phagy in response to protein misfolding. Dev Cell 2024; 59:2035-2052.e10. [PMID: 39094564 PMCID: PMC11338521 DOI: 10.1016/j.devcel.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 05/01/2024] [Accepted: 07/09/2024] [Indexed: 08/04/2024]
Abstract
Protein biogenesis within the endoplasmic reticulum (ER) is crucial for organismal function. Errors during protein folding necessitate the removal of faulty products. ER-associated protein degradation and ER-phagy target misfolded proteins for proteasomal and lysosomal degradation. The mechanisms initiating ER-phagy in response to ER proteostasis defects are not well understood. By studying mouse primary cells and patient samples as a model of ER storage disorders (ERSDs), we show that accumulation of faulty products within the ER triggers a response involving SESTRIN2, a nutrient sensor controlling mTORC1 signaling. SESTRIN2 induction by XBP1 inhibits mTORC1's phosphorylation of TFEB/TFE3, allowing these transcription factors to enter the nucleus and upregulate the ER-phagy receptor FAM134B along with lysosomal genes. This response promotes ER-phagy of misfolded proteins via FAM134B-Calnexin complex. Pharmacological induction of FAM134B improves clearance of misfolded proteins in ERSDs. Our study identifies the interplay between nutrient signaling and ER quality control, suggesting therapeutic strategies for ERSDs.
Collapse
Affiliation(s)
- Chiara De Leonibus
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy; Department of Health Sciences, University of Basilicata, Potenza, Italy
| | - Marianna Maddaluno
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy; Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | - Rosa Ferriero
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Roberta Besio
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Laura Cinque
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy; Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | - Pei Jin Lim
- Division of Metabolism and Children's Research Center, University Hospital of Zurich, Zurich, Switzerland
| | - Alessandro Palma
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Rossella De Cegli
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | | | - Sandro Montefusco
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Maria Iavazzo
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy; Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | - Marianne Rohrbach
- Division of Metabolism and Children's Research Center, University Hospital of Zurich, Zurich, Switzerland
| | - Cecilia Giunta
- Division of Metabolism and Children's Research Center, University Hospital of Zurich, Zurich, Switzerland
| | - Elena Polishchuk
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Diego Louis Medina
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy; Department of Translational Medical Sciences, Federico II University, Naples, Italy
| | - Diego Di Bernardo
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy; Department of Chemical, Materials and Industrial Production Engineering, University of Naples "Federico II", Naples, Italy
| | | | - Pasquale Piccolo
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Carmine Settembre
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy; Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy.
| |
Collapse
|
32
|
Gong Q, Wang J, Luo D, Xu Y, Zhang R, Li X, Yin Z, Fang J, Wang H. Accumulation of branched-chain amino acids deteriorates the neuroinflammatory response of Müller cells in diabetic retinopathy via leucine/Sestrin2-mediated sensing of mTOR signaling. Acta Diabetol 2024:10.1007/s00592-024-02349-3. [PMID: 39150511 DOI: 10.1007/s00592-024-02349-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/22/2024] [Indexed: 08/17/2024]
Abstract
AIMS This study aimed to investigate branched-chain amino acid (BCAA) catabolism in diabetic retinopathy (DR). METHODS Wild-type and db/db mice were fed BCAAs (5 or 10 mg/kg/day) for 12 weeks, and hyperglycemia-exposed Müller cells were treated with BCAAs (2 or 5 mmol/L) for 24 and 48 h. BCAA levels were measured using MS/MS. Western blotting was performed to detect proteins. Flow cytometry, oxygen consumption rate, and Cell Counting Kit-8 assays were used to evaluate Müller cell viability. Each experiment was conducted at least thrice. RESULTS BCAAs and branched-chain α-keto acids (BCKAs) were increased in the retina and systemic tissues of diabetic mice, and these changes were further enhanced to approximately 2-fold by extra BCAAs compared to wild-type group. In vitro, BCAAs and BCKAs were induced in hyperglycemic Müller cells, and augmented by BCAA supplementation. The aberrant BCAA catabolism was accompanied by mTORC1 activation and subsequently induced TNF-ɑ, VEGFA, GS, and GFAP in retinas and Müller cells under diabetic conditions. The cell apoptosis rate increased by approximately 50%, and mitochondrial respiration was inhibited by hyperglycemia and BCAA in Müller cells. Additionally, mTORC1 signaling was activated by leucine in Müller cells. Knockdown of Sestrin2 or LeuRS significantly abolished the leucine-induced mTORC1 phosphorylation and protected Müller cell viability under diabetic conditions. CONCLUSIONS We found that BCAA catabolism is hindered in DR through mTORC1 activation. Leucine plays a key role in inducing mTORC1 by sensing Sestrin2 in Müller cells. Targeting Sestrin2 may ameliorate the toxic effects of BCAA accumulation on Müller cells in DR.
Collapse
Affiliation(s)
- Qiaoyun Gong
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
- National Clinical Research Center for Eye Diseases, No. 100 Haining Road, Hongkou District, Shanghai, 200080, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Disease, Shanghai, China
| | - Jingyi Wang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
- National Clinical Research Center for Eye Diseases, No. 100 Haining Road, Hongkou District, Shanghai, 200080, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Disease, Shanghai, China
| | - Dawei Luo
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
- National Clinical Research Center for Eye Diseases, No. 100 Haining Road, Hongkou District, Shanghai, 200080, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Disease, Shanghai, China
| | - Yupeng Xu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
- National Clinical Research Center for Eye Diseases, No. 100 Haining Road, Hongkou District, Shanghai, 200080, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Disease, Shanghai, China
| | - Rulin Zhang
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai, China
| | - Xin Li
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Zihan Yin
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
- National Clinical Research Center for Eye Diseases, No. 100 Haining Road, Hongkou District, Shanghai, 200080, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Disease, Shanghai, China
| | - Junwei Fang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
- National Clinical Research Center for Eye Diseases, No. 100 Haining Road, Hongkou District, Shanghai, 200080, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Disease, Shanghai, China
| | - Haiyan Wang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China.
- National Clinical Research Center for Eye Diseases, No. 100 Haining Road, Hongkou District, Shanghai, 200080, China.
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China.
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China.
