1
|
Ren F, Narita R, Rashidi AS, Fruhwürth S, Gao Z, Bak RO, Thomsen MK, Verjans GMGM, Reinert LS, Paludan SR. ER stress induces caspase-2-tBID-GSDME-dependent cell death in neurons lytically infected with herpes simplex virus type 2. EMBO J 2023; 42:e113118. [PMID: 37646198 PMCID: PMC10548179 DOI: 10.15252/embj.2022113118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 08/14/2023] [Accepted: 08/14/2023] [Indexed: 09/01/2023] Open
Abstract
Neurotropic viruses, including herpes simplex virus (HSV) types 1 and 2, have the capacity to infect neurons and can cause severe diseases. This is associated with neuronal cell death, which may contribute to morbidity or even mortality if the infection is not controlled. However, the mechanistic details of HSV-induced neuronal cell death remain enigmatic. Here, we report that lytic HSV-2 infection of human neuron-like SH-SY5Y cells and primary human and murine brain cells leads to cell death mediated by gasdermin E (GSDME). HSV-2-induced GSDME-mediated cell death occurs downstream of replication-induced endoplasmic reticulum stress driven by inositol-requiring kinase 1α (IRE1α), leading to activation of caspase-2, cleavage of the pro-apoptotic protein BH3-interacting domain death agonist (BID), and mitochondria-dependent activation of caspase-3. Finally, necrotic neurons released alarmins, which activated inflammatory responses in human iPSC-derived microglia. In conclusion, lytic HSV infection in neurons activates an ER stress-driven pathway to execute GSDME-mediated cell death and promote inflammation.
Collapse
Affiliation(s)
- Fanghui Ren
- Department of BiomedicineAarhus UniversityAarhus CDenmark
| | - Ryo Narita
- Department of BiomedicineAarhus UniversityAarhus CDenmark
| | - Ahmad S Rashidi
- Department of ViroscienceErasmus Medical CentreRotterdamThe Netherlands
| | - Stefanie Fruhwürth
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and PhysiologySahlgrenska Academy at the University of GothenburgGothenburgSweden
| | - Zongliang Gao
- Department of BiomedicineAarhus UniversityAarhus CDenmark
| | - Rasmus O Bak
- Department of BiomedicineAarhus UniversityAarhus CDenmark
| | | | | | - Line S Reinert
- Department of BiomedicineAarhus UniversityAarhus CDenmark
| | - Søren R Paludan
- Department of BiomedicineAarhus UniversityAarhus CDenmark
- Department of Rheumatology and Inflammation Research, Institute of MedicineSahlgrenska Academy, University of GothenburgGothenburgSweden
| |
Collapse
|
2
|
Toribio RE. Arboviral Equine Encephalitides. Vet Clin North Am Equine Pract 2022; 38:299-321. [PMID: 35953146 DOI: 10.1016/j.cveq.2022.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
A number of viruses transmitted by biological vectors or through direct contact, air, or ingestion cause neurologic disease in equids. Of interest are viruses of the Togaviridae, Flaviviridae, Rhabdoviridae, Herpesviridae, Bornaviridae, and Bunyaviridae families. Many are classified as arboviruses because they use arthropod vectors, whereas others are transmitted directly via ingestion, inhalation, or integument damage. The goal of this article is to provide an overview on pathophysiologic and clinical aspects of arboviruses of equine importance, including alphaviruses (Togaviridae) and flaviviruses (Flaviviridae).
Collapse
Affiliation(s)
- Ramiro E Toribio
- College of Veterinary Medicine, The Ohio State University, 601 Vernon Tharp Street, Columbus, OH 43210, USA.
| |
Collapse
|
3
|
Abstract
Mosquito-transmitted alphaviruses have been the cause of widespread outbreaks of disease that can range from mild illness to lethal encephalitis or severe polyarthritis. There are currently no safe and effective vaccines or therapeutics with which to prevent or treat alphaviral disease, highlighting the need to better understand alphaviral pathogenesis to develop novel antiviral strategies. This report reveals production of noncapped genomic RNAs (ncgRNAs) to be a novel determinant of alphaviral virulence and offers insight into the importance of inflammation to pathogenesis. Taken together, the findings reported here suggest that the ncgRNAs contribute to alphaviral pathogenesis through the sensing of the ncgRNAs during alphaviral infection and are necessary for the development of severe disease. Alphaviruses are positive-sense RNA viruses that utilize a 5′ cap structure to facilitate translation of viral proteins and to protect the viral RNA genome. Nonetheless, significant quantities of viral genomic RNAs that lack a canonical 5′ cap structure are produced during alphaviral replication and packaged into viral particles. However, the role/impact of the noncapped genomic RNA (ncgRNA) during alphaviral infection in vivo has yet to be characterized. To determine the importance of the ncgRNA in vivo, the previously described D355A and N376A nsP1 mutations, which increase or decrease nsP1 capping activity, respectively, were incorporated into the neurovirulent AR86 strain of Sindbis virus to enable characterization of the impact of altered capping efficiency in a murine model of infection. Mice infected with the N376A nsP1 mutant exhibited slightly decreased rates of mortality and delayed weight loss and neurological symptoms, although levels of inflammation in the brain were similar to those of wild-type infection. Although the D355A mutation resulted in decreased antiviral gene expression and increased resistance to interferon in vitro, mice infected with the D355A mutant showed significantly reduced mortality and morbidity compared to mice infected with wild-type virus. Interestingly, expression of proinflammatory cytokines was found to be significantly decreased in mice infected with the D355A mutant, suggesting that capping efficiency and the production of ncgRNA are vital to eliciting pathogenic levels of inflammation. Collectively, these data indicate that the ncgRNA have important roles during alphaviral infection and suggest a novel mechanism by which noncapped viral RNAs aid in viral pathogenesis.
Collapse
|
4
|
Melamed S, Avraham R, Rothbard DE, Erez N, Israely T, Klausner Z, Futerman AH, Paran N, Vitner EB. Innate immune response in neuronopathic forms of Gaucher disease confers resistance against viral-induced encephalitis. Acta Neuropathol Commun 2020; 8:144. [PMID: 32831144 PMCID: PMC7443817 DOI: 10.1186/s40478-020-01020-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 08/12/2020] [Indexed: 12/13/2022] Open
Abstract
Both monogenic diseases and viral infections can manifest in a broad spectrum of clinical phenotypes that range from asymptomatic to lethal, suggesting that other factors modulate disease severity. Here, we examine the interplay between the genetic neuronopathic Gaucher’s disease (nGD), and neuroinvasive Sindbis virus (SVNI) infection. Infection of nGD mice with SVNI had no influence on nGD severity. However, nGD mice were more resistant to SVNI infection. Significantly different inflammatory responses were seen in nGD brains when compared with SVNI brains: the inflammatory response in the nGD brains consisted of reactive astrocytes and microglia with no infiltrating macrophages, but the inflammatory response in the brains of SVNI-infected mice was characterized by infiltration of macrophages and altered activation of microglia and astrocytes. We suggest that the innate immune response activated in nGD confers resistance against viral infection of the CNS.
Collapse
|
5
|
Xu X, Holmes TC, Luo MH, Beier KT, Horwitz GD, Zhao F, Zeng W, Hui M, Semler BL, Sandri-Goldin RM. Viral Vectors for Neural Circuit Mapping and Recent Advances in Trans-synaptic Anterograde Tracers. Neuron 2020; 107:1029-1047. [PMID: 32755550 DOI: 10.1016/j.neuron.2020.07.010] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/23/2020] [Accepted: 07/12/2020] [Indexed: 12/17/2022]
Abstract
Viral tracers are important tools for neuroanatomical mapping and genetic payload delivery. Genetically modified viruses allow for cell-type-specific targeting and overcome many limitations of non-viral tracers. Here, we summarize the viruses that have been developed for neural circuit mapping, and we provide a primer on currently applied anterograde and retrograde viral tracers with practical guidance on experimental uses. We also discuss and highlight key technical and conceptual considerations for developing new safer and more effective anterograde trans-synaptic viral vectors for neural circuit analysis in multiple species.
Collapse
Affiliation(s)
- Xiangmin Xu
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, Irvine, CA 92697-1275, USA; Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, Irvine, CA 92697-4025, USA; Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697-2715, USA; The Center for Neural Circuit Mapping, University of California, Irvine, Irvine, CA 92697, USA.
| | - Todd C Holmes
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92697-4560, USA; The Center for Neural Circuit Mapping, University of California, Irvine, Irvine, CA 92697, USA
| | - Min-Hua Luo
- State Key Laboratory of Virology, Wuhan Institute of Virology, CAS Center for Excellence in Brain Science, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China; The Center for Neural Circuit Mapping, University of California, Irvine, Irvine, CA 92697, USA
| | - Kevin T Beier
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92697-4560, USA; The Center for Neural Circuit Mapping, University of California, Irvine, Irvine, CA 92697, USA
| | - Gregory D Horwitz
- The Washington National Primate Research Center, University of Washington, Seattle, WA 98195, USA; Department of Physiology & Biophysics, University of Washington, Seattle, WA 98195, USA; The Center for Neural Circuit Mapping, University of California, Irvine, Irvine, CA 92697, USA
| | - Fei Zhao
- School of Basic Medical Sciences, Capital Medical University, Beijing 102206, China; Chinese Institute for Brain Research (CIBR), Beijing 102206, China
| | - Wenbo Zeng
- State Key Laboratory of Virology, Wuhan Institute of Virology, CAS Center for Excellence in Brain Science, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - May Hui
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92697-4560, USA
| | - Bert L Semler
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, Irvine, CA 92697-4025, USA; The Center for Neural Circuit Mapping, University of California, Irvine, Irvine, CA 92697, USA
| | - Rozanne M Sandri-Goldin
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, Irvine, CA 92697-4025, USA; The Center for Neural Circuit Mapping, University of California, Irvine, Irvine, CA 92697, USA
| |
Collapse
|
6
|
Abstract
Alphaviruses, members of the enveloped, positive-sense, single-stranded RNA Togaviridae family, represent a reemerging public health threat as mosquito vectors expand into new geographic territories. The Old World alphaviruses, which include chikungunya virus, Ross River virus, and Sindbis virus, tend to cause a clinical syndrome characterized by fever, rash, and arthritis, whereas the New World alphaviruses, which consist of Venezuelan equine encephalitis virus, eastern equine encephalitis virus, and western equine encephalitis virus, induce encephalomyelitis. Following recovery from the acute phase of infection, many patients are left with debilitating persistent joint and neurological complications that can last for years. Clues from human cases and studies using animal models strongly suggest that much of the disease and pathology induced by alphavirus infection, particularly atypical and chronic manifestations, is mediated by the immune system rather than directly by the virus. This review discusses the current understanding of the immunopathogenesis of the arthritogenic and neurotropic alphaviruses accumulated through both natural infection of humans and experimental infection of animals, particularly mice. As treatment following alphavirus infection is currently limited to supportive care, understanding the contribution of the immune system to the disease process is critical to developing safe and effective therapies.
Collapse
Affiliation(s)
- Victoria K Baxter
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Mark T Heise
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.
| |
Collapse
|
7
|
Chandwani MN, Creisher PS, O'Donnell LA. Understanding the Role of Antiviral Cytokines and Chemokines on Neural Stem/Progenitor Cell Activity and Survival. Viral Immunol 2018; 32:15-24. [PMID: 30307795 DOI: 10.1089/vim.2018.0091] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Viral infections of the central nervous system are accompanied by the expression of cytokines and chemokines that can be critical for the control of viral replication in the brain. The outcomes of cytokine/chemokine signaling in neural cells vary widely, with cell-specific effects on cellular activity, proliferation, and survival. Neural stem/progenitor cells (NSPCs) are often altered during viral infections, through direct infection by the virus or by the influence of immune cell activity or cytokine/chemokine signaling. However, it has been challenging to dissect the contribution of the virus and specific inflammatory mediators during an infection. In addition to initiating an antiviral program in infected NSPCs, cytokines/chemokines can induce multiple changes in NSPC behavior that can perturb NSPC numbers, differentiation into other neural cells, and migration to sites of injury, and ultimately brain development and repair. The focus of this review was to dissect the effects of common antiviral cytokines and chemokines on NSPC activity, and to consider the subsequent pathological consequences for the host from changes in NSPC function.
Collapse
Affiliation(s)
- Manisha N Chandwani
- Department of Pharmaceutical, Administrative, and Social Sciences, Graduate School of Pharmaceutical Sciences, Duquesne University School of Pharmacy , Pittsburgh, Pennsylvania
| | - Patrick S Creisher
- Department of Pharmaceutical, Administrative, and Social Sciences, Graduate School of Pharmaceutical Sciences, Duquesne University School of Pharmacy , Pittsburgh, Pennsylvania
| | - Lauren A O'Donnell
- Department of Pharmaceutical, Administrative, and Social Sciences, Graduate School of Pharmaceutical Sciences, Duquesne University School of Pharmacy , Pittsburgh, Pennsylvania
| |
Collapse
|
8
|
Gaburro J, Bhatti A, Sundaramoorthy V, Dearnley M, Green D, Nahavandi S, Paradkar PN, Duchemin JB. Zika virus-induced hyper excitation precedes death of mouse primary neuron. Virol J 2018; 15:79. [PMID: 29703263 PMCID: PMC5922018 DOI: 10.1186/s12985-018-0989-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 04/19/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Zika virus infection in new born is linked to congenital syndromes, especially microcephaly. Studies have shown that these neuropathies are the result of significant death of neuronal progenitor cells in the central nervous system of the embryo, targeted by the virus. Although cell death via apoptosis is well acknowledged, little is known about possible pathogenic cellular mechanisms triggering cell death in neurons. METHODS We used in vitro embryonic mouse primary neuron cultures to study possible upstream cellular mechanisms of cell death. Neuronal networks were grown on microelectrode array and electrical activity was recorded at different times post Zika virus infection. In addition to this method, we used confocal microscopy and Q-PCR techniques to observe morphological and molecular changes after infection. RESULTS Zika virus infection of mouse primary neurons triggers an early spiking excitation of neuron cultures, followed by dramatic loss of this activity. Using NMDA receptor antagonist, we show that this excitotoxicity mechanism, likely via glutamate, could also contribute to the observed nervous system defects in human embryos and could open new perspective regarding the causes of adult neuropathies. CONCLUSIONS This model of excitotoxicity, in the context of neurotropic virus infection, highlights the significance of neuronal activity recording with microelectrode array and possibility of more than one lethal mechanism after Zika virus infection in the nervous system.
Collapse
Affiliation(s)
- Julie Gaburro
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, Australia
- Institute for Intelligent Systems Research and Innovation (IISRI), Deakin University, Geelong, Australia
| | - Asim Bhatti
- Institute for Intelligent Systems Research and Innovation (IISRI), Deakin University, Geelong, Australia
| | - Vinod Sundaramoorthy
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, Australia
| | - Megan Dearnley
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, Australia
| | - Diane Green
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, Australia
| | - Saeid Nahavandi
- Institute for Intelligent Systems Research and Innovation (IISRI), Deakin University, Geelong, Australia
| | - Prasad N Paradkar
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, Australia
| | - Jean-Bernard Duchemin
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, Australia.
| |
Collapse
|
9
|
Protective Effects of Glutamine Antagonist 6-Diazo-5-Oxo-l-Norleucine in Mice with Alphavirus Encephalomyelitis. J Virol 2016; 90:9251-62. [PMID: 27489275 DOI: 10.1128/jvi.01045-16] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 07/28/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Inflammation is a necessary part of the response to infection but can also cause neuronal injury in both infectious and autoimmune diseases of the central nervous system (CNS). A neurovirulent strain of Sindbis virus (NSV) causes fatal paralysis in adult C57BL/6 mice during clearance of infectious virus from the CNS, and the virus-specific immune response is implicated as a mediator of neuronal damage. Previous studies have shown that survival is improved in T-cell-deficient mice and in mice with pharmacological inhibition of the inflammatory response and glutamate excitotoxicity. Because glutamine metabolism is important in the CNS for the generation of glutamate and in the immune system for lymphocyte proliferation, we tested the effect of the glutamine antagonist DON (6-diazo-5-oxo-l-norleucine) on the outcome of NSV infection in mice. DON treatment for 7 days from the time of infection delayed the onset of paralysis and death. Protection was associated with reduced lymphocyte proliferation in the draining cervical lymph nodes, decreased leukocyte infiltration into the CNS, lower levels of inflammatory cytokines, and delayed viral clearance. In vitro studies showed that DON inhibited stimulus-induced proliferation of lymphocytes. When in vivo treatment with DON was stopped, paralytic disease developed along with the inflammatory response and viral clearance. These studies show that fatal NSV-induced encephalomyelitis is immune mediated and that antagonists of glutamine metabolism can modulate the immune response and protect against virus-induced neuroinflammatory disease. IMPORTANCE Encephalomyelitis due to infection with mosquito-borne alphaviruses is an important cause of death and of long-term neurological disability in those who survive infection. This study demonstrates the role of the virus-induced immune response in the generation of neurological disease. DON, a glutamine antagonist, inhibited the proliferation of lymphocytes in response to infection, prevented the development of brain inflammation, and protected mice from paralysis and death during treatment. However, because DON inhibited the immune response to infection, clearance of the virus from the brain was also prevented. When treatment was stopped, the immune response was generated, brain inflammation occurred, virus was cleared, and mice developed paralysis and died. Therefore, more definitive treatment for alphaviral encephalomyelitis should inhibit virus replication as well as neuroinflammatory damage.
Collapse
|
10
|
Baxter VK, Griffin DE. Interferon gamma modulation of disease manifestation and the local antibody response to alphavirus encephalomyelitis. J Gen Virol 2016; 97:2908-2925. [PMID: 27667782 DOI: 10.1099/jgv.0.000613] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Infection of mice with Sindbis virus (SINV) produces encephalomyelitis and provides a model for examination of the central nervous system (CNS) immune response to alphavirus infection. Clearance of infectious virus is accomplished through a cooperative effort between SINV-specific antibody and IFN-γ, but the regulatory interactions are poorly understood. To determine the effects of IFN-γ on clinical disease and the antiviral immune response, C57BL/6 mice lacking IFN-γ (Ifng-/-) or IFN-γ receptor (Ifngr1-/-) were studied in comparison to WT mice. Maximum production of Ifng mRNA and IFN-γ protein in the CNS of WT and Ifngr1-/- mice occurred 5-7 days after infection, with higher levels of IFN-γ in Ifngr1-/- mice. Onset of clinical disease was earlier in mice with impaired IFN-γ signalling, although Ifngr1-/- mice recovered more rapidly. Ifng-/- and Ifngr1-/- mice maintained body weight better than WT mice, associated with better food intake and lower brain levels of inflammatory cytokines. Clearance of infectious virus from the spinal cords was slower, and CNS, but not serum, levels of SINV-specific IgM, IgG2a and IgG2b were lower in Ifngr1-/- and Ifng-/- mice compared to WT mice. Decreased CNS antiviral antibody was associated with lower expression of mRNAs for B-cell attracting chemokines CXCL9, CXCL10 and CXCL13 and fewer B cells in the CNS. Therefore, IFN-γ signalling increases levels of CNS pro-inflammatory cytokines, leading to clinical disease, but synergistically clears virus with SINV-specific antibody at least in part by increasing chemokine production important for infiltration of antibody-secreting B cells into the CNS.
Collapse
Affiliation(s)
- Victoria K Baxter
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA.,Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Diane E Griffin
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| |
Collapse
|
11
|
Clark IA, Vissel B. Excess cerebral TNF causing glutamate excitotoxicity rationalizes treatment of neurodegenerative diseases and neurogenic pain by anti-TNF agents. J Neuroinflammation 2016; 13:236. [PMID: 27596607 PMCID: PMC5011997 DOI: 10.1186/s12974-016-0708-2] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 08/30/2016] [Indexed: 02/06/2023] Open
Abstract
The basic mechanism of the major neurodegenerative diseases, including neurogenic pain, needs to be agreed upon before rational treatments can be determined, but this knowledge is still in a state of flux. Most have agreed for decades that these disease states, both infectious and non-infectious, share arguments incriminating excitotoxicity induced by excessive extracellular cerebral glutamate. Excess cerebral levels of tumor necrosis factor (TNF) are also documented in the same group of disease states. However, no agreement exists on overarching mechanism for the harmful effects of excess TNF, nor, indeed how extracellular cerebral glutamate reaches toxic levels in these conditions. Here, we link the two, collecting and arguing the evidence that, across the range of neurodegenerative diseases, excessive TNF harms the central nervous system largely through causing extracellular glutamate to accumulate to levels high enough to inhibit synaptic activity or kill neurons and therefore their associated synapses as well. TNF can be predicted from the broader literature to cause this glutamate accumulation not only by increasing glutamate production by enhancing glutaminase, but in addition simultaneously reducing glutamate clearance by inhibiting re-uptake proteins. We also discuss the effects of a TNF receptor biological fusion protein (etanercept) and the indirect anti-TNF agents dithio-thalidomides, nilotinab, and cannabinoids on these neurological conditions. The therapeutic effects of 6-diazo-5-oxo-norleucine, ceptriaxone, and riluzole, agents unrelated to TNF but which either inhibit glutaminase or enhance re-uptake proteins, but do not do both, as would anti-TNF agents, are also discussed in this context. By pointing to excess extracellular glutamate as the target, these arguments greatly strengthen the case, put now for many years, to test appropriately delivered ant-TNF agents to treat neurodegenerative diseases in randomly controlled trials.
Collapse
Affiliation(s)
- Ian A Clark
- Biomedical Sciences and Biochemistry, Research School of Biology, Australian National University, Acton, Canberra, Australian Capital Territory, 0200, Australia.
| | - Bryce Vissel
- Neurodegeneration Research Group, Garvan Institute, 384 Victoria Street, Sydney, New South Wales, 2010, Australia
| |
Collapse
|
12
|
Blakely PK, Huber AK, Irani DN. Type-1 angiotensin receptor signaling in central nervous system myeloid cells is pathogenic during fatal alphavirus encephalitis in mice. J Neuroinflammation 2016; 13:196. [PMID: 27562117 PMCID: PMC5000512 DOI: 10.1186/s12974-016-0683-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 08/18/2016] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Alphaviruses can cause fatal encephalitis in humans. Natural infections occur via the bite of infected mosquitos, but aerosol transmissibility makes some of these viruses potential bioterrorism agents. Central nervous system (CNS) host responses contribute to alphavirus pathogenesis in experimental models and are logical therapeutic targets. We investigated whether reactive oxygen species (ROS) generated by nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (Nox) activity within the CNS contributes to fatal alphavirus encephalitis in mice. METHODS Infected animals were treated systemically with the angiotensin receptor-blocking drug, telmisartan, given its ability to cross the blood-brain barrier, selectively block type-1 angiotensin receptors (AT1R), and inhibit Nox-derived ROS production in vascular smooth muscle and other extraneural tissues. Clinical, virological, biochemical, and histopathological outcomes were followed over time. RESULTS The importance of the angiotensin II (Ang II)/AT1R axis in disease pathogenesis was confirmed by demonstrating increased Ang II levels in the CNS following infection, enhanced disease survival when CNS Ang II production was suppressed, increased AT1R expression on microglia and tissue-infiltrating myeloid cells, and enhanced disease survival in AT1R-deficient mice compared to wild-type (WT) controls. Systemic administration of telmisartan protected WT mice from lethal encephalitis caused by two different alphaviruses in a dose-dependent manner without altering virus replication or exerting any anti-inflammatory effects in the CNS. Infection triggered up-regulation of multiple Nox subunits in the CNS, while drug treatment inhibited local Nox activity, ROS production, and oxidative neuronal damage. Telmisartan proved ineffective in Nox-deficient mice, demonstrating that this enzyme is its main target in this experimental setting. CONCLUSIONS Nox-derived ROS, likely arising from CNS myeloid cells triggered by AT1R signaling, are pathogenic during fatal alphavirus encephalitis in mice. Systemically administered telmisartan at non-hypotensive doses targets Nox activity in the CNS to exert a neuroprotective effect. Disruption of this pathway may have broader implications for the treatment of related infections as well as for other CNS diseases driven by oxidative injury.
Collapse
Affiliation(s)
- Pennelope K Blakely
- Holtom-Garrett Program in Neuroimmunology, Department of Neurology, University of Michigan Medical School, Room 4007, A. Alfred Taubman Biomedical Sciences Research Building, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA
| | - Amanda K Huber
- Holtom-Garrett Program in Neuroimmunology, Department of Neurology, University of Michigan Medical School, Room 4007, A. Alfred Taubman Biomedical Sciences Research Building, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA
| | - David N Irani
- Holtom-Garrett Program in Neuroimmunology, Department of Neurology, University of Michigan Medical School, Room 4007, A. Alfred Taubman Biomedical Sciences Research Building, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA.
| |
Collapse
|
13
|
Griffin DE. Alphavirus Encephalomyelitis: Mechanisms and Approaches to Prevention of Neuronal Damage. Neurotherapeutics 2016; 13:455-60. [PMID: 27114366 PMCID: PMC4965404 DOI: 10.1007/s13311-016-0434-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Mosquito-borne viruses are important causes of death and long-term neurologic disability due to encephalomyelitis. Studies of mice infected with the alphavirus Sindbis virus have shown that outcome is dependent on the age and genetic background of the mouse and virulence of the infecting virus. Age-dependent susceptibility reflects the acquisition by neurons of resistance to virus replication and virus-induced cell death with maturation. In mature mice, the populations of neurons most susceptible to infection are in the hippocampus and anterior horn of the spinal cord. Hippocampal infection leads to long-term memory deficits in mice that survive, while motor neuron infection can lead to paralysis and death. Neuronal death is immune-mediated, rather than a direct consequence of virus infection, and associated with entry and differentiation of pathogenic T helper 17 cells in the nervous system. To modulate glutamate excitotoxicity, mice were treated with an N-methyl-D-aspartate receptor antagonist, α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor antagonists or a glutamine antagonist. The N-methyl-D-aspartate receptor antagonist MK-801 protected hippocampal neurons but not motor neurons, and mice still became paralyzed and died. α-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor antagonists GYKI-52466 and talampanel protected both hippocampal and motor neurons and prevented paralysis and death. Glutamine antagonist 6-diazo-5-l-norleucine protected hippocampal neurons and improved memory generation in mice surviving infection with an avirulent virus. Surprisingly, in all cases protection was associated with inhibition of the antiviral immune response, reduced entry of inflammatory cells into the central nervous system, and delayed virus clearance, emphasizing the importance of treatment approaches that include prevention of immunopathologic damage.
Collapse
Affiliation(s)
- Diane E Griffin
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA.
| |
Collapse
|
14
|
Critical Appraisal of the Milwaukee Protocol for Rabies: This Failed Approach Should Be Abandoned. Can J Neurol Sci 2015; 43:44-51. [PMID: 26639059 DOI: 10.1017/cjn.2015.331] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The Milwaukee protocol has been attributed to survival in rabies encephalitis despite a lack of scientific evidence supporting its therapeutic measures. We have reviewed the literature with reference to specific treatment recommendations made within the protocol. Current literature fails to support an important role for excitotoxicity and cerebral vasospasm in rabies encephalitis. Therapies suggested in the Milwaukee protocol include therapeutic coma, ketamine infusion, amantadine, and the screening/prophylaxis/management of cerebral vasospasm. None of these therapies can be substantiated in rabies or other forms of acute viral encephalitis. Serious concerns over the current protocol recommendations are warranted. The recommendations made by the Milwaukee protocol warrant serious reconsideration before any future use of this failed protocol.
Collapse
|
15
|
Distinct Immune Responses in Resistant and Susceptible Strains of Mice during Neurovirulent Alphavirus Encephalomyelitis. J Virol 2015; 89:8280-91. [PMID: 26041298 DOI: 10.1128/jvi.00173-15] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 05/13/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Susceptibility to alphavirus encephalomyelitis is dependent on a variety of factors, including the genetic background of the host. Neuroadapted Sindbis virus (NSV) causes uniformly fatal disease in adult C57BL/6 (B6) mice, but adult BALB/c (Bc) mice recover from infection. In B6 mice, fatal encephalomyelitis is immune mediated rather than a direct result of virus infection. To identify the immunological determinants of host susceptibility to fatal NSV-induced encephalomyelitis, we compared virus titers and immune responses in adult B6 and Bc mice infected intranasally with NSV. B6 mice had higher levels of virus replication, higher levels of type I interferon (IFN), and slower virus clearance than did Bc mice. B6 mice had more neuronal apoptosis, more severe neurologic disease, and higher mortality than Bc mice. B6 mice had more infiltration of inflammatory cells and higher levels of IL1b, IL-6, TNFa, Csf2, and CCL2 mRNAs and interleukin-6 (IL-6), tumor necrosis factor alpha (TNF-α), IFN-γ, and C-C motif ligand 2 (CCL2) protein in brains than Bc mice. However, Bc mice had more brain antibody at day 7 and a higher percentage of CD4(+) T cells. CD4(+) T cells in the brains of Bc mice included fewer Th17 cells and more regulatory T cells (Tregs) producing IL-10 than B6 mice, accompanied by higher levels of Il2 and Cxcl10 mRNAs. In the absence of IL-10, resistant Bc mice became susceptible to fatal encephalomyelitis after NSV infection. These studies demonstrate the importance of the immune response and its regulation in determining host survival during alphavirus encephalomyelitis. IMPORTANCE Mosquito-borne alphavirus infections are an important cause of encephalomyelitis in humans. The severity of disease is dependent both on the strain of the virus and on the age and genetic background of the host. A neurovirulent strain of Sindbis virus causes immune-mediated fatal encephalomyelitis in adult C57BL/6 mice but not in BALB/c mice. To determine the host-dependent immunological mechanisms underlying the differences in susceptibility between these two strains of mice, we compared their immune responses to infection. Resistance to fatal disease in BALB/c mice was associated with better antibody responses, more-rapid virus clearance, fewer Th17 cells, and more-potent regulatory T cell responses than occurred in susceptible C57BL/6 mice. In the absence of interleukin-10, a component of the regulatory immune response, resistant mice became susceptible to lethal disease. This study demonstrates the importance of the immune response and its regulation for host survival during alphavirus encephalomyelitis.
Collapse
|
16
|
Swanson PA, McGavern DB. Viral diseases of the central nervous system. Curr Opin Virol 2015; 11:44-54. [PMID: 25681709 DOI: 10.1016/j.coviro.2014.12.009] [Citation(s) in RCA: 201] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 12/17/2014] [Indexed: 11/18/2022]
Abstract
Virus-induced diseases of the central nervous system (CNS) represent a significant burden to human health worldwide. The complexity of these diseases is influenced by the sheer number of different neurotropic viruses, the diverse routes of CNS entry, viral tropism, and the immune system. Using a combination of human pathological data and experimental animal models, we have begun to uncover many of the mechanisms that viruses use to enter the CNS and cause disease. This review highlights a selection of neurotropic viruses that infect the CNS and explores the means by which they induce neurological diseases such as meningitis, encephalitis, and myelitis.
Collapse
Affiliation(s)
- Phillip A Swanson
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, United States
| | - Dorian B McGavern
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, United States.
| |
Collapse
|
17
|
Going viral and the fatal vulnerability of neurons from immunity, not from infection. Proc Natl Acad Sci U S A 2014; 111:16982-3. [PMID: 25422437 DOI: 10.1073/pnas.1420310111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
18
|
Kulcsar KA, Baxter VK, Greene IP, Griffin DE. Interleukin 10 modulation of pathogenic Th17 cells during fatal alphavirus encephalomyelitis. Proc Natl Acad Sci U S A 2014; 111:16053-8. [PMID: 25362048 PMCID: PMC4234572 DOI: 10.1073/pnas.1418966111] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mosquito-borne alphaviruses are important causes of epidemic encephalomyelitis. Neuronal cell death during fatal alphavirus encephalomyelitis is immune-mediated; however, the types of cells involved and their regulation have not been determined. We show that the virus-induced inflammatory response was accompanied by production of the regulatory cytokine IL-10, and in the absence of IL-10, paralytic disease occurred earlier and mice died faster. To determine the reason for accelerated disease in the absence of IL-10, immune responses in the CNS of IL-10(-/-) and wild-type (WT) mice were compared. There were no differences in the amounts of brain inflammation or peak virus replication; however, IL-10(-/-) animals had accelerated and increased infiltration of CD4(+)IL-17A(+) and CD4(+)IL-17A(+)IFNγ(+) cells compared with WT animals. Th17 cells infiltrating the brain demonstrated a pathogenic phenotype with the expression of the transcription factor, Tbet, and the production of granzyme B, IL-22, and GM-CSF, with greater production of GM-CSF in IL-10(-/-) mice. Therefore, in fatal alphavirus encephalomyelitis, pathogenic Th17 cells enter the CNS at the onset of neurologic disease and, in the absence of IL-10, appear earlier, develop into Th1/Th17 cells more often, and have greater production of GM-CSF. This study demonstrates a role for pathogenic Th17 cells in fatal viral encephalitis.
Collapse
Affiliation(s)
- Kirsten A Kulcsar
- Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205; and W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205
| | - Victoria K Baxter
- Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205; and W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205
| | - Ivorlyne P Greene
- Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205; and W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205
| | - Diane E Griffin
- Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205; and W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205
| |
Collapse
|
19
|
Affiliation(s)
- John E Greenlee
- Department of Neurology, George E. Wahlen Veterans Affairs Medical Center, University of Utah Health Sciences, Salt Lake City, UT, USA.
| |
Collapse
|
20
|
Xu J, Nash RJ, Frey TK. Cellular responses to Sindbis virus infection of neural progenitors derived from human embryonic stem cells. BMC Res Notes 2014; 7:757. [PMID: 25343994 PMCID: PMC4307679 DOI: 10.1186/1756-0500-7-757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 10/10/2014] [Indexed: 11/12/2022] Open
Abstract
Background Sindbis virus (SINV) causes age-dependent encephalitis in mice, and therefore serves as a model to study viral encephalitis. SINV is used as a vector for the delivery of genes into selected neural stem cell lines; however, the toxicity and side effects of this vector have rarely been discussed. In this context, we investigated the cellular responses of human embryonic stem cell (hESCs) derived neural progenitors (hNPCs) to SINV infection by assessing susceptibility of the cells to SINV infection, analyzing the effect of infection on cell proliferation and cell death, and examining the impact of SINV infection on hNPCs markers of stemness. Findings We found that hNPCs are highly susceptible to SINV infection. Upon infection, the viruses induced apoptosis to hNPCs while not affecting the expression of cell proliferation markers. Lastly, SINV infections result in significant changes in the expression of key regulators of hNPCs’ plasticity and homeostasis. Conclusion The robust and versatile signaling, proliferation, and other cell responses of hESCs-derived hNPCs to virus infection demonstrated that it is a good model to study the pathogenesis of viral-induced neurodevelopmental and degenerative diseases. On the other hand, the toxicity of SINV to hNPCs cells cannot be ignored, and therefore extra care should be taken when using SINV as a vector to deliver genes into human stem cell lines.
Collapse
Affiliation(s)
| | | | - Teryl K Frey
- Department of Biology, Georgia State University, Atlanta, GA, USA.
| |
Collapse
|
21
|
Kakizaki M, Kashiwazaki H, Watanabe R. Mutant murine hepatitis virus-induced apoptosis in the hippocampus. Jpn J Infect Dis 2014; 67:9-16. [PMID: 24451095 DOI: 10.7883/yoken.67.9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The mutant virus Mu-3 was isolated from the soluble receptor-resistant mutant 7 virus (srr7), which is a neuropathogenic strain of the mouse hepatitis virus JHMV, and cloned as a soluble receptor-resistant mutant from the highly neuropathogenic JHMV strain cl-2 virus (cl-2). In order to identify specific characteristics of Mu-3, the pathology of Mu-3-infected mice was compared with that of srr7- and cl-2-infected mice. The neuropathology after Mu-3 infection exhibited a mixed pattern comparable to that induced by srr7 and cl-2 infections. In addition, Mu-3 infection caused marked apoptotic lesions in the hippocampal region, particularly in the CA2 and CA3 subregions, in the brains of all infected mice. In contrast, in cl-2 infection, 10-20% of the infected mice exhibited apoptosis in the hippocampus, which was primarily observed in the CA1 subregion. Apoptosis also occurred in the pyramidal neurons and CD11b-bearing cells. The apoptotic cells, indicated by caspase 3-activation, were a mixed population of infected and a higher number of uninfected cells. These data indicated that apoptosis observed in Mu-3 infection could be induced by the indirect effects of infection in addition to direct effects of the infected cells occurring in a cell-autonomous manner.
Collapse
|
22
|
Getts DR, Chastain EML, Terry RL, Miller SD. Virus infection, antiviral immunity, and autoimmunity. Immunol Rev 2014; 255:197-209. [PMID: 23947356 DOI: 10.1111/imr.12091] [Citation(s) in RCA: 199] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 05/08/2013] [Indexed: 12/12/2022]
Abstract
As a group of disorders, autoimmunity ranks as the third most prevalent cause of morbidity and mortality in the Western World. However, the etiology of most autoimmune diseases remains unknown. Although genetic linkage studies support a critical underlying role for genetics, the geographic distribution of these disorders as well as the low concordance rates in monozygotic twins suggest that a combination of other factors including environmental ones are involved. Virus infection is a primary factor that has been implicated in the initiation of autoimmune disease. Infection triggers a robust and usually well-coordinated immune response that is critical for viral clearance. However, in some instances, immune regulatory mechanisms may falter, culminating in the breakdown of self-tolerance, resulting in immune-mediated attack directed against both viral and self-antigens. Traditionally, cross-reactive T-cell recognition, known as molecular mimicry, as well as bystander T-cell activation, culminating in epitope spreading, have been the predominant mechanisms elucidated through which infection may culminate in an T-cell-mediated autoimmune response. However, other hypotheses including virus-induced decoy of the immune system also warrant discussion in regard to their potential for triggering autoimmunity. In this review, we discuss the mechanisms by which virus infection and antiviral immunity contribute to the development of autoimmunity.
Collapse
Affiliation(s)
- Daniel R Getts
- Department of Microbiology-Immunology and Interdepartmental Immunobiology Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | | | | | |
Collapse
|
23
|
Ahrens KF, Heider B, Lee H, Isacoff EY, Siegel RM. Two-photon scanning microscopy of in vivo sensory responses of cortical neurons genetically encoded with a fluorescent voltage sensor in rat. Front Neural Circuits 2012; 6:15. [PMID: 22461770 PMCID: PMC3310150 DOI: 10.3389/fncir.2012.00015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Accepted: 03/05/2012] [Indexed: 01/25/2023] Open
Abstract
A fluorescent voltage sensor protein “Flare” was created from a Kv1.4 potassium channel with YFP situated to report voltage-induced conformational changes in vivo. The RNA virus Sindbis introduced Flare into neurons in the binocular region of visual cortex in rat. Injection sites were selected based on intrinsic optical imaging. Expression of Flare occurred in the cell bodies and dendritic processes. Neurons imaged in vivo using two-photon scanning microscopy typically revealed the soma best, discernable against the background labeling of the neuropil. Somatic fluorescence changes were correlated with flashed visual stimuli; however, averaging was essential to observe these changes. This study demonstrates that the genetic modification of single neurons to express a fluorescent voltage sensor can be used to assess neuronal activity in vivo.
Collapse
Affiliation(s)
- Kurt F Ahrens
- Center for Molecular and Behavioral Neuroscience, Rutgers, The State University of New Jersey, Newark NJ, USA
| | | | | | | | | |
Collapse
|
24
|
Günther C, Laube M, Liebert UG, Kraft R. Differential regulation of voltage-gated Ca2+ currents and metabotropic glutamate receptor activity by measles virus infection in rat cortical neurons. Neurosci Lett 2012; 506:17-21. [PMID: 22037503 DOI: 10.1016/j.neulet.2011.10.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Revised: 09/22/2011] [Accepted: 10/15/2011] [Indexed: 10/16/2022]
Abstract
Measles virus (MV) infection may lead to severe chronic CNS disease processes, including MV-induced encephalitis. Because the intracellular Ca(2+) concentration ([Ca(2+)](i)) is a major determinant of the (patho-)physiological state in all cells we asked whether important Ca(2+) conducting pathways are affected by MV infection in cultured cortical rat neurons. Patch-clamp measurements revealed a decrease in voltage-gated Ca(2+) currents during MV-infection, while voltage-gated K(+) currents and NMDA-evoked currents were unaffected. Calcium-imaging experiments using 50mM extracellular KCl showed reduced [Ca(2+)](i) increases in MV-infected neurons, confirming a decreased activity of voltage-gated Ca(2+) channels. In contrast, the group-I metabotropic glutamate receptor (mGluR) agonist DHPG evoked changes in [Ca(2+)](i) that were increased in MV-infected cells. Our results show that MV infection conversely regulates Ca(2+) signals induced by group-I mGluRs and by voltage-gated Ca(2+) channels, suggesting that these physiological impairments may contribute to an altered function of cortical neurons during MV-induced encephalitis.
Collapse
Affiliation(s)
- Christine Günther
- Institute of Virology, University Leipzig, Johannisallee 30, 04103 Leipzig, Germany
| | | | | | | |
Collapse
|
25
|
Konno A, Honjo T, Uchida A, Ishizuka T, Yawo H. Evaluation of a Sindbis virus vector displaying an immunoglobulin-binding domain: Antibody-dependent infection of neurons in living mice. Neurosci Res 2011; 71:328-34. [DOI: 10.1016/j.neures.2011.08.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2011] [Revised: 08/29/2011] [Accepted: 08/31/2011] [Indexed: 10/17/2022]
|
26
|
Glutamate excitotoxicity is involved in the induction of paralysis in mice after infection by a human coronavirus with a single point mutation in its spike protein. J Virol 2011; 85:12464-73. [PMID: 21957311 DOI: 10.1128/jvi.05576-11] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Human coronaviruses (HCoV) are recognized respiratory pathogens, and some strains, including HCoV-OC43, can infect human neuronal and glial cells of the central nervous system (CNS) and activate neuroinflammatory mechanisms. Moreover, HCoV-OC43 is neuroinvasive, neurotropic, and neurovirulent in susceptible mice, where it induces chronic encephalitis. Herein, we show that a single point mutation in the viral spike (S) glycoprotein (Y241H), acquired during viral persistence in human neural cells, led to a hind-limb paralytic disease in infected mice. Inhibition of glutamate excitotoxicity using a 2-amino-3-(5-methyl-3-oxo-1,2-oxazol-4-yl)propranoic acid (AMPA) receptor antagonist (GYKI-52466) improved clinical scores related to the paralysis and motor disabilities in S mutant virus-infected mice, as well as protected the CNS from neuronal dysfunctions, as illustrated by restoration of the phosphorylation state of neurofilaments. Expression of the glial glutamate transporter GLT-1, responsible for glutamate homeostasis, was downregulated following infection, and GYKI-52466 also significantly restored its steady-state expression level. Finally, GYKI-52466 treatment of S mutant virus-infected mice led to reduced microglial activation, which may lead to improvement in the regulation of CNS glutamate homeostasis. Taken together, our results strongly suggest an involvement of excitotoxicity in the paralysis-associated neuropathology induced by an HCoV-OC43 mutant which harbors a single point mutation in its spike protein that is acquired upon persistent virus infection.
Collapse
|
27
|
Huang Y, Huang X, Cai J, Ye F, Qin Q. Involvement of the mitogen-activated protein kinase pathway in soft-shelled turtle iridovirus-induced apoptosis. Apoptosis 2011; 16:581-93. [PMID: 21442306 DOI: 10.1007/s10495-011-0595-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Iridoviruses are large DNA viruses that infect invertebrates and poikilothermic vertebrates, and result in significant economic losses in aquaculture production, and drastic declines in amphibian populations. Soft-shelled turtle iridovirus (STIV) is the causative agent of severe systemic diseases in farm-raised soft-shelled turtles (Trionyx sinensis). In the present study, the mechanisms of STIV-induced cell death and the roles of the mitogen-activated protein kinase (MAPK) signaling pathway were investigated. STIV infection evoked typical apoptosis in fish cells, as demonstrated by the formation of apoptotic bodies, positive terminal deoxynucleotidyl transferase-mediated nicked-end labeling, and caspase-3 activation. The translocation of cytochrome c from mitochondria to cytoplasm, and caspase-9 activation suggested that a mitochondria-mediated pathway was involved in STIV-induced apoptosis. Moreover, MAPK pathways, including extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK) and p38 MAPK signaling were activated during STIV infection. Using specific inhibitors, we found that MAPK signaling molecules, including ERK, JNK and p38 MAPK, were important for virus release, whereas, only ERK and p38 MAPK were involved in STIV-induced apoptosis by modulating caspase-3 activity. Taken together, our findings shed light on the roles of the MAPK signaling pathway in iridovirus-induced apoptosis and virus replication, which provides new insights into understanding iridovirus-host interaction.
Collapse
Affiliation(s)
- Youhua Huang
- Key Laboratory of Marine Bio-resources Sustainable Utilization, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | | | | | | | | |
Collapse
|
28
|
Tseng YF, Wang CC, Liao SK, Chuang CK, Chen WJ. Autoimmunity-related demyelination in infection by Japanese encephalitis virus. J Biomed Sci 2011; 18:20. [PMID: 21356046 PMCID: PMC3056755 DOI: 10.1186/1423-0127-18-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2010] [Accepted: 02/28/2011] [Indexed: 11/10/2022] Open
Abstract
Japanese encephalitis (JE) virus is the most common cause of epidemic viral encephalitis in the world. The virus mainly infects neuronal cells and causes an inflammatory response after invasion of the parenchyma of the brain. The death of neurons is frequently observed, in which demyelinated axons are commonly seen. The mechanism that accounts for the occurrence of demyelination is ambiguous thus far. With a mouse model, the present study showed that myelin-specific antibodies appeared in sera, particularly in those mice with evident symptoms. Meanwhile, specific T cells proliferating in response to stimulation by myelin basic protein (MBP) was also shown in these mice. Taken together, our results suggest that autoimmunity may play an important role in the destruction of components, e.g., MBP, of axon-surrounding myelin, resulting in demyelination in the mouse brain after infection with the JE virus.
Collapse
Affiliation(s)
- Yu-Fen Tseng
- Graduate Institute of Biomedical Sciences, Chang Gung University, Kwei-San, Tao-Yuan 33332, Taiwan
| | | | | | | | | |
Collapse
|
29
|
Viral infection and neural stem/progenitor cell's fate: implications in brain development and neurological disorders. Neurochem Int 2011; 59:357-66. [PMID: 21354238 DOI: 10.1016/j.neuint.2011.02.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 02/16/2011] [Accepted: 02/17/2011] [Indexed: 01/08/2023]
Abstract
Viral infections in the prenatal (during pregnancy) and perinatal period have been a common cause of brain malformation. Besides the immediate neurological dysfunctions, virus infections may critically affect CNS development culminating in long-term cognitive deficits. Most of these neurotropic viruses are most damaging at a critical stage of the host, when the brain is in a dynamic stage of development. The neuropathology can be attributed to the massive neuronal loss induced by the virus as well as lack of CNS repair owing to a deficit in the neural stem/progenitor cell (NSPC) pool or aberrant formation of new neurons from NSPCs. Being one of the mitotically active populations in the post natal brain, the NSPCs have emerged as the potential targets of neurotropic viruses. The NSPCs are self-renewing and multipotent cells residing in the neurogenic niches of the brain, and, therefore, hampering the developmental fate of these cells may adversely affect the overall neurogenesis pattern. A number of neurotropic viruses utilize NSPCs as their cellular reservoirs and often establish latent and persistent infection in them. Both HIV and Herpes virus infect NSPCs over long periods of time and reactivation of the virus may occur later in life. The virus infected NSPCs either undergoes cell cycle arrest or impaired neuronal or glial differentiation, all of which leads to impaired neurogenesis. The disturbances in neurogenesis and CNS development following neurotropic virus infections have direct implications in the viral pathogenesis and long-term neurobehavioral outcome in infected individuals.
Collapse
|
30
|
Abstract
Preventive therapy for rabies, including wound cleansing and active and passive immunization after a recognized exposure, is highly efficacious. Unfortunately, there is no established therapy that is effective for patients who develop rabies encephalomyelitis. There have been several survivors from rabies and all but one received rabies vaccine prior to the onset of clinical illness. Aggressive approaches to therapy of human rabies may be appropriate in certain situations. There is no scientific rationale for the use of therapeutic coma, and there are many reports of failures using this approach. Therapeutic coma should be abandoned for the therapy of rabies. New approaches such as therapeutic hypothermia should be evaluated, in combination with other therapeutic agents. More basic research is needed on the mechanisms involved in rabies pathogenesis, which will hopefully facilitate the development of new therapeutic approaches in the future for this ancient disease.
Collapse
|
31
|
Sejvar JJ, Davis LE, Szabados E, Jackson AC. Delayed-onset and recurrent limb weakness associated with West Nile virus infection. J Neurovirol 2010; 16:93-100. [PMID: 20166837 DOI: 10.3109/13550280903586378] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Human neurologic illness following infection with West Nile virus (WNV) may include meningitis, encephalitis, and acute flaccid paralysis (AFP). Most WNV-associated AFP is due to involvement of the spinal motor neurons producing an anterior (polio)myelitis. WNV poliomyelitis is typically characterized by acute and rapidly progressing limb weakness occurring early in the course of illness, which is followed by death or clinical plateauing with subsequent improvement to varying degrees. We describe four cases of WNV poliomyelitis in which the limb weakness was characterized by an atypical temporal pattern, including one case with onset several weeks after illness onset, and three cases developing relapsing or recurrent limb weakness following a period of clinical plateauing or improvement. Delayed onset or recurrent features may be due to persistence of viral infection or delayed neuroinvasion with delayed injury by excitotoxic or other mechanisms, by immune-mediated mechanisms, or a combination thereof. Further clinical and pathogenesis studies are needed to better understand the mechanisms for these phenomena. Clinicians should be aware of these clinical patterns in patients with WNV poliomyelitis.
Collapse
Affiliation(s)
- James J Sejvar
- Division of Vector-borne Infectious Diseases and Division of Viral and Rickettsial Diseases, National Center for Zoonotic, Vectorborne, and Enteric Diseases, Centers for Disease Control and Prevention, Atlanta, GA30333, USA.
| | | | | | | |
Collapse
|
32
|
Reichert E, Clase A, Bacetty A, Larsen J. Alphavirus antiviral drug development: scientific gap analysis and prospective research areas. Biosecur Bioterror 2010; 7:413-27. [PMID: 20028250 DOI: 10.1089/bsp.2009.0032] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The New World alphaviruses Venezuelan equine encephalitis virus (VEEV), eastern equine encephalitis virus (EEEV), and western equine encephalitis virus (WEEV) pose a significant threat to human health as the etiological agents of serious viral encephalitis through natural infection as well as through their potential use as a biological weapon. At present, there is no FDA-approved medical treatment for infection with these viruses. The Defense Threat Reduction Agency, Joint Science and Technology Office for Chemical and Biological Defense (DTRA/JSTO), is currently funding research aimed at developing antiviral drugs and vaccines against VEEV, EEEV, and WEEV. A review of antiviral drug discovery efforts for these viruses revealed significant gaps in the data, assays, and models required for successful drug development. This review provides a description of these gaps and highlights specific critical research areas for the development of a target-based drug discovery program for the VEEV, EEEV, and WEEV nonstructural proteins. These efforts will increase the probability of the successful development of a pharmaceutical intervention against these viral threat agents.
Collapse
Affiliation(s)
- Erin Reichert
- Biological Therapeutics, Defense Threat Reduction Agency, Fort Belvoir, Virginia 22060-6201, USA
| | | | | | | |
Collapse
|
33
|
Disrupted glutamate transporter expression in the spinal cord with acute flaccid paralysis caused by West Nile virus infection. J Neuropathol Exp Neurol 2009; 68:1061-72. [PMID: 19918118 DOI: 10.1097/nen.0b013e3181b8ba14] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Neuroinvasive West Nile virus (WNV) infections may cause acute flaccid paralysis (AFP); in fatal cases, anterior horn cell loss is presumed to be caused by direct viral infection. In related animal models, however, glutamate excitotoxicity mediates bystander injury of uninfected anterior horn cells, suggesting additional pathogenic mechanisms. We examined expression of the principal excitatory amino acid transporter (EAAT) of astrocytes (i.e. EAAT-2 in humans, glutamate transporter 1 in hamsters) in the spinal cord of human WNV-induced AFP patients and in hamsters with WNV-induced AFP by immunohistochemistry. Glial fibrillary acidic protein, synaptic and dendritic markers (i.e. synaptophysin, microtubule-associated protein 2), immune activation (HLA-DR), and viral antigens were also evaluated. Humans and hamsters with WNV-induced AFP had decreased spinal gray matter EAAT expression despite greater numbers of glial fibrillary acidic protein-positive astrocytes compared with controls. Areas of diminished EAAT expression showed reduced synaptic and dendritic protein expression and prominent local inflammation but few infected neurons. These findings suggest that WNV infection results in local immune activation within the spinal cord that in turn causes a failure of astrocyte glutamate reuptake even as the number of astrocytes increases; rising extracellular glutamate levels may then drive excitotoxic injury of both infected and uninfected anterior horn cells. The pathogenesis of this increasingly common disorder likely involves immune response and excitotoxicity mechanisms that are potential therapeutic targets.
Collapse
|
34
|
|
35
|
Park E, Griffin DE. Interaction of Sindbis virus non-structural protein 3 with poly(ADP-ribose) polymerase 1 in neuronal cells. J Gen Virol 2009; 90:2073-80. [PMID: 19515826 DOI: 10.1099/vir.0.012682-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The alphavirus non-structural protein 3 (nsP3) has a conserved N-terminal macro domain and a variable highly phosphorylated C-terminal domain. nsP3 forms complexes with cellular proteins, but its role in virus replication is poorly understood and protein interaction domains have not been defined. As the N-terminal macro domain can bind poly(ADP-ribose) (PAR), and PAR polymerase-1 (PARP-1) is activated and autoribosylated during Sindbis virus (SINV) infection, it was hypothesized that PARP-1 and nsP3 may interact. Co-immunoprecipitation studies showed that PARP-1 interacted with nsP3 during SINV infection of NSC34 neuronal cells and was most abundantly present in replication complexes that contained plus- and minus-strand SINV RNAs 10-14 h after infection, prior to PARP-1 activation or automodification with PAR. Treatment with an inhibitor of PARP enzymic activity did not affect the interaction between nsP3 and PARP-1 or SINV replication. Co-expression of individual domains of nsP3 with PARP-1 showed that nsP3 interacted with PARP-1 through the C-terminal domain, not the N-terminal macro domain, and that phosphorylation was not required. It was concluded that PARP-1 interacts with the C-terminal domain of nsP3, is present in replication complexes during virus amplification and may play a role in regulating virus RNA synthesis in neuronal cells.
Collapse
Affiliation(s)
- Eunhye Park
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health and Cellular and Molecular Medicine Graduate Program, Johns Hopkins Medical Institutions, Baltimore, MD 21205, USA
| | | |
Collapse
|
36
|
Richter K, Hausmann J, Staeheli P. Interferon-gamma prevents death of bystander neurons during CD8 T cell responses in the brain. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 174:1799-807. [PMID: 19359516 DOI: 10.2353/ajpath.2009.080897] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
T cells restricted to neurotropic viruses are potentially harmful as their activity may result in the destruction of neurons. In the Borna disease virus (BDV) model, antiviral CD8 T cells entering the brain of infected mice cause neurological disease but no substantial loss of neurons unless the animals lack interferon-gamma (IFN-gamma). We show here that glutamate receptor antagonists failed to prevent BDV-induced neuronal loss in IFN-gamma-deficient mice, suggesting that excitotoxicity resulting from glutamate receptor overstimulation is an unlikely explanation for the neuronal damage. Experiments with IFN-gamma-deficient mice lacking eosinophils indicated that these cells, which specifically accumulate in the infected brains of IFN-gamma-deficient mice, are not responsible for CA1 neuronal death. Interestingly, BDV-induced damage of CA1 neurons was reduced significantly in IFN-gamma-deficient mice lacking perforin, suggesting a key role for CD8 T cells in this pathological process. Specific death of hippocampal CA1 neurons could be triggered by adoptive transfer of BDV-specific CD8 T cells from IFN-gamma-deficient mice into uninfected mice that express transgene-encoded BDV antigen at high level in astrocytes. These results indicate that attack by CD8 T cells that cause the death of CA1 neurons might be directed toward regional astrocytes and that IFN-gamma protects vulnerable CA1 neurons from collateral damage resulting from exposure to potentially toxic substances generated as a result of CD8 T cell-mediated impairment of astrocyte function.
Collapse
Affiliation(s)
- Kirsten Richter
- Department of Virology, University of Freiburg, Freiburg, Germany
| | | | | |
Collapse
|
37
|
Tumor necrosis factor-alpha modulates glutamate transport in the CNS and is a critical determinant of outcome from viral encephalomyelitis. Brain Res 2009; 1263:143-54. [PMID: 19368827 DOI: 10.1016/j.brainres.2009.01.040] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Revised: 01/20/2009] [Accepted: 01/21/2009] [Indexed: 12/29/2022]
Abstract
Neuroadapted Sindbis virus (NSV) is a neuronotropic virus that causes a fulminant encephalomyelitis in susceptible mice due to death of motor neurons in the brain and spinal cord. We and others have found that uninfected motor neurons die in response to NSV infection, at least in part due to disrupted astrocytic glutamate transport, resulting in excitotoxic motor neuron death. Here, we examined the mechanisms of astrocyte dysregulation associated with NSV infection. Treatment of organotypic slice cultures with NSV results in viral replication, cell death, altered astrocyte morphology, and the downregulation of the astrocytic glutamate transporter, GLT-1. We have found that TNF-alpha can mediate GLT-1 downregulation. Furthermore, TNF-alpha deficient mice infected with NSV exhibit neither GLT-1 downregulation nor neuronal death of brainstem and cervical spinal cord motor neurons and have markedly reduced mortality. These findings have implications for disease intervention and therapeutic development for the prevention of CNS damage associated with inflammatory responses.
Collapse
|
38
|
Preferential cytolysis of peripheral memory CD4+ T cells by in vitro X4-tropic human immunodeficiency virus type 1 infection before the completion of reverse transcription. J Virol 2008; 82:9154-63. [PMID: 18596085 DOI: 10.1128/jvi.00773-08] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
CD4+ T-cell depletion is the hallmark of AIDS pathogenesis. Multiple mechanisms may contribute to the death of productively infected CD4+ T cells and innocent-bystander cells. In this study, we characterize a novel mechanism in which human immunodeficiency virus type 1 (HIV-1) infection preferentially depletes peripheral memory CD4+ T cells before the completion of reverse transcription. Using a recombinant HIV-1 carrying the green fluorescent protein reporter gene, we demonstrate that memory CD4+ T cells were susceptible to infection-induced cell death at a low multiplicity of infection. Infected memory CD4+ T cells underwent rapid necrotic cell death. Killing of host cells was dependent on X4 envelope-mediated viral fusion, but not on virion-associated Vpr or Nef. In contrast to peripheral resting CD4+ T cells, CD4+ T cells stimulated by mitogen or certain cytokines were resistant to HIV-1-induced early cell death. These results demonstrate that early steps in HIV-1 infection have a detrimental effect on certain subsets of CD4+ T cells. The early cell death may serve as a selective disadvantage for X4-tropic HIV-1 in acute infection but may play a role in accelerated disease progression, which is associated with the emergence of X4-tropic HIV-1 in the late stage of AIDS.
Collapse
|
39
|
Getts DR, Balcar VJ, Matsumoto I, Müller M, King NJC. Viruses and the immune system: their roles in seizure cascade development. J Neurochem 2008; 104:1167-76. [DOI: 10.1111/j.1471-4159.2007.05171.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
40
|
Protection from fatal viral encephalomyelitis: AMPA receptor antagonists have a direct effect on the inflammatory response to infection. Proc Natl Acad Sci U S A 2008; 105:3575-80. [PMID: 18296635 DOI: 10.1073/pnas.0712390105] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Neuronal cell death during fatal acute viral encephalomyelitis can result from damage caused by virus replication, glutamate excitotoxicity, and the immune response. A neurovirulent strain of the alphavirus Sindbis virus (NSV) causes fatal encephalomyelitis associated with motor neuron death in adult C57BL/6 mice that can be prevented by treatment with the prototypic noncompetitive alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) glutamate receptor antagonist GYKI 52466 [Nargi-Aizenman J, et al. (2004) Ann Neurol 55:541-549]. To determine the mechanism of protection, NSV-infected mice were treated with 7-acetyl-5-(4-aminophenyl)-8(R)-methyl-8,9-dihydro-7H-1,3-dioxolo-(4,5-h)-benzodiazepine (talampanel), a potent, orally available member of the 2,3 benzodiazepine class of noncompetitive AMPA glutamate receptor antagonists. Talampanel-treated mice were protected from NSV-induced paralysis and death. Examination of the brain during infection showed significantly less mononuclear cell infiltration and no increase in astrocyte expression of glial fibrillary acidic protein in treated mice compared with untreated mice. Lack of CNS inflammation was attributable to failure of treated mice to induce activation and proliferation of lymphocytes in secondary lymphoid tissue in response to infection. Antibody responses to NSV were also suppressed by talampanel treatment, and virus clearance was delayed. These studies reveal a previously unrecognized effect of AMPA receptor antagonists on the immune response and suggest that prevention of immune-mediated damage, in addition to inhibition of excitotoxicity, is a mechanism by which these drugs protect from death of motor neurons caused by viral infection.
Collapse
|
41
|
Prow NA, Irani DN. The inflammatory cytokine, interleukin-1 beta, mediates loss of astroglial glutamate transport and drives excitotoxic motor neuron injury in the spinal cord during acute viral encephalomyelitis. J Neurochem 2008; 105:1276-86. [PMID: 18194440 DOI: 10.1111/j.1471-4159.2008.05230.x] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Astrocytes remove glutamate from the synaptic cleft via specific transporters, and impaired glutamate reuptake may promote excitotoxic neuronal injury. In a model of viral encephalomyelitis caused by neuroadapted Sindbis virus (NSV), mice develop acute paralysis and spinal motor neuron degeneration inhibited by the AMPA receptor antagonist, NBQX. To investigate disrupted glutamate homeostasis in the spinal cord, expression of the main astroglial glutamate transporter, GLT-1, was examined. GLT-1 levels declined in the spinal cord during acute infection while GFAP expression was preserved. There was simultaneous production of inflammatory cytokines at this site, and susceptible animals treated with drugs that blocked IL-1beta release also limited paralysis and prevented the loss of GLT-1 expression. Conversely, infection of resistant mice that develop mild paralysis following NSV challenge showed higher baseline GLT-1 levels as well as lower production of IL-1beta and relatively preserved GLT-1 expression in the spinal cord compared to susceptible hosts. Finally, spinal cord GLT-1 expression was largely maintained following infection of IL-1beta-deficient animals. Together, these data show that IL-1beta inhibits astrocyte glutamate transport in the spinal cord during viral encephalomyelitis. They provide one of the strongest in vivo links between innate immune responses and the development of excitotoxicity demonstrated to date.
Collapse
Affiliation(s)
- Natalie A Prow
- Department of Microbiology and Parasitology, The University of Queensland, Brisbane, Australia
| | | |
Collapse
|
42
|
Getts DR, Matsumoto I, Müller M, Getts MT, Radford J, Shrestha B, Campbell IL, King NJC. Role of IFN-gamma in an experimental murine model of West Nile virus-induced seizures. J Neurochem 2007; 103:1019-30. [PMID: 17854352 DOI: 10.1111/j.1471-4159.2007.04798.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Seizures are a major complication of viral encephalitis. However, the mechanisms of seizure-associated neuronal dysfunction remain poorly understood. We report that intranasal inoculation with West Nile virus (WNV) (Sarafend) causes limbic seizures in C57BL/6 mice, but not in interferon (IFN)-gamma-deficient (IFN-gamma-/-) mice. Both strains showed similar levels of virus in the brain, as well as similar concentrations of the cytokines, tumor necrosis factor and interleukin-6, both of which can alter neuronal excitability. Experiments in chimeric IFN-gamma-/- mice reconstituted with IFN-gamma-producing leukocytes showed that IFN-gamma is not required during central nervous system infection for limbic seizure development, suggesting a role for IFN-gamma in the developing brain. This was supported responses to pentylenetetrazole, kainic acid (KA), and N-methyl-d-aspartate (NMDA). Both strains of mice exhibited similar behavior after pentylenetetrazole challenge. However, while NMDA and KA treatment resulted in characteristic seizures in C57BL/6 mice, these responses were diminished (NMDA treatment) or absent (KA treatment) in IFN-gamma-/- mice. Furthermore, NMDA-receptor blockade with MK-801 in WNV-infected C57BL/6 mice abrogated seizures and prolonged survival. Our data show that IFN-gamma plays an important role in the development of the excitatory seizure pathways in the brain and that these cascades become pathogenic in encephalitic WNV infection.
Collapse
Affiliation(s)
- Daniel R Getts
- The Discipline of Pathology, The University of Sydney, Sydney, New South Wales, Australia
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Brunner JM, Plattet P, Majcherczyk P, Zurbriggen A, Wittek R, Hirling H. Canine distemper virus infection of primary hippocampal cells induces increase in extracellular glutamate and neurodegeneration. J Neurochem 2007; 103:1184-95. [PMID: 17680994 DOI: 10.1111/j.1471-4159.2007.04819.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The canine distemper virus (CDV) belongs to the Morbillivirus genus which includes important human pathogens like the closely related measles virus. CDV infection can reach the nervous system where it causes serious malfunctions. Although this pathology is well described, the molecular events in brain infection are still poorly understood. Here we studied infection in vitro by CDV using a model of dissociated cell cultures from newborn rat hippocampus. We used a recombinant CDV closely related to the neurovirulent A75/17 which also expresses the enhanced green fluorescent protein. We found that infected neurons and astrocytes could be clearly detected, and that infection spreads only slowly to neighboring cells. Interestingly, this infection causes a massive cell death of neurons, which includes also non-infected neurons. Antagonists of NMDA-type or alpha-amino-3-hydroxy-5-methylisoxazole-4-propinate (AMPA)-type glutamate receptors could slow down this neuron loss, indicating an involvement of the glutamatergic system in the induction of cell death in infected and non-infected cells. Finally, we show that, following CDV infection, there is a steady increase in extracellular glutamate in infected cultures. These results indicate that CDV infection induces excitotoxic insults on neurons via glutamatergic signaling.
Collapse
Affiliation(s)
- Jean-Marc Brunner
- Institut de Biotechnologie, University of Lausanne, Lausanne, Switzerland
| | | | | | | | | | | |
Collapse
|
44
|
Irani DN, Prow NA. Neuroprotective interventions targeting detrimental host immune responses protect mice from fatal alphavirus encephalitis. J Neuropathol Exp Neurol 2007; 66:533-44. [PMID: 17549013 PMCID: PMC3143496 DOI: 10.1097/01.jnen.0000263867.46070.e2] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Systemic treatment with the tetracycline derivative, minocycline, attenuates neurologic deficits in animal models of amyotrophic lateral sclerosis, hypoxic-ischemic brain injury, and multiple sclerosis. Inhibition of microglial activation within the CNS is 1 mechanism proposed to underlie the beneficial effects of the drug in these systems. Given the widening scope of acute viral encephalitis caused by mosquito-borne pathogens, we investigated the therapeutic effects of minocycline in a murine model of fatal alphavirus encephalomyelitis in which widespread microglial activation is known to occur. We found that minocycline conferred significant protection against both paralysis and death, even when started after viral challenge and despite having no effect on CNS virus replication or spread. Further studies demonstrated that minocycline inhibited early virus-induced microglial activation and that diminished CNS production of the inflammatory mediator, interleukin (IL)-1beta, contributed to its protective effect. Therapeutic blockade of IL-1 receptors also conferred significant protection in our model, validating the importance of the IL-1 pathway in disease pathogenesis. We propose that interventions targeting detrimental host immune responses arising from activated microglia may be of benefit in humans with acute viral encephalitis caused by related mosquito-borne pathogens. Such treatments could conceivably act through neuroprotective rather than antiviral mechanisms to generate these clinical effects.
Collapse
Affiliation(s)
- David N Irani
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.
| | | |
Collapse
|
45
|
Prow NA, Irani DN. The opioid receptor antagonist, naloxone, protects spinal motor neurons in a murine model of alphavirus encephalomyelitis. Exp Neurol 2007; 205:461-70. [PMID: 17459376 PMCID: PMC1939803 DOI: 10.1016/j.expneurol.2007.03.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2006] [Revised: 03/02/2007] [Accepted: 03/05/2007] [Indexed: 11/25/2022]
Abstract
Spread of neuroadapted Sindbis virus (NSV) to motor neurons (MN) of the spinal cord (SC) causes severe hind limb weakness in C57BL/6 mice and models the paralysis that can accompany alphavirus and flavivirus encephalomyelitis in humans. The fate of spinal MN dictates the severity of NSV-induced paralysis, and recent data suggest that MN damage can occur indirectly via the actions of activated microglial cells. Because the opioid receptor antagonist, naloxone (NAL), blocks microglial-mediated neurodegeneration in other models, we examined its effects during NSV infection. Drug treatment prevented paralysis and enhanced the survival of MN without altering NSV tropism, replication, or clearance from SC tissue. Further studies showed that NAL most effectively inhibited paralysis in a 72-h window after NSV challenge, suggesting that the drug inhibits an early event in SC pathogenesis. Histochemical studies demonstrated that NAL blocked early microglial activation in SC tissue sections, and protein assays showed that the early induction of pathogenic IL-1 beta was blunted in SC homogenates. Finally, loss of glutamate transporter-1 (GLT-1) expression in SC, an astrocyte glutamate reuptake protein responsible for lowering toxic extracellular levels of glutamate and preventing MN damage, was reversed by NAL treatment. This GLT-1 loss proved to be highly IL-1 beta-dependent. Taken together, these data suggest that NAL is neuroprotective in the SC by inhibiting microglial activation that, in turn, maintains normal astrocyte glutamate homeostasis. We propose that drugs targeting such microglial responses may have therapeutic benefit in humans with related viral infections.
Collapse
Affiliation(s)
- Natalie A Prow
- Department of Molecular Microbiology and Immunology, The Johns Hopkins University Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD 21205, USA
| | | |
Collapse
|
46
|
Abstract
PURPOSE OF REVIEW The occurrences of transmission of rabies virus by organ and vascular conduit transplantation, and recovery from rabies by a patient in Wisconsin, will be addressed. Perspectives will be given on the prevention of rabies by organ transplantation and on the management of patients with rabies. RECENT FINDINGS In 2004 transplantation of organs and a vascular conduit was responsible for the transmission of rabies virus, resulting in seven fatal cases of rabies in the USA and Germany. Likely infectious rabies virus was present within nerves of the transplanted organs and arterial segment and productive infection developed in the immunosuppressed recipients. In 2004 a young patient, who did not receive postexposure rabies prophylaxis after a bat bite, survived rabies in Wisconsin. The importance of therapy she received on her favorable outcome remains unknown. SUMMARY Recent transmissions of rabies virus from organ-transplantation donors highlight the importance of clinical recognition of rabies. Laboratory screening of potential donors for rabies prior to organ transplantation would be associated with logistical problems and serious consequences due to false-positive results. The survival of a patient with rabies has offered hope that effective therapy of rabies may become a reality in the future.
Collapse
Affiliation(s)
- Alan C Jackson
- Department of Medicine, Queen's University, Kingston, Ontario, Canada.
| |
Collapse
|
47
|
Weli SC, Scott CA, Ward CA, Jackson AC. Rabies virus infection of primary neuronal cultures and adult mice: failure to demonstrate evidence of excitotoxicity. J Virol 2006; 80:10270-3. [PMID: 17005706 PMCID: PMC1617316 DOI: 10.1128/jvi.01272-06] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Cultures derived from the cerebral cortices and hippocampi of 17-day-old mouse fetuses infected with the CVS strain of rabies virus showed loss of trypan blue exclusion, morphological apoptotic features, and activated caspase 3 expression, indicating apoptosis. The NMDA (N-methyl-D-aspartate acid) antagonists ketamine (125 microM) and MK-801 (60 microM) were found to have no significant neuroprotective effect on CVS-infected neurons, while the caspase inhibitor Ac-Asp-Glu-Val aspartic acid aldehyde (25 microM) exerted a marked neuroprotective effect. Glutamate-stimulated increases in levels of intracellular calcium were reduced in CVS-infected hippocampal neurons. Ketamine (120 mg/kg of body weight/day intraperitoneally) given to CVS-infected adult mice produced no beneficial effects. We have found no supportive evidence that excitotoxicity plays an important role in rabies virus infection.
Collapse
Affiliation(s)
- Simon C Weli
- Kingston General Hospital, 76 Stuart Street, Connell 725, Kingston, ON, Canada K7L 2V7
| | | | | | | |
Collapse
|
48
|
Hsu MJ, Chao Y, Chang YH, Ho FM, Huang LJ, Huang YL, Luh TY, Chen CP, Lin WW. Cell apoptosis induced by a synthetic carbazole compound LCY-2-CHO is mediated through activation of caspase and mitochondrial pathways. Biochem Pharmacol 2005; 70:102-12. [PMID: 15894295 DOI: 10.1016/j.bcp.2005.04.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2004] [Accepted: 04/14/2005] [Indexed: 01/13/2023]
Abstract
The mechanisms involved in the apoptotic effect of LCY-2-CHO [9-(2-chlorobenzyl)-9H-carbazole-3-carbaldehyde], a synthetic carbazole derivative identified as an anti-inflammatory compound, were studied. Cell cycle analysis by propidium iodide staining in human THP-1 monocytic leukemia cells showed the ability of LCY-2-CHO to increase cell population in sub-G1 stage with time- and concentration-dependent manners. LCY-2-CHO-mediated cell death was also demonstrated by DNA laddering and was not related to the release of lactate dehydrogenase. Apoptosis in THP-1 cells induced by LCY-2-CHO was accompanied by the Bid cleavage, collapse of mitochondrial transmembrane potential, the release of cytochrome c and the activation of caspase-3. The apoptotic effect of LCY-2-CHO was diminished by the presence of zVEID-fmk (caspase-6 inhibitor), zIETD-fmk (caspase-8 inhibitor), and zVAD-fmk (non-selective caspase inhibitor), but was not altered by several antioxidants, and cathepsin inhibitor. The Bid cleavage and loss of mitochondrial transmembrane potential, but not the cytochrome c release, were reversed by zIETD-fmk. Comparing the cell selectivity of LCY-2-CHO, we found T-cell acute lymphoblastic CEM leukemia cells were sensitive to 1 microM LCY-2-CHO, acute myeloid leukemia HL-60 cells underwent apoptosis at 10 microM, while adherent cancer cells, such as PC3, HT29 and MCF-7, were resistant to 30 microM LCY-2-CHO within 24-h incubation. Taken together in the present study, we demonstrated LCY-2-CHO might be apoptotic for malignant hematopoietic cells but not anchorage-dependent cells. This action is mediated by an intrinsic caspase-dependent apoptotic event involving mitochondria.
Collapse
Affiliation(s)
- Ming-Jen Hsu
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Kosugi I, Kawasaki H, Tsuchida T, Tsutsui Y. Cytomegalovirus infection inhibits the expression of N-methyl-D-aspartate receptors in the developing mouse hippocampus and primary neuronal cultures. Acta Neuropathol 2005; 109:475-82. [PMID: 15759129 DOI: 10.1007/s00401-005-0987-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2004] [Revised: 12/07/2004] [Accepted: 01/10/2005] [Indexed: 10/25/2022]
Abstract
Cytomegalovirus (CMV) is the most significant infectious cause of developmental brain disorders in humans. The infection occasionally persists and causes neurological disorders. The N-methyl-D-aspartate (NMDA) subtype of glutamate receptors is essential for the development and plasticity of synapses, but also is involved in neuronal excitotoxicity during viral infection. Here we investigated the effects of murine CMV (MCMV) infection on the expression of NMDA receptors in the hippocampal neurons of neonatal mice and primary neuronal cultures. Viral antigen was mostly found in hippocampal pyramidal neurons from the CA1 to CA3. Image analysis of immunohistochemistry demonstrated that the expression of NMDA receptor subunit 1 (NMDA-R1) protein in CA1 neurons of MCMV-infected brain was reduced to 40% of that in uninfected brain. The signal of in situ hybridization for NMDA-R1 mRNA was also decreased in CA1 neurons of MCMV-infected brain. In primary neuronal cultures, reduction of NMDA-R1 expression in MCMV-infected neurons was also detected by immunocytochemistry and Western blotting. These results suggest that reduction of NMDA receptor expression by MCMV infection may cause a decrease in the susceptibility of the neurons to excitotoxic cell death, and may be related to the establishment of viral persistence and functional disturbances in MCMV-infected neurons.
Collapse
Affiliation(s)
- Isao Kosugi
- Department of Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama, 431-3192, Hamamatsu, Japan.
| | | | | | | |
Collapse
|
50
|
Abstract
Alphaviruses are mosquito-borne, enveloped, plus-strand RNA viruses that cause a spectrum of diseases in humans that include fever, rash, arthritis, meningitis, and encephalomyelitis. Sindbis virus (SINV) is the prototype alphavirus, causes encephalomyelitis in mice, and provides a model system for studying the pathogenesis of alphavirus-induced neurological disease. Major target cells for SINV infection in the central nervous system (CNS) are neurons, and both host and viral factors determine the fate of infected neurons. Young animals are most susceptible to fatal disease. This correlates with the ability of SINV to induce apoptosis in immature neurons. In vitro, apoptotic death of neuroblastoma cells can be induced by fusion of the virus envelope with the endosomal membrane and does not require infectious virus. This fusion process activates acid sphingomyelinase that cleaves sphingomyelin to release ceramide, an initiator of apoptosis. Within an hour, poly(ADP-ribose) polymerase is activated, and this is followed by release of cytochrome c and activation of effector caspases. SINV-induced cell death can be delayed or prevented by treatment with antioxidants or caspase inhibitors and by intracellular expression of Bcl-2, Beclin-1, or protease inhibitors. Older animals survive infection unless infected with a neurovirulent strain of SINV. In these mice, anterior horn motor neurons die by a primarily necrotic process that is influenced by excitotoxic amino acids and inflammation, whereas hippocampal neurons can be either apoptotic or necrotic. Death also occurs in uninfected neurons in the vicinity of infected neurons and can be delayed or prevented by treatment with glutamate receptor antagonists.
Collapse
Affiliation(s)
- D E Griffin
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe St, Rm E5132, Baltimore, MD 21205, USA.
| |
Collapse
|