1
|
Bergamasco JGA, Bittencourt D, Silva DG, Biazon TMPDC, Soligon SD, Oliveira RM, Libardi CA. Individual muscle hypertrophy in high-load resistance training with and without blood flow restriction: A near-infrared spectroscopy approach. J Sports Sci 2024:1-7. [PMID: 39675016 DOI: 10.1080/02640414.2024.2437588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 11/27/2024] [Indexed: 12/17/2024]
Abstract
We aimed to compare individual hypertrophic responses to high-load resistance training (HL-RT) or high-load with blood flow restriction (HL-BFR). Furthermore, we investigated whether greater responsiveness to one of the protocols could be explained by acute changes in blood deoxyhemoglobin concentration (HHb) and total hemoglobin concentration (tHb) (proxy markers of metabolic stress). Ten untrained participants had their legs randomized into both HL-RT and HL-BFR and underwent 10 weeks of training. Muscle cross-sectional area (mCSA) was measured at baseline and post training, while HHb and tHb during the final session. Using a threshold of 2 × typical errors (3.24%) to compare protocols, five participants showed greater mCSA increases after HL-RT (16.44 ± 7.90%) compared to HL-BFR (10.74 ± 7.12%, p = 0.0054) and five did not respond better to HL-RT (8.95 ± 10.83%) compared to HL-BFR (13.33 ± 8.59%) (p = 0.3105). Additionally, HL-RT induced lower HHb (5855.78 ± 12905.99; p = 0.0101) and tHb (-43169.70 ± 37793.17; p = 0.0030) AUC values compared to HL-BFR (HHb: 39254.80 ± 27020.15; tHb: 46309.40 ± 31613.97). In conclusion, despite the higher levels of metabolic stress markers, most participants did not present greater muscle hypertrophy by combining blood flow restriction with HL-RT.
Collapse
Affiliation(s)
- João Guilherme Almeida Bergamasco
- MUSCULAB - Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos (UFSCar), São Carlos, SP, Brazil
| | - Diego Bittencourt
- MUSCULAB - Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos (UFSCar), São Carlos, SP, Brazil
| | - Deivid Gomes Silva
- MUSCULAB - Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos (UFSCar), São Carlos, SP, Brazil
| | - Thaís Marina Pires de Campos Biazon
- MUSCULAB - Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos (UFSCar), São Carlos, SP, Brazil
| | - Samuel Domingos Soligon
- MUSCULAB - Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos (UFSCar), São Carlos, SP, Brazil
| | - Ramon Martins Oliveira
- MUSCULAB - Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos (UFSCar), São Carlos, SP, Brazil
| | - Cleiton Augusto Libardi
- MUSCULAB - Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos (UFSCar), São Carlos, SP, Brazil
| |
Collapse
|
2
|
Dias NF, Bergamasco JGA, Scarpelli MC, Silva DG, Chaves TS, Bittencourt D, Medalha RA, Carello Filho PC, De Souza EO, Ugrinowitsch C, Libardi CA. Changes in muscle cross-sectional area during two menstrual cycles may not be exclusively attributed to resistance training. Appl Physiol Nutr Metab 2024; 49:1729-1739. [PMID: 39303293 DOI: 10.1139/apnm-2024-0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
This study investigated the impact of menstrual cycle (MC) phases and resistance training (RT) on muscle cross-sectional area (CSA) in two MCs utilizing a within-subject design. Twenty women with regular MCs had their legs randomly allocated to either the control (CON) or RT condition, which included 16 training sessions over two MCs. CSA, estradiol (E2), and progesterone (P4) were assessed during the menstruation (M), ovulation (O), and luteal (L) phases in the first (M1, O1, L1) and second (M2, O2, L2) MCs and at the beginning of the third MC (M3). P4 values were significantly higher during the luteal phase than during menstruation (P < 0.0001) and ovulation (P < 0.0001). No significant differences in E2 concentrations were observed between the MC phases (P = 0.08). For the RT condition, the CSA showed significant increases at O2, L2, and M3 compared to baseline (M1) (all P < 0.0001). No significant changes were observed for the CON condition during the two MCs (P > 0.05). However, RT condition showed a significant change in average CSA across two MCs. Additionally, individual analyses revealed that 19 participants showed variation in CSA above or below the minimum detectable difference during the two MCs. These findings suggest that changes in muscle CSA observed during two MCs may not be exclusively attributed to RT.
Collapse
Affiliation(s)
- Nathalia F Dias
- MUSCULAB - Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos (UFSCar), São Carlos, SP, Brazil
| | - João G A Bergamasco
- MUSCULAB - Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos (UFSCar), São Carlos, SP, Brazil
| | - Maíra C Scarpelli
- MUSCULAB - Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos (UFSCar), São Carlos, SP, Brazil
| | - Deivid G Silva
- MUSCULAB - Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos (UFSCar), São Carlos, SP, Brazil
| | - Talisson S Chaves
- MUSCULAB - Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos (UFSCar), São Carlos, SP, Brazil
| | - Diego Bittencourt
- MUSCULAB - Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos (UFSCar), São Carlos, SP, Brazil
| | - Ricardo A Medalha
- MUSCULAB - Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos (UFSCar), São Carlos, SP, Brazil
| | - Paulo C Carello Filho
- MUSCULAB - Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos (UFSCar), São Carlos, SP, Brazil
| | - Eduardo O De Souza
- Department of Health Sciences and Human Performance, The University of Tampa, Tampa, FL, USA
| | - Carlos Ugrinowitsch
- Department of Health Sciences and Human Performance, The University of Tampa, Tampa, FL, USA
- School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - Cleiton A Libardi
- MUSCULAB - Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos (UFSCar), São Carlos, SP, Brazil
| |
Collapse
|
3
|
Houtvast DCJ, Betz MW, Van Hooren B, Vanbelle S, Verdijk LB, van Loon LJC, Trommelen J. Underpowered studies in muscle metabolism research: Determinants and considerations. Clin Nutr ESPEN 2024; 64:334-343. [PMID: 39461591 DOI: 10.1016/j.clnesp.2024.10.152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 10/01/2024] [Accepted: 10/10/2024] [Indexed: 10/29/2024]
Abstract
Biomedical research frequently employs null hypothesis testing to determine whether an observed difference in a sample is likely to exist in the broader population. Null hypothesis testing generally assumes that differences between groups or interventions are non-existent, unless proven otherwise. Because biomedical studies with human subjects are often limited by financial and logistical resources, they tend to have low statistical power, i.e. a low probability of statistically confirming a true difference. As a result, small but potentially clinically important differences may be overseen or ignored simply due to the absence of a statistically significant difference. This absence is often misinterpreted as 'equivalence' of treatments. In this educational paper, we will use practical examples related to the effects of exercise and nutrition on muscle protein metabolism to illustrate the most important determinants of statistical power, as well as their implications for both investigators and readers of scientific articles. Changes in muscle mass occur at a relatively slow rate, making it practically challenging to detect differences between treatment groups in a long-term setting. One way to make it 'easier' to differentiate between groups and hence increase statistical power is to have a sufficiently long study duration to allow treatment effects to become apparent. This is especially relevant when comparing treatments with relatively small expected differences such as the effect of modest changes in daily protein intake. Secondly, one could try to minimize the variance and response heterogeneity within groups, for example by using strict inclusion criteria and standardization protocols (e.g., meal provision), by using cross-over designs, or even within-subject designs where two interventions are compared simultaneously (e.g., studying an exercised limb vs a contralateral control limb) although this might limit the generalizability of the findings (e.g. such single-limb exercise training is not common in practice). In terms of data interpretation, investigators should obviously refrain from drawing strong conclusions from underpowered studies. Yet, such studies still provide valuable data for meta-analyses. Finally, because muscle protein synthesis rates are highly responsive to anabolic stimuli, acute metabolic studies are more sensitive to detect potentially clinically relevant differences in the anabolic response between treatments. Apart from further elaborating on these topics, this educational article encourages readers to more critically question null findings and scientists to more clearly discuss limitations that may have compromised statistical power.
Collapse
Affiliation(s)
- Dion C J Houtvast
- Department of Human Biology, Institute of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, the Netherlands
| | - Milan W Betz
- Department of Human Biology, Institute of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, the Netherlands
| | - Bas Van Hooren
- Department of Nutrition and Movement Sciences, Institute of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, the Netherlands
| | - Sophie Vanbelle
- Department of Methodology and Statistics, Institute for Public Health and Primary Care (CAPHRI), Maastricht University, the Netherlands
| | - Lex B Verdijk
- Department of Human Biology, Institute of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, the Netherlands
| | - Luc J C van Loon
- Department of Human Biology, Institute of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, the Netherlands
| | - Jorn Trommelen
- Department of Human Biology, Institute of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, the Netherlands.
| |
Collapse
|
4
|
da Silva Vendruscolo L, Brendon H, Hevia-Larraín V, Aihara AY, de Salles Painelli V. Similar Regional Hypertrophy of the Elbow Flexor Muscles in Response to Low-Load Training With Vascular Occlusion at Short Versus Long Muscle Lengths. Sports Health 2024:19417381241287522. [PMID: 39449136 PMCID: PMC11556575 DOI: 10.1177/19417381241287522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND The regional hypertrophy response of elbow flexor muscles was compared after unilateral elbow flexion training in extended versus flexed shoulder position under vascular occlusion, which can induce muscle hypertrophy in the absence of muscle damage-induced edema/swelling. HYPOTHESIS Hypertrophy of elbow flexor muscles would be greater in extended compared with flexed shoulder position. STUDY DESIGN Randomized within-subject trial. LEVEL OF EVIDENCE Level 2. METHODS A total of 21 resistance-trained men (age, 25 ± 5 years; height, 1.78 ± 0.07 m; weight, 79.3 ± 13.1 kg) performed unilateral elbow flexions with one shoulder extended/elbow flexor muscles lengthened/long muscle length (LONG) and the other flexed/elbow flexor muscles shortened/short muscle length (SHORT) under a low-load (30% 1-repetition maximum) vascular occlusion training regimen (15 repetitions per set, 4 sets per session, 4 sessions per week for 3 weeks, using 80% of vascular occlusion pressure). Magnetic resonance imaging measured elbow flexor muscles cross-sectional area (EFCSA) pre- and post-training at 45%, 65%, and 85% of humerus length. RESULTS EFCSA significantly increased in both SHORT (P = 0.04) and LONG (P = 0.05) at 45% and 85% lengths (P < 0.01 for both). Changes in EFCSA between SHORT and LONG were statistically similar at the 45% (+6.20% vs +5.08%; Cohen d = 0.006; P = 0.98), 65% (+5.91% vs +3.83%, Cohen d = 0.28, P = 0.30), and 85% lengths (+8.51% vs +7.38%, Cohen d = 0.18,P = 0.56). CONCLUSION Muscle hypertrophy of the elbow flexor muscles displayed a similar behavior after low-load elbow flexion training with vascular occlusion performed in the extended versus flexed shoulder position. CLINICAL RELEVANCE Therapists, clinicians, and coaches may choose elbow flexion exercises expecting to achieve similar results for hypertrophy in this muscle group, such that exercise selection may rely on availability of equipment in the training room or personal preference.
Collapse
Affiliation(s)
- Levi da Silva Vendruscolo
- Strength Training Study and Research Group, Institute of Health Sciences, Paulista University, São Paulo, São Paulo, Brazil
| | - Helderson Brendon
- Strength Training Study and Research Group, Institute of Health Sciences, Paulista University, São Paulo, São Paulo, Brazil
| | - Victoria Hevia-Larraín
- Strength Training Study and Research Group, Institute of Health Sciences, Paulista University, São Paulo, São Paulo, Brazil
| | - André Yui Aihara
- America’s Diagnostics S/A, São Paulo, São Paulo, Brazil
- Diagnostic Imaging Department, School of Medicine, Federal University of São Paulo, São Paulo, São Paulo, Brazil
| | - Vitor de Salles Painelli
- Strength Training Study and Research Group, Institute of Health Sciences, Paulista University, São Paulo, São Paulo, Brazil
- Exercise Psychophysiology Research Group, School of Arts, Sciences and Humanities, University of São Paulo, São Paulo, São Paulo, Brazil
- Postgraduation Program in Movement Science, State University of Piauí, Teresina, Piauí, Brazil
| |
Collapse
|
5
|
Lian K, Hammarström D, Hamarsland H, Mølmen KS, Moen SC, Ellefsen S. Glucose ingestion before and after resistance training sessions does not augment ribosome biogenesis in healthy moderately trained young adults. Eur J Appl Physiol 2024; 124:2329-2342. [PMID: 38459192 PMCID: PMC11322406 DOI: 10.1007/s00421-024-05446-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 02/09/2024] [Indexed: 03/10/2024]
Abstract
PURPOSE Resistance training-induced skeletal muscle hypertrophy seems to depend on ribosome biogenesis and content. High glucose treatment may augment ribosome biogenesis through potentiating resistance training-induced adaptations. This was investigated with total RNA and ribosomal RNA abundances as main outcomes, with relevant transcriptional/translational regulators (c-Myc/UBF/rpS6) as a secondary outcome. METHODS Sixteen healthy, moderately trained individuals [male/female, n = 9/7; age, 24.1 (3.3)] participated in a within-participant crossover trial with unilateral resistance training (leg press and knee extension, 3 sets of 10 repetitions maximum) and pre- and post-exercise ingestion of either glucose (3 × 30 g, 90 g total) or placebo supplements (Stevia rebaudiana, 3 × 0.3 g, 0.9 g total), together with protein (2 × 25 g, 50 g total), on alternating days for 12 days. Six morning resistance exercise sessions were conducted per condition, and the sessions were performed in an otherwise fasted state. Micro-biopsies were sampled from m. vastus lateralis before and after the intervention. RESULTS Glucose ingestion did not have beneficial effects on resistance training-induced increases of ribosomal content (mean difference 7.6% [- 7.2, 24.9], p = 0.34; ribosomal RNA, 47S/18S/28S/5.8S/5S, range 7.6-37.9%, p = 0.40-0.98) or levels of relevant transcriptional or translational regulators (c-MYK/UBF/rpS6, p = 0.094-0.292). Of note, both baseline and trained state data of total RNA showed a linear relationship with UBF; a ∼14% increase in total RNA corresponded to 1 SD unit increase in UBF (p = 0.003). CONCLUSION Glucose ingestion before and after resistance training sessions did not augment ribosomal RNA accumulation during twelve days of heavy-load resistance training in moderately trained young adults.
Collapse
Affiliation(s)
- Kristian Lian
- Section for Health and Exercise Physiology, Department of Public Health and Sport Sciences, Inland Norway University of Applied Sciences, Lillehammer, Norway.
| | - Daniel Hammarström
- Section for Health and Exercise Physiology, Department of Public Health and Sport Sciences, Inland Norway University of Applied Sciences, Lillehammer, Norway
| | - Håvard Hamarsland
- Section for Health and Exercise Physiology, Department of Public Health and Sport Sciences, Inland Norway University of Applied Sciences, Lillehammer, Norway
| | - Knut Sindre Mølmen
- Section for Health and Exercise Physiology, Department of Public Health and Sport Sciences, Inland Norway University of Applied Sciences, Lillehammer, Norway
| | - Sara Christine Moen
- Section for Health and Exercise Physiology, Department of Public Health and Sport Sciences, Inland Norway University of Applied Sciences, Lillehammer, Norway
| | - Stian Ellefsen
- Section for Health and Exercise Physiology, Department of Public Health and Sport Sciences, Inland Norway University of Applied Sciences, Lillehammer, Norway
| |
Collapse
|
6
|
Wilkins EW, Young RJ, Houston D, Kawana E, Lopez Mora E, Sunkara MS, Riley ZA, Poston B. Non-Dominant Hemisphere Excitability Is Unaffected during and after Transcranial Direct Current Stimulation of the Dominant Hemisphere. Brain Sci 2024; 14:694. [PMID: 39061434 PMCID: PMC11274959 DOI: 10.3390/brainsci14070694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/05/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Transcranial direct current stimulation (tDCS) increases primary motor cortex (M1) excitability and improves motor performance when applied unilaterally to the dominant hemisphere. However, the influence of tDCS on contralateral M1 excitability both during and after application has not been quantified. The purpose was to determine the influence of tDCS applied to the dominant M1 on the excitability of the contralateral non-dominant M1. This study employed a double-blind, randomized, SHAM-controlled, within-subject crossover experimental design. Eighteen young adults performed two experimental sessions (tDCS, SHAM) in counterbalanced order separated by a one-week washout. Transcranial magnetic stimulation (TMS) was used to quantify the excitability of the contralateral M1 to which anodal tDCS was applied for 20 min with a current strength of 1 mA. Motor evoked potential (MEP) amplitudes were assessed in 5 TMS test blocks (Pre, D5, D10, D15, and Post). The Pre and Post TMS test blocks were performed immediately before and after tDCS application, whereas the TMS test blocks performed during tDCS were completed at the 5, 10, and 15 min stimulation timepoints. MEPs were analyzed with a 2 condition (tDCS, SHAM) × 5 test (Pre, D5, D10, D15, Post) within-subject ANOVA. The main effect for condition (p = 0.213), the main effect for test (p = 0.502), and the condition × test interaction (p = 0.860) were all not statistically significant. These results indicate that tDCS does not modulate contralateral M1 excitability during or immediately after application, at least under the current set of common tDCS parameters of stimulation.
Collapse
Affiliation(s)
- Erik W. Wilkins
- Department of Kinesiology and Nutrition Sciences, University of Nevada, Las Vegas, NV 89154, USA;
- Interdisciplinary Ph.D. Program in Neuroscience, University of Nevada, Las Vegas, NV 89154, USA;
| | - Richard J. Young
- Interdisciplinary Ph.D. Program in Neuroscience, University of Nevada, Las Vegas, NV 89154, USA;
| | - Daniel Houston
- School of Medicine, University of Nevada, Las Vegas, NV 89154, USA; (D.H.); (E.K.); (E.L.M.)
| | - Eric Kawana
- School of Medicine, University of Nevada, Las Vegas, NV 89154, USA; (D.H.); (E.K.); (E.L.M.)
| | - Edgar Lopez Mora
- School of Medicine, University of Nevada, Las Vegas, NV 89154, USA; (D.H.); (E.K.); (E.L.M.)
| | - Meghana S. Sunkara
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284, USA;
| | - Zachary A. Riley
- Department of Kinesiology, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA;
| | - Brach Poston
- Department of Kinesiology and Nutrition Sciences, University of Nevada, Las Vegas, NV 89154, USA;
- Interdisciplinary Ph.D. Program in Neuroscience, University of Nevada, Las Vegas, NV 89154, USA;
| |
Collapse
|
7
|
Asmussen MJ, Casto E. E, MacInnis MJ, Nigg BM. Counterweight mass influences single-leg cycling biomechanics. PLoS One 2024; 19:e0304136. [PMID: 38848389 PMCID: PMC11161077 DOI: 10.1371/journal.pone.0304136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 05/07/2024] [Indexed: 06/09/2024] Open
Abstract
INTRODUCTION Single-leg cycling is a commonly used intervention in exercise physiology that has applications in exercise training and rehabilitation. The addition of a counterweight to the contralateral pedal helps single-leg cycling mimic cycling patterns of double-leg cycling. To date, no research has tested (a) the influence of a wide range of counterweight masses on a person's cycling biomechanics and (b) the optimal counterweight mass to emulate double-leg cycling. OBJECTIVES The purpose of this study was to determine the effects of varying counterweights on the kinematics (joint angles) and kinetics (joint moments, work) of cycling using a 3D analysis. METHODS Twelve participants cycled at 50W or 100W with different counterweight masses (0 to 30 lbs, 2.5 lbs increments), while we analyzed the pedal force data, joint angles, joint moments, and joint power of the lower limb using 3D motion capture and 3D instrumented pedals to create participant-specific musculoskeletal models. RESULTS The results showed that no single-leg cycling condition truly emulated double-leg cycling with respect to all measured variables, namely pedal forces (p ≤ 0.05), joint angles (p ≤ 0.05), joint moments(p ≤ 0.05), and joint powers (p ≤ 0.05), but higher counterweights resulted in single-leg cycling that was statistically similar (p > 0.05), but descriptively, asymptotically approached the biomechanics of double-leg cycling. CONCLUSION We suggest that a 20-lb counterweight is a conservative estimate of the counterweight required for using single-leg cycling in exercise physiology studies, but further modifications are needed to the cycle ergometer for the biomechanics of single-leg cycling to match those of double-leg cycling.
Collapse
Affiliation(s)
- Michael J. Asmussen
- Department of Kinesiology, Faculty of Education, Vancouver Island University, Nanaimo, BC, Canada
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| | - Erica Casto E.
- Department of Kinesiology, University of Massachusetts-Amherst, Amherst, MA, United States of America
| | - Martin J. MacInnis
- Department of Kinesiology, Faculty of Education, Vancouver Island University, Nanaimo, BC, Canada
| | - Benno M. Nigg
- Department of Kinesiology, Faculty of Education, Vancouver Island University, Nanaimo, BC, Canada
| |
Collapse
|
8
|
Chaves TS, Scarpelli MC, Bergamasco JGA, Silva DGD, Medalha Junior RA, Dias NF, Bittencourt D, Carello Filho PC, Angleri V, Nóbrega SR, Roberts MD, Ugrinowitsch C, Libardi CA. Effects of Resistance Training Overload Progression Protocols on Strength and Muscle Mass. Int J Sports Med 2024; 45:504-510. [PMID: 38286426 DOI: 10.1055/a-2256-5857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
The aim of this study was to compare the effects of progressive overload in resistance training on muscle strength and cross-sectional area (CSA) by specifically comparing the impact of increasing load (LOADprog) versus an increase in repetitions (REPSprog). We used a within-subject experimental design in which 39 previously untrained young persons (20 men and 19 women) had their legs randomized to LOADprog and REPSprog. Outcomes were assessed before and after 10 weeks of training. Muscle strength was assessed using the one repetition maximum (1RM) test on the leg extension exercise, and the CSA of the vastus lateralis was assessed by ultrasonography. Both protocols increased 1RM values from pre (LOADprog: 52.90±16.32 kg; REPSprog: 51.67±15.84 kg) to post (LOADprog: 69.05±18.55 kg, REPSprog: 66.82±17.95 kg), with no difference between them (P+>+0.05). Similarly, both protocols also increased in CSA values from pre (LOADprog: 21.34±4.71 cm²; REPSprog: 21.08±4.62 cm²) to post (LOADprog: 23.53±5.41 cm², REPSprog: 23.39±5.19 cm²), with no difference between them (P+>+0.05). In conclusion, our findings indicate that the progression of overload through load or repetitions can be used to promote gains in strength and muscle hypertrophy in young men and women in the early stages of training.
Collapse
Affiliation(s)
- Talisson Santos Chaves
- MUSCULAB - Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos - UFSCar, São Carlos, Brazil
| | - Maíra Camargo Scarpelli
- MUSCULAB - Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos - UFSCar, São Carlos, Brazil
| | - João Guilherme Almeida Bergamasco
- MUSCULAB - Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos - UFSCar, São Carlos, Brazil
| | - Deivid Gomes da Silva
- MUSCULAB - Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos - UFSCar, São Carlos, Brazil
| | - Ricardo Alessandro Medalha Junior
- MUSCULAB - Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos - UFSCar, São Carlos, Brazil
| | - Nathalia Fernanda Dias
- MUSCULAB - Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos - UFSCar, São Carlos, Brazil
| | - Diego Bittencourt
- MUSCULAB - Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos - UFSCar, São Carlos, Brazil
| | - Paulo Cesar Carello Filho
- MUSCULAB - Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos - UFSCar, São Carlos, Brazil
| | - Vitor Angleri
- MUSCULAB - Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos - UFSCar, São Carlos, Brazil
| | - Sanmy Rocha Nóbrega
- MUSCULAB - Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos - UFSCar, São Carlos, Brazil
| | | | - Carlos Ugrinowitsch
- School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
- Department of Health Sciences and Human Performance, The University of Tampa, FL, USA
| | - Cleiton Augusto Libardi
- MUSCULAB - Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos - UFSCar, São Carlos, Brazil
| |
Collapse
|
9
|
Davis BH, Stampley JE, Granger J, Scott MC, Allerton TD, Johannsen NM, Spielmann G, Irving BA. Impact of low-load resistance exercise with and without blood flow restriction on muscle strength, endurance, and oxidative capacity: A pilot study. Physiol Rep 2024; 12:e16041. [PMID: 38888154 PMCID: PMC11184470 DOI: 10.14814/phy2.16041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/23/2024] [Accepted: 04/23/2024] [Indexed: 06/20/2024] Open
Abstract
Low-load resistance exercise (LLRE) to failure can increase muscle mass, strength, endurance, and mitochondrial oxidative capacity (OXPHOS). However, the impact of adding blood flow restriction to low-load resistance exercise (LLBFR) when matched for volume on these outcomes is incompletely understood. This pilot study examined the impact of 6 weeks of single-legged LLBFR and volume-matched LLRE on thigh bone-free lean mass, strength, endurance, and mitochondrial OXPHOS. Twenty (12 males and 8 females) untrained young adults (mean ± SD; 21 ± 2 years, 168 ± 11 cm, 68 ± 12 kg) completed 6 weeks of either single-legged LLBFR or volume-matched LLRE. Participants performed four sets of 30, 15, 15, and 15 repetitions at 25% 1-RM of leg press and knee extension with or without BFR three times per week. LLBFR increased knee extension 1-RM, knee extension endurance, and thigh bone-free lean mass relative to control (all p < 0.05). LLRE increased leg press and knee extension 1-RM relative to control (p = 0.012 and p = 0.054, respectively). LLRE also increased mitochondrial OXPHOS (p = 0.047 (nonparametric)). Our study showed that LLBFR increased muscle strength, muscle endurance, and thigh bone-free lean mass in the absence of improvements in mitochondrial OXPHOS. LLRE improved muscle strength and mitochondrial OXPHOS in the absence of improvements in thigh bone-free lean mass or muscle endurance.
Collapse
Affiliation(s)
- Brett H. Davis
- School of KinesiologyLouisiana State UniversityBaton RougeLouisianaUSA
| | - James E. Stampley
- School of KinesiologyLouisiana State UniversityBaton RougeLouisianaUSA
| | - Joshua Granger
- School of KinesiologyLouisiana State UniversityBaton RougeLouisianaUSA
| | - Matthew C. Scott
- School of KinesiologyLouisiana State UniversityBaton RougeLouisianaUSA
- Pennington Biomedical Research CenterLouisiana State UniversityBaton RougeLouisianaUSA
| | - Timothy D. Allerton
- Pennington Biomedical Research CenterLouisiana State UniversityBaton RougeLouisianaUSA
| | - Neil M. Johannsen
- School of KinesiologyLouisiana State UniversityBaton RougeLouisianaUSA
- Pennington Biomedical Research CenterLouisiana State UniversityBaton RougeLouisianaUSA
| | - Guillaume Spielmann
- School of KinesiologyLouisiana State UniversityBaton RougeLouisianaUSA
- Pennington Biomedical Research CenterLouisiana State UniversityBaton RougeLouisianaUSA
| | - Brian A. Irving
- School of KinesiologyLouisiana State UniversityBaton RougeLouisianaUSA
- Pennington Biomedical Research CenterLouisiana State UniversityBaton RougeLouisianaUSA
| |
Collapse
|
10
|
Brown A, Parise G, Thomas ACQ, Ng SY, McGlory C, Phillips SM, Kumbhare D, Joanisse S. Low baseline ribosome-related gene expression and resistance training-induced declines in ribosome-related gene expression are associated with skeletal muscle hypertrophy in young men and women. J Cell Physiol 2024; 239:e31182. [PMID: 38214457 DOI: 10.1002/jcp.31182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 12/04/2023] [Accepted: 12/12/2023] [Indexed: 01/13/2024]
Abstract
Ribosomes are essential cellular machinery for protein synthesis. It is hypothesised that ribosome content supports muscle growth and that individuals with more ribosomes have greater increases in muscle size following resistance training (RT). Aerobic conditioning (AC) also elicits distinct physiological adaptations; however, no measures of ribosome content following AC have been conducted. We used ribosome-related gene expression as a proxy measure for ribosome content and hypothesised that AC and RT would increase ribosome-related gene expression. Fourteen young men and women performed 6 weeks of single-legged AC followed by 10 weeks of double-legged RT. Muscle biopsies were taken following AC and following RT in the aerobically conditioned (AC+RT) and unconditioned (RT) legs. No differences in regulatory genes (Ubf, Cyclin D1, Tif-1a and Polr-1b) involved in ribosomal biogenesis or ribosomal RNA (45S, 5.8S, 18S and 28S rRNAs) expression were observed following AC and RT, except for c-Myc (RT > AC+RT) and 5S rRNA (RT < AC+RT at pre-RT) with 18S external transcribed spacer and 5.8S internal transcribed spacer expression decreasing from pre-RT to post-RT in the RT leg only. When divided for change in leg-lean soft tissue mass (ΔLLSTM) following RT, legs with the greatest ΔLLSTM had lower expression in 11/13 measured ribosome-related genes before RT and decreased expression in 9/13 genes following RT. These results indicate that AC and RT did not increase ribosome-related gene expression. Contrary to previous research, the greatest increase in muscle mass was associated with lower changes in ribosome-related gene expression over the course of the 10-week training programme. This may point to the importance of translational efficiency rather than translational capacity (i.e. ribosome content) in mediating long-term exercise-induced adaptations in skeletal muscle.
Collapse
Affiliation(s)
- Alex Brown
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Gianni Parise
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Aaron C Q Thomas
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Sean Y Ng
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Chris McGlory
- School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada
- Department of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Stuart M Phillips
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Dinesh Kumbhare
- Toronto Rehabilitation Institute, University of Toronto, Toronto, Ontario, Canada
| | - Sophie Joanisse
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
- Institute of Sport, Manchester Metropolitan University, Manchester, UK
- MRC Versus Arthritis Centre for Musculoskeletal Ageing Research, Nottingha, UK
- School of Life Sciences, University of Nottingham, Nottingham, UK
| |
Collapse
|
11
|
Clouette J, Potvin-Desrochers A, Seo F, Churchward-Venne TA, Paquette C. Reorganization of Brain Resting-state Functional Connectivity Following 14 Days of Elbow Immobilization in Young Females. Neuroscience 2024; 540:77-86. [PMID: 38246474 DOI: 10.1016/j.neuroscience.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/12/2023] [Accepted: 01/09/2024] [Indexed: 01/23/2024]
Abstract
Limb immobilization is known to cause significant decreases in muscle strength and muscle mass as early as two days following the onset of immobilization. However, the decline in strength surpasses the decline in muscle mass, suggesting that factors in addition to muscle loss, such as neuroplasticity, contribute to the decrease in force production. However, little is known regarding immobilization-induced neural changes, although sensorimotor regions seem to be the most affected. The present study aimed to determine whether brain functional organization is altered following 14 days of unilateral elbow immobilization. Functional organization was quantified using resting-state functional connectivity, a measure of the synchronicity of the spontaneous discharge of different brain regions at rest. Data was obtained from twelve healthy young females before and after completing the immobilization period. A seed-to-voxel analysis was performed using seeds associated with cortical, subcortical, and cerebellar sensorimotor regions of the brain. The results showed changes predominantly involving cerebellar connectivity. For example, the immobilization period caused a decrease in connectivity between the motor cerebellar region of the immobilized arm and the left temporal lobe, and an increase between the same cerebellar region and the supplementary motor area. Overall, changes in connectivity occurred in regions typically associated with error detection and motor learning, suggesting a potential functional reorganization of the brain within 14 days of elbow immobilization.
Collapse
Affiliation(s)
- Julien Clouette
- Department of Kinesiology and Physical Education, McGill University, 475 Pine Ave., Montreal, Quebec, Canada; Centre for Interdisciplinary Research in Rehabilitation, 6363 Hudson Road, Montreal, Quebec, Canada
| | - Alexandra Potvin-Desrochers
- Department of Kinesiology and Physical Education, McGill University, 475 Pine Ave., Montreal, Quebec, Canada; Integrated Program in Neuroscience, McGill University, 1033 Pine Ave., Montreal, Quebec, Canada; Centre for Interdisciplinary Research in Rehabilitation, 6363 Hudson Road, Montreal, Quebec, Canada
| | - Freddie Seo
- Department of Kinesiology and Physical Education, McGill University, 475 Pine Ave., Montreal, Quebec, Canada
| | - Tyler A Churchward-Venne
- Department of Kinesiology and Physical Education, McGill University, 475 Pine Ave., Montreal, Quebec, Canada; Division of Geriatric Medicine, McGill University, 1650 Cedar Ave., Montreal, Quebec, Canada; Research Institute of the McGill University Health Centre, 1001 Decarie Boulevard, Montreal, Quebec, Canada
| | - Caroline Paquette
- Department of Kinesiology and Physical Education, McGill University, 475 Pine Ave., Montreal, Quebec, Canada; Integrated Program in Neuroscience, McGill University, 1033 Pine Ave., Montreal, Quebec, Canada; Centre for Interdisciplinary Research in Rehabilitation, 6363 Hudson Road, Montreal, Quebec, Canada.
| |
Collapse
|
12
|
Kinoshita M, Maeo S, Kobayashi Y, Eihara Y, Ono M, Sato M, Sugiyama T, Kanehisa H, Isaka T. Triceps surae muscle hypertrophy is greater after standing versus seated calf-raise training. Front Physiol 2023; 14:1272106. [PMID: 38156065 PMCID: PMC10753835 DOI: 10.3389/fphys.2023.1272106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/29/2023] [Indexed: 12/30/2023] Open
Abstract
Background: The triceps surae muscle plays important roles in fundamental human movements. However, this muscle is relatively unresponsive to resistance training (difficult to hypertrophy) but prone to atrophy with inactivity compared with other muscles. Thus, identifying an effective training modality for the triceps surae is warranted. This study compared triceps surae muscle hypertrophy after standing/knee-extended versus seated/knee-flexed plantarflexion (calf-raise) training, where the gastrocnemius is lengthened and shortened, respectively. Methods: Fourteen untrained adults conducted calf-raise training with one leg in a standing/knee-extended position and the other leg in a seated/knee 90°-flexed position at 70% of one-repetition maximum. Each leg performed 10 repetitions/set, 5 sets/session, 2 sessions/week for 12 weeks. Before and after the intervention, magnetic resonance imaging scans were obtained to assess muscle volume of each and the whole triceps surae. Results: Muscle volume significantly increased in all three muscles and the whole triceps surae for both legs (p ≤ 0.031), except for the gastrocnemius muscles of the seated condition leg (p = 0.147-0.508). The changes in muscle volume were significantly greater for the standing than seated condition leg in the lateral gastrocnemius (12.4% vs. 1.7%), medial gastrocnemius (9.2% vs. 0.6%), and whole triceps surae (5.6% vs. 2.1%) (p ≤ 0.011), but similar between legs in the soleus (2.1% vs. 2.9%, p = 0.410). Conclusion: Standing calf-raise was by far more effective, therefore recommended, than seated calf-raise for inducing muscle hypertrophy of the gastrocnemius and consequently the whole triceps surae. This result and similar between-condition hypertrophy in the soleus collectively suggest that training at long muscle lengths promotes muscle hypertrophy.
Collapse
Affiliation(s)
- Momoka Kinoshita
- Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, Japan
| | - Sumiaki Maeo
- Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, Japan
- Institute of Advanced Research for Sport and Health Science, Ritsumeikan University, Kusatsu, Japan
| | - Yuuto Kobayashi
- Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, Japan
| | - Yuuri Eihara
- Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, Japan
| | - Munetaka Ono
- Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, Japan
| | - Mauto Sato
- Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, Japan
| | - Takashi Sugiyama
- Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, Japan
- Institute of Advanced Research for Sport and Health Science, Ritsumeikan University, Kusatsu, Japan
| | - Hiroaki Kanehisa
- Institute of Advanced Research for Sport and Health Science, Ritsumeikan University, Kusatsu, Japan
- Department of Physical Education, National Institute of Fitness and Sports in Kanoya, Kanoya, Japan
| | - Tadao Isaka
- Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, Japan
- Institute of Advanced Research for Sport and Health Science, Ritsumeikan University, Kusatsu, Japan
| |
Collapse
|
13
|
Currier BS, Mcleod JC, Banfield L, Beyene J, Welton NJ, D'Souza AC, Keogh JAJ, Lin L, Coletta G, Yang A, Colenso-Semple L, Lau KJ, Verboom A, Phillips SM. Resistance training prescription for muscle strength and hypertrophy in healthy adults: a systematic review and Bayesian network meta-analysis. Br J Sports Med 2023; 57:1211-1220. [PMID: 37414459 PMCID: PMC10579494 DOI: 10.1136/bjsports-2023-106807] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2023] [Indexed: 07/08/2023]
Abstract
OBJECTIVE To determine how distinct combinations of resistance training prescription (RTx) variables (load, sets and frequency) affect muscle strength and hypertrophy. DATA SOURCES MEDLINE, Embase, Emcare, SPORTDiscus, CINAHL, and Web of Science were searched until February 2022. ELIGIBILITY CRITERIA Randomised trials that included healthy adults, compared at least 2 predefined conditions (non-exercise control (CTRL) and 12 RTx, differentiated by load, sets and/or weekly frequency), and reported muscle strength and/or hypertrophy were included. ANALYSES Systematic review and Bayesian network meta-analysis methodology was used to compare RTxs and CTRL. Surface under the cumulative ranking curve values were used to rank conditions. Confidence was assessed with threshold analysis. RESULTS The strength network included 178 studies (n=5097; women=45%). The hypertrophy network included 119 studies (n=3364; women=47%). All RTxs were superior to CTRL for muscle strength and hypertrophy. Higher-load (>80% of single repetition maximum) prescriptions maximised strength gains, and all prescriptions comparably promoted muscle hypertrophy. While the calculated effects of many prescriptions were similar, higher-load, multiset, thrice-weekly training (standardised mean difference (95% credible interval); 1.60 (1.38 to 1.82) vs CTRL) was the highest-ranked RTx for strength, and higher-load, multiset, twice-weekly training (0.66 (0.47 to 0.85) vs CTRL) was the highest-ranked RTx for hypertrophy. Threshold analysis demonstrated these results were extremely robust. CONCLUSION All RTx promoted strength and hypertrophy compared with no exercise. The highest-ranked prescriptions for strength involved higher loads, whereas the highest-ranked prescriptions for hypertrophy included multiple sets. PROSPERO REGISTRATION NUMBER CRD42021259663 and CRD42021258902.
Collapse
Affiliation(s)
- Brad S Currier
- Department of Kinesiology, Faculty of Science, McMaster University, Hamilton, Ontario, Canada
| | - Jonathan C Mcleod
- Department of Kinesiology, Faculty of Science, McMaster University, Hamilton, Ontario, Canada
| | - Laura Banfield
- Health Sciences Library, McMaster University, Hamilton, Ontario, Canada
| | - Joseph Beyene
- Department of Health Research Methods, Evidence, and Impact, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Nicky J Welton
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Alysha C D'Souza
- Department of Kinesiology, Faculty of Science, McMaster University, Hamilton, Ontario, Canada
| | - Joshua A J Keogh
- Department of Kinesiology, Faculty of Science, McMaster University, Hamilton, Ontario, Canada
| | - Lydia Lin
- Department of Kinesiology, Faculty of Science, McMaster University, Hamilton, Ontario, Canada
| | - Giulia Coletta
- Department of Kinesiology, Faculty of Science, McMaster University, Hamilton, Ontario, Canada
| | - Antony Yang
- Department of Kinesiology, Faculty of Science, McMaster University, Hamilton, Ontario, Canada
| | - Lauren Colenso-Semple
- Department of Kinesiology, Faculty of Science, McMaster University, Hamilton, Ontario, Canada
| | - Kyle J Lau
- Department of Kinesiology, Faculty of Science, McMaster University, Hamilton, Ontario, Canada
| | - Alexandria Verboom
- Department of Kinesiology, Faculty of Science, McMaster University, Hamilton, Ontario, Canada
| | - Stuart M Phillips
- Department of Kinesiology, Faculty of Science, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
14
|
De Guzman KA, Young RJ, Contini V, Clinton E, Hitchcock A, Riley ZA, Poston B. The Influence of Transcranial Alternating Current Stimulation on Fatigue Resistance. Brain Sci 2023; 13:1225. [PMID: 37626581 PMCID: PMC10452200 DOI: 10.3390/brainsci13081225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/10/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
Previous research has shown that some forms of non-invasive brain stimulation can increase fatigue resistance. The purpose of this study is to determine the influence of transcranial alternating current stimulation (tACS) on the time to task failure (TTF) of a precision grip task. The study utilized a randomized, double-blind, SHAM-controlled, within-subjects design. Twenty-six young adults completed two experimental sessions (tACS and SHAM) with a 7-day washout period between sessions. Each session involved a fatiguing isometric contraction of the right hand with a precision grip with either a tACS or SHAM stimulation applied to the primary motor cortex (M1) simultaneously. For the fatiguing contraction, the participants matched an isometric target force of 20% of the maximum voluntary contraction (MVC) force until task failure. Pre- and post-MVCs were performed to quantify the force decline due to fatigue. Accordingly, the dependent variables were the TTF and MVC force decline as well as the average EMG activity, force error, and standard deviation (SD) of force during the fatiguing contractions. The results indicate that there were no significant differences in any of the dependent variables between the tACS and SHAM conditions (p value range: 0.256-0.820). These findings suggest that tACS does not increase the TTF during fatiguing contractions in young adults.
Collapse
Affiliation(s)
- Kayla A. De Guzman
- Department of Kinesiology and Nutrition Sciences, University of Nevada-Las Vegas, Las Vegas, NV 89154, USA; (K.A.D.G.); (E.C.)
| | - Richard J. Young
- Department of Kinesiology and Nutrition Sciences, University of Nevada-Las Vegas, Las Vegas, NV 89154, USA; (K.A.D.G.); (E.C.)
- Optum Labs, Minnetonka, MN 55343, USA
| | - Valentino Contini
- Department of Kinesiology and Nutrition Sciences, University of Nevada-Las Vegas, Las Vegas, NV 89154, USA; (K.A.D.G.); (E.C.)
| | - Eliza Clinton
- Department of Kinesiology and Nutrition Sciences, University of Nevada-Las Vegas, Las Vegas, NV 89154, USA; (K.A.D.G.); (E.C.)
| | - Ashley Hitchcock
- Department of Kinesiology and Nutrition Sciences, University of Nevada-Las Vegas, Las Vegas, NV 89154, USA; (K.A.D.G.); (E.C.)
| | - Zachary A. Riley
- Department of Kinesiology, Indiana University—Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Brach Poston
- Department of Kinesiology and Nutrition Sciences, University of Nevada-Las Vegas, Las Vegas, NV 89154, USA; (K.A.D.G.); (E.C.)
| |
Collapse
|
15
|
de Albuquerque LL, Pantovic M, Clingo M, Fischer K, Jalene S, Landers M, Mari Z, Poston B. A Single Application of Cerebellar Transcranial Direct Current Stimulation Fails to Enhance Motor Skill Acquisition in Parkinson's Disease: A Pilot Study. Biomedicines 2023; 11:2219. [PMID: 37626716 PMCID: PMC10452618 DOI: 10.3390/biomedicines11082219] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/01/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder that leads to numerous impairments in motor function that compromise the ability to perform activities of daily living. Practical and effective adjunct therapies are needed to complement current treatment approaches in PD. Transcranial direct current stimulation applied to the cerebellum (c-tDCS) can increase motor skill in young and older adults. Because the cerebellum is involved in PD pathology, c-tDCS application during motor practice could potentially enhance motor skill in PD. The primary purpose was to examine the influence of c-tDCS on motor skill acquisition in a complex, visuomotor isometric precision grip task (PGT) in PD in the OFF-medication state. The secondary purpose was to determine the influence of c-tDCS on transfer of motor skill in PD. The study utilized a double-blind, SHAM-controlled, within-subjects design. A total of 16 participants completed a c-tDCS condition and a SHAM condition in two experimental sessions separated by a 7-day washout period. Each session involved practice of the PGT concurrent with either c-tDCS or SHAM. Additionally, motor transfer tasks were quantified before and after the practice and stimulation period. The force error in the PGT was not significantly different between the c-tDCS and SHAM conditions. Similarly, transfer task performance was not significantly different between the c-tDCS and SHAM conditions. These findings indicate that a single session of c-tDCS does not elicit acute improvements in motor skill acquisition or transfer in hand and arm tasks in PD while participants are off medications.
Collapse
Affiliation(s)
- Lidio Lima de Albuquerque
- School of Health and Applied Human Sciences, University of North Carolina Wilmington, Wilmington, NC 28403, USA;
| | - Milan Pantovic
- Department of Kinesiology and Nutrition Sciences, University of Nevada Las Vegas, Las Vegas, NV 89154, USA; (M.P.); (K.F.); (S.J.)
| | - Mitchell Clingo
- School of Medicine, University of Nevada Las Vegas, Las Vegas, NV 89154, USA;
| | - Katherine Fischer
- Department of Kinesiology and Nutrition Sciences, University of Nevada Las Vegas, Las Vegas, NV 89154, USA; (M.P.); (K.F.); (S.J.)
| | - Sharon Jalene
- Department of Kinesiology and Nutrition Sciences, University of Nevada Las Vegas, Las Vegas, NV 89154, USA; (M.P.); (K.F.); (S.J.)
| | - Merrill Landers
- Department of Physical Therapy, University of Nevada Las Vegas, Las Vegas, NV 89154, USA;
| | - Zoltan Mari
- Movement Disorders Program, Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV 89106, USA;
| | - Brach Poston
- Department of Kinesiology and Nutrition Sciences, University of Nevada Las Vegas, Las Vegas, NV 89154, USA; (M.P.); (K.F.); (S.J.)
| |
Collapse
|
16
|
Bell ZW, Wong V, Spitz RW, Yamada Y, Song JS, Kataoka R, Chatakondi RN, Abe T, Loenneke JP. Unilateral high-load resistance training influences strength changes in the contralateral arm undergoing low-load training. J Sci Med Sport 2023; 26:440-445. [PMID: 37423835 DOI: 10.1016/j.jsams.2023.06.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/17/2023] [Accepted: 06/20/2023] [Indexed: 07/11/2023]
Abstract
OBJECTIVES Within-subject training models have become common within the exercise literature. However, it is currently unknown if training one arm with a high load would impact muscle size and strength of the opposing arm training with a low load. DESIGN Parallel group. METHODS 116 participants were randomized to one of three groups that completed 6-weeks (18 sessions) of elbow flexion exercise. Group 1 trained their dominant arm only, beginning with a one-repetition maximum test (≤5 attempts), followed by four sets of exercise using a weight equivalent to 8-12 repetition maximum. Group 2 completed the same training as Group 1 in their dominant arm, while the non-dominant arm completed four sets of low-load exercise (30-40 repetition maximum). Group 3 trained their non-dominant arm only, performing the same low-load exercise as Group 2. Participants were compared for changes in muscle thickness and elbow flexion one-repetition maximum. RESULTS The greatest changes in non-dominant strength were present in Groups 1 (Δ 1.5 kg; untrained arm) and 2 (Δ1.1 kg; low-load arm with high load on opposite arm), compared to Group 3 (Δ 0.3 kg; low-load only). Only the arms being directly trained observed changes in muscle thickness (≈Δ 0.25 cm depending on site). CONCLUSIONS Within-subject training models are potentially problematic when investigating changes in strength (though not muscle growth). This is based on the finding that the untrained limb of Group 1 saw similar changes in strength as the non-dominant limb of Group 2 which were both greater than the low-load training limb of Group 3.
Collapse
Affiliation(s)
- Zachary W Bell
- Department of Kinesiology and Physical Education, McGill University, Canada
| | - Vickie Wong
- Kevser Ermin Applied Physiology Laboratory, Department of Health, Exercise, Science, and Recreation Management, The University of Mississippi, USA
| | - Robert W Spitz
- Kevser Ermin Applied Physiology Laboratory, Department of Health, Exercise, Science, and Recreation Management, The University of Mississippi, USA
| | - Yujiro Yamada
- Kevser Ermin Applied Physiology Laboratory, Department of Health, Exercise, Science, and Recreation Management, The University of Mississippi, USA
| | - Jun Seob Song
- Kevser Ermin Applied Physiology Laboratory, Department of Health, Exercise, Science, and Recreation Management, The University of Mississippi, USA
| | - Ryo Kataoka
- Kevser Ermin Applied Physiology Laboratory, Department of Health, Exercise, Science, and Recreation Management, The University of Mississippi, USA
| | - Raksha N Chatakondi
- Kevser Ermin Applied Physiology Laboratory, Department of Health, Exercise, Science, and Recreation Management, The University of Mississippi, USA
| | - Takashi Abe
- Graduate School of Health and Sports Science & Institute of Health and Sports Science and Medicine, Juntendo University, Japan
| | - Jeremy P Loenneke
- Kevser Ermin Applied Physiology Laboratory, Department of Health, Exercise, Science, and Recreation Management, The University of Mississippi, USA.
| |
Collapse
|
17
|
Skelly LE, MacInnis MJ, Bostad W, McCarthy DG, Jenkins EM, Archila LR, Tarnopolsky MA, Gibala MJ. Human skeletal muscle mitochondrial responses to single-leg intermittent or continuous cycle exercise training matched for absolute intensity and total work. Scand J Med Sci Sports 2023; 33:872-881. [PMID: 36779702 DOI: 10.1111/sms.14332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/28/2023] [Accepted: 02/02/2023] [Indexed: 02/14/2023]
Abstract
There is renewed interest in the potential for interval (INT) training to increase skeletal muscle mitochondrial content including whether the response differs from continuous (CONT) training. Comparisons of INT and CONT exercise are impacted by the manner in which protocols are "matched", particularly with respect to exercise intensity, as well as inter-individual differences in training responses. We employed single-leg cycling to facilitate a within-participant design and test the hypothesis that short-term INT training would elicit a greater increase in mitochondrial content than work- and intensity-matched CONT training. Ten young healthy adults (five males and five females) completed 12 training sessions over 4 weeks with each leg. Legs were randomly assigned to complete either 30 min of CONT exercise at a challenging sustainable workload (~50% single-leg peak power output; Wpeak) or INT exercise that involved 10 × 3-min bouts at the same absolute workload. INT bouts were interspersed with 1 min of recovery at 10% Wpeak and each CONT session ended with 10 min at 10% Wpeak. Absolute and mean intensity, total training time, and volume were thus matched between legs but the pattern of exercise differed. Contrary to our hypothesis, biomarkers of mitochondrial content including citrate synthase maximal activity, mitochondrial protein content and subsarcolemmal mitochondrial volume increased after CONT (p < 0.05) but not INT training. Both training modes increased single-leg Wpeak (p < 0.01) and time to exhaustion at 70% of single-leg Wpeak (p < 0.01). In a work- and intensity-matched comparison, short-term CONT training increased skeletal muscle mitochondrial content whereas INT training did not.
Collapse
Affiliation(s)
- Lauren E Skelly
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Martin J MacInnis
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - William Bostad
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Devin G McCarthy
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | | | - Linda R Archila
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Mark A Tarnopolsky
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada.,Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Martin J Gibala
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
18
|
Pedrosa GF, Simões MG, Figueiredo MOC, Lacerda LT, Schoenfeld BJ, Lima FV, Chagas MH, Diniz RCR. Training in the Initial Range of Motion Promotes Greater Muscle Adaptations Than at Final in the Arm Curl. Sports (Basel) 2023; 11:39. [PMID: 36828324 PMCID: PMC9960616 DOI: 10.3390/sports11020039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/10/2023] Open
Abstract
OBJECTIVE The effects of ROM manipulation on muscle strength and hypertrophy response remain understudied in long-term interventions. Thus, we compared the changes in strength and regional muscle hypertrophy after training in protocols with different ranges of motion (ROM) in the seated dumbbell preacher curl exercise using a within-participant experimental design. DESIGN AND METHODS Nineteen young women had one arm randomly assigned to train in the initial ROM (INITIALROM: 0°-68°; 0° = extended elbow) while the contralateral arm trained in the final ROM (FINALROM: 68°-135°), three times per week over an eight-week study period. Pre- and post-training assessments included one repetition maximum (1RM) testing in the full ROM (0°-135°), and measurement of biceps brachii cross-sectional area (CSA) at 50% and 70% of humerus length. Paired t-tests were used to compare regional CSA changes between groups, the sum of CSA changes at 50% and 70% (CSAsummed), and the strength response between the training protocols. RESULTS The INITIALROM protocol displayed a greater CSA increase than FINALROM protocol at 70% of biceps length (p = 0.001). Alternatively, we observed similar increases between the protocols for CSA at 50% (p = 0.311) and for CSAsummed (p = 0.111). Moreover, the INITIALROM protocol displayed a greater 1RM increase than FINALROM (p < 0.001). CONCLUSIONS We conclude that training in the initial angles of elbow flexion exercise promotes greater distal hypertrophy of the biceps brachii muscle in untrained young women. Moreover, the INITIALROM condition promotes a greater dynamic strength increase when tested at a full ROM compared to the FINALROM.
Collapse
Affiliation(s)
- Gustavo F. Pedrosa
- Weight Training Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Federal University of Minas Gerais, Lagoa Santa 31270-901, Brazil
- Brazilian Air Force, Aeronautical Instruction and Adaptation Center, Lagoa Santa 33400-000, Brazil
| | - Marina G. Simões
- Weight Training Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Federal University of Minas Gerais, Lagoa Santa 31270-901, Brazil
| | - Marina O. C. Figueiredo
- Weight Training Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Federal University of Minas Gerais, Lagoa Santa 31270-901, Brazil
| | - Lucas T. Lacerda
- Weight Training Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Federal University of Minas Gerais, Lagoa Santa 31270-901, Brazil
- Department of Physical Education, State University of Minas Gerais, Divinópolis 35501-170, Brazil
| | - Brad J. Schoenfeld
- Department of Health Sciences, CUNY Lehman College, Bronx, New York, NY 10468, USA
| | - Fernando V. Lima
- Weight Training Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Federal University of Minas Gerais, Lagoa Santa 31270-901, Brazil
| | - Mauro H. Chagas
- Weight Training Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Federal University of Minas Gerais, Lagoa Santa 31270-901, Brazil
| | - Rodrigo C. R. Diniz
- Weight Training Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Federal University of Minas Gerais, Lagoa Santa 31270-901, Brazil
| |
Collapse
|
19
|
Gibson OR, Astin R, Puthucheary Z, Yadav S, Preston S, Gavins FNE, González-Alonso J. Skeletal muscle angiogenic, regulatory, and heat shock protein responses to prolonged passive hyperthermia of the human lower limb. Am J Physiol Regul Integr Comp Physiol 2023; 324:R1-R14. [PMID: 36409025 DOI: 10.1152/ajpregu.00320.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Passive hyperthermia induces a range of physiological responses including augmenting skeletal muscle mRNA expression. This experiment aimed to examine gene and protein responses to prolonged passive leg hyperthermia. Seven young participants underwent 3 h of resting unilateral leg heating (HEAT) followed by a further 3 h of rest, with the contralateral leg serving as an unheated control (CONT). Muscle biopsies were taken at baseline (0 h), and at 1.5, 3, 4, and 6 h in HEAT and 0 and 6 h in CONT to assess changes in selected mRNA expression via qRT-PCR, and HSP72 and VEGFα concentration via ELISA. Muscle temperature (Tm) increased in HEAT plateauing from 1.5 to 3 h (+3.5 ± 1.5°C from 34.2 ± 1.2°C baseline value; P < 0.001), returning to baseline at 6 h. No change occurred in CONT. Endothelial nitric oxide synthase (eNOS), Forkhead box O1 (FOXO-1), Hsp72, and VEGFα mRNA increased in HEAT (P < 0.05); however, post hoc analysis identified that only Hsp72 mRNA statistically increased (at 4 h vs. baseline). When peak change during HEAT was calculated angiopoietin 2 (ANGPT-2) decreased (-0.4 ± 0.2-fold), and C-C motif chemokine ligand 2 (CCL2) (+2.9 ± 1.6-fold), FOXO-1 (+6.2 ± 4.4-fold), Hsp27 (+2.9 ± 1.7-fold), Hsp72 (+8.5 ± 3.5-fold), Hsp90α (+4.6 ± 3.7-fold), and VEGFα (+5.9 ± 3.1-fold) increased from baseline (all P < 0.05). At 6 h Tm were not different between limbs (P = 0.582; CONT = 32.5 ± 1.6°C, HEAT = 34.3 ± 1.2°C), and only ANGPT-2 (P = 0.031; -1.3 ± 1.4-fold) and VEGFα (P = 0.030; 1.1 ± 1.2-fold) differed between HEAT and CONT. No change in VEGFα or HSP72 protein concentration were observed over time; however, peak change in VEGFα did increase (P < 0.05) in HEAT (+140 ± 184 pg·mL-1) versus CONT (+7 ± 86 pg·mL-1). Passive hyperthermia transiently augmented ANGPT-2, CCL2, eNOS, FOXO-1, Hsp27, Hsp72, Hsp90α and VEGFα mRNA, and VEGFα protein.
Collapse
Affiliation(s)
- Oliver R Gibson
- Centre for Human Performance, Exercise and Rehabilitation, Brunel University London, Uxbridge, United Kingdom.,Centre for Physical Activity in Health and Disease, Brunel University London, Uxbridge, United Kingdom.,Division of Sport, Health and Exercise Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Rónan Astin
- Department of Medicine, Centre for Human Health and Performance, University College London, London, United Kingdom
| | - Zudin Puthucheary
- Adult Critical Care Unit, Barts and The London School of Medicine and Dentistry, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Shreya Yadav
- Centre for Inflammation Research and Translational Medicine, Brunel University London, Uxbridge, United Kingdom.,Division of Biosciences, Brunel University London, Uxbridge, United Kingdom
| | - Sophie Preston
- Centre for Inflammation Research and Translational Medicine, Brunel University London, Uxbridge, United Kingdom.,Division of Biosciences, Brunel University London, Uxbridge, United Kingdom
| | - Felicity N E Gavins
- Centre for Inflammation Research and Translational Medicine, Brunel University London, Uxbridge, United Kingdom.,Division of Biosciences, Brunel University London, Uxbridge, United Kingdom
| | - José González-Alonso
- Centre for Human Performance, Exercise and Rehabilitation, Brunel University London, Uxbridge, United Kingdom.,Division of Sport, Health and Exercise Sciences, Brunel University London, Uxbridge, United Kingdom
| |
Collapse
|
20
|
Thomas ACQ, Brown A, Hatt AA, Manta K, Costa-Parke A, Kamal M, Joanisse S, McGlory C, Phillips SM, Kumbhare D, Parise G. Short-term aerobic conditioning prior to resistance training augments muscle hypertrophy and satellite cell content in healthy young men and women. FASEB J 2022; 36:e22500. [PMID: 35971745 DOI: 10.1096/fj.202200398rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/22/2022] [Accepted: 08/02/2022] [Indexed: 11/11/2022]
Abstract
Factors influencing inter-individual variability of responses to resistance training (RT) remain to be fully elucidated. We have proposed the importance of capillarization in skeletal muscle for the satellite cell (SC) response to RT-induced muscle hypertrophy, and hypothesized that aerobic conditioning (AC) would augment RT-induced adaptations. Fourteen healthy young (22 ± 2 years) men and women underwent AC via 6 weeks of unilateral cycling followed by 10 weeks of bilateral RT to investigate how AC alters SC content, activity, and muscle hypertrophy following RT. Muscle biopsies were taken at baseline (unilateral), post AC (bilateral), and post RT (bilateral) in the aerobically conditioned (AC + RT) and unconditioned (RT) legs. Immunofluorescence was used to determine muscle capillarization, fiber size, SC content, and activity. Type I and type II fiber cross-sectional area (CSA) increased following RT, and when legs were analyzed independently, AC + RT increased type I, type II, and mixed-fiber CSA, where the RT leg tended to increase type II (p = .05), but not type I or mixed-fiber CSA. SC content, activation, and differentiation increased with RT, where type I total and quiescent SC content was greater in AC + RT compared to the RT leg. Those with the greatest capillary-to-fiber perimeter exchange index before RT had the greatest change in CSA following RT and a significant relationship was observed between type II fiber capillarization and the change in type II-fiber CSA with RT (r = 0.35). This study demonstrates that AC prior to RT can augment RT-induced muscle adaptions and that these differences are associated with increases in capillarization.
Collapse
Affiliation(s)
- Aaron C Q Thomas
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Alex Brown
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Aidan A Hatt
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Katherine Manta
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Anamaria Costa-Parke
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Michael Kamal
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Sophie Joanisse
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada.,Musculoskeletal Sciences and Sport Medicine Research Centre, Department of Sport and Exercise Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, UK.,Manchester Metropolitan University Institute of Sport, Manchester, UK
| | - Chris McGlory
- School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada.,Department of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Stuart M Phillips
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | | | - Gianni Parise
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
21
|
LIM CHANGHYUN, NUNES EVERSONA, CURRIER BRADS, MCLEOD JONATHANC, THOMAS AARONCQ, PHILLIPS STUARTM. An Evidence-Based Narrative Review of Mechanisms of Resistance Exercise-Induced Human Skeletal Muscle Hypertrophy. Med Sci Sports Exerc 2022; 54:1546-1559. [PMID: 35389932 PMCID: PMC9390238 DOI: 10.1249/mss.0000000000002929] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Skeletal muscle plays a critical role in physical function and metabolic health. Muscle is a highly adaptable tissue that responds to resistance exercise (RE; loading) by hypertrophying, or during muscle disuse, RE mitigates muscle loss. Resistance exercise training (RET)-induced skeletal muscle hypertrophy is a product of external (e.g., RE programming, diet, some supplements) and internal variables (e.g., mechanotransduction, ribosomes, gene expression, satellite cells activity). RE is undeniably the most potent nonpharmacological external variable to stimulate the activation/suppression of internal variables linked to muscular hypertrophy or countering disuse-induced muscle loss. Here, we posit that despite considerable research on the impact of external variables on RET and hypertrophy, internal variables (i.e., inherent skeletal muscle biology) are dominant in regulating the extent of hypertrophy in response to external stimuli. Thus, identifying the key internal skeletal muscle-derived variables that mediate the translation of external RE variables will be pivotal to determining the most effective strategies for skeletal muscle hypertrophy in healthy persons. Such work will aid in enhancing function in clinical populations, slowing functional decline, and promoting physical mobility. We provide up-to-date, evidence-based perspectives of the mechanisms regulating RET-induced skeletal muscle hypertrophy.
Collapse
Affiliation(s)
- CHANGHYUN LIM
- Department of Kinesiology, McMaster University, Hamilton, Ontario, CANADA
| | - EVERSON A. NUNES
- Department of Kinesiology, McMaster University, Hamilton, Ontario, CANADA
- Department of Physiological Science, Federal University of Santa Catarina, Florianópolis, Santa-Catarina, BRAZIL
| | - BRAD S. CURRIER
- Department of Kinesiology, McMaster University, Hamilton, Ontario, CANADA
| | - JONATHAN C. MCLEOD
- Department of Kinesiology, McMaster University, Hamilton, Ontario, CANADA
| | - AARON C. Q. THOMAS
- Department of Kinesiology, McMaster University, Hamilton, Ontario, CANADA
| | - STUART M. PHILLIPS
- Department of Kinesiology, McMaster University, Hamilton, Ontario, CANADA
| |
Collapse
|
22
|
Maeo S, Wu Y, Huang M, Sakurai H, Kusagawa Y, Sugiyama T, Kanehisa H, Isaka T. Triceps brachii hypertrophy is substantially greater after elbow extension training performed in the overhead versus neutral arm position. Eur J Sport Sci 2022:1-11. [PMID: 35819335 DOI: 10.1080/17461391.2022.2100279] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The biarticular triceps brachii long head (TBLong) is lengthened more in the overhead than neutral arm position. We compared triceps brachii hypertrophy after elbow extension training performed in the overhead vs. neutral arm position. Using a cable machine, 21 adults (14 males and 7 females, age: 23.4 ± 1.6 y, height: 1.69 ± 0.09 m, body mass: 64.5 ± 12.4 kg) conducted elbow extensions (90-0°) with one arm in the overhead (Overhead-Arm) and the other arm in the neutral (Neutral-Arm) position at 70% one-repetition maximum (1RM), 10 reps/set, 5 sets/session, 2 sessions/week for 12 weeks. Training load was gradually increased (+5% 1RM/session) when the preceding session was completed without repetition failure. 1RM of the assigned condition and MRI-measured muscle volume of the TBLong, monoarticular lateral and medial heads (TBLat+Med), and whole triceps brachii (Whole-TB) were assessed pre- and post-training. Training load and 1RM increased in both arms similarly (+62-71% at post, P = 0.285), while their absolute values/weights were always lower in Overhead-Arm (-34-39%, P < 0.001). Changes in muscle volume in Overhead-Arm compared to Neutral-Arm were 1.5-fold greater for the TBLong (+28.5% vs. +19.6%, Cohen's d = 1.272, P < 0.001), 1.4-fold greater for the TBLat+Med (+14.6% vs. +10.5%, d = 1.106, P = 0.002), and 1.4-fold greater for the Whole-TB (+19.9% vs. +13.9%, d = 1.427, P < 0.001). In conclusion, triceps brachii hypertrophy was substantially greater after elbow extension training performed in the overhead versus neutral arm position, even with lower absolute loads used during the training.
Collapse
Affiliation(s)
- Sumiaki Maeo
- Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, Japan
| | - Yuhang Wu
- Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, Japan
| | - Meng Huang
- Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, Japan
| | - Hikaru Sakurai
- Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, Japan
| | - Yuki Kusagawa
- Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, Japan
| | - Takashi Sugiyama
- Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, Japan
| | - Hiroaki Kanehisa
- National Institute of Fitness and Sports in Kanoya, Kanoya, Japan
| | - Tadao Isaka
- Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, Japan
| |
Collapse
|
23
|
Longo AR, Silva-Batista C, Pedroso K, de Salles Painelli V, Lasevicius T, Schoenfeld BJ, Aihara AY, de Almeida Peres B, Tricoli V, Teixeira EL. Volume Load Rather Than Resting Interval Influences Muscle Hypertrophy During High-Intensity Resistance Training. J Strength Cond Res 2022; 36:1554-1559. [PMID: 35622106 DOI: 10.1519/jsc.0000000000003668] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
ABSTRACT Longo, AR, Silva-Batista, C, Pedroso, K, de Salles Painelli, V, Lasevicius, T, Schoenfeld, BJ, Aihara, AY, de Almeida Peres, B, Tricoli, V, and Teixeira, EL. Volume load rather than resting interval influences muscle hypertrophy during high-intensity resistance training. J Strength Cond Res 36(6): 1554-1559, 2022-Interset rest interval has been proposed as an important variable for inducing muscle mass and strength increases during resistance training. However, its influence remains unclear, especially when protocols with differing intervals have equalized volume. We aimed to compare the effects of long (LI) vs. short rest interval (SI) on muscle strength (one repetition maximum [1RM]) and quadriceps cross-sectional area (QCSA), with or without equalized volume load (VL). Twenty-eight subjects trained twice a week for 10 weeks. Each subject's leg was allocated to 1 of 4 unilateral knee extension protocols: LI, SI, SI with VL -matched by LI (VLI-SI), and LI with VL-matched by SI (VSI-LI). A 3-minute rest interval was afforded in LI and VSI-LI protocols, while SI and VLI-SI employed a 1-minute interval. All subjects trained with a load corresponding to 80% 1RM. One repetition maximum and QCSA were measured before and after training. All protocols significantly increased 1RM values in post-training (p < 0.0001; LI: 27.6%, effect size [ES] = 0.90; VLI-SI: 31.1%, ES = 1.00; SI: 26.5%, ES = 1.11; and VSI-LI: 31.2%, ES = 1.28), with no significant differences between protocols. Quadriceps cross-sectional area increased significantly for all protocols in post-training (p < 0.0001). However, absolute changes in QCSA were significantly greater in LI and VLI-SI (13.1%, ES: 0.66 and 12.9%, ES: 0.63) than SI and VSI-LI (6.8%, ES: 0.38 and 6.6%, ES: 0.37) (both comparisons, p < 0.05). These data suggest that maintenance of high loads is more important for strength increases, while a greater VL plays a primary role for hypertrophy, regardless of interset rest interval.
Collapse
Affiliation(s)
| | - Carla Silva-Batista
- School of Physical Education and Sport, University of São Paulo, São Paulo, SP, Brazil.,School of Arts, Sciences and Humanities, University of São Paulo, São Paulo, SP, Brazil
| | | | | | - Thiago Lasevicius
- School of Physical Education and Sport, University of São Paulo, São Paulo, SP, Brazil
| | | | | | | | - Valmor Tricoli
- School of Physical Education and Sport, University of São Paulo, São Paulo, SP, Brazil
| | - Emerson Luiz Teixeira
- Paulista University, UNIP, São Paulo, SP, Brazil.,School of Physical Education and Sport, University of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
24
|
The Influence of Transcranial Direct Current Stimulation on Shooting Performance in Elite Deaflympic Athletes: A Case Series. J Funct Morphol Kinesiol 2022; 7:jfmk7020042. [PMID: 35736013 PMCID: PMC9224564 DOI: 10.3390/jfmk7020042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 11/17/2022] Open
Abstract
Transcranial direct current stimulation (tDCS) has been shown to improve motor learning in numerous studies. However, only a few of these studies have been conducted on elite-level performers or in complex motor tasks that have been practiced extensively. The purpose was to determine the influence of tDCS applied to the dorsolateral prefrontal cortex (DLPFC) on motor learning over multiple days on 10-m air rifle shooting performance in elite Deaflympic athletes. Two male and two female elite Deaflympic athletes (World, European, and National medalists) participated in this case series. The study utilized a randomized, double-blind, SHAM-controlled, cross-over design. Anodal tDCS or SHAM stimulation was applied to the left DLPFC for 25 min with a current strength of 2 mA concurrent with three days of standard shooting practice sessions. Shooting performance was quantified as the points and the endpoint error. Separate 2 Condition (DLPFC-tDCS, SHAM) × 3 Day (1,2,3) within-subjects ANOVAs revealed no significant main effects or interactions for either points or endpoint error. These results indicate that DLPFC-tDCS applied over multiple days does not improve shooting performance in elite athletes. Different stimulation parameters or very long-term (weeks/months) application of tDCS may be needed to improve motor learning in elite athletes.
Collapse
|
25
|
Effect of different eccentric tempos on hypertrophy and strength of the lower limbs. Biol Sport 2022; 39:443-449. [PMID: 35309524 PMCID: PMC8919893 DOI: 10.5114/biolsport.2022.105335] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 12/17/2020] [Accepted: 03/29/2021] [Indexed: 11/23/2022] Open
Abstract
The purpose of this study was to evaluate the effects of altering the duration of the eccentric phase in isotonic contractions on muscle hypertrophy and strength of the quadriceps femoris. Ten healthy young adults (8 men and 2 women: Height: 173.3 ± 9.6 cm: Body mass: 69.84 ± 10.88 kg; Body fat: 19.47 ± 8.42%; Age: 25.3 ± 4.8 years) performed unilateral isotonic knee extension exercise, whereby each leg was randomly allocated to perform the eccentric phase of movement with a duration of either 2 seconds (G2S) or 4 seconds (G4S). Both conditions carried out the concentric phase of each repetition at a 1 second duration with no rest in the transition phases. Each condition performed 5 sets using 70% of 1 repetition maximum until muscle failure with 3 minutes of rest between sets for 8 weeks. The change in muscle strength was assessed by 1RM knee extension and muscle thickness was assessed by A-mode ultrasound. For each outcome variable, linear mixed-effects models were fit using restricted maximum likelihood. Hedges’ g effect sizes were calculated to provide insights into the magnitude of effects. Results showed all muscles increased in size over time; mean effects were similar in all muscles except for the vastus medialis, which favored the G4S condition. Conversely, only a trivial and highly variable effect was observed between interventions for strength gain. Our results suggest different eccentric durations produce similar increases in hypertrophy of the vastus lateralis and rectus femoris; however, the vastus medialis showed greater growth from the slower eccentric duration. Eccentric duration did not differentially affect strength-related adaptations.
Collapse
|
26
|
Hamarsland H, Moen H, Skaar OJ, Jorang PW, Rødahl HS, Rønnestad BR. Equal-Volume Strength Training With Different Training Frequencies Induces Similar Muscle Hypertrophy and Strength Improvement in Trained Participants. Front Physiol 2022; 12:789403. [PMID: 35069251 PMCID: PMC8766679 DOI: 10.3389/fphys.2021.789403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/03/2021] [Indexed: 11/16/2022] Open
Abstract
The main goal of the current study was to compare the effects of volume-equated training frequency on gains in muscle mass and strength. In addition, we aimed to investigate whether the effect of training frequency was affected by the complexity, concerning the degrees of freedom, of an exercise. Participants were randomized to a moderate training frequency group (two weekly sessions) or high training frequency group (four weekly sessions). Twenty-one participants (male: 11, female: 10, age: 25.9 ± 4.0) completed the 9-week whole-body progressive heavy resistance training intervention with moderate (n = 13) or high (n = 8) training frequency. Whole-body and regional changes in lean mass were measured using dual-energy x-ray absorptiometry, while the vastus lateralis thickness was measured by ultrasound. Changes in muscle strength were measured as one repetition maximum for squat, hack squat, bench press, and chest press. No differences between groups were observed for any of the measures of muscle growth or muscle strength. Muscle strength increased to a greater extent in hack squat and chest press than squat and bench press for both moderate (50 and 21% vs. 19 and 14%, respectively) and high-frequency groups (63 and 31% vs. 19 and 16%, respectively), with no differences between groups. These results suggest that training frequency is less decisive when weekly training volume is equated. Further, familiarity with an exercise seems to be of greater importance for strength adaptations than the complexity of the exercise.
Collapse
Affiliation(s)
- Håvard Hamarsland
- Section for Health and Exercise Physiology, Inland Norway University of Applied Sciences, Lillehammer, Norway
| | - Hermann Moen
- Section for Health and Exercise Physiology, Inland Norway University of Applied Sciences, Lillehammer, Norway
| | - Ole Johannes Skaar
- Section for Health and Exercise Physiology, Inland Norway University of Applied Sciences, Lillehammer, Norway
| | - Preben Wahlstrøm Jorang
- Section for Health and Exercise Physiology, Inland Norway University of Applied Sciences, Lillehammer, Norway
| | - Håvard Saeterøy Rødahl
- Section for Health and Exercise Physiology, Inland Norway University of Applied Sciences, Lillehammer, Norway
| | - Bent R Rønnestad
- Section for Health and Exercise Physiology, Inland Norway University of Applied Sciences, Lillehammer, Norway
| |
Collapse
|
27
|
Effects of Blood Flow Restriction Combined With Resistance Training or Neuromuscular Electrostimulation on Muscle Cross-Sectional Area. J Sport Rehabil 2021; 31:319-324. [PMID: 34929663 DOI: 10.1123/jsr.2021-0101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 08/16/2021] [Accepted: 10/10/2021] [Indexed: 11/18/2022]
Abstract
CONTEXT Low-load resistance training (LL) and neuromuscular electrostimulation (NES), both combined with blood flow restriction (BFR), emerge as effective strategies to maintain or increase muscle mass. It is well established that LL-BFR promotes similar increases in muscle cross-sectional area (CSA) and lower rating of perceived exertion (RPE) and pain compared with traditional resistance training protocols. On the other hand, only 2 studies with conflicting results have investigated the effects of NES-BFR on CSA, RPE, and pain. In addition, no study directly compared LL-BFR and NES-BFR. OBJECTIVE The aim of the study was to compare the effects of LL-BFR and NES-BFR on vastus lateralis CSA, RPE, and pain. Individual response for muscle hypertrophy was also compared between protocols. DESIGN Intrasubject longitudinal study. SETTING University research laboratory. INTERVENTION Fifteen healthy young males (age = 23 [5] y; weight = 77.6 [11.3] kg; height = 1.76 [0.08] m). MAIN OUTCOME MEASURES Vastus lateralis CSA was measured through ultrasound at baseline (pre) and after 20 training sessions (post). The RPE and pain responses were obtained through modified 10-point scales, handled during all training sessions. RESULTS Both protocols demonstrated significant increases in muscle CSA (P < .0001). However, the LL-BFR demonstrated significantly greater CSA changes compared with NES-BFR (LL-BFR = 11.2%, NES-BFR = 4.6%; P < .0001). Comparing individual increases in CSA, 12 subjects (85.7% of the sample) presented greater muscle hypertrophy for LL-BFR than for the NES-BFR protocol. In addition, LL-BFR produced significantly lower RPE and pain responses (P < .0001). CONCLUSIONS The LL-BFR produced significantly greater increases in CSA with significant less RPE and pain than NES-BFR. In addition, LL-BFR resulted in greater individual muscle hypertrophy responses for most subjects compared with NES-BFR.
Collapse
|
28
|
Fox CD, Mesquita PHC, Godwin JS, Angleri V, Damas F, Ruple BA, Sexton CL, Brown MD, Kavazis AN, Young KC, Ugrinowitsch C, Libardi CA, Roberts MD. Frequent Manipulation of Resistance Training Variables Promotes Myofibrillar Spacing Changes in Resistance-Trained Individuals. Front Physiol 2021; 12:773995. [PMID: 34975527 PMCID: PMC8715010 DOI: 10.3389/fphys.2021.773995] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/17/2021] [Indexed: 11/21/2022] Open
Abstract
We sought to determine if manipulating resistance training (RT) variables differentially altered the expression of select sarcoplasmic and myofibril proteins as well as myofibrillar spacing in myofibers. Resistance-trained men (n = 20; 26 ± 3 years old) trained for 8 weeks where a randomized leg performed either a standard (CON) or variable RT protocol (VAR: manipulation of load, volume, muscle action, and rest intervals at each RT session). A pre-training (PRE) vastus lateralis biopsy was obtained from a randomized single leg, and biopsies were obtained from both legs 96 h following the last training bout. The sarcoplasmic protein pool was assayed for proteins involved in energy metabolism, and the myofibril protein pool was assayed for relative myosin heavy chain (MHC) and actin protein abundances. Sections were also histologically analyzed to obtain myofibril spacing characteristics. VAR resulted in ~12% greater volume load (VL) compared to CON (p < 0.001). The mean fiber cross-sectional area increased following both RT protocols [CON: 14.6% (775.5 μm2), p = 0.006; VAR: 13.9% (743.2 μm2), p = 0.01 vs. PRE for both], but without significant differences between protocols (p = 0.79). Neither RT protocol affected a majority of assayed proteins related to energy metabolism, but both training protocols increased hexokinase 2 protein levels and decreased a mitochondrial beta-oxidation marker (VLCAD protein; p < 0.05). Citrate synthase activity levels increased with CON RT (p < 0.05), but not VAR RT. The relative abundance of MHC (summed isoforms) decreased with both training protocols (p < 0.05). However, the relative abundance of actin protein (summed isoforms) decreased with VAR only (13.5 and 9.0%, respectively; p < 0.05). A decrease in percent area occupied by myofibrils was observed from PRE to VAR (−4.87%; p = 0.048), but not for the CON (4.53%; p = 0.979). In contrast, there was an increase in percent area occupied by non-contractile space from PRE to VAR (10.14%; p = 0.048), but not PRE to CON (0.72%; p = 0.979). In conclusion, while both RT protocols increased muscle fiber hypertrophy, a higher volume-load where RT variables were frequently manipulated increased non-contractile spacing in resistance-trained individuals.
Collapse
Affiliation(s)
- Carlton D. Fox
- School of Kinesiology, Auburn University, Auburn, AL, United States
| | | | - Joshua S. Godwin
- School of Kinesiology, Auburn University, Auburn, AL, United States
| | - Vitor Angleri
- MUSCULAB, Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos, São Carlos, Brazil
| | - Felipe Damas
- MUSCULAB, Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos, São Carlos, Brazil
| | - Bradley A. Ruple
- School of Kinesiology, Auburn University, Auburn, AL, United States
| | - Casey L. Sexton
- School of Kinesiology, Auburn University, Auburn, AL, United States
| | - Michael D. Brown
- School of Kinesiology, Auburn University, Auburn, AL, United States
| | | | - Kaelin C. Young
- School of Kinesiology, Auburn University, Auburn, AL, United States
- Department of Cell Biology and Physiology, Edward Via College of Osteopathic Medicine – Auburn Campus, Auburn, AL, United States
| | - Carlos Ugrinowitsch
- School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - Cleiton A. Libardi
- MUSCULAB, Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos, São Carlos, Brazil
- *Correspondence: Cleiton A. Libardi, ; Michael D. Roberts,
| | - Michael D. Roberts
- School of Kinesiology, Auburn University, Auburn, AL, United States
- Department of Cell Biology and Physiology, Edward Via College of Osteopathic Medicine – Auburn Campus, Auburn, AL, United States
- *Correspondence: Cleiton A. Libardi, ; Michael D. Roberts,
| |
Collapse
|
29
|
Rodriguez-Lopez C, Alcazar J, Sanchez-Martin C, Baltasar-Fernandez I, Ara I, Csapo R, Alegre LM. Neuromuscular adaptations after 12 weeks of light- vs. heavy-load power-oriented resistance training in older adults. Scand J Med Sci Sports 2021; 32:324-337. [PMID: 34618979 DOI: 10.1111/sms.14073] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 10/02/2021] [Accepted: 10/05/2021] [Indexed: 12/24/2022]
Abstract
This study aimed to determine the specific adaptations provoked by power-oriented resistance training using light (LL-PT, 40% 1-RM) vs. heavy (HL-PT, 80% 1-RM) loads in older adults. Using a randomized within-subject study design, 45 older adults (>65 years) completed an 8-week control period (CTR) followed by 12 weeks of unilateral LL-PT vs. HL-PT on a leg press. The 1-RM, theoretical force at zero velocity (F0 ), maximal unloaded velocity (V0 ), and maximal muscle power (Pmax ) were determined through a force-velocity relationship test. Isometrically, the rate of force development (RFD) and the corresponding muscle excitation of the knee extensor muscles were assessed. In addition, muscle cross-sectional area (CSA) and architecture of two quadriceps muscles were determined. Changes after CTR, LL-PT and HL-PT were compared using linear mixed models. HL-PT provoked greater improvements in 1-RM and F0 (effect size (ES) = 0.55-0.68; p < 0.001) than those observed after LL-PT (ES = 0.27-0.47; p ≤ 0.001) (post hoc treatment effect, p ≤ 0.057). By contrast, ES of changes in V0 was greater in LL-PT compared to HL-PT (ES = 0.71, p < 0.001 vs. ES = 0.39, p < 0.001), but this difference was not statistically significant. Both power training interventions elicited a moderate increase in Pmax (ES = 0.65-0.69, p < 0.001). Only LL-PT improved early RFD (ie, ≤100 ms) and muscle excitation (ES = 0.36-0.60, p < 0.05). Increased CSA were noted after both power training programs (ES = 0.13-0.35, p < 0.035), whereas pennation angle increased only after HL-PT (ES = 0.37, p = 0.004). In conclusion, HL-PT seems to be more effective in improving the capability to generate large forces, whereas LL-PT appears to trigger greater gains in movement velocity in older adults. However, both interventions promoted similar increases in muscle power as well as muscle hypertrophy.
Collapse
Affiliation(s)
- Carlos Rodriguez-Lopez
- GENUD Toledo Research Group, Universidad de Castilla-La Mancha, Toledo, Spain.,CIBER of Frailty and Healthy Aging (CIBERFES), Madrid, Spain
| | - Julian Alcazar
- GENUD Toledo Research Group, Universidad de Castilla-La Mancha, Toledo, Spain.,CIBER of Frailty and Healthy Aging (CIBERFES), Madrid, Spain
| | - Coral Sanchez-Martin
- GENUD Toledo Research Group, Universidad de Castilla-La Mancha, Toledo, Spain.,CIBER of Frailty and Healthy Aging (CIBERFES), Madrid, Spain
| | - Ivan Baltasar-Fernandez
- GENUD Toledo Research Group, Universidad de Castilla-La Mancha, Toledo, Spain.,CIBER of Frailty and Healthy Aging (CIBERFES), Madrid, Spain
| | - Ignacio Ara
- GENUD Toledo Research Group, Universidad de Castilla-La Mancha, Toledo, Spain.,CIBER of Frailty and Healthy Aging (CIBERFES), Madrid, Spain
| | - Robert Csapo
- Centre for Sport Science and University Sports, University of Vienna, Vienna, Austria
| | - Luis M Alegre
- GENUD Toledo Research Group, Universidad de Castilla-La Mancha, Toledo, Spain.,CIBER of Frailty and Healthy Aging (CIBERFES), Madrid, Spain
| |
Collapse
|
30
|
Farrow J, Steele J, Behm DG, Skivington M, Fisher JP. Lighter-Load Exercise Produces Greater Acute- and Prolonged-Fatigue in Exercised and Non-Exercised Limbs. RESEARCH QUARTERLY FOR EXERCISE AND SPORT 2021; 92:369-379. [PMID: 32401690 DOI: 10.1080/02701367.2020.1734521] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 02/18/2020] [Indexed: 05/26/2023]
Abstract
Purpose: The present study compared the fatigue and perceptual responses to volume-load matched heavier- and lighter- load resistance exercise to momentary failure in both a local/exercised, and non-local/non-exercised limb. Methods: Eleven resistance-trained men undertook unilateral maximal voluntary contraction (MVC) testing for knee extension prior to and immediately, 24 hr- and 48 hr- post heavier (80% MVC) and lighter (40% MVC) load dynamic unilateral knee extension exercise. Only the dominant leg of each participant was exercised to momentary failure using heavier and lighter loads, and perceptions of discomfort were measured immediately upon exercise cessation. Results: Point estimates and confidence intervals suggested that immediately post-exercise there was greater fatigue in both the exercised and non-exercised legs for the lighter- load condition. At 24 hr the exercised leg under the heavier-load condition had recovered to pre-exercise strength; however, the exercised leg under lighter- load condition had still not fully recovered by 48 hr. For the non-exercised leg, only the lighter-load condition induced fatigue; however, recovery had occurred by 48 hr. Median discomfort ratings were statistically significantly different (Z = -2.232, p = .026) between lighter and heavier loads (10 [IQR = 0] and 8 [IQR = 3], respectively). Conclusions: This study suggests that lighter-load resistance exercise induces greater fatigue in both the exercised- and non-exercised limbs, compared to heavier-load resistance exercise. These findings may have implications for exercise frequency as it may be possible to engage in heavier-load resistance exercise more frequently than a volume-load matched protocol using lighter loads.Abbreviations CI: Confidence intervals: ES: Effect size: MVC: Maximum voluntary contraction; Nm:Newton meters; RM: Repetition maximum; SD: Standard deviation; SI: Strength index.
Collapse
|
31
|
Vafaee R, Tavirani MR, Tavirani SR, Razzaghi M. Assessment of cancer prevention effect of exercise. Hum Antibodies 2021; 30:31-36. [PMID: 34459390 DOI: 10.3233/hab-210454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
There are many documents about benefits of exercise on human health. However, evidences indicate to positive effect of exercise on disease prevention, understanding of many aspects of this mechanism need more investigations. Determination of critical genes which effect human health.GSE156249 including 12 gene expression profiles of healthy individual biopsy from vastus lateralis muscle before and after 12-week combined exercise training intervention were extracted from gene expression omnibus (GEO) database. The significant DEGs were included in interactome unit by Cytoscape software and STRING database. The network was analyzed to find the central nodes subnetwork clusters. The nodes of prominent cluster were assessed via gene ontology by using ClueGO. Number of 8 significant DEGs and 100 first neighbors analyzed via network analysis. The network includes 2 clusters and COL3A1, BGN, and LOX were determined as central DEGs. The critical DEGs were involved in cancer prevention process.
Collapse
Affiliation(s)
- Reza Vafaee
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mostafa Rezaei Tavirani
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sina Rezaei Tavirani
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Razzaghi
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
32
|
Teixeira EL, de Salles Painelli V, Silva-Batista C, de Souza Barros T, Longo AR, Lasevicius T, Schoenfeld BJ, Aihara AY, de Almeida Peres B. Blood Flow Restriction Does Not Attenuate Short-Term Detraining-Induced Muscle Size and Strength Losses After Resistance Training With Blood Flow Restriction. J Strength Cond Res 2021; 35:2082-2088. [DOI: 10.1519/jsc.0000000000003148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
33
|
Mølmen KS, Hammarström D, Falch GS, Grundtvig M, Koll L, Hanestadhaugen M, Khan Y, Ahmad R, Malerbakken B, Rødølen TJ, Lien R, Rønnestad BR, Raastad T, Ellefsen S. Chronic obstructive pulmonary disease does not impair responses to resistance training. J Transl Med 2021; 19:292. [PMID: 34229714 PMCID: PMC8261934 DOI: 10.1186/s12967-021-02969-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 06/28/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Subjects with chronic obstructive pulmonary disease (COPD) are prone to accelerated decay of muscle strength and mass with advancing age. This is believed to be driven by disease-inherent systemic pathophysiologies, which are also assumed to drive muscle cells into a state of anabolic resistance, leading to impaired abilities to adapt to resistance exercise training. Currently, this phenomenon remains largely unstudied. In this study, we aimed to investigate the assumed negative effects of COPD for health- and muscle-related responsiveness to resistance training using a healthy control-based translational approach. METHODS Subjects with COPD (n = 20, GOLD II-III, FEV1predicted 57 ± 11%, age 69 ± 5) and healthy controls (Healthy, n = 58, FEV1predicted 112 ± 16%, age 67 ± 4) conducted identical whole-body resistance training interventions for 13 weeks, consisting of two weekly supervised training sessions. Leg exercises were performed unilaterally, with one leg conducting high-load training (10RM) and the contralateral leg conducting low-load training (30RM). Measurements included muscle strength (nvariables = 7), endurance performance (nvariables = 6), muscle mass (nvariables = 3), muscle quality, muscle biology (m. vastus lateralis; muscle fiber characteristics, RNA content including transcriptome) and health variables (body composition, blood). For core outcome domains, weighted combined factors were calculated from the range of singular assessments. RESULTS COPD displayed well-known pathophysiologies at baseline, including elevated levels of systemic low-grade inflammation ([c-reactive protein]serum), reduced muscle mass and functionality, and muscle biological aberrancies. Despite this, resistance training led to improved lower-limb muscle strength (15 ± 8%), muscle mass (7 ± 5%), muscle quality (8 ± 8%) and lower-limb/whole-body endurance performance (26 ± 12%/8 ± 9%) in COPD, resembling or exceeding responses in Healthy, measured in both relative and numeric change terms. Within the COPD cluster, lower FEV1predicted was associated with larger numeric and relative increases in muscle mass and superior relative improvements in maximal muscle strength. This was accompanied by similar changes in hallmarks of muscle biology such as rRNA-content↑, muscle fiber cross-sectional area↑, type IIX proportions↓, and changes in mRNA transcriptomics. Neither of the core outcome domains were differentially affected by resistance training load. CONCLUSIONS COPD showed hitherto largely unrecognized responsiveness to resistance training, rejecting the notion of disease-related impairments and rather advocating such training as a potent measure to relieve pathophysiologies. TRIAL REGISTRATION ClinicalTrials.gov ID: NCT02598830. Registered November 6th 2015, https://clinicaltrials.gov/ct2/show/NCT02598830.
Collapse
Affiliation(s)
- Knut Sindre Mølmen
- Section for Health and Exercise Physiology, Inland Norway University of Applied Sciences, P.O. Box 422, 2604, Lillehammer, Norway.
| | - Daniel Hammarström
- Section for Health and Exercise Physiology, Inland Norway University of Applied Sciences, P.O. Box 422, 2604, Lillehammer, Norway
| | - Gunnar Slettaløkken Falch
- Section for Health and Exercise Physiology, Inland Norway University of Applied Sciences, P.O. Box 422, 2604, Lillehammer, Norway
| | - Morten Grundtvig
- Department of Medicine, Innlandet Hospital Trust, Lillehammer, Norway
| | - Lise Koll
- Department of Pathology, Innlandet Hospital Trust, Lillehammer, Norway
| | | | - Yusuf Khan
- Section for Health and Exercise Physiology, Inland Norway University of Applied Sciences, P.O. Box 422, 2604, Lillehammer, Norway
- Department of Biotechnology, Inland Norway University of Applied Sciences, Hamar, Norway
| | - Rafi Ahmad
- Department of Biotechnology, Inland Norway University of Applied Sciences, Hamar, Norway
- Institute of Clinical Medicine, Faculty of Health Sciences, UiT - The Arctic University of Norway, Tromsø, Norway
| | | | | | - Roger Lien
- Innlandet Hospital Trust, Granheim Lung Hospital, Follebu, Norway
| | - Bent R Rønnestad
- Section for Health and Exercise Physiology, Inland Norway University of Applied Sciences, P.O. Box 422, 2604, Lillehammer, Norway
| | - Truls Raastad
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Stian Ellefsen
- Section for Health and Exercise Physiology, Inland Norway University of Applied Sciences, P.O. Box 422, 2604, Lillehammer, Norway
- Innlandet Hospital Trust, Lillehammer, Norway
| |
Collapse
|
34
|
Zhang J, Iannetta D, Alzeeby M, MacInnis MJ, Aboodarda SJ. Exercising muscle mass influences neuromuscular, cardiorespiratory, and perceptual responses during and following ramp-incremental cycling to task failure. Am J Physiol Regul Integr Comp Physiol 2021; 321:R238-R249. [PMID: 34189949 DOI: 10.1152/ajpregu.00286.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Neuromuscular (NM), cardiorespiratory, and perceptual responses to maximal-graded exercise using different amounts of active muscle mass remain unclear. We hypothesized that during dynamic exercise, peripheral NM fatigue (declined twitch force) and muscle pain would be greater using smaller muscle mass, whereas central fatigue (declined voluntary activation) and ventilatory variables would be greater using larger muscle mass. Twelve males (29.8 ± 4.7 years) performed two ramp-incremental cycling tests until task failure: 1) single-leg (SL) with 10 W·min-1 ramp and 2) double-leg (DL) with 20 W·min-1 ramp. NM fatigue was assessed at baseline, task failure (post), and after 1, 4, and 8 min of recovery. Cardiorespiratory and perceptual variables [i.e., ratings of perceived exertion (RPE), pain, and dyspnea] were measured throughout cycling. Exercise duration was similar between sessions (SL: 857.7 ± 263.6 s; DL: 855.0 ± 218.8 s; P = 0.923), and higher absolute peak power output was attained in DL (SL: 163.2 ± 43.8 W; DL: 307.0 ± 72.0 W; P < 0.001). Although central fatigue did not differ between conditions (SL: -6.6 ± 6.5%; DL: -3.5 ± 4.8%; P = 0.091), maximal voluntary contraction (SL: -41.6 ± 10.9%; DL: -33.7 ± 8.5%; P = 0.032) and single twitch forces (SL: -59.4 ± 18.8%; DL: -46.2 ± 16.2%; P = 0.003) declined more following SL. DL elicited higher peak oxygen uptake (SL: 42.1 ± 10.0 mL·kg-1·min-1; DL: 50.3 ± 9.3 mL·kg-1·min-1; P < 0.001), ventilation (SL: 137.1 ± 38.1 L·min-1; DL: 171.5 ± 33.2 L·min-1; P < 0.001), and heart rate (SL: 167 ± 21 bpm; DL: 187 ± 8 bpm; P = 0.005). Dyspnea (P = 0.025) was higher in DL; however, RPE (P = 0.005) and pain (P < 0.001) were higher in SL. These results suggest that interplay between NM, cardiorespiratory, and perceptual determinants of exercise performance during ramp-incremental cycling to task failure is muscle mass dependent.
Collapse
Affiliation(s)
- Jenny Zhang
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Danilo Iannetta
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Mohammed Alzeeby
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Martin J MacInnis
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Saied J Aboodarda
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
35
|
Angleri V, Ugrinowitsch C, Libardi CA. Individual Muscle Adaptations in different Resistance Training Systems in Well-Trained Men. Int J Sports Med 2021; 43:55-60. [PMID: 34100277 DOI: 10.1055/a-1493-3121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Using a within-subject design we compared the individual responses between drop-set (DS) vs. traditional resistance training (TRAD) (n=16) and crescent pyramid (CP) vs. TRAD (n=15). Muscle cross-sectional area (CSA), leg press and leg extension 1 repetition maximum (1-RM) were assessed pre and post training. At group level, CSA increased from pre to post (DS: 7.8% vs. TRAD: 7.5%, P=0.02; CP: 7.5% vs. TRAD: 7.8%, P=0.02). All protocols increased the 1-RM from pre to post for leg press (DS: 24.9% vs. TRAD: 26.8%, P < 0.0001; CP: 27.3% vs. TRAD:2 6.3%, P < 0.0001) and leg extension (DS: 17.1% vs. TRAD: 17.3%, P < 0.0001; CP: 17.0% vs. TRAD: 16.6%, P < 0.0001). Individual analysis for CSA demonstrated no differences between protocols in 15 subjects. For leg press 1-RM, 5 subjects responded more to TRAD, 2 to DS and 9 similarly between protocols. In TRAD vs. CP, 4 subjects responded more to CP, 1 to TRAD and 10 similarly between protocols. For leg extension 1-RM 2 subjects responded more to DS, 3 to TRAD and 11 similarly between protocols. Additionally, 2 subjects responded more to CP, 2 to TRAD and 11 similarly between protocols. In conclusion, all protocols induced similar individual responses for CSA. For 1-RM, some subjects experience greater gains for the protocol performed with higher loads, such as CP.
Collapse
Affiliation(s)
- Vitor Angleri
- MUSCULAB - Laboratory of Neuromuscular Adaptations to Resistance Training, Federal University of São Carlos (UFSCar), São Carlos, Brazil
| | | | - Cleiton Augusto Libardi
- MUSCULAB - Laboratory of Neuromuscular Adaptations to Resistance Training, Federal University of São Carlos (UFSCar), São Carlos, Brazil
| |
Collapse
|
36
|
Bjørnsen T, Wernbom M, Paulsen G, Berntsen S, Brankovic R, Stålesen H, Sundnes J, Raastad T. Frequent blood flow restricted training not to failure and to failure induces similar gains in myonuclei and muscle mass. Scand J Med Sci Sports 2021; 31:1420-1439. [PMID: 33735465 DOI: 10.1111/sms.13952] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 02/15/2021] [Accepted: 03/04/2021] [Indexed: 12/19/2022]
Abstract
The purpose of the present study was to compare the effects of short-term high-frequency failure vs non-failure blood flow-restricted resistance exercise (BFRRE) on changes in satellite cells (SCs), myonuclei, muscle size, and strength. Seventeen untrained men performed four sets of BFRRE to failure (Failure) with one leg and not to failure (Non-failure; 30-15-15-15 repetitions) with the other leg using knee-extensions at 20% of one repetition maximum (1RM). Fourteen sessions were distributed over two 5-day blocks, separated by a 10-day rest period. Muscle samples obtained before, at mid-training, and 10-day post-intervention (Post10) were analyzed for muscle fiber area (MFA), myonuclei, and SC. Muscle size and echo intensity of m.rectus femoris (RF) and m.vastus lateralis (VL) were measured by ultrasonography, and knee extension strength with 1RM and maximal isometric contraction (MVC) up until Post24. Both protocols increased myonuclear numbers in type-1 (12%-17%) and type-2 fibers (20%-23%), and SC in type-1 (92%-134%) and type-2 fibers (23%-48%) at Post10 (p < 0.05). RF and VL size increased by 5%-10% in both legs at Post10 to Post24, whereas the MFA of type-1 fibers in Failure was decreased at Post10 (-10 ± 16%; p = 0.02). Echo intensity increased by ~20% in both legs during Block1 (p < 0.001) and was ~8 to 11% below baseline at Post24 (p = 0.001-0.002). MVC and 1RM decreased by 5%-10% after Block1, but increased in both legs by 6%-11% at Post24 (p < 0.05). In conclusion, both short-term high-frequency failure and non-failure BFRRE induced increases in SCs, in myonuclei content, muscle size, and strength, concomitant with decreased echo intensity. Intriguingly, the responses were delayed and peaked 10-24 days after the training intervention. Our findings may shed light on the mechanisms involved in resistance exercise-induced overreaching and supercompensation.
Collapse
Affiliation(s)
- Thomas Bjørnsen
- Department of Sport Science and Physical Education, Faculty of Health and Sport Sciences, University of Agder, Kristiansand, Norway.,Norwegian Olympic Federation, Oslo, Norway
| | - Mathias Wernbom
- Center for Health and Performance, Department of Food and Nutrition, and Sport Science, University of Gothenburg, Göteborg, Sweden.,Department of Health and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| | - Gøran Paulsen
- Norwegian Olympic Federation, Oslo, Norway.,Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Sveinung Berntsen
- Department of Sport Science and Physical Education, Faculty of Health and Sport Sciences, University of Agder, Kristiansand, Norway
| | - Robert Brankovic
- Department of Sport Science and Physical Education, Faculty of Health and Sport Sciences, University of Agder, Kristiansand, Norway
| | - Håkon Stålesen
- Department of Sport Science and Physical Education, Faculty of Health and Sport Sciences, University of Agder, Kristiansand, Norway
| | - Joakim Sundnes
- Department of Sport Science and Physical Education, Faculty of Health and Sport Sciences, University of Agder, Kristiansand, Norway
| | - Truls Raastad
- Center for Health and Performance, Department of Food and Nutrition, and Sport Science, University of Gothenburg, Göteborg, Sweden
| |
Collapse
|
37
|
Molecular Transducers of Human Skeletal Muscle Remodeling under Different Loading States. Cell Rep 2021; 32:107980. [PMID: 32755574 PMCID: PMC7408494 DOI: 10.1016/j.celrep.2020.107980] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 02/27/2020] [Accepted: 07/09/2020] [Indexed: 12/11/2022] Open
Abstract
Loading of skeletal muscle changes the tissue phenotype reflecting altered metabolic and functional demands. In humans, heterogeneous adaptation to loading complicates the identification of the underpinning molecular regulators. A within-person differential loading and analysis strategy reduces heterogeneity for changes in muscle mass by ∼40% and uses a genome-wide transcriptome method that models each mRNA from coding exons and 3' and 5' untranslated regions (UTRs). Our strategy detects ∼3-4 times more regulated genes than similarly sized studies, including substantial UTR-selective regulation undetected by other methods. We discover a core of 141 genes correlated to muscle growth, which we validate from newly analyzed independent samples (n = 100). Further validating these identified genes via RNAi in primary muscle cells, we demonstrate that members of the core genes were regulators of protein synthesis. Using proteome-constrained networks and pathway analysis reveals notable relationships with the molecular characteristics of human muscle aging and insulin sensitivity, as well as potential drug therapies.
Collapse
|
38
|
Behm DG, Alizadeh S, Hadjizedah Anvar S, Hanlon C, Ramsay E, Mahmoud MMI, Whitten J, Fisher JP, Prieske O, Chaabene H, Granacher U, Steele J. Non-local Muscle Fatigue Effects on Muscle Strength, Power, and Endurance in Healthy Individuals: A Systematic Review with Meta-analysis. Sports Med 2021; 51:1893-1907. [PMID: 33818751 DOI: 10.1007/s40279-021-01456-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND The fatigue of a muscle or muscle group can produce global responses to a variety of systems (i.e., cardiovascular, endocrine, and others). There are also reported strength and endurance impairments of non-exercised muscles following the fatigue of another muscle; however, the literature is inconsistent. OBJECTIVE To examine whether non-local muscle fatigue (NLMF) occurs following the performance of a fatiguing bout of exercise of a different muscle(s). DESIGN Systematic review and meta-analysis. SEARCH AND INCLUSION A systematic literature search using a Boolean search strategy was conducted with PubMed, SPORTDiscus, Web of Science, and Google Scholar in April 2020, and was supplemented with additional 'snowballing' searches up to September 2020. To be included in our analysis, studies had to include at least one intentional performance measure (i.e., strength, endurance, or power), which if reduced could be considered evidence of muscle fatigue, and also had to include the implementation of a fatiguing protocol to a location (i.e., limb or limbs) that differed to those for which performance was measured. We excluded studies that measured only mechanistic variables such as electromyographic activity, or spinal/supraspinal excitability. After search and screening, 52 studies were eligible for inclusion including 57 groups of participants (median sample = 11) and a total of 303 participants. RESULTS The main multilevel meta-analysis model including all effects sizes (278 across 50 clusters [median = 4, range = 1 to 18 effects per cluster) revealed a trivial point estimate with high precision for the interval estimate [- 0.02 (95% CIs = - 0.14 to 0.09)], yet with substantial heterogeneity (Q(277) = 642.3, p < 0.01), I2 = 67.4%). Subgroup and meta-regression analyses showed that NLMF effects were not moderated by study design (between vs. within-participant), homologous vs. heterologous effects, upper or lower body effects, participant training status, sex, age, the time of post-fatigue protocol measurement, or the severity of the fatigue protocol. However, there did appear to be an effect of type of outcome measure where both strength [0.11 (95% CIs = 0.01-0.21)] and power outcomes had trivial effects [- 0.01 (95% CIs = - 0.24 to 0.22)], whereas endurance outcomes showed moderate albeit imprecise effects [- 0.54 (95% CIs = - 0.95 to - 0.14)]. CONCLUSIONS Overall, the findings do not support the existence of a general NLMF effect; however, when examining specific types of performance outcomes, there may be an effect specifically upon endurance-based outcomes (i.e., time to task failure). However, there are relatively fewer studies that have examined endurance effects or mechanisms explaining this possible effect, in addition to fewer studies including women or younger and older participants, and considering causal effects of prior training history through the use of longitudinal intervention study designs. Thus, it seems pertinent that future research on NLMF effects should be redirected towards these still relatively unexplored areas.
Collapse
Affiliation(s)
- David G Behm
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, NL, Canada.
| | - Shahab Alizadeh
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Saman Hadjizedah Anvar
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, NL, Canada.,University of Tehran, Tehran, Iran
| | - Courtney Hanlon
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Emma Ramsay
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, NL, Canada
| | | | - Joseph Whitten
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, NL, Canada
| | - James P Fisher
- School of Sport, Health and Social Science, Solent University, Southampton, UK
| | - Olaf Prieske
- Division of Exercise and Movement, University of Applied Sciences for Sport and Management Potsdam, Potsdam, Germany
| | - Helmi Chaabene
- Division of Training and Movement Science, University of Potsdam, Potsdam, Germany
| | - Urs Granacher
- Division of Training and Movement Science, University of Potsdam, Potsdam, Germany
| | - James Steele
- School of Sport, Health and Social Science, Solent University, Southampton, UK.,Ukactive Research Institute, London, UK
| |
Collapse
|
39
|
Lacerda LT, Marra-Lopes RO, Lanza MB, Diniz RCR, Lima FV, Martins-Costa HC, Pedrosa GF, Gustavo Pereira Andrade A, Kibele A, Chagas MH. Resistance training with different repetition duration to failure: effect on hypertrophy, strength and muscle activation. PeerJ 2021; 9:e10909. [PMID: 33665031 PMCID: PMC7916538 DOI: 10.7717/peerj.10909] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 01/15/2021] [Indexed: 01/05/2023] Open
Abstract
Background This study investigated the effects of two 14-week resistance training protocols with different repetition duration (RD) performed to muscle failure (MF) on gains in strength and muscle hypertrophy as well as on normalized electromyographic (EMG) amplitude and force-angle relationships. Methods The left and right legs of ten untrained males were assigned to either one of the two protocols (2-s or 6-s RD) incorporating unilateral knee extension exercise. Both protocols were performed with 3–4 sets, 50–60% of the one-repetition maximum (1RM), and 3 min rest. Rectus femoris and vastus lateralis cross-sectional areas (CSA), maximal voluntary isometric contraction (MVIC) at 30o and 90o of knee flexion and 1RM performance were assessed before and after the training period. In addition, normalized EMG amplitude-angle and force-angle relationships were assessed in the 6th and 39th experimental sessions. Results The 6-s RD protocol induced larger gains in MVIC at 30o of knee angle measurement than the 2-s RD protocol. Increases in MVIC at 90o of knee angle, 1RM, rectus femoris and vastus lateralis CSA were not significant between the 2-s and 6-s RD protocols. Moreover, different normalized EMG amplitude-angle and force-angle values were detected between protocols over most of the angles analyzed. Conclusion Performing longer RD could be a more appropriate strategy to provide greater gains in isometric maximal muscle strength at shortened knee positions. However, similar maximum dynamic strength and muscle hypertrophy gains would be provided by protocols with different RD.
Collapse
Affiliation(s)
- Lucas Túlio Lacerda
- Weight Training Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.,Department of Physical Education and Sports, Centro Federal de Educação Tecnológica, Belo Horizonte, Minas Gerais, Brazil.,Universidade do Estado de Minas Gerais, Divinópolis, Minas Gerais, Brazil.,Department of Physical Education, Pontifícia Universidade Católica de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Rodrigo Otávio Marra-Lopes
- Weight Training Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Marcel Bahia Lanza
- Weight Training Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.,Department of Physical Therapy and Rehabilitation, School of Medicine, University of Maryland, Maryland, Baltimore, United States of America
| | - Rodrigo César Ribeiro Diniz
- Weight Training Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Fernando Vitor Lima
- Weight Training Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Hugo Cesar Martins-Costa
- Weight Training Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.,Department of Physical Education, Pontifícia Universidade Católica de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Gustavo Ferreira Pedrosa
- Weight Training Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.,Aeronautical Instruction and Adaptation Centre, Brazilian Air Force, Lagoa Santa, Minas Gerais, Brazil
| | - André Gustavo Pereira Andrade
- Weight Training Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Armin Kibele
- Institute for Sports and Sport Science, University of Kassel, Mönchebergstraße, Kassel, Germany
| | - Mauro Heleno Chagas
- Weight Training Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
40
|
Rodriguez-Lopez C, Alcazar J, Losa-Reyna J, Martin-Espinosa NM, Baltasar-Fernandez I, Ara I, Csapo R, Alegre LM. Effects of Power-Oriented Resistance Training With Heavy vs. Light Loads on Muscle-Tendon Function in Older Adults: A Study Protocol for a Randomized Controlled Trial. Front Physiol 2021; 12:635094. [PMID: 33679447 PMCID: PMC7935559 DOI: 10.3389/fphys.2021.635094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 01/26/2021] [Indexed: 11/24/2022] Open
Abstract
Background Power-oriented resistance training (PRT) is one of the most effective exercise programs to counteract neuromuscular and physical function age-related declines. However, the optimal load that maximizes these outcomes or the load-specific adaptations induced on muscle power determinants remain to be better understood. Furthermore, to investigate whether these adaptations are potentially transferred to an untrained limb (i.e., cross-education phenomenon) could be especially relevant during limb-immobilization frequently observed in older people (e.g., after hip fracture). Methods At least 30 well-functioning older participants (>65 years) will participate in a within-person randomized controlled trial. After an 8-week control period, the effects of two 12-week PRT programs using light vs. heavy loads will be compared using an unilateral exercise model through three study arms (light-load PRT vs. non-exercise; heavy-load PRT vs. non-exercise; and light- vs. heavy- load PRT). Muscle-tendon function, muscle excitation and morphology and physical function will be evaluated to analyze the load-specific effects of PRT in older people. Additionally, the effects of PRT will be examined on a non-exercised contralateral limb. Discussion Tailored exercise programs are largely demanded given their potentially greater efficiency preventing age-related negative consequences, especially during limb-immobilization. This trial will provide evidence supporting the use of light- or heavy-load PRT on older adults depending on individual needs, improving decision making and exercise program efficacy. Clinical Trial Registration NCT03724461 registration data: October 30, 2018.
Collapse
Affiliation(s)
- Carlos Rodriguez-Lopez
- GENUD Toledo Research Group, Universidad de Castilla-La Mancha, Toledo, Spain.,CIBER of Frailty and Healthy Aging (CIBERFES), Madrid, Spain
| | - Julian Alcazar
- GENUD Toledo Research Group, Universidad de Castilla-La Mancha, Toledo, Spain.,CIBER of Frailty and Healthy Aging (CIBERFES), Madrid, Spain
| | - Jose Losa-Reyna
- GENUD Toledo Research Group, Universidad de Castilla-La Mancha, Toledo, Spain.,CIBER of Frailty and Healthy Aging (CIBERFES), Madrid, Spain.,Department of Geriatrics, Hospital Virgen del Valle, Complejo Hospitalario de Toledo, Toledo, Spain
| | | | - Ivan Baltasar-Fernandez
- GENUD Toledo Research Group, Universidad de Castilla-La Mancha, Toledo, Spain.,CIBER of Frailty and Healthy Aging (CIBERFES), Madrid, Spain
| | - Ignacio Ara
- GENUD Toledo Research Group, Universidad de Castilla-La Mancha, Toledo, Spain.,CIBER of Frailty and Healthy Aging (CIBERFES), Madrid, Spain
| | - Robert Csapo
- Research Unit for Orthopaedic Sports Medicine and Injury Prevention, ISAG, University for Health Sciences, Medical Informatics and Technology, Hall in Tirol, Austria
| | - Luis M Alegre
- GENUD Toledo Research Group, Universidad de Castilla-La Mancha, Toledo, Spain.,CIBER of Frailty and Healthy Aging (CIBERFES), Madrid, Spain
| |
Collapse
|
41
|
Teixeira EL, Painelli VDS, Schoenfeld BJ, Silva-Batista C, Longo AR, Aihara AY, Cardoso FN, Peres BDA, Tricoli V. Perceptual and Neuromuscular Responses Adapt Similarly Between High-Load Resistance Training and Low-Load Resistance Training With Blood Flow Restriction. J Strength Cond Res 2020; 36:2410-2416. [PMID: 33306591 DOI: 10.1519/jsc.0000000000003879] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Teixeira, EL, Painelli, VdS, Schoenfeld, BJ, Silva-Batista, C, Longo, AR, Aihara, AY, Cardoso, FN, Peres, BdA, and Tricoli, V. Perceptual and neuromuscular responses adapt similarly between high-load resistance training and low-load resistance training with blood flow restriction. J Strength Cond Res XX(X): 000-000, 2020-This study compared the effects of 8 weeks of low-load resistance training with blood flow restriction (LL-BFR) and high-load resistance training (HL-RT) on perceptual responses (rating of perceived exertion [RPE] and pain), quadriceps cross-sectional area (QCSA), and muscle strength (1 repetition maximum [RM]). Sixteen physically active men trained twice per week, for 8 weeks. One leg performed LL-BFR (3 sets of 15 repetitions, 20% 1RM), whereas the contralateral leg performed HL-RT (3 sets of 8 repetitions, 70% 1RM). Rating of perceived exertion and pain were evaluated immediately after the first and last training sessions, whereas QCSA and 1RM were assessed at baseline and after training. Rating of perceived exertion was significantly lower (6.8 ± 1.1 vs. 8.1 ± 0.8, p = 0.001) and pain significantly higher (7.1 ± 1.2 vs. 5.8 ± 1.8, p = 0.02) for LL-BFR than that for HL-RT before training. Significant reductions in RPE and pain were shown for both protocols after training (both p < 0.0001), although no between-protocol differences were shown in absolute changes (p = 0.10 and p = 0.48, respectively). Both LL-BFR and HL-RT were similarly effective in increasing QCSA (7.0 ± 3.8% and 6.3 ± 4.1%, respectively; both p < 0.0001) and 1RM (6.9 ± 4.1% and 13.7 ± 5.9%, respectively; both P < 0.0001), although absolute changes for 1RM in HL-RT were greater than LL-BFR (p = 0.001). In conclusion, LL-BFR produces lower RPE values and a higher pain perception than HL-RT. However, consistent application of these approaches result in chronic adaptations so that there are no differences in perceptual responses over the course of time. In addition, muscle strength is optimized with HL-RT despite similar increases in muscle hypertrophy between conditions.
Collapse
Affiliation(s)
- Emerson Luiz Teixeira
- Strength Training Study and Research Group, Paulista University, UNIP, São Paulo, SP, Brazil.,School of Physical Education and Sport, University of São Paulo, São Paulo, SP, Brazil
| | - Vitor de Salles Painelli
- Strength Training Study and Research Group, Paulista University, UNIP, São Paulo, SP, Brazil.,School of Arts, Sciences and Humanities, University of São Paulo, São Paulo, SP, Brazil
| | | | - Carla Silva-Batista
- School of Physical Education and Sport, University of São Paulo, São Paulo, SP, Brazil.,School of Arts, Sciences and Humanities, University of São Paulo, São Paulo, SP, Brazil
| | - Ariel Roberth Longo
- Strength Training Study and Research Group, Paulista University, UNIP, São Paulo, SP, Brazil
| | | | | | | | - Valmor Tricoli
- School of Physical Education and Sport, University of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
42
|
Short-term neuromuscular, morphological, and architectural responses to eccentric quasi-isometric muscle actions. Eur J Appl Physiol 2020; 121:141-158. [PMID: 32995961 DOI: 10.1007/s00421-020-04512-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 09/21/2020] [Indexed: 12/24/2022]
Abstract
PURPOSE Eccentric quasi-isometric (EQI) contractions have been proposed as a novel training method for safely exposing the musculotendinous system to a large mechanical load/impulse, with few repetitions. However, understanding of this contraction type is rudimentary. We aimed to compare the acute effects of a single session of isotonic EQIs with isokinetic eccentric (ECC) contractions. METHODS Fifteen well-trained men performed a session of impulse-equated EQI and ECC knee extensions, with each limb randomly allocated to one contraction type. Immediately PRE, POST, 24/48/72 h, and 7 days post-exercise, regional soreness, quadriceps swelling, architecture, and echo intensity were evaluated. Peak concentric and isometric torque, rate of torque development (RTD), and angle-specific impulse were evaluated at each time point. RESULTS There were substantial differences in the number of contractions (ECC: 100.8 ± 54; EQI: 3.85 ± 1.1) and peak torque (mean: ECC: 215 ± 54 Nm; EQI: 179 ± 28.5 Nm). Both conditions elicited similar responses in 21/53 evaluated variables. EQIs resulted in greater vastus intermedius swelling (7.1-8.8%, ES = 0.20-0.29), whereas ECC resulted in greater soreness at the distal and middle vastus lateralis and distal rectus femoris (16.5-30.4%, ES = 0.32-0.54) and larger echogenicity increases at the distal rectus femoris and lateral vastus intermedius (11.9-15.1%, ES = 0.26--0.54). Furthermore, ECC led to larger reductions in concentric (8.3-19.7%, ES = 0.45-0.62) and isometric (6.3-32.3%, ES = 0.18-0.70) torque and RTD at medium-long muscle lengths. CONCLUSION A single session of EQIs resulted in less soreness and smaller reductions in peak torque and RTD versus impulse-equated ECC contractions, yet morphological shifts were largely similar. Long-term morphological, architectural, and neuromuscular adaptations to EQI training requires investigation.
Collapse
|
43
|
Effect of resistance training to muscle failure vs non-failure on strength, hypertrophy and muscle architecture in trained individuals. Biol Sport 2020; 37:333-341. [PMID: 33343066 PMCID: PMC7725035 DOI: 10.5114/biolsport.2020.96317] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 05/11/2020] [Accepted: 05/23/2020] [Indexed: 12/23/2022] Open
Abstract
The aim of this study was to compare the effects of resistance training to muscle failure (RT-F) and non-failure (RT-NF) on muscle mass, strength and activation of trained individuals. We also compared the effects of these protocols on muscle architecture parameters. A within-subjects design was used in which 14 participants had one leg randomly assigned to RT-F and the other to RT-NF. Each leg was trained 2 days per week for 10 weeks. Vastus lateralis (VL) muscle cross-sectional area (CSA), pennation angle (PA), fascicle length (FL) and 1-repetition maximum (1-RM) were assessed at baseline (Pre) and after 20 sessions (Post). The electromyographic signal (EMG) was assessed after the training period. RT-F and RT-NF protocols showed significant and similar increases in CSA (RT-F: 13.5% and RT-NF: 18.1%; P < 0.0001), PA (RT-F: 13.7% and RT-NF: 14.4%; P < 0.0001) and FL (RT-F: 11.8% and RT-NF: 8.6%; P < 0.0001). All protocols showed significant and similar increases in leg press (RT-F: 22.3% and RT-NF: 26.7%; P < 0.0001) and leg extension (RT-F: 33.3%, P < 0.0001 and RT-NF: 33.7%; P < 0.0001) 1-RM loads. No significant differences in EMG amplitude were detected between protocols (P > 0.05). In conclusion, RT-F and RT-NF are similarly effective in promoting increases in muscle mass, PA, FL, strength and activation.
Collapse
|
44
|
Lundberg TR, Martínez-Aranda LM, Sanz G, Hansson B, von Walden F, Tesch PA, Fernandez-Gonzalo R. Early accentuated muscle hypertrophy is strongly associated with myonuclear accretion. Am J Physiol Regul Integr Comp Physiol 2020; 319:R50-R58. [DOI: 10.1152/ajpregu.00061.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The current study explored whether the marked hypertrophic response noted with a short-term unilateral concurrent exercise paradigm was associated with more prominent changes in myonuclei accretion, ribosome biogenesis, and capillarization compared with resistance exercise alone (RE). Ten men (age 25 ± 4 yr) performed aerobic and resistance exercise (AE + RE) for one leg while the other leg did RE. Muscle biopsies were obtained before and after 5 wk of training and subjected to fiber-type specific immunohistochemical analysis, and quantification of total RNA content and mRNA/rRNA transcript abundance. Type II fiber cross-sectional area (CSA) increased with both AE + RE (22%) and RE (16%), while type I fiber CSA increased mainly with AE + RE (16%). The change score tended to differ between legs for type I CSA ( P = 0.099), and the increase in smallest fiber diameter was greater in AE + RE than RE ( P = 0.029). The number of nuclei per fiber increased after AE + RE in both fiber types, and this increase was greater ( P = 0.027) than after RE. A strong correlation was observed between changes in number of nuclei per fiber and fiber CSA in both fiber types, for both AE + RE and RE ( r > 0.8, P < 0.004). RNA content increased after AE + RE (24%, P = 0.019), but the change-scores did not differ across legs. The capillary variables generally increased in both fiber types, with no difference across legs. In conclusion, the accentuated hypertrophic response to AE + RE was associated with more pronounced myonuclear accretion, which was strongly correlated with the degree of fiber hypertrophy. This suggests that myonuclear accretion could play a role in facilitating muscle hypertrophy also during very short training periods.
Collapse
Affiliation(s)
- Tommy R. Lundberg
- Division of Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
- Unit of Clinical Physiology, Karolinska University Hospital, Stockholm, Sweden
| | - Luis Manuel Martínez-Aranda
- Division of Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
- Unit of Clinical Physiology, Karolinska University Hospital, Stockholm, Sweden
- Faculty of Sport, Neuroscience of Human Movement Research Group (Neuromove), Catholic University of San Antonio, Murcia, Spain
| | - Gema Sanz
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Gnomics, Murcia, Spain
| | - Björn Hansson
- Division of Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
- Unit of Clinical Physiology, Karolinska University Hospital, Stockholm, Sweden
| | - Ferdinand von Walden
- Neuropediatrics Unit, Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
| | - Per A. Tesch
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Rodrigo Fernandez-Gonzalo
- Division of Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
- Unit of Clinical Physiology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
45
|
Arentson-Lantz EJ, Galvan E, Ellison J, Wacher A, Paddon-Jones D. Improving Dietary Protein Quality Reduces the Negative Effects of Physical Inactivity on Body Composition and Muscle Function. J Gerontol A Biol Sci Med Sci 2020; 74:1605-1611. [PMID: 30689727 DOI: 10.1093/gerona/glz003] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Brief periods of physical inactivity can compromise muscle health. Increasing dietary protein intake is potentially beneficial but complicated by difficulties reconciling anabolic potential with a realistic food volume and energy intake. We sought to determine whether increasing dietary protein quality could reduce the negative effects of physical inactivity. METHODS Twenty healthy, older men and women completed 7 days of bed rest followed by 5 days of rehabilitation. Volunteers consumed a mixed macronutrient diet (MIXED: N = 10; 68 ± 2 years; 1,722 ± 29 kcal/day; 0.97 ± 0.01 g protein/kg/day) or an isoenergetic, whey-augmented, higher protein quality diet (WHEY: N = 10; 69 ± 1 years; 1,706 ± 23 kcal/day; 0.90 ± 0.01 g protein/kg/day). Outcomes included body composition, blood glucose, insulin, and a battery of physical function tests. RESULTS During bed rest, both groups experienced a 20% reduction in knee extension peak torque (p < .05). The WHEY diet partially protected leg lean mass (-1,035 vs. -680 ± 138 g, MIXED vs. WHEY; p = .08) and contributed to a greater loss of body fat (-90 vs. -233 ± 152 g, MIXED vs. WHEY; p < .05). Following rehabilitation, knee extension peak torque in the WHEY group fully recovered (-10.0 vs. 2.2 ± 4.1 Nm, MIXED vs. WHEY; p = .05). Blood glucose, insulin, aerobic capacity, and Short Physical Performance Battery (SPPB) changes were similar in both dietary conditions (p > .05). CONCLUSIONS Improving protein quality without increasing total energy intake has the potential to partially counter some of the negative effects of bed rest in older adults.
Collapse
Affiliation(s)
- Emily J Arentson-Lantz
- Department of Nutrition and Metabolism, University of Texas Medical Branch, Galveston.,Center for Recovery, Physical Activity and Nutrition, University of Texas Medical Branch, Galveston
| | - Elfego Galvan
- Center for Recovery, Physical Activity and Nutrition, University of Texas Medical Branch, Galveston
| | | | - Adam Wacher
- Department of Anesthesiology, University of Texas Medical Branch, Galveston
| | - Douglas Paddon-Jones
- Department of Nutrition and Metabolism, University of Texas Medical Branch, Galveston.,Center for Recovery, Physical Activity and Nutrition, University of Texas Medical Branch, Galveston
| |
Collapse
|
46
|
Marshall RN, Smeuninx B, Morgan PT, Breen L. Nutritional Strategies to Offset Disuse-Induced Skeletal Muscle Atrophy and Anabolic Resistance in Older Adults: From Whole-Foods to Isolated Ingredients. Nutrients 2020; 12:nu12051533. [PMID: 32466126 PMCID: PMC7284346 DOI: 10.3390/nu12051533] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/19/2020] [Accepted: 05/22/2020] [Indexed: 12/14/2022] Open
Abstract
Preserving skeletal muscle mass and functional capacity is essential for healthy ageing. Transient periods of disuse and/or inactivity in combination with sub-optimal dietary intake have been shown to accelerate the age-related loss of muscle mass and strength, predisposing to disability and metabolic disease. Mechanisms underlying disuse and/or inactivity-related muscle deterioration in the older adults, whilst multifaceted, ultimately manifest in an imbalance between rates of muscle protein synthesis and breakdown, resulting in net muscle loss. To date, the most potent intervention to mitigate disuse-induced muscle deterioration is mechanical loading in the form of resistance exercise. However, the feasibility of older individuals performing resistance exercise during disuse and inactivity has been questioned, particularly as illness and injury may affect adherence and safety, as well as accessibility to appropriate equipment and physical therapists. Therefore, optimising nutritional intake during disuse events, through the introduction of protein-rich whole-foods, isolated proteins and nutrient compounds with purported pro-anabolic and anti-catabolic properties could offset impairments in muscle protein turnover and, ultimately, the degree of muscle atrophy and recovery upon re-ambulation. The current review therefore aims to provide an overview of nutritional countermeasures to disuse atrophy and anabolic resistance in older individuals.
Collapse
Affiliation(s)
- Ryan N. Marshall
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (R.N.M.); (B.S.); (P.T.M.)
- Medical Research Council-Versus Arthritis Centre for Musculoskeletal Ageing, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Benoit Smeuninx
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (R.N.M.); (B.S.); (P.T.M.)
- Medical Research Council-Versus Arthritis Centre for Musculoskeletal Ageing, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Paul T. Morgan
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (R.N.M.); (B.S.); (P.T.M.)
- Medical Research Council-Versus Arthritis Centre for Musculoskeletal Ageing, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Leigh Breen
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (R.N.M.); (B.S.); (P.T.M.)
- Medical Research Council-Versus Arthritis Centre for Musculoskeletal Ageing, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
- Correspondence: ; Tel.: +44-121-414-4109
| |
Collapse
|
47
|
Oikawa SY, Bahniwal R, Holloway TM, Lim C, McLeod JC, McGlory C, Baker SK, Phillips SM. Potato Protein Isolate Stimulates Muscle Protein Synthesis at Rest and with Resistance Exercise in Young Women. Nutrients 2020; 12:nu12051235. [PMID: 32349353 PMCID: PMC7281992 DOI: 10.3390/nu12051235] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/15/2020] [Accepted: 04/23/2020] [Indexed: 12/22/2022] Open
Abstract
Skeletal muscle myofibrillar protein synthesis (MPS) increases in response to protein feeding and to resistance exercise (RE), where each stimuli acts synergistically when combined. The efficacy of plant proteins such as potato protein (PP) isolate to stimulate MPS is unknown. We aimed to determine the effects of PP ingestion on daily MPS with and without RE in healthy women. In a single blind, parallel-group design, 24 young women (21 ± 3 years, n = 12/group) consumed a weight-maintaining baseline diet containing 0.8 g/kg/d of protein before being randomized to consume either 25 g of PP twice daily (1.6 g/kg/d total protein) or a control diet (CON) (0.8 g/kg/d total protein) for 2 wks. Unilateral RE (~30% of maximal strength to failure) was performed thrice weekly with the opposite limb serving as a non-exercised control (Rest). MPS was measured by deuterated water ingestion at baseline, following supplementation (Rest), and following supplementation + RE (Exercise). Ingestion of PP stimulated MPS by 0.14 ± 0.09 %/d at Rest, and by 0.32 ± 0.14 %/d in the Exercise limb. MPS was significantly elevated by 0.20 ± 0.11 %/d in the Exercise limb in CON (p = 0.008). Consuming PP to increase protein intake to levels twice the recommended dietary allowance for protein augmented rates of MPS. Performance of RE stimulated MPS regardless of protein intake. PP is a high-quality, plant-based protein supplement that augments MPS at rest and following RE in healthy young women.
Collapse
Affiliation(s)
- Sara Y. Oikawa
- Department of Kinesiology, McMaster University, Hamilton, ON L8S 4L8, Canada; (S.Y.O.); (R.B.); (C.L.); (J.C.M.)
| | - Ravninder Bahniwal
- Department of Kinesiology, McMaster University, Hamilton, ON L8S 4L8, Canada; (S.Y.O.); (R.B.); (C.L.); (J.C.M.)
| | - Tanya M. Holloway
- Faculty of Applied Health & Community Studies, Sheridan College, Brampton, ON L6Y 5H9, Canada;
| | - Changhyun Lim
- Department of Kinesiology, McMaster University, Hamilton, ON L8S 4L8, Canada; (S.Y.O.); (R.B.); (C.L.); (J.C.M.)
| | - Jonathan C. McLeod
- Department of Kinesiology, McMaster University, Hamilton, ON L8S 4L8, Canada; (S.Y.O.); (R.B.); (C.L.); (J.C.M.)
| | - Chris McGlory
- School of Kinesiology and Health Studies, Queens University, Kingston, ON K7L 3N6, Canada;
| | - Steven K. Baker
- Department of Neurology, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada;
| | - Stuart M. Phillips
- Department of Kinesiology, McMaster University, Hamilton, ON L8S 4L8, Canada; (S.Y.O.); (R.B.); (C.L.); (J.C.M.)
- Correspondence: ; Tel.: +1-(905)-525-9140 (ext. 24465)
| |
Collapse
|
48
|
Angleri V, Ugrinowitsch C, Libardi C. Are resistance training systems necessary to avoid a stagnation and maximize the gains muscle strength and hypertrophy? Sci Sports 2020. [DOI: 10.1016/j.scispo.2018.12.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
49
|
Carvalho L, Barroso R. Muscle thickness and strength adaptations in dominant and non-dominant upper limbs. J Sports Med Phys Fitness 2020; 60:809-813. [PMID: 32118388 DOI: 10.23736/s0022-4707.20.10048-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND It is currently unknown if muscle growth and strength gain are similar in both dominant and non-dominant limbs of the same individual with the same training load. Therefore, the objective of this study was to analyze initial muscle size and strength levels in both upper limbs and compare changes in muscle size and strength between dominant and non-dominant upper limbs with a within-individual experimental design with high-load resistance training. METHODS Ten untrained participants performed six weeks of unilateral resistance training for upper limbs (i.e., elbow flexors) using 80% of 1 repetition maximum (1RM). Muscle thickness and 1RM were assessed before and after the training period. We used a two-way repeated measures ANOVA to compared changes between limbs, effect sizes (ES) were also calculated. RESULTS Muscle thickness and 1RM were not different between limbs at baseline. There was a main time effect for muscle thickness (P<0.0001; dominant: 10±4%, ES=0.83; non-dominant: 11±3%, ES=0.85) and 1RM (P<0.0001; dominant: 23±15%, ES=1.8; non-dominant: 30±17%, ES=1.9), but there was no interaction effect for muscle thickness (P=0.63) and 1RM (P=0.32). There was no difference between dominant and non-dominant limbs in volume load (ES=0.4; P=0.13). CONCLUSIONS Similar baseline strength level and muscle thickness, and training volume may explain similar adaptations observed. Within-individual design seems reliable to investigate training models as both limbs adapt similarly to the same stimulus.
Collapse
Affiliation(s)
- Leonardo Carvalho
- Department of Sport Sciences, School of Physical Education, University of Campinas (UNICAMP), Campinas, Brazil
| | - Renato Barroso
- Department of Sport Sciences, School of Physical Education, University of Campinas (UNICAMP), Campinas, Brazil -
| |
Collapse
|
50
|
Oikawa SY, Kamal MJ, Webb EK, McGlory C, Baker SK, Phillips SM. Whey protein but not collagen peptides stimulate acute and longer-term muscle protein synthesis with and without resistance exercise in healthy older women: a randomized controlled trial. Am J Clin Nutr 2020; 111:708-718. [PMID: 31919527 PMCID: PMC7049534 DOI: 10.1093/ajcn/nqz332] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Aging appears to attenuate the response of skeletal muscle protein synthesis (MPS) to anabolic stimuli such as protein ingestion (and the ensuing hyperaminoacidemia) and resistance exercise (RE). OBJECTIVES The purpose of this study was to determine the effects of protein quality on feeding- and feeding plus RE-induced increases of acute and longer-term MPS after ingestion of whey protein (WP) and collagen protein (CP). METHODS In a double-blind parallel-group design, 22 healthy older women (mean ± SD age: 69 ± 3 y, n = 11/group) were randomly assigned to consume a 30-g supplement of either WP or CP twice daily for 6 d. Participants performed unilateral RE twice during the 6-d period to determine the acute (via [13C6]-phenylalanine infusion) and longer-term (ingestion of deuterated water) MPS responses, the primary outcome measures. RESULTS Acutely, WP increased MPS by a mean ± SD 0.017 ± 0.008%/h in the feeding-only leg (Rest) and 0.032 ± 0.012%/h in the feeding plus exercise leg (Exercise) (both P < 0.01), whereas CP increased MPS only in Exercise (0.012 ± 0.013%/h) (P < 0.01) and MPS was greater in WP than CP in both the Rest and Exercise legs (P = 0.02). Longer-term MPS increased by 0.063 ± 0.059%/d in Rest and 0.173 ± 0.104%/d in Exercise (P < 0.0001) with WP; however, MPS was not significantly elevated above baseline in Rest (0.011 ± 0.042%/d) or Exercise (0.020 ± 0.034%/d) with CP. Longer-term MPS was greater in WP than in CP in both Rest and Exercise (P < 0.001). CONCLUSIONS Supplementation with WP elicited greater increases in both acute and longer-term MPS than CP supplementation, which is suggestive that WP is a more effective supplement to support skeletal muscle retention in older women than CP.This trial was registered at clinicaltrials.gov as NCT03281434.
Collapse
Affiliation(s)
- Sara Y Oikawa
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Michael J Kamal
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Erin K Webb
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Chris McGlory
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Steven K Baker
- Department of Neurology, Michael G DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Stuart M Phillips
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada,Address correspondence to SMP (e-mail: )
| |
Collapse
|