1
|
Dong L, Hou YR, Xu N, Gao XQ, Sun Z, Yang QK, Wang LN. Cyclic GMP-AMP synthase recognizes the physical features of DNA. Acta Pharmacol Sin 2025; 46:264-270. [PMID: 39112770 PMCID: PMC11747433 DOI: 10.1038/s41401-024-01369-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/24/2024] [Indexed: 01/22/2025] Open
Abstract
Cyclic GMP-AMP synthase (cGAS) is a major cytosolic DNA sensor that plays a significant role in innate immunity. Upon binding to double stranded DNA (dsDNA), cGAS utilizes GTP and ATP to synthesize the second messenger cyclic GMP-AMP (cGAMP). The cGAMP then binds to the adapter protein stimulator of interferon genes (STING) in the endoplasmic reticulum, resulting in the activation of the transcription factor interferon regulatory factor 3 (IRF3) and subsequent induction of type I interferon. An important question is how cGAS distinguishes between self and non-self DNA. While cGAS binds to the phosphate backbone of DNA without discrimination, its activation is influenced by physical features such as DNA length, inter-DNA distance, and mechanical flexibility. This suggests that the recognition of DNA by cGAS may depend on these physical features. In this article we summarize the recent progress in research on cGAS-STING pathway involved in antiviral defense, cellular senescence and anti-tumor response, and focus on DNA recognition mechanisms based on the physical features.
Collapse
Affiliation(s)
- Ling Dong
- Institute of Cancer Stem Cell, DaLian Medical University, Dalian, 116044, China
| | - Yue-Ru Hou
- Institute of Cancer Stem Cell, DaLian Medical University, Dalian, 116044, China
| | - Na Xu
- Institute of Cancer Stem Cell, DaLian Medical University, Dalian, 116044, China
| | - Xiao-Qian Gao
- Institute of Cancer Stem Cell, DaLian Medical University, Dalian, 116044, China
| | - Zhen Sun
- Institute of Cancer Stem Cell, DaLian Medical University, Dalian, 116044, China
| | - Qing-Kai Yang
- Institute of Cancer Stem Cell, DaLian Medical University, Dalian, 116044, China.
| | - Li-Na Wang
- Institute of Cancer Stem Cell, DaLian Medical University, Dalian, 116044, China.
| |
Collapse
|
2
|
Miyahira AK, Sharifi M, Chesner LN, El-Kenawi A, Haas R, Sena LA, Tewari AK, Pienta KJ, Soule HR. Personalized Medicine: Leave no Patient Behind; Report From the 2024 Coffey-Holden Prostate Cancer Academy Meeting. Prostate 2025; 85:211-226. [PMID: 39604057 DOI: 10.1002/pros.24826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024]
Abstract
INTRODUCTION The 11th Annual 2024 Coffey - Holden Prostate Cancer Academy (CHPCA) Meeting, was themed "Personalized Medicine: Leave No Patient Behind," and was held from June 20 to 23, 2024 at the University of California, Los Angeles, Luskin Conference Center, in Los Angeles, CA. METHODS The CHPCA Meeting is an academy-styled annual conference organized by the Prostate Cancer Foundation, to focus discussion on the most critical emerging research that have the greatest potential to advance knowledge of prostate cancer biology and treatment. The 2024 CHPCA Meeting was attended by 75 academic investigators and included 37 talks across 8 sessions. RESULTS The meeting sessions focused on: novel human, mouse and systems biology research models, novel immunotherapies for prostate cancer, efforts to overcome treatment resistance, the role of metabolism and diet in prostate cancer biology and as a therapeutic target, mechanisms that drive differentiation into neuroendocrine cancer subtypes, the evolving prostate cancer epigenome in disease progression and treatment resistance, and machine learning and advanced computational approaches for precision oncology. DISCUSSION This article summarizes the presentations and discussions from the 2024 CHPCA Meeting. We hope that sharing this knowledge will inspire and accelerate research into new discoveries and solutions for prostate cancer.
Collapse
Affiliation(s)
- Andrea K Miyahira
- Department of Science, Prostate Cancer Foundation, Santa Monica, California, USA
| | - Marina Sharifi
- Department of Medicine and Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Lisa N Chesner
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, California, USA
| | - Asmaa El-Kenawi
- Department of Urology, Indiana University School of Medicine, Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, Indiana, USA
| | - Roni Haas
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, California, USA
| | - Laura A Sena
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA
| | - Alok K Tewari
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Kenneth J Pienta
- The James Buchanan Brady Urological Institute, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Howard R Soule
- Department of Science, Prostate Cancer Foundation, Santa Monica, California, USA
| |
Collapse
|
3
|
Zhang X, Chen Y, Liu X, Li G, Zhang S, Zhang Q, Cui Z, Qin M, Simon HU, Terzić J, Kocic G, Polić B, Yin C, Li X, Zheng T, Liu B, Zhu Y. STING in cancer immunoediting: Modeling tumor-immune dynamics throughout cancer development. Cancer Lett 2025; 612:217410. [PMID: 39826670 DOI: 10.1016/j.canlet.2024.217410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/16/2024] [Accepted: 12/21/2024] [Indexed: 01/22/2025]
Abstract
Cancer immunoediting is a dynamic process of tumor-immune system interaction that plays a critical role in cancer development and progression. Recent studies have highlighted the importance of innate signaling pathways possessed by both cancer cells and immune cells in this process. The STING molecule, a pivotal innate immune signaling molecule, mediates DNA-triggered immune responses in both cancer cells and immune cells, modulating the anti-tumor immune response and shaping the efficacy of immunotherapy. Emerging evidence has shown that the activation of STING signaling has dual opposing effects in cancer progression, simultaneously provoking and restricting anti-tumor immunity, and participating in every phase of cancer immunoediting, including immune elimination, equilibrium, and escape. In this review, we elucidate the roles of STING in the process of cancer immunoediting and discuss the dichotomous effects of STING agonists in the cancer immunotherapy response or resistance. A profound understanding of the sophisticated roles of STING signaling pathway in cancer immunoediting would potentially inspire the development of novel cancer therapeutic approaches and overcome the undesirable protumor effects of STING activation.
Collapse
Affiliation(s)
- Xiao Zhang
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin 150001, People's Republic of China; Department of Pathology, Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Yan Chen
- Department of Pathology, Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Xi Liu
- Department of Cardiology, ordos central hospital, Ordos, People's Republic of China
| | - Guoli Li
- Department of Colorectal and Anal Surgery, Chifeng Municipal Hospital, Chifeng Clinical Medical School of Inner Mongolia Medical University, Chifeng, People's Republic of China
| | - Shuo Zhang
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin 150001, People's Republic of China
| | - Qi Zhang
- Department of Pathology, Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Zihan Cui
- Department of Pathology, Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Minglu Qin
- Department of Pathology, Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, 3010 Bern, Switzerland; Institute of Biochemistry, Brandenburg Medical School, Neuruppin, 16816, Germany
| | - Janoš Terzić
- Laboratory for Cancer Research, University of Split School of Medicine, Split, Croatia
| | - Gordana Kocic
- Department of Biochemistry, Faculty of Medicine, University of Nis, 18000 Nis, Serbia
| | - Bojan Polić
- University of Rijeka Faculty of Medicine, Croatia
| | - Chengliang Yin
- Faculty of Medicine, Macau University of Science and Technology, 999078, Macao.
| | - Xiaobo Li
- Department of Pathology, Harbin Medical University, Harbin, 150081, People's Republic of China.
| | - Tongsen Zheng
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, No.150 Haping Road, Nangang District, Harbin, Heilongjiang, People's Republic of China.
| | - Bing Liu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin 150001, People's Republic of China; School of Stomatology, Harbin Medical University, Harbin, 150001, People's Republic of China.
| | - Yuanyuan Zhu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin 150001, People's Republic of China; Department of Pathology, Harbin Medical University, Harbin, 150081, People's Republic of China.
| |
Collapse
|
4
|
Chen Z, Zeng Y, Ma P, Xu Q, Zeng L, Song X, Yu F. Integrated GMPS and RAMP3 as a signature to predict prognosis and immune heterogeneity in hepatocellular carcinoma. Gene 2025; 933:148958. [PMID: 39312983 DOI: 10.1016/j.gene.2024.148958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 06/14/2024] [Accepted: 09/18/2024] [Indexed: 09/25/2024]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a highly fatal malignant worldwide. As different expression levels of specific genes can lead to different HCC outcomes, we aimed to develop a gene signature capable of predicting HCC prognosis. METHODS In this study, transcriptomic sequencing and relevant clinical data were extracted from public platforms. The guanine monophosphate synthase (GMPS)|receptor activity-modifying protein 3 (RAMP3) gene pair was developed based on the relative values of gene expression levels. Nomograms were developed using R software. Immune status was assessed through single-sample gene set enrichment analysis. GMPS knockdown was achieved through siRNA transfection. Quantitative reverse transcription PCR, apoptosis assays, and cell proliferation were performed to verify the function of GMPS|RAMP3 in HCC cells. RESULTS Here, a gene pair containing GMPS and RAMP3 was successfully constructed. We demonstrated that the GMPS|RAMP3 gene pair was an independent predictor with strong prognostic prediction power, based on which a nomogram was established. Functional analysis revealed that the enrichment of cell cycle-related pathways and immune status differed considerably between the two groups, with cell cycle-related genes highly expressed in the high GMPS|RAMP3 value group. Finally, cell experiments indicated that GMPS knockdown significantly repressed proliferation, promoted apoptosis, and enhanced the sensitivity of HCC cells to gemcitabine. CONCLUSIONS The gene pair GMPS|RAMP3 is a novel prognostic predictor of HCC, providing a promising approach to the treatment and assessment of immune heterogeneity in HCC.
Collapse
Affiliation(s)
- Zhuoyan Chen
- Department of Gastroenterology, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang, China
| | - Yuan Zeng
- Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Peipei Ma
- Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qian Xu
- Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Liuwei Zeng
- Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xian Song
- Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Fujun Yu
- Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
5
|
Kureshi CT, Dougan SK. Cytokines in cancer. Cancer Cell 2025; 43:15-35. [PMID: 39672170 DOI: 10.1016/j.ccell.2024.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 11/15/2024] [Accepted: 11/18/2024] [Indexed: 12/15/2024]
Abstract
Cytokines are proteins used by immune cells to communicate with each other and with cells in their environment. The pleiotropic effects of cytokine networks are determined by which cells express cytokines and which cells express cytokine receptors, with downstream outcomes that can differ based on cell type and environmental cues. Certain cytokines, such as interferon (IFN)-γ, have been clearly linked to anti-tumor immunity, while others, such as the innate inflammatory cytokines, promote oncogenesis. Here we provide an overview of the functional roles of cytokines in the tumor microenvironment. Although we have a sophisticated understanding of cytokine networks, therapeutically targeting cytokine pathways in cancer has been challenging. We discuss current progress in cytokine blockade, cytokine-based therapies, and engineered cytokine therapeutics as emerging cancer treatments of interest.
Collapse
Affiliation(s)
- Courtney T Kureshi
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Program in Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Stephanie K Dougan
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Program in Immunology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
6
|
Drzyzga A, Czapla J, Matuszczak S, Łasut-Szyszka B, Cichoń T, Pilny E, Jarosz-Biej M, Smolarczyk R. Differential Response to Local Stimulator of Interferon Genes Agonist Administration in Tumors with Various Stimulator of Interferon Genes Statuses. Cancers (Basel) 2025; 17:175. [PMID: 39857957 PMCID: PMC11763682 DOI: 10.3390/cancers17020175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/13/2024] [Accepted: 12/27/2024] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: The stimulator of interferon genes (STING) is currently accepted as a relevant target for anti-cancer therapies. Besides encouraging results showing STING agonist-induced tumor growth inhibition, in some types of tumors the effect is less prominent. We hypothesized that higher STING levels in cancer cells and the possibility of its activation determine a greater anti-cancer response. As the local administration of STING agonists induces a systemic reaction, we emphasized the importance of host tumor-induced hematological disruption in the efficiency of the therapeutic response. Methods: We investigated the response to STING stimulation in murine cancer cell lines-melanoma (B16-F10) and breast carcinoma (4T1)-and murine normal cell lines: fibroblast cells (NIH/3T3), endothelial cells (H5V), and macrophages (J774A.1). We assessed STING agonist-induced tumor growth inhibition and the therapy's impact on the hematological system parameters and systemic cytokine release. Results: Our results underlined the improved therapeutic effect of STING activation in melanoma (B16-F10) over breast carcinoma (4T1) tumors. The outcomes reflected a high dysregulation of the hematological system in mice with developed 4T1 tumors, which may support persistent inflammation and impede STING-induced therapeutic effects. Moreover, among typical cytokines produced following STING activation, CCL2 fold change was the one that increased the most in the serum of B16-F10-bearing mice and differentiated the observed response to the STING agonist between investigated tumor models. Conclusions: The current study provides new evidence of the different responses to STING activation among two poorly immunogenic tumor models. The high abundance of STING in B16-F10 cells and the possibility of its activation is linked with improved therapeutic response in vivo compared to 4T1. The effect also seems to be connected with a less dysregulated hematological system in mice with B16-F10 tumors over mice with 4T1 tumors. This highlighted the need for general insight into tumor-induced local and systemic responses to the efficiency of the proposed therapy.
Collapse
Affiliation(s)
- Alina Drzyzga
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, 44-102 Gliwice, Poland; (J.C.); (S.M.); (B.Ł.-S.); (T.C.); (E.P.); (M.J.-B.)
| | | | | | | | | | | | | | - Ryszard Smolarczyk
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, 44-102 Gliwice, Poland; (J.C.); (S.M.); (B.Ł.-S.); (T.C.); (E.P.); (M.J.-B.)
| |
Collapse
|
7
|
Lian Z, Liu X, Li X. Elucidating the expression and role of cGAS in pan-cancer using integrated bioinformatics and experimental approaches. BMC Cancer 2025; 25:5. [PMID: 39748320 PMCID: PMC11697830 DOI: 10.1186/s12885-024-13379-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 12/20/2024] [Indexed: 01/04/2025] Open
Abstract
cGAS plays an important role in regulating both tumor immune responses and DNA damage repair. Nevertheless, there was little research that comprehensively analyzed the correlation between cGAS and the tumor microenvironment, immune cell infiltration, and DNA damage repair in different cancers. In this study, The Cancer Genome Atlas (TCGA) and Cancer Cell Line Encyclopedia (CCLE) data were used to analyze the mRNA expression and genomic alterations of cGAS in pan-cancer. The HPA database was used to explore the protein levels of cGAS in normal tissues and cancers. Correlation analysis were performed to explore the role of cGAS in interferon expression, immune cell infiltrations, DNA damage repair, and predictive immune markers. The prognostic value of cGAS was analyzed using survival data from the TCGA, Kaplan-Meier plotter database, and PrognoScan database. Lastly, the role of cGAS in DNA damage repair signaling and interferon signaling was validated in NSCLC cell lines. The results showed that cGAS was widely expressed in human normal tissues and various cancers, and the expression of cGAS was significantly upregulated in almost all of the solid cancers. Genomic analysis indicated that the expression of cGAS was positively correlated with copy number levels, while negatively correlated with the methylation levels of cGAS promoter. In addition, the level of cGAS was positively correlated with type I interferons expression, infiltration levels of most immune cell types, TMB and MSI levels, stromal and immune scores, and DNA damage repair gene sets including nonhomologous end joining and homologous recombination pathway. Survival analysis indicated that cGAS levels were associated with patient prognosis in several cancers. Lastly, in vitro study showed knockdown of cGAS expression inhibits the DNA damage repair signaling pathway and interferon signaling in NSCLC. In conclusions, cGAS is wildly activated in human cancers, which might participate in regulating cancer immunity and DNA damage repair. cGAS could be used as an effective target for cancer treatment and might be a potential predictive immune marker.