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Disease, Shanghai, China.
| |
Collapse
|
33
|
Yao H, Jiang W, Liao X, Wang D, Zhu H. Regulatory mechanisms of amino acids in ferroptosis. Life Sci 2024; 351:122803. [PMID: 38857653 DOI: 10.1016/j.lfs.2024.122803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/19/2024] [Accepted: 06/04/2024] [Indexed: 06/12/2024]
Abstract
Ferroptosis, an iron-dependent non-apoptotic regulated cell death process, is associated with the pathogenesis of various diseases. Amino acids, which are indispensable substrates of vital activities, significantly regulate ferroptosis. Amino acid metabolism is involved in maintaining iron and lipid homeostasis and redox balance. The regulatory effects of amino acids on ferroptosis are complex. An amino acid may exert contrasting effects on ferroptosis depending on the context. This review systematically and comprehensively summarized the distinct roles of amino acids in regulating ferroptosis and highlighted the emerging opportunities to develop clinical therapeutic strategies targeting amino acid-mediated ferroptosis.
Collapse
Affiliation(s)
- Heying Yao
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang 212001, China
| | - Wei Jiang
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang 212001, China
| | - Xiang Liao
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang 212001, China
| | - Dongqing Wang
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang 212001, China; Department of Medical Imaging, The Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China.
| | - Haitao Zhu
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang 212001, China; Department of Medical Imaging, The Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China.
| |
Collapse
|
34
|
Jiang C, Tan X, Liu N, Yan P, Hou T, Wei W. Nutrient Sensing of mTORC1 signaling in cancer and aging. Semin Cancer Biol 2024; 106-107:S1044-579X(24)00059-2. [PMID: 39153724 DOI: 10.1016/j.semcancer.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 08/19/2024]
Abstract
The mechanistic target of rapamycin complex 1 (mTORC1) is indispensable for preserving cellular and organismal homeostasis by balancing the anabolic and catabolic processes in response to various environmental cues, such as nutrients, growth factors, energy status, oxygen levels, and stress. Dysregulation of mTORC1 signaling is associated with the progression of many types of human disorders including cancer, age-related diseases, neurodegenerative disorders, and metabolic diseases. The way mTORC1 senses various upstream signals and converts them into specific downstream responses remains a crucial question with significant impacts for our perception of the related physiological and pathological process. In this review, we discuss the recent molecular and functional insights into the nutrient sensing of the mTORC1 signaling pathway, along with the emerging role of deregulating nutrient-mTORC1 signaling in cancer and age-related disorders.
Collapse
Affiliation(s)
- Cong Jiang
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, China.
| | - Xiao Tan
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Ning Liu
- International Research Center for Food and Health, College of Food Science and Technology, Shanghai Ocean University, 201306 Shanghai, China
| | - Peiqiang Yan
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Tao Hou
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
35
|
Deane CS, Cox J, Atherton PJ. Critical variables regulating age-related anabolic responses to protein nutrition in skeletal muscle. Front Nutr 2024; 11:1419229. [PMID: 39166128 PMCID: PMC11333332 DOI: 10.3389/fnut.2024.1419229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 07/23/2024] [Indexed: 08/22/2024] Open
Abstract
Protein nutrition is critical for the maintenance of skeletal muscle mass across the lifecourse and for the growth of muscle in response to resistance exercise - both acting via the stimulation of protein synthesis. The transient anabolic response to protein feeding may vary in magnitude and duration, depending on, e.g., timing, dose, amino acid composition and delivery mode, which are in turn influenced by physical activity and age. This review aims to: (i) summarise the fundamental metabolic responses of muscle to protein feeding, (ii) discuss key variables regulating muscle anabolic responses to protein feeding, and (iii) explore how these variables can be optimised for muscle anabolism in response to physical activity and ageing.
Collapse
Affiliation(s)
- Colleen S. Deane
- Human Development & Health, Faculty of Medicine, Southampton General Hospital, University of Southampton, Southampton, United Kingdom
| | - Jake Cox
- Centre of Metabolism, Ageing & Physiology, MRC/Versus Arthritis Centre of Excellence for Musculoskeletal Research, NIHR Biomedical Research Centre (BRC), University of Nottingham, Royal Derby Hospital Medical School, Derby, United Kingdom
| | - Philip J. Atherton
- Centre of Metabolism, Ageing & Physiology, MRC/Versus Arthritis Centre of Excellence for Musculoskeletal Research, NIHR Biomedical Research Centre (BRC), University of Nottingham, Royal Derby Hospital Medical School, Derby, United Kingdom
- Faculty of Sport and Health Science, Ritsumeikan Advanced Research Academy (RARA), Ritsumeikan University, Kyoto, Japan
| |
Collapse
|
36
|
Kang YJ, Song W, Lee SJ, Choi SA, Chae S, Yoon BR, Kim HY, Lee JH, Kim C, Cho JY, Kim HJ, Lee WW. Inhibition of BCAT1-mediated cytosolic leucine metabolism regulates Th17 responses via the mTORC1-HIF1α pathway. Exp Mol Med 2024; 56:1776-1790. [PMID: 39085353 PMCID: PMC11372109 DOI: 10.1038/s12276-024-01286-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/26/2024] [Accepted: 04/19/2024] [Indexed: 08/02/2024] Open
Abstract
Branched-chain amino acids (BCAAs), particularly leucine, are indispensable AAs for immune regulation through metabolic rewiring. However, the molecular mechanism underlying this phenomenon remains unclear. Our investigation revealed that T-cell receptor (TCR)-activated human CD4+ T cells increase the expression of BCAT1, a cytosolic enzyme responsible for BCAA catabolism, and SLC7A5, a major BCAA transporter. This upregulation facilitates increased leucine influx and catabolism, which are particularly crucial for Th17 responses. Activated CD4+ T cells induce an alternative pathway of cytosolic leucine catabolism, generating a pivotal metabolite, β-hydroxy β-methylbutyric acid (HMB), by acting on BCAT1 and 4-hydroxyphenylpyruvate dioxygenase (HPD)/HPD-like protein (HPDL). Inhibition of BCAT1-mediated cytosolic leucine metabolism, either with BCAT1 inhibitor 2 (Bi2) or through BCAT1, HPD, or HPDL silencing using shRNA, attenuates IL-17 production, whereas HMB supplementation abrogates this effect. Mechanistically, HMB contributes to the regulation of the mTORC1-HIF1α pathway, a major signaling pathway for IL-17 production, by increasing the mRNA expression of HIF1α. This finding was corroborated by the observation that treatment with L-β-homoleucine (LβhL), a leucine analog and competitive inhibitor of BCAT1, decreased IL-17 production by TCR-activated CD4+ T cells. In an in vivo experimental autoimmune encephalomyelitis (EAE) model, blockade of BCAT1-mediated leucine catabolism, either through a BCAT1 inhibitor or LβhL treatment, mitigated EAE severity by decreasing HIF1α expression and IL-17 production in spinal cord mononuclear cells. Our findings elucidate the role of BCAT1-mediated cytoplasmic leucine catabolism in modulating IL-17 production via HMB-mediated regulation of mTORC1-HIF1α, providing insights into its relevance to inflammatory conditions.
