1
|
Farias-Jofre M, Romero R, Xu Y, Levenson D, Tao L, Kanninen T, Galaz J, Arenas-Hernandez M, Liu Z, Miller D, Bhatti G, Seyerle M, Tarca AL, Gomez-Lopez N. Differential immunophenotype of circulating monocytes from pregnant women in response to viral ligands. BMC Pregnancy Childbirth 2023; 23:323. [PMID: 37149573 PMCID: PMC10163583 DOI: 10.1186/s12884-023-05562-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/30/2023] [Indexed: 05/08/2023] Open
Abstract
BACKGROUND Viral infections during pregnancy can have deleterious effects on mothers and their offspring. Monocytes participate in the maternal host defense against invading viruses; however, whether pregnancy alters monocyte responses is still under investigation. Herein, we undertook a comprehensive in vitro study of peripheral monocytes to characterize the differences in phenotype and interferon release driven by viral ligands between pregnant and non-pregnant women. METHODS Peripheral blood was collected from third-trimester pregnant (n = 20) or non-pregnant (n = 20, controls) women. Peripheral blood mononuclear cells were isolated and exposed to R848 (TLR7/TLR8 agonist), Gardiquimod (TLR7 agonist), Poly(I:C) (HMW) VacciGrade™ (TLR3 agonist), Poly(I:C) (HMW) LyoVec™ (RIG-I/MDA-5 agonist), or ODN2216 (TLR9 agonist) for 24 h. Cells and supernatants were collected for monocyte phenotyping and immunoassays to detect specific interferons, respectively. RESULTS The proportions of classical (CD14hiCD16-), intermediate (CD14hiCD16+), non-classical (CD14loCD16+), and CD14loCD16- monocytes were differentially affected between pregnant and non-pregnant women in response to TLR3 stimulation. The proportions of pregnancy-derived monocytes expressing adhesion molecules (Basigin and PSGL-1) or the chemokine receptors CCR5 and CCR2 were diminished in response to TLR7/TLR8 stimulation, while the proportions of CCR5- monocytes were increased. Such differences were found to be primarily driven by TLR8 signaling, rather than TLR7. Moreover, the proportions of monocytes expressing the chemokine receptor CXCR1 were increased during pregnancy in response to poly(I:C) stimulation through TLR3, but not RIG-I/MDA-5. By contrast, pregnancy-specific changes in the monocyte response to TLR9 stimulation were not observed. Notably, the soluble interferon response to viral stimulation by mononuclear cells was not diminished in pregnancy. CONCLUSIONS Our data provide insight into the differential responsiveness of pregnancy-derived monocytes to ssRNA and dsRNA, mainly driven by TLR8 and membrane-bound TLR3, which may help to explain the increased susceptibility of pregnant women to adverse outcomes resulting from viral infection as observed during recent and historic pandemics.
Collapse
Affiliation(s)
- Marcelo Farias-Jofre
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, MI, 48201, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, 48201, USA
- Division of Obstetrics and Gynecology, Faculty of Medicine, Pontificia Universidad Católica de Chile, 8330024, Santiago, Chile
| | - Roberto Romero
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, MI, 48201, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, 48824, USA
| | - Yi Xu
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, MI, 48201, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, 48201, USA
| | - Dustyn Levenson
- Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Li Tao
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, MI, 48201, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, 48201, USA
| | - Tomi Kanninen
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, MI, 48201, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, 48201, USA
| | - Jose Galaz
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, MI, 48201, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, 48201, USA
- Division of Obstetrics and Gynecology, Faculty of Medicine, Pontificia Universidad Católica de Chile, 8330024, Santiago, Chile
| | - Marcia Arenas-Hernandez
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, MI, 48201, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, 48201, USA
| | - Zhenjie Liu
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, MI, 48201, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, 48201, USA
| | - Derek Miller
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, MI, 48201, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, 48201, USA
| | - Gaurav Bhatti
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, MI, 48201, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, 48201, USA
| | - Megan Seyerle
- Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Adi L Tarca
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, MI, 48201, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, 48201, USA
- Department of Computer Science, Wayne State University College of Engineering, Detroit, MI, 48202, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, 48201, USA
| | - Nardhy Gomez-Lopez
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, MI, 48201, USA.
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, 48201, USA.
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, 48201, USA.
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
| |
Collapse
|
2
|
Zhang C, Lan Y, Li L, He R, Meng Y, Li J, Chen W. HIV-1 tropism in low-level viral load HIV-1 infections during HAART in Guangdong, China. Front Microbiol 2023; 14:1159763. [PMID: 37152735 PMCID: PMC10158941 DOI: 10.3389/fmicb.2023.1159763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/13/2023] [Indexed: 05/09/2023] Open
Abstract
Background Since only a few studies have been conducted on the factors associated with different HIV-1 tropisms in low-level viral load HIV-1 infections in China, we investigated the sequences of HIV-1 V3 loop in prevalent HIV-1 subtypes and factors related to HIV-1 tropism and immune recovery in HIV-1 infections after 6 months of highly active antiretroviral therapy (HAART) in Guangdong, China. Methods Plasma samples with HIV-1 RNA of 400-999 copies/mL were collected. We analyzed the amino acid sequence of the V3 loop by in silico prediction algorithms. Mann-Whitney and Chi-square tests were used for statistical comparison. Furthermore, logistic regression and multiple linear regression were used, respectively, for factors associated with 351 HIV-1 tropism and immune recovery of 67 cases with continued CD4+ T cell count during HAART. Results There was a lower percentage of HIV-1 R5-tropic virus in CRF01_AE (66.3%) (p < 0.0001) and CRF55_01B (52.6%) (p < 0.0001) compared with both CRF07_BC (96.1%) and CRF08_BC (97.4%), respectively. Compared with the R5-tropic virus, higher proportions of IIe8/Val8, Arg11/Lys11, and Arg18/His18/Lys18 were observed in the X4-tropic virus of CRF01_AE and CRF07_BC (p < 0.0001). The baseline CD4+ T cell count (p < 0.0001) and baseline CD4+ T/CD8+ T ratio (p = 0.0006) of all R5-tropic infections were higher than those in the X4-tropic infection. The baseline CD4+ T cell count (odds ratio [OR] 0.9963, p = 0.0097), CRF07_BC (OR 0.1283, p = 0.0002), and CRF08_BC (OR 0.1124, p = 0.0381) were associated with less HIV-1 X4-tropism. The baseline CD4+ T cell count was a positive factor (p < 0.0001) in the recovery of CD4+ T cell count during HAART. Conclusion R5-tropism represented the majority in low-level viral load HIV-1 infections receiving HAART for more than 6 months in Guangdong, China. The baseline immune level in the HIV-1 R5-tropic infections was higher than that in the X4-tropic infections. The amino acids of the 8th, 11th, and 18th of the HIV-1 V3 loop were more variable in the X4-tropic HIV-1. CRF01_AE, CRF55_01B, and lower baseline CD4+ T cell count were associated with more HIV-1 X4-tropism. The immune recovery during HAART was positively related to baseline CD4+ T cell count.
Collapse
Affiliation(s)
- Chuyu Zhang
- Institute of Infectious Diseases, Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yun Lan
- Institute of Infectious Diseases, Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Linghua Li
- Infectious Disease Center, Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ruiying He
- Institute of Infectious Diseases, Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yu Meng
- Infectious Disease Center, Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jian Li
- Institute of Infectious Diseases, Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Weilie Chen
- Institute of Infectious Diseases, Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
- *Correspondence: Weilie Chen,
| |
Collapse
|
3
|
Han M, Woottum M, Mascarau R, Vahlas Z, Verollet C, Benichou S. Mechanisms of HIV-1 cell-to-cell transfer to myeloid cells. J Leukoc Biol 2022; 112:1261-1271. [PMID: 35355323 DOI: 10.1002/jlb.4mr0322-737r] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/09/2022] [Indexed: 12/24/2022] Open
Abstract
In addition to CD4+ T lymphocytes, cells of the myeloid lineage such as macrophages, dendritic cells (DCs), and osteoclasts (OCs) are emerging as important target cells for HIV-1, as they likely participate in all steps of pathogenesis, including sexual transmission and early virus dissemination in both lymphoid and nonlymphoid tissues where they can constitute persistent virus reservoirs. At least in vitro, these myeloid cells are poorly infected by cell-free viral particles. In contrast, intercellular virus transmission through direct cell-to-cell contacts may be a predominant mode of virus propagation in vivo leading to productive infection of these myeloid target cells. HIV-1 cell-to-cell transfer between CD4+ T cells mainly through the formation of the virologic synapse, or from infected macrophages or dendritic cells to CD4+ T cell targets, have been extensively described in vitro. Recent reports demonstrate that myeloid cells can be also productively infected through virus homotypic or heterotypic cell-to-cell transfer between macrophages or from virus-donor-infected CD4+ T cells, respectively. These modes of infection of myeloid target cells lead to very efficient spreading in these poorly susceptible cell types. Thus, the goal of this review is to give an overview of the different mechanisms reported in the literature for cell-to-cell transfer and spreading of HIV-1 in myeloid cells.
Collapse
Affiliation(s)
- Mingyu Han
- Institut Cochin, Inserm U1016, Paris, France.,Centre National de la Recherche Scientifique CNRS UMR8104, Paris, France.,Faculty of Health, University of Paris Cité, Paris, France
| | - Marie Woottum
- Institut Cochin, Inserm U1016, Paris, France.,Centre National de la Recherche Scientifique CNRS UMR8104, Paris, France.,Faculty of Health, University of Paris Cité, Paris, France
| | - Rémi Mascarau
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, Toulouse, France.,International Research Project (IRP) CNRS, Toulouse, France.,International Research Project (IRP), CNRS, Buenos Aires, Argentina
| | - Zoï Vahlas
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, Toulouse, France.,International Research Project (IRP) CNRS, Toulouse, France.,International Research Project (IRP), CNRS, Buenos Aires, Argentina
| | - Christel Verollet
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, Toulouse, France.,International Research Project (IRP) CNRS, Toulouse, France.,International Research Project (IRP), CNRS, Buenos Aires, Argentina
| | - Serge Benichou
- Institut Cochin, Inserm U1016, Paris, France.,Centre National de la Recherche Scientifique CNRS UMR8104, Paris, France.,Faculty of Health, University of Paris Cité, Paris, France
| |
Collapse
|
4
|
van Eekeren LE, Matzaraki V, Zhang Z, van de Wijer L, Blaauw MJT, de Jonge MI, Vandekerckhove L, Trypsteen W, Joosten LAB, Netea MG, de Mast Q, Koenen HJPM, Li Y, van der Ven AJAM. People with HIV have higher percentages of circulating CCR5+ CD8+ T cells and lower percentages of CCR5+ regulatory T cells. Sci Rep 2022; 12:11425. [PMID: 35794176 PMCID: PMC9259737 DOI: 10.1038/s41598-022-15646-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 06/27/2022] [Indexed: 11/14/2022] Open
Abstract
CCR5 is the main HIV co-receptor. We aimed to (1) compare CCR5 expression on immune cells between people living with HIV (PLHIV) using combination antiretroviral therapy (cART) and HIV-uninfected controls, (2) relate CCR5 expression to viral reservoir size and (3) assess determinants of CCR5 expression. This cross-sectional study included 209 PLHIV and 323 controls. Percentages of CCR5+ cells (%) and CCR5 mean fluorescence intensity assessed by flow cytometry in monocytes and lymphocyte subsets were correlated to host factors, HIV-1 cell-associated (CA)-RNA and CA-DNA, plasma inflammation markers and metabolites. Metabolic pathways were identified. PLHIV displayed higher percentages of CCR5+ monocytes and several CD8+ T cell subsets, but lower percentages of CCR5+ naive CD4+ T cells and regulatory T cells (Tregs). HIV-1 CA-DNA and CA-RNA correlated positively with percentages of CCR5+ lymphocytes. Metabolome analysis revealed three pathways involved in energy metabolism associated with percentage of CCR5+ CD8+ T cells in PLHIV. Our results indicate that CCR5 is differently expressed on various circulating immune cells in PLHIV. Hence, cell-trafficking of CD8+ T cells and Tregs may be altered in PLHIV. Associations between energy pathways and percentage of CCR5+ CD8+ T cells in PLHIV suggest higher energy demand of these cells in PLHIV.
Collapse
Affiliation(s)
- Louise E van Eekeren
- Department of General Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands. .,Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands. .,Radboud Institute of Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Vasiliki Matzaraki
- Department of General Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Zhenhua Zhang
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Lisa van de Wijer
- Department of General Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboud Institute of Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marc J T Blaauw
- Department of General Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboud Institute of Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marien I de Jonge
- Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Linos Vandekerckhove
- HIV Cure Research Center, Department of Internal Medicine, and Pediatrics, Ghent University & Ghent University Hospital, Ghent, Belgium
| | - Wim Trypsteen
- HIV Cure Research Center, Department of Internal Medicine, and Pediatrics, Ghent University & Ghent University Hospital, Ghent, Belgium
| | - Leo A B Joosten
- Department of General Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Mihai G Netea
- Department of General Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Quirijn de Mast
- Department of General Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboud Institute of Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Hans J P M Koenen
- Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Yang Li
- Department of General Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Computational Biology for Individualised Medicine, Centre for Individualised Infection Medicine (CiiM) & TWINCORE, Joint Ventures Between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
| | - André J A M van der Ven
- Department of General Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboud Institute of Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
5
|
HIV Latency in Myeloid Cells: Challenges for a Cure. Pathogens 2022; 11:pathogens11060611. [PMID: 35745465 PMCID: PMC9230125 DOI: 10.3390/pathogens11060611] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/10/2022] [Accepted: 05/21/2022] [Indexed: 01/27/2023] Open
Abstract
The use of antiretroviral therapy (ART) for Human Immunodeficiency Virus (HIV) treatment has been highly successful in controlling plasma viremia to undetectable levels. However, a complete cure for HIV is hindered by the presence of replication-competent HIV, integrated in the host genome, that can persist long term in a resting state called viral latency. Resting memory CD4+ T cells are considered the biggest reservoir of persistent HIV infection and are often studied exclusively as the main target for an HIV cure. However, other cell types, such as circulating monocytes and tissue-resident macrophages, can harbor integrated, replication-competent HIV. To develop a cure for HIV, focus is needed not only on the T cell compartment, but also on these myeloid reservoirs of persistent HIV infection. In this review, we summarize their importance when designing HIV cure strategies and challenges associated to their identification and specific targeting by the “shock and kill” approach.
Collapse
|
6
|
Aldarondo D, Wayne E. Monocytes as a convergent nanoparticle therapeutic target for cardiovascular diseases. Adv Drug Deliv Rev 2022; 182:114116. [PMID: 35085623 PMCID: PMC9359644 DOI: 10.1016/j.addr.2022.114116] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 01/10/2022] [Accepted: 01/13/2022] [Indexed: 12/17/2022]
Abstract
Due to the increasing population of individuals with cardiovascular diseases and related comorbidities, there is an increasing need for development of synergistic therapeutics. Monocytes are implicated in a broad spectrum of diseases and can serve as a focal point for therapeutic targeting. This review discusses the role of monocytes in cardiovascular diseases and highlights trends in monocyte targets nanoparticles in three cardiovascular-related diseases: Diabetes, Atherosclerosis, and HIV. Finally, the review offers perspectives on how to develop nanoparticle monocyte targeting strategies that can be beneficial for treating co-morbidities.