Collapse
Affiliation(s)
- Zhen Lian
- Department of Emergency, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Xue Liu
- Department of Comprehensive Treatment Ward, Mudan People's Hospital of Heze, Heze, 274000, China
| | - Xue Li
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China.
| |
Collapse
|
8
|
Luo J, Wang S, Yang Q, Fu Q, Zhu C, Li T, Yang S, Zhao Y, Guo R, Ben X, Zheng Y, Li S, Yang G, Zhang H, Xiao H, Jiang Z, Yan N, Kabelitz D, Sun G, Granot Z, Lu L, You F, Hao J, Yin Z. γδ T Cell-mediated Tumor Immunity is Tightly Regulated by STING and TGF-β Signaling Pathways. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2404432. [PMID: 39573933 PMCID: PMC11727375 DOI: 10.1002/advs.202404432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/02/2024] [Indexed: 01/14/2025]
Abstract
The STING pathway plays a critical role in tumor immunosurveillance. However, the precise mechanisms by which STING regulates gamma delta (γδ) T cell function during tumor progression remain unclear. Herein, we find that tumor-derived cyclic GMP-AMP (cGAMP) activates a distinct STING pathway by inducing TBK1-mediated phosphorylation of Eomes in γδ T cells during the early stage of tumor development is demonstrated. This activation leads to interferon-gamma (IFN-γ) production and consequent tumor surveillance. However, at advanced stages of tumor progression, the accumulation of immune-suppressive cytokine transforming growth factor-beta (TGF-β) downregulates STING levels, compromising the function of γδ T cells. Notably, the synergism between TGF-β inhibition and STING agonists effectively counteracts the immunosuppressive tumor microenvironment, thereby augmenting the antitumoral effects of γδ T cells. These findings present a novel mechanism involving STING-mediated IFN-γ production in γδ T cells and hold significant implications for the development of potent immunotherapeutic approaches against cancer.
Collapse
|
9
|
Wang XY, Yan Y, Guo XR, Lu A, Jiang LX, Zhu YJ, Shi YJ, Liu XY, Wang JC. Enhanced Tumor Immunotherapy by Triple Amplification Effects of Nanomedicine on the STING Signaling Pathway in Dendritic Cells. Adv Healthc Mater 2025; 14:e2403143. [PMID: 39440648 DOI: 10.1002/adhm.202403143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/02/2024] [Indexed: 10/25/2024]
Abstract
Insufficient activation of stimulator of interferon genes (STING) signaling pathway in tumor-associated dendritic cells limits the efficiency of tumor immunotherapy. Herein, the "three-in-one" IAHA-LaP/siPTPN6 NPs containing lanthanum ions (La3+), cGAMP, and PTPN6 siRNA are developed for triple amplification of the STING pathway. In vitro results demonstrate that La3+ significantly promotes cGAMP-mediated activation of the STING pathway by enhancing the phosphorylation of STING, TBK1, IRF3, and NF-κB p65. Moreover, the IAHA-LaP/siPTPN6 NPs further significantly enhance the phosphorylation of STING and NF-κB p65 and augment K63-linked ubiquitination of STING protein via siPTPN6-mediated downregulation of SHP-1 protein. Furthermore, NPs improve the secretion of IFNβ (2.4-fold), IL-6 (1.5-fold), and TNF-α (1.4-fold), thereby promoting DCs maturation compared to the mixture of La3+ and cGAMP. In vivo results show that the IAHA-LaP/siPTPN6 NPs remarkably inhibit primary tumor growth by increasing the percentage of mature DCs in tumor-draining lymph nodes, polarizing M2/M1 phenotype in TME, and promoting the infiltration of CD8+T cells into tumors. Moreover, these NPs dramatically prevent the growth of distal tumor by inducing systemic anti-tumor immunity and generating a long-term anti-tumor memory for protection against tumor recurrence in mice bearing bilateral B16F10. These IAHA-LaP/siPTPN6 NPs may offer a promising platform for robust anti-tumor immune responses.
Collapse
Affiliation(s)
- Xiang-Yu Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Yi Yan
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Xiao-Ru Guo
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - An Lu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Lin-Xia Jiang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Yuan-Jun Zhu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Yu-Jie Shi
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Xiao-Yan Liu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Jian-Cheng Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
- Laboratory of Innovative Formulations and Pharmaceutical Excipients, Peking University Ningbo Institute of Marine Medicine, Ningbo, 315832, China
| |
Collapse
|
10
|
Ying X, Chen Q, Yang Y, Wu Z, Zeng W, Miao C, Huang Q, Ai K. Nanomedicines harnessing cGAS-STING pathway: sparking immune revitalization to transform 'cold' tumors into 'hot' tumors. Mol Cancer 2024; 23:277. [PMID: 39710707 DOI: 10.1186/s12943-024-02186-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 11/26/2024] [Indexed: 12/24/2024] Open
Abstract
cGAS-STING pathway stands at the forefront of innate immunity and plays a critical role in regulating adaptive immune responses, making it as a key orchestrator of anti-tumor immunity. Despite the great potential, clinical outcomes with cGAS-STING activators have been disappointing due to their unfavorable in vivo fate, signaling an urgent need for innovative solutions to bridge the gap in clinical translation. Recent advancements in nanotechnology have propelled cGAS-STING-targeting nanomedicines to the cutting-edge of cancer therapy, leveraging precise drug delivery systems and multifunctional platforms to achieve remarkable region-specific biodistribution and potent therapeutic efficacy. In this review, we provide an in-depth exploration of the molecular mechanisms that govern cGAS-STING signaling and its potential to dynamically modulate the anti-tumor immune cycle. We subsequently introduced several investigational cGAS-STING-dependent anti-tumor agents and summarized their clinical trial progress. Additionally, we provided a comprehensive review of the unique advantages of cGAS-STING-targeted nanomedicines, highlighting the transformative potential of nanotechnology in this field. Furthermore, we comprehensively reviewed and comparatively analyzed the latest breakthroughs cGAS-STING-targeting nanomedicine, focusing on strategies that induce cytosolic DNA generation via exogenous DNA delivery, chemotherapy, radiotherapy, or dynamic therapies, as well as the nanodelivery of STING agonists. Lastly, we discuss the future prospects and challenges in cGAS-STING-targeting nanomedicine development, offering new insights to bridge the gap between mechanistic research and drug development, thereby opening new pathways in cancer treatment.
Collapse
Affiliation(s)
- Xiaohong Ying
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, China
| | - Qiaohui Chen
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, China
| | - Yongqi Yang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, China
| | - Ziyu Wu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, China
| | - Wan Zeng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, China
| | - Chenxi Miao
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, China
| | - Qiong Huang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Kelong Ai
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, China.
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, China.
- Key Laboratory of Aging-related Bone and Joint Diseases Prevention and Treatment, Xiangya Hospital, Ministry of Education, Central South University, Changsha, 410008, China.
| |
Collapse
|
11
|
Danielson M, Nicolai CJ, Vo TT, Wolf NK, Burke TP. Cytosolic bacterial pathogens activate TLR pathways in tumors that synergistically enhance STING agonist cancer therapies. iScience 2024; 27:111385. [PMID: 39669426 PMCID: PMC11635009 DOI: 10.1016/j.isci.2024.111385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/04/2024] [Accepted: 11/11/2024] [Indexed: 12/14/2024] Open
Abstract
Intracellular bacterial pathogens are distinctive tools for fighting cancer, as they can proliferate in tumors and deliver therapeutic payloads to the eukaryotic cytosol. Cytosol-dwelling bacteria have undergone extensive preclinical and clinical testing, yet the mechanisms of activating innate immunity in tumors are unclear. We report that phylogenetically distinct cytosolic pathogens, including Listeria, Rickettsia, and Burkholderia species, elicited anti-tumor responses in poorly immunogenic melanoma and lymphoma in mice. Although the bacteria required cytosolic access, anti-tumor responses were largely independent of the cytosolic sensors cyclic GMP-AMP synthase (cGAS) and stimulator of interferon genes (STING), but instead required Toll-like receptor (TLR) signaling. Combining pathogens with STING agonists elicited profound, synergistic anti-tumor effects with complete responses in >80% of mice. Small molecule TLR agonists also synergistically enhanced STING agonists. The responses required RAG2 but not interferons, and cured mice developed immunity to cancer rechallenge requiring CD8+ T cells. These studies provide a framework for enhancing microbial and small molecule innate agonists for cancer, via co-activating STING and TLRs.
Collapse
Affiliation(s)
- Meggie Danielson
- Microbiology and Molecular Genetics, University of California, Irvine, Irvine, CA 92617, USA
| | | | - Thaomy T. Vo
- Microbiology and Molecular Genetics, University of California, Irvine, Irvine, CA 92617, USA
| | - Natalie K. Wolf
- Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Thomas P. Burke
- Microbiology and Molecular Genetics, University of California, Irvine, Irvine, CA 92617, USA
| |
Collapse
|
12
|
Xu C, Dong J, Shi X, Rui J, Chen M, Lu W, Zhang A, Wang S, Teng Z, Ye X. Engineered microalgae for photo-sonodynamic synergistic therapy in breast cancer treatment. Acta Biomater 2024:S1742-7061(24)00766-9. [PMID: 39709158 DOI: 10.1016/j.actbio.2024.12.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 12/12/2024] [Accepted: 12/18/2024] [Indexed: 12/23/2024]
Abstract
Dynamic therapies such as photodynamic therapy (PDT) and sonodynamic therapy (SDT) have potential in cancer treatment. Microalgae have attracted increasing attention because of their high active mobility, flexibility in terms of functionality, and good biocompatibility. In this study, surface-engineered microalgae Chlorella vulgaris (Chl) modified with metal‒organic framework (MOF) nanoparticles (denoted Chl-MOF) are successfully developed for synergistic photo-sonodynamic therapy and immunotherapy. The resulting Chl-MOF can be used as an oxygenator for O2 generation through Chl-mediated photosynthesis, alleviating tumor hypoxia. Furthermore, Chl-MOF produces reactive oxygen species (ROS) during laser and ultrasound (US) irradiation, further augmenting the photo-sonodynamic effects and enhancing tumor cell apoptosis. Owing to the high mobility of Chl, cellular uptake efficiency and accumulation in deep tumor sites are 5.2-fold and 3.3-fold higher, respectively, for Chl-MOF than for the MOF. Owing to the immunomodulatory effects of Chl, Chl-MOF can increase natural killer (NK) cell cytotoxic activity, increase dendritic cell (DC) antigen-presenting ability, reverse the establishment of an immunosuppressive tumor microenvironment (TME), and induce a relatively strong antitumor immune response. Chl-MOF can effectively reduce breast cancer size by 88.8 % in vitro and in vivo via synergistic photo-sonodynamic therapy and immunotherapy. These intriguing properties of the combination of Chl and MOF provide promising platform for cancer theranostic applications. STATEMENT OF SIGNIFICANCE: : • Chl acts as an O2 generator for alleviating hypoxia in tumors. • The high mobility of Chl resulted in 3.3-folds higher tumor accumulation. • The Chl-MOF can induce synergistic photo-sonodynamic effects and a relatively strong antitumor immune response. • Chl-MOF effectively reduce breast cancer size by 88.8 % via synergistic therapies.
Collapse
Affiliation(s)
- Chaoli Xu
- Department of Ultrasound, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, PR China
| | - Jinhao Dong
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, College of Oceanography, Hohai University, Nanjing 210024, PR China
| | - Xuzhi Shi
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210046, Jiangsu, PR China
| | - Jiaxin Rui
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210046, Jiangsu, PR China
| | - Meng Chen
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210046, Jiangsu, PR China
| | - Wei Lu
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210046, Jiangsu, PR China
| | - Aihua Zhang
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, College of Oceanography, Hohai University, Nanjing 210024, PR China.
| | - Shouju Wang
- Laboratory of Molecular Imaging, Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, PR China.
| | - Zhaogang Teng
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210046, Jiangsu, PR China.
| | - Xinhua Ye
- Department of Ultrasound, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, PR China.
| |
Collapse
|
13
|
Zhou S, Cao Q, Zhang Z, Du Y, Hou Y, Zhang X, Xie Z, Zhou Y, Zhu B, Zhang Y, Zhu A, Niu H. The adjuvant effect of manganese on tuberculosis subunit vaccine Bfrb-GrpE. NPJ Vaccines 2024; 9:248. [PMID: 39702587 DOI: 10.1038/s41541-024-01049-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 12/10/2024] [Indexed: 12/21/2024] Open
Abstract
Protein subunit vaccines, lacking pathogen-associated molecular patterns that trigger immune responses, rely on adjuvants to induce robust immune responses against the target pathogen. Thus, selection of adjuvants plays a crucial role in the design of protein subunit vaccines. Recently, there has been growing interest in utilizing cGAS-STING agonists as vaccine adjuvants. In this study, we investigated the adjuvant effect of manganese (Mn), a cGAS-STING agonist, on the tuberculosis subunit vaccine Bfrb-GrpE (BG) in a mouse model. Initially, mice were administered with BG-Mn(J), and its immunogenicity and protective efficacy were assessed six weeks after the final immunization. The results showed that Mn(J) enhanced both the cellular and humoral immune responses to the BG vaccine and conferred effective protection against M. tuberculosis H37Ra infection in mice, leading to a significant reduction of 2.0 ± 0.17 Log10 CFU in spleens and 1.3 ± 0.17 Log10 CFU in lungs compared to the PBS control group. Additionally, we assessed the BG-Mn(J) vaccine in a surrogate model of tuberculosis in rabbit skin model. The vaccination with BG-Mn(J) also provided effective protection in the rabbit model, as indicated by a decreased bacterial load at the infection site, minimal pathological damage, and accelerated healing. These findings suggest that Mn(J) holds promise as an adjuvant for tuberculosis vaccines, underscoring its potential to enhance vaccine efficacy and offer protection against tuberculosis infection.
Collapse
Affiliation(s)
- Shuai Zhou
- Key Laboratory of Blood-stasis-toxin Syndrome of Zhejiang Province, School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Qianqian Cao
- School of Basic Medical Science, Lanzhou University, Lanzhou, Gansu, China
| | - Zunjing Zhang
- Key Laboratory of Inheritance and Innovation of She Medicine of Zhejiang Province, Zhejiang Chinese Medical University Affiliated Lishui Traditional Chinese Medicine Hospital, Lishui, Zhejiang, China
| | - Yunjie Du
- School of Basic Medical Science, Lanzhou University, Lanzhou, Gansu, China
| | - Yilin Hou
- Key Laboratory of Blood-stasis-toxin Syndrome of Zhejiang Province, School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Xiaojuan Zhang
- Key Laboratory of Blood-stasis-toxin Syndrome of Zhejiang Province, School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Zhijun Xie
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yuan Zhou
- Key Laboratory of Blood-stasis-toxin Syndrome of Zhejiang Province, School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Bingdong Zhu
- School of Basic Medical Science, Lanzhou University, Lanzhou, Gansu, China
| | - Ying Zhang
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Aisong Zhu
- Key Laboratory of Blood-stasis-toxin Syndrome of Zhejiang Province, School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
| | - Hongxia Niu
- Key Laboratory of Blood-stasis-toxin Syndrome of Zhejiang Province, School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
- School of Basic Medical Science, Lanzhou University, Lanzhou, Gansu, China.
| |
Collapse
|
14
|
Yu H, Liu W, Ding K, Wu J, Wang C, Wang S, Wu L, Tang Q, Yin X, Jiang K, Yan D, Wang X, Chen S, Yan S. Sequential Release HydroLipo System for STING Gene Epigenetic Reprogramming and Immune Activation in Glioblastoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2408323. [PMID: 39661716 DOI: 10.1002/advs.202408323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 11/06/2024] [Indexed: 12/13/2024]
Abstract
Glioblastoma (GBM) remains a daunting oncological challenge because of its aggressive nature and resistance to conventional therapies. Inhibition of the intrinsic STING pathway in GBM hampers the effectiveness of immunotherapies. To overcome this clinical limitation, a Sequential Release HydroLipo System (SRHLS) is developed, in which hydrogels and nanoparticles are combined for controlled drug release. The SRHLS sequentially released decitabine and STING agonists, thereby correcting STING signaling dysfunction through epigenetic reprogramming and enhancing antitumor immunity. According to in vitro and in vivo experiments, the SRHLS reshaped the tumor microenvironment and markedly inhibited tumor growth, recurrence, and metastasis. These findings underscore the potential of the SRHLS as a promising therapeutic strategy for GBM.