Collapse
Affiliation(s)
- Yeon Jun Kang
- Laboratory of Autoimmunity and Inflammation (LAI), Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Woorim Song
- Laboratory of Autoimmunity and Inflammation (LAI), Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Su Jeong Lee
- Laboratory of Autoimmunity and Inflammation (LAI), Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Seung Ah Choi
- Laboratory of Autoimmunity and Inflammation (LAI), Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Sihyun Chae
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, 03080, Korea
- Department of Clinical Pharmacology and Therapeutics, Seoul National University, College of Medicine and Hospital, Seoul, 03080, Republic of Korea
| | - Bo Ruem Yoon
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Hee Young Kim
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Jung Ho Lee
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, 03080, Korea
| | - Chulwoo Kim
- Department of Microbiology, Institute for Viral Diseases, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - Joo-Youn Cho
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, 03080, Korea
- Department of Clinical Pharmacology and Therapeutics, Seoul National University, College of Medicine and Hospital, Seoul, 03080, Republic of Korea
| | - Hyun Je Kim
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, 03080, Korea
| | - Won-Woo Lee
- Laboratory of Autoimmunity and Inflammation (LAI), Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
- Seoul National University Cancer Research Institute, Institue of Endemic Diseases and Ischemic/Hypoxic Disease Institute, Seoul National University Medical Research Center, Seoul National University Hospital Biomedical Research Institute, Seoul, 03080, Republic of Korea.
| |
Collapse
|
37
|
Darawshi O, Yassin O, Shmuel M, Wek RC, Mahdizadeh SJ, Eriksson LA, Hatzoglou M, Tirosh B. Phosphorylation of GCN2 by mTOR confers adaptation to conditions of hyper-mTOR activation under stress. J Biol Chem 2024; 300:107575. [PMID: 39013537 PMCID: PMC11362803 DOI: 10.1016/j.jbc.2024.107575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 07/02/2024] [Accepted: 07/05/2024] [Indexed: 07/18/2024] Open
Abstract
Adaptation to the shortage in free amino acids (AA) is mediated by 2 pathways, the integrated stress response (ISR) and the mechanistic target of rapamycin (mTOR). In response to reduced levels, primarily of leucine or arginine, mTOR in its complex 1 configuration (mTORC1) is suppressed leading to a decrease in translation initiation and elongation. The eIF2α kinase general control nonderepressible 2 (GCN2) is activated by uncharged tRNAs, leading to induction of the ISR in response to a broader range of AA shortage. ISR confers a reduced translation initiation, while promoting the selective synthesis of stress proteins, such as ATF4. To efficiently adapt to AA starvation, the 2 pathways are cross-regulated at multiple levels. Here we identified a new mechanism of ISR/mTORC1 crosstalk that optimizes survival under AA starvation, when mTORC1 is forced to remain active. mTORC1 activation during acute AA shortage, augmented ATF4 expression in a GCN2-dependent manner. Under these conditions, enhanced GCN2 activity was not dependent on tRNA sensing, inferring a different activation mechanism. We identified a labile physical interaction between GCN2 and mTOR that results in a phosphorylation of GCN2 on serine 230 by mTOR, which promotes GCN2 activity. When examined under prolonged AA starvation, GCN2 phosphorylation by mTOR promoted survival. Our data unveils an adaptive mechanism to AA starvation, when mTORC1 evades inhibition.
Collapse
Affiliation(s)
- Odai Darawshi
- The School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Olaya Yassin
- The School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Miri Shmuel
- The School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ronald C Wek
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - S Jalil Mahdizadeh
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Leif A Eriksson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Maria Hatzoglou
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Boaz Tirosh
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio, USA.
| |
Collapse
|
38
|
Xu P, Kong Y, Palmer ND, Ng MCY, Zhang B, Das SK. Integrated multi-omic analyses uncover the effects of aging on cell-type regulation in glucose-responsive tissues. Aging Cell 2024; 23:e14199. [PMID: 38932492 PMCID: PMC11320340 DOI: 10.1111/acel.14199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/27/2024] [Accepted: 05/01/2024] [Indexed: 06/28/2024] Open
Abstract
Aging significantly influences cellular activity and metabolism in glucose-responsive tissues, yet a comprehensive evaluation of the impacts of aging and associated cell-type responses has been lacking. This study integrates transcriptomic, methylomic, single-cell RNA sequencing, and metabolomic data to investigate aging-related regulations in adipose and muscle tissues. Through coexpression network analysis of the adipose tissue, we identified aging-associated network modules specific to certain cell types, including adipocytes and immune cells. Aging upregulates the metabolic functions of lysosomes and downregulates the branched-chain amino acids (BCAAs) degradation pathway. Additionally, aging-associated changes in cell proportions, methylation profiles, and single-cell expressions were observed in the adipose. In the muscle tissue, aging was found to repress the metabolic processes of glycolysis and oxidative phosphorylation, along with reduced gene activity of fast-twitch type II muscle fibers. Metabolomic profiling linked aging-related alterations in plasma metabolites to gene expression in glucose-responsive tissues, particularly in tRNA modifications, BCAA metabolism, and sex hormone signaling. Together, our multi-omic analyses provide a comprehensive understanding of the impacts of aging on glucose-responsive tissues and identify potential plasma biomarkers for these effects.