Collapse
Affiliation(s)
- Dasia Aldarondo
- Department of Chemical Engineering and Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Elizabeth Wayne
- Department of Chemical Engineering and Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| |
Collapse
|
7
|
Gumbs SBH, Kübler R, Gharu L, Schipper PJ, Borst AL, Snijders GJLJ, Ormel PR, van Berlekom AB, Wensing AMJ, de Witte LD, Nijhuis M. Human microglial models to study HIV infection and neuropathogenesis: a literature overview and comparative analyses. J Neurovirol 2022; 28:64-91. [PMID: 35138593 PMCID: PMC9076745 DOI: 10.1007/s13365-021-01049-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/03/2021] [Accepted: 12/18/2021] [Indexed: 02/08/2023]
Abstract
HIV persistence in the CNS despite antiretroviral therapy may cause neurological disorders and poses a critical challenge for HIV cure. Understanding the pathobiology of HIV-infected microglia, the main viral CNS reservoir, is imperative. Here, we provide a comprehensive comparison of human microglial culture models: cultured primary microglia (pMG), microglial cell lines, monocyte-derived microglia (MDMi), stem cell-derived microglia (iPSC-MG), and microglia grown in 3D cerebral organoids (oMG) as potential model systems to advance HIV research on microglia. Functional characterization revealed phagocytic capabilities and responsiveness to LPS across all models. Microglial transcriptome profiles of uncultured pMG showed the highest similarity to cultured pMG and oMG, followed by iPSC-MG and then MDMi. Direct comparison of HIV infection showed a striking difference, with high levels of viral replication in cultured pMG and MDMi and relatively low levels in oMG resembling HIV infection observed in post-mortem biopsies, while the SV40 and HMC3 cell lines did not support HIV infection. Altogether, based on transcriptional similarities to uncultured pMG and susceptibility to HIV infection, MDMi may serve as a first screening tool, whereas oMG, cultured pMG, and iPSC-MG provide more representative microglial culture models for HIV research. The use of current human microglial cell lines (SV40, HMC3) is not recommended.
Collapse
Affiliation(s)
- Stephanie B H Gumbs
- Translational Virology, Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Raphael Kübler
- Translational Virology, Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Psychiatry, Icahn School of Medicine, New York, NY, USA
| | - Lavina Gharu
- Translational Virology, Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Pauline J Schipper
- Translational Virology, Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Anne L Borst
- Translational Virology, Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Gijsje J L J Snijders
- Department of Psychiatry, Icahn School of Medicine, New York, NY, USA
- Department of Psychiatry, University Medical Center Utrecht, Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Paul R Ormel
- Department of Psychiatry, University Medical Center Utrecht, Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Amber Berdenis van Berlekom
- Department of Psychiatry, University Medical Center Utrecht, Brain Center, Utrecht University, Utrecht, The Netherlands
- Department of Translational Neuroscience, University Medical Center Utrecht, Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Annemarie M J Wensing
- Translational Virology, Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Lot D de Witte
- Department of Psychiatry, Icahn School of Medicine, New York, NY, USA
- Department of Psychiatry, University Medical Center Utrecht, Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Monique Nijhuis
- Translational Virology, Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
8
|
Abstract
The introduction of antiretroviral therapy (ART) and highly active antiretroviral therapy (HAART) has transformed human immunodeficiency virus (HIV)-1 into a chronic, well-managed disease. However, these therapies do not eliminate all infected cells from the body despite suppressing viral load. Viral rebound is largely due to the presence of cellular reservoirs which support long-term persistence of HIV-1. A thorough understanding of the HIV-1 reservoir will facilitate the development of new strategies leading to its detection, reduction, and elimination, ultimately leading to curative therapies for HIV-1. Although immune cells derived from lymphoid and myeloid progenitors have been thoroughly studied as HIV-1 reservoirs, few studies have examined whether mesenchymal stromal/stem cells (MSCs) can assume this function. In this review, we evaluate published studies which have assessed whether MSCs contribute to the HIV-1 reservoir. MSCs have been found to express the receptors and co-receptors required for HIV-1 entry, albeit at levels of expression and receptor localisation that vary considerably between studies. Exposure to HIV-1 and HIV-1 proteins alters MSC properties in vitro, including their proliferation capacity and differentiation potential. However, in vitro and in vivo experiments investigating whether MSCs can become infected with and harbour latent integrated proviral DNA are lacking. In conclusion, MSCs appear to have the potential to contribute to the HIV-1 reservoir. However, further studies are needed using techniques such as those used to prove that cluster of differentiation (CD)4+ T cells constitute an HIV-1 reservoir before a reservoir function can definitively be ascribed to MSCs.
Collapse
|
9
|
Picton ACP, Paximadis M, Koor GW, Bharuthram A, Shalekoff S, Lassauniere R, Ive P, Tiemessen CT. Reduced CCR5 Expression and Immune Quiescence in Black South African HIV-1 Controllers. Front Immunol 2021; 12:781263. [PMID: 34987508 PMCID: PMC8720782 DOI: 10.3389/fimmu.2021.781263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/25/2021] [Indexed: 11/13/2022] Open
Abstract
Unique Individuals who exhibit either suppressive HIV-1 control, or the ability to maintain low viral load set-points and preserve their CD4+ T cell counts for extended time periods in the absence of antiretroviral therapy, are broadly termed HIV-1 controllers. We assessed the extent to which black South African controllers (n=9), differ from uninfected healthy controls (HCs, n=22) in terms of lymphocyte and monocyte CCR5 expression (density and frequency of CCR5-expressing cells), immune activation as well as peripheral blood mononuclear cell (PBMC) mitogen-induced chemokine/cytokine production. In addition, relative CD4+ T cell CCR5 mRNA expression was assessed in a larger group of controllers (n=20) compared to HCs (n=10) and HIV-1 progressors (n=12). Despite controllers having significantly higher frequencies of activated CD4+ and CD8+ T cells (HLA-DR+) compared to HCs, CCR5 density was significantly lower in these T cell populations (P=0.039 and P=0.064, respectively). This lower CCR5 density was largely attributable to controllers with higher VLs (>400 RNA copies/ml). Significantly lower CD4+ T cell CCR5 density in controllers was maintained (P=0.036) when HCs (n=12) and controllers (n=9) were matched for age. CD4+ T cell CCR5 mRNA expression was significantly less in controllers compared to HCs (P=0.007) and progressors (P=0.002), whereas HCs and progressors were similar (P=0.223). The levels of soluble CD14 in plasma did not differ between controllers and HCs, suggesting no demonstrable monocyte activation. While controllers had lower monocyte CCR5 density compared to the HCs (P=0.02), significance was lost when groups were age-matched (P=0.804). However, when groups were matched for both CCR5 promoter haplotype and age (n=6 for both) reduced CCR5 density on monocytes in controllers relative to HCs was highly significant (P=0.009). Phytohemagglutinin-stimulated PBMCs from the controllers produced significantly less CCL3 (P=0.029), CCL4 (P=0.008) and IL-10 (P=0.028) compared to the HCs, which was largely attributable to the controllers with lower VLs (<400 RNA copies/ml). Our findings support a hypothesis of an inherent (genetic) predisposition to lower CCR5 expression in individuals who naturally control HIV-1, as has been suggested for Caucasian controllers, and thus, likely involves a mechanism shared between ethnically divergent population groups.
Collapse
Affiliation(s)
- Anabela C. P. Picton
- Centre for HIV and STIs, National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Maria Paximadis
- Centre for HIV and STIs, National Institute for Communicable Diseases, Johannesburg, South Africa
- Department of Virology, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- *Correspondence: Maria Paximadis,
| | - Gemma W. Koor
- Centre for HIV and STIs, National Institute for Communicable Diseases, Johannesburg, South Africa
- Department of Virology, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Avani Bharuthram
- Centre for HIV and STIs, National Institute for Communicable Diseases, Johannesburg, South Africa
- Department of Virology, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Sharon Shalekoff
- Centre for HIV and STIs, National Institute for Communicable Diseases, Johannesburg, South Africa
- Department of Virology, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Ria Lassauniere
- Virus Research and Development Laboratory, Department of Virus and Microbiological Special Diagnostics, Statens Serum Institut, Copenhagen, Denmark
| | - Prudence Ive
- Department of Virology, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Clinical HIV Research Unit, Department of Internal Medicine, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Caroline T. Tiemessen
- Centre for HIV and STIs, National Institute for Communicable Diseases, Johannesburg, South Africa
- Department of Virology, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
10
|
Pedersen JG, Egedal JH, Packard TA, Thavachelvam K, Xie G, van der Sluis RM, Greene WC, Roan NR, Jakobsen MR. Cell-Extrinsic Priming Increases Permissiveness of CD4+ T Cells to Human Immunodeficiency Virus Infection by Increasing C-C Chemokine Receptor Type 5 Co-receptor Expression and Cellular Activation Status. Front Microbiol 2021; 12:763030. [PMID: 34899645 PMCID: PMC8661899 DOI: 10.3389/fmicb.2021.763030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 11/05/2021] [Indexed: 11/13/2022] Open
Abstract
The chemokine receptor CCR5 is expressed on multiple cell types, including macrophages, dendritic cells, and T cells, and is the major co-receptor used during HIV transmission. Using a standard αCD3/CD28 in vitro stimulation protocol to render CD4+ T cells from PBMCs permissive to HIV infection, we discovered that the percentage of CCR5+ T cells was significantly elevated in CD4+ T cells when stimulated in the presence of peripheral blood mononuclear cells (PBMCs) as compared to when stimulated as purified CD4+ T cells. This indicated that environmental factors unique to the T-PBMCs condition affect surface expression of CCR5 on CD4+ T cells. Conditioned media from αCD3/CD28-stimulated PBMCs induced CCR5 expression in cultures of unstimulated cells. Cytokine profile analysis of these media suggests IL-12 as an inducer of CCR5 expression. Mass cytometric analysis showed that stimulated T-PBMCs exhibited a uniquely activated phenotype compared to T-Pure. In line with increased CCR5 expression and activation status in stimulated T-PBMCs, CD4+ T cells from these cultures were more susceptible to infection by CCR5-tropic HIV-1 as compared with T-Pure cells. These results suggest that in order to increase ex vivo infection rates of blood-derived CD4+ T cells, standard stimulation protocols used in HIV infection studies should implement T-PBMCs or purified CD4+ T cells should be supplemented with IL-12.
Collapse
Affiliation(s)
| | - Johanne H Egedal
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Gladstone Institute of Virology, San Francisco, CA, United States
| | - Thomas A Packard
- Gladstone Institute of Virology, San Francisco, CA, United States
| | | | - Guorui Xie
- Gladstone Institute of Virology, San Francisco, CA, United States.,Department of Urology, University of California, San Francisco, San Francisco, CA, United States
| | - Renée Marije van der Sluis
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Aarhus Institute of Advanced Studies, Aarhus University, Aarhus, Denmark
| | - Warner C Greene
- Gladstone Institute of Virology, San Francisco, CA, United States
| | - Nadia R Roan
- Gladstone Institute of Virology, San Francisco, CA, United States.,Department of Urology, University of California, San Francisco, San Francisco, CA, United States
| | | |
Collapse
|
11
|
Nickoloff-Bybel EA, Festa L, Meucci O, Gaskill PJ. Co-receptor signaling in the pathogenesis of neuroHIV. Retrovirology 2021; 18:24. [PMID: 34429135 PMCID: PMC8385912 DOI: 10.1186/s12977-021-00569-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 08/11/2021] [Indexed: 12/13/2022] Open
Abstract
The HIV co-receptors, CCR5 and CXCR4, are necessary for HIV entry into target cells, interacting with the HIV envelope protein, gp120, to initiate several signaling cascades thought to be important to the entry process. Co-receptor signaling may also promote the development of neuroHIV by contributing to both persistent neuroinflammation and indirect neurotoxicity. But despite the critical importance of CXCR4 and CCR5 signaling to HIV pathogenesis, there is only one therapeutic (the CCR5 inhibitor Maraviroc) that targets these receptors. Moreover, our understanding of co-receptor signaling in the specific context of neuroHIV is relatively poor. Research into co-receptor signaling has largely stalled in the past decade, possibly owing to the complexity of the signaling cascades and functions mediated by these receptors. Examining the many signaling pathways triggered by co-receptor activation has been challenging due to the lack of specific molecular tools targeting many of the proteins involved in these pathways and the wide array of model systems used across these experiments. Studies examining the impact of co-receptor signaling on HIV neuropathogenesis often show activation of multiple overlapping pathways by similar stimuli, leading to contradictory data on the effects of co-receptor activation. To address this, we will broadly review HIV infection and neuropathogenesis, examine different co-receptor mediated signaling pathways and functions, then discuss the HIV mediated signaling and the differences between activation induced by HIV and cognate ligands. We will assess the specific effects of co-receptor activation on neuropathogenesis, focusing on neuroinflammation. We will also explore how the use of substances of abuse, which are highly prevalent in people living with HIV, can exacerbate the neuropathogenic effects of co-receptor signaling. Finally, we will discuss the current state of therapeutics targeting co-receptors, highlighting challenges the field has faced and areas in which research into co-receptor signaling would yield the most therapeutic benefit in the context of HIV infection. This discussion will provide a comprehensive overview of what is known and what remains to be explored in regard to co-receptor signaling and HIV infection, and will emphasize the potential value of HIV co-receptors as a target for future therapeutic development. ![]()
Collapse
Affiliation(s)
- E A Nickoloff-Bybel
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA, 19102, USA
| | - L Festa
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, 240 S. 40th Street, Philadelphia, PA, 19104, USA
| | - O Meucci
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA, 19102, USA.,Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - P J Gaskill
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA, 19102, USA.
| |
Collapse
|
12
|
Karakaya B, van Moorsel CHM, Veltkamp M, Roodenburg-Benschop C, Kazemier KM, van der Helm-van Mil AHM, Huizinga TWJ, Grutters JC, Rijkers GT. A Polymorphism in C-C Chemokine Receptor 5 (CCR5) Associates with Löfgren's Syndrome and Alters Receptor Expression as well as Functional Response. Cells 2021; 10:1967. [PMID: 34440736 PMCID: PMC8394428 DOI: 10.3390/cells10081967] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/27/2021] [Accepted: 07/29/2021] [Indexed: 11/23/2022] Open
Abstract
C-C chemokine receptor 5 (CCR5) and polymorphisms in CCR5 gene are associated with sarcoidosis and Löfgren's syndrome. Löfgren's syndrome is an acute and usually self-remitting phenotype of sarcoidosis. We investigated whether the single nucleotide polymorphism (SNP) rs1799987 is associated with susceptibility for Löfgren's syndrome and has an effect on CCR5 expression on monocytes and function of CCR5. A total of 106 patients with Löfgren's syndrome and 257 controls were genotyped for rs1799987. Expression of CCR5 on monocytes was measured by flowcytometry. We evaluated calcium influx kinetics following stimulation upon N-formylmethionyl-leucyl-phenylalanine (fMLP) and macrophage inflammatory protein-1α (MIP-1α) on monocytes by measuring the median fluorescence intensity (MFI). The frequency of the G allele of rs1799987 was significantly higher in Löfgren's syndrome than in healthy controls (p = 0.0015, confidence interval (CI) 1.22-2.32, odds ratio (OR) 1.680). Patients with a GG genotype showed higher CCR5 expression on monocytes than patients with the AA genotype (p = 0.026). A significantly (p = 0.027) lower count of patients with the GG genotype showed a calcium influx reaction to simulation upon MIP-1 α, compared with patients with the AA genotype. The rs1799987 G allele in CCR5 gene is associated with susceptibility to Löfgren's syndrome and with quantitative and qualitative changes in CCR5, potentially effecting the inflammatory response.
Collapse
Affiliation(s)
- Bekir Karakaya
- Interstitial Lung Diseases Centre of Excellence, St. Antonius Hospital, P.O. Box 2500, 3430 EM Nieuwegein, The Netherlands; (C.H.M.v.M.); (M.V.); (C.R.-B.); (J.C.G.)
| | - Coline H. M. van Moorsel
- Interstitial Lung Diseases Centre of Excellence, St. Antonius Hospital, P.O. Box 2500, 3430 EM Nieuwegein, The Netherlands; (C.H.M.v.M.); (M.V.); (C.R.-B.); (J.C.G.)
- Division of Heart & Lungs, University Medical Center Utrecht, P.O. Box 85500, 3508 GA Utrecht, The Netherlands;
| | - Marcel Veltkamp
- Interstitial Lung Diseases Centre of Excellence, St. Antonius Hospital, P.O. Box 2500, 3430 EM Nieuwegein, The Netherlands; (C.H.M.v.M.); (M.V.); (C.R.-B.); (J.C.G.)
- Division of Heart & Lungs, University Medical Center Utrecht, P.O. Box 85500, 3508 GA Utrecht, The Netherlands;
| | - Claudia Roodenburg-Benschop
- Interstitial Lung Diseases Centre of Excellence, St. Antonius Hospital, P.O. Box 2500, 3430 EM Nieuwegein, The Netherlands; (C.H.M.v.M.); (M.V.); (C.R.-B.); (J.C.G.)
| | - Karin M. Kazemier
- Division of Heart & Lungs, University Medical Center Utrecht, P.O. Box 85500, 3508 GA Utrecht, The Netherlands;
- Center for Translational Immunology, University Medical Center Utrecht, P.O. Box 85500, 3508 GA Utrecht, The Netherlands
| | - Annette H. M. van der Helm-van Mil
- Department of Rheumatology, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands; (A.H.M.v.d.H.-v.M.); (T.W.J.H.)
| | - Tom W. J. Huizinga
- Department of Rheumatology, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands; (A.H.M.v.d.H.-v.M.); (T.W.J.H.)
| | - Jan C. Grutters
- Interstitial Lung Diseases Centre of Excellence, St. Antonius Hospital, P.O. Box 2500, 3430 EM Nieuwegein, The Netherlands; (C.H.M.v.M.); (M.V.); (C.R.-B.); (J.C.G.)
- Division of Heart & Lungs, University Medical Center Utrecht, P.O. Box 85500, 3508 GA Utrecht, The Netherlands;
| | - Ger T. Rijkers
- Department of Science, University College Roosevelt, P.O. Box 94, 4330 AB Middelburg, The Netherlands;
| |
Collapse
|
13
|
Nilchian A, Plant E, Parniewska MM, Santiago A, Rossignoli A, Skogsberg J, Hedin U, Matic L, Fuxe J. Induction of the Coxsackievirus and Adenovirus Receptor in Macrophages During the Formation of Atherosclerotic Plaques. J Infect Dis 2021; 222:2041-2051. [PMID: 32852032 PMCID: PMC7661765 DOI: 10.1093/infdis/jiaa418] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/07/2020] [Indexed: 11/14/2022] Open
Abstract
Multiple viruses are implicated in atherosclerosis, but the mechanisms by which they infect cells and contribute to plaque formation in arterial walls are not well understood. Based on reports showing the presence of enterovirus in atherosclerotic plaques we hypothesized that the coxsackievirus and adenovirus receptor (CXADR/CAR), although absent in normal arteries, could be induced during plaque formation. Large-scale microarray and mass spectrometric analyses revealed significant up-regulation of CXADR messenger RNA and protein levels in plaque-invested carotid arteries compared with control arteries. Macrophages were identified as a previously unknown cellular source of CXADR in human plaques and plaques from Ldr-/-Apob100/100 mice. CXADR was specifically associated with M1-polarized macrophages and foam cells and was experimentally induced during macrophage differentiation. Furthermore, it was significantly correlated with receptors for other viruses linked to atherosclerosis. The results show that CXADR is induced in macrophages during plaque formation, suggesting a mechanism by which enterovirus infect cells in atherosclerotic plaques.
Collapse
Affiliation(s)
- Azadeh Nilchian
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet and Karolinska University Hospital Huddinge, Stockholm, Sweden.,Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Estelle Plant
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Malgorzata M Parniewska
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet and Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Ana Santiago
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Aránzazu Rossignoli
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Josefin Skogsberg
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Ulf Hedin
- Department of Molecular Medicine and Surgery, Karolinska Institutet and Karolinska University Hospital Solna, Stockholm, Sweden
| | - Ljubica Matic
- Department of Molecular Medicine and Surgery, Karolinska Institutet and Karolinska University Hospital Solna, Stockholm, Sweden
| | - Jonas Fuxe
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet and Karolinska University Hospital Huddinge, Stockholm, Sweden.,Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
14
|
Ping S, Qiu X, Kyle M, Zhao LR. Brain-derived CCR5 Contributes to Neuroprotection and Brain Repair after Experimental Stroke. Aging Dis 2021; 12:72-92. [PMID: 33532129 PMCID: PMC7801286 DOI: 10.14336/ad.2020.0406] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 04/06/2020] [Indexed: 02/04/2023] Open
Abstract
Chemokine (C-C motif) receptor 5 (CCR5) is expressed not only in the immune cells but also in cerebral cells such as neurons, glia, and vascular cells. Stroke triggers high expression of CCR5 in the brain. However, the role of CCR5 in stroke remains unclear. In this study, using bone marrow chimeras we have determined the involvement of brain-derived or bone marrow-derived CCR5 in neuroprotection and brain repair after experimental stroke. CCR5-/- mice that received either wild-type (WT) or CCR5-/- bone marrow transplantation showed larger infarction sizes than the WT mice that received either WT or CCR5-/- bone marrow transplantation in both the acute (48h) and subacute (2 months) phases after cerebral cortical ischemia, suggesting that the lack of CCR5 in the brain leads to severe brain damage after stroke. However, the lack of CCR5 in the bone marrow-derived cells did not affect infarction size. The impairments of somatosensory-motor function and motor coordination were exacerbated in the mice lacking CCR5 in the brain. At 2 months post-stroke, increased degenerative neurons, decreased dendrites and synapses, decreased Iba1+ microglia/ macrophages, reduced myelination and CNPase+ oligodendrocytes in the peri-infarct cortex were observed in the mice lacking CCR5 in the brain. These pathological changes are significantly correlated with the increased infarction size and exacerbated neurological deficits. These data suggest that brain-derived CCR5 plays a key role in neuroprotection and brain repair in the subacute phase of stroke. This study reveals a novel role of CCR5 in stroke, which sheds new light on post-stroke pathomechanism.
Collapse
Affiliation(s)
- Suning Ping
- Department of Neurosurgery, State University of New York Upstate Medical University, New York, USA
| | - Xuecheng Qiu
- Department of Neurosurgery, State University of New York Upstate Medical University, New York, USA
| | - Michele Kyle
- Department of Neurosurgery, State University of New York Upstate Medical University, New York, USA
| | - Li-Ru Zhao
- Department of Neurosurgery, State University of New York Upstate Medical University, New York, USA
| |
Collapse
|
15
|
Weber G, Strocchio L, Del Bufalo F, Algeri M, Pagliara D, Arnone CM, De Angelis B, Quintarelli C, Locatelli F, Merli P, Caruana I. Identification of New Soluble Factors Correlated With the Development of Graft Failure After Haploidentical Hematopoietic Stem Cell Transplantation. Front Immunol 2021; 11:613644. [PMID: 33584698 PMCID: PMC7878541 DOI: 10.3389/fimmu.2020.613644] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/14/2020] [Indexed: 11/13/2022] Open
Abstract
Graft failure is a severe complication of allogeneic hematopoietic stem cell transplantation (HSCT). The mechanisms involved in this phenomenon are still not completely understood; data available suggest that recipient T lymphocytes surviving the conditioning regimen are the main mediators of immune-mediated graft failure. So far, no predictive marker or early detection method is available. In order to identify a non-invasive and efficient strategy to diagnose this complication, as well as to find possible targets to prevent/treat it, we performed a detailed analysis of serum of eight patients experiencing graft failure after T-cell depleted HLA-haploidentical HSCT. In this study, we confirm data describing graft failure to be a complex phenomenon involving different components of the immune system, mainly driven by the IFNγ pathway. We observed a significant modulation of IL7, IL8, IL18, IL27, CCL2, CCL5 (Rantes), CCL7, CCL20 (MIP3a), CCL24 (Eotaxin2), and CXCL11 in patients experiencing graft failure, as compared to matched patients not developing this complication. For some of these factors, the difference was already present at the time of infusion of the graft, thus allowing early risk stratification. Moreover, these cytokines/chemokines could represent possible targets, providing the rationale for exploring new therapeutic/preventive strategies.
Collapse
Affiliation(s)
- Gerrit Weber
- Department of Pediatric Hematology/Oncology, Cell and Gene Therapy, Scientific Institute for Research and Healthcare (IRCCS), Bambino Gesù Childrens' Hospital, Rome, Italy
| | - Luisa Strocchio
- Department of Pediatric Hematology/Oncology, Cell and Gene Therapy, Scientific Institute for Research and Healthcare (IRCCS), Bambino Gesù Childrens' Hospital, Rome, Italy
| | - Francesca Del Bufalo
- Department of Pediatric Hematology/Oncology, Cell and Gene Therapy, Scientific Institute for Research and Healthcare (IRCCS), Bambino Gesù Childrens' Hospital, Rome, Italy
| | - Mattia Algeri
- Department of Pediatric Hematology/Oncology, Cell and Gene Therapy, Scientific Institute for Research and Healthcare (IRCCS), Bambino Gesù Childrens' Hospital, Rome, Italy
| | - Daria Pagliara
- Department of Pediatric Hematology/Oncology, Cell and Gene Therapy, Scientific Institute for Research and Healthcare (IRCCS), Bambino Gesù Childrens' Hospital, Rome, Italy
| | - Claudia Manuela Arnone
- Department of Pediatric Hematology/Oncology, Cell and Gene Therapy, Scientific Institute for Research and Healthcare (IRCCS), Bambino Gesù Childrens' Hospital, Rome, Italy
| | - Biagio De Angelis
- Department of Pediatric Hematology/Oncology, Cell and Gene Therapy, Scientific Institute for Research and Healthcare (IRCCS), Bambino Gesù Childrens' Hospital, Rome, Italy
| | - Concetta Quintarelli
- Department of Pediatric Hematology/Oncology, Cell and Gene Therapy, Scientific Institute for Research and Healthcare (IRCCS), Bambino Gesù Childrens' Hospital, Rome, Italy
| | - Franco Locatelli
- Department of Pediatric Hematology/Oncology, Cell and Gene Therapy, Scientific Institute for Research and Healthcare (IRCCS), Bambino Gesù Childrens' Hospital, Rome, Italy.,Sapienza, University of Rome, Rome, Italy
| | - Pietro Merli
- Department of Pediatric Hematology/Oncology, Cell and Gene Therapy, Scientific Institute for Research and Healthcare (IRCCS), Bambino Gesù Childrens' Hospital, Rome, Italy
| | - Ignazio Caruana
- Department of Pediatric Hematology/Oncology, Cell and Gene Therapy, Scientific Institute for Research and Healthcare (IRCCS), Bambino Gesù Childrens' Hospital, Rome, Italy
| |
Collapse
|
16
|
Petrina M, Martin J, Basta S. Granulocyte macrophage colony-stimulating factor has come of age: From a vaccine adjuvant to antiviral immunotherapy. Cytokine Growth Factor Rev 2021; 59:101-110. [PMID: 33593661 PMCID: PMC8064670 DOI: 10.1016/j.cytogfr.2021.01.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/28/2020] [Accepted: 01/04/2021] [Indexed: 12/19/2022]
Abstract
GM-CSF acts as a pro-inflammatory cytokine and a key growth factor produced by several immune cells such as macrophages and activated T cells. In this review, we discuss recent studies that point to the crucial role of GM-CSF in the immune response against infections. Upon induction, GM-CSF activates four main signalling networks including the JAK/STAT, PI3K, MAPK, and NFκB pathways. Many of these transduction pathways such as JAK/STAT signal via proteins commonly activated with other antiviral signalling cascades, such as those induced by IFNs. GM-CSF also helps defend against respiratory infections by regulating alveolar macrophage differentiation and enhancing innate immunity in the lungs. Here, we also summarize the numerous clinical trials that have taken advantage of GM-CSF's mechanistic attributes in immunotherapy. Moreover, we discuss how GM-CSF is used as an adjuvant in vaccines and how its activity is interfered with to reduce inflammation such as in the case of COVID-19. This review brings forth the current knowledge on the antiviral actions of GM-CSF, the associated signalling cascades, and its application in immunotherapy.
Collapse
Affiliation(s)
- Maria Petrina
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada
| | - Jacqueline Martin
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada
| | - Sameh Basta
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada.
| |
Collapse
|
17
|
Becerra-Díaz M, Lerner AD, Yu DH, Thiboutot JP, Liu MC, Yarmus LB, Bose S, Heller NM. Sex differences in M2 polarization, chemokine and IL-4 receptors in monocytes and macrophages from asthmatics. Cell Immunol 2020; 360:104252. [PMID: 33450610 DOI: 10.1016/j.cellimm.2020.104252] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/08/2020] [Accepted: 11/10/2020] [Indexed: 12/27/2022]
Abstract
Allergic asthma affects more women than men. It is mediated partially by IL-4/IL-13-driven polarization of monocyte-derived macrophages in the lung. We tested whether sex differences in asthma are due to differential IL-4 responsiveness and/or chemokine receptor expression in monocytes and monocyte-derived macrophages from healthy and allergic asthmatic men and women. We found female cells expressed M2 genes more robustly following IL-4 stimulation than male cells, as did cells from asthmatics than those from healthy controls. This likely resulted from increased expression ofγC, part of the type I IL-4 receptor, and reduced IL-4-induced SOCS1, a negative regulator of IL-4 signaling, in asthmatic compared to healthy macrophages. Monocytes from asthmatic women expressed more CX3CR1, which enhances macrophage survival. Our findings highlight how sex differences in IL-4 responsiveness and chemokine receptor expression may affect monocyte recruitment and macrophage polarization in asthma, potentially leading to new sex-specific therapies to manage the disease.
Collapse
Affiliation(s)
- Mireya Becerra-Díaz
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
| | - Andrew D Lerner
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; Department of Pulmonary and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
| | - Diana H Yu
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; Department of Pulmonary and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
| | - Jeffrey P Thiboutot
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; Department of Pulmonary and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
| | - Mark C Liu
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; Department of Pulmonary and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
| | - Lonny B Yarmus
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; Department of Pulmonary and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
| | - Sonali Bose
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; Department of Pulmonary and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
| | - Nicola M Heller
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; Allergy and Clinical Immunology, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
18
|
Yang X, Chatterjee V, Ma Y, Zheng E, Yuan SY. Protein Palmitoylation in Leukocyte Signaling and Function. Front Cell Dev Biol 2020; 8:600368. [PMID: 33195285 PMCID: PMC7655920 DOI: 10.3389/fcell.2020.600368] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 09/30/2020] [Indexed: 12/12/2022] Open
Abstract
Palmitoylation is a post-translational modification (PTM) based on thioester-linkage between palmitic acid and the cysteine residue of a protein. This covalent attachment of palmitate is reversibly and dynamically regulated by two opposing sets of enzymes: palmitoyl acyltransferases containing a zinc finger aspartate-histidine-histidine-cysteine motif (PAT-DHHCs) and thioesterases. The reversible nature of palmitoylation enables fine-tuned regulation of protein conformation, stability, and ability to interact with other proteins. More importantly, the proper function of many surface receptors and signaling proteins requires palmitoylation-meditated partitioning into lipid rafts. A growing number of leukocyte proteins have been reported to undergo palmitoylation, including cytokine/chemokine receptors, adhesion molecules, pattern recognition receptors, scavenger receptors, T cell co-receptors, transmembrane adaptor proteins, and signaling effectors including the Src family of protein kinases. This review provides the latest findings of palmitoylated proteins in leukocytes and focuses on the functional impact of palmitoylation in leukocyte function related to adhesion, transmigration, chemotaxis, phagocytosis, pathogen recognition, signaling activation, cytotoxicity, and cytokine production.
Collapse
Affiliation(s)
- Xiaoyuan Yang
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Victor Chatterjee
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Yonggang Ma
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Ethan Zheng
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Sarah Y Yuan
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States.,Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| |
Collapse
|
19
|
Early Antiretroviral Therapy Prevents Viral Infection of Monocytes and Inflammation in Simian Immunodeficiency Virus-Infected Rhesus Macaques. J Virol 2020; 94:JVI.01478-20. [PMID: 32907978 DOI: 10.1128/jvi.01478-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/02/2020] [Indexed: 12/28/2022] Open
Abstract
Despite early antiretroviral therapy (ART), treatment interruption is associated with viral rebound, indicating early viral reservoir (VR) seeding and absence of full eradication of human immunodeficiency virus type 1 (HIV-1) that may persist in tissues. Herein, we address the contributing role of monocytes in maintaining VRs under ART, since these cells may represent a source of viral dissemination due to their ability to replenish mucosal tissues in response to injury. To this aim, monocytes with classical (CD14+), intermediate (CD14+ CD16+), and nonclassical (CD16+) phenotypes and CD4+ T cells were sorted from the blood, spleen, and intestines of untreated and early-ART-treated simian immunodeficiency virus (SIV)-infected rhesus macaques (RMs) before and after ART interruption. Cell-associated SIV DNA and RNA were quantified. We demonstrated that in the absence of ART, monocytes were productively infected with replication-competent SIV, especially in the spleen. Reciprocally, early ART efficiently (i) prevented the establishment of monocyte VRs in the blood, spleen, and intestines and (ii) reduced systemic inflammation, as indicated by changes in interleukin-18 (IL-18) and IL-1 receptor antagonist (IL-1Ra) plasma levels. ART interruption was associated with a rebound in viremia that led to the rapid productive infection of both CD4+ T cells and monocytes. Altogether, our results reveal the benefits of early ART initiation in limiting the contribution of monocytes to VRs and SIV-associated inflammation.IMPORTANCE Despite the administration of antiretroviral therapy (ART), HIV persists in treated individuals and ART interruption is associated with viral rebound. Persistent chronic immune activation and inflammation contribute to disease morbidity. Whereas monocytes are infected by HIV/SIV, their role as viral reservoirs (VRs) in visceral tissues has been poorly explored. Our work demonstrates that monocyte cell subsets in the blood, spleen, and intestines do not significantly contribute to the establishment of early VRs in SIV-infected rhesus macaques treated with ART. By preventing the infection of these cells, early ART reduces systemic inflammation. However, following ART interruption, monocytes are rapidly reinfected. Altogether, our findings shed new light on the benefits of early ART initiation in limiting VR and inflammation.
Collapse
|
20
|
Nenasheva T, Gerasimova T, Serdyuk Y, Grigor'eva E, Kosmiadi G, Nikolaev A, Dashinimaev E, Lyadova I. Macrophages Derived From Human Induced Pluripotent Stem Cells Are Low-Activated "Naïve-Like" Cells Capable of Restricting Mycobacteria Growth. Front Immunol 2020; 11:1016. [PMID: 32582159 PMCID: PMC7287118 DOI: 10.3389/fimmu.2020.01016] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 04/28/2020] [Indexed: 12/17/2022] Open
Abstract
In peripheral tissues, immune protection critically depends on the activity of tissue resident macrophages, which makes our understanding of the biology of these cells of great significance. Until recently, human macrophage studies were largely based on the analysis of monocyte-derived macrophages that differ from tissue resident macrophages by many characteristics. To model tissue resident macrophages, methods of generating macrophages from pluripotent stem cells have been developed. However, the immunological properties of macrophages derived from pluripotent stem cells remain under-investigated. In this study, we aimed to perform the multifarious immunological characteristics of macrophages generated from human induced pluripotent stem cells (iMϕs), including an analysis of their phenotype, secretory and antibacterial activities, as well as their comparison with macrophages derived from blood monocytes and infected lung tissue. We report that iMϕs displayed the morphology and the CD11b+CD45+CD14+ phenotype typical for mononuclear phagocytes. The cells co-expressed markers known to be associated with classically (CD80, CD86, CCR5) and alternatively (CD163 and CD206) activated macrophages, with a bias toward a higher expression of the latter. iMϕs secreted pro-inflammatory (IL-6, CXCL8, CCL2, CCL4, CXCL1, CXCL10) and anti-inflammatory (IL-10, IL-1RA, CCL22) cytokines with a high IL-10/IL-12p70 index (>20). iMϕs were phagocytic and restricted Mycobacterium tuberculosis growth in vitro by >75%. iMϕs differed from blood monocytes/macrophages by a lower expression level of HLA-DR and the CD14+CD16int phenotype and shared several phenotypic characteristics with lung macrophages. In response to LPS, iMϕs up-regulated HLA-DR and produced TNF-α. IFN-γ increased iMϕ reactivity to LPS, but did not increase iMϕ mycobactericidal capacity. The results characterize iMϕs as differentiated but low-activated/low-polarized “naïve-like” macrophages that are capable of mounting inflammatory and antibacterial responses when exposed to inflammatory stimuli or pathogens. iMϕs represent a valuable model for studying antibacterial responses of tissue resident macrophages and for developing approaches to modulating macrophage activity.
Collapse
Affiliation(s)
- Tatiana Nenasheva
- Laboratory of Cellular and Molecular Basis of Histogenesis, Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia.,Laboratory of Biotechnology, Department of Immunology, Central Tuberculosis Research Institute, Moscow, Russia
| | - Tatiana Gerasimova
- Laboratory of Cellular and Molecular Basis of Histogenesis, Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia
| | - Yana Serdyuk
- Laboratory of Cellular and Molecular Basis of Histogenesis, Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia.,Laboratory of Biotechnology, Department of Immunology, Central Tuberculosis Research Institute, Moscow, Russia
| | - Elena Grigor'eva
- Laboratory of Developmental Epigenetics, Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - George Kosmiadi
- Laboratory of Biotechnology, Department of Immunology, Central Tuberculosis Research Institute, Moscow, Russia
| | - Alexander Nikolaev
- Laboratory of Biotechnology, Department of Immunology, Central Tuberculosis Research Institute, Moscow, Russia
| | - Erdem Dashinimaev
- Center for Genome Technologies, Pirogov Russian National Research Medical University, Moscow, Russia.,Laboratory of Cell Biology, Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia
| | - Irina Lyadova
- Laboratory of Cellular and Molecular Basis of Histogenesis, Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia.,Laboratory of Biotechnology, Department of Immunology, Central Tuberculosis Research Institute, Moscow, Russia
| |
Collapse
|
21
|
Abstract
PURPOSE OF REVIEW HIV-1 infection is incurable due to the existence of latent reservoirs that persist in the face of cART. In this review, we describe the existence of multiple HIV-1 reservoirs, the mechanisms that support their persistence, and the potential use of tyrosine kinase inhibitors (TKIs) to block several pathogenic processes secondary to HIV-1 infection. RECENT FINDINGS Dasatinib interferes in vitro with HIV-1 persistence by two independent mechanisms. First, dasatinib blocks infection and potential expansion of the latent reservoir by interfering with the inactivating phosphorylation of SAMHD1. Secondly, dasatinib inhibits the homeostatic proliferation induced by γc-cytokines. Since homeostatic proliferation is thought to be the main mechanism behind the maintenance of the latent reservoir, we propose that blocking this process will gradually reduce the size of the reservoir. TKIs together with cART will interfere with HIV-1 latent reservoir persistence, favoring the prospect for viral eradication.
Collapse
|
22
|
Elemam NM, Hannawi S, Maghazachi AA. Role of Chemokines and Chemokine Receptors in Rheumatoid Arthritis. Immunotargets Ther 2020; 9:43-56. [PMID: 32211348 PMCID: PMC7074856 DOI: 10.2147/itt.s243636] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 02/28/2020] [Indexed: 12/28/2022] Open
Abstract
Rheumatoid arthritis (RA) is one of the most prevalent autoimmune diseases and a prototypic inflammatory disease, affecting the small joints of the hands and feet. Chemokines and chemokine receptors play a critical role in RA pathogenesis via immune cells recruitment. Several chemokines and chemokine receptors are abundant in the peripheral blood and in the local inflamed joints of RA. Furthermore, synthetic and biologics disease modifying anti rheumatic drugs have been reported to affect chemokines expression. Thus, many studies have focused on targeting chemokines and chemokine receptors, where some have shown positive promising results. However, most of the chemokine blockers in human trials of RA treatment displayed some failures that can be attributed to several reasons in their structures and binding affinities. Nevertheless, targeting chemokines will continue to be under development, in order to improve their therapeutic potentials in RA and other autoimmune diseases. In this review we provide an up-to-date knowledge regarding the role of chemokines and chemokine receptors in RA with an emphasis on their activities on immune cells. We also discussed the effects of drugs targeting those molecules in RA. This knowledge might provide impetus for developing new therapeutic modalities to treat this chronic disease.
Collapse
Affiliation(s)
- Noha Mousaad Elemam
- College of Medicine and Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Suad Hannawi
- Ministry of Health and Prevention, Department of Rheumatology, Dubai, United Arab Emirates
| | - Azzam A Maghazachi
- College of Medicine and Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
23
|
Extracellular Vesicles from Human Papilloma Virus-Infected Cervical Cancer Cells Enhance HIV-1 Replication in Differentiated U1 Cell Line. Viruses 2020; 12:v12020239. [PMID: 32098055 PMCID: PMC7077309 DOI: 10.3390/v12020239] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/11/2020] [Accepted: 02/18/2020] [Indexed: 02/07/2023] Open
Abstract
In the current study, we hypothesized that extracellular vesicles (EVs) secreted from human papilloma virus (HPV)-infected cervical cancer cells exacerbate human immunodeficiency virus (HIV)-1 replication in differentiated U1 cell line through an oxidative stress pathway. To test the hypothesis, we treated an HIV-1-infected macrophage cell line (U1) with HPV-infected Caski cell culture supernatant (CCS). We observed a significant increase in HIV-1 replication, which was associated with an increase in the expression of cytochrome P450 (CYPs 1A1 and 2A6) in the CCS-treated U1 cells. Furthermore, we isolated EVs from CCS (CCS-EVs), which showed the presence of CYPs (1A1, 2A6), superoxide dismutase 1 (SOD1), and HPV oncoproteins HPV16 E6. CCS-EVs when exposed to the U1 cells also significantly increased HIV-1 replication. Treatment of antioxidant, CYP1A1 and CYP2A6 inhibitors, and chemodietary agents with antioxidant properties significantly reduced the CCS and CCS-EVs mediated HIV-1 replication in U1 cells. Altogether, we demonstrate that cervical cancer cells exacerbate HIV-1 replication in differentiated U1 cell line via transferring CYPs and HPV oncoproteins through EVs. We also show that the viral replication occurs via CYP and oxidative stress pathways, and the viral replication is also reduced by chemodietary agents. This study provides important information regarding biological interactions between HPV and HIV-1 via EVs leading to enhanced HIV-1 replication.
Collapse
|
24
|
Abstract
We demonstrate that HIV-1 uses a common two-step cell-to-cell fusion mechanism for massive virus transfer from infected T lymphocytes and dissemination to myeloid target cells, including dendritic cells and macrophages as well as osteoclasts. This cell-to-cell infection process bypasses the restriction imposed by the SAMHD1 host cell restriction factor for HIV-1 replication, leading to the formation of highly virus-productive multinucleated giant cells as observed in vivo in lymphoid and nonlymphoid tissues of HIV-1-infected patients. Since myeloid cells are emerging as important target cells of HIV-1, these results contribute to a better understanding of the role of these myeloid cells in pathogenesis, including cell-associated virus sexual transmission, cell-to-cell virus spreading, and establishment of long-lived viral tissue reservoirs. Dendritic cells (DCs) and macrophages as well as osteoclasts (OCs) are emerging as target cells of HIV-1 involved in virus transmission, dissemination, and establishment of persistent tissue virus reservoirs. While these myeloid cells are poorly infected by cell-free viruses because of the high expression levels of cellular restriction factors such as SAMHD1, we show here that HIV-1 uses a specific and common cell-to-cell fusion mechanism for virus transfer and dissemination from infected T lymphocytes to the target cells of the myeloid lineage, including immature DCs (iDCs), OCs, and macrophages, but not monocytes and mature DCs. The establishment of contacts with infected T cells leads to heterotypic cell fusion for the fast and massive transfer of viral material into OC and iDC targets, which subsequently triggers homotypic fusion with noninfected neighboring OCs and iDCs for virus dissemination. These two cell-to-cell fusion processes are not restricted by SAMHD1 and allow very efficient spreading of virus in myeloid cells, resulting in the formation of highly virus-productive multinucleated giant cells. These results reveal the cellular mechanism for SAMHD1-independent cell-to-cell spreading of HIV-1 in myeloid cell targets through the formation of the infected multinucleated giant cells observed in vivo in lymphoid and nonlymphoid tissues of HIV-1-infected patients.
Collapse
|
25
|
Dhanda AD, Williams EL, Yates E, Lait PJP, Schewitz-Bowers LP, Hegazy D, Cramp ME, Collins PL, Lee RWJ. Intermediate Monocytes in Acute Alcoholic Hepatitis Are Functionally Activated and Induce IL-17 Expression in CD4 + T Cells. THE JOURNAL OF IMMUNOLOGY 2019; 203:3190-3198. [PMID: 31722987 DOI: 10.4049/jimmunol.1800742] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 10/21/2019] [Indexed: 12/15/2022]
Abstract
In humans, the three main circulating monocyte subsets are defined by their relative cell surface expression of CD14 and CD16. They are all challenging to study because their characteristics are strongly context specific, and this has led to a range of conflicting reports about their function, which is especially so for CD14++CD16+ (intermediate) monocytes. Ex vivo cultures are also often confounded by the concomitant use of immunosuppressive drugs. We therefore sought to characterize the phenotype and function of intermediate monocytes in the setting of acute inflammation prior to treatment in a cohort of 41 patients with acute alcoholic hepatitis (AH). Circulating intermediate monocytes were enriched in patients with AH and had an activated phenotype with enhanced expression of CCR2 and CD206 compared with healthy controls. Proinflammatory cytokine expression, including IL-1β and IL-23, was also higher than in healthy controls, but both classical (CD14++CD16-) and intermediate monocytes in AH were refractory to TLR stimulation. Compared with healthy controls, both AH monocyte subsets had greater phagocytic capacity, enhanced ability to drive memory T cell proliferation in coculture, and skewed CD4+ T cells to express an increased ratio of IL-17/IFN-γ. Furthermore, liver tissue from AH patients demonstrated an enrichment of monocytes including the intermediate subset compared with controls. These data demonstrate that intermediate monocytes are expanded, functionally activated, induce CD4+ T cell IL-17 expression, and are enriched in the liver of patients with AH.
Collapse
Affiliation(s)
- Ashwin D Dhanda
- Institute of Translational and Stratified Medicine, Faculty of Medicine and Dentistry, University of Plymouth, Plymouth PL6 8BU, United Kingdom; .,South West Liver Unit, Derriford Hospital, University Hospitals Plymouth National Health Service Trust, Plymouth PL6 8DH, United Kingdom.,Department of Liver Medicine, University Hospitals Bristol National Health Service Foundation Trust, Bristol BS1 3NU, United Kingdom; and
| | - Emily L Williams
- Translational Health Sciences, Faculty of Health Sciences, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Euan Yates
- Institute of Translational and Stratified Medicine, Faculty of Medicine and Dentistry, University of Plymouth, Plymouth PL6 8BU, United Kingdom
| | - Philippa J P Lait
- Translational Health Sciences, Faculty of Health Sciences, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Lauren P Schewitz-Bowers
- Translational Health Sciences, Faculty of Health Sciences, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Doha Hegazy
- Institute of Translational and Stratified Medicine, Faculty of Medicine and Dentistry, University of Plymouth, Plymouth PL6 8BU, United Kingdom
| | - Matthew E Cramp
- Institute of Translational and Stratified Medicine, Faculty of Medicine and Dentistry, University of Plymouth, Plymouth PL6 8BU, United Kingdom.,South West Liver Unit, Derriford Hospital, University Hospitals Plymouth National Health Service Trust, Plymouth PL6 8DH, United Kingdom
| | - Peter L Collins
- Department of Liver Medicine, University Hospitals Bristol National Health Service Foundation Trust, Bristol BS1 3NU, United Kingdom; and
| | - Richard W J Lee
- Translational Health Sciences, Faculty of Health Sciences, University of Bristol, Bristol BS8 1TD, United Kingdom
| |
Collapse
|
26
|
Manoharan P, Song T, Radzyukevich TL, Sadayappan S, Lingrel JB, Heiny JA. KLF2 in Myeloid Lineage Cells Regulates the Innate Immune Response during Skeletal Muscle Injury and Regeneration. iScience 2019; 17:334-346. [PMID: 31326700 PMCID: PMC6652133 DOI: 10.1016/j.isci.2019.07.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 05/10/2019] [Accepted: 07/03/2019] [Indexed: 11/18/2022] Open
Abstract
Skeletal muscle repair and regeneration after injury requires coordinated interactions between the innate immune system and the injured muscle. Myeloid cells predominate in these interactions. This study examined the role of KLF2, a zinc-finger transcription factor that regulates immune cell activation, in specifying myeloid cell functions during muscle regeneration. Loss of KLF2 in myeloid lineage cells (myeKlf2-/- mice) dramatically enhanced the initial inflammatory response to acute muscle injury (cardiotoxin). Injured muscles showed dramatically elevated expression of inflammatory mediators and greater numbers of infiltrating, pro-inflammatory monocytes that matured earlier into activated macrophages. Notably, the inflammatory phase resolved earlier and regeneration progressed to myogenesis, marked by elevated expression of factors that promote the formation of new fibers from satellite cells. Regeneration was completed earlier, with phenotypically normal adult fibers integrated into the muscle syncytium. These findings identify myeloid KLF2 as a key regulator of myeloid cell functions in adult skeletal muscle regeneration.
Collapse
Affiliation(s)
- Palanikumar Manoharan
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, College of Medicine, Cincinnati, OH 45267, USA.
| | - Taejeong Song
- Department of Internal Medicine, Heart, Lung and Vascular Institute, University of Cincinnati, College of Medicine, Cincinnati, OH 45267, USA
| | - Tatiana L Radzyukevich
- Department of Pharmacology and Systems Physiology, University of Cincinnati, College of Medicine, Cincinnati, OH 45267, USA
| | - Sakthivel Sadayappan
- Department of Internal Medicine, Heart, Lung and Vascular Institute, University of Cincinnati, College of Medicine, Cincinnati, OH 45267, USA
| | - Jerry B Lingrel
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, College of Medicine, Cincinnati, OH 45267, USA
| | - Judith A Heiny
- Department of Pharmacology and Systems Physiology, University of Cincinnati, College of Medicine, Cincinnati, OH 45267, USA.
| |
Collapse
|
27
|
O'Connell P, Zheng YH, Amalfitano A, Aldhamen YA. In vitro Infection of Primary Human Monocytes with HIV-1. Bio Protoc 2019; 9:e3289. [PMID: 32002449 PMCID: PMC6990407 DOI: 10.21769/bioprotoc.3289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Monocyte infection by HIV-1 is an important component of chronic HIV pathogenesis. Following infection by HIV-1, monocytes are able to cross the blood brain barrier and set up a viral reservoir in the central nervous system. Additionally, in the setting of chronic HIV-1 infection, monocytes can become activated either directly through HIV-1 infection or indirectly via HIV-1-mediated systemic immune activation. Currently, there are few studies looking at HIV-1 infection of primary human monocytes in vitro. Furthermore, detection of successful HIV-1 infection of monocytes can be laborious requiring an ELISA for p24 or assessing levels of HIV-1 mRNA or DNA. This protocol utilizes an HIV-1 strain expressing GFP to allow for easy quantification of HIV-1 infection by fluorescence-assisted cell sorting (FACS). By determining HIV-1 infection by FACS one can take advantage of its multiparametric nature allowing for the use of less cells and the ability to assess the expression of other markers on HIV-1+ and HIV-1- cells in the same experiment. Additionally, this protocol could be modified to study HIV-1 infection of other cells including CD4+ T cells.
Collapse
Affiliation(s)
- Patrick O'Connell
- Department of Microbiology and Molecular Genetics, College of Osteopathic Medicine, Michigan State University, East Lansing, USA
| | - Yong-Hui Zheng
- Department of Microbiology and Molecular Genetics, College of Osteopathic Medicine, Michigan State University, East Lansing, USA
| | - Andrea Amalfitano
- Department of Microbiology and Molecular Genetics, College of Osteopathic Medicine, Michigan State University, East Lansing, USA.,Department of Pediatrics, College of Osteopathic Medicine, Michigan State University, East Lansing, USA
| | - Yasser A Aldhamen
- Department of Microbiology and Molecular Genetics, College of Osteopathic Medicine, Michigan State University, East Lansing, USA
| |
Collapse
|
28
|
O'Connell P, Pepelyayeva Y, Blake MK, Hyslop S, Crawford RB, Rizzo MD, Pereira-Hicks C, Godbehere S, Dale L, Gulick P, Kaminski NE, Amalfitano A, Aldhamen YA. SLAMF7 Is a Critical Negative Regulator of IFN-α-Mediated CXCL10 Production in Chronic HIV Infection. THE JOURNAL OF IMMUNOLOGY 2018; 202:228-238. [PMID: 30530590 DOI: 10.4049/jimmunol.1800847] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 10/30/2018] [Indexed: 01/17/2023]
Abstract
Current advances in combined antiretroviral therapy have rendered HIV infection a chronic, manageable disease; however, the problem of persistent immune activation still remains despite treatment. The immune cell receptor SLAMF7 has been shown to be upregulated in diseases characterized by chronic immune activation. In this study, we studied the function of the SLAMF7 receptor in immune cells of HIV patients and the impacts of SLAMF7 signaling on peripheral immune activation. We observed increased frequencies of SLAMF7+ PBMCs in HIV+ individuals in a clinical phenotype-dependent manner, with discordant and long-term nonprogressor patients showing elevated SLAMF7 levels, and elite controllers showing levels comparable to healthy controls. We also noted that SLAMF7 was sensitive to IFN-⍺ stimulation, a factor elevated during HIV infection. Further studies revealed SLAMF7 to be a potent inhibitor of the monocyte-derived proinflammatory chemokine CXCL10 (IP-10) and other CXCR3 ligands, except in a subset of HIV+ patients termed SLAMF7 silent (SF7S). Studies utilizing small molecule inhibitors revealed that the mechanism of CXCL10 inhibition is independent of known SLAMF7 binding partners. Furthermore, we determined that SLAMF7 activation on monocytes is able to decrease their susceptibility to HIV-1 infection in vitro via downregulation of CCR5 and upregulation of the CCL3L1 chemokine. Finally, we discovered that neutrophils do not express SLAMF7, are CXCL10+ at baseline, are able to secrete CXCL10 in response to IFN-⍺ and LPS, and are nonresponsive to SLAMF7 signaling. These findings implicate the SLAMF7 receptor as an important regulator of IFN-⍺-driven innate immune responses during HIV infection.
Collapse
Affiliation(s)
- Patrick O'Connell
- Department of Microbiology and Molecular Genetics, College of Osteopathic Medicine, Michigan State University, East Lansing, MI 48824
| | - Yuliya Pepelyayeva
- Department of Microbiology and Molecular Genetics, College of Osteopathic Medicine, Michigan State University, East Lansing, MI 48824
| | - Maja K Blake
- Department of Microbiology and Molecular Genetics, College of Osteopathic Medicine, Michigan State University, East Lansing, MI 48824
| | - Sean Hyslop
- Department of Microbiology and Molecular Genetics, College of Osteopathic Medicine, Michigan State University, East Lansing, MI 48824
| | - Robert B Crawford
- Center for Integrative Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI 48824
| | - Michael D Rizzo
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI 48824
| | - Cristiane Pereira-Hicks
- Department of Microbiology and Molecular Genetics, College of Osteopathic Medicine, Michigan State University, East Lansing, MI 48824
| | - Sarah Godbehere
- Department of Microbiology and Molecular Genetics, College of Osteopathic Medicine, Michigan State University, East Lansing, MI 48824
| | - Linda Dale
- Department of Osteopathic Medical Specialties, College of Osteopathic Medicine, Michigan State University, East Lansing, MI 48824
| | - Peter Gulick
- Department of Osteopathic Medical Specialties, College of Osteopathic Medicine, Michigan State University, East Lansing, MI 48824
| | - Norbert E Kaminski
- Center for Integrative Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI 48824.,Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI 48824
| | - Andrea Amalfitano
- Department of Microbiology and Molecular Genetics, College of Osteopathic Medicine, Michigan State University, East Lansing, MI 48824.,Department of Pediatrics, College of Osteopathic Medicine, Michigan State University, East Lansing, MI 48824; and
| | - Yasser A Aldhamen
- Department of Microbiology and Molecular Genetics, College of Osteopathic Medicine, Michigan State University, East Lansing, MI 48824; .,College of Osteopathic Medicine, Michigan State University, East Lansing, MI 48824
| |
Collapse
|
29
|
Kullaya V, van der Ven A, Mpagama S, Mmbaga BT, de Groot P, Kibiki G, de Mast Q. Platelet-monocyte interaction in Mycobacterium tuberculosis infection. Tuberculosis (Edinb) 2018; 111:86-93. [PMID: 30029921 DOI: 10.1016/j.tube.2018.05.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 04/23/2018] [Accepted: 05/06/2018] [Indexed: 02/05/2023]
Abstract
The immune effects of platelets and platelet-leukocyte aggregation are increasingly recognized. We studied the occurrence of platelet-monocyte aggregation (PMA) in patients with pulmonary tuberculosis (TB), the processes underlying PMA and consequences for cytokine responses. In a cross-sectional study involving 65 Tanzanian TB patients in different phases of treatment and 29 healthy controls, TB patients had a significantly higher PMA. This increased PMA in TB patients was associated with increased monocyte CCR5, CD16 expression and PF4, but not with increased membrane-expressed or soluble P-selectin expression. These findings were confirmed in vitro: whereas incubation of whole blood with Mycobacterium tuberculosis (Mtb) did not activate platelets, monocytes became activated with higher CD11b, CD16 and CCR5 expression, but this was independent of platelet-monocyte interaction. Still, platelets had an anti-inflammatory effect on cytokine responses as peripheral blood mononuclear cells (PBMC) incubated with Mtb in the presence of platelets produced less interleukin (IL)-1β, tumor necrosis factor-α, IL-6 and interferon-γ and more IL-10. In conclusion, increased PMA during TB infection is caused by monocyte and not platelet activation. By counteracting the Mtb-induced pro-inflammatory leukocyte response, platelets may protect against excessive tissue damage, but may also compromise the production of protective cytokines, such as IFNƴ and TNFα.
Collapse
Affiliation(s)
- Vesla Kullaya
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands; Kilimanjaro Clinical Research Institute, Kilimanjaro Christian Medical Center, Moshi, Tanzania.
| | - Andre van der Ven
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Stellah Mpagama
- Kibong'oto Infectious Diseases Hospital, Kilimanjaro Clinical Research Institute, Sanya Juu, Tanzania
| | - Blandina T Mmbaga
- Kilimanjaro Clinical Research Institute, Kilimanjaro Christian Medical Center, Moshi, Tanzania
| | - Philip de Groot
- Department of Clinical Chemistry and Haematology, University of Utrecht, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Gibson Kibiki
- Kilimanjaro Clinical Research Institute, Kilimanjaro Christian Medical Center, Moshi, Tanzania
| | - Quirijn de Mast
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
30
|
The Biology of Monocytes and Dendritic Cells: Contribution to HIV Pathogenesis. Viruses 2018; 10:v10020065. [PMID: 29415518 PMCID: PMC5850372 DOI: 10.3390/v10020065] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 02/01/2018] [Accepted: 02/03/2018] [Indexed: 02/07/2023] Open
Abstract
Myeloid cells such as monocytes, dendritic cells (DC) and macrophages (MΦ) are key components of the innate immune system contributing to the maintenance of tissue homeostasis and the development/resolution of immune responses to pathogens. Monocytes and DC, circulating in the blood or infiltrating various lymphoid and non-lymphoid tissues, are derived from distinct bone marrow precursors and are typically short lived. Conversely, recent studies revealed that subsets of tissue resident MΦ are long-lived as they originate from embryonic/fetal precursors that have the ability to self-renew during the life of an individual. Pathogens such as the human immunodeficiency virus type 1 (HIV-1) highjack the functions of myeloid cells for viral replication (e.g., MΦ) or distal dissemination and cell-to-cell transmission (e.g., DC). Although the long-term persistence of HIV reservoirs in CD4+ T-cells during viral suppressive antiretroviral therapy (ART) is well documented, the ability of myeloid cells to harbor replication competent viral reservoirs is still a matter of debate. This review summarizes the current knowledge on the biology of monocytes and DC during homeostasis and in the context of HIV-1 infection and highlights the importance of future studies on long-lived resident MΦ to HIV persistence in ART-treated patients.
Collapse
|
31
|
Mukherjee SP, Bondarenko O, Kohonen P, Andón FT, Brzicová T, Gessner I, Mathur S, Bottini M, Calligari P, Stella L, Kisin E, Shvedova A, Autio R, Salminen-Mankonen H, Lahesmaa R, Fadeel B. Macrophage sensing of single-walled carbon nanotubes via Toll-like receptors. Sci Rep 2018; 8:1115. [PMID: 29348435 PMCID: PMC5773626 DOI: 10.1038/s41598-018-19521-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 01/03/2018] [Indexed: 12/18/2022] Open
Abstract
Carbon-based nanomaterials including carbon nanotubes (CNTs) have been shown to trigger inflammation. However, how these materials are 'sensed' by immune cells is not known. Here we compared the effects of two carbon-based nanomaterials, single-walled CNTs (SWCNTs) and graphene oxide (GO), on primary human monocyte-derived macrophages. Genome-wide transcriptomics assessment was performed at sub-cytotoxic doses. Pathway analysis of the microarray data revealed pronounced effects on chemokine-encoding genes in macrophages exposed to SWCNTs, but not in response to GO, and these results were validated by multiplex array-based cytokine and chemokine profiling. Conditioned medium from SWCNT-exposed cells acted as a chemoattractant for dendritic cells. Chemokine secretion was reduced upon inhibition of NF-κB, as predicted by upstream regulator analysis of the transcriptomics data, and Toll-like receptors (TLRs) and their adaptor molecule, MyD88 were shown to be important for CCL5 secretion. Moreover, a specific role for TLR2/4 was confirmed by using reporter cell lines. Computational studies to elucidate how SWCNTs may interact with TLR4 in the absence of a protein corona suggested that binding is guided mainly by hydrophobic interactions. Taken together, these results imply that CNTs may be 'sensed' as pathogens by immune cells.
Collapse
Affiliation(s)
- Sourav P Mukherjee
- Nanosafety & Nanomedicine Laboratory, Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Olesja Bondarenko
- Nanosafety & Nanomedicine Laboratory, Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, 17177, Stockholm, Sweden.,Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Tallinn, 12618, Estonia
| | - Pekka Kohonen
- Nanosafety & Nanomedicine Laboratory, Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Fernando T Andón
- Nanosafety & Nanomedicine Laboratory, Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, 17177, Stockholm, Sweden.,Laboratory of Cellular Immunology, Humanitas Clinical and Research Institute, 20089, Rozzano-Milano, Italy
| | - Táňa Brzicová
- Nanosafety & Nanomedicine Laboratory, Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, 17177, Stockholm, Sweden.,Department of Genetic Toxicology and Nanotoxicology, Institute of Experimental Medicine AS CR, 14220, Prague, Czech Republic
| | - Isabel Gessner
- Inorganic and Materials Chemistry, University of Cologne, 50939, Cologne, Germany
| | - Sanjay Mathur
- Inorganic and Materials Chemistry, University of Cologne, 50939, Cologne, Germany
| | - Massimo Bottini
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Rome, 00173, Italy.,Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - Paolo Calligari
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, Rome, 00133, Italy
| | - Lorenzo Stella
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, Rome, 00133, Italy
| | - Elena Kisin
- Exposure Assessment Branch, National Institute for Occupational Safety and Health, Morgantown, WV, 26505, USA
| | - Anna Shvedova
- Exposure Assessment Branch, National Institute for Occupational Safety and Health, Morgantown, WV, 26505, USA.,Department Pharmacology & Physiology, West Virginia University, Morgantown, WV, 26505, USA
| | - Reija Autio
- Faculty of Social Sciences, University of Tampere, 33014, Tampere, Finland
| | - Heli Salminen-Mankonen
- Turku Centre for Biotechnology, University of Turku, 20520 Turku, and Åbo Akademi University, 20500, Turku, Finland
| | - Riitta Lahesmaa
- Turku Centre for Biotechnology, University of Turku, 20520 Turku, and Åbo Akademi University, 20500, Turku, Finland
| | - Bengt Fadeel
- Nanosafety & Nanomedicine Laboratory, Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, 17177, Stockholm, Sweden.
| |
Collapse
|
32
|
Smith SR, Schaaf K, Rajabalee N, Wagner F, Duverger A, Kutsch O, Sun J. The phosphatase PPM1A controls monocyte-to-macrophage differentiation. Sci Rep 2018; 8:902. [PMID: 29343725 PMCID: PMC5772551 DOI: 10.1038/s41598-017-18832-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 12/18/2017] [Indexed: 02/06/2023] Open
Abstract
Differentiation of circulating monocytes into tissue-bound or tissue-resident macrophages is a critical regulatory process affecting host defense and inflammation. However, the regulatory signaling pathways that control the differentiation of monocytes into specific and distinct functional macrophage subsets are poorly understood. Herein, we demonstrate that monocyte-to-macrophage differentiation is controlled by the Protein Phosphatase, Mg2+/Mn2+-dependent 1A (PPM1A). Genetic manipulation experiments demonstrated that overexpression of PPM1A attenuated the macrophage differentiation program, while knockdown of PPM1A expression accelerated the ability of monocytes to differentiate into macrophages. We identify imiquimod and Pam3CSK4 as two Toll-like receptor agonists that induce PPM1A expression, and show that increased expression of PPM1A at the onset of differentiation impairs cellular adherence, reduces expression of inflammatory (M1) macrophage-specific markers, and inhibits the production of inflammatory cytokines. Our findings reveal PPM1A as a negative threshold regulator of M1-type monocyte-to-macrophage differentiation, establishing it as a key phosphatase that orchestrates this program.
Collapse
Affiliation(s)
- Samuel R Smith
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Kaitlyn Schaaf
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Nusrah Rajabalee
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Frederic Wagner
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Alexandra Duverger
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Olaf Kutsch
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jim Sun
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada.
| |
Collapse
|
33
|
Lodge R, Gilmore JC, Ferreira Barbosa JA, Lombard-Vadnais F, Cohen ÉA. Regulation of CD4 Receptor and HIV-1 Entry by MicroRNAs-221 and -222 during Differentiation of THP-1 Cells. Viruses 2017; 10:v10010013. [PMID: 29301198 PMCID: PMC5795426 DOI: 10.3390/v10010013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 12/18/2017] [Accepted: 12/28/2017] [Indexed: 12/11/2022] Open
Abstract
Human immunodeficiency virus type-1 (HIV-1) infection of monocyte/macrophages is modulated by the levels of entry receptors cluster of differentiation 4 (CD4) and C-C chemokine receptor type 5 (CCR5), as well as by host antiviral restriction factors, which mediate several post-entry blocks. We recently identified two microRNAs, miR-221 and miR-222, which limit HIV-1 entry during infection of monocyte-derived macrophages (MDMs) by down-regulating CD4 expression. Interestingly, CD4 is also down-regulated during the differentiation of monocytes into macrophages. In this study, we compared microRNA expression profiles in primary monocytes and macrophages by RNAseq and found that miR-221/miR-222 are enhanced in macrophages. We took advantage of the monocytic THP-1 cell line that, once differentiated, is poorly susceptible to HIV-1. Accordingly, we found that CD4 levels are very low in THP-1 differentiated cells and that this down-regulation of the virus receptor is the result of miR-221/miR-222 up-regulation during differentiation. We thus established a THP-1 cell line stably expressing a modified CD4 (THP-1-CD4R) that is not modulated by miR-221/miR-222. We show that in contrast to parental THP-1, this line is productively infected by HIV-1 following differentiation, sustaining efficient HIV-1 CD4-dependent replication and spread. This new THP-1-CD4R cell line represents a useful tool for the study of HIV-1-macrophage interactions particularly in contexts where spreading of viral infection is necessary.
Collapse
Affiliation(s)
- Robert Lodge
- Institut de recherches cliniques de Montréal, Montreal, QC H2W 1R7, Canada; (R.L.); (J.C.G.); (J.A.F.B.); (F.L.-V.)
| | - Julian C. Gilmore
- Institut de recherches cliniques de Montréal, Montreal, QC H2W 1R7, Canada; (R.L.); (J.C.G.); (J.A.F.B.); (F.L.-V.)
| | - Jérémy A. Ferreira Barbosa
- Institut de recherches cliniques de Montréal, Montreal, QC H2W 1R7, Canada; (R.L.); (J.C.G.); (J.A.F.B.); (F.L.-V.)
| | - Félix Lombard-Vadnais
- Institut de recherches cliniques de Montréal, Montreal, QC H2W 1R7, Canada; (R.L.); (J.C.G.); (J.A.F.B.); (F.L.-V.)
| | - Éric A. Cohen
- Institut de recherches cliniques de Montréal, Montreal, QC H2W 1R7, Canada; (R.L.); (J.C.G.); (J.A.F.B.); (F.L.-V.)
- Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, QC H3T 1J4, Canada
- Correspondence: ; Tel.: +1-514-987-5804
| |
Collapse
|
34
|
Merino KM, Allers C, Didier ES, Kuroda MJ. Role of Monocyte/Macrophages during HIV/SIV Infection in Adult and Pediatric Acquired Immune Deficiency Syndrome. Front Immunol 2017; 8:1693. [PMID: 29259605 PMCID: PMC5723290 DOI: 10.3389/fimmu.2017.01693] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 11/16/2017] [Indexed: 12/17/2022] Open
Abstract
Monocytes/macrophages are a diverse group of cells that act as first responders in innate immunity and then as mediators for adaptive immunity to help clear infections. In performing these functions, however, the macrophage inflammatory responses can also contribute to pathogenesis. Various monocyte and tissue macrophage subsets have been associated with inflammatory disorders and tissue pathogeneses such as occur during HIV infection. Non-human primate research of simian immunodeficiency virus (SIV) has been invaluable in better understanding the pathogenesis of HIV infection. The question of HIV/SIV-infected macrophages serving as a viral reservoir has become significant for achieving a cure. In the rhesus macaque model, SIV-infected macrophages have been shown to promote pathogenesis in several tissues resulting in cardiovascular, metabolic, and neurological diseases. Results from human studies illustrated that alveolar macrophages could be an important HIV reservoir and humanized myeloid-only mice supported productive HIV infection and viral persistence in macrophages during ART treatment. Depletion of CD4+ T cells is considered the primary cause for terminal progression, but it was reported that increasing monocyte turnover was a significantly better predictor in SIV-infected adult macaques. Notably, pediatric cases of HIV/SIV exhibit faster and more severe disease progression than adults, yet neonates have fewer target T cells and generally lack the hallmark CD4+ T cell depletion typical of adult infections. Current data show that the baseline blood monocyte turnover rate was significantly higher in neonatal macaques compared to adults and this remained high with disease progression. In this review, we discuss recent data exploring the contribution of monocytes and macrophages to HIV/SIV infection and progression. Furthermore, we highlight the need to further investigate their role in pediatric cases of infection.
Collapse
Affiliation(s)
- Kristen M. Merino
- Division of Immunology, Tulane National Primate Research Center, Covington LA, United States
| | - Carolina Allers
- Division of Immunology, Tulane National Primate Research Center, Covington LA, United States
| | - Elizabeth S. Didier
- Division of Microbiology, Tulane National Primate Research Center, Covington LA, United States
| | - Marcelo J. Kuroda
- Division of Immunology, Tulane National Primate Research Center, Covington LA, United States
| |
Collapse
|
35
|
Exploring viral infection using single-cell sequencing. Virus Res 2016; 239:55-68. [PMID: 27816430 DOI: 10.1016/j.virusres.2016.10.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 10/21/2016] [Accepted: 10/24/2016] [Indexed: 12/31/2022]
Abstract
Single-cell sequencing (SCS) has emerged as a valuable tool to study cellular heterogeneity in diverse fields, including virology. By studying the viral and cellular genome and/or transcriptome, the dynamics of viral infection can be investigated at single cell level. Most studies have explored the impact of cell-to-cell variation on the viral life cycle from the point of view of the virus, by analyzing viral sequences, and from the point of view of the cell, mainly by analyzing the cellular host transcriptome. In this review, we will focus on recent studies that use single-cell sequencing to explore viral diversity and cell variability in response to viral replication.
Collapse
|
36
|
Arnatt CK, Falls BA, Yuan Y, Raborg TJ, Masvekar RR, El-Hage N, Selley DE, Nicola AV, Knapp PE, Hauser KF, Zhang Y. Exploration of bivalent ligands targeting putative mu opioid receptor and chemokine receptor CCR5 dimerization. Bioorg Med Chem 2016; 24:5969-5987. [PMID: 27720326 DOI: 10.1016/j.bmc.2016.09.059] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 09/20/2016] [Accepted: 09/23/2016] [Indexed: 12/19/2022]
Abstract
Modern antiretroviral therapies have provided HIV-1 infected patients longer lifespans and better quality of life. However, several neurological complications are now being seen in these patients due to HIV-1 associated injury of neurons by infected microglia and astrocytes. In addition, these effects can be further exacerbated with opiate use and abuse. One possible mechanism for such potentiation effects of opiates is the interaction of the mu opioid receptor (MOR) with the chemokine receptor CCR5 (CCR5), a known HIV-1 co-receptor, to form MOR-CCR5 heterodimer. In an attempt to understand this putative interaction and its relevance to neuroAIDS, we designed and synthesized a series of bivalent ligands targeting the putative CCR5-MOR heterodimer. To understand how these bivalent ligands may interact with the heterodimer, biological studies including calcium mobilization inhibition, binding affinity, HIV-1 invasion, and cell fusion assays were applied. In particular, HIV-1 infection assays using human peripheral blood mononuclear cells, macrophages, and astrocytes revealed a notable synergy in activity for one particular bivalent ligand. Further, a molecular model of the putative CCR5-MOR heterodimer was constructed, docked with the bivalent ligand, and molecular dynamics simulations of the complex was performed in a membrane-water system to help understand the biological observation.
Collapse
Affiliation(s)
- Christopher K Arnatt
- Department of Medicinal Chemistry, Virginia Commonwealth University, 800 East Leigh Street, Richmond, VA 23298, USA
| | - Bethany A Falls
- Department of Medicinal Chemistry, Virginia Commonwealth University, 800 East Leigh Street, Richmond, VA 23298, USA
| | - Yunyun Yuan
- Department of Medicinal Chemistry, Virginia Commonwealth University, 800 East Leigh Street, Richmond, VA 23298, USA
| | - Thomas J Raborg
- Department of Medicinal Chemistry, Virginia Commonwealth University, 800 East Leigh Street, Richmond, VA 23298, USA
| | - Ruturaj R Masvekar
- Department of Anatomy & Neurobiology, Virginia Commonwealth University, 1217 East Marshall Street, Richmond, VA 23298, USA
| | - Nazira El-Hage
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 North 12th Street, Richmond, VA 23298, USA
| | - Dana E Selley
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 North 12th Street, Richmond, VA 23298, USA
| | - Anthony V Nicola
- Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164, USA
| | - Pamela E Knapp
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 North 12th Street, Richmond, VA 23298, USA; Department of Anatomy & Neurobiology, Virginia Commonwealth University, 1217 East Marshall Street, Richmond, VA 23298, USA
| | - Kurt F Hauser
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 North 12th Street, Richmond, VA 23298, USA; Department of Anatomy & Neurobiology, Virginia Commonwealth University, 1217 East Marshall Street, Richmond, VA 23298, USA
| | - Yan Zhang
- Department of Medicinal Chemistry, Virginia Commonwealth University, 800 East Leigh Street, Richmond, VA 23298, USA.
| |
Collapse
|
37
|
Seifert SM, Chen X, Meditz AL, Castillo-Mancilla JR, Gardner EM, Predhomme JA, Clayton C, Austin G, Palmer BE, Zheng JH, Klein B, Kerr BJ, Guida LA, Rower C, Rower JE, Kiser JJ, Bushman LR, MaWhinney S, Anderson PL. Intracellular Tenofovir and Emtricitabine Anabolites in Genital, Rectal, and Blood Compartments from First Dose to Steady State. AIDS Res Hum Retroviruses 2016; 32:981-991. [PMID: 27526873 DOI: 10.1089/aid.2016.0008] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The pharmacokinetics (PK) of tenofovir-diphosphate (TFV-DP) and emtricitabine-triphosphate (FTC-TP), the active anabolites of tenofovir disoproxil fumarate (TDF), and emtricitabine (FTC) in blood, genital, and rectal compartments was determined in HIV-positive and seronegative adults who undertook a 60-day intensive PK study of daily TDF/FTC (plus efavirenz in HIV positives). Lymphocyte cell sorting, genital, and rectal sampling occurred once per subject, at staggered visits. Among 19 HIV-positive (3 female) and 21 seronegative (10 female) adults, TFV-DP in peripheral blood mononuclear cells (PBMC) accumulated 8.6-fold [95% confidence interval (CI): 7.2-10] from first-dose to steady-state concentration (Css) versus 1.7-fold (95% CI: 1.5-1.9) for FTC-TP. Css was reached in ∼11 and 3 days, respectively. Css values were similar between HIV-negative and HIV-positive individuals. Css TFV-DP in rectal mononuclear cells (1,450 fmol/106 cells, 898-2,340) was achieved in 5 days and was >10 times higher than PBMC (95 fmol/106 cells, 85-106), seminal cells (22 fmol/106 cells, 6-79), and cervical cells (111 fmol/106 cells, 64-194). FTC-TP Css was highest in PBMC (5.7 pmol/106 cells, 5.2-6.1) and cervical cells (7 pmol/106 cells, 2-19) versus rectal (0.8 pmol/106 cells, 0.6-1.1) and seminal cells (0.3 pmol/106 cells, 0.2-0.5). Genital drug concentrations on days 1-7 overlapped with estimated Css, but accumulation characteristics were based on limited data. TFV-DP and FTC-TP in cell sorted samples were highest and achieved most rapidly in CD14+ compared with CD4+, CD8+, and CD19+ cells. Together, these findings demonstrate cell-type and tissue-dependent cellular pharmacology, preferential accumulation of TFV-DP in rectal mononuclear cells, and rapid distribution into rectal and genital compartments.
Collapse
Affiliation(s)
- Sharon M. Seifert
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado
| | - Xinhui Chen
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado
| | - Amie L. Meditz
- Boulder Community Hospital, Beacon Center for Infectious Diseases, Boulder, Colorado
| | - Jose R. Castillo-Mancilla
- Division of Infectious Diseases, School of Medicine, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado
| | | | - Julie A. Predhomme
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado
| | - Carolyn Clayton
- Department of Biostatistics and Informatics, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado
| | - Gregory Austin
- School of Medicine, Internal Medicine, Gastroenterology, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado
| | - Brent E. Palmer
- Division of Allergy and Clinical Immunology, School of Medicine, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado
| | - Jia-Hua Zheng
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado
| | - Brandon Klein
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado
| | - Becky J. Kerr
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado
| | - L. Anthony Guida
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado
| | - Caitlin Rower
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado
| | - Joseph E. Rower
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado
| | - Jennifer J. Kiser
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado
| | - Lane R. Bushman
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado
| | - Samantha MaWhinney
- Department of Biostatistics and Informatics, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado
| | - Peter L. Anderson
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
38
|
Pollicita M, Ruff MR, Pert CB, Polianova MT, Schols D, Ranazzi A, Perno CF, Aquaro S. Profound Anti-HIV-1 Activity of DAPTA in Monocytes/macrophages and Inhibition of CCR5-mediated Apoptosis in Neuronal Cells. ACTA ACUST UNITED AC 2016; 18:285-95. [DOI: 10.1177/095632020701800504] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Monocytes/macrophages (M/M) are strategic reservoirs of HIV-1, spreading the virus to other cells and inducing apoptosis in T-lymphocytes, astrocytes and neurons. M/M are commonly infected by R5 HIV-1 strains, which use the chemokine receptor CCR5. D-Ala-peptide T-amide (DAPTA), or Peptide T, named for its high threonine content (ASTTTNYT), is a synthetic peptide comprised of eight amino acids (185–192) of the gp120 V2 region and functions as a viral entry inhibitor by targeting selectively CCR5. The anti-HIV-1 activity of DAPTA was evaluated in M/M infected with R5 HIV-1 strains. DAPTA at 10−9M inhibited HIV-1 replication in M/M by >90%. PCR analysis of viral cDNA in M/M showed that DAPTA blocks HIV entry and in this way prevents HIV-1 infection. Moreover, DAPTA acts as a strong inhibitor and was more active than the non-peptidic CCR5 antagonist TAK-779 in inhibiting apoptosis (mediated by R5 HIV-1 strains produced and released by infected M/M) on a neuroblastoma cell line. Our results suggest that antiviral compounds which interfere with receptor mechanisms such as CCR5 could be important, either alone or in combination with other antiretroviral treatments, in preventing HIV infection in the central nervous system and the consequential neuronal damage that leads to neuronal AIDS.
Collapse
Affiliation(s)
- Michela Pollicita
- Department of Experimental Medicine and Biochemical Science, University of Rome Tor Vergata, Rome, Italy
| | | | | | | | - Dominique Schols
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Alessandro Ranazzi
- Department of Experimental Medicine and Biochemical Science, University of Rome Tor Vergata, Rome, Italy
| | - Carlo-Federico Perno
- Department of Experimental Medicine and Biochemical Science, University of Rome Tor Vergata, Rome, Italy
| | - Stefano Aquaro
- Department of Experimental Medicine and Biochemical Science, University of Rome Tor Vergata, Rome, Italy
- Department of Pharmaco-Biology, University of Calabria, Rende, Italy
| |
Collapse
|
39
|
Jobe O, Trinh HV, Kim J, Alsalmi W, Tovanabutra S, Ehrenberg PK, Peachman KK, Gao G, Thomas R, Kim JH, Michael NL, Alving CR, Rao VB, Rao M. Effect of cytokines on Siglec-1 and HIV-1 entry in monocyte-derived macrophages: the importance of HIV-1 envelope V1V2 region. J Leukoc Biol 2016; 99:1089-106. [PMID: 26667473 PMCID: PMC4952014 DOI: 10.1189/jlb.2a0815-361r] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 10/29/2015] [Accepted: 11/17/2015] [Indexed: 02/02/2023] Open
Abstract
Monocytes and monocyte-derived macrophages express relatively low levels of CD4. Despite this, macrophages can be effectively infected with human immunodeficiency virus type 1. Macrophages have a critical role in human immunodeficiency virus type 1 transmission; however, the mechanism or mechanisms of virus infection are poorly understood. We report that growth factors, such as granulocyte macrophage colony-stimulating factor and macrophage colony-stimulating factor affect the phenotypic profile and permissiveness of macrophages to human immunodeficiency virus type 1. Human immunodeficiency virus type 1 infection of monocyte-derived macrophages derived from granulocyte macrophage and macrophage colony-stimulating factors was predominantly facilitated by the sialic acid-binding immunoglobulin-like lectin-1. The number of sialic acid-binding immunoglobulin-like lectin receptors on macrophage colony-stimulating factor-derived monocyte-derived macrophages was significantly greater than on granulocyte macrophage colony-stimulating factor-derived monocyte-derived macrophages, and correspondingly, human immunodeficiency virus type 1 infection was greater in the macrophage colony-stimulating factor-derived monocyte-derived macrophages. Single-genome analysis and quantitative reverse transcriptase-polymerase chain reaction revealed that the differences in infectivity was not due to differences in viral fitness or in viral variants with differential infectivity but was due to reduced viral entry into the granulocyte macrophage colony-stimulating factor-derived monocyte-derived macrophages. Anti-sialic acid-binding immunoglobulin-like lectin, trimeric glycoprotein 145, and scaffolded V1V2 proteins were bound to sialic acid-binding immunoglobulin-like lectin and significantly reduced human immunodeficiency virus type 1 entry and infection. Furthermore, sialic acid residues present in the V1V2 region of the envelope protein mediated human immunodeficiency virus type 1 interaction with sialic acid-binding immunoglobulin-like lectin and entry into macrophage colony-stimulating factor-derived monocyte-derived macrophages. Removal of sialic acid residues or glycans from scaffolded V1V2 protein decreased human immunodeficiency virus type 1 infectivity. These results highlight the importance of sialic acids on the V1V2 region in binding to sialic acid-binding immunoglobulin-like lectin and suggest that the unusually long surface-exposed sialic acid-binding immunoglobulin-like lectin might aid in the capture and entry of human immunodeficiency virus type 1 into monocyte-derived macrophages.
Collapse
Affiliation(s)
- Ousman Jobe
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Silver Spring, Maryland, USA; Laboratory of Adjuvant and Antigen Research, U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Hung V Trinh
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Silver Spring, Maryland, USA; Laboratory of Adjuvant and Antigen Research, U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Jiae Kim
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Silver Spring, Maryland, USA; Laboratory of Adjuvant and Antigen Research, U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Wadad Alsalmi
- Department of Biology, The Catholic University of America, Washington, DC, USA
| | - Sodsai Tovanabutra
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Silver Spring, Maryland, USA; Laboratory of Molecular Virology and Pathogenesis, Viral Sequencing Core, U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA; and
| | - Philip K Ehrenberg
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Silver Spring, Maryland, USA; Host Genetics Section, U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA; and
| | - Kristina K Peachman
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Silver Spring, Maryland, USA; Laboratory of Adjuvant and Antigen Research, U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Guofen Gao
- Department of Biology, The Catholic University of America, Washington, DC, USA
| | - Rasmi Thomas
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Silver Spring, Maryland, USA; Host Genetics Section, U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA; and
| | - Jerome H Kim
- Laboratory of Molecular Virology and Pathogenesis, Viral Sequencing Core, U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA; and
| | - Nelson L Michael
- Laboratory of Molecular Virology and Pathogenesis, Viral Sequencing Core, U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA; and
| | - Carl R Alving
- Laboratory of Adjuvant and Antigen Research, U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Venigalla B Rao
- Department of Biology, The Catholic University of America, Washington, DC, USA
| | - Mangala Rao
- Laboratory of Adjuvant and Antigen Research, U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA;
| |
Collapse
|
40
|
Fox JM, Kasprowicz R, Hartley O, Signoret N. CCR5 susceptibility to ligand-mediated down-modulation differs between human T lymphocytes and myeloid cells. J Leukoc Biol 2015; 98:59-71. [PMID: 25957306 PMCID: PMC4560160 DOI: 10.1189/jlb.2a0414-193rr] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 04/03/2015] [Indexed: 01/04/2023] Open
Abstract
CCR5 is a chemokine receptor expressed on leukocytes and a coreceptor used by HIV-1 to enter CD4(+) T lymphocytes and macrophages. Stimulation of CCR5 by chemokines triggers internalization of chemokine-bound CCR5 molecules in a process called down-modulation, which contributes to the anti-HIV activity of chemokines. Recent studies have shown that CCR5 conformational heterogeneity influences chemokine-CCR5 interactions and HIV-1 entry in transfected cells or activated CD4(+) T lymphocytes. However, the effect of CCR5 conformations on other cell types and on the process of down-modulation remains unclear. We used mAbs, some already shown to detect distinct CCR5 conformations, to compare the behavior of CCR5 on in vitro generated human T cell blasts, monocytes and MDMs and CHO-CCR5 transfectants. All human cells express distinct antigenic forms of CCR5 not detected on CHO-CCR5 cells. The recognizable populations of CCR5 receptors exhibit different patterns of down-modulation on T lymphocytes compared with myeloid cells. On T cell blasts, CCR5 is recognized by all antibodies and undergoes rapid chemokine-mediated internalization, whereas on monocytes and MDMs, a pool of CCR5 molecules is recognized by a subset of antibodies and is not removed from the cell surface. We demonstrate that this cell surface-retained form of CCR5 responds to prolonged treatment with more-potent chemokine analogs and acts as an HIV-1 coreceptor. Our findings indicate that the regulation of CCR5 is highly specific to cell type and provide a potential explanation for the observation that native chemokines are less-effective HIV-entry inhibitors on macrophages compared with T lymphocytes.
Collapse
Affiliation(s)
- James M Fox
- *Department of Biology and Hull York Medical School, Center for Immunology and Infection, University of York, York, United Kingdom; and Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Richard Kasprowicz
- *Department of Biology and Hull York Medical School, Center for Immunology and Infection, University of York, York, United Kingdom; and Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Oliver Hartley
- *Department of Biology and Hull York Medical School, Center for Immunology and Infection, University of York, York, United Kingdom; and Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Nathalie Signoret
- *Department of Biology and Hull York Medical School, Center for Immunology and Infection, University of York, York, United Kingdom; and Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| |
Collapse
|
41
|
Aljawai Y, Richards MH, Seaton MS, Narasipura SD, Al-Harthi L. β-Catenin/TCF-4 signaling regulates susceptibility of macrophages and resistance of monocytes to HIV-1 productive infection. Curr HIV Res 2015; 12:164-73. [PMID: 24862328 DOI: 10.2174/1570162x12666140526122249] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 09/26/2013] [Accepted: 10/01/2013] [Indexed: 01/07/2023]
Abstract
Cells of the monocyte/macrophage lineage are an important target for HIV-1 infection. They are often at anatomical sites linked to HIV-1 transmission and are an important vehicle for disseminating HIV-1 throughout the body, including the central nervous system. Monocytes do not support extensive productive HIV-1 replication, but they become more susceptible to HIV-1infection as they differentiate into macrophages. The mechanisms guiding susceptibility of HIV-1 replication in monocytes versus macrophages are not entirely clear. We determined whether endogenous activity of β-catenin signaling impacts differential susceptibility of monocytes and monocyte-derived macrophages (MDMs) to productive HIV-1 replication. We show that monocytes have an approximately 4-fold higher activity of β-catenin signaling than MDMs. Inducing β-catenin in MDMs suppressed HIV-1 replication by 5-fold while inhibiting endogenous β-catenin signaling in monocytes by transfecting with a dominant negative mutant for the downstream effector of β- catenin (TCF-4) promoted productive HIV-1 replication by 6-fold. These findings indicate that β-catenin/TCF-4 is an important pathway for restricted HIV-1 replication in monocytes and plays a significant role in potentiating HIV-1 replication as monocytes differentiate into macrophages. Targeting this pathway may provide a novel strategy to purge the latent reservoir from monocytes/macrophages, especially in sanctuary sites for HIV-1 such as the central nervous system.
Collapse
Affiliation(s)
| | | | | | | | - Lena Al-Harthi
- Rush University Medical Center, Department of Immunology and Microbiology, 1735 W. Harrison Street, 614 Cohn, Chicago, IL 60612, USA.
| |
Collapse
|
42
|
Gaskill PJ, Yano HH, Kalpana GV, Javitch JA, Berman JW. Dopamine receptor activation increases HIV entry into primary human macrophages. PLoS One 2014; 9:e108232. [PMID: 25268786 PMCID: PMC4182469 DOI: 10.1371/journal.pone.0108232] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 08/25/2014] [Indexed: 01/11/2023] Open
Abstract
Macrophages are the primary cell type infected with HIV in the central nervous system, and infection of these cells is a major component in the development of neuropathogenesis and HIV-associated neurocognitive disorders. Within the brains of drug abusers, macrophages are exposed to increased levels of dopamine, a neurotransmitter that mediates the addictive and reinforcing effects of drugs of abuse such as cocaine and methamphetamine. In this study we examined the effects of dopamine on HIV entry into primary human macrophages. Exposure to dopamine during infection increased the entry of R5 tropic HIV into macrophages, irrespective of the concentration of the viral inoculum. The entry pathway affected was CCR5 dependent, as antagonizing CCR5 with the small molecule inhibitor TAK779 completely blocked entry. The effect was dose-dependent and had a steep threshold, only occurring above 108 M dopamine. The dopamine-mediated increase in entry required dopamine receptor activation, as it was abrogated by the pan-dopamine receptor antagonist flupenthixol, and could be mediated through both subtypes of dopamine receptors. These findings indicate that the effects of dopamine on macrophages may have a significant impact on HIV pathogenesis. They also suggest that drug-induced increases in CNS dopamine may be a common mechanism by which drugs of abuse with distinct modes of action exacerbate neuroinflammation and contribute to HIV-associated neurocognitive disorders in infected drug abusers.
Collapse
Affiliation(s)
- Peter J. Gaskill
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, United States of America
- * E-mail:
| | - Hideaki H. Yano
- Department of Psychiatry and Pharmacology, Columbia University, New York, New York, United States of America
| | - Ganjam V. Kalpana
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Jonathan A. Javitch
- Department of Psychiatry and Pharmacology, Columbia University, New York, New York, United States of America
| | - Joan W. Berman
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| |
Collapse
|
43
|
Williams JC, Appelberg S, Goldberger BA, Klein TW, Sleasman JW, Goodenow MM. Δ(9)-Tetrahydrocannabinol treatment during human monocyte differentiation reduces macrophage susceptibility to HIV-1 infection. J Neuroimmune Pharmacol 2014; 9:369-79. [PMID: 24562630 PMCID: PMC4019698 DOI: 10.1007/s11481-014-9527-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 02/02/2014] [Indexed: 10/25/2022]
Abstract
The major psychoactive component of marijuana, Δ(9)-tetrahydrocannabinol (THC), also acts to suppress inflammatory responses. Receptors for THC, CB1, CB2, and GPR55, are differentially expressed on multiple cell types including monocytes and macrophages, which are important modulators of inflammation in vivo and target cells for HIV-1 infection. Use of recreational and medicinal marijuana is increasing, but the consequences of marijuana exposure on HIV-1 infection are unclear. Ex vivo studies were designed to investigate effects on HIV-1 infection in macrophages exposed to THC during or following differentiation. THC treatment of primary human monocytes during differentiation reduced HIV-1 infection of subsequent macrophages by replication competent or single cycle CCR5 using viruses. In contrast, treatment of macrophages with THC immediately prior to or continuously following HIV-1 exposure failed to alter infection. Specific receptor agonists indicated that the THC effect during monocyte differentiation was mediated primarily through CB2. THC reduced the number of p24 positive cells with little to no effect on virus production per infected cell, while quantitation of intracellular viral gag pinpointed the THC effect to an early event in the viral life cycle. Cells treated during differentiation with THC displayed reduced expression of CD14, CD16, and CD163 and donor dependent increases in mRNA expression of selected viral restriction factors, suggesting a fundamental alteration in phenotype. Ultimately, the mechanism of THC suppression of HIV-1 infection was traced to a reduction in cell surface HIV receptor (CD4, CCR5 and CXCR4) expression that diminished entry efficiency.
Collapse
Affiliation(s)
- Julie C. Williams
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Campus Box 103633, Gainesville, FL, 32610
| | - Sofia Appelberg
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Campus Box 103633, Gainesville, FL, 32610
| | - Bruce A. Goldberger
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Campus Box 103633, Gainesville, FL, 32610
| | - Thomas W. Klein
- Department of Molecular Medicine, University of South Florida, Tampa, FL
| | - John W. Sleasman
- University of South Florida, College of Medicine, St. Petersburg, FL
| | - Maureen M. Goodenow
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Campus Box 103633, Gainesville, FL, 32610
| |
Collapse
|
44
|
Reynolds G, Cooles FAH, Isaacs JD, Hilkens CMU. Emerging immunotherapies for rheumatoid arthritis. Hum Vaccin Immunother 2014; 10:822-37. [PMID: 24535556 DOI: 10.4161/hv.27910] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Novel treatments in development for rheumatoid arthritis target 3 broad areas: cytokines, cells, and signaling pathways. Therapies from each domain share common advantages (for example previously demonstrated efficacy, potential long-term immunomodulation, and oral administration respectively) that have stimulated research in each area but also common obstacles to their development. In this review recent progress in each area will be discussed alongside the factors that have impeded their path to clinical use.
Collapse
Affiliation(s)
- Gary Reynolds
- Institute of Cellular Medicine; Musculoskeletal Research Group; Newcastle University; Newcastle upon Tyne, Tyne and Wear UK
| | - Faye A H Cooles
- Institute of Cellular Medicine; Musculoskeletal Research Group; Newcastle University; Newcastle upon Tyne, Tyne and Wear UK
| | - John D Isaacs
- Institute of Cellular Medicine; Musculoskeletal Research Group; Newcastle University; Newcastle upon Tyne, Tyne & Wear UK
| | - Catharien M U Hilkens
- Institute of Cellular Medicine; Musculoskeletal Research Group; Newcastle University; Newcastle upon Tyne, Tyne & Wear UK
| |
Collapse
|
45
|
Swaminathan G, Navas-Martín S, Martín-García J. MicroRNAs and HIV-1 infection: antiviral activities and beyond. J Mol Biol 2013; 426:1178-97. [PMID: 24370931 DOI: 10.1016/j.jmb.2013.12.017] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2013] [Revised: 12/03/2013] [Accepted: 12/17/2013] [Indexed: 02/07/2023]
Abstract
Cellular microRNAs (miRNAs) are an important class of small, non-coding RNAs that bind to host mRNAs based on sequence complementarity and regulate protein expression. They play important roles in controlling key cellular processes including cellular inception, differentiation and death. While several viruses have been shown to encode for viral miRNAs, controversy persists over the expression of a functional miRNA encoded in the human immunodeficiency virus type 1 (HIV-1) genome. However, it has been reported that HIV-1 infectivity is influenced by cellular miRNAs. Either through directly targeting the viral genome or by targeting host cellular proteins required for successful virus replication, multiple cellular miRNAs seem to modulate HIV-1 infection and replication. Perhaps as a survival strategy, HIV-1 may modulate proteins in the miRNA biogenesis pathway to subvert miRNA-induced antiviral effects. Global expression profiles of cellular miRNAs have also identified alterations of specific miRNAs post-HIV-1 infection both in vitro and in vivo (in various infected patient cohorts), suggesting potential roles for miRNAs in pathogenesis and disease progression. However, little attention has been devoted in understanding the roles played by these miRNAs at a cellular level. In this manuscript, we review past and current findings pertaining to the field of miRNA and HIV-1 interplay. In addition, we suggest strategies to exploit miRNAs therapeutically for curbing HIV-1 infectivity, replication and latency since they hold an untapped potential that deserves further investigation.
Collapse
Affiliation(s)
- Gokul Swaminathan
- Graduate Program in Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA; Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA.
| | - Sonia Navas-Martín
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA.
| | - Julio Martín-García
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA.
| |
Collapse
|
46
|
A consensus surface activation marker signature is partially dependent on human immunodeficiency virus type 1 Nef expression within productively infected macrophages. Retrovirology 2013; 10:155. [PMID: 24341794 PMCID: PMC3883119 DOI: 10.1186/1742-4690-10-155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Accepted: 12/06/2013] [Indexed: 11/17/2022] Open
Abstract
Background The high prevalence of HIV-associated comorbidities including neurocognitive disorder, high levels of residual inflammatory mediators in the plasma and cerebrospinal fluid and the resurgence of HIV replication upon interruption of antiviral treatment in HIV-1 infected individuals, strongly suggests that despite therapy HIV persists in its cellular targets which include T-lymphocytes and cells of the myeloid lineage. These reservoirs present a major barrier against eradication efforts. Knowledge of the molecular mechanisms used by HIV to modulate innate macrophage immune responses and impair viral clearance is quite limited. To explore the role of HIV in potentially modulating macrophage function through changes in protein expression, we used single-cell analyses with flow cytometry to determine whether, in unpolarized cultures, macrophage surface marker phenotype was altered by HIV infection in a manner that was independent of host genetic background. Results These analyses revealed that at several time points post-infection, GFP + HIV-infected macrophages were significantly enriched in the CD14+ fraction (3 to 5-fold, p = .0001) compared to bystander, or uninfected cells in the same culture. However, the enrichment and higher levels of CD14 on HIV expressing macrophages did not depend on the production of HIV Nef. Sixty to eighty percent of macrophages productively infected with HIV after day 28 post-infection were also enriched in the population of cells expressing the activation markers CD69 (2 to 4-fold, p < .0001) and CD86 (2 to 4-fold, p < .0001 ) but suppressed amounts of CD68 (3 to 10-fold, p < .0001) compared to bystander cells. Interestingly, there was no enrichment of CD69 on the surface of HIV producing cells that lacked Nef or expressed a variant of Nef mutated in its SH3-binding domain. Conclusions These findings suggest that HIV actively regulates the expression of a subset of surface molecules involved in innate and inflammatory immune signaling in primary human macrophages through Nef-dependent and Nef-independent mechanisms acting within productively infected cells.
Collapse
|
47
|
Hudig D, Hunter KW, Diamond WJ, Redelman D. Properties of human blood monocytes. II. Monocytes from healthy adults are highly heterogeneous within and among individuals. CYTOMETRY PART B-CLINICAL CYTOMETRY 2013; 86:121-34. [PMID: 24327358 DOI: 10.1002/cyto.b.21141] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/16/2013] [Revised: 09/17/2013] [Accepted: 10/18/2013] [Indexed: 01/04/2023]
Abstract
BACKGROUND Human blood monocytes are known to include subsets defined by the expression of CD14 and CD16 but otherwise are often assumed to be relatively homogeneous. However, we had observed additional heterogeneity that led us to a more extensive examination of monocytes. METHODS Blood samples from 200 healthy adults without known immunological abnormalities were examined by analysis with a hematology analyzer and by flow cytometry (FCM) to determine leukocyte differential counts, to identify subsets and to measure expression of monocyte-associated molecules. RESULTS The estimated cell counts of monocytes, neutrophils, total lymphocytes, and T cells all varied to a similar extent, that is, ±30-35%. The fractions of monocyte subsets defined by CD14 and CD16 or by CD163 expression also varied among individuals. FCM examinations showed that all the monocyte-associated molecules that were examined varied in expression in this increasing order-CD244, CD4, CD38, CD91, CD11b, toll-like receptor 2 (TLR2), TIA-1, CD14 (on CD14(Br+) cells), CD86, CD80, HLA-DQ, CD33, and HLA-DR. CONCLUSIONS Human blood monocytes are heterogeneous among healthy adults with respect to cell counts, subsets, and the levels of expression of monocyte-associated molecules. An increase in the "non-classical" (CD14(Lo/Neg) /CD16(+) ) monocyte subset or in the expression of CD11b or TLR2 have known diagnostic/prognostic implications. CD244 and CD4 have well-defined functions on lymphocytes but perform unknown activities on monocytes although their expression appears more narrowly controlled. Together, these data suggest that monocytes should be more extensively examined in both clinical and basic contexts.
Collapse
Affiliation(s)
- Dorothy Hudig
- Department of Microbiology and Immunology, University of Nevada School of Medicine, Reno, Nevada, 89557
| | | | | | | |
Collapse
|
48
|
Barmania F, Pepper MS. C-C chemokine receptor type five (CCR5): An emerging target for the control of HIV infection. Appl Transl Genom 2013; 2:3-16. [PMID: 27942440 PMCID: PMC5133339 DOI: 10.1016/j.atg.2013.05.004] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 05/19/2013] [Accepted: 05/21/2013] [Indexed: 12/25/2022]
Abstract
When HIV was initially discovered as the causative agent of AIDS, many expected to find a vaccine within a few years. This has however proven to be elusive; it has been approximately 30 years since HIV was first discovered, and a suitable vaccine is still not in effect. In 2009, a paper published by Hutter et al. reported on a bone marrow transplant performed on an HIV positive individual using stem cells that were derived from a donor who was homozygous for a mutation in the CCR5 gene known as CCR5 delta-32 (Δ32) (Hütter et al., 2009). The HIV positive individual became HIV negative and remained free of viral detection after transplantation despite having halted anti-retroviral (ARV) treatment. This review will focus on CCR5 as a key component in HIV immunity and will discuss the role of CCR5 in the control of HIV infection.
Collapse
Affiliation(s)
| | - Michael S. Pepper
- Corresponding author at: Dept. of Immunology, Faculty of Health Sciences, University of Pretoria, P.O. Box 2034, Pretoria 0001, South Africa. Tel.: + 27 12 319 2190; fax: + 27 12 319 2946.
| |
Collapse
|
49
|
Gaskill PJ, Calderon TM, Coley JS, Berman JW. Drug induced increases in CNS dopamine alter monocyte, macrophage and T cell functions: implications for HAND. J Neuroimmune Pharmacol 2013; 8:621-42. [PMID: 23456305 PMCID: PMC4303241 DOI: 10.1007/s11481-013-9443-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 02/13/2013] [Indexed: 02/08/2023]
Abstract
Central nervous system (CNS) complications resulting from HIV infection remain a major public health problem as individuals live longer due to the success of combined antiretroviral therapy (cART). As many as 70 % of HIV infected people have HIV associated neurocognitive disorders (HAND). Many HIV infected individuals abuse drugs, such as cocaine, heroin or methamphetamine, that may be important cofactors in the development of HIV CNS disease. Despite different mechanisms of action, all drugs of abuse increase extracellular dopamine in the CNS. The effects of dopamine on HIV neuropathogenesis are not well understood, and drug induced increases in CNS dopamine may be a common mechanism by which different types of drugs of abuse impact the development of HAND. Monocytes and macrophages are central to HIV infection of the CNS and to HAND. While T cells have not been shown to be a major factor in HIV-associated neuropathogenesis, studies indicate that T cells may play a larger role in the development of HAND in HIV infected drug abusers. Drug induced increases in CNS dopamine may dysregulate functions of, or increase HIV infection in, monocytes, macrophages and T cells in the brain. Thus, characterizing the effects of dopamine on these cells is important for understanding the mechanisms that mediate the development of HAND in drug abusers.
Collapse
Affiliation(s)
- Peter J Gaskill
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | | | | |
Collapse
|
50
|
Hwang CK, Wagley Y, Law PY, Wei LN, Loh HH. MicroRNAs in opioid pharmacology. J Neuroimmune Pharmacol 2012; 7:808-19. [PMID: 22068836 PMCID: PMC3295898 DOI: 10.1007/s11481-011-9323-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Accepted: 10/24/2011] [Indexed: 01/20/2023]
Abstract
MicroRNAs (miRNA), a class of ~22-nucleotide RNA molecules, are important gene regulators that bind to the target sites of mRNAs to inhibit the gene expressions either through translational inhibition or mRNA destabilization. There are growing evidences that miRNAs have played several regulatory roles in opioid pharmacology. Like other research fields such as cancer biology, the area where numerous miRNAs are found to be involved in gene regulation, we assume that in opioid studies including research fields of drug additions and opioid receptor regulation, there may be more miRNAs waiting to be discovered. This review will summarize our current knowledge of miRNA functions on opioids biology and briefly describe future research directions of miRNAs related to opioids.
Collapse
Affiliation(s)
- Cheol Kyu Hwang
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455, USA.
| | | | | | | | | |
Collapse
|