Collapse
Affiliation(s)
- Hao Yu
- Department of Radiation Oncology, the First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, Zhejiang, 310003, P. R. China
| | - Wenjing Liu
- College of Materials Science and Engineering, Zhejiang Key Laboratory of Plastic Modification and Processing Technology, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Kaikai Ding
- Department of Radiation Oncology, the First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, Zhejiang, 310003, P. R. China
| | - Jiangjie Wu
- College of Materials Science and Engineering, Zhejiang Key Laboratory of Plastic Modification and Processing Technology, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Cheng Wang
- College of Materials Science and Engineering, Zhejiang Key Laboratory of Plastic Modification and Processing Technology, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Siyuan Wang
- Department of Radiation Oncology, the First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, Zhejiang, 310003, P. R. China
| | - Lingyun Wu
- Department of Radiation Oncology, the First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, Zhejiang, 310003, P. R. China
| | - Qiuying Tang
- Department of Radiation Oncology, the First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, Zhejiang, 310003, P. R. China
| | - Xin Yin
- Department of Radiation Oncology, the First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, Zhejiang, 310003, P. R. China
| | - Kan Jiang
- Department of Radiation Oncology, the First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, Zhejiang, 310003, P. R. China
| | - Danfang Yan
- Department of Radiation Oncology, the First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, Zhejiang, 310003, P. R. China
| | - Xu Wang
- College of Materials Science and Engineering, Zhejiang Key Laboratory of Plastic Modification and Processing Technology, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Si Chen
- College of Materials Science and Engineering, Zhejiang Key Laboratory of Plastic Modification and Processing Technology, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Senxiang Yan
- Department of Radiation Oncology, the First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, Zhejiang, 310003, P. R. China
| |
Collapse
|
15
|
Zhang P, Zhong D, Yu Y, Wang L, Li Y, Liang Y, Shi Y, Duan M, Li B, Niu H, Xu Y. Integration of STING activation and COX-2 inhibition via steric-hindrance effect tuned nanoreactors for cancer chemoimmunotherapy. Biomaterials 2024; 311:122695. [PMID: 38954960 DOI: 10.1016/j.biomaterials.2024.122695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/01/2024] [Accepted: 06/27/2024] [Indexed: 07/04/2024]
Abstract
Integrating immunotherapy with nanomaterials-based chemotherapy presents a promising avenue for amplifying antitumor outcomes. Nevertheless, the suppressive tumor immune microenvironment (TIME) and the upregulation of cyclooxygenase-2 (COX-2) induced by chemotherapy can hinder the efficacy of the chemoimmunotherapy. This study presents a TIME-reshaping strategy by developing a steric-hindrance effect tuned zinc-based metal-organic framework (MOF), designated as CZFNPs. This nanoreactor is engineered by in situ loading of the COX-2 inhibitor, C-phycocyanin (CPC), into the framework building blocks, while simultaneously weakening the stability of the MOF. Consequently, CZFNPs achieve rapid pH-responsive release of zinc ions (Zn2+) and CPC upon specific transport to tumor cells overexpressing folate receptors. Accordingly, Zn2+ can induce reactive oxygen species (ROS)-mediated cytotoxicity therapy while synchronize with mitochondrial DNA (mtDNA) release, which stimulates mtDNA/cGAS-STING pathway-mediated innate immunity. The CPC suppresses the chemotherapy-induced overexpression of COX-2, thus cooperatively reprogramming the suppressive TIME and boosting the antitumor immune response. In xenograft tumor models, the CZFNPs system effectively modulates STING and COX-2 expression, converting "cold" tumors into "hot" tumors, thereby resulting in ≈ 4-fold tumor regression relative to ZIF-8 treatment alone. This approach offers a potent strategy for enhancing the efficacy of combined nanomaterial-based chemotherapy and immunotherapy.
Collapse
Affiliation(s)
- Pengfei Zhang
- Department of Urology, the Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Di Zhong
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao 266071, Shandong Province, China
| | - Yongbo Yu
- Department of Urology, the Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Lupeng Wang
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Yifan Li
- Department of Breast Center of the Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong Province, China
| | - Ye Liang
- Department of Urology, the Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Yanfeng Shi
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Meilin Duan
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Bing Li
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao 266071, Shandong Province, China.
| | - Haitao Niu
- Department of Urology, the Affiliated Hospital of Qingdao University, Qingdao 266003, China.
| | - Yuanhong Xu
- Department of Urology, the Affiliated Hospital of Qingdao University, Qingdao 266003, China; Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
16
|
Wu J, Chen Y, Xie M, Yu X, Su C. cGAS-STING signaling pathway in lung cancer: Regulation on antitumor immunity and application in immunotherapy. CHINESE MEDICAL JOURNAL PULMONARY AND CRITICAL CARE MEDICINE 2024; 2:257-264. [PMID: 39834588 PMCID: PMC11742360 DOI: 10.1016/j.pccm.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 08/31/2024] [Accepted: 11/03/2024] [Indexed: 01/22/2025]
Abstract
The innate immune system has a primary role in defending against external threats, encompassing viruses, bacteria, and fungi, thereby playing a pivotal role in establishing robust protection. Recent investigations have shed light on its importance in the progression of tumors, with a particular emphasis on lung cancer. Among the various signaling pathways implicated in this intricate process, the cGAS-STING pathway emerges as a significant participant. Cyclic GMP-AMP synthase (cGAS) discerns free DNA and activates the stimulator of interferon genes (STING), subsequently culminating in the secretion of cytokines and exerting inhibitory effects on tumor development. Consequently, researchers are increasingly interested in creating anticancer drugs that specifically target the cGAS-STING pathway, offering promising avenues for novel therapeutic interventions. The objective of this review is to present a comprehensive overview of the ongoing research on the cGAS-STING signaling pathway within the realm of lung cancer. The primary emphasis is on understanding its involvement in lung cancer development and assessing its viability as a target for innovative therapeutic options.
Collapse
Affiliation(s)
- Jing Wu
- Department of Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai 200433, China
| | - Yingyao Chen
- Department of Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai 200433, China
| | - Mengqing Xie
- Department of Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai 200433, China
| | - Xin Yu
- Department of Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai 200433, China
| | - Chunxia Su
- Department of Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai 200433, China
| |
Collapse
|
17
|
Zhou Q, Wu J, Bei J, Zhai Z, Chen X, Liang W, Meng J, Liu M. Integration of single-cell sequencing and drug sensitivity profiling reveals an 11-gene prognostic model for liver cancer. Hum Genomics 2024; 18:132. [PMID: 39587687 PMCID: PMC11590408 DOI: 10.1186/s40246-024-00698-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 11/11/2024] [Indexed: 11/27/2024] Open
Abstract
BACKGROUND Liver cancer has a high global incidence, particularly in East Asia. Early detection difficulties lead to poor prognosis. Single-cell sequencing precisely identifies gene expression differences in specific cell types, making it valuable in tumor microenvironment research and immune drug development. However, the characteristics of tumor cells themselves are equally important for patient prognosis and treatment. METHODS We downloaded single-cell sequencing data from GSE189903, grouped cells by cluster markers, and classified epithelial cells into adjacent non-tumor, normal, and tumor cells. Differential gene and survival analyses identified significant differential genes. Using TCGA-LIHC data, we divided 370 patients into test and training sets. We constructed and validated a LASSO model based on these genes in both sets and two external datasets. Functional, immune infiltration, and mutation analyses were performed on high and low-risk groups. We also used RNA-seq and IC50 data of 15 liver cancer cell lines from GDSC, scoring them with our prognostic model to identify potential drugs for high-risk patients. RESULTS Dimensionality reduction and clustering of 34 single-cell samples identified five subgroups, with epithelial cells further classified. Differential gene analysis identified 124 significant genes. An 11-gene prognostic model was constructed, effectively stratifying patient prognosis (p < 0.05) and achieving an AUC above 0.6 for 5 year survival prediction in multiple cohorts. Functional analysis revealed that upregulated genes in high-risk groups were enriched in cell adhesion pathways, while downregulated genes were enriched in metabolic pathways. Mutation analysis showed more TP53 mutations in the high-risk group and more CTNNB1 mutations in the low-risk group. Immune infiltration analysis indicated higher immune scores and less CD8 + naive T cell infiltration in the high-risk group. Drug sensitivity analysis identified 14 drugs with lower IC50 in the high-risk group, including clinically approved Sorafenib and Axitinib for treating unresectable HCC. CONCLUSION We established an 11-gene prognostic model that effectively stratifies liver cancer patients based on differentially expressed genes between tumor and adjacent non-tumor cells clustered by scRNA-seq data. The two risk groups had significantly different molecular characteristics. We identified 14 drugs that might be effective for high-risk HCC patients. Our study provides novel insights into tumor cell characteristics, aiding in research on tumor development and treatment.
Collapse
Affiliation(s)
- Qunfang Zhou
- Department of Interventional Radiology, Chinese PLA General Hospital, Beijing, 100853, China
| | - Jingqiang Wu
- Department of Radiology, Guangzhou Chest Hospital, Guangzhou, 510095, Guangdong Province, China
| | - Jiaxin Bei
- Key Laboratory of Surveillance of Adverse Reactions Related to CAR T Cell Therapy, Department of Immuno-Oncology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510062, Guangdong Province, China
| | - Zixuan Zhai
- Department of Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, Guangdong Province, China
| | - Xiuzhen Chen
- Department of Radiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, Guangdong Province, China
| | - Wei Liang
- Department of Radiology, The First People's Hospital of Foshan, Foshan, 528010, Guangdong Province, China
| | - Jing Meng
- Department of Ophthalmology, The First Affiliated Hospital, Jinan University, Guangzhou, 510630, Guangdong Province, China.
| | - Mingyu Liu
- Department of Interventional Radiology, The Affiliated Shunde Hospital of Jinan University, Foshan, 528306, Guangdong Province, China.
| |
Collapse
|
18
|
Dunbar ZT, González-Ochoa S, Kanagasabai T, Ivanova A, Shanker A. Differential Effector Function of Tissue-Specific Natural Killer Cells against Lung Tumors. J Innate Immun 2024; 16:573-594. [PMID: 39561728 PMCID: PMC11644122 DOI: 10.1159/000542078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 10/10/2024] [Indexed: 11/21/2024] Open
Abstract
INTRODUCTION Natural killer (NK) cells are innate lymphoid cells capable of directly killing target cells while modulating immune effector responses. Despite their multifunctional capacities, a limited understanding of their plasticity and heterogeneity has impeded progress in developing effective NK cell-based cancer therapies. In this study, we investigated NK cell tissue heterogeneity in relation to their phenotype and effector functions against lung tumors. METHODS Using hanging drop tumor spheroid and subcutaneously established LL/2 (LLC1) lung tumor models, we examined NK cell receptor diversity and its correlation with tissue-specific cytotoxicity through multiparametric flow cytometry, fluorescence imaging, and cytotoxicity assays. RESULTS We identified distinct patterns of cell surface receptors expression on tissue-specific NK cells that are crucial for antitumor activity. Linear regression mathematical analyses further revealed significant positive correlations between activation-associated cell surface receptors and cytotoxic capacity in NK cells from tissues such as the liver and bone marrow. CONCLUSION These findings underscore the differential effector capacities of NK cells from distinct tissues, even prior to exposure to LL/2 tumor cells. This highlights the significance of tissue-specific NK cell heterogeneity and its impact on their antitumor cytotoxicity. Recognizing these distinct tissue-specific receptor expression patterns will be instrumental in developing more efficacious NK cell-based cancer treatments.
Collapse
Affiliation(s)
- Zerick Terrell Dunbar
- Department of Microbiology, Immunology and Physiology, School of Medicine, Meharry Medical College, Nashville, TN, USA
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN, USA
- Department of Biomedical Sciences, School of Graduate Studies, Meharry Medical College, Nashville, TN, USA
| | - Salvador González-Ochoa
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN, USA
| | - Thanigaivelan Kanagasabai
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN, USA
| | - Alla Ivanova
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN, USA
| | - Anil Shanker
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN, USA
- Host-Tumor Interactions Research Program, Vanderbilt-Ingram Comprehensive Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University School of Medicine, Nashville, TN, USA
| |
Collapse
|
19
|
Zhang Y, Zou M, Wu H, Zhu J, Jin T. The cGAS-STING pathway drives neuroinflammation and neurodegeneration via cellular and molecular mechanisms in neurodegenerative diseases. Neurobiol Dis 2024; 202:106710. [PMID: 39490400 DOI: 10.1016/j.nbd.2024.106710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/27/2024] [Accepted: 10/18/2024] [Indexed: 11/05/2024] Open
Abstract
Neurodegenerative diseases (NDs) are a type of common chronic progressive disorders characterized by progressive damage to specific cell populations in the nervous system, ultimately leading to disability or death. Effective treatments for these diseases are still lacking, due to a limited understanding of their pathogeneses, which involve multiple cellular and molecular pathways. The triggering of an immune response is a common feature in neurodegenerative disorders. A critical challenge is the intricate interplay between neuroinflammation, neurodegeneration, and immune responses, which are not yet fully characterized. In recent years, the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon gene (STING) pathway, a crucial immune response for intracellular DNA sensing, has gradually gained attention. However, the specific roles of this pathway within cellular types such as immune cells, glial and neuronal cells, and its contribution to ND pathogenesis, remain not fully elucidated. In this review, we systematically explore how the cGAS-STING signaling links various cell types with related cellular effector pathways under the context of NDs for multifaceted therapeutic directions. We emphasize the discovery of condition-dependent cellular heterogeneity in the cGAS-STING pathway, which is integral for understanding the diverse cellular responses and potential therapeutic targets. Additionally, we review the pathogenic role of cGAS-STING activation in Parkinson's disease, ataxia-telangiectasia, and amyotrophic lateral sclerosis. We focus on the complex bidirectional roles of the cGAS-STING pathway in Alzheimer's disease, Huntington's disease, and multiple sclerosis, revealing their double-edged nature in disease progression. The objective of this review is to elucidate the pivotal role of the cGAS-STING pathway in ND pathogenesis and catalyze new insights for facilitating the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Yuxin Zhang
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Meijuan Zou
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Hao Wu
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Jie Zhu
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China; Department of Neurobiology, Care Sciences & Society, Karolinska Institute, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Tao Jin
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
20
|
Amodio V, Vitiello PP, Bardelli A, Germano G. DNA repair-dependent immunogenic liabilities in colorectal cancer: opportunities from errors. Br J Cancer 2024; 131:1576-1590. [PMID: 39271762 PMCID: PMC11554791 DOI: 10.1038/s41416-024-02848-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/26/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024] Open
Abstract
Colorectal cancer (CRC) remains one of the major causes of cancer death worldwide. Chemotherapy continues to serve as the primary treatment modality, while immunotherapy is largely ineffective for the majority of CRC patients. Seminal discoveries have emphasized that modifying DNA damage response (DDR) mechanisms confers both cell-autonomous and immune-related vulnerabilities across various cancers. In CRC, approximately 15% of tumours exhibit alterations in the mismatch repair (MMR) machinery, resulting in a high number of neoantigens and the activation of the type I interferon response. These factors, in conjunction with immune checkpoint blockades, collectively stimulate anticancer immunity. Furthermore, although less frequently, somatic alterations in the homologous recombination (HR) pathway are observed in CRC; these defects lead to genome instability and telomere alterations, supporting the use of poly (ADP-ribose) polymerase (PARP) inhibitors in HR-deficient CRC patients. Additionally, other DDR inhibitors, such as Ataxia Telangiectasia and Rad3-related protein (ATR) inhibitors, have shown some efficacy both in preclinical models and in the clinical setting, irrespective of MMR proficiency. The aim of this review is to elucidate how preexisting or induced vulnerabilities in DNA repair pathways represent an opportunity to increase tumour sensitivity to immune-based therapies in CRC.
Collapse
Affiliation(s)
- V Amodio
- IFOM ETS - The AIRC Institute of Molecular Oncology, 20139, Milan, Italy
- Department of Oncology, Molecular Biotechnology Center, University of Torino, 10126, Turin, Italy
| | - P P Vitiello
- IFOM ETS - The AIRC Institute of Molecular Oncology, 20139, Milan, Italy
- Department of Oncology, Molecular Biotechnology Center, University of Torino, 10126, Turin, Italy
| | - A Bardelli
- IFOM ETS - The AIRC Institute of Molecular Oncology, 20139, Milan, Italy.
- Department of Oncology, Molecular Biotechnology Center, University of Torino, 10126, Turin, Italy.
| | - G Germano
- IFOM ETS - The AIRC Institute of Molecular Oncology, 20139, Milan, Italy.
- Department of Medical Biotechnologies and Translational Medicine, University of Milano, 20133, Milan, Italy.
| |
Collapse
|
21
|
Yu L, Liu P. cGAS/STING signalling pathway in senescence and oncogenesis. Semin Cancer Biol 2024; 106-107:87-102. [PMID: 39222763 PMCID: PMC11625615 DOI: 10.1016/j.semcancer.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 08/25/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
The cGAS/STING signaling pathway is a crucial component of the innate immune system, playing significant roles in sensing cytosolic DNA, regulating cellular senescence, and contributing to oncogenesis. Recent advances have shed new lights into the molecular mechanisms governing pathway activation in multiple pathophysiological settings, the indispensable roles of cGAS/STING signaling in cellular senescence, and its context-dependent roles in cancer development and suppression. This review summarizes current knowledge related to the biology of cGAS/STING signaling pathway and its participations into senescence and oncogenesis. We further explore the clinical implications and therapeutic potential for cGAS/STING targeted therapies, and faced challenges in the field. With a focus on molecular mechanisms and emerging pharmacological targets, this review underscores the importance of future studies to harness the therapeutic potential of the cGAS/STING pathway in treating senescence-related disorders and cancer. Advanced understanding of the regulatory mechanisms of cGAS/STING signaling, along with the associated deregulations in diseases, combined with the development of new classes of cGAS/STING modulators, hold great promises for creating novel and effective therapeutic strategies. These advancements could address current treatment challenges and unlock the full potential of cGAS/STING in treating senescence-related disorders and oncogenesis.
Collapse
Affiliation(s)
- Le Yu
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biochemistry and Biophysics, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Pengda Liu
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biochemistry and Biophysics, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
22
|
Liao X, Cao Y, Zhong W, Zheng D, Jin L, Yao Y, Yang C. A Multifunctional Nanoparticle Dual Loading with Chlorin e6 and STING Agonist for Combinatorial Therapy of Melanoma. ACS APPLIED BIO MATERIALS 2024; 7:6768-6779. [PMID: 39289781 DOI: 10.1021/acsabm.4c00896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
Photodynamic therapy (PDT) is a noninvasive therapeutic approach that is effective in killing primary tumors with minimal surgical trauma, but its usage in metastatic lesions of melanoma is restricted by spatial limitations. Recently, stimulator of interferon genes (STING) agoinst-mediated innate immunity can activate the STING pathway and further promote dendritic cell (DC) maturation, tumor-specific cytotoxic T lymphocyte, and natural killer cell infiltration and has emerged as a promising approach for cancer therapy. Herein, the authors intriduce facile nanoparticles named HTCS, which can co-deliver STING agonist (2'3'-cGAMP) and a mitochondrial targeting modified photosensitizer (TPP-PEI-Ce6). While HTCS were intravenously injected to mice, they were endocytosed into tumor cells through hyaluronic acid-mediated active targeting. Thereafter, TPP-PEI-Ce6 was delivered to mitochondria to generate a large variety of reactive oxygen species and killed tumor cells effectively. Then the tumor cell debris further gave rise to immunogenic cell death, which played a role in immunosuppression. Furthermore, 2'3'-cGAMP contained in cell debris activated the STING pathway to promote the release of inflammatory cytokines and the maturation of DCs. As a consequence, the HTCS could achieve photodynamic multiple immunotherapy for melanoma. This work demonstrates multifunctional nanoparticles that efficiently inhibit tumors by PDT and reversing their immunosuppression to realize a versatile therapeutic strategy.
Collapse
Affiliation(s)
- Xukun Liao
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Yong Cao
- Department of Pharmacy, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Wen Zhong
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Dan Zheng
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Lin Jin
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Yongchao Yao
- Precision Medicine Translational Research Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Chengli Yang
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, Guizhou 550025, China
- Department of Pharmacy, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China
| |
Collapse
|
23
|
Xie J, Smith M. The intestinal microbiota and cellular therapy: implications for impact and mechanisms. Blood 2024; 144:1557-1569. [PMID: 39141827 DOI: 10.1182/blood.2024024219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/25/2024] [Accepted: 07/16/2024] [Indexed: 08/16/2024] Open
Abstract
ABSTRACT The microbiota, comprising bacteria, fungi, and viruses residing within our bodies, functions as a key modulator in host health and states, including immune responses. Studies have linked microbiota and microbiota-derived metabolites to immune cell functions. In this review, we probe the complex relationship between the human microbiota and clinical outcomes of cellular therapies that leverage immune cells to fight various cancers. With a particular emphasis on hematopoietic cell transplantation and chimeric antigen receptor T-cell therapy, we explore the potential mechanisms underpinning this interaction. We also highlight the interventional applications of the microbiota in cellular therapy while outlining future research directions in the field.
Collapse
Affiliation(s)
- Jiayi Xie
- Division of Blood and Marrow Transplantation and Cellular Therapy, Department of Medicine, Stanford University School of Medicine, Stanford, CA
| | - Melody Smith
- Division of Blood and Marrow Transplantation and Cellular Therapy, Department of Medicine, Stanford University School of Medicine, Stanford, CA
| |
Collapse
|
24
|
Zhou Y, Na C, Li Z. Novel insights into immune cells modulation of tumor resistance. Crit Rev Oncol Hematol 2024; 202:104457. [PMID: 39038527 DOI: 10.1016/j.critrevonc.2024.104457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/24/2024] Open
Abstract
Tumor resistance poses a significant challenge to effective cancer treatment, making it imperative to explore new therapeutic strategies. Recent studies have highlighted the profound involvement of immune cells in the development of tumor resistance. Within the tumor microenvironment, macrophages undergo polarization into the M2 phenotype, thus promoting the emergence of drug-resistant tumors. Neutrophils contribute to tumor resistance by forming extracellular traps. While T cells and natural killer (NK) cells exert their impact through direct cytotoxicity against tumor cells. Additionally, dendritic cells (DCs) have been implicated in preventing tumor drug resistance by stimulating T cell activation. In this review, we provide a comprehensive summary of the current knowledge regarding immune cell-mediated modulation of tumor resistance at the molecular level, with a particular focus on macrophages, neutrophils, DCs, T cells, and NK cells. The targeting of immune cell modulation exhibits considerable potential for addressing drug resistance, and an in-depth understanding of the molecular interactions between immune cells and tumor cells holds promise for the development of innovative therapies. Furthermore, we explore the clinical implications of these immune cells in the treatment of drug-resistant tumors. This review emphasizes the exploration of novel approaches that harness the functional capabilities of immune cells to effectively overcome drug-resistant tumors.
Collapse
Affiliation(s)
- Yi Zhou
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China; School of Medicine, Sun Yat-sen University, Shenzhen 518107, China
| | - Chuhan Na
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China; School of Medicine, Sun Yat-sen University, Shenzhen 518107, China
| | - Zhigang Li
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China; Shenzhen Key Laboratory of Chinese Medicine Active Substance Screening and Translational Research, Shenzhen 518107, China.
| |
Collapse
|
25
|
Liu J, Zhao W, Guo J, Kang K, Li H, Yang X, Li J, Wang Q, Qiao H. Electroacupuncture alleviates motor dysfunction by regulating neuromuscular junction disruption and neuronal degeneration in SOD1 G93A mice. Brain Res Bull 2024; 216:111036. [PMID: 39084570 DOI: 10.1016/j.brainresbull.2024.111036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/17/2024] [Accepted: 07/27/2024] [Indexed: 08/02/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurological disease characterized by the progressive destruction of the neuromuscular junction (NMJ) and the degeneration of motor neurons, eventually leading to atrophy and paralysis of voluntary muscles responsible for motion and breathing. NMJs, synaptic connections between motor neurons and skeletal muscle fibers, are extremely fragile in ALS. To determine the effects of early electroacupuncture (EA) intervention on nerve reinnervation and regeneration following injury, a model of sciatic nerve injury (SNI) was first established using SOD1G93A mice, and early electroacupuncture (EA) intervention was conducted at Baihui (DU20), and bilateral Zusanli (ST36). The results revealed that EA increased the Sciatic nerve Functional Index, the structural integrity of the gastrocnemius muscles, and the cross-sectional area of muscle fibers, as well as up-regulated the expression of acetylcholinesterase and facilitated the co-location of α7 nicotinic acetate choline receptors and α-actinin. Overall, these results suggested that EA can promote the repair and regeneration of injured nerves and delay NMJ degeneration in SOD1G93A-SNI mice. Moreover, analysis of the cerebral cortex demonstrated that EA alleviated cortical motor neuron damage in SOD1G93A mice, potentially attributed to the inhibition of the cyclic GMP-AMP synthase-stimulator of interferon genes pathway and the release of interferon-β suppressing the activation of natural killer cells and the secretion of interferon-γ, thereby further inhibiting microglial activation and the expression of inflammatory factors. In summary, EA delayed the degeneration of NMJ and mitigated the loss of cortical motor neurons, thus delaying disease onset, accompanied by alleviation of muscle atrophy and improvements in motor function in SOD1G93A mice.
Collapse
Affiliation(s)
- Junyang Liu
- College of Acupuncture and Massage, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Weijia Zhao
- The Second Clinical Medicine College, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Jie Guo
- The Second Clinical Medicine College, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Kaiwen Kang
- The Second Clinical Medicine College, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Hua Li
- College of Acupuncture and Massage, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Xiaohang Yang
- Shaanxi Provincial Key Laboratory of Acupuncture and Drug Combination, Xianyang 712046, China
| | - Jie Li
- College of Acupuncture and Massage, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Qiang Wang
- College of Acupuncture and Massage, Shaanxi University of Chinese Medicine, Xianyang 712046, China.
| | - Haifa Qiao
- Shaanxi Provincial Key Laboratory of Acupuncture and Drug Combination, Xianyang 712046, China.
| |
Collapse
|
26
|
Wessel RE, Ageeb N, Obeid JM, Mauldin IS, Goundry KA, Hanson GF, Hossain M, Lehman C, Gentzler RD, Wages NA, Slingluff Jr CL, Bullock TNJ, Dolatshahi S, Brown MG. Spatial colocalization and combined survival benefit of natural killer and CD8 T cells despite profound MHC class I loss in non-small cell lung cancer. J Immunother Cancer 2024; 12:e009126. [PMID: 39299754 PMCID: PMC11418484 DOI: 10.1136/jitc-2024-009126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/13/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Major histocompatibility complex class I (MHC-I) loss is frequent in non-small cell lung cancer (NSCLC) rendering tumor cells resistant to T cell lysis. NK cells kill MHC-I-deficient tumor cells, and although previous work indicated their presence at NSCLC margins, they were functionally impaired. Within, we evaluated whether NK cell and CD8 T cell infiltration and activation vary with MHC-I expression. METHODS We used single-stain immunohistochemistry (IHC) and Kaplan-Meier analysis to test the effect of NK cell and CD8 T cell infiltration on overall and disease-free survival. To delineate immune covariates of MHC-I-disparate lung cancers, we used multiplexed immunofluorescence (mIF) imaging followed by multivariate statistical modeling. To identify differences in infiltration and intercellular communication between IFNγ-activated and non-activated lymphocytes, we developed a computational pipeline to enumerate single-cell neighborhoods from mIF images followed by multivariate discriminant analysis. RESULTS Spatial quantitation of tumor cell MHC-I expression revealed intratumoral and intertumoral heterogeneity, which was associated with the local lymphocyte landscape. IHC analysis revealed that high CD56+ cell numbers in patient tumors were positively associated with disease-free survival (HR=0.58, p=0.064) and overall survival (OS) (HR=0.496, p=0.041). The OS association strengthened with high counts of both CD56+ and CD8+ cells (HR=0.199, p<1×10-3). mIF imaging and multivariate discriminant analysis revealed enrichment of both CD3+CD8+ T cells and CD3-CD56+ NK cells in MHC-I-bearing tumors (p<0.05). To infer associations of functional cell states and local cell-cell communication, we analyzed spatial single-cell neighborhood profiles to delineate the cellular environments of IFNγ+/- NK cells and T cells. We discovered that both IFNγ+ NK and CD8 T cells were more frequently associated with other IFNγ+ lymphocytes in comparison to IFNγ- NK cells and CD8 T cells (p<1×10-30). Moreover, IFNγ+ lymphocytes were most often found clustered near MHC-I+ tumor cells. CONCLUSIONS Tumor-infiltrating NK cells and CD8 T cells jointly affected control of NSCLC tumor progression. Coassociation of NK and CD8 T cells was most evident in MHC-I-bearing tumors, especially in the presence of IFNγ. Frequent colocalization of IFNγ+ NK cells with other IFNγ+ lymphocytes in near-neighbor analysis suggests NSCLC lymphocyte activation is coordinately regulated.
Collapse
Affiliation(s)
- Remziye E Wessel
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Nardin Ageeb
- Department of Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Joseph M Obeid
- Department of Thoracic Surgery, Temple University Hospital, Philadelphia, Pennsylvania, USA
| | - Ileana S Mauldin
- Department of Surgery, University of Virginia, Charlottesville, Virginia, USA
| | - Kate A Goundry
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Gabriel F Hanson
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Mahdin Hossain
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, Virginia, USA
| | - Chad Lehman
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, Virginia, USA
| | - Ryan D Gentzler
- Department of Medicine, Hematology and Oncology, University of Virginia, Charlottesville, Virginia, USA
| | - Nolan A Wages
- Department of Biostatistics, Virginia Commonwealth University, Richmond, Virginia, USA
| | | | - Timothy N J Bullock
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, Virginia, USA
- Department of Pathology, University of Virginia, Charlottesville, Virginia, USA
| | - Sepideh Dolatshahi
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, Virginia, USA
| | - Michael G Brown
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, Virginia, USA
- Department of Medicine, Nephrology Division, University of Virginia, Charlottesville, Virginia, USA
- Center for Immunity, Inflammation and Regenerative Medicine, University of Virginia School of Medicine, Charlottesville, Virginia, USA
- Department of Microbiology, Immunology and Cancer Biology, Univesity of Virginia, School of Medicine, Charlottesville, Virginia, USA
| |
Collapse
|
27
|
Zeng S, Chen L, Tian J, Liu Z, Liu X, Tang H, Wu H, Liu C. Integrative analysis of pan-cancer single-cell data reveals a tumor ecosystem subtype predicting immunotherapy response. NPJ Precis Oncol 2024; 8:205. [PMID: 39277681 PMCID: PMC11401940 DOI: 10.1038/s41698-024-00703-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 09/04/2024] [Indexed: 09/17/2024] Open
Abstract
Tumor ecosystem shapes cancer biology and potentially influence the response to immunotherapy, but there is a lack of direct clinical evidence. In this study, we utilized EcoTyper and publicly available scRNA-Seq cohorts from ICI-treated patients. We found a ecosystem subtype (ecotype) was linked to improved responses to immunotherapy. Then, a novel immunotherapy-responsive ecotype signature (IRE.Sig) was established and validated through the analysis of pan-cancer data. Utilizing IRE.Sig, machine learning models successfully predicted ICI responses in both validation and testing cohorts, achieving area under the curve (AUC) values of 0.72 and 0.71, respectively. Furthermore, using 5 CRISPR screening cohorts, we identified several potential drugs that may augment the efficacy of ICI. We also elucidated the candidate cellular biomarkers of response to the combined treatment of pembrolizumab plus eribulin in breast cancer. This signature has the potential to serve as a valuable tool for patients in selecting appropriate immunotherapy treatments.
Collapse
Affiliation(s)
- Shengjie Zeng
- Department of Urology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Liuxun Chen
- Department of Urology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jinyu Tian
- Department of Urology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhengxin Liu
- Department of Urology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xudong Liu
- Department of Cardiothoracic Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Haibin Tang
- Department of Urology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hao Wu
- Department of Urology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Chuan Liu
- Department of Urology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
28
|
Chen Z, Ji W, Feng W, Cui J, Wang Y, Li F, Chen J, Guo Z, Xia L, Zhu X, Niu X, Zhang Y, Li Z, Wong AST, Lu S, Xia W. PTPRT loss enhances anti-PD-1 therapy efficacy by regulation of STING pathway in non-small cell lung cancer. Sci Transl Med 2024; 16:eadl3598. [PMID: 39231239 DOI: 10.1126/scitranslmed.adl3598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 04/18/2024] [Accepted: 08/08/2024] [Indexed: 09/06/2024]
Abstract
With the revolutionary progress of immune checkpoint inhibitors (ICIs) in non-small cell lung cancer, identifying patients with cancer who would benefit from ICIs has become critical and urgent. Here, we report protein tyrosine phosphatase receptor type T (PTPRT) loss as a precise and convenient predictive marker independent of PD-L1 expression for anti-PD-1/PD-L1 axis therapy. Anti-PD-1/PD-L1 axis treatment markedly increased progression-free survival in patients with PTPRT-deficient tumors. PTPRT-deficient tumors displayed cumulative DNA damage, increased cytosolic DNA release, and higher tumor mutation burden. Moreover, the tyrosine residue 240 of STING was identified as a direct substrate of PTPRT. PTPRT loss elevated phosphorylation of STING at Y240 and thus inhibited its proteasome-mediated degradation. PTPRT-deficient tumors released more IFN-β, CCL5, and CXCL10 by activation of STING pathway and increased immune cell infiltration, especially of CD8 T cells and natural killer cells, ultimately enhancing the efficacy of anti-PD-1 therapy in multiple subcutaneous and orthotopic tumor mouse models. The response of PTPRT-deficient tumors to anti-PD-1 therapy depends on the tumor-intrinsic STING pathway. In summary, our findings reveal the mechanism of how PTPRT-deficient tumors become sensitive to anti-PD-1 therapy and highlight the biological function of PTPRT in innate immunity. Considering the prevalence of PTPRT mutations and negative expression, this study has great value for patient stratification and clinical decision-making.
Collapse
Affiliation(s)
- Zhuo Chen
- State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Wenxiang Ji
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Wenxin Feng
- State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Jingchuan Cui
- State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yuchen Wang
- State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Fan Li
- State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Jiachen Chen
- State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Ziheng Guo
- State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Liliang Xia
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Xiaokuan Zhu
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Xiaomin Niu
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Yanshuang Zhang
- State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Ziming Li
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Alice S T Wong
- School of Biological Sciences, University of Hong Kong, Pokfulam Road, 999077, Hong Kong
| | - Shun Lu
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Weiliang Xia
- State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| |
Collapse
|
29
|
Wu S, Zhou Y, Asakawa N, Wen M, Sun Y, Ming Y, Song T, Chen W, Ma G, Xia Y. Engineering CaP-Pickering emulsion for enhanced mRNA cancer vaccines via dual DC and NK activations. J Control Release 2024; 373:837-852. [PMID: 39059499 DOI: 10.1016/j.jconrel.2024.07.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 07/28/2024]
Abstract
mRNA delivery systems, such as lipid nanoparticle (LNP), have made remarkable strides in improving mRNA expression, whereas immune system activation operates on a threshold. Maintaining a delicate balance between antigen expression and dendritic cell (DC) activation is vital for effective immune recognition. Here, a water-in-oil-in-water (w/o/w) Pickering emulsion stabilized with calcium phosphate nanoparticles (CaP-PME) is developed for mRNA delivery in cancer vaccination. CaP-PME efficiently transports mRNA into the cytoplasm, induces pro-inflammatory responses and activates DCs by disrupting intracellular calcium/potassium ions balance. Unlike LNP, CaP-PME demonstrates a preference for DCs, enhancing their activation and migration to lymph nodes. It elicits interferon-γ-mediated CD8+ T cell responses and promotes NK cell proliferation and activation, leading to evident NK cells infiltration and ameliorated tumor microenvironment. The prepared w/o/w Pickering emulsion demonstrates superior anti-tumor effects in E.G7 and B16-OVA tumor models, offering promising prospects as an enhanced mRNA delivery vehicle for cancer vaccinations.
Collapse
Affiliation(s)
- Sihua Wu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100081, PR China; Division of Molecular Science, Graduate School of Science and Technology, Gunma University, 1-5-1, Tenjin-cho, Kiryu 376-8515, Japan
| | - Yan Zhou
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100081, PR China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Naoki Asakawa
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, 1-5-1, Tenjin-cho, Kiryu 376-8515, Japan
| | - Mei Wen
- School of Chemistry and Chemical Engineering, Central South University, Changsha, China, Changsha 410083, PR China
| | - Yu Sun
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100081, PR China
| | - Yali Ming
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100081, PR China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Tiantian Song
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100081, PR China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Wansong Chen
- School of Chemistry and Chemical Engineering, Central South University, Changsha, China, Changsha 410083, PR China
| | - Guanghui Ma
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100081, PR China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yufei Xia
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100081, PR China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
30
|
Pouxvielh K, Marotel M, Drouillard A, Villard M, Moreews M, Bossan A, Poiget M, Khoryati L, Benezech S, Fallone L, Hamada S, Rousseaux N, Picq L, Rocca Y, Berton A, Teixeira M, Mathieu AL, Ainouze M, Hasan U, Fournier A, Thaunat O, Marçais A, Walzer T. Tumor-induced natural killer cell dysfunction is a rapid and reversible process uncoupled from the expression of immune checkpoints. SCIENCE ADVANCES 2024; 10:eadn0164. [PMID: 39196934 PMCID: PMC11352832 DOI: 10.1126/sciadv.adn0164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 07/22/2024] [Indexed: 08/30/2024]
Abstract
Natural killer (NK) cells often become dysfunctional during tumor progression, but the molecular mechanisms underlying this phenotype remain unclear. To explore this phenomenon, we set up mouse lymphoma models activating or not activating NK cells. Both tumor types elicited type I interferon production, leading to the expression of a T cell exhaustion-like signature in NK cells, which included immune checkpoint proteins (ICPs). However, NK cell dysfunction occurred exclusively in the tumor model that triggered NK cell activation. Moreover, ICP-positive NK cells demonstrated heightened reactivity compared to negative ones. Furthermore, the onset of NK cell dysfunction was swift and temporally dissociated from ICPs induction, which occurred as a later event during tumor growth. Last, NK cell responsiveness was restored when stimulation was discontinued, and interleukin-15 had a positive impact on this reversion. Therefore, our data demonstrate that the reactivity of NK cells is dynamically controlled and that NK cell dysfunction is a reversible process uncoupled from the expression of ICPs.
Collapse
Affiliation(s)
- Kévin Pouxvielh
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France
- Sanofi Oncology Research, Vitry-Sur-Seine, France
| | - Marie Marotel
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France
| | - Annabelle Drouillard
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France
| | - Marine Villard
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France
| | - Marion Moreews
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France
| | - Anna Bossan
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France
| | - Mathilde Poiget
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France
| | - Liliane Khoryati
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France
| | - Sarah Benezech
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France
| | - Lucie Fallone
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France
| | - Sarah Hamada
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France
| | - Noémi Rousseaux
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France
| | - Louis Picq
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France
| | - Yamila Rocca
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France
| | - Aurore Berton
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France
| | - Marine Teixeira
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France
| | - Anne-Laure Mathieu
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France
| | - Michelle Ainouze
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France
| | - Uzma Hasan
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France
| | | | - Olivier Thaunat
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France
| | - Antoine Marçais
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France
| | - Thierry Walzer
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France
| |
Collapse
|
31
|
Li J, Yang R, Dong F, Qiu Q, Jiang Z, Ren H, Zhang C, Liu G, Lovell JF, Zhang Y. Enzyme-Dynamic Extracellular Vesicles for Metalloimmunotherapy of Malignant Pleural Effusions. ACS NANO 2024; 18:21855-21872. [PMID: 39109520 DOI: 10.1021/acsnano.3c12375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Malignant pleural effusions (MPEs) are hard to treat, and their onset usually signals terminal cancer. Immunotherapies hold promise but must overcome the immunosuppressive MPE microenvironment. Herein, we treat MPEs via synergistically combining two emerging cancer therapy modalities: enzyme-dynamic therapy (EDT) and metalloimmunotherapy. To do so, a nanoplatform termed "A-R-SOME" was developed which comprises MPE-targeted M1 type extracellular vesicles (EVs) loaded with (1) a manganese-based superoxide dismutase (SOD) enzyme, (2) stimulator of interferon genes (STING) agonist diABZI-2, and (3) signal transducer and an activator of transcription 3 (STAT3) small interfering RNA. Endogenous reactive oxygen species within tumors induced immunogenic cell death by EDT, along with STING activation by both Mn and diABZI-2, and suppression of the STAT3 pathway. Systemically administered A-R-SOME alleviated the MPE immunosuppressive microenvironment, triggered antitumor systemic immunity, and long-term immune memory, leading to the complete eradication of MPE and pleural tumors with 100% survival rate in an aggressive murine model. A-R-SOME-induced immune effects were also observed in human patient-derived MPE, pointing toward the translation potential of A-R-SOME as an experimental malignancy treatment.
Collapse
Affiliation(s)
- Jiexin Li
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, P. R. China
| | - Ruiqi Yang
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, P. R. China
| | - Fuqiang Dong
- Tianjin Key Laboratory of Ion and Molecular Function in Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 3000211, P. R. China
| | - Qian Qiu
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, P. R. China
| | - Zhen Jiang
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, P. R. China
| | - He Ren
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, P. R. China
| | - Chen Zhang
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, P. R. China
| | - Gengqi Liu
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, P. R. China
| | - Jonathan F Lovell
- Department of Biomedical Engineering, The State University of New York at Buffalo, Buffalo, New York 14260, United States
| | - Yumiao Zhang
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, P. R. China
| |
Collapse
|
32
|
Qu C, Shao X, Jia R, Song G, Shi D, Wang H, Wang J, An H. Hypoxia Reversion and STING Pathway Activation through Large Mesoporous Nanozyme for Near-Infrared-II Light Amplified Tumor Polymetallic-Immunotherapy. ACS NANO 2024; 18:22153-22171. [PMID: 39118372 DOI: 10.1021/acsnano.4c05483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
cGAS/STING pathway, which is highly related to tumor hypoxia, is considered as a potential target for remodeling the immunosuppressive microenvironment of solid tumors. Metal ions, such as Mn2+, activate the cGAS/STING pathway, but their efficacy in cancer therapy is limited by insufficient effect on immunogenic tumor cell death of a single ion. Here, we evaluate the association between tumor hypoxia and cGAS/STING inhibition and report a polymetallic-immunotherapy strategy based on large mesoporous trimetal-based nanozyme (AuPdRh) coordinated with Mn2+ (Mn2+@AuPdRh) to activate cGAS/STING signaling for robust adaptive antitumor immunity. Specifically, the inherent CAT-like activity of this polymetallic Mn2+@AuPdRh nanozyme decomposes the endogenous H2O2 into O2 to relieve tumor hypoxia induced suppression of cGAS/STING signaling. Moreover, the Mn2+@AuPdRh nanozyme displays a potent near-infrared-II photothermal effect and strong POD-mimic activity; and the generated hyperthermia and •OH radicals synergistically trigger immunogenic cell death in tumors, releasing abundant dsDNA, while the delivered Mn2+ augments the sensitivity of cGAS to dsDNA and activates the cGAS-STING pathway, thereby triggering downstream immunostimulatory signals to kill primary and distant metastatic tumors. Our study demonstrates the potential of metal-based nanozyme for STING-mediated tumor polymetallic-immunotherapy and may inspire the development of more effective strategies for cancer immunotherapy.
Collapse
Affiliation(s)
- Chang Qu
- Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, 300401, Tianjin, People's Republic of China
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Electrical Engineering, Hebei University of Technology, 300130, Tianjin, People's Republic of China
| | - Xinyue Shao
- Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, 300401, Tianjin, People's Republic of China
| | - Ran Jia
- Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, 300401, Tianjin, People's Republic of China
| | - Guoqiang Song
- Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, 300401, Tianjin, People's Republic of China
| | - Donghong Shi
- Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, 300401, Tianjin, People's Republic of China
| | - Hui Wang
- Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, 300401, Tianjin, People's Republic of China
| | - Jinping Wang
- Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, 300401, Tianjin, People's Republic of China
| | - Hailong An
- Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, 300401, Tianjin, People's Republic of China
| |
Collapse
|
33
|
Liu A, Wen T, Ding L, Qin Y, Li C, Lei M, Zhu Y. Proteasome inhibitors FHND6091 enhance the ability of NK cells to kill tumor cells through multiple mechanisms. Eur J Pharmacol 2024; 977:176716. [PMID: 38849039 DOI: 10.1016/j.ejphar.2024.176716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/09/2024]
Abstract
The immune system has a strong connection to tumors. When a tumor cell is recognized as an abnormal cell by the immune system, the immune system may initiate an immune response to kill the tumor cell. In this study, RNA sequencing was performed on multiple myeloma (MM) cells treated with the proteasome inhibitor FHND6091. The transcriptional changes induced by FHND6091 in RPMI8226 cells aligned notably with immune response activation and results indicated upregulation of cGAS-STING pathway-related genes in the FHND6091-treated group. In vivo and in vitro experiments had demonstrated that FHND6091 stimulated the immunoreaction of MM cells via activation of the cyclic guanosine monophosphate-adenosine synthase/stimulator of interferon genes (cGAS-STING) pathway. This activation resulted in the generation of type-I interferons and the mobilization of natural killer (NK) cells. Notably, FHND6091 upregulated the levels of calreticulin and the protein ligands UL16-binding protein 2/5/6, MHC class I chain-related A (MICA), and MICB on the surface of MM cells. Subsequently, upon engaging with the surface activation receptors of NK cells, these ligands triggered NK cell activation, leading to the subsequent elimination of tumor cells. Thus, our findings elucidated the mechanism whereby FHND6091 exerted its immunotherapeutic activity as a STING agonist, enhancing the killing ability of NK cells against tumor cells.
Collapse
Affiliation(s)
- Amin Liu
- College of Science, Nanjing Forestry University, No.159 Longpan Road, Nanjing, 210037, PR China
| | - Tiantian Wen
- College of Life Science, Nanjing Normal University, No.1 Wenyuan Road, Nanjing, 210046, PR China
| | - Liming Ding
- Jiangsu Chia Tai Fenghai Pharmaceutical Co. Ltd., No.9 Weidi Road, Nanjing, 210046, PR China
| | - Yanru Qin
- College of Life Science, Nanjing Normal University, No.1 Wenyuan Road, Nanjing, 210046, PR China
| | - Chenhui Li
- Jiangsu Chia Tai Fenghai Pharmaceutical Co. Ltd., No.9 Weidi Road, Nanjing, 210046, PR China
| | - Meng Lei
- College of Science, Nanjing Forestry University, No.159 Longpan Road, Nanjing, 210037, PR China.
| | - Yongqiang Zhu
- College of Life Science, Nanjing Normal University, No.1 Wenyuan Road, Nanjing, 210046, PR China; Jiangsu Chia Tai Fenghai Pharmaceutical Co. Ltd., No.9 Weidi Road, Nanjing, 210046, PR China; School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No.2 Xuelin Road, Nanjing, 210046, PR China.
| |
Collapse
|
34
|
Fang K, Zhang H, Kong Q, Ma Y, Xiong T, Qin T, Li S, Zhu X. Recent Progress in Photothermal, Photodynamic and Sonodynamic Cancer Therapy: Through the cGAS-STING Pathway to Efficacy-Enhancing Strategies. Molecules 2024; 29:3704. [PMID: 39125107 PMCID: PMC11314065 DOI: 10.3390/molecules29153704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/19/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Photothermal, photodynamic and sonodynamic cancer therapies offer opportunities for precise tumor ablation and reduce side effects. The cyclic guanylate adenylate synthase-stimulator of interferon genes (cGAS-STING) pathway has been considered a potential target to stimulate the immune system in patients and achieve a sustained immune response. Combining photothermal, photodynamic and sonodynamic therapies with cGAS-STING agonists represents a newly developed cancer treatment demonstrating noticeable innovation in its impact on the immune system. Recent reviews have concentrated on diverse materials and their function in cancer therapy. In this review, we focus on the molecular mechanism of photothermal, photodynamic and sonodynamic cancer therapies and the connected role of cGAS-STING agonists in treating cancer.
Collapse
Affiliation(s)
- Kelan Fang
- Guizhou Provincial College-Based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi 563000, China
- College of Basic Medicine, Zunyi Medical University, Zunyi 563000, China
| | - Huiling Zhang
- Guizhou Provincial College-Based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi 563000, China
- Department of Medicine and Pharmacy, Shizhen College of Guizhou University of Traditional Chinese Medicine, Guiyang 550000, China
| | - Qinghong Kong
- Guizhou Provincial College-Based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi 563000, China
- College of Basic Medicine, Zunyi Medical University, Zunyi 563000, China
| | - Yunli Ma
- Guizhou Provincial College-Based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi 563000, China
| | - Tianchan Xiong
- Guizhou Provincial College-Based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi 563000, China
- College of Basic Medicine, Zunyi Medical University, Zunyi 563000, China
| | - Tengyao Qin
- Guizhou Provincial College-Based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi 563000, China
- College of Basic Medicine, Zunyi Medical University, Zunyi 563000, China
| | - Sanhua Li
- Guizhou Provincial College-Based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi 563000, China
- College of Basic Medicine, Zunyi Medical University, Zunyi 563000, China
| | - Xinting Zhu
- Guizhou Provincial College-Based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi 563000, China
- College of Basic Medicine, Zunyi Medical University, Zunyi 563000, China
| |
Collapse
|
35
|
Zhong Y, Zhang H, Wang P, Zhao J, Ge Y, Sun Z, Wang Z, Li J, Hu S. Auger emitter in combination with Olaparib suppresses tumor growth via promoting antitumor immune responses in pancreatic cancer. Invest New Drugs 2024; 42:442-453. [PMID: 38941055 DOI: 10.1007/s10637-024-01454-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/18/2024] [Indexed: 06/29/2024]
Abstract
The present study aimed to clarify the hypothesis that auger emitter 125I particles in combination with PARP inhibitor Olaparib could inhibit pancreatic cancer progression by promoting antitumor immune response. Pancreatic cancer cell line (Panc02) and mice subcutaneously inoculated with Panc02 cells were employed for the in vitro and in vivo experiments, respectively, followed by 125I and Olaparib administrations. The apoptosis and CRT exposure of Panc02 cells were detected using flow cytometry assay. QRT-PCR, immunofluorescence, immunohistochemical analysis, and western blot were employed to examine mRNA and protein expression. Experimental results showed that 125I combined with Olaparib induced immunogenic cell death and affected antigen presentation in pancreatic cancer. 125I in combination with Olaparib influenced T cells and dendritic cells by up-regulating CD4, CD8, CD69, Caspase3, CD86, granzyme B, CD80, and type I interferon (IFN)-γ and down-regulating Ki67 in vivo. The combination also activated the cyclic GMP-AMP synthase stimulator of IFN genes (Sting) pathway in Panc02 cells. Moreover, Sting knockdown alleviated the effect of the combination of 125I and Olaparib on pancreatic cancer progression. In summary, 125I in combination with Olaparib inhibited pancreatic cancer progression through promoting antitumor immune responses, which may provide a potential treatment for pancreatic cancer.
Collapse
Affiliation(s)
- Yanqi Zhong
- Department of Radiology, Affiliated Hospital of Jiangnan University, No. 1000, Hefeng Road, Wuxi, Jiangsu, 214000, China
| | - Heng Zhang
- Department of Radiology, Affiliated Hospital of Jiangnan University, No. 1000, Hefeng Road, Wuxi, Jiangsu, 214000, China
| | - Peng Wang
- Department of Radiology, Affiliated Hospital of Jiangnan University, No. 1000, Hefeng Road, Wuxi, Jiangsu, 214000, China
| | - Jing Zhao
- Department of Radiology, Affiliated Hospital of Jiangnan University, No. 1000, Hefeng Road, Wuxi, Jiangsu, 214000, China
| | - Yuxi Ge
- Department of Radiology, Affiliated Hospital of Jiangnan University, No. 1000, Hefeng Road, Wuxi, Jiangsu, 214000, China
| | - Zongqiong Sun
- Department of Radiology, Affiliated Hospital of Jiangnan University, No. 1000, Hefeng Road, Wuxi, Jiangsu, 214000, China
| | - Zi Wang
- Department of Radiology, Affiliated Hospital of Jiangnan University, No. 1000, Hefeng Road, Wuxi, Jiangsu, 214000, China
| | - Jie Li
- Department of Radiology, Affiliated Hospital of Jiangnan University, No. 1000, Hefeng Road, Wuxi, Jiangsu, 214000, China.
| | - Shudong Hu
- Department of Radiology, Affiliated Hospital of Jiangnan University, No. 1000, Hefeng Road, Wuxi, Jiangsu, 214000, China.
- Institute of Translational Medicine, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| |
Collapse
|
36
|
Wang D, Deng X, Wang J, Che S, Ma X, Zhang S, Dong Q, Huang C, Chen J, Shi C, Zhang MR, Hu K, Luo L, Xiao Z. Environmentally responsive hydrogel promotes vascular normalization to enhance STING anti-tumor immunity. J Control Release 2024; 372:403-416. [PMID: 38914207 DOI: 10.1016/j.jconrel.2024.06.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 06/20/2024] [Indexed: 06/26/2024]
Abstract
The immunosuppressive microenvironment of malignant tumors severely hampers the effectiveness of anti-tumor therapy. Moreover, abnormal tumor vasculature interacts with immune cells, forming a vicious cycle that further interferes with anti-tumor immunity and promotes tumor progression. Our pre-basic found excellent anti-tumor effects of c-di-AMP and RRx-001, respectively, and we further explored whether they could be combined synergistically for anti-tumor immunotherapy. We chose to load these two drugs on PVA-TSPBA hydrogel scaffolds that expressly release drugs within the tumor microenvironment by in situ injection. Studies have shown that c-di-AMP activates the STING pathway, enhances immune cell infiltration, and reverses tumor immunosuppression. Meanwhile, RRx-001 releases nitric oxide, which increases oxidative stress injury in tumor cells and promotes apoptosis. Moreover, the combination of the two presented more powerful pro-vascular normalization and reversed tumor immunosuppression than the drug alone. This study demonstrates a new design option for anti-tumor combination therapy and the potential of tumor environmentally responsive hydrogel scaffolds in combination with anti-tumor immunotherapy.
Collapse
Affiliation(s)
- Duo Wang
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Xiujiao Deng
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China; Department of Pharmacy, The Guangzhou Key Laboratory of Basic and Translational Research on Chronic Diseases, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Jinghao Wang
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China; Department of Pharmacy, The Guangzhou Key Laboratory of Basic and Translational Research on Chronic Diseases, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Shuang Che
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Xiaocong Ma
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China; Department of Radiology, The Fifth Affiliated Hospital of Jinan University (Shenhe People's Hospital), Heyuan 517000, China
| | - Siqi Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Qiu Dong
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Cuiqing Huang
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Jifeng Chen
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Changzheng Shi
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China.
| | - Ming-Rong Zhang
- Department of Advanced Nuclear Medicine Sciences, Institute of Quantum Medical, Science, National Institutes for Quantum Science and Technology, Chiba 2638555, Japan
| | - Kuan Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| | - Liangping Luo
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China; Department of Radiology, The Fifth Affiliated Hospital of Jinan University (Shenhe People's Hospital), Heyuan 517000, China.
| | - Zeyu Xiao
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China.
| |
Collapse
|
37
|
Luo M, He N, Xu Q, Wen Z, Wang Z, Zhao J, Liu Y. Roles of prostaglandins in immunosuppression. Clin Immunol 2024; 265:110298. [PMID: 38909972 DOI: 10.1016/j.clim.2024.110298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/07/2024] [Accepted: 06/21/2024] [Indexed: 06/25/2024]
Abstract
Prostaglandins (PGs) play a crucial and multifaceted role in various physiological processes such as intercellular signaling, inflammation regulation, neurotransmission, vasodilation, vasoconstriction, and reproductive functions. The diversity and biological significance of these effects are contingent upon the specific types or subtypes of PGs, with each PG playing a crucial role in distinct physiological and pathological processes. Particularly within the immune system, PGs are essential in modulating the function of immune cells and the magnitude and orientation of immune responses. Hence, a comprehensive comprehension of the functions PG signaling pathways in immunosuppressive regulation holds substantial clinical relevance for disease prevention and treatment strategies. The manuscript provides a review of recent developments in PG signaling in immunosuppressive regulation. Furthermore, the potential clinical applications of PGs in immunosuppression are also discussed. While research into the immunosuppressive effects of PGs required further exploration, targeted therapies against their immunosuppressive pathways might open new avenues for disease prevention and treatment.
Collapse
Affiliation(s)
- Minjie Luo
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha 410008, Hunan, China; Sepsis Translational Medicine Key Lab of Hunan Province, Changsha 410008, Hunan, China; National Medicine Functional Experimental Teaching Center, Changsha 410008, Hunan, China
| | - Nina He
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha 410008, Hunan, China; Sepsis Translational Medicine Key Lab of Hunan Province, Changsha 410008, Hunan, China; National Medicine Functional Experimental Teaching Center, Changsha 410008, Hunan, China
| | - Qing Xu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha 410008, Hunan, China; Sepsis Translational Medicine Key Lab of Hunan Province, Changsha 410008, Hunan, China; National Medicine Functional Experimental Teaching Center, Changsha 410008, Hunan, China
| | - Zhongchi Wen
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha 410008, Hunan, China; Sepsis Translational Medicine Key Lab of Hunan Province, Changsha 410008, Hunan, China; National Medicine Functional Experimental Teaching Center, Changsha 410008, Hunan, China
| | - Ziqin Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha 410008, Hunan, China; Sepsis Translational Medicine Key Lab of Hunan Province, Changsha 410008, Hunan, China; National Medicine Functional Experimental Teaching Center, Changsha 410008, Hunan, China
| | - Jie Zhao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha 410008, Hunan, China; Sepsis Translational Medicine Key Lab of Hunan Province, Changsha 410008, Hunan, China; National Medicine Functional Experimental Teaching Center, Changsha 410008, Hunan, China.
| | - Ying Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha 410008, Hunan, China; Sepsis Translational Medicine Key Lab of Hunan Province, Changsha 410008, Hunan, China; National Medicine Functional Experimental Teaching Center, Changsha 410008, Hunan, China.
| |
Collapse
|
38
|
Yu X, Cai L, Yao J, Li C, Wang X. Agonists and Inhibitors of the cGAS-STING Pathway. Molecules 2024; 29:3121. [PMID: 38999073 PMCID: PMC11243509 DOI: 10.3390/molecules29133121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/24/2024] [Accepted: 06/24/2024] [Indexed: 07/14/2024] Open
Abstract
The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway is pivotal in immunotherapy. Several agonists and inhibitors of the cGAS-STING pathway have been developed and evaluated for the treatment of various diseases. The agonists aim to activate STING, with cyclic dinucleotides (CDNs) being the most common, while the inhibitors aim to block the enzymatic activity or DNA binding ability of cGAS. Meanwhile, non-CDN compounds and cGAS agonists are also gaining attention. The omnipresence of the cGAS-STING pathway in vivo indicates that its overactivation could lead to undesired inflammatory responses and autoimmune diseases, which underscores the necessity of developing both agonists and inhibitors of the cGAS-STING pathway. This review describes the molecular traits and roles of the cGAS-STING pathway and summarizes the development of cGAS-STING agonists and inhibitors. The information is supposed to be conducive to the design of novel drugs for targeting the cGAS-STING pathway.
Collapse
Affiliation(s)
- Xiaoxuan Yu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Linxiang Cai
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jingyue Yao
- Department of Pharmacy, Fourth Military Medical University, Xi’an 710032, China;
| | - Cenming Li
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xiaoyong Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| |
Collapse
|
39
|
Menz A, Zerneke J, Viehweger F, Büyücek S, Dum D, Schlichter R, Hinsch A, Bawahab AA, Fraune C, Bernreuther C, Kluth M, Hube-Magg C, Möller K, Lutz F, Reiswich V, Luebke AM, Lebok P, Weidemann SA, Sauter G, Lennartz M, Jacobsen F, Clauditz TS, Marx AH, Simon R, Steurer S, Burandt E, Gorbokon N, Minner S, Krech T. Stimulator of Interferon Genes Protein (STING) Expression in Cancer Cells: A Tissue Microarray Study Evaluating More than 18,000 Tumors from 139 Different Tumor Entities. Cancers (Basel) 2024; 16:2425. [PMID: 39001487 PMCID: PMC11240524 DOI: 10.3390/cancers16132425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024] Open
Abstract
Stimulator of interferon genes protein (STING) activates the immune response in inflammatory cells. STING expression in cancer cells is less well characterized, but STING agonists are currently being evaluated as anticancer drugs. A tissue microarray containing 18,001 samples from 139 different tumor types was analyzed for STING by immunohistochemistry. STING-positive tumor cells were found in 130 (93.5%) of 139 tumor entities. The highest STING positivity rates occurred in squamous cell carcinomas (up to 96%); malignant mesothelioma (88.5%-95.7%); adenocarcinoma of the pancreas (94.9%), lung (90.3%), cervix (90.0%), colorectum (75.2%), and gallbladder (68.8%); and serous high-grade ovarian cancer (86.0%). High STING expression was linked to adverse phenotypes in breast cancer, clear cell renal cell carcinoma, colorectal adenocarcinoma, hepatocellular carcinoma, and papillary carcinoma of the thyroid (p < 0.05). In pTa urothelial carcinomas, STING expression was associated with low-grade carcinoma (p = 0.0002). Across all tumors, STING expression paralleled PD-L1 positivity of tumor and inflammatory cells (p < 0.0001 each) but was unrelated to the density of CD8+ lymphocytes. STING expression is variable across tumor types and may be related to aggressive tumor phenotype and PD-L1 positivity. The lack of relationship with tumor-infiltrating CD8+ lymphocytes argues against a significant IFN production by STING positive tumor cells.
Collapse
Affiliation(s)
- Anne Menz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Julia Zerneke
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Florian Viehweger
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Seyma Büyücek
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - David Dum
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Ria Schlichter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Andrea Hinsch
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | | | - Christoph Fraune
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- Institute of Pathology, Clinical Center Osnabrueck, 49078 Osnabrueck, Germany
| | - Christian Bernreuther
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Martina Kluth
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Claudia Hube-Magg
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Katharina Möller
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Florian Lutz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Viktor Reiswich
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Andreas M Luebke
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Patrick Lebok
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- Institute of Pathology, Clinical Center Osnabrueck, 49078 Osnabrueck, Germany
| | - Sören A Weidemann
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Maximilian Lennartz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Frank Jacobsen
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Till S Clauditz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Andreas H Marx
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- Department of Pathology, Academic Hospital Fuerth, 90766 Fuerth, Germany
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Stefan Steurer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Eike Burandt
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Natalia Gorbokon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Sarah Minner
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Till Krech
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- Institute of Pathology, Clinical Center Osnabrueck, 49078 Osnabrueck, Germany
| |
Collapse
|
40
|
Wessel RE, Ageeb N, Obeid JM, Mauldin I, Goundry KA, Hanson GF, Hossain M, Lehman C, Gentzler RD, Wages NA, Slingluff CL, Bullock TNJ, Dolatshahi S, Brown MG. Spatial colocalization and combined survival benefit of natural killer and CD8 T cells despite profound MHC class I loss in non-small cell lung cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.20.581048. [PMID: 38979183 PMCID: PMC11230195 DOI: 10.1101/2024.02.20.581048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Background MHC class I (MHC-I) loss is frequent in non-small cell lung cancer (NSCLC) rendering tumor cells resistant to T cell lysis. NK cells kill MHC-I-deficient tumor cells, and although previous work indicated their presence at NSCLC margins, they were functionally impaired. Within, we evaluated whether NK cell and CD8 T cell infiltration and activation vary with MHC-I expression. Methods We used single-stain immunohistochemistry (IHC) and Kaplan-Meier analysis to test the effect of NK cell and CD8 T cell infiltration on overall and disease-free survival. To delineate immune covariates of MHC-I-disparate lung cancers, we used multiplexed immunofluorescence (mIF) imaging followed by multivariate statistical modeling. To identify differences in infiltration and intercellular communication between IFNγ-activated and non-activated lymphocytes, we developed a computational pipeline to enumerate single cell neighborhoods from mIF images followed by multivariate discriminant analysis. Results Spatial quantitation of tumor cell MHC-I expression revealed intra- and inter-tumoral heterogeneity, which was associated with the local lymphocyte landscape. IHC analysis revealed that high CD56+ cell numbers in patient tumors were positively associated with disease-free survival (DFS) (HR=0.58, p=0.064) and overall survival (OS) (HR=0.496, p=0.041). The OS association strengthened with high counts of both CD56+ and CD8+ cells (HR=0.199, p<1×10-3). mIF imaging and multivariate discriminant analysis revealed enrichment of both CD3+CD8+ T cells and CD3-CD56+ NK cells in MHC-I-bearing tumors (p<0.05). To infer associations of functional cell states and local cell-cell communication, we analyzed spatial single cell neighborhood profiles to delineate the cellular environments of IFNγ+/- NK cells and T cells. We discovered that both IFNγ+ NK and CD8 T cells were more frequently associated with other IFNγ+ lymphocytes in comparison to IFNγ- NK cells and CD8 T cells (p<1×10-30). Moreover, IFNγ+ lymphocytes were most often found clustered near MHC-I+ tumor cells. Conclusions Tumor-infiltrating NK cells and CD8 T cells jointly affected control of NSCLC tumor progression. Co-association of NK and CD8 T cells was most evident in MHC-I-bearing tumors, especially in the presence of IFNγ. Frequent co-localization of IFNγ+ NK cells with other IFNγ+ lymphocytes in near-neighbor analysis suggests NSCLC lymphocyte activation is coordinately regulated.
Collapse
Affiliation(s)
- Remziye E Wessel
- Department of Biomedical Engineering, University of Virginia (UVA) School of Medicine, Charlottesville, Virginia 22908
| | - Nardin Ageeb
- Department of Biology, UVA, Charlottesville, Virginia 22908
| | - Joseph M Obeid
- Department of Thoracic Surgery, Temple University Hospital, Philadelphia, Pennsylvania 19140
| | - Ileana Mauldin
- Department of Surgery, UVA School of Medicine, Charlottesville, Virginia 22908
| | - Kate A Goundry
- Department of Biomedical Engineering, University of Virginia (UVA) School of Medicine, Charlottesville, Virginia 22908
| | - Gabriel F Hanson
- Department of Biomedical Engineering, University of Virginia (UVA) School of Medicine, Charlottesville, Virginia 22908
| | - Mahdin Hossain
- Beirne B. Carter Center for Immunology Research, UVA School of Medicine, Charlottesville, Virginia 22908
| | - Chad Lehman
- Beirne B. Carter Center for Immunology Research, UVA School of Medicine, Charlottesville, Virginia 22908
| | - Ryan D Gentzler
- Department of Medicine, Hematology and Oncology, UVA School of Medicine, Charlottesville, Virginia 22908
| | - Nolan A Wages
- Department of Biostatistics, Virginia Commonwealth University, Richmond, Virginia 23298-0032
| | - Craig L Slingluff
- Department of Surgery, UVA School of Medicine, Charlottesville, Virginia 22908
| | - Timothy N J Bullock
- Beirne B. Carter Center for Immunology Research, UVA School of Medicine, Charlottesville, Virginia 22908
- Department of Pathology, UVA School of Medicine, Charlottesville, Virginia 22908
| | - Sepideh Dolatshahi
- Department of Biomedical Engineering, University of Virginia (UVA) School of Medicine, Charlottesville, Virginia 22908
- Beirne B. Carter Center for Immunology Research, UVA School of Medicine, Charlottesville, Virginia 22908
| | - Michael G Brown
- Beirne B. Carter Center for Immunology Research, UVA School of Medicine, Charlottesville, Virginia 22908
- Department of Medicine, Nephrology, UVA School of Medicine, Charlottesville, Virginia 22908
- Center for Immunity, Inflammation and Regenerative Medicine, UVA School of Medicine, Charlottesville, Virginia 22908
- Department of Microbiology, Immunology and Cancer Biology, UVA School of Medicine, Charlottesville, Virginia 22908
| |
Collapse
|
41
|
Czapla J, Drzyzga A, Ciepła J, Matuszczak S, Jarosz-Biej M, Pilny E, Cichoń T, Smolarczyk R. Combination of STING agonist with anti-vascular RGD-(KLAKLAK) 2 peptide as a novel anti-tumor therapy. Cancer Immunol Immunother 2024; 73:148. [PMID: 38832958 PMCID: PMC11150340 DOI: 10.1007/s00262-024-03732-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 05/13/2024] [Indexed: 06/06/2024]
Abstract
Immunotherapy is one of the most promising anti-cancer treatment. It involves activating the host's own immune system to eliminate cancer cells. Activation of cGAS-STING pathway is promising therapeutic approach for cancer immunotherapy. However, in human clinical trials, targeting cGAS-STING pathway results in insufficient or unsustainable anti-tumor response. To enhance its effectiveness, combination with other anti-cancer therapies seems essential to achieve synergistic systemic anti-tumor response.The aim of this study was to evaluate whether the combination of STING agonist-cGAMP with anti-vascular RGD-(KLAKLAK)2 peptide results in a better anti-tumor response in poorly immunogenic tumors with various STING protein and αvβ3 integrin status.Combination therapy inhibited growth of murine breast carcinoma more effectively than melanoma. In melanoma, the administration of STING agonist alone was sufficient to obtain a satisfactory therapeutic effect. In both tumor models we have noted stimulation of innate immune response following cGAMP administration alone or in combination. The largest population of immune cells infiltrating the TME after therapy were activated NK cells. Increased infiltration of cytotoxic CD8+ T lymphocytes within the TME was only observed in melanoma tumors. However, they also expressed the "exhaustion" PD-1 receptor. In contrast, in breast carcinoma tumors each therapy caused the drop in the number of infiltrating CD8+ T cells.The obtained results indicate an additional therapeutic benefit from combining STING agonist with an anti-vascular agent. However, this effect depends on the type of tumor, the status of its microenvironment and the expression of specific proteins such as STING and αvβ3 family integrin.
Collapse
Affiliation(s)
- Justyna Czapla
- Center for Translational Research and Molecular Biology of Cancer, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice, Poland.
| | - Alina Drzyzga
- Center for Translational Research and Molecular Biology of Cancer, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice, Poland
| | - Joanna Ciepła
- Center for Translational Research and Molecular Biology of Cancer, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice, Poland
| | - Sybilla Matuszczak
- Center for Translational Research and Molecular Biology of Cancer, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice, Poland
| | - Magdalena Jarosz-Biej
- Center for Translational Research and Molecular Biology of Cancer, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice, Poland
| | - Ewelina Pilny
- Center for Translational Research and Molecular Biology of Cancer, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice, Poland
| | - Tomasz Cichoń
- Center for Translational Research and Molecular Biology of Cancer, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice, Poland
| | - Ryszard Smolarczyk
- Center for Translational Research and Molecular Biology of Cancer, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice, Poland.
| |
Collapse
|
42
|
Chellen T, Bausart M, Maus P, Vanvarenberg K, Limaye N, Préat V, Malfanti A. In situ administration of STING-activating hyaluronic acid conjugate primes anti-glioblastoma immune response. Mater Today Bio 2024; 26:101057. [PMID: 38660475 PMCID: PMC11040137 DOI: 10.1016/j.mtbio.2024.101057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/04/2024] [Accepted: 04/10/2024] [Indexed: 04/26/2024] Open
Abstract
Glioblastoma (GBM) is an aggressive brain tumor, with a highly immunosuppressive tumor immune microenvironment (TIME). In this work, we investigated the use of the STimulator of INterferon Genes (STING) pathway as an effective means to remodel the GBM TIME through the recruitment of both innate and adaptive immune cell populations. Using hyaluronic acid (HA), we developed a novel polymer-drug conjugate of a non-nucleotide STING agonist (MSA2), called HA-MSA2 for the in situ treatment of GBM. In JAWSII cells, HA-MSA2 exerted a greater increase of STING signaling and upregulation of STING-related downstream cyto-/chemokines in immune cells than the free drug. HA-MSA2 also elicited cancer cell-intrinsic immunostimulatory gene expression and promoted immunogenic cell death of GBM cells. In the SB28 GBM model, local delivery of HA-MSA2 induced a delay in tumor growth and a significant extension of survival. The analysis of the TIME showed a profound shift in the GBM immune landscape after HA-MSA2 treatment, with higher infiltration by innate and adaptive immune cells including dendritic, natural killer (NK) and CD8 T cell populations. The therapeutic potential of this novel polymer conjugate warrants further investigation, particularly with other chemo-immunotherapeutics or cancer vaccines as a promising combinatorial therapeutic approach.
Collapse
Affiliation(s)
- Teenesha Chellen
- UCLouvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier 73 B1.73.12, 1200, Brussels, Belgium
| | - Mathilde Bausart
- UCLouvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier 73 B1.73.12, 1200, Brussels, Belgium
| | - Pierre Maus
- UCLouvain, de Duve Institute, Genetics of Autoimmune Diseases and Cancer, Brussels, Belgium
| | - Kevin Vanvarenberg
- UCLouvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier 73 B1.73.12, 1200, Brussels, Belgium
| | - Nisha Limaye
- UCLouvain, de Duve Institute, Genetics of Autoimmune Diseases and Cancer, Brussels, Belgium
| | - Véronique Préat
- UCLouvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier 73 B1.73.12, 1200, Brussels, Belgium
| | - Alessio Malfanti
- UCLouvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier 73 B1.73.12, 1200, Brussels, Belgium
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, 35131 Padova, Italy
| |
Collapse
|
43
|
Vahidi S, Zabeti Touchaei A, Samadani AA. IL-15 as a key regulator in NK cell-mediated immunotherapy for cancer: From bench to bedside. Int Immunopharmacol 2024; 133:112156. [PMID: 38669950 DOI: 10.1016/j.intimp.2024.112156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/04/2024] [Accepted: 04/23/2024] [Indexed: 04/28/2024]
Abstract
Interleukin 15 (IL-15) has emerged as a crucial factor in the relationship between natural killer (NK) cells and immunotherapy for cancer. This review article aims to provide a comprehensive understanding of the role of IL-15 in NK cell-mediated immunotherapy. First, the key role of IL-15 signaling in NK cell immunity is discussed, highlighting its regulation of NK cell functions and antitumor properties. Furthermore, the use of IL-15 or its analogs in clinical trials as a therapeutic strategy for various cancers, including the genetic modification of NK cells to produce IL-15, has been explored. The potential of IL-15-based therapies, such as chimeric antigen receptor (CAR) T and NK cell infusion along with IL-15 in combination with checkpoint inhibitors and other treatments, has been examined. This review also addresses the challenges and advantages of incorporating IL-15 in cell-based immunotherapy. Additionally, unresolved questions regarding the detection and biological significance of the soluble IL-15/IL-15Rα complex, as well as the potential role of IL-15/IL-15Rα in human cancer and the immunological consequences of prolonged exposure to soluble IL-15 for NK cells, are discussed.
Collapse
Affiliation(s)
- Sogand Vahidi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | | | - Ali Akbar Samadani
- Guilan Road Trauma Research Center, Trauma Institute, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
44
|
Turley JL, Ward RW, Huete-Carrasco J, Muñoz-Wolf N, Roche K, Jin L, Bowie A, Andersson M, Lavelle EC. Intratumoral delivery of the chitin-derived C100 adjuvant promotes robust STING, IFNAR, and CD8 + T cell-dependent anti-tumor immunity. Cell Rep Med 2024; 5:101560. [PMID: 38729159 PMCID: PMC11148802 DOI: 10.1016/j.xcrm.2024.101560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 02/07/2024] [Accepted: 04/17/2024] [Indexed: 05/12/2024]
Abstract
Stimulator of IFN genes (STING) is a promising target for adjuvants utilized in in situ cancer vaccination approaches. However, key barriers remain for clinical translation, including low cellular uptake and accessibility, STING variability necessitating personalized STING agonists, and interferon (IFN)-independent signals that can promote tumor growth. Here, we identify C100, a highly deacetylated chitin-derived polymer (HDCP), as an attractive alternative to conventional STING agonists. C100 promotes potent anti-tumor immune responses, outperforming less deacetylated HDCPs, with therapeutic efficacy dependent on STING and IFN alpha/beta receptor (IFNAR) signaling and CD8+ T cell mediators. Additionally, C100 injection synergizes with systemic checkpoint blockade targeting PD-1. Mechanistically, C100 triggers mitochondrial stress and DNA damage to exclusively activate the IFN arm of the cGAS-STING signaling pathway and elicit sustained IFNAR signaling. Altogether, these results reveal an effective STING- and IFNAR-dependent adjuvant for in situ cancer vaccines with a defined mechanism and distinct properties that overcome common limitations of existing STING therapeutics.
Collapse
Affiliation(s)
- Joanna L Turley
- Adjuvant Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 R590 Dublin 2, Ireland
| | - Ross W Ward
- Adjuvant Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 R590 Dublin 2, Ireland
| | - Jorge Huete-Carrasco
- Adjuvant Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 R590 Dublin 2, Ireland
| | - Natalia Muñoz-Wolf
- Adjuvant Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 R590 Dublin 2, Ireland
| | - Kate Roche
- Adjuvant Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 R590 Dublin 2, Ireland
| | - Lei Jin
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Florida, Gainesville, FL, USA
| | - Andrew Bowie
- School of Biochemistry and Immunology, Trinity Biomedical Science Institute (TBSI), Trinity College Dublin, D02 R590 Dublin, Ireland
| | - Mats Andersson
- Division Bioscience and Materials, RISE (Research Institutes of Sweden), Forskargatan 18, 151 36 Södertälje, Sweden
| | - Ed C Lavelle
- Adjuvant Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 R590 Dublin 2, Ireland; Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN) & Advanced Materials Bio-Engineering Research Centre (AMBER), Trinity College Dublin, D02 PN40 Dublin 2, Ireland.
| |
Collapse
|
45
|
Huang M, Cha Z, Liu R, Lin M, Gafoor NA, Kong T, Ge F, Chen W. Enhancing immunotherapy outcomes by targeted remodeling of the tumor microenvironment via combined cGAS-STING pathway strategies. Front Immunol 2024; 15:1399926. [PMID: 38817608 PMCID: PMC11137211 DOI: 10.3389/fimmu.2024.1399926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 04/26/2024] [Indexed: 06/01/2024] Open
Abstract
Immune checkpoint inhibitors (ICIs) represent a groundbreaking advance in the treatment of malignancies such as melanoma and non-small cell lung cancer, showcasing substantial therapeutic benefits. Nonetheless, the efficacy of ICIs is limited to a small subset of patients, primarily benefiting those with "hot" tumors characterized by significant immune infiltration. The challenge of converting "cold" tumors, which exhibit minimal immune activity, into "hot" tumors to enhance their responsiveness to ICIs is a critical and complex area of current research. Central to this endeavor is the activation of the cGAS-STING pathway, a pivotal nexus between innate and adaptive immunity. This pathway's activation promotes the production of type I interferon (IFN) and the recruitment of CD8+ T cells, thereby transforming the tumor microenvironment (TME) from "cold" to "hot". This review comprehensively explores the cGAS-STING pathway's role in reconditioning the TME, detailing the underlying mechanisms of innate and adaptive immunity and highlighting the contributions of various immune cells to tumor immunity. Furthermore, we delve into the latest clinical research on STING agonists and their potential in combination therapies, targeting this pathway. The discussion concludes with an examination of the challenges facing the advancement of promising STING agonists in clinical trials and the pressing issues within the cGAS-STING signaling pathway research.
Collapse
Affiliation(s)
- Mingqing Huang
- Third Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, China
| | - Zhuocen Cha
- Third Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, China
- Guizhou Hospital of the First Affiliated Hospital, Sun Yat-sen University, Guizhou, China
| | - Rui Liu
- Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, China
| | - Mengping Lin
- Third Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, China
| | - Naif Abdul Gafoor
- International Education School of Kunming Medical University, Kunming, China
| | - Tong Kong
- Department of Gynecology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, China
| | - Fei Ge
- Department of Breast Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Wenlin Chen
- Third Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, China
| |
Collapse
|
46
|
Liu Y, Li M, Fang Z, Gao S, Cheng W, Duan Y, Wang X, Feng J, Yu T, Zhang J, Wang T, Hu A, Zhang H, Rong Z, Shakila SS, Shang Y, Kong F, Liu J, Li Y, Ma F. Overexpressing S100A9 ameliorates NK cell dysfunction in estrogen receptor-positive breast cancer. Cancer Immunol Immunother 2024; 73:117. [PMID: 38713229 PMCID: PMC11076447 DOI: 10.1007/s00262-024-03699-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/01/2024] [Indexed: 05/08/2024]
Abstract
BACKGROUND Estrogen receptor (ER) positive human epidermal growth factor receptor 2 (HER2) negative breast cancer (ER+/HER2-BC) and triple-negative breast cancer (TNBC) are two distinct breast cancer molecular subtypes, especially in tumor immune microenvironment (TIME). The TIME of TNBC is considered to be more inflammatory than that of ER+/HER2-BC. Natural killer (NK) cells are innate lymphocytes that play an important role of tumor eradication in TME. However, studies focusing on the different cell states of NK cells in breast cancer subtypes are still inadequate. METHODS In this study, single-cell mRNA sequencing (scRNA-seq) and bulk mRNA sequencing data from ER+/HER2-BC and TNBC were analyzed. Key regulator of NK cell suppression in ER+/HER2-BC, S100A9, was quantified by qPCR and ELISA in MCF-7, T47D, MDA-MB-468 and MDA-MB-231 cell lines. The prognosis predictability of S100A9 and NK activation markers was evaluated by Kaplan-Meier analyses using TCGA-BRAC data. The phenotype changes of NK cells in ER+/HER2-BC after overexpressing S100A9 in cancer cells were evaluated by the production levels of IFN-gamma, perforin and granzyme B and cytotoxicity assay. RESULTS By analyzing scRNA-seq data, we found that multiple genes involved in cellular stress response were upregulated in ER+/HER2-BC compared with TNBC. Moreover, TLR regulation pathway was significantly enriched using differentially expressed genes (DEGs) from comparing the transcriptome data of ER+/HER2-BC and TNBC cancer cells, and NK cell infiltration high/low groups. Among the DEGs, S100A9 was identified as a key regulator. Patients with higher expression levels of S100A9 and NK cell activation markers had better overall survival. Furthermore, we proved that overexpression of S100A9 in ER+/HER2-cells could improve cocultured NK cell function. CONCLUSION In conclusion, the study we presented demonstrated that NK cells in ER+/HER2-BC were hypofunctional, and S100A9 was an important regulator of NK cell function in ER+BC. Our work contributes to elucidate the regulatory networks between cancer cells and NK cells and may provide theoretical basis for novel drug development.
Collapse
Affiliation(s)
- Yansong Liu
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Street, Harbin, 150001, China
| | - Mingcui Li
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Street, Harbin, 150001, China
| | - Zhengbo Fang
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Street, Harbin, 150001, China
| | - Shan Gao
- Department of Pathology, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Street, Harbin, 150001, China
| | - Weilun Cheng
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Street, Harbin, 150001, China
| | - Yunqiang Duan
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Street, Harbin, 150001, China
| | - Xuelian Wang
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Street, Harbin, 150001, China
| | - Jianyuan Feng
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Street, Harbin, 150001, China
| | - Tianshui Yu
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Street, Harbin, 150001, China
| | - Jiarui Zhang
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Street, Harbin, 150001, China
| | - Ting Wang
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Street, Harbin, 150001, China
| | - Anbang Hu
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Street, Harbin, 150001, China
| | - Hanyu Zhang
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Street, Harbin, 150001, China
| | - Zhiyuan Rong
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Street, Harbin, 150001, China
| | - Suborna S Shakila
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Street, Harbin, 150001, China
| | - Yuhang Shang
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Street, Harbin, 150001, China
| | - Fanjing Kong
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Street, Harbin, 150001, China
| | - Jiangwei Liu
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Street, Harbin, 150001, China
| | - Yanling Li
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Street, Harbin, 150001, China.
| | - Fei Ma
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Street, Harbin, 150001, China.
| |
Collapse
|
47
|
Tani T, Mathsyaraja H, Campisi M, Li ZH, Haratani K, Fahey CG, Ota K, Mahadevan NR, Shi Y, Saito S, Mizuno K, Thai TC, Sasaki N, Homme M, Yusuf CFB, Kashishian A, Panchal J, Wang M, Wolf BJ, Barbie TU, Paweletz CP, Gokhale PC, Liu D, Uppaluri R, Kitajima S, Cain J, Barbie DA. TREX1 Inactivation Unleashes Cancer Cell STING-Interferon Signaling and Promotes Antitumor Immunity. Cancer Discov 2024; 14:752-765. [PMID: 38227896 PMCID: PMC11062818 DOI: 10.1158/2159-8290.cd-23-0700] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 11/28/2023] [Accepted: 01/08/2024] [Indexed: 01/18/2024]
Abstract
A substantial fraction of cancers evade immune detection by silencing Stimulator of Interferon Genes (STING)-Interferon (IFN) signaling. Therapeutic reactivation of this program via STING agonists, epigenetic, or DNA-damaging therapies can restore antitumor immunity in multiple preclinical models. Here we show that adaptive induction of three prime exonuclease 1 (TREX1) restrains STING-dependent nucleic acid sensing in cancer cells via its catalytic function in degrading cytosolic DNA. Cancer cell TREX1 expression is coordinately induced with STING by autocrine IFN and downstream STAT1, preventing signal amplification. TREX1 inactivation in cancer cells thus unleashes STING-IFN signaling, recruiting T and natural killer (NK) cells, sensitizing to NK cell-derived IFNγ, and cooperating with programmed cell death protein 1 blockade in multiple mouse tumor models to enhance immunogenicity. Targeting TREX1 may represent a complementary strategy to induce cytosolic DNA and amplify cancer cell STING-IFN signaling as a means to sensitize tumors to immune checkpoint blockade (ICB) and/or cell therapies. SIGNIFICANCE STING-IFN signaling in cancer cells promotes tumor cell immunogenicity. Inactivation of the DNA exonuclease TREX1, which is adaptively upregulated to limit pathway activation in cancer cells, recruits immune effector cells and primes NK cell-mediated killing. Targeting TREX1 has substantial therapeutic potential to amplify cancer cell immunogenicity and overcome ICB resistance. This article is featured in Selected Articles from This Issue, p. 695.
Collapse
Affiliation(s)
- Tetsuo Tani
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Contributed equally
| | | | - Marco Campisi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Ze-Hua Li
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Koji Haratani
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Caroline G. Fahey
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Keiichi Ota
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Navin R. Mahadevan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, USA
| | - Yingxiao Shi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Shin Saito
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Kei Mizuno
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Tran C. Thai
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Nobunari Sasaki
- Department of Cell Biology, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Mizuki Homme
- Department of Cell Biology, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Choudhury Fabliha B. Yusuf
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | | | - Min Wang
- Gilead Sciences, Foster City, CA, USA
| | | | - Thanh U. Barbie
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Brigham and Women's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Cloud P. Paweletz
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Prafulla C Gokhale
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA, USA
| | - David Liu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Ravindra Uppaluri
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Shunsuke Kitajima
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Cell Biology, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | | | - David A. Barbie
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| |
Collapse
|
48
|
Ao F, Li X, Tan Y, Jiang Z, Yang F, Guo J, Zhu Q, Chen Z, Zhou B, Zhang K, Li D. STING agonist-based hydrogel enhances immune activation in synergy with radiofrequency ablation for hepatocellular carcinoma treatment. J Control Release 2024; 369:296-308. [PMID: 38301925 DOI: 10.1016/j.jconrel.2024.01.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/03/2024]
Abstract
Immunosuppression caused by incomplete radiofrequency ablation (iRFA) is a crucial factor affecting the effectiveness of RFA for solid tumors. However, little is known about the changes iRFA induces in the tumor immune microenvironment (TIME) of hepatocellular carcinoma (HCC), the primary application area for RFA. In this study, we found iRFA promotes a suppressive TIME in residual HCC tumors, characterized by M2 macrophage polarization, inhibited antigen presentation by dendritic cells (DCs), and reduced infiltration of cytotoxic T lymphocytes (CTLs). Interestingly, the STING agonist MSA-2 was able to reorganize M2-like tumor-promoting macrophages into M1-like anti-tumor states and enhance antigen presentation by DCs. To optimize the therapeutic effect of MSA-2, we used a calcium ion (Ca2+) responsive sodium alginate (ALG) as a carrier, forming an injectable hydrogel named ALG@MSA-2. This hydrogel can change from liquid to gel, maintaining continuous drug release in situ. Our results suggested that ALG@MSA-2 effectively activated anti-tumor immunity, as manifested by increased M1-like macrophage polarization, enhanced antigen presentation by DCs, increased CTL infiltration, and inhibited residual tumor growth. ALG@MSA-2 also resulted in a complete regression of contralateral tumors and widespread liver metastases in vivo. In addition, the excellent biosafety of ALG@MSA-2 was also proved by blood biochemical analysis and body weight changes in mice. In summary, this study demonstrated that the immune cascade of ALG@MSA-2 mediated the STING pathway activation and promoted a favorable TIME which might provide novel insights for the RFA treatment of HCC.
Collapse
Affiliation(s)
- Feng Ao
- Center for Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China; Department of Nuclear Medicine, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China; Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China; Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, the Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai 519000, China
| | - Xi Li
- Center for Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China; Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China; Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, the Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai 519000, China
| | - Yan Tan
- Department of Nuclear Medicine, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China; Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Zebo Jiang
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Fan Yang
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China; Department of Pediatrics, the Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai 519000, Guangdong Province, China
| | - Jingpei Guo
- Center for Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China; Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China; Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, the Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai 519000, China
| | - Qiancheng Zhu
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Zhongguo Chen
- Center for Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China; Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, the Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai 519000, China
| | - Bin Zhou
- Center for Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China; Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China; Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, the Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai 519000, China.
| | - Ke Zhang
- Center for Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China; Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China; Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, the Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai 519000, China.
| | - Dan Li
- Department of Nuclear Medicine, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China; Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China; Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, the Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai 519000, China.
| |
Collapse
|
49
|
Ma XY, Chen MM, Meng LH. Second messenger 2'3'-cyclic GMP-AMP (2'3'-cGAMP): the cell autonomous and non-autonomous roles in cancer progression. Acta Pharmacol Sin 2024; 45:890-899. [PMID: 38177693 PMCID: PMC11053103 DOI: 10.1038/s41401-023-01210-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/30/2023] [Indexed: 01/06/2024] Open
Abstract
Cytosolic double-stranded DNA (dsDNA) is frequently accumulated in cancer cells due to chromosomal instability or exogenous stimulation. Cyclic GMP-AMP synthase (cGAS) acts as a cytosolic DNA sensor, which is activated upon binding to dsDNA to synthesize the crucial second messenger 2'3'-cyclic GMP-AMP (2'3'-cGAMP) that in turn triggers stimulator of interferon genes (STING) signaling. The canonical role of cGAS-cGAMP-STING pathway is essential for innate immunity and viral defense. Recent emerging evidence indicates that 2'3'-cGAMP plays an important role in cancer progression via cell autonomous and non-autonomous mechanisms. Beyond its role as an intracellular messenger to activate STING signaling in tumor cells, 2'3'-cGAMP also serves as an immunotransmitter produced by cancer cells to modulate the functions of non-tumor cells especially immune cells in the tumor microenvironment by activating STING signaling. In this review, we summarize the synthesis, transmission, and degradation of 2'3'-cGAMP as well as the dual functions of 2'3'-cGAMP in a STING-dependent manner. Additionally, we discuss the potential therapeutic strategies that harness the cGAMP-mediated antitumor response for cancer therapy.
Collapse
Affiliation(s)
- Xiao-Yu Ma
- Division of Anti-tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Man-Man Chen
- Division of Anti-tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ling-Hua Meng
- Division of Anti-tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China.
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
50
|
Yang Y, Qi J, Hu J, Zhou Y, Zheng J, Deng W, Inam M, Guo J, Xie Y, Li Y, Xu C, Deng W, Chen W. Lovastatin/SN38 co-loaded liposomes amplified ICB therapeutic effect via remodeling the immunologically-cold colon tumor and synergized stimulation of cGAS-STING pathway. Cancer Lett 2024; 588:216765. [PMID: 38408604 DOI: 10.1016/j.canlet.2024.216765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/17/2024] [Accepted: 02/22/2024] [Indexed: 02/28/2024]
Abstract
Current immune checkpoint blockade (ICB) immunotherapeutics have revolutionized cancer treatment. However, many cancers especially the "immunologically cold" tumors, do not respond to ICB, prompting the search for additional strategies to achieve durable responses. The cGAS-STING pathway, as an essential immune response pathway, has been demonstrated for a potent target to sensitize ICB immunotherapy. However, the low efficiency of conventional STING agonists limits their clinical application. Recent studies have shown that DNA topoisomerase I (TOPI) inhibitor chemodrug SN38 can activate the cGAS-STING pathway and induce an immune response through DNA damage, while the traditional statins medication lovastatin was found to inhibit DNA damage repair, which may in turn upregulate the damaged DNA level. Herein, we have developed a liposomal carrier co-loaded with SN38 and lovastatin (SL@Lip), which can be accumulated in tumors and efficiently released SN38 and lovastatin, addressing the problem of weak solubility of these two drugs. Importantly, lovastatin can increase DNA damage and enhance the activation of cGAS-STING pathway, coordinating with SN38 chemotherapy and exhibiting the enhanced combinational immunotherapy of PD-1 antibody by remodeling the tumor microenvironment in mouse colorectal cancer of both subcutaneous and orthotopic xenograft models. Overall, this study demonstrates that lovastatin-assisted cGAS-STING stimulation mediated by liposomal delivery system significantly strengthened both chemotherapy and immunotherapy of colorectal cancer, providing a clinically translational strategy for combinational ICB therapy in the "immunologically cold" tumors.
Collapse
Affiliation(s)
- Yi Yang
- School of Pharmaceutical Science, State Key Laboratory of Respiratory Disease & The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Jialong Qi
- Yunnan Digestive Endoscopy Clinical Medical Center, Department of Gastroenterology, The First People's Hospital of Yunnan Province, Kunming, 650032, PR China
| | - Jialin Hu
- School of Pharmaceutical Science, State Key Laboratory of Respiratory Disease & The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - You Zhou
- School of Pharmaceutical Science, State Key Laboratory of Respiratory Disease & The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Jiena Zheng
- School of Pharmaceutical Science, State Key Laboratory of Respiratory Disease & The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Wenxia Deng
- School of Pharmaceutical Science, State Key Laboratory of Respiratory Disease & The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Muhammad Inam
- School of Pharmaceutical Science, State Key Laboratory of Respiratory Disease & The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Jiaxin Guo
- School of Pharmaceutical Science, State Key Laboratory of Respiratory Disease & The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Yongyi Xie
- School of Pharmaceutical Science, State Key Laboratory of Respiratory Disease & The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Yuan Li
- School of Pharmaceutical Science, State Key Laboratory of Respiratory Disease & The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Chuanshan Xu
- School of Pharmaceutical Science, State Key Laboratory of Respiratory Disease & The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, PR China.
| | - Wei Deng
- School of Biomedical Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
| | - Wenjie Chen
- School of Pharmaceutical Science, State Key Laboratory of Respiratory Disease & The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, PR China.
| |
Collapse
|