Collapse
Affiliation(s)
- Peng Xu
- Center of Clinical Laboratory Medicine, Zhongda Hospital, School of Medicine, Advanced Institute for Life and HealthSoutheast UniversityNanjingChina
- Department of Genetics & Genomic Sciences, Mount Sinai Center for Transformative Disease Modeling, Icahn Genomics InstituteIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of Pharmacological Sciences, Mount Sinai Center for Transformative Disease Modeling, Icahn Genomics InstituteIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of Artificial Intelligence and Human Health, Mount Sinai Center for Transformative Disease Modeling, Icahn Genomics InstituteIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Yimeng Kong
- Center of Clinical Laboratory Medicine, Zhongda Hospital, School of Medicine, Advanced Institute for Life and HealthSoutheast UniversityNanjingChina
| | - Nicholette D. Palmer
- Department of BiochemistryWake Forest University School of MedicineWinston–SalemNorth CarolinaUSA
| | - Maggie C. Y. Ng
- Division of Genetic Medicine, Vanderbilt Genetics InstituteVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Bin Zhang
- Department of Genetics & Genomic Sciences, Mount Sinai Center for Transformative Disease Modeling, Icahn Genomics InstituteIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of Pharmacological Sciences, Mount Sinai Center for Transformative Disease Modeling, Icahn Genomics InstituteIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of Artificial Intelligence and Human Health, Mount Sinai Center for Transformative Disease Modeling, Icahn Genomics InstituteIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Swapan K. Das
- Department of Internal Medicine, Section on Endocrinology and MetabolismWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
| |
Collapse
|
39
|
Qi J, Zhang S, Qu H, Wang Y, Dong Y, Wei H, Wang Y, Sun B, Jiang H, Zhang J, Liang S. Lysine-specific demethylase 1 (LSD1) participate in porcine early embryonic development by regulating cell autophagy and apoptosis through the mTOR signaling pathway. Theriogenology 2024; 224:119-133. [PMID: 38762919 DOI: 10.1016/j.theriogenology.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/28/2024] [Accepted: 05/07/2024] [Indexed: 05/21/2024]
Abstract
Lysine-specific demethylase 1 (LSD1) stands as the pioneering histone demethylase uncovered, proficient in demethylating H3K4me1/2 and H3K9me1/2, thereby governing transcription and participating in cell apoptosis, proliferation, or differentiation. Nevertheless, the complete understanding of LSD1 during porcine early embryonic development and the underlying molecular mechanism remains unclear. Thus, we investigated the mechanism by which LSD1 plays a regulatory role in porcine early embryos. This study revealed that LSD1 inhibition resulted in parthenogenetic activation (PA) and in vitro fertilization (IVF) embryo arrested the development, and decreased blastocyst quality. Meanwhile, H3K4me1/2 and H3K9me1/2 methylase activity was increased at the 4-cell embryo stage. RNA-seq results revealed that autophagy related biological processes were highly enriched through GO and KEGG pathway analyses when LSD1 inhibition. Further studies showed that LSD1 depletion in porcine early embryos resulted in low mTOR and p-mTOR levels and high autophagy and apoptosis levels. The LSD1 deletion-induced increases in autophagy and apoptosis could be reversed by addition of mTOR activators. We further demonstrated that LSD1 inhibition induced mitochondrial dysfunction and mitophagy. In summary, our research results indicate that LSD1 may regulate autophagy and apoptosis through the mTOR pathway and affect early embryonic development of pigs.
Collapse
Affiliation(s)
- Jiajia Qi
- Department of Animals Sciences, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Shaoxuan Zhang
- Department of Animals Sciences, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Hexuan Qu
- Department of Animals Sciences, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Yanqiu Wang
- Department of Animals Sciences, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Yanwei Dong
- Department of Animals Sciences, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Huakai Wei
- Department of Animals Sciences, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Yu Wang
- Department of Animals Sciences, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Boxing Sun
- Department of Animals Sciences, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Hao Jiang
- Department of Animals Sciences, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Jiabao Zhang
- Department of Animals Sciences, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Shuang Liang
- Department of Animals Sciences, College of Animal Sciences, Jilin University, Changchun, Jilin, China.
| |
Collapse
|
40
|
Sawaguchi S, Ishida M, Miyamoto Y, Yamauchi J. Hypomyelination Leukodystrophy 16 (HLD16)-Associated Mutation p.Asp252Asn of TMEM106B Blunts Cell Morphological Differentiation. Curr Issues Mol Biol 2024; 46:8088-8103. [PMID: 39194695 DOI: 10.3390/cimb46080478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/18/2024] [Accepted: 07/23/2024] [Indexed: 08/29/2024] Open
Abstract
Transmembrane protein 106B (TMEM106B), which is a type II transmembrane protein, is believed to be involved in intracellular dynamics and morphogenesis in the lysosome. TMEM106B is known to be a risk factor for frontotemporal lobar degeneration and has been recently identified as the receptor needed for the entry of SARS-CoV-2, independently of angiotensin-converting enzyme 2 (ACE2). A missense mutation, p.Asp252Asn, of TMEM106B is associated with hypomyelinating leukodystrophy 16 (HLD16), which is an oligodendroglial cell-related white matter disorder causing thin myelin sheaths or myelin deficiency in the central nervous system (CNS). However, it remains to be elucidated how the mutated TMEM106B affects oligodendroglial cells. Here, we show that the TMEM106B mutant protein fails to exhibit lysosome distribution in the FBD-102b cell line, an oligodendroglial precursor cell line undergoing differentiation. In contrast, wild-type TMEM106B was indeed localized in the lysosome. Cells harboring wild-type TMEM106B differentiated into ones with widespread membranes, whereas cells harboring mutated TMEM106B failed to differentiate. It is of note that the output of signaling through the lysosome-resident mechanistic target of rapamycin (mTOR) was greatly decreased in cells harboring mutated TMEM106B. Furthermore, treatment with hesperetin, a citrus flavonoid known as an activator of mTOR signaling, restored the molecular and cellular phenotypes induced by the TMEM106B mutant protein. These findings suggest the potential pathological mechanisms underlying HLD16 and their amelioration.
Collapse
Affiliation(s)
- Sui Sawaguchi
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan
| | - Miki Ishida
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan
| | - Yuki Miyamoto
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan
- Laboratory of Molecular Pharmacology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
| | - Junji Yamauchi
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan
- Laboratory of Molecular Pharmacology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
- Diabetic Neuropathy Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| |
Collapse
|
41
|
Corsetti G, Pasini E, Scarabelli TM, Romano C, Singh A, Scarabelli CC, Dioguardi FS. Importance of Energy, Dietary Protein Sources, and Amino Acid Composition in the Regulation of Metabolism: An Indissoluble Dynamic Combination for Life. Nutrients 2024; 16:2417. [PMID: 39125298 PMCID: PMC11313897 DOI: 10.3390/nu16152417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
PURPOSE This paper aims to present a unique perspective that emphasizes the intricate interplay between energy, dietary proteins, and amino acid composition, underscoring their mutual dependence for health-related considerations. Energy and protein synthesis are fundamental to biological processes, crucial for the sustenance of life and the growth of organisms. METHODS AND RESULTS We explore the intricate relationship between energy metabolism, protein synthesis, regulatory mechanisms, protein sources, amino acid availability, and autophagy in order to elucidate how these elements collectively maintain cellular homeostasis. We underscore the vital role this dynamic interplay has in preserving cell life. CONCLUSIONS A deeper understanding of the link between energy and protein synthesis is essential to comprehend fundamental cellular processes. This insight could have a wide-ranging impact in several medical fields, such as nutrition, metabolism, and disease management.
Collapse
Affiliation(s)
- Giovanni Corsetti
- Division of Human Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, 25023 Brescia, Italy;
| | - Evasio Pasini
- Italian Association of Functional Medicine, 20855 Lesmo, Italy;
- Department of Clinical and Experimental Sciences, University of Brescia, 25023 Brescia, Italy
| | | | - Claudia Romano
- Division of Human Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, 25023 Brescia, Italy;
| | - Arashpreet Singh
- School of Osteopathic Medicine, Campbell University, Lillington, NC 27546, USA;
| | | | | |
Collapse
|
42
|
Chang C, Zhao W, Zhang Q, Wang X, Zhang J, Yan Z, Cao J, Liu H, Geng A. Dietary Crude Protein and Lysine Levels Affect Meat Quality and Myofiber Characteristic of Slow-Growing Chicken. Animals (Basel) 2024; 14:2068. [PMID: 39061530 PMCID: PMC11273887 DOI: 10.3390/ani14142068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024] Open
Abstract
This study aimed to investigate the effects of dietary crude protein (CP) and lysine levels on growth performance, slaughter performance, meat quality, and myofiber characteristics of slow-growing chicken. A 3 × 3 factorial experiment was arranged, and the chickens were fed with 3 levels of dietary CP (16.0%, 17.0%, 18.0%) and 3 levels of dietary lysine (0.69%, 0.84%, 0.99%). A total of 540 8-week-old Beijing-You Chicken (BYC) female growing chickens were randomly allocated to 9 groups, 5 replicates per group, and 12 chickens per replicate. The birds were randomly allocated to one of the 9 experimental diets. Growth performance, slaughter performance, meat quality, and myofiber characteristics were determined at 16 weeks of age. The results showed that dietary CP level and the interaction of dietary CP and lysine levels affected average feed intake (AFI) (p < 0.05). The AFI in the 16.0% CP and 17.0% CP groups was higher than in the 18.0% CP group (p < 0.05). Dietary CP levels significantly affected body weight gain (BWG) (p < 0.05) at 9 to 16 weeks. The 18.0% CP group had the highest BWG (93.99 g). Dietary CP levels affected the percentage of leg muscle yield, and the percentage of leg muscle yield of the 16.0% CP group was significantly lower than that in the other two groups (p < 0.05). Dietary CP and lysine levels alone and their interactions did not affect pH24h, drip loss, and cooking loss of breast muscle (p > 0.05). The shear force of the 18.0% CP group (29.55 N) was higher than that in the other two groups (p < 0.01). Dietary CP level affected myofiber characteristic (p < 0.01), with the lowest myofiber density (846.35 p·mm-2) and the largest myofiber diameter (30.92 μm) at 18.0% CP level. Dietary lysine level affected myofiber diameter, endomysium thickness, perimysium thickness (p < 0.01), with the largest myofiber diameter (29.29 μm) obtained at 0.84% lysine level, the largest endomysium thickness (4.58 μm) at 0.69% lysine level, and the largest perimysium thickness (9.26 μm) at 0.99% lysine level. Myofiber density was negatively correlated with myofiber diameter and endomysium thickness (R = -0.883, R = -0.523, p < 0.01); perimysium thickness had a significant negative correlation with shear force (R = -0.682, p < 0.05). Therefore, reducing dietary CP level and adding appropriate lysine can reduce myofiber diameter and increase perimysium thickness, reducing shear force and improving meat tenderness. A high lysine level (0.99%) in the low-CP (16.0%) diet can improve meat tenderness by regulating the myofiber characteristic without affecting production performance.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Huagui Liu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (C.C.); (W.Z.); (Q.Z.); (X.W.); (J.Z.); (Z.Y.); (J.C.)
| | - Ailian Geng
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (C.C.); (W.Z.); (Q.Z.); (X.W.); (J.Z.); (Z.Y.); (J.C.)
| |
Collapse
|
43
|
Smiles WJ, Ovens AJ, Kemp BE, Galic S, Petersen J, Oakhill JS. New developments in AMPK and mTORC1 cross-talk. Essays Biochem 2024:EBC20240007. [PMID: 38994736 DOI: 10.1042/ebc20240007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/13/2024]
Abstract
Metabolic homeostasis and the ability to link energy supply to demand are essential requirements for all living cells to grow and proliferate. Key to metabolic homeostasis in all eukaryotes are AMPK and mTORC1, two kinases that sense nutrient levels and function as counteracting regulators of catabolism (AMPK) and anabolism (mTORC1) to control cell survival, growth and proliferation. Discoveries beginning in the early 2000s revealed that AMPK and mTORC1 communicate, or cross-talk, through direct and indirect phosphorylation events to regulate the activities of each other and their shared protein substrate ULK1, the master initiator of autophagy, thereby allowing cellular metabolism to rapidly adapt to energy and nutritional state. More recent reports describe divergent mechanisms of AMPK/mTORC1 cross-talk and the elaborate means by which AMPK and mTORC1 are activated at the lysosome. Here, we provide a comprehensive overview of current understanding in this exciting area and comment on new evidence showing mTORC1 feedback extends to the level of the AMPK isoform, which is particularly pertinent for some cancers where specific AMPK isoforms are implicated in disease pathogenesis.
Collapse
Affiliation(s)
- William J Smiles
- Metabolic Signalling Laboratory, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
- Research Program for Receptor Biochemistry and Tumour Metabolism, Department of Paediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - Ashley J Ovens
- Protein Engineering in Immunity and Metabolism, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
| | - Bruce E Kemp
- Protein Chemistry and Metabolism, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
- Department of Medicine, University of Melbourne, Parkville, VIC 3010, Australia
- Mary Mackillop Institute for Health Research, Australian Catholic University, Fitzroy, Vic 3065, Vic. Australia
| | - Sandra Galic
- Department of Medicine, University of Melbourne, Parkville, VIC 3010, Australia
- Metabolic Physiology, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
| | - Janni Petersen
- Flinders Health and Medical Research Institute, Flinders Centre for Innovation in Cancer, Flinders University, Adelaide, SA 5042, Australia
- Nutrition and Metabolism, South Australia Health and Medical Research Institute, Adelaide, SA 5000, Australia
| | - Jonathan S Oakhill
- Metabolic Signalling Laboratory, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
- Department of Medicine, University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
44
|
Li G, Li Z, Liu J. Amino acids regulating skeletal muscle metabolism: mechanisms of action, physical training dosage recommendations and adverse effects. Nutr Metab (Lond) 2024; 21:41. [PMID: 38956658 PMCID: PMC11220999 DOI: 10.1186/s12986-024-00820-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/24/2024] [Indexed: 07/04/2024] Open
Abstract
Maintaining skeletal muscle mass is important for improving muscle strength and function. Hence, maximizing lean body mass (LBM) is the primary goal for both elite athletes and fitness enthusiasts. The use of amino acids as dietary supplements is widespread among athletes and physically active individuals. Extensive literature analysis reveals that branched-chain amino acids (BCAA), creatine, glutamine and β-alanine may be beneficial in regulating skeletal muscle metabolism, enhancing LBM and mitigating exercise-induced muscle damage. This review details the mechanisms of these amino acids, offering insights into their efficacy as supplements. Recommended dosage and potential side effects are then outlined to aid athletes in making informed choices and safeguard their health. Lastly, limitations within the current literature are addressed, highlighting opportunities for future research.
Collapse
Affiliation(s)
- Guangqi Li
- School of Physical Education, Northeast Normal university, No. 5268, Renmin Street, Changchun city, Jilin province, 130024, People's Republic of China
| | - Zhaojun Li
- Gaomi Municipal Center for Disease Control and Prevention, Gaomi city, Shandong, People's Republic of China
| | - Junyi Liu
- School of Physical Education, Northeast Normal university, No. 5268, Renmin Street, Changchun city, Jilin province, 130024, People's Republic of China.
| |
Collapse
|
45
|
Cheng H, Ji Z, Wang Y, Li S, Tang T, Wang F, Peng C, Wu X, Cheng Y, Liu Z, Ma M, Wang J, Huang X, Wang L, Qin L, Liu H, Chen J, Zheng R, Feng CG, Cai X, Qu D, Ye L, Yang H, Ge B. Mycobacterium tuberculosis produces D-serine under hypoxia to limit CD8 + T cell-dependent immunity in mice. Nat Microbiol 2024; 9:1856-1872. [PMID: 38806671 PMCID: PMC11222154 DOI: 10.1038/s41564-024-01701-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 04/11/2024] [Indexed: 05/30/2024]
Abstract
Adaptation to hypoxia is a major challenge for the survival of Mycobacterium tuberculosis (Mtb) in vivo. Interferon (IFN)-γ-producing CD8+ T cells contribute to control of Mtb infection, in part by promoting antimicrobial activities of macrophages. Whether Mtb counters these responses, particularly during hypoxic conditions, remains unknown. Using metabolomic, proteomic and genetic approaches, here we show that Mtb induced Rv0884c (SerC), an Mtb phosphoserine aminotransferase, to produce D-serine. This activity increased Mtb pathogenesis in mice but did not directly affect intramacrophage Mtb survival. Instead, D-serine inhibited IFN-γ production by CD8+ T cells, which indirectly reduced the ability of macrophages to restrict Mtb upon co-culture. Mechanistically, D-serine interacted with WDR24 and inhibited mTORC1 activation in CD8+ T cells. This decreased T-bet expression and reduced IFN-γ production by CD8+ T cells. Our findings suggest an Mtb evasion mechanism where pathogen metabolic adaptation to hypoxia leads to amino acid-dependent suppression of adaptive anti-TB immunity.
Collapse
Affiliation(s)
- Hongyu Cheng
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, P. R. China
- Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai, PR China
| | - Zhe Ji
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, P. R. China
- Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai, PR China
| | - Yang Wang
- Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai, PR China
| | - Shenzhi Li
- Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai, PR China
| | - Tianqi Tang
- Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai, PR China
| | - Fei Wang
- Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai, PR China
| | - Cheng Peng
- Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai, PR China
| | - Xiangyang Wu
- Clinical and Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, P. R. China
| | - Yuanna Cheng
- Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai, PR China
| | - Zhonghua Liu
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, P. R. China
| | - Mingtong Ma
- Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai, PR China
| | - Jie Wang
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, P. R. China
| | - Xiaochen Huang
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, P. R. China
| | - Lin Wang
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, P. R. China
| | - Lianhua Qin
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, P. R. China
| | - Haipeng Liu
- Clinical and Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, P. R. China
| | - Jianxia Chen
- Clinical and Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, P. R. China
| | - Ruijuan Zheng
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, P. R. China
| | - Carl G Feng
- Immunology and Host Defense Group, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- Tuberculosis Research Program, Centenary Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Xia Cai
- Biosafety Level 3 Laboratory, Shanghai Medical College, Fudan University, Shanghai, P. R. China
| | - Di Qu
- Biosafety Level 3 Laboratory, Shanghai Medical College, Fudan University, Shanghai, P. R. China
| | - Lilin Ye
- Institute of Immunology, Third Military Medical University, Chongqing, P. R. China.
| | - Hua Yang
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, P. R. China.
- Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai, PR China.
| | - Baoxue Ge
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, P. R. China.
- Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai, PR China.
- Clinical and Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, P. R. China.
| |
Collapse
|
46
|
Monteyne AJ, West S, Stephens FB, Wall BT. Reconsidering the pre-eminence of dietary leucine and plasma leucinemia for predicting the stimulation of postprandial muscle protein synthesis rates. Am J Clin Nutr 2024; 120:7-16. [PMID: 38705358 PMCID: PMC11251220 DOI: 10.1016/j.ajcnut.2024.04.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 04/22/2024] [Accepted: 04/29/2024] [Indexed: 05/07/2024] Open
Abstract
The regulation of postprandial muscle protein synthesis (MPS) with or without physical activity has been an intensely studied area within nutrition and physiology. The leucine content of dietary protein and the subsequent plasma leucinemia it elicits postingestion is often considered the primary drivers of the postprandial MPS response. This concept, generally known as the leucine "trigger" hypothesis, has also been adopted within more applied aspects of nutrition. Our view is that recent evidence is driving a more nuanced picture of the regulation of postprandial MPS by revealing a compelling dissociation between ingested leucine or plasma leucinemia and the magnitude of the postprandial MPS response. Much of this lack of coherence has arisen as experimental progress has demanded relevant studies move beyond reliance on isolated amino acids and proteins to use increasingly complex protein-rich meals, whole foods, and mixed meals. Our overreliance on the centrality of leucine in this field has been reflected in 2 recent systematic reviews. In this perspective, we propose a re-evaluation of the pre-eminent role of these leucine variables in the stimulation of postprandial MPS. We view the development of a more complex intellectual framework now a priority if we are to see continued progress concerning the mechanistic regulation of postprandial muscle protein turnover, but also consequential from an applied perspective when evaluating the value of novel dietary protein sources.
Collapse
Affiliation(s)
- Alistair J Monteyne
- Department of Sport and Health Sciences, Nutritional Physiology Research Group, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Sam West
- Department of Sport and Health Sciences, Nutritional Physiology Research Group, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Francis B Stephens
- Department of Sport and Health Sciences, Nutritional Physiology Research Group, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Benjamin T Wall
- Department of Sport and Health Sciences, Nutritional Physiology Research Group, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom.
| |
Collapse
|
47
|
Abdualkader AM, Karwi QG, Lopaschuk GD, Al Batran R. The role of branched-chain amino acids and their downstream metabolites in mediating insulin resistance. JOURNAL OF PHARMACY & PHARMACEUTICAL SCIENCES : A PUBLICATION OF THE CANADIAN SOCIETY FOR PHARMACEUTICAL SCIENCES, SOCIETE CANADIENNE DES SCIENCES PHARMACEUTIQUES 2024; 27:13040. [PMID: 39007094 PMCID: PMC11239365 DOI: 10.3389/jpps.2024.13040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/19/2024] [Indexed: 07/16/2024]
Abstract
Elevated levels of circulating branched-chain amino acids (BCAAs) and their associated metabolites have been strongly linked to insulin resistance and type 2 diabetes. Despite extensive research, the precise mechanisms linking increased BCAA levels with these conditions remain elusive. In this review, we highlight the key organs involved in maintaining BCAA homeostasis and discuss how obesity and insulin resistance disrupt the intricate interplay among these organs, thus affecting BCAA balance. Additionally, we outline recent research shedding light on the impact of tissue-specific or systemic modulation of BCAA metabolism on circulating BCAA levels, their metabolites, and insulin sensitivity, while also identifying specific knowledge gaps and areas requiring further investigation. Finally, we summarize the effects of BCAA supplementation or restriction on obesity and insulin sensitivity.
Collapse
Affiliation(s)
- Abdualrahman Mohammed Abdualkader
- Faculty of Pharmacy, Université de Montréal, Montréal, QC, Canada
- Montreal Diabetes Research Center, Montréal, QC, Canada
- Cardiometabolic Health, Diabetes and Obesity Research Network, Montréal, QC, Canada
| | - Qutuba G. Karwi
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Gary D. Lopaschuk
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada
| | - Rami Al Batran
- Faculty of Pharmacy, Université de Montréal, Montréal, QC, Canada
- Montreal Diabetes Research Center, Montréal, QC, Canada
- Cardiometabolic Health, Diabetes and Obesity Research Network, Montréal, QC, Canada
| |
Collapse
|
48
|
Mir DA, Ma Z, Horrocks J, Rogers A. Stress-Induced Eukaryotic Translational Regulatory Mechanisms. JOURNAL OF CLINICAL AND MEDICAL SCIENCES 2024; 8:1000277. [PMID: 39364184 PMCID: PMC11448810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
The eukaryotic protein synthesis process entails intricate stages governed by diverse mechanisms to tightly regulate translation. Translational regulation during stress is pivotal for maintaining cellular homeostasis, ensuring the accurate expression of essential proteins is important for survival. This selective translational control mechanism is integral to cellular adaptation and resilience under adverse conditions. This review manuscript explores various mechanisms involved in selective translational regulation, focusing on mRNA-specific and global regulatory processes. Key aspects of translational control include translation initiation, which is often a rate-limiting step, and involves the formation of the eIF4F complex and recruitment of mRNA to ribosomes. Regulation of translation initiation factors, such as eIF4E, eIF4E2, and eIF2, through phosphorylation and interactions with binding proteins, modulates translation efficiency under stress conditions. This review also highlights the control of translation initiation through factors like the eIF4F complex and the ternary complex and also underscores the importance of eIF2α phosphorylation in stress granule formation and cellular stress responses. Additionally, the impact of amino acid deprivation, mTOR signaling, and ribosome biogenesis on translation regulation and cellular adaptation to stress is also discussed. Understanding the intricate mechanisms of translational regulation during stress provides insights into cellular adaptation mechanisms and potential therapeutic targets for various diseases, offering valuable avenues for addressing conditions associated with dysregulated protein synthesis.
Collapse
Affiliation(s)
- Dilawar Ahmad Mir
- Kathryn W. Davis Center for Regenerative Biology and Aging, Mount Desert Island Biological Laboratory, Maine, United States of America
| | - Zhengxin Ma
- Kathryn W. Davis Center for Regenerative Biology and Aging, Mount Desert Island Biological Laboratory, Maine, United States of America
| | - Jordan Horrocks
- Kathryn W. Davis Center for Regenerative Biology and Aging, Mount Desert Island Biological Laboratory, Maine, United States of America
| | - Aric Rogers
- Kathryn W. Davis Center for Regenerative Biology and Aging, Mount Desert Island Biological Laboratory, Maine, United States of America
| |
Collapse
|
49
|
Weiss M, Hettrich S, Hofmann T, Hachim S, Günther S, Braun T, Boettger T. Mitolnc controls cardiac BCAA metabolism and heart hypertrophy by allosteric activation of BCKDH. Nucleic Acids Res 2024; 52:6629-6646. [PMID: 38567728 PMCID: PMC11194096 DOI: 10.1093/nar/gkae226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 03/12/2024] [Accepted: 03/19/2024] [Indexed: 06/25/2024] Open
Abstract
Enzyme activity is determined by various different mechanisms, including posttranslational modifications and allosteric regulation. Allosteric activators are often metabolites but other molecules serve similar functions. So far, examples of long non-coding RNAs (lncRNAs) acting as allosteric activators of enzyme activity are missing. Here, we describe the function of mitolnc in cardiomyocytes, a nuclear encoded long non-coding RNA, located in mitochondria and directly interacting with the branched-chain ketoacid dehydrogenase (BCKDH) complex to increase its activity. The BCKDH complex is critical for branched-chain amino acid catabolism (BCAAs). Inactivation of mitolnc in mice reduces BCKDH complex activity, resulting in accumulation of BCAAs in the heart and cardiac hypertrophy via enhanced mTOR signaling. We found that mitolnc allosterically activates the BCKDH complex, independent of phosphorylation. Mitolnc-mediated regulation of the BCKDH complex constitutes an important additional layer to regulate the BCKDH complex in a tissue-specific manner, evading direct coupling of BCAA metabolism to ACLY-dependent lipogenesis.
Collapse
Affiliation(s)
- Maria Weiss
- Max Planck Institute for Heart- and Lung Research, Department of Cardiac Development and Remodelling, Ludwigstr. 43, D-61231 Bad Nauheim, Germany
| | - Sara Hettrich
- Max Planck Institute for Heart- and Lung Research, Department of Cardiac Development and Remodelling, Ludwigstr. 43, D-61231 Bad Nauheim, Germany
| | - Theresa Hofmann
- Max Planck Institute for Heart- and Lung Research, Department of Cardiac Development and Remodelling, Ludwigstr. 43, D-61231 Bad Nauheim, Germany
| | - Salma Hachim
- Max Planck Institute for Heart- and Lung Research, Department of Cardiac Development and Remodelling, Ludwigstr. 43, D-61231 Bad Nauheim, Germany
| | - Stefan Günther
- Max Planck Institute for Heart- and Lung Research, Department of Cardiac Development and Remodelling, Ludwigstr. 43, D-61231 Bad Nauheim, Germany
| | - Thomas Braun
- Max Planck Institute for Heart- and Lung Research, Department of Cardiac Development and Remodelling, Ludwigstr. 43, D-61231 Bad Nauheim, Germany
| | - Thomas Boettger
- Max Planck Institute for Heart- and Lung Research, Department of Cardiac Development and Remodelling, Ludwigstr. 43, D-61231 Bad Nauheim, Germany
| |
Collapse
|
50
|
Cook NE, McGovern MR, Zaman T, Lundin PM, Vaughan RA. Effect of mTORC Agonism via MHY1485 with and without Rapamycin on C2C12 Myotube Metabolism. Int J Mol Sci 2024; 25:6819. [PMID: 38999929 PMCID: PMC11241331 DOI: 10.3390/ijms25136819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 07/14/2024] Open
Abstract
The mechanistic target of rapamycin complex (mTORC) regulates protein synthesis and can be activated by branched-chain amino acids (BCAAs). mTORC has also been implicated in the regulation of mitochondrial metabolism and BCAA catabolism. Some speculate that mTORC overactivation by BCAAs may contribute to insulin resistance. The present experiments assessed the effect of mTORC activation on myotube metabolism and insulin sensitivity using the mTORC agonist MHY1485, which does not share structural similarities with BCAAs. METHODS C2C12 myotubes were treated with MHY1485 or DMSO control both with and without rapamycin. Gene expression was assessed using qRT-PCR and insulin sensitivity and protein expression by western blot. Glycolytic and mitochondrial metabolism were measured by extracellular acidification rate and oxygen consumption. Mitochondrial and lipid content were analyzed by fluorescent staining. Liquid chromatography-mass spectrometry was used to assess extracellular BCAAs. RESULTS Rapamycin reduced p-mTORC expression, mitochondrial content, and mitochondrial function. Surprisingly, MHY1485 did not alter p-mTORC expression or cell metabolism. Neither treatment altered indicators of BCAA metabolism or extracellular BCAA content. CONCLUSION Collectively, inhibition of mTORC via rapamycin reduces myotube metabolism and mitochondrial content but not BCAA metabolism. The lack of p-mTORC activation by MHY1485 is a limitation of these experiments and warrants additional investigation.
Collapse
Affiliation(s)
- Norah E. Cook
- Department of Health and Human Performance, High Point University, High Point, NC 27262-3598, USA; (N.E.C.); (M.R.M.)
| | - Macey R. McGovern
- Department of Health and Human Performance, High Point University, High Point, NC 27262-3598, USA; (N.E.C.); (M.R.M.)
| | - Toheed Zaman
- Department of Chemistry, High Point University, High Point, NC 27262-3598, USA; (T.Z.); (P.M.L.)
| | - Pamela M. Lundin
- Department of Chemistry, High Point University, High Point, NC 27262-3598, USA; (T.Z.); (P.M.L.)
| | - Roger A. Vaughan
- Department of Health and Human Performance, High Point University, High Point, NC 27262-3598, USA; (N.E.C.); (M.R.M.)
| |
Collapse
|