1
|
Zou ZP, Zhang XP, Zhang Q, Yin BC, Zhou Y, Ye BC. Genetically engineered bacteria as inflammatory bowel disease therapeutics. ENGINEERING MICROBIOLOGY 2024; 4:100167. [PMID: 39628589 PMCID: PMC11611042 DOI: 10.1016/j.engmic.2024.100167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/24/2024] [Accepted: 08/26/2024] [Indexed: 12/06/2024]
Abstract
Inflammatory bowel disease (IBD) is a chronic and recurrent disease caused by immune response disorders that disrupt the intestinal lumen symbiotic ecosystem and dysregulate mucosal immune functions. Current therapies available for IBD primarily focus on symptom management, making early diagnosis and prompt intervention challenging. The development of genetically engineered bacteria using synthetic biology presents a new strategy for addressing these challenges. In this review, we present recent breakthroughs in the field of engineered bacteria for the treatment and detection of IBD and describe how bacteria can be genetically modified to produce therapeutic molecules or execute diagnostic functions. In particular, we discuss the challenges faced in translating live bacterial therapeutics from bacterial design to delivery strategies for further clinical applications.
Collapse
Affiliation(s)
| | | | - Qian Zhang
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Bin-Cheng Yin
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Ying Zhou
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Bang-Ce Ye
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
2
|
Chen Q, Shao B, Xu YN, Li X, Ren SH, Wang HD, Zhang JY, Sun CL, Liu T, Xiao YY, Zhao PY, Yang GM, Liu X, Wang H. IGF2 contributes to the immunomodulatory effects of exosomes from endometrial regenerative cells on experimental colitis. Int Immunopharmacol 2024; 140:112825. [PMID: 39079347 DOI: 10.1016/j.intimp.2024.112825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/19/2024] [Accepted: 07/25/2024] [Indexed: 09/01/2024]
Abstract
BACKGROUND Exosomes derived from endometrial regenerative cells (ERC-Exos) can inherit the immunomodulatory function from ERCs, however, whether ERC-Exos exhibit such effect on inflammatory bowel diseases with mucosal immune dysregulation has not been explored. Insulin-like growth factor-Ⅱ (IGF2) is considered to possess the potential to induce an anti-inflammatory phenotype in immune cells. In this study, the contribution of IGF2 in mediating the protective efficacy of ERC-Exos on colitis was investigated. METHODS Lentiviral transfection was employed to obtain IGF2-specific knockout ERC-Exos (IGF2-/--ERC-Exos). Experimental colitis mice induced by dextran sulfate sodium (DSS) were divided into the phosphate-buffered saline (untreated), ERC-Exos-treated and IGF2-/--ERC-Exos-treated groups. Colonic histopathological analysis and intestinal barrier function were explored. The infiltration of CD4+ T cells and dendritic cells (DCs) were analyzed by immunofluorescence staining and flow cytometry. The maturation and function of bone marrow-derived dendritic cells (BMDCs) in different exosome administrations were evaluated by flow cytometry, ELISA and the coculture system, respectively. RESULTS Compared with the untreated group, ERC-Exos treatment significantly attenuated DSS-induced weight loss, bloody stools, shortened colon length, pathological damage, as well as repaired the weakened intestinal mucosal barrier, including promoting the goblet cells retention, restoring the intestinal barrier integrity and enhancing the expression of tight junction proteins, while the protective effect of exosomes was impaired with the knockout of IGF2 in ERC-Exos. Additionally, IGF2-expressing ERC-Exos decreased the proportions of Th1 and Th17, increased the proportions of Treg, as well as attenuated DC infiltration and maturation in mesenteric lymph nodes and lamina propria of the colitis mice. ERC-Exos were also observed to be phagocytosed by BMDCs and IGF2 is responsible for the modulating effect of ERC-Exos on BMDCs in vitro. CONCLUSIONS Exosomes derived from ERCs can exert a therapeutic effect on experimental colitis with remarkable alleviation of the intestinal barrier damage and the abnormal mucosal immune responses. We emphasized that IGF2 plays a critical role for ERC-Exos mediated immunomodulatory function and protection against colitis.
Collapse
Affiliation(s)
- Qiang Chen
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China.
| | - Bo Shao
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China.
| | - Yi-Ni Xu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China.
| | - Xiang Li
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China.
| | - Shao-Hua Ren
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China; Department of General Surgery, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China.
| | - Hong-da Wang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China.
| | - Jing-Yi Zhang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China.
| | - Cheng-Lu Sun
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China.
| | - Tong Liu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China.
| | - Yi-Yi Xiao
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China.
| | - Peng-Yu Zhao
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China.
| | - Guang-Mei Yang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China.
| | - Xu Liu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China.
| | - Hao Wang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China; Tianjin Key Laboratory of Precise Vascular Reconstruction and Organ Function Repair, Tianjin, China.
| |
Collapse
|
3
|
Heredia M, Charrout M, Klomberg RCW, Aardoom MA, Jongsma MME, Kemos P, Hulleman-van Haaften DH, Tuk B, van Berkel LA, Bley Folly B, Calado B, Nugteren S, Simons-Oosterhuis Y, Doukas M, Sanders MA, van Beek G, Ruemmele FM, Croft NM, Mahfouz A, Reinders MJT, Escher JC, de Ridder L, Samsom JN. Combined plasma protein and memory T cell profiling discern IBD-patient-immunotypes related to intestinal disease and treatment outcomes. Mucosal Immunol 2024:S1933-0219(24)00097-7. [PMID: 39332767 DOI: 10.1016/j.mucimm.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/29/2024] [Accepted: 09/21/2024] [Indexed: 09/29/2024]
Abstract
Inflammatory bowel disease (IBD) chronicity results from memory T helper cell (Tmem) reactivation. Identifying patient-specific immunotypes is crucial for tailored treatment. We conducted a comprehensive study integrating circulating immune proteins and circulating Tmem, with intestinal tissue histology and mRNA analysis, in therapy-naïve pediatric IBD (Crohn's disease, CD: n = 62; ulcerative colitis, UC: n = 20; age-matched controls n = 43), and after 10-12 weeks' induction therapy. At diagnosis, plasma protein profiles unveiled two UC and three CD clusters with distinct disease courses. UC patients displayed unchanged circulating Tmem, while CD exhibited increased frequencies of gut-homing ex-Th17, known for high IFN-γ production. UC#2 had elevated Th17/neutrophil-pathway-related proteins and severe disease, with higher endoscopic and histological damage and Th17/neutrophil infiltration. Although both UC#1 and UC#2 responded to therapy, UC#2 required earlier immunomodulation. CD#3 had lower plasma protein concentrations, especially IFN-γ pathway proteins, fewer gut-homing ex-Th17 and clinically milder disease, confirmed by intestinal gene expression. CD#1 and CD#2 had comparably high Th1-related immune profiles, but CD#1 exhibited higher concentrations of proteins previously associated with poorer prognosis. Both CD clusters responded to induction therapy, with similar one-year outcomes. This study highlights feasibility of discriminating patient-specific immunotypes in IBD, advancing our understanding of immune pathogenesis, needed for tailored treatment strategies.
Collapse
Affiliation(s)
- Maud Heredia
- Laboratory of Pediatrics, Division Gastroenterology and Nutrition, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Mohammed Charrout
- Delft Bioinformatics Lab, Delft University of Technology, Delft, The Netherlands
| | - Renz C W Klomberg
- Department of Pediatric Gastroenterology, Erasmus University Medical Center-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Martine A Aardoom
- Department of Pediatric Gastroenterology, Erasmus University Medical Center-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Maria M E Jongsma
- Department of Pediatric Gastroenterology, Erasmus University Medical Center-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Polychronis Kemos
- Centre for Immunobiology, Blizard Institute, Queen Mary University of London, London, UK
| | - Danielle H Hulleman-van Haaften
- Laboratory of Pediatrics, Division Gastroenterology and Nutrition, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Bastiaan Tuk
- Laboratory of Pediatrics, Division Gastroenterology and Nutrition, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Lisette A van Berkel
- Laboratory of Pediatrics, Division Gastroenterology and Nutrition, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Brenda Bley Folly
- Laboratory of Pediatrics, Division Gastroenterology and Nutrition, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Beatriz Calado
- Laboratory of Pediatrics, Division Gastroenterology and Nutrition, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Sandrine Nugteren
- Laboratory of Pediatrics, Division Gastroenterology and Nutrition, Erasmus University Medical Center, Rotterdam, The Netherlands; Department of Pathology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Ytje Simons-Oosterhuis
- Laboratory of Pediatrics, Division Gastroenterology and Nutrition, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Michail Doukas
- Department of Pathology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Mathijs A Sanders
- Department of Hematology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Gregory van Beek
- Department of Hematology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Frank M Ruemmele
- Department of Pediatric Gastroenterology, Necker-Enfants Malades University Hospital, Institut Imagine, AP-HP, Université Paris Cité, Paris, France
| | - Nicholas M Croft
- Centre for Immunobiology, Blizard Institute, Queen Mary University of London, London, UK
| | - Ahmed Mahfouz
- Delft Bioinformatics Lab, Delft University of Technology, Delft, The Netherlands; Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Marcel J T Reinders
- Delft Bioinformatics Lab, Delft University of Technology, Delft, The Netherlands
| | - Johanna C Escher
- Department of Pediatric Gastroenterology, Erasmus University Medical Center-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Lissy de Ridder
- Department of Pediatric Gastroenterology, Erasmus University Medical Center-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Janneke N Samsom
- Laboratory of Pediatrics, Division Gastroenterology and Nutrition, Erasmus University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
4
|
Abacar K, Macleod T, Direskeneli H, McGonagle D. How underappreciated autoinflammatory (innate immunity) mechanisms dominate disparate autoimmune disorders. Front Immunol 2024; 15:1439371. [PMID: 39372419 PMCID: PMC11449752 DOI: 10.3389/fimmu.2024.1439371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 09/04/2024] [Indexed: 10/08/2024] Open
Abstract
Historically inflammation against self was considered autoimmune which stems back to the seminal observations by Ehrlich who described serum factors, now known to be autoantibodies produced by B lineage cells that mediate "horror autotoxicus". The 20th century elucidation of B- and T-cell adaptive immune responses cemented the understanding of the key role of adaptive immune responses in mediating pathology against self. However, Mechnikov shared the Nobel Prize for the discovery of phagocytosis, the most rudimentary aspect of innate immunity. Fast forward some 100 years and an immunogenetic understanding of innate immunity led to the categorising of innate immunopathology under the umbrella term 'auto inflammation' and terminology such as "horror autoinflammaticus" to highlight the schism from the classical adaptive immune understanding of autoimmunity. These concepts lead to calls for a two-tiered classification of inflammation against self, but just as innate and adaptive immunity are functionally integrated, so is immunopathology in many settings and the concept of an autoimmune to autoinflammation continuum emerged with overlaps between both. Herein we describe several historically designated disorders of adaptive immunity where innate immunity is key, including rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), systemic juvenile idiopathic arthritis (sJIA) and adult-onset Still's disease (AOSD) where the immunopathology phenotype is strongly linked to major histocompatibility complex (MHC) class II associations and responds to drugs that target T-cells. We also consider MHC-I-opathies including psoriasis and Behcet's disease(BD) that are increasingly viewed as archetype CD8 T-cell related disorders. We also briefly review the key role of barrier dysfunction in eczema and ulcerative colitis (UC) where innate tissue permeability barrier dysfunction and microbial dysbiosis contributes to prominent adaptive immune pathological mechanisms. We also highlight the emerging roles of intermediate populations of lymphocytes including gamma delta (γδ) and mucosal-associated invariant T (MAIT) cells that represent a blend of adaptive immune plasticity and innate immune rapid responders that may also determine site specific patterns of inflammation.
Collapse
Affiliation(s)
- Kerem Abacar
- Department of Internal Medicine, Division of Rheumatology, Marmara University School of Medicine, Istanbul, Türkiye
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, United Kingdom
| | - Tom Macleod
- Department of Internal Medicine, Division of Rheumatology, Marmara University School of Medicine, Istanbul, Türkiye
| | - Haner Direskeneli
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, United Kingdom
| | - Dennis McGonagle
- Department of Internal Medicine, Division of Rheumatology, Marmara University School of Medicine, Istanbul, Türkiye
- National Institute for Health Research, Leeds Biomedical Research Centre, Leeds Teaching Hospitals, Leeds, United Kingdom
| |
Collapse
|
5
|
Madan U, Verma B, Awasthi A. Cenicriviroc, a CCR2/CCR5 antagonist, promotes the generation of type 1 regulatory T cells. Eur J Immunol 2024; 54:e2350847. [PMID: 38643381 DOI: 10.1002/eji.202350847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/22/2024]
Abstract
Cenicriviroc, a dual CCR2/CCR5 antagonist, initially developed as an anti-HIV drug, has shown promising results in nonalcoholic steatohepatitis phase 2 clinical trials. It inhibits the infiltration and activation of CCR2+/CCR5+ monocytes and macrophages to the site of liver injury, preventing liver fibrosis. However, the role of Cenicriviroc in the modulation of helper T cell differentiation and functions remains to be explored. In inflamed colons of Crohn's disease patients, CCR2+ and CCR5+ CD4+ T cells are enriched. Considering the role of CCR2+ and CCR5+ T cells in IBD pathogenesis, we investigated the potential role of Cenicriviroc in colitis. Our in vitro studies revealed that Cenicriviroc inhibits Th1-, Th2-, and Th17-cell differentiation while promoting the generation of type 1 regulatory T cells (Tr1), known for preventing inflammation through induction of IL-10. This study is the first to report that Cenicriviroc promotes Tr1 cell generation by up-regulating the signature of Tr1 cell transcription factors such as c-Maf, Prdm1, Irf-1, Batf, and EGR-2. Cenicriviroc displayed a protective effect in experimental colitis models by preventing body weight loss and intestinal inflammation and preserving epithelial barrier integrity. We show that Cenicriviroc induced IL-10 and inhibited the generation of pro-inflammatory cytokines IFN-γ, IL-17, IL-6, and IL-1β during colitis. Based on our data, we propose Cenicriviroc as a potential therapeutic in controlling tissue inflammation by inhibiting the generation and functions of effector T cells and promoting the induction of anti-inflammatory Tr1 cells.
Collapse
Affiliation(s)
- Upasna Madan
- Centre for Immuno-biology and Immunotherapy, NCR-Biotech Science Cluster, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Bhawna Verma
- Centre for Immuno-biology and Immunotherapy, NCR-Biotech Science Cluster, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Amit Awasthi
- Centre for Immuno-biology and Immunotherapy, NCR-Biotech Science Cluster, Translational Health Science and Technology Institute, Faridabad, Haryana, India
- Immunology-Core Lab, NCR Biotech Science Cluster, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| |
Collapse
|
6
|
Aschenbrenner D, Nassiri I, Venkateswaran S, Pandey S, Page M, Drowley L, Armstrong M, Kugathasan S, Fairfax B, Uhlig HH. An isoform quantitative trait locus in SBNO2 links genetic susceptibility to Crohn's disease with defective antimicrobial activity. Nat Commun 2024; 15:4529. [PMID: 38806456 PMCID: PMC11133462 DOI: 10.1038/s41467-024-47218-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 03/25/2024] [Indexed: 05/30/2024] Open
Abstract
Despite major advances in linking single genetic variants to single causal genes, the significance of genetic variation on transcript-level regulation of expression, transcript-specific functions, and relevance to human disease has been poorly investigated. Strawberry notch homolog 2 (SBNO2) is a candidate gene in a susceptibility locus with different variants associated with Crohn's disease and bone mineral density. The SBNO2 locus is also differentially methylated in Crohn's disease but the functional mechanisms are unknown. Here we show that the isoforms of SBNO2 are differentially regulated by lipopolysaccharide and IL-10. We identify Crohn's disease associated isoform quantitative trait loci that negatively regulate the expression of the noncanonical isoform 2 corresponding with the methylation signals at the isoform 2 promoter in IBD and CD. The two isoforms of SBNO2 drive differential gene networks with isoform 2 dominantly impacting antimicrobial activity in macrophages. Our data highlight the role of isoform quantitative trait loci to understand disease susceptibility and resolve underlying mechanisms of disease.
Collapse
Affiliation(s)
- Dominik Aschenbrenner
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK.
- Immunology Disease Area, Novartis Biomedical Research, Basel, CH, Switzerland.
| | - Isar Nassiri
- Oxford-GSK Institute of Molecular and Computational Medicine (IMCM), Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Department of Psychiatry, University of Oxford, Oxford, UK
| | | | - Sumeet Pandey
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK
- GSK Immunology Network, GSK Medicines Research Center, Stevenage, UK
| | - Matthew Page
- Translational Bioinformatics, UCB Pharma, Slough, UK
| | | | | | | | - Benjamin Fairfax
- MRC-Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Department of Oncology, University of Oxford & Oxford Cancer Centre, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Holm H Uhlig
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK.
- NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK.
- Department of Paediatrics, University of Oxford, Oxford, UK.
| |
Collapse
|
7
|
Qian H, Ye Z, Hu Y, Wu M, Chen L, Li L, Hu Z, Zhao Q, Zhang C, Yang M, Xudong W, Ye Q, Qin K. Molecular targets associated with ulcerative colitis and the benefits of atractylenolides-based therapy. Front Pharmacol 2024; 15:1398294. [PMID: 38860174 PMCID: PMC11163078 DOI: 10.3389/fphar.2024.1398294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 05/08/2024] [Indexed: 06/12/2024] Open
Abstract
Ulcerative colitis (UC) is a chronic inflammatory disease of the intestines that can significantly impact quality of life and lead to various complications. Currently, 5-aminosalicylic acid derivatives, corticosteroids, immunosuppressants, and biologics are the major treatment strategies for UC, but their limitations have raised concerns. Atractylenolides (ATs), sesquiterpene metabolites found in Atractylodes macrocephala Koidz., have shown promising effects in treating UC by exerting immune barrier modulation, alleviating oxidative stress, gut microbiota regulation, improving mitochondrial dysfunction and repairing the intestinal barrier. Furthermore, ATs have been shown to possess remarkable anti-fibrosis, anti-thrombus, anti-angiogenesis and anti-cancer. These findings suggest that ATs hold important potential in treating UC and its complications. Therefore, this review systematically summarizes the efficacy and potential mechanisms of ATs in treating UC and its complications, providing the latest insights for further research and clinical applications.
Collapse
Affiliation(s)
- Huanzhu Qian
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Zhen Ye
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yu Hu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Mingquan Wu
- Department of Pharmacy, Sichuan Orthopedic Hospital, Chengdu, Sichuan, China
| | - Liulin Chen
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Linzhen Li
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Zhipeng Hu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Qian Zhao
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Chen Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Maoyi Yang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Wen Xudong
- Department of Gastroenterology, Chengdu Integrated TCM & Western Medicine Hospital, Chengdu, Sichuan, China
| | - Qiaobo Ye
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Kaihua Qin
- Health Preservation and Rehabilitation College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
8
|
Alvarez-Martinez M, Cox LS, Pearson CF, Branchett WJ, Chakravarty P, Wu X, Slawinski H, Al-Dibouni A, Samelis VA, Gabryšová L, Priestnall SL, Suárez-Bonnet A, Mikolajczak A, Briscoe J, Powrie F, O'Garra A. Blimp-1 and c-Maf regulate immune gene networks to protect against distinct pathways of pathobiont-induced colitis. Nat Immunol 2024; 25:886-901. [PMID: 38609547 PMCID: PMC11065689 DOI: 10.1038/s41590-024-01814-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/13/2024] [Indexed: 04/14/2024]
Abstract
Intestinal immune responses to microbes are controlled by the cytokine IL-10 to avoid immune pathology. Here, we use single-cell RNA sequencing of colon lamina propria leukocytes (LPLs) along with RNA-seq and ATAC-seq of purified CD4+ T cells to show that the transcription factors Blimp-1 (encoded by Prdm1) and c-Maf co-dominantly regulate Il10 while negatively regulating proinflammatory cytokines in effector T cells. Double-deficient Prdm1fl/flMaffl/flCd4Cre mice infected with Helicobacter hepaticus developed severe colitis with an increase in TH1/NK/ILC1 effector genes in LPLs, while Prdm1fl/flCd4Cre and Maffl/flCd4Cre mice exhibited moderate pathology and a less-marked type 1 effector response. LPLs from infected Maffl/flCd4Cre mice had increased type 17 responses with increased Il17a and Il22 expression and an increase in granulocytes and myeloid cell numbers, resulting in increased T cell-myeloid-neutrophil interactions. Genes over-expressed in human inflammatory bowel disease showed differential expression in LPLs from infected mice in the absence of Prdm1 or Maf, revealing potential mechanisms of human disease.
Collapse
Affiliation(s)
| | - Luke S Cox
- Immunoregulation and Infection Laboratory, The Francis Crick Institute, London, UK
| | - Claire F Pearson
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - William J Branchett
- Immunoregulation and Infection Laboratory, The Francis Crick Institute, London, UK
| | - Probir Chakravarty
- Computational Biology Laboratory, The Francis Crick Institute, London, UK
| | - Xuemei Wu
- Immunoregulation and Infection Laboratory, The Francis Crick Institute, London, UK
| | - Hubert Slawinski
- Advanced Sequencing Facility, The Francis Crick Institute, London, UK
| | - Alaa Al-Dibouni
- Immunoregulation and Infection Laboratory, The Francis Crick Institute, London, UK
| | - Vasileios A Samelis
- Immunoregulation and Infection Laboratory, The Francis Crick Institute, London, UK
| | - Leona Gabryšová
- Immunoregulation and Infection Laboratory, The Francis Crick Institute, London, UK
| | - Simon L Priestnall
- Department of Pathobiology and Population Sciences, Royal Veterinary College, London, UK
- Experimental Histopathology, The Francis Crick Institute, London, UK
| | - Alejandro Suárez-Bonnet
- Department of Pathobiology and Population Sciences, Royal Veterinary College, London, UK
- Experimental Histopathology, The Francis Crick Institute, London, UK
| | - Anna Mikolajczak
- Experimental Histopathology, The Francis Crick Institute, London, UK
| | - James Briscoe
- Developmental Dynamics Laboratory, The Francis Crick Institute, London, UK
| | - Fiona Powrie
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Anne O'Garra
- Immunoregulation and Infection Laboratory, The Francis Crick Institute, London, UK.
- National Heart and Lung Institute, Imperial College London, London, UK.
| |
Collapse
|
9
|
c-MAF and BLIMP-1 inhibit pathobiont-induced colitis by common and distinct immune pathways. Nat Immunol 2024; 25:737-738. [PMID: 38641721 DOI: 10.1038/s41590-024-01823-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2024]
|
10
|
Dong Y, Johnson BA, Ruan L, Zeineldin M, Bi T, Liu AZ, Raychaudhuri S, Chiu I, Zhu J, Smith B, Zhao N, Searson P, Watanabe S, Donowitz M, Larman TC, Li R. Disruption of epithelium integrity by inflammation-associated fibroblasts through prostaglandin signaling. SCIENCE ADVANCES 2024; 10:eadj7666. [PMID: 38569041 PMCID: PMC10990275 DOI: 10.1126/sciadv.adj7666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 02/27/2024] [Indexed: 04/05/2024]
Abstract
Inflammation-associated fibroblasts (IAFs) are associated with progression and drug resistance of chronic inflammatory diseases such as inflammatory bowel disease (IBD), but their direct impact on epithelial cells is unknown. Here, we developed an in vitro model whereby human colon fibroblasts are induced by specific cytokines and recapitulate key features of IAFs in vivo. When cocultured with patient-derived colon organoids (colonoids), IAFs induced rapid colonoid expansion and barrier disruption due to swelling and rupture of individual epithelial cells. Colonoids cocultured with IAFs also show increased DNA damage, mitotic errors, and proliferation arrest. These IAF-induced epithelial defects are mediated by a paracrine pathway involving prostaglandin E2 and its receptor EP4, leading to protein kinase A -dependent activation of the cystic fibrosis transmembrane conductance regulator. EP4-specific chemical inhibitors effectively prevented IAF-induced colonoid swelling and restored normal proliferation and genome stability. These findings reveal a mechanism by which IAFs could promote and perpetuate IBD and suggest a therapeutic avenue to mitigate inflammation-associated epithelial injury.
Collapse
Affiliation(s)
- Yi Dong
- Department of Cell Biology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Blake A. Johnson
- Department of Cell Biology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Linhao Ruan
- Department of Cell Biology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Maged Zeineldin
- Department of Pathology, Division of GI/Liver Pathology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Tianhao Bi
- Department of Pathology, Division of GI/Liver Pathology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Albert Z. Liu
- Department of Cell Biology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Sumana Raychaudhuri
- Department of Cell Biology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Ian Chiu
- Department of Cell Biology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Jin Zhu
- Mechanobiology Institute and Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Barbara Smith
- Microscope Facility, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Nan Zhao
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Peter Searson
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Shigeki Watanabe
- Department of Cell Biology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Mark Donowitz
- Department of Medicine, Division of Gastroenterology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Department of Physiology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Tatianna C. Larman
- Department of Pathology, Division of GI/Liver Pathology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Rong Li
- Department of Cell Biology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Mechanobiology Institute and Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| |
Collapse
|
11
|
Mann ER, Lam YK, Uhlig HH. Short-chain fatty acids: linking diet, the microbiome and immunity. Nat Rev Immunol 2024:10.1038/s41577-024-01014-8. [PMID: 38565643 DOI: 10.1038/s41577-024-01014-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2024] [Indexed: 04/04/2024]
Abstract
The short-chain fatty acids (SCFAs) butyrate, propionate and acetate are microbial metabolites and their availability in the gut and other organs is determined by environmental factors, such as diet and use of antibiotics, that shape the diversity and metabolism of the microbiota. SCFAs regulate epithelial barrier function as well as mucosal and systemic immunity via evolutionary conserved processes that involve G protein-coupled receptor signalling or histone deacetylase activity. Indicatively, the anti-inflammatory role of butyrate is mediated through direct effects on the differentiation of intestinal epithelial cells, phagocytes, B cells and plasma cells, and regulatory and effector T cells. Intestinally derived SCFAs also directly and indirectly affect immunity at extra-intestinal sites, such as the liver, the lungs, the reproductive tract and the brain, and have been implicated in a range of disorders, including infections, intestinal inflammation, autoimmunity, food allergies, asthma and responses to cancer therapies. An ecological understanding of microbial communities and their interrelated metabolic states, as well as the engineering of butyrogenic bacteria may support SCFA-focused interventions for the prevention and treatment of immune-mediated diseases.
Collapse
Affiliation(s)
- Elizabeth R Mann
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Ying Ka Lam
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK
| | - Holm H Uhlig
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK.
- Department of Paediatrics, University of Oxford, Oxford, UK.
- Oxford Biomedical Research Centre, University of Oxford, Oxford, UK.
| |
Collapse
|
12
|
Kong L, Chen S, Huang S, Zheng A, Gao S, Ye J, Hua C. Challenges and opportunities in inflammatory bowel disease: from current therapeutic strategies to organoid-based models. Inflamm Res 2024; 73:541-562. [PMID: 38345635 DOI: 10.1007/s00011-024-01854-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/20/2024] [Accepted: 01/24/2024] [Indexed: 07/23/2024] Open
Abstract
BACKGROUND Inflammatory bowel disease (IBD) is an increasingly prevalent global health concern that has garnered substantial attention. However, the underlying mechanisms are still unclear and the current treatments have significant limitations. Intestinal organoids provide an in vitro model to explore the pathogenesis, test the therapeutic effects, and develop regenerative treatments as well as offer the potential to transform drug discovery of IBD. METHODS To advance our understanding of the whole story of IBD spanning from the pathogenesis to the current therapeutic strategies and latest advancements, a comprehensive search of major databases including PubMed, Scopus, and Web of Science was conducted to retrieve original articles and reviews related to IBD, organoids, pathogenesis and therapy. RESULTS This review deciphers the etiopathogenesis and the current therapeutic approaches in the treatment of IBD. Notably, critical aspects of intestinal organoids in IBD, such as their potential applications, viability, cell renewal ability, and barrier functionality are highlighted. We also discuss the advances, limitations, and prospects of intestinal organoids for precision medicine. CONCLUSION The latest strides made in research about intestinal organoids help elucidate intricate aspects of IBD pathogenesis, and pave the prospective avenues for novel therapeutic interventions.
Collapse
Affiliation(s)
- Lingjie Kong
- School of the 2nd Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Siyan Chen
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Shenghao Huang
- School of the 2nd Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Anzhe Zheng
- School of the 2nd Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Sheng Gao
- Laboratory Animal Center, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| | - Jianzhong Ye
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Chunyan Hua
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| |
Collapse
|
13
|
Wang Q, Wang F, Zhou Y, Li X, Xu S, Jin Q, Li W. Bacillus amyloliquefaciens SC06 Relieving Intestinal Inflammation by Modulating Intestinal Stem Cells Proliferation and Differentiation via AhR/STAT3 Pathway in LPS-Challenged Piglets. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6096-6109. [PMID: 38484112 DOI: 10.1021/acs.jafc.3c05956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Bacillus amyloliquefaciens is a well-accepted probiotic, with many benefits for both humans and animals. The ability of intestinal stem cells (ISCs) to develop into several intestinal epithelial cell types helps accelerate intestinal epithelial regeneration. Limited knowledge exists on how bacteria regulated ISCs proliferation and regeneration. Our study investigated the effects of Bacillus amyloliquefaciens supplementation on ISC proliferation and regeneration and intestinal mucosal barrier functions in piglets exposed to lipopolysaccharide (LPS). Eighteen piglets (male, 21 days old) were randomly split into 3 clusters: CON cluster, LPS cluster, and SC06+LPS cluster. On day 21, 100 μg/kg body weight of LPS was intraperitoneally administered to the SC06+LPS and LPS groups. We found SC06 supplementation maintained the intestinal barrier integrity, enhanced intestinal antioxidant capacity, reduced generation of inflammatory response, and suppressed enterocyte apoptosis against the deleterious effects triggered by LPS. In addition, our research indicated that the SC06 supplementation not only improved the ISC regeneration, but also resulted in upregulation of aryl hydrocarbon receptor (AhR) in LPS-challenge piglets. Further studies showed that SC06 also induced ISC differentiation toward goblet cells and inhibited their differentiation to intestinal absorptive cells and enterocytes. The coculture system of SC06 and ileum organoids revealed that SC06 increased the growth of ISCs and repaired LPS-induced organoid damage through activating the AhR/STAT3 signaling pathway. These findings showed that SC06, possibly through the AhR/STAT3 pathway, accelerated ISC proliferation and promoted epithelial barrier healing, providing a potential clinical treatment for IBD. Our research demonstrated that SC06 is effective in preventing intestinal epithelial damage after pathological injury, restoring intestinal homeostasis, and maintaining intestinal epithelial regeneration.
Collapse
Affiliation(s)
- Qi Wang
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Fei Wang
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yuanhao Zhou
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiang Li
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Shujie Xu
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Qian Jin
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Weifen Li
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
14
|
Seidel MG, Hauck F. Multilayer concept of autoimmune mechanisms and manifestations in inborn errors of immunity: Relevance for precision therapy. J Allergy Clin Immunol 2024; 153:615-628.e4. [PMID: 38185417 DOI: 10.1016/j.jaci.2023.12.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/12/2023] [Accepted: 12/21/2023] [Indexed: 01/09/2024]
Abstract
Autoimmunity in inborn errors of immunity (IEIs) has a multifactorial pathogenesis and develops subsequent to a genetic predisposition in conjunction with gene regulation, environmental modifiers, and infectious triggers. On the basis of incremental data availability owing to upfront application of omics technologies, a more granular and dynamic view of mechanisms and manifestations is warranted. Here, we present a comprehensive novel concept of autoimmunity in IEIs that considers multiple layers of interdependent elements and connects 101 causative genes or deletions according to the quality of the allelic variants with 47 molecular pathways and 22 immune effector mechanisms. Furthermore, we list 50 resulting manifestations together with the corresponding Human Phenotype Ontology terms and review the types and frequencies of the most relevant clinical presentations. When all of its elements are taken together, this concept (1) extends the historical anatomic view of central versus peripheral tolerance toward multiple interdependent mechanisms of immune tolerance, (2) delineates the mechanisms underlying the protean clinical manifestations, and thereby, (3) points toward the most suitable precision therapy for autoimmunity in IEIs. The multilayer concept of autoimmune mechanisms and manifestations in IEIs will facilitate research design and provide clinical guidance on the use of precision medicine irrespective of the data depth available in each health care scenario.
Collapse
Affiliation(s)
- Markus G Seidel
- Research Unit for Pediatric Hematology and Immunology, Division of Pediatric Hemato-Oncology, Department of Pediatrics and Adolescent Medicine, Medical University of Graz, Graz, Austria.
| | - Fabian Hauck
- Division of Pediatric Immunology and Rheumatology, Department of Pediatrics, Dr von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität München, München, Germany.
| |
Collapse
|
15
|
Ulmert I, Lahl K. IL-23 to see: Gut DCs shine bright in inductive sites. J Exp Med 2024; 221:e20232144. [PMID: 38180806 PMCID: PMC10770875 DOI: 10.1084/jem.20232144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2024] Open
Abstract
The cytokine IL-23 plays important roles in intestinal barrier protection and integrity, but is also linked to chronic inflammation. In this issue of JEM, Ohara et al. (https://doi.org/10.1084/jem.20230923) provide clarity on the much-debated question of which cells produce IL-23.
Collapse
Affiliation(s)
- Isabel Ulmert
- Technical University of Denmark, Kongens Lyngby, Denmark
| | - Katharina Lahl
- Technical University of Denmark, Kongens Lyngby, Denmark
- Lund University, Lund, Sweden
- University of Calgary, Calgary, Canada
| |
Collapse
|
16
|
Paroni M, Leccese G, Ranzani V, Moschetti G, Chiara M, Perillo F, Ferri S, Clemente F, Noviello D, Conforti FS, Ferrero S, Karnani B, Bosotti R, Vasco C, Curti S, Crosti MC, Gruarin P, Rossetti G, Conte MP, Vecchi M, Pagani M, Landini P, Facciotti F, Abrignani S, Caprioli F, Geginat J. An Intestinal Th17 Subset is Associated with Inflammation in Crohn's Disease and Activated by Adherent-invasive Escherichia coli. J Crohns Colitis 2023; 17:1988-2001. [PMID: 37462681 PMCID: PMC10798865 DOI: 10.1093/ecco-jcc/jjad119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2024]
Abstract
IFNγ-producing ex-Th17 cells ['Th1/17'] were shown to play a key pathogenic role in experimental colitis and are abundant in the intestine. Here, we identified and characterised a novel, potentially colitogenic subset of Th17 cells in the intestine of patients with Crohn's disease [CD]. Human Th17 cells expressing CCR5 ['pTh17'] co-expressed T-bet and RORC/γt and produced very high levels of IL-17, together with IFN-γ. They had a gene signature of Th17 effector cells and were distinct from established Th1/17 cells. pTh17 cells, but not Th1/17 cells, were associated with intestinal inflammation in CD, and decreased upon successful anti-TNF therapy with infliximab. Conventional CCR5[-]Th17 cells differentiated to pTh17 cells with IL-23 in vitro. Moreover, anti-IL-23 therapy with risankizumab strongly reduced pTh17 cells in the intestine. Importantly, intestinal pTh17 cells were selectively activated by adherent-invasive Escherichia coli [AIEC], but not by a commensal/probiotic E. coli strain. AIEC induced high levels of IL-23 and RANTES from dendritic cells [DC]. Intestinal CCR5+Th1/17 cells responded instead to cytomegalovirus and were reduced in ulcerative colitis [UC], suggesting an unexpected protective role. In conclusion, we identified an IL-23-inducible subset of human intestinal Th17 cells. pTh17 cells produced high levels of pro-inflammatory cytokines, were selectively associated with intestinal inflammation in CD, and responded to CD-associated AIEC, suggesting a key colitogenic role.
Collapse
Affiliation(s)
- Moira Paroni
- INGM-National Institute of Molecular Genetics ‘Romeo ed Enrica Invernizzi’, Milan, Italy
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Gabriella Leccese
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Valeria Ranzani
- INGM-National Institute of Molecular Genetics ‘Romeo ed Enrica Invernizzi’, Milan, Italy
| | - Giorgia Moschetti
- INGM-National Institute of Molecular Genetics ‘Romeo ed Enrica Invernizzi’, Milan, Italy
| | - Matteo Chiara
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Federica Perillo
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Sara Ferri
- Department of Biotechnology and Bioscience, University of Milano-Bicocca, Milan, Italy
| | - Francesca Clemente
- INGM-National Institute of Molecular Genetics ‘Romeo ed Enrica Invernizzi’, Milan, Italy
| | - Daniele Noviello
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Francesco Simone Conforti
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Stefano Ferrero
- Pathology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Biomedical, Surgical, and Dental Sciences, Università degli Studi di Milano, Milan, Italy
| | - Bhavna Karnani
- INGM-National Institute of Molecular Genetics ‘Romeo ed Enrica Invernizzi’, Milan, Italy
| | - Roberto Bosotti
- INGM-National Institute of Molecular Genetics ‘Romeo ed Enrica Invernizzi’, Milan, Italy
| | - Chiara Vasco
- INGM-National Institute of Molecular Genetics ‘Romeo ed Enrica Invernizzi’, Milan, Italy
| | - Serena Curti
- INGM-National Institute of Molecular Genetics ‘Romeo ed Enrica Invernizzi’, Milan, Italy
| | - Maria Cristina Crosti
- INGM-National Institute of Molecular Genetics ‘Romeo ed Enrica Invernizzi’, Milan, Italy
| | - Paola Gruarin
- INGM-National Institute of Molecular Genetics ‘Romeo ed Enrica Invernizzi’, Milan, Italy
| | - Grazisa Rossetti
- INGM-National Institute of Molecular Genetics ‘Romeo ed Enrica Invernizzi’, Milan, Italy
- Molecular Oncology and Immunology, FIRC Institute of Molecular Oncology [IFOM], Milan, Italy
| | - Maria Pia Conte
- Department of Public Health and Infectious Diseases, ‘Sapienza’ University of Rome, Rome, Italy
| | - Maurizio Vecchi
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Massimiliano Pagani
- INGM-National Institute of Molecular Genetics ‘Romeo ed Enrica Invernizzi’, Milan, Italy
- Molecular Oncology and Immunology, FIRC Institute of Molecular Oncology [IFOM], Milan, Italy
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Paolo Landini
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Federica Facciotti
- INGM-National Institute of Molecular Genetics ‘Romeo ed Enrica Invernizzi’, Milan, Italy
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
- Department of Biotechnology and Bioscience, University of Milano-Bicocca, Milan, Italy
| | - Sergio Abrignani
- INGM-National Institute of Molecular Genetics ‘Romeo ed Enrica Invernizzi’, Milan, Italy
- DISCCO, Department of Clinical Science and Community Health, University of Milan, Milan, Italy
| | - Flavio Caprioli
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Jens Geginat
- INGM-National Institute of Molecular Genetics ‘Romeo ed Enrica Invernizzi’, Milan, Italy
- DISCCO, Department of Clinical Science and Community Health, University of Milan, Milan, Italy
| |
Collapse
|
17
|
Uhlig HH, Booth C, Cho J, Dubinsky M, Griffiths AM, Grimbacher B, Hambleton S, Huang Y, Jones K, Kammermeier J, Kanegane H, Koletzko S, Kotlarz D, Klein C, Lenardo MJ, Lo B, McGovern DPB, Özen A, de Ridder L, Ruemmele F, Shouval DS, Snapper SB, Travis SP, Turner D, Wilson DC, Muise AM. Precision medicine in monogenic inflammatory bowel disease: proposed mIBD REPORT standards. Nat Rev Gastroenterol Hepatol 2023; 20:810-828. [PMID: 37789059 DOI: 10.1038/s41575-023-00838-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/31/2023] [Indexed: 10/05/2023]
Abstract
Owing to advances in genomics that enable differentiation of molecular aetiologies, patients with monogenic inflammatory bowel disease (mIBD) potentially have access to genotype-guided precision medicine. In this Expert Recommendation, we review the therapeutic research landscape of mIBD, the reported response to therapies, the medication-related risks and systematic bias in reporting. The mIBD field is characterized by the absence of randomized controlled trials and is dominated by retrospective observational data based on case series and case reports. More than 25 off-label therapeutics (including small-molecule inhibitors and biologics) as well as cellular therapies (including haematopoietic stem cell transplantation and gene therapy) have been reported. Heterogeneous reporting of outcomes impedes the generation of robust therapeutic evidence as the basis for clinical decision making in mIBD. We discuss therapeutic goals in mIBD and recommend standardized reporting (mIBD REPORT (monogenic Inflammatory Bowel Disease Report Extended Phenotype and Outcome of Treatments) standards) to stratify patients according to a genetic diagnosis and phenotype, to assess treatment effects and to record safety signals. Implementation of these pragmatic standards should help clinicians to assess the therapy responses of individual patients in clinical practice and improve comparability between observational retrospective studies and controlled prospective trials, supporting future meta-analysis.
Collapse
Affiliation(s)
- Holm H Uhlig
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK.
- Department of Paediatrics, University of Oxford, Oxford, UK.
- Biomedical Research Centre, University of Oxford, Oxford, UK.
| | - Claire Booth
- UCL Great Ormond Street Institute of Child Health, London, UK
- Department of Paediatric Immunology and Gene Therapy, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Judy Cho
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Marla Dubinsky
- Department of Paediatric Gastroenterology, Susan and Leonard Feinstein IBD Clinical Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Anne M Griffiths
- SickKids Inflammatory Bowel Disease Centre and Cell Biology Program, Research Institute, Toronto, Canada
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Paediatrics, University of Toronto, Toronto, Canada
| | - Bodo Grimbacher
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert Ludwig University of Freiburg, Freiburg, Germany
- Department of Rheumatology and Clinical Immunology, Medical Center, Faculty of Medicine, Albert Ludwig University of Freiburg, Freiburg, Germany
- Institute of Immunology and Transplantation, Royal Free Hospital, University College London, London, UK
| | - Sophie Hambleton
- Primary Immunodeficiency Group, Newcastle University Translational and Clinical Research Institute, Newcastle upon Tyne, UK
| | - Ying Huang
- Department of Gastroenterology, National Children's Medical Center, Children's Hospital of Fudan University, Shanghai, China
| | - Kelsey Jones
- Paediatric Gastroenterology, Great Ormond Street Hospital, London, UK
- Kennedy Institute, University of Oxford, Oxford, UK
| | - Jochen Kammermeier
- Gastroenterology Department, Evelina London Children's Hospital, London, UK
| | - Hirokazu Kanegane
- Department of Child Health and Development, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Sibylle Koletzko
- Dr. von Hauner Children's Hospital, Department of Paediatrics, University Hospital, LMU Munich, Munich, Germany
- Department of Paediatrics, Gastroenterology and Nutrition, School of Medicine Collegium Medicum University of Warmia and Mazury, Olsztyn, Poland
| | - Daniel Kotlarz
- Dr. von Hauner Children's Hospital, Department of Paediatrics, University Hospital, LMU Munich, Munich, Germany
- German Center for Child and Adolescent Health, Munich, Germany
- Institute of Translational Genomics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Christoph Klein
- Dr. von Hauner Children's Hospital, Department of Paediatrics, University Hospital, LMU Munich, Munich, Germany
- German Center for Child and Adolescent Health, Munich, Germany
| | - Michael J Lenardo
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, and Clinical Genomics Program, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Bernice Lo
- Research Branch, Sidra Medicine, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Dermot P B McGovern
- F. Widjaja Foundation, Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ahmet Özen
- Marmara University Division of Allergy and Immunology, Istanbul, Turkey
| | - Lissy de Ridder
- Department of Paediatric Gastroenterology, Erasmus University Medical Center Sophia Children's Hospital, Rotterdam, Netherlands
| | - Frank Ruemmele
- Université Paris Cité, APHP, Hôpital Necker Enfants Malades, Service de Gastroentérologie pédiatrique, Paris, France
| | - Dror S Shouval
- Institute of Gastroenterology, Nutrition and Liver Diseases, Schneider Children's Medical Center of Israel, Petah Tikva, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Scott B Snapper
- Division of Gastroenterology and Nutrition, Boston Children's Hospital, Boston, MA, USA
- Department of Paediatrics and Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Simon P Travis
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK
- Biomedical Research Centre, University of Oxford, Oxford, UK
- Kennedy Institute, University of Oxford, Oxford, UK
| | - Dan Turner
- Shaare Zedek Medical Center, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - David C Wilson
- Child Life and Health, Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
- Department of Paediatric Gastroenterology, The Royal Hospital for Children, and Young People, Edinburgh, UK
| | - Aleixo M Muise
- SickKids Inflammatory Bowel Disease Centre and Cell Biology Program, Research Institute, Toronto, Canada
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Paediatrics, University of Toronto, Toronto, Canada
- Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
18
|
Li D, Gu W, Xu H, Zhang Z, Zhao C, He C, Zhu X, Li Y. Inflammation in the peripheral blood system of Crohn's Disease. Clin Exp Med 2023; 23:2805-2812. [PMID: 36842094 DOI: 10.1007/s10238-023-01030-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 02/14/2023] [Indexed: 02/27/2023]
Abstract
Crohn's disease (CD) is an inflammatory bowel disease that is characterized by chronic inflammation of digestive system and has a nickname "green cancer" because of its sustained alternation of periods of flares and remissions. Here, we investigated the inflammation changes in peripheral blood system of CD patients, which are less reported in China. Peripheral blood samples of 167 CD patients and 30 healthy people, as well as their clinical information, were collected at the Second Affiliated Hospital of Soochow University. Flow cytometry was performed to analyze the ratio of CD4 T cells to CD8 T cells. Cytometric Bead Array kit was used to detect the cytokines in peripheral blood in CD patients. Moreover, the expression of inflammasomes was also detected by RT-PCR. The percentage and cell number of lymphocytes in CD patients' peripheral blood system decreased significantly, while monocytes increased remarkably. Interestingly, there was an inversion of the CD4 T cells/CD8 T cells ratio in peripheral blood of CD patients. The levels of interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) increased significantly in CD patients' peripheral blood, and lipopolysaccharide (LPS) stimulation aggravate inflammatory response. In addition, the expression of nucleotide-binding oligomerization domain-like receptor family, pyrin domain-containing 1 (NLRP1) and NLRP3 in peripheral blood mononuclear cells (PBMC) of CD patients increased significantly after LPS stimulation. The inflammation in peripheral blood of CD patients had significant changes, including PBMC, cytokines and inflammasomes. These results are helpful to get a deeper understanding of CD and improve the efficiency of diagnosis and treatment in China.
Collapse
Affiliation(s)
- Dan Li
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, People's Republic of China
| | - Wenyong Gu
- Department of Ultrasound, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, People's Republic of China
| | - Han Xu
- Department of Gastroenterology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, People's Republic of China
| | - Zhiru Zhang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, People's Republic of China
| | - Chenhao Zhao
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, People's Republic of China
| | - Chunyan He
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, People's Republic of China
- Institute of Laboratory Medicine, The Second Affiliated Hospital of Soochow University, 1055 San-Xiang Road, Suzhou, 215004, Jiangsu, People's Republic of China
| | - Xueming Zhu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, People's Republic of China.
- Institute of Laboratory Medicine, The Second Affiliated Hospital of Soochow University, 1055 San-Xiang Road, Suzhou, 215004, Jiangsu, People's Republic of China.
| | - Yang Li
- Institute of Laboratory Medicine, The Second Affiliated Hospital of Soochow University, 1055 San-Xiang Road, Suzhou, 215004, Jiangsu, People's Republic of China.
- Department of Clinical Laboratory, Children's Hospital of Soochow University, Suzhou, 215025, Jiangsu, People's Republic of China.
| |
Collapse
|
19
|
Dong Y, Johnson BA, Ruan L, Zeineldin M, Liu AZ, Raychaudhuri S, Chiu I, Zhu J, Smith B, Zhao N, Searson P, Watanabe S, Donowitz M, Larman TC, Li R. Disruption of Epithelium Integrity by Inflammation-Associated Fibroblasts through Prostaglandin Signaling: IAFs disrupt colon epithelium via PGE2-EP4. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.28.560060. [PMID: 37808771 PMCID: PMC10557697 DOI: 10.1101/2023.09.28.560060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Inflammation-associated fibroblasts (IAFs) are associated with the progression and drug resistance of chronic inflammatory diseases such as inflammatory bowel disease (IBD), but their direct impact on epithelial function and architecture is unknown. In this study, we developed an in vitro model whereby human colon fibroblasts are induced to become IAFs by specific cytokines and recapitulate key features of IAFs in vivo. When co-cultured with patient-derived colon organoids (colonoids), IAFs induced rapid colonoid swelling and barrier disruption due to swelling and rupture of individual epithelial cells. Epithelial cells co-cultured with IAFs also exhibit increased DNA damage, mitotic errors, and proliferation arrest. These IAF-induced epithelial defects are mediated through a paracrine pathway involving prostaglandin E2 (PGE2) and the PGE2 receptor EP4, leading to PKA-dependent activation of the CFTR chloride channel. Importantly, EP4-specific chemical inhibitors effectively prevented colonoid swelling and restored normal proliferation and genome stability of IAF-exposed epithelial cells. These findings reveal a mechanism by which IAFs could promote and perpetuate IBD and suggest a potential treatment to mitigate inflammation-associated epithelial injury.
Collapse
Affiliation(s)
- Yi Dong
- Department of Cell Biology, Johns Hopkins School of Medicine; Baltimore, MD, 21205, U.S.A
| | - Blake A. Johnson
- Department of Cell Biology, Johns Hopkins School of Medicine; Baltimore, MD, 21205, U.S.A
| | - Linhao Ruan
- Department of Cell Biology, Johns Hopkins School of Medicine; Baltimore, MD, 21205, U.S.A
| | - Maged Zeineldin
- Department of Pathology, Division of GI/Liver Pathology, Johns Hopkins School of Medicine; Baltimore, MD, 21205, U.S.A
| | - Albert Z. Liu
- Department of Cell Biology, Johns Hopkins School of Medicine; Baltimore, MD, 21205, U.S.A
| | - Sumana Raychaudhuri
- Department of Cell Biology, Johns Hopkins School of Medicine; Baltimore, MD, 21205, U.S.A
| | - Ian Chiu
- Department of Cell Biology, Johns Hopkins School of Medicine; Baltimore, MD, 21205, U.S.A
| | - Jin Zhu
- Mechanobiology Institute and Department of Biological Sciences, National University of Singapore; Singapore
| | - Barbara Smith
- Microscope Facility, Johns Hopkins School of Medicine; Baltimore, MD, 21205, U.S.A
| | - Nan Zhao
- Institute for Nanobiotechnology, Johns Hopkins University; Baltimore, Maryland, 21218, U.S.A
| | - Peter Searson
- Institute for Nanobiotechnology, Johns Hopkins University; Baltimore, Maryland, 21218, U.S.A
- Department of Materials Science and Engineering, Johns Hopkins University; Baltimore, MD, 21218, U.S.A
| | - Shigeki Watanabe
- Department of Cell Biology, Johns Hopkins School of Medicine; Baltimore, MD, 21205, U.S.A
| | - Mark Donowitz
- Department of Medicine, Division of Gastroenterology, Johns Hopkins School of Medicine; Baltimore, MD, 21205, U.S.A
- Department of Physiology, Johns Hopkins School of Medicine; Baltimore, MD, 21205, U.S.A
| | - Tatianna C. Larman
- Department of Pathology, Division of GI/Liver Pathology, Johns Hopkins School of Medicine; Baltimore, MD, 21205, U.S.A
| | - Rong Li
- Department of Cell Biology, Johns Hopkins School of Medicine; Baltimore, MD, 21205, U.S.A
- Mechanobiology Institute and Department of Biological Sciences, National University of Singapore; Singapore
- Department of Biological Sciences, National University of Singapore; Singapore
| |
Collapse
|
20
|
Korta A, Kula J, Gomułka K. The Role of IL-23 in the Pathogenesis and Therapy of Inflammatory Bowel Disease. Int J Mol Sci 2023; 24:10172. [PMID: 37373318 DOI: 10.3390/ijms241210172] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/11/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Interleukin-23 (IL-23) is a proinflammatory cytokine produced mainly by macrophages and antigen-presenting cells (APCs) after antigenic stimulation. IL-23 plays a significant role as a mediator of tissue damage. Indeed, the irregularities in IL-23 and its receptor signaling have been implicated in inflammatory bowel disease. IL-23 interacts with both the innate and adaptive immune systems, and IL-23/Th17 appears to be involved in the development of chronic intestinal inflammation. The IL-23/Th17 axis may be a critical driver of this chronic inflammation. This review summarizes the main aspects of IL-23's biological function, cytokines that control cytokine production, effectors of the IL-23 response, and the molecular mechanisms associated with IBD pathogenesis. Although IL-23 modulates and impacts the development, course, and recurrence of the inflammatory response, the etiology and pathophysiology of IBD are not completely understood, but mechanism research shows huge potential for clinical applications as therapeutic targets in IBD treatment.
Collapse
Affiliation(s)
- Aleksandra Korta
- Student Scientific Group of Adult Allergology, Wroclaw Medical University, 50-369 Wroclaw, Poland
| | - Julia Kula
- Student Scientific Group of Adult Allergology, Wroclaw Medical University, 50-369 Wroclaw, Poland
| | - Krzysztof Gomułka
- Clinical Department of Internal Medicine, Pneumology and Allergology, Wroclaw Medical University, 50-369 Wroclaw, Poland
| |
Collapse
|
21
|
BASOGLU IA, KARAKOYUN B. Crohn’s disease: Etiology, pathogenesis and treatment strategies. MARMARA MEDICAL JOURNAL 2023; 36:249-254. [DOI: 10.5472/marumj.1307982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Crohn’s disease (CD), which can be localized in any part of the gastrointestinal tract, is a disease characterized by an irregular immune
response to normal and/or abnormal microbial antigens. Recent studies show many extensive data about the roles of genetic and
environmental factors, immune function, and gut microbiota in CD. Although, less invasive biomarkers are currently being developed,
the diagnosis of the disease is still based on the endoscopy and histological evaluation of biopsy samples. The most common symptoms
are diarrhea, abdominal pain, weight loss, and fatigue. Despite the improvements in the treatment methods in the last decade, there
is no definitive treatment since the etiology of CD is not known exactly. Therapeutic strategies focus on reducing inflammation and
symptoms, maintaining clinical remission, and improving quality of life.
Collapse
|
22
|
Avlas S, Kassis H, Itan M, Reichman H, Dolitzky A, Hazut I, Grisaru-Tal S, Gordon Y, Tsarfaty I, Karo-Atar D, Rozenberg P, Bitton A, Munitz A. CD300b regulates intestinal inflammation and promotes repair in colitis. Front Immunol 2023; 14:1050245. [PMID: 37033950 PMCID: PMC10073762 DOI: 10.3389/fimmu.2023.1050245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 03/07/2023] [Indexed: 04/11/2023] Open
Abstract
Chronic inflammation is a hallmark charataristic of various inflammatory diseases including inflammatory bowel disease. Subsequently, current therapeutic approaches target immune-mediated pathways as means for therapeutic intervention and promotion of mucosal healing and repair. Emerging data demonstrate important roles for CD300 receptor family members in settings of innate immunity as well as in allergic and autoimmune diseases. One of the main pathways mediating the activities of CD300 family members is via promotion of resolution through interactions with ligands expressed by viruses, bacteria, or dead cells (e.g., phospholipids such as PtdSer and/or ceramide). We have recently shown that the expression of CD300a, CD300b and CD300f were elevated in patients with IBD and that CD300f (but not CD300a) regulates colonic inflammation in response to dextran sodium sulphate (DSS)-induced colitis. Whether CD300b has a role in colitis or mucosal healing is largely unknown. Herein, we demonstrate a central and distinct role for CD300b in colonic inflammation and subsequent repair. We show that Cd300b-/- mice display defects in mucosal healing upon cessation of DSS treatment. Cd300b-/- mice display increased weight loss and disease activity index, which is accompanied by increased colonic histopathology, increased infiltration of inflammatory cells and expression of multiple pro-inflammatory upon cessation of DSS cytokines. Furthermore, we demonstrate that soluble CD300b (sCD300b) is increased in the colons of DSS-treated mice and establish that CD300b can bind mouse and human epithelial cells. Finally, we show that CD300b decreases epithelial EpCAM expression, promotes epithelial cell motility and wound healing. These data highlight a key role for CD300b in colonic inflammation and repair processes and suggest that CD300b may be a future therapeutic target in inflammatory GI diseases.
Collapse
|
23
|
Moser LM, Fekadu J, Willasch A, Rettinger E, Sörensen J, Jarisch A, Kirwil M, Lieb A, Holzinger D, Calaminus G, Bader P, Bakhtiar S. Treatment of inborn errors of immunity patients with inflammatory bowel disease phenotype by allogeneic stem cell transplantation. Br J Haematol 2023; 200:595-607. [PMID: 36214981 DOI: 10.1111/bjh.18497] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 09/14/2022] [Accepted: 09/21/2022] [Indexed: 12/12/2022]
Abstract
Patients with inborn errors of immunity (IEI) can suffer from treatment-refractory inflammatory bowel disease (IBD) causing failure to thrive and consequences of long-term multiple immunosuppressive treatments. Allogeneic haematopoietic stem cell transplantation (alloHSCT) can serve as a curative treatment option. In this single-centre retrospective cohort study we report on 11 paediatric and young adult IEI patients with IBD and failure to thrive, who had exhausted symptomatic treatment options and received alloHSCT. The cohort included chronic granulomatous disease (CGD), lipopolysaccharide-responsive and beige-like anchor protein (LRBA) deficiency, STAT3 gain-of-function (GOF), Wiskott-Aldrich syndrome (WAS), dedicator of cytokinesis 8 (DOCK8) deficiency and one patient without genetic diagnosis. All patients achieved stable engraftment and immune reconstitution, and gastrointestinal symptoms were resolved after alloHSCT. The overall survival was 11/11 over a median follow-up of 34.7 months. Graft-versus-host disease (GVHD) was limited to grade I-II acute GVHD (n = 5), one case of grade IV acute GVHD and one case of limited chronic GVHD. Since treatment recommendations are limited, this work provides a centre-specific approach to treatment prior to transplant as well as conditioning in IEI patients with severe IBD.
Collapse
Affiliation(s)
- Laura M Moser
- Division for Stem Cell Transplantation, Immunology and Intensive Care Medicine, Department for Children and Adolescents, University Hospital Frankfurt, Frankfurt, Germany
| | - Julia Fekadu
- Division for Stem Cell Transplantation, Immunology and Intensive Care Medicine, Department for Children and Adolescents, University Hospital Frankfurt, Frankfurt, Germany
| | - André Willasch
- Division for Stem Cell Transplantation, Immunology and Intensive Care Medicine, Department for Children and Adolescents, University Hospital Frankfurt, Frankfurt, Germany
| | - Eva Rettinger
- Division for Stem Cell Transplantation, Immunology and Intensive Care Medicine, Department for Children and Adolescents, University Hospital Frankfurt, Frankfurt, Germany
| | - Jan Sörensen
- Division for Stem Cell Transplantation, Immunology and Intensive Care Medicine, Department for Children and Adolescents, University Hospital Frankfurt, Frankfurt, Germany
| | - Andrea Jarisch
- Division for Stem Cell Transplantation, Immunology and Intensive Care Medicine, Department for Children and Adolescents, University Hospital Frankfurt, Frankfurt, Germany
| | - Marta Kirwil
- Division for Pediatric Gastroenterology, Department for Children and Adolescents, University Hospital Frankfurt, Frankfurt, Germany
| | - Adrian Lieb
- Division for Pediatric Gastroenterology, Department for Children and Adolescents, University Hospital Frankfurt, Frankfurt, Germany
| | - Dirk Holzinger
- Department of Pediatric Hematology-Oncology, University of Duisburg-Essen, Essen, Germany.,Department of Applied Health Sciences, University of Applied Sciences Bochum, Bochum, Germany
| | - Gabriele Calaminus
- Department for Children and Adolescents, University Hospital Bonn, Bonn, Germany
| | - Peter Bader
- Division for Stem Cell Transplantation, Immunology and Intensive Care Medicine, Department for Children and Adolescents, University Hospital Frankfurt, Frankfurt, Germany
| | - Shahrzad Bakhtiar
- Division for Stem Cell Transplantation, Immunology and Intensive Care Medicine, Department for Children and Adolescents, University Hospital Frankfurt, Frankfurt, Germany
| |
Collapse
|
24
|
Kiparissi F, Dastamani A, Palm L, Azabdaftari A, Campos L, Gaynor E, Grünewald S, Uhlig HH, Kleta R, Böckenhauer D, Jones KDJ. Phosphomannomutase 2 (PMM2) variants leading to hyperinsulinism-polycystic kidney disease are associated with early-onset inflammatory bowel disease and gastric antral foveolar hyperplasia. Hum Genet 2023; 142:697-704. [PMID: 36773065 PMCID: PMC10181953 DOI: 10.1007/s00439-023-02523-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 01/19/2023] [Indexed: 02/12/2023]
Abstract
Phosphomannomutase 2 (PMM2) deficiency causes Congenital Disorder of Glycosylation (PMM2-CDG), but does not have a recognised association with Inflammatory Bowel Disease (IBD). A distinct clinical syndrome of hyperinsulinism and autosomal recessive polycystic kidney disease (HIPKD) arises in the context of a specific variant in the PMM2 promotor, either in homozygosity, or compound heterozygous with a deleterious PMM2 variant. Here, we describe the development of IBD in three patients with PMM2-HIPKD, with onset of IBD at 0, 6, and 10 years of age. In each case, intestinal inflammation coincided with the unusual finding of gastric antral foveolar hyperplasia. IBD disease was of variable severity at onset but well controlled with conventional and first-line biologic treatment approaches. The organ-level pattern of disease manifestations in PMM2-HIPKD-IBD may reflect a loss of cis-acting regulatory control by hepatocyte nuclear factor 4 alpha (HNF4A). Analysis of published transcriptomic data suggests that IBD most likely arises due to an impact on epithelial cellular function. We identify a specific pattern of variation in PMM2 as a novel association of early-onset IBD with distinctive gastric pathology.
Collapse
Affiliation(s)
- Fevronia Kiparissi
- Department of Paediatric Gastroenterology & Nutrition, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Antonia Dastamani
- Department of Paediatric Endocrinology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Liina Palm
- Department of Histopathology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Aline Azabdaftari
- Translational Gastroenterology Unit, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Luis Campos
- Department of Histopathology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Edward Gaynor
- Department of Paediatric Gastroenterology & Nutrition, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Stephanie Grünewald
- Department of Metabolic Medicine, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Holm H Uhlig
- Translational Gastroenterology Unit, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK.,Department of Paediatrics and Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Robert Kleta
- Department of Renal Medicine, University College London, London, UK.,Department of Paediatric Nephrology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Detlef Böckenhauer
- Department of Renal Medicine, University College London, London, UK.,Department of Paediatric Nephrology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Kelsey D J Jones
- Department of Paediatric Gastroenterology & Nutrition, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK. .,The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Oxford, UK.
| |
Collapse
|
25
|
Tanaka A, Maeda S, Nomura T, Llamas-Covarrubias MA, Tanaka S, Jin L, Lim EL, Morikawa H, Kitagawa Y, Akizuki S, Ito Y, Fujimori C, Hirota K, Murase T, Hashimoto M, Higo J, Zamoyska R, Ueda R, Standley DM, Sakaguchi N, Sakaguchi S. Construction of a T cell receptor signaling range for spontaneous development of autoimmune disease. J Exp Med 2023; 220:213728. [PMID: 36454183 PMCID: PMC9718937 DOI: 10.1084/jem.20220386] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 10/06/2022] [Accepted: 11/14/2022] [Indexed: 12/02/2022] Open
Abstract
Thymic selection and peripheral activation of conventional T (Tconv) and regulatory T (Treg) cells depend on TCR signaling, whose anomalies are causative of autoimmunity. Here, we expressed in normal mice mutated ZAP-70 molecules with different affinities for the CD3 chains, or wild type ZAP-70 at graded expression levels under tetracycline-inducible control. Both manipulations reduced TCR signaling intensity to various extents and thereby rendered those normally deleted self-reactive thymocytes to become positively selected and form a highly autoimmune TCR repertoire. The signal reduction more profoundly affected Treg development and function because their TCR signaling was further attenuated by Foxp3 that physiologically repressed the expression of TCR-proximal signaling molecules, including ZAP-70, upon TCR stimulation. Consequently, the TCR signaling intensity reduced to a critical range generated pathogenic autoimmune Tconv cells and concurrently impaired Treg development/function, leading to spontaneous occurrence of autoimmune/inflammatory diseases, such as autoimmune arthritis and inflammatory bowel disease. These results provide a general model of how altered TCR signaling evokes autoimmune disease.
Collapse
Affiliation(s)
- Atsushi Tanaka
- Department of Experimental Pathology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan.,Laboratory of Experimental Immunology, WPI Immunology Frontier Research Center, Osaka University, Suita, Japan.,Department of Frontier Research in Tumor Immunology, Center of Medical Innovation and Translational Research, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Shinji Maeda
- Department of Experimental Pathology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan.,Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Takashi Nomura
- Department of Experimental Pathology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | - Mara Anais Llamas-Covarrubias
- Laboratory of Systems Immunology, WPI Immunology Frontier Research Center, Osaka University, Suita, Japan.,Institute of Research in Biomedical Sciences, University Center of Health Sciences, University of Guadalajara, Guadalajara, Mexico
| | - Satoshi Tanaka
- Department of Experimental Pathology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | - Lin Jin
- Laboratory of Systems Immunology, WPI Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Ee Lyn Lim
- Laboratory of Experimental Immunology, WPI Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Hiromasa Morikawa
- Laboratory of Experimental Immunology, WPI Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Yohko Kitagawa
- Laboratory of Experimental Immunology, WPI Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Shuji Akizuki
- Department of Experimental Pathology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | - Yoshinaga Ito
- Department of Experimental Pathology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | - Chihiro Fujimori
- Department of Experimental Pathology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | - Keiji Hirota
- Department of Experimental Pathology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan.,Laboratory of Experimental Immunology, WPI Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Tosei Murase
- Department of Experimental Pathology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan.,Laboratory of Experimental Immunology, WPI Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Motomu Hashimoto
- Department of Experimental Pathology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | - Junichi Higo
- Institute for Protein Research, Osaka University, Suita, Japan
| | - Rose Zamoyska
- Institute for Immunology and Infection Research, The University of Edinburgh, Edinburgh, UK
| | - Ryuzo Ueda
- Department of Tumor Immunology, Aichi Medical University School of Medicine, Aichi, Japan
| | - Daron M Standley
- Laboratory of Systems Immunology, WPI Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Noriko Sakaguchi
- Department of Experimental Pathology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan.,Laboratory of Experimental Immunology, WPI Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Shimon Sakaguchi
- Department of Experimental Pathology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan.,Laboratory of Experimental Immunology, WPI Immunology Frontier Research Center, Osaka University, Suita, Japan
| |
Collapse
|
26
|
The Potential Therapeutic Role of Lactobacillaceae rhamnosus for Treatment of Inflammatory Bowel Disease. Foods 2023; 12:foods12040692. [PMID: 36832767 PMCID: PMC9955806 DOI: 10.3390/foods12040692] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/26/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a heterogeneous group of diseases associated with chronic inflammation of the intestinal tract, and is highly prevalent worldwide. Although its origin is not yet fully understood, new evidence emphasizes that environmental factors, especially dietary factors and intestinal microbiota disorders are key triggers of IBD. Probiotics, such as Lactobacillaceae spp., play an essential role in human health as they exert beneficial effects on the composition of the human gastrointestinal microbial community and immune system. Probiotic-based therapies have been shown to be effective in alleviating IBD. Among these, Lactobacillaceae rhamnosus is one of the most widely used strains. L. rhamnosus is widely present in the intestines of healthy individuals; it regulates the intestinal immune system and reduces inflammation through a variety of mechanisms. The purpose of this study was to identify scientific evidence related to L. rhamnosus and IBD, review and summarize the results, and discuss the possible mechanisms of action as a starting point for future research on IBD treatment.
Collapse
|
27
|
Wong ZY, Nee E, Coles M, Buckley CD. Why does understanding the biology of fibroblasts in immunity really matter? PLoS Biol 2023; 21:e3001954. [PMID: 36745597 PMCID: PMC9901782 DOI: 10.1371/journal.pbio.3001954] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Fibroblasts are known for their ability to make and modify the extracellular matrix. However, there is more to them than meets the eye. It is now clear that they help define tissue microenvironments and support immune responses in organs. As technology advances, we have started to uncover the secrets of fibroblasts. In this Essay, we present fibroblasts as not only the builders and renovators of tissue environments but also the rheostat cells for immune circuits. Although they perform location-specific functions, they do not have badges of fixed identity. Instead, they display a spectrum of functional states and can swing between these states depending on the needs of the organ. As fibroblasts participate in a range of activities both in health and disease, finding the key factors that alter their development and functional states will be an important goal to restore homeostasis in maladapted tissues.
Collapse
Affiliation(s)
- Zhi Yi Wong
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Eloise Nee
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Mark Coles
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|
28
|
Dirvanskyte P, Gurram B, Bolton C, Warner N, Jones KDJ, Griffin HR, Park JY, Keller KM, Gilmour KC, Hambleton S, Muise AM, Wysocki C, Uhlig HH. Chromosomal Numerical Aberrations and Rare Copy Number Variation in Patients with Inflammatory Bowel Disease. J Crohns Colitis 2023; 17:49-60. [PMID: 35907265 PMCID: PMC9880952 DOI: 10.1093/ecco-jcc/jjac103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Indexed: 02/02/2023]
Abstract
BACKGROUND AND AIMS Inflammatory bowel diseases [IBD] have a complex polygenic aetiology. Rare genetic variants can cause monogenic intestinal inflammation. The impact of chromosomal aberrations and large structural abnormalities on IBD susceptibility is not clear. We aimed to comprehensively characterise the phenotype and prevalence of patients with IBD who possess rare numerical and structural chromosomal abnormalities. METHODS We performed a systematic literature search of databases PubMed and Embase; and analysed gnomAD, Clinvar, the 100 000 Genomes Project, and DECIPHER databases. Further, we analysed international paediatric IBD cohorts to investigate the role of IL2RA duplications in IBD susceptibility. RESULTS A meta-analysis suggests that monosomy X [Turner syndrome] is associated with increased expressivity of IBD that exceeds the population baseline (1.86%, 95% confidence interval [CI] 1.48 to 2.34%) and causes a younger age of IBD onset. There is little evidence that Klinefelter syndrome, Trisomy 21, Trisomy 18, mosaic Trisomy 9 and 16, or partial trisomies contribute to IBD susceptibility. Copy number analysis studies suggest inconsistent results. Monoallelic loss of X-linked or haploinsufficient genes is associated with IBD by hemizygous or heterozygous deletions, respectively. However, haploinsufficient gene deletions are detected in healthy reference populations, suggesting that the expressivity of IBD might be overestimated. One duplication that has previously been identified as potentially contributing to IBD risk involves the IL2RA/IL15R loci. Here we provide additional evidence that a microduplication of this locus may predispose to very-early-onset IBD by identifying a second case in a distinct kindred. However, the penetrance of intestinal inflammation in this genetic aberration is low [<2.6%]. CONCLUSIONS Turner syndrome is associated with increased susceptibility to intestinal inflammation. Duplication of the IL2RA/IL15R loci may contribute to disease risk.
Collapse
Affiliation(s)
- Paulina Dirvanskyte
- Translational Gastroenterology Unit and Biomedical Research Centre, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Bhaskar Gurram
- Department of Pediatrics, UT Southwestern Medical Center, Dallas TX, USA
| | - Chrissy Bolton
- Institute of Child Health, University College London, London, UK
- Paediatric Gastroenterology Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Neil Warner
- SickKids Inflammatory Bowel Disease Centre, Hospital for Sick Children, Toronto, ON, Canada
| | - Kelsey D J Jones
- Paediatric Gastroenterology Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Helen R Griffin
- Primary Immunodeficiency Group, Newcastle University Translational and Clinical Research Institute, Newcastle upon Tyne, UK
| | | | - Jason Y Park
- Department of Pathology and the Eugene McDermott Center for Human Growth and Development. UT Southwestern Medical Center, Dallas, TX, USA
| | | | - Kimberly C Gilmour
- Laboratory of Immunology and Cellular Therapy, Great Ormond Street Hospital for Children, NHS Foundation Trust, London, UK
| | - Sophie Hambleton
- Primary Immunodeficiency Group, Newcastle University Translational and Clinical Research Institute, Newcastle upon Tyne, UK
| | - Aleixo M Muise
- SickKids Inflammatory Bowel Disease Centre, Hospital for Sick Children, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
- Cell Biology Program, Sick Kids Research Institute, Hospital for Sick Children, Toronto, ON, Canada
- Department of Pediatrics, University of Toronto, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Christian Wysocki
- Department of Pediatrics, and Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Holm H Uhlig
- Translational Gastroenterology Unit and Biomedical Research Centre, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Biomedical Research Centre, University of Oxford, Oxford, UK
- Department of Paediatrics, John Radcliffe Hospital, Oxford, UK
| |
Collapse
|
29
|
Kim JE, Kang C, Budluang P, Yawut N, Cho IR, Choi YJ, Kim J, Ju S, Lee B, Sohn DH, Yim HS, Lee KW, Han J, Jung Y, Kang HY, Park JK, Jung Y, Hwang DY, Chung YH. N-benzyl-N-methyldecan-1-amine and its derivative mitigate 2,4- dinitrobenzenesulfonic acid-induced colitis and collagen-induced rheumatoid arthritis. Front Pharmacol 2023; 14:1095955. [PMID: 37153778 PMCID: PMC10157284 DOI: 10.3389/fphar.2023.1095955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 04/04/2023] [Indexed: 05/10/2023] Open
Abstract
As our previous study revealed that N-benzyl-N-methyldecan-1-amine (BMDA), a new molecule originated from Allium sativum, exhibits anti-neoplastic activities, we herein explored other functions of the compound and its derivative [decyl-(4-methoxy-benzyl)-methyl-amine; DMMA] including anti-inflammatory and anti-oxidative activities. Pretreatment of THP-1 cells with BMDA or DMMA inhibited tumor necrosis factor (TNF)-α and interleukin (IL)-1β production, and blocked c-jun terminal kinase (JNK), p38 mitogen-activated protein kinase (MAPK), MAPKAP kinase (MK)2 and NF-κΒ inflammatory signaling during LPS stimulation. Rectal treatment with BMDA or DMMA reduced the severity of colitis in 2,4-dinitrobenzenesulfonic acid (DNBS)-treated rat. Consistently, administration of the compounds decreased myeloperoxidase (MPO) activity (representing neutrophil infiltration in colonic mucosa), production of inflammatory mediators such as cytokine-induced neutrophil chemoattractant (CINC)-3 and TNF-α, and activation of JNK and p38 MAPK in the colon tissues. In addition, oral administration of these compounds ameliorated collagen-induced rheumatoid arthritis (RA) in mice. The treatment diminished the levels of inflammatory cytokine transcripts, and protected connective tissues through the expression of anti-oxidation proteins such as nuclear factor erythroid-related factor (Nrf)2 and heme oxygenase (HO)1. Additionally, aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels did not differ between the BMDA- or DMMA-treated and control animals, indicating that the compounds do not possess liver toxicity. Taken together, these findings propose that BMDA and DMMA could be used as new drugs for curing inflammatory bowel disease (IBD) and RA.
Collapse
Affiliation(s)
- Ji Eun Kim
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science, Pusan National University, Miryang, Republic of Korea
| | - Changyu Kang
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Phatcharaporn Budluang
- Department of Cogno-Mechatronics Engineering, Optomechatronics Research Institute, Pusan National University, Busan, Republic of Korea
| | - Natpaphan Yawut
- Department of Cogno-Mechatronics Engineering, Optomechatronics Research Institute, Pusan National University, Busan, Republic of Korea
| | - Il-Rae Cho
- Department of Microbiology and Immunology, College of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Yun Ju Choi
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science, Pusan National University, Miryang, Republic of Korea
| | - Jaejeong Kim
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Sanghyun Ju
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Beomgu Lee
- Department of Microbiology and Immunology, College of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Dong Hyun Sohn
- Department of Microbiology and Immunology, College of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Hyung-Soon Yim
- Korea Institute of Ocean Science and Technology, Marine Biotechnology Research Center, Busan, Republic of Korea
| | - Kyeong Won Lee
- Korea Institute of Ocean Science and Technology, Marine Biotechnology Research Center, Busan, Republic of Korea
| | - Jinsol Han
- Department of Chemistry and Chemistry Institute of Functional Materials, Pusan National University, Busan, Republic of Korea
| | - Youngmi Jung
- Department of Chemistry and Chemistry Institute of Functional Materials, Pusan National University, Busan, Republic of Korea
| | - Ho Young Kang
- Department of Microbiology, Pusan National University, Busan, Republic of Korea
| | - Jin Kyoon Park
- Department of Chemistry and Chemistry Institute of Functional Materials, Pusan National University, Busan, Republic of Korea
| | - Yunjin Jung
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
- *Correspondence: Yunjin Jung, , Dae Youn Hwang, ; Young-Hwa Chung,
| | - Dae Youn Hwang
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science, Pusan National University, Miryang, Republic of Korea
- *Correspondence: Yunjin Jung, , Dae Youn Hwang, ; Young-Hwa Chung,
| | - Young-Hwa Chung
- Department of Cogno-Mechatronics Engineering, Optomechatronics Research Institute, Pusan National University, Busan, Republic of Korea
- Department of Microbiology and Immunology, College of Medicine, Pusan National University, Yangsan, Republic of Korea
- *Correspondence: Yunjin Jung, , Dae Youn Hwang, ; Young-Hwa Chung,
| |
Collapse
|
30
|
|
31
|
Tan C, Hong G, Wang Z, Duan C, Hou L, Wu J, Qian W, Han C, Hou X. Promoting Effect of L-Fucose on the Regeneration of Intestinal Stem Cells through AHR/IL-22 Pathway of Intestinal Lamina Propria Monocytes. Nutrients 2022; 14:nu14224789. [PMID: 36432480 PMCID: PMC9695883 DOI: 10.3390/nu14224789] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/07/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
The recovery of the intestinal epithelial barrier is the goal for curing various intestinal injurious diseases, especially IBD. However, there are limited therapeutics for restoring intestinal epithelial barrier function in IBD. The stemness of intestinal stem cells (ISCs) can differentiate into various mature intestinal epithelial cells, thus playing a key role in the rapid regeneration of the intestinal epithelium. IL-22 secreted by CD4+ T cells and ILC3 cells was reported to maintain the stemness of ISCs. Our previous study found that L-fucose significantly ameliorated DSS-induced colonic inflammation and intestinal epithelial injury. In this study, we discovered enhanced ISC regeneration and increased intestinal IL-22 secretion and its related transcription factor AHR in colitis mice after L-fucose treatment. Further studies showed that L-fucose promoted IL-22 release from CD4+ T cells and intestinal lamina propria monocytes (LPMCs) via activation of nuclear AHR. The coculture system of LPMCs and intestinal organoids demonstrated that L-fucose stimulated the proliferation of ISCs through an indirect manner of IL-22 from LPMCs via the IL-22R-p-STAT3 pathway, and restored TNF-α-induced organoid damage via IL-22-IL-22R signaling. These results revealed that L-fucose helped to heal the epithelial barrier by accelerating ISC proliferation, probably through the AHR/IL-22 pathway of LPMCs, which provides a novel therapy for IBD in the clinic.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Chaoqun Han
- Correspondence: (C.H.); (X.H.); Tel.: +86-13667264156 (C.H.); +86-13035143646 (X.H.); Fax: +86-27-85726057 (C.H.); +86-27-85726057 (X.H.)
| | - Xiaohua Hou
- Correspondence: (C.H.); (X.H.); Tel.: +86-13667264156 (C.H.); +86-13035143646 (X.H.); Fax: +86-27-85726057 (C.H.); +86-27-85726057 (X.H.)
| |
Collapse
|
32
|
Zhang W, Lyu M, Bessman NJ, Xie Z, Arifuzzaman M, Yano H, Parkhurst CN, Chu C, Zhou L, Putzel GG, Li TT, Jin WB, Zhou J, Hu H, Tsou AM, Guo CJ, Artis D. Gut-innervating nociceptors regulate the intestinal microbiota to promote tissue protection. Cell 2022; 185:4170-4189.e20. [PMID: 36240781 PMCID: PMC9617796 DOI: 10.1016/j.cell.2022.09.008] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/14/2022] [Accepted: 08/29/2022] [Indexed: 11/06/2022]
Abstract
Nociceptive pain is a hallmark of many chronic inflammatory conditions including inflammatory bowel diseases (IBDs); however, whether pain-sensing neurons influence intestinal inflammation remains poorly defined. Employing chemogenetic silencing, adenoviral-mediated colon-specific silencing, and pharmacological ablation of TRPV1+ nociceptors, we observed more severe inflammation and defective tissue-protective reparative processes in a murine model of intestinal damage and inflammation. Disrupted nociception led to significant alterations in the intestinal microbiota and a transmissible dysbiosis, while mono-colonization of germ-free mice with Gram+Clostridium spp. promoted intestinal tissue protection through a nociceptor-dependent pathway. Mechanistically, disruption of nociception resulted in decreased levels of substance P, and therapeutic delivery of substance P promoted tissue-protective effects exerted by TRPV1+ nociceptors in a microbiota-dependent manner. Finally, dysregulated nociceptor gene expression was observed in intestinal biopsies from IBD patients. Collectively, these findings indicate an evolutionarily conserved functional link between nociception, the intestinal microbiota, and the restoration of intestinal homeostasis.
Collapse
Affiliation(s)
- Wen Zhang
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Mengze Lyu
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Nicholas J Bessman
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Zili Xie
- Department of Anesthesiology, The Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO, USA
| | - Mohammad Arifuzzaman
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Hiroshi Yano
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Christopher N Parkhurst
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Coco Chu
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Lei Zhou
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Gregory G Putzel
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Ting-Ting Li
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Wen-Bing Jin
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Jordan Zhou
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Hongzhen Hu
- Department of Anesthesiology, The Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO, USA
| | - Amy M Tsou
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA; Friedman Center for Nutrition and Inflammation, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA; Division of Pediatric Gastroenterology, Hepatology and Nutrition, Weill Cornell Medical College, New York, NY, USA
| | - Chun-Jun Guo
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA; Friedman Center for Nutrition and Inflammation, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - David Artis
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA; Friedman Center for Nutrition and Inflammation, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA.
| |
Collapse
|
33
|
Michalak A, Kasztelan-Szczerbińska B, Cichoż-Lach H. Impact of Obesity on the Course of Management of Inflammatory Bowel Disease—A Review. Nutrients 2022; 14:nu14193983. [PMID: 36235636 PMCID: PMC9573343 DOI: 10.3390/nu14193983] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022] Open
Abstract
It is already well-known that visceral adipose tissue is inseparably related to the pathogenesis, activity, and general outcome of inflammatory bowel disease (IBD). We are getting closer and closer to the molecular background of this loop, finding certain relationships between activated mesenteric tissue and inflammation within the lumen of the gastrointestinal tract. Recently, relatively new data have been uncovered, indicating a direct impact of body fat on the pattern of pharmacological treatment in the course of IBD. On the other hand, ileal and colonic types of Crohn’s disease and ulcerative colitis appear to be more diversified than it was thought in the past. However, the question arises whether at this stage we are able to translate this knowledge into the practical management of IBD patients or we are still exploring the scientific background of this pathology, having no specific tools to be used directly in patients. Our review explores IBD in the context of obesity and associated disorders, focusing on adipokines, creeping fat, and possible relationships between these disorders and the treatment of IBD patients.
Collapse
|
34
|
Pérez-Jeldres T, Pizarro B, Ascui G, Orellana M, Cerda-Villablanca M, Alvares D, de la Vega A, Cannistra M, Cornejo B, Baéz P, Silva V, Arriagada E, Rivera-Nieves J, Estela R, Hernández-Rocha C, Álvarez-Lobos M, Tobar F. Ethnicity influences phenotype and clinical outcomes: Comparing a South American with a North American inflammatory bowel disease cohort. Medicine (Baltimore) 2022; 101:e30216. [PMID: 36086782 PMCID: PMC10980497 DOI: 10.1097/md.0000000000030216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/12/2022] [Indexed: 11/27/2022] Open
Abstract
Inflammatory bowel disease (IBD), including ulcerative colitis (UC) and Crohn disease (CD), has emerged as a global disease with an increasing incidence in developing and newly industrialized regions such as South America. This global rise offers the opportunity to explore the differences and similarities in disease presentation and outcomes across different genetic backgrounds and geographic locations. Our study includes 265 IBD patients. We performed an exploratory analysis of the databases of Chilean and North American IBD patients to compare the clinical phenotypes between the cohorts. We employed an unsupervised machine-learning approach using principal component analysis, uniform manifold approximation, and projection, among others, for each disease. Finally, we predicted the cohort (North American vs Chilean) using a random forest. Several unsupervised machine learning methods have separated the 2 main groups, supporting the differences between North American and Chilean patients with each disease. The variables that explained the loadings of the clinical metadata on the principal components were related to the therapies and disease extension/location at diagnosis. Our random forest models were trained for cohort classification based on clinical characteristics, obtaining high accuracy (0.86 = UC; 0.79 = CD). Similarly, variables related to therapy and disease extension/location had a high Gini index. Similarly, univariate analysis showed a later CD age at diagnosis in Chilean IBD patients (37 vs 24; P = .005). Our study suggests a clinical difference between North American and Chilean IBD patients: later CD age at diagnosis with a predominantly less aggressive phenotype (39% vs 54% B1) and more limited disease, despite fewer biological therapies being used in Chile for both diseases.
Collapse
Affiliation(s)
- Tamara Pérez-Jeldres
- Department of Gastroenterology, Faculty of Medicine, Pontifical Catholic University of Chile, Santiago, Chile
- Instituto Chileno-Japonés, University of Chile, Santiago, Chile
| | - Benjamín Pizarro
- Radiology Department, Hospital Clínico Universidad de Chile, Santiago, Chile
| | - Gabriel Ascui
- La Jolla Institute for Allergy and Immunology, San Diego, CA
| | - Matías Orellana
- Department of Computer Science, Faculty of Physical Sciences and Mathematics of the University of Chile, Santiago, Chile
| | - Mauricio Cerda-Villablanca
- Integrative Biology Program, Institute of Biomedical Sciences, Center for Medical Informatics and Telemedicine, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Danilo Alvares
- Department of Statistics, Pontifical Catholic University of Chile, Santiago, Chile
| | | | - Macarena Cannistra
- Department of Gastroenterology, Faculty of Medicine, Pontifical Catholic University of Chile, Santiago, Chile
| | - Bárbara Cornejo
- Department of Gastroenterology, Faculty of Medicine, Pontifical Catholic University of Chile, Santiago, Chile
| | - Pablo Baéz
- Integrative Biology Program, Institute of Biomedical Sciences, Center for Medical Informatics and Telemedicine, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Verónica Silva
- Instituto Chileno-Japonés, University of Chile, Santiago, Chile
| | | | - Jesús Rivera-Nieves
- Inflammatory Bowel Disease Center, Division of Gastroenterology, University of California, San Diego, La Jolla, CA
| | - Ricardo Estela
- Instituto Chileno-Japonés, University of Chile, Santiago, Chile
| | - Cristián Hernández-Rocha
- Department of Gastroenterology, Faculty of Medicine, Pontifical Catholic University of Chile, Santiago, Chile
| | - Manuel Álvarez-Lobos
- Department of Gastroenterology, Faculty of Medicine, Pontifical Catholic University of Chile, Santiago, Chile
| | - Felipe Tobar
- Initiative for Data & Artificial Intelligence, University of Chile
- Center for Mathematical Modeling, University of Chile, Santiago, Chile
| |
Collapse
|
35
|
Letizia M, Wang YH, Kaufmann U, Gerbeth L, Sand A, Brunkhorst M, Weidner P, Ziegler JF, Böttcher C, Schlickeiser S, Fernández C, Yamashita M, Stauderman K, Sun K, Kunkel D, Prakriya M, Sanders AD, Siegmund B, Feske S, Weidinger C. Store-operated calcium entry controls innate and adaptive immune cell function in inflammatory bowel disease. EMBO Mol Med 2022; 14:e15687. [PMID: 35919953 PMCID: PMC9449601 DOI: 10.15252/emmm.202215687] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 07/03/2022] [Accepted: 07/05/2022] [Indexed: 12/12/2022] Open
Abstract
Inflammatory bowel disease (IBD) is characterized by dysregulated intestinal immune responses. Using mass cytometry (CyTOF) to analyze the immune cell composition in the lamina propria (LP) of patients with ulcerative colitis (UC) and Crohn's disease (CD), we observed an enrichment of CD4+ effector T cells producing IL‐17A and TNF, CD8+ T cells producing IFNγ, T regulatory (Treg) cells, and innate lymphoid cells (ILC). The function of these immune cells is regulated by store‐operated Ca2+ entry (SOCE), which results from the opening of Ca2+ release‐activated Ca2+ (CRAC) channels formed by ORAI and STIM proteins. We observed that the pharmacologic inhibition of SOCE attenuated the production of proinflammatory cytokines including IL‐2, IL‐4, IL‐6, IL‐17A, TNF, and IFNγ by human colonic T cells and ILCs, reduced the production of IL‐6 by B cells and the production of IFNγ by myeloid cells, but had no effect on the viability, differentiation, and function of intestinal epithelial cells. T cell‐specific deletion of CRAC channel genes in mice showed that Orai1, Stim1, and Stim2‐deficient T cells have quantitatively distinct defects in SOCE, which correlate with gradually more pronounced impairment of cytokine production by Th1 and Th17 cells and the severity of IBD. Moreover, the pharmacologic inhibition of SOCE with a selective CRAC channel inhibitor attenuated IBD severity and colitogenic T cell function in mice. Our data indicate that SOCE inhibition may be a suitable new approach for the treatment of IBD.
Collapse
Affiliation(s)
- Marilena Letizia
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.,Department of Gastroenterology, Infectious Diseases and Rheumatology, Campus Benjamin Franklin, Berlin, Germany
| | - Yin-Hu Wang
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| | - Ulrike Kaufmann
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| | - Lorenz Gerbeth
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.,Department of Gastroenterology, Infectious Diseases and Rheumatology, Campus Benjamin Franklin, Berlin, Germany
| | - Annegret Sand
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.,Department of Gastroenterology, Infectious Diseases and Rheumatology, Campus Benjamin Franklin, Berlin, Germany
| | - Max Brunkhorst
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.,Department of Gastroenterology, Infectious Diseases and Rheumatology, Campus Benjamin Franklin, Berlin, Germany
| | - Patrick Weidner
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.,Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Single Cell Approaches for Personalized Medicine, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jörn Felix Ziegler
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.,Department of Gastroenterology, Infectious Diseases and Rheumatology, Campus Benjamin Franklin, Berlin, Germany
| | - Chotima Böttcher
- Experimental and Clinical Research Center, Berlin, A Cooperation of Charité and MDC, Berlin, Germany
| | - Stephan Schlickeiser
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.,Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Flow & Mass Cytometry Core Facility, Berlin, Germany
| | - Camila Fernández
- Experimental and Clinical Research Center, Berlin, A Cooperation of Charité and MDC, Berlin, Germany
| | - Megumi Yamashita
- Department of Pharmacology, Northwestern University, Chicago, IL, USA
| | | | - Katherine Sun
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| | - Désirée Kunkel
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.,Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Flow & Mass Cytometry Core Facility, Berlin, Germany
| | - Murali Prakriya
- Department of Pharmacology, Northwestern University, Chicago, IL, USA
| | -
- TRR 241 Research Initiative, Berlin-Erlangen, Germany
| | - Ashley D Sanders
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.,Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Single Cell Approaches for Personalized Medicine, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Britta Siegmund
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.,Department of Gastroenterology, Infectious Diseases and Rheumatology, Campus Benjamin Franklin, Berlin, Germany
| | - Stefan Feske
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| | - Carl Weidinger
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.,Department of Gastroenterology, Infectious Diseases and Rheumatology, Campus Benjamin Franklin, Berlin, Germany.,Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA.,Clinician Scientist Program, Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
36
|
The Pharmacologically Active Alkaloid Cryptolepine Activates a Type 1 Interferon Response That Is Independent of MAVS and STING Pathways. J Immunol Res 2022; 2022:8873536. [PMID: 35928633 PMCID: PMC9345703 DOI: 10.1155/2022/8873536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/25/2022] [Accepted: 07/01/2022] [Indexed: 11/18/2022] Open
Abstract
Type 1 interferons (IFN-1) are pleiotropic cytokines with well-established anticancer and antiviral properties, particularly in mucosal tissues. Hence, natural IFN-1-inducing treatments are highly sought after in the clinic. Here, we report for the first time that cryptolepine, a pharmacoactive alkaloid in the medicinal plant Cryptolepis sanguinolenta, is a potent IFN-1 pathway inducer. Cryptolepine increased the transcript levels of JAK1, TYK2, STAT1, STAT2, IRF9, and OAS3, as well as increased the accumulation of STAT1 and OAS3 proteins, similar to recombinant human IFN-α. Cryptolepine effects were observed in multiple cell types including a model of human macrophages. This response was maintained in MAVS and STING-deficient cell lines, suggesting that cryptolepine effects are not mediated by nucleic acids released upon nuclear or organelle damage. In agreement, cryptolepine did not affect cell viability in concentrations that triggered potent IFN-1 activation. In addition, we observed no differences in the presence of a pharmacological inhibitor of TBK1, a pleiotropic kinase that is a converging point for Toll-like receptors (TLRs) and nucleic acid sensors. Together, our results demonstrate that cryptolepine is a strong inducer of IFN-1 response and suggest that cryptolepine-based medications such as C. sanguinolenta extract could be potentially tested in resource-limited regions of the world for the management of chronic viral infections as well as cancers.
Collapse
|
37
|
Epithelial chemerin-CMKLR1 signaling restricts microbiota-driven colonic neutrophilia and tumorigenesis by up-regulating lactoperoxidase. Proc Natl Acad Sci U S A 2022; 119:e2205574119. [PMID: 35858331 PMCID: PMC9304024 DOI: 10.1073/pnas.2205574119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Intestinal barrier immunity is essential for controlling gut microbiota without eliciting harmful immune responses, while its defect contributes to the breakdown of intestinal homeostasis and colitis development. Chemerin, which is abundantly expressed in barrier tissues, has been demonstrated to regulate tissue inflammation via CMKLR1, its functional receptor. Several studies have reported the association between increased expression of chemerin-CMKLR1 and disease severity and immunotherapy resistance in inflammatory bowel disease (IBD) patients. However, the pathophysiological role of endogenous chemerin-CMKLR1 signaling in intestinal homeostasis remains elusive. We herein demonstrated that deficiency of chemerin or intestinal epithelial cell (IEC)-specific CMKLR1 conferred high susceptibility to microbiota-driven neutrophilic colon inflammation and subsequent tumorigenesis in mice following epithelial injury. Unexpectedly, we found that lack of chemerin-CMKLR1 signaling specifically reduced expression of lactoperoxidase (LPO), a peroxidase that is predominantly expressed in colonic ECs and utilizes H2O2 to oxidize thiocyanates to the antibiotic compound, thereby leading to the outgrowth and mucosal invasion of gram-negative bacteria and dysregulated CXCL1/2-mediated neutrophilia. Importantly, decreased LPO expression was causally linked to aggravated microbiota-driven colitis and associated tumorigenesis, as LPO supplementation could completely rescue such phenotypes in mice deficient in epithelial chemerin-CMKLR1 signaling. Moreover, epithelial chemerin-CMKLR1 signaling is necessary for early host defense against bacterial infection in an LPO-dependent manner. Collectively, our study reveals that the chemerin-CMKLR1/LPO axis represents an unrecognized immune mechanism that potentiates epithelial antimicrobial defense and restricts harmful colonic neutrophilia and suggests that LPO supplementation may be beneficial for microbiota dysbiosis in IBD patients with a defective innate antimicrobial mechanism.
Collapse
|
38
|
El-Maadawy WH, Hafiz E, Okasha H, Osman NA, Ali GH, Hussein RA. Phycocyanin stimulates ulcerative colitis healing via selective activation of cannabinoid receptor-2, intestinal mucosal healing, Treg accumulation, and p38MAPK/MK2 signaling inhibition. Life Sci 2022; 305:120741. [PMID: 35777583 DOI: 10.1016/j.lfs.2022.120741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 06/16/2022] [Accepted: 06/24/2022] [Indexed: 11/19/2022]
Abstract
Ulcerative colitis (UC) is a chronic inflammatory condition that until this date, lacks curative treatments. Previously, synthetic selective CB2 receptor (CB2R) agonists demonstrated effective preclinical anti-inflammatory activities in UC. Phycocyanin (PC), photosynthetic assistant protein isolated from Microcystis aeruginosa Kützing blue green algae, has multiple pharmacological effects, however, it's effect against UC remains unexplored. Our study aimed at investigating the therapeutic effectiveness of PC against UC, and correlating its mechanisms with CB2R agonistic activities. In silico; PC showed structural similarity with endocannabinoid receptors' ligand "Δ9-tetrahydrocannabinol", target prediction studies suggested high affinity for G-coupled protein family-receptors, and molecular docking affirmed preferable affinity towards CB2R vs CB1R. In LPS-exposed-Caco-2 cell line; PC demonstrated comparable interaction with CB2R, and downregulation of CB2R, p38 and MK2 gene expressions with reference agonist "6d", and exhibited preferred selectivity towards CB2R over CB1R. In DSS-induced mice; PC-treatment ameliorated DSS-induced colon shortening, elevated disease activity index, and colonic pathological alterations. PC showed effective CB2R activation through potent anti-inflammatory activities, Treg-cell accumulation, suppression in p38MAPK/MK2 signaling, and tight junction barrier restoration as indicated by ultrastructural examinations, elevated ZO-1 and occludin protein expressions, and Ki67 immunohistochemical expression in colonic tissues. Additionally, PC alleviated intestinal dysbiosis via downregulating LPS/TLR4/NF-κB signaling and gut microbiota maintenance. Notably, PC-protective activities were abolished when co-administered with SR144528 (selective CB2 antagonist) except for gut microbiota maintenance, which was independent from CB2R activation. Our findings provide evidence of PC effectiveness against UC through acting as CB2R agonist, thus expanding its possible therapeutic application against other inflammatory diseases.
Collapse
Affiliation(s)
- Walaa H El-Maadawy
- Pharmacology Department, Theodor Bilharz Research Institute, Warrak El-Hadar, Imbaba (P.O. 30), Giza 12411, Egypt.
| | - Ehab Hafiz
- Electron Microscopy Department, Theodor Bilharz Research Institute, Warrak El-Hadar, Imbaba (P.O. 30), Giza 12411, Egypt
| | - Hend Okasha
- Biochemistry and Molecular Biology Department, Theodor Bilharz Research Institute, Warrak El-Hadar, Imbaba (P.O. 30), Giza 12411, Egypt
| | - Noha A Osman
- Pharmaceutical Chemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, 11835, Egypt
| | - Gamila H Ali
- Water Pollution Department, National Research Centre, 33 El Buhouth St., Dokki, Giza, P.O.12622, Egypt
| | - Rehab Ali Hussein
- Pharmacognosy Department, National Research Centre, 33 El Buhouth St., Dokki, Giza, P.O.12622, Egypt.
| |
Collapse
|
39
|
Jansen JE, Aschenbrenner D, Uhlig HH, Coles MC, Gaffney EA. A method for the inference of cytokine interaction networks. PLoS Comput Biol 2022; 18:e1010112. [PMID: 35731827 PMCID: PMC9216621 DOI: 10.1371/journal.pcbi.1010112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 04/15/2022] [Indexed: 11/19/2022] Open
Abstract
Cell-cell communication is mediated by many soluble mediators, including over 40 cytokines. Cytokines, e.g. TNF, IL1β, IL5, IL6, IL12 and IL23, represent important therapeutic targets in immune-mediated inflammatory diseases (IMIDs), such as inflammatory bowel disease (IBD), psoriasis, asthma, rheumatoid and juvenile arthritis. The identification of cytokines that are causative drivers of, and not just associated with, inflammation is fundamental for selecting therapeutic targets that should be studied in clinical trials. As in vitro models of cytokine interactions provide a simplified framework to study complex in vivo interactions, and can easily be perturbed experimentally, they are key for identifying such targets. We present a method to extract a minimal, weighted cytokine interaction network, given in vitro data on the effects of the blockage of single cytokine receptors on the secretion rate of other cytokines. Existing biological network inference methods typically consider the correlation structure of the underlying dataset, but this can make them poorly suited for highly connected, non-linear cytokine interaction data. Our method uses ordinary differential equation systems to represent cytokine interactions, and efficiently computes the configuration with the lowest Akaike information criterion value for all possible network configurations. It enables us to study indirect cytokine interactions and quantify inhibition effects. The extracted network can also be used to predict the combined effects of inhibiting various cytokines simultaneously. The model equations can easily be adjusted to incorporate more complicated dynamics and accommodate temporal data. We validate our method using synthetic datasets and apply our method to an experimental dataset on the regulation of IL23, a cytokine with therapeutic relevance in psoriasis and IBD. We validate several model predictions against experimental data that were not used for model fitting. In summary, we present a novel method specifically designed to efficiently infer cytokine interaction networks from cytokine perturbation data in the context of IMIDs. Cytokines are the messenger molecules of the immune system, allowing intercellular communication and mediating effective immune responses. They are an important therapeutic target in immune mediated inflammatory diseases such as inflammatory bowel disease (IBD) and rheumatoid arthritis. Cytokines interact in a tightly regulated network and depending on the context a particular cytokine can be involved in anti-inflammatory or inflammatory activities. In order to determine which cytokines to target in specific disease types and patient subsets, it is critical to study the effects of the inhibition of one or more cytokines on the larger cytokine interaction network. We present a novel method to extract a minimal, weighted network from cytokine interaction data. Existing biological network inference methods typically consider the correlation structure of the underlying dataset and/or make further assumptions of the dataset such as the existence of a small core of regulators. This can make them poorly suited for highly connected, non-linear cytokine interaction data. We validated our method using synthetic data and applied our method to a dataset on the regulation of IL23, a cytokine implicated in IBD pathogenesis. Predictions of the extracted IL23 network were validated using additional experimental data and were used to support the view of the cytokines IL1 and IL23 as promising targets for those patients that fail to respond to TNFα inhibition, the current golden standard in IBD treatment.
Collapse
Affiliation(s)
- Joanneke E. Jansen
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford, United Kingdom
- Translational Gastroenterology Unit, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Dominik Aschenbrenner
- Translational Gastroenterology Unit, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
- Autoimmunity, Transplantation and Inflammation, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Holm H. Uhlig
- Translational Gastroenterology Unit, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
- Department of Paediatrics, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Mark C. Coles
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Eamonn A. Gaffney
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
40
|
The Microbiota and Cytokines Correlation between the Jejunum and Colon in Altay Sheep. Animals (Basel) 2022; 12:ani12121564. [PMID: 35739900 PMCID: PMC9219508 DOI: 10.3390/ani12121564] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Both the jejunum and the colon secrete unique immune factors that interact with the gut microbiota. Investigating the association of gut microbiota and the host immune system, we detected higher populations of Bacteroides, Fibrobacteres and Spirochetes in the colon than in the jejunum of Altay sheep, which is a unique breed in Xinjiang. Levels of IL-6 and IL-12 were lower in the colon than in the jejunum. IL-10 was positively correlated with Ruminococcus_2 in the jejunum. These results indicate a potential interaction between intestinal microbiota and the host immune system that may be considered for the prevention of sheep diseases and the screening of probiotics. Abstract Both the jejunum and colon release cytokines that interact with intestinal microbiota. However, it is largely unclear which cytokines and microbial populations are involved in the homeostasis of the intestinal ecosystem for sheep health. To address this, we collected contents for isolating microbiota and tissues for determining cytokines from the jejunum and colon of 7-month-old Altay sheep. We used the techniques of 16S rRNA sequencing and ELISA to detect microbial population and cytokine level, respectively. Correlations between microbial population and cytokines were analyzed by Spearman correlation coefficient. The correlation analysis revealed higher populations of Bacteroides, Fibrobacteres and Spirochetes in the colon than in the jejunum, and IL-6 and IL-12 levels were higher in the jejunum than in the colon. Association analysis further revealed a positive association between IL-10 level and both Ruminococcus_2 and norank_f_Bifidobacteriaceae population in the jejunum. The analysis also revealed positive associations between IL-6 level and Ruminococcaceae_UCG-014 and Ruminococcaceae_UCG-013 population, IL-10 and Prevotellaceae_UCG-004, as well as TNF-α and Prevotellaceae_UCG-003 in the colon. These results indicate a potential interaction between the intestinal microbiota and the host immune system that needs to be further clarified for considering dietary formulations to maintain animal health and disease prevention.
Collapse
|
41
|
Epithelial dysfunction is prevented by IL-22 treatment in a Citrobacter rodentium-induced colitis model that shares similarities with inflammatory bowel disease. Mucosal Immunol 2022; 15:1338-1349. [PMID: 36372810 DOI: 10.1038/s41385-022-00577-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 08/18/2022] [Accepted: 10/27/2022] [Indexed: 11/15/2022]
Abstract
Inflammatory bowel disease (IBD) is characterized by a dysregulated intestinal epithelial barrier leading to breach of barrier immunity. Here we identified similar protein expression changes between IBD and Citrobacter rodentium-infected FVB mice with respect to dysregulation of solute transporters as well as components critical for intestinal barrier integrity. We attribute the disease associated changes in the model to the emergence of undifferentiated intermediate intestinal epithelial cells. Prophylactic treatment with IL-22.Fc in C. rodentium-infected FVB mice reduced disease severity and rescued the mice from lethality. Multi-omics and solute analyses revealed that IL-22.Fc treatment prevented disease-associated changes including disruption of the solute transporter machinery and restored proper physiological functions of the intestine, respectively. Taken together, we established the disease relevance of the C. rodentium-induced colitis model to IBD, demonstrated the protective role of IL-22 in amelioration of epithelial dysfunction and elucidated the molecular mechanisms with IL-22's effect on intestinal epithelial cells.
Collapse
|
42
|
Sewell GW, Kaser A. Interleukin-23 in the Pathogenesis of Inflammatory Bowel Disease and Implications for Therapeutic Intervention. J Crohns Colitis 2022; 16:ii3-ii19. [PMID: 35553667 PMCID: PMC9097674 DOI: 10.1093/ecco-jcc/jjac034] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The interleukin-23 [IL-23] cytokine, derived predominantly from macrophages and dendritic cells in response to microbial stimulation, has emerged as a critical promoter of chronic intestinal inflammation. Genome-wide association studies linking variants in IL23R to disease protection, bolstered by experimental evidence from colitis models, and the successful application of therapies against the IL-12/IL-23 shared p40 subunit in the treatment of inflammatory bowel disease [IBD] all provide compelling evidence of a crucial role for IL-23 in disease pathogenesis. Moreover, targeting the p19 subunit specific for IL-23 has shown considerable promise in recent phase 2 studies in IBD. The relative importance of the diverse immunological pathways downstream of IL-23 in propagating mucosal inflammation in the gut, however, remains contentious. Here we review current understanding of IL-23 biology and explore its pleiotropic effects on T cells, and innate lymphoid, myeloid and intestinal epithelial cells in the context of the pathogenesis of IBD. We furthermore discuss these pathways in the light of recent evidence from clinical trials and indicate emerging targets amenable to therapeutic intervention and translation into clinical practice.
Collapse
Affiliation(s)
- Gavin W Sewell
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK,Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge, UK
| | - Arthur Kaser
- Corresponding author: Arthur Kaser, Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Puddicombe Way, Cambridge CB2 0AW, UK. Tel: +44 1223 331130;
| |
Collapse
|
43
|
Liu Y, Zhang Q, Xing B, Luo N, Gao R, Yu K, Hu X, Bu Z, Peng J, Ren X, Zhang Z. Immune phenotypic linkage between colorectal cancer and liver metastasis. Cancer Cell 2022; 40:424-437.e5. [PMID: 35303421 DOI: 10.1016/j.ccell.2022.02.013] [Citation(s) in RCA: 169] [Impact Index Per Article: 56.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 01/11/2022] [Accepted: 02/19/2022] [Indexed: 02/07/2023]
Abstract
The tumor microenvironment (TME) is connected to immunotherapy responses, but it remains unclear how cancer cells and host tissues differentially influence the immune composition within TME. Here, we performed single-cell analyses for autologous samples from liver metastasized colorectal cancer to disentangle factors shaping TME. By aligning CD45+ cells across different tissues, we classified exhausted CD8+ T cells (Texs) and activated regulatory T cells as M-type, whose phenotypes were associated with the malignancy, while natural killer and mucosal-associated invariant T cells were defined as N-type, whose phenotypes were associated with the niche. T cell receptor sharing between Texs in primary and metastatic tumors implicated the presence of common peripheral non-exhausted precursors. For myeloid cells, a subset of dendritic cells (DC3s) and SPP1+ macrophages were M-type, and the latter were predominant in liver metastasis, indicating its pro-metastasis role. Our analyses bridge immune phenotypes of primary and metastatic tumors, thereby helping to understand the tumor-specific contexture and identify the pro-metastasis components.
Collapse
Affiliation(s)
- Yedan Liu
- BIOPIC, School of Life Sciences, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Qiming Zhang
- BIOPIC, School of Life Sciences, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Baocai Xing
- Department of Hepatopancreatobiliary Surgery I, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Nan Luo
- Department of Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing 10038, China
| | - Ranran Gao
- BIOPIC, School of Life Sciences, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Kezhuo Yu
- BIOPIC, School of Life Sciences, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Xueda Hu
- BIOPIC, School of Life Sciences, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Zhaode Bu
- Department of Gastrointestinal Surgery, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Jirun Peng
- Department of Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing 10038, China; Ninth School of Clinical Medicine, Peking University, Beijing 10038, China.
| | - Xianwen Ren
- BIOPIC, School of Life Sciences, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China.
| | - Zemin Zhang
- BIOPIC, School of Life Sciences, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China; Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518132, China.
| |
Collapse
|
44
|
Wang L, Cao ZM, Zhang LL, Dai XC, Liu ZJ, Zeng YX, Li XY, Wu QJ, Lv WL. Helicobacter Pylori and Autoimmune Diseases: Involving Multiple Systems. Front Immunol 2022; 13:833424. [PMID: 35222423 PMCID: PMC8866759 DOI: 10.3389/fimmu.2022.833424] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/24/2022] [Indexed: 12/12/2022] Open
Abstract
The modern Gastroenterology have witnessed an essential stride since Helicobacter pylori was first found in the stomach and then its pathogenic effect was discovered. According to the researches conducted during the nearly 40 years, it has been found that this bacterium is associated with a natural history of many upper gastrointestinal diseases. Epidemiological data show an increased incidence of autoimmune disorders with or after infection with specific microorganisms. The researches have revealed that H. pylori is a potential trigger of gastric autoimmunity, and it may be associated with other autoimmune diseases, both innate and acquired. This paper reviews the current support or opposition about H. pylori as the role of potential triggers of autoimmune diseases, including inflammatory bowel disease, autoimmune thyroiditis, type 1 diabetes mellitus, autoimmune liver diseases, rheumatoid arthritis, idiopathic thrombocytopenic purpura, systemic lupus erythematosus, as well as Sjogren’s syndrome, chronic urticaria and psoriasis, and tried to explain the possible mechanisms.
Collapse
Affiliation(s)
- Li Wang
- Department of Infection, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zheng-Min Cao
- Department of Infection, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Li-Li Zhang
- Department of Infection, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xin-Can Dai
- Department of Infection, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhen-Ju Liu
- Department of Proctology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yi-Xian Zeng
- Department of Proctology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xin-Ye Li
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qing-Juan Wu
- Department of Infection, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wen-Liang Lv
- Department of Infection, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
45
|
Weber K, Zeißig Y, Haag C, Schmelz R, Pazmandi J, Kalinichenko A, Boztug K, Zeißig S, Aust D, Laass MW, Schuetz C. [Chronic or severe enteropathy and immunodeficiency: be prepared for a rara avis]. ZEITSCHRIFT FUR GASTROENTEROLOGIE 2022; 60:1668-1677. [PMID: 35297030 DOI: 10.1055/a-1709-5024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In the work-up of chronic enteropathies an underlying inborn error of immunity (IEI) should be considered in certain cases. IEI are rare, but approximately 10% of patients may present with symptoms of inflammatory bowel disease (IBD), which is a much more common entity. Patients with IEI associated IBD may show extraintestinal symptoms or signs, and are often refractory to conventional anti-inflammatory treatment. In case of early-onset bowel inflammation and other intestinal or extraintestinal manifestations, an IEI should be excluded. A small fraction of monogenic IEI can be amenable to targeted therapies, or even corrected by allogeneic stem cell transplantation. Therefore, early diagnosis is crucial. This paper shows examples of clinical - gastrointestinal as well as extraintestinal - signs and findings which require immunological and possibly genetic workup.
Collapse
Affiliation(s)
- Katrin Weber
- Klinik und Poliklinik für Kinder- und Jugendmedizin, Universitätsklinikum Carl Gustav Carus, Dresden, Germany
| | - Yvonne Zeißig
- Klinik und Poliklinik für Kinder- und Jugendmedizin, Universitätsklinikum Carl Gustav Carus, Dresden, Germany
| | - Cornelie Haag
- Universitätsklinikum Carl Gustav Carus Medizinische Klinik und Poliklinik I, Dresden, Germany
| | - Renate Schmelz
- Universitätsklinikum Carl Gustav Carus Medizinische Klinik und Poliklinik I, Dresden, Germany
| | - Julia Pazmandi
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
| | - Artem Kalinichenko
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
| | - Kaan Boztug
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria.,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.,St. Anna Kinderspital und Universitätsklinik für Kinder und Jugendliche, Medizinische Universitat Wien, Wien, Austria.,St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| | - Sebastian Zeißig
- Center for Regenerative Therapies Dresden, Dresden, Germany.,Klinik und Poliklinik für Innere Medizin I, Universitätsklinikum Carl Gustav Carus, Dresden, Germany
| | - Daniela Aust
- Institut für Pathologie, Universitätsklinikum Carl Gustav Carus, Dresden, Germany
| | - Martin W Laass
- Klinik und Poliklinik für Kinder- und Jugendmedizin, Universitätsklinikum Carl Gustav Carus, Dresden, Germany
| | - Catharina Schuetz
- Klinik und Poliklinik für Kinder- und Jugendmedizin, Universitätsklinikum Carl Gustav Carus, Dresden, Germany
| |
Collapse
|
46
|
Qiao Y, Ye X, Zhong L, Xia C, Zhang L, Yang F, Li Y, Fang X, Fu L, Huang Y, Cao H, Li Z, Cui Z. Yeast β-1,3-glucan production by an outer membrane β-1,6-glucanase: process optimization, structural characterization and immunomodulatory activity. Food Funct 2022; 13:3917-3930. [PMID: 35289343 DOI: 10.1039/d1fo02832d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The β-glucan from Saccharomyces cerevisiae is a potent adjuvant that exhibits a broad spectrum of biological activities and health benefits, and different processes have been established to prepare active β-glucan from yeast. However, studies concerning the effect of β-1,6-glucanase enzymolysis on the structure and immunomodulatory activity of yeast β-1,3-glucan are scarce. In this study, we aim to develop a novel enzymatic process for the preparation of immunologically active β-glucan (BYG) from baker's yeast using a β-1,6-glucanase GluM. The β-1,6-glucan in fungal cell wall was specifically hydrolyzed by GluM, and resulted in cell wall decomposition and β-glucan release. Batch production of BYG was realized with 17.8% yield, 85.3% purity and 75.4% recovery rate. Structural characterization indicated that BYG exhibits rod-like structures with natural triplex and nanoparticle-like substructures compared with the commercial Glucan 300. BYG ameliorated inflammation in a DSS-induced mouse model of colitis through inhibiting oxidative stress (NO, MDA and MPO), inflammatory mediators (NLRP3, ASC, caspase-1, iNOS and COX-2), and pro-inflammatory cytokines (IL-1β, IL-6, TNF-α, IFN-γ), increasing the expression levels of tight junction proteins (ZO-1, occludin and claudin-1) and modulating the production of gut microbiota-synthesized SCFAs compared to the control. Our results showed that yeast β-1,3-glucan prepared with β-1,6-glucanase exhibits structural integrity that is responsible for its favorable immunomodulatory activity.
Collapse
Affiliation(s)
- Yan Qiao
- Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, China.
| | - Xianfeng Ye
- Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, China.
| | - Lingli Zhong
- Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, China.
| | - Chengyao Xia
- Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, China.
| | - Lei Zhang
- Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, China.
| | - Fan Yang
- Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, China.
| | - Yongkai Li
- Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, China.
| | - Xiaodong Fang
- Guangzhou Hanyun Pharmaceutical Technology Co. Ltd, Guangzhou, China
| | - Lei Fu
- Nanjing Institute for Comprehensive Utilization of Wild Plants, Nanjing 211111, China
| | - Yan Huang
- Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, China.
| | - Hui Cao
- Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, China.
| | - Zhoukun Li
- Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, China.
| | - Zhongli Cui
- Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, China. .,Key Laboratory of Biological Interactions and Crop Health, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
47
|
Bolton C, Smillie CS, Elmentaite R, Wei G, Argmann C, Aschenbrenner D, James KR, McGovern DP, Macchi M, Cho J, Shouval D, Kammermeier J, Koletzko S, Peters L, Travis SP, Jostins L, Anderson CA, Snapper S, Klein C, Schadt E, Zilbauer M, Xavier R, Teichmann S, Muise AM, Regev A, Uhlig HH. An Integrated Taxonomy for Monogenic Inflammatory Bowel Disease. Gastroenterology 2022; 162:859-876. [PMID: 34780721 PMCID: PMC7616885 DOI: 10.1053/j.gastro.2021.11.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 10/18/2021] [Accepted: 11/08/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Monogenic forms of inflammatory bowel disease (IBD) illustrate the essential roles of individual genes in pathways and networks safeguarding immune tolerance and gut homeostasis. METHODS To build a taxonomy model, we assessed 165 disorders. Genes were prioritized based on penetrance of IBD and disease phenotypes were integrated with multi-omics datasets. Monogenic IBD genes were classified by (1) overlapping syndromic features, (2) response to hematopoietic stem cell transplantation, (3) bulk RNA-sequencing of 32 tissues, (4) single-cell RNA-sequencing of >50 cell subsets from the intestine of healthy individuals and patients with IBD (pediatric and adult), and (5) proteomes of 43 immune subsets. The model was validated by addition of newly identified monogenic IBD defects. As a proof-of-concept, we explore the intersection between immunometabolism and antimicrobial activity for a group of disorders (G6PC3/SLC37A4). RESULTS Our quantitative integrated taxonomy defines the cellular landscape of monogenic IBD gene expression across 102 genes with high and moderate penetrance (81 in the model set and 21 genes in the validation set). We illustrate distinct cellular networks, highlight expression profiles across understudied cell types (e.g., CD8+ T cells, neutrophils, epithelial subsets, and endothelial cells) and define genotype-phenotype associations (perianal disease and defective antimicrobial activity). We illustrate processes and pathways shared across cellular compartments and phenotypic groups and highlight cellular immunometabolism with mammalian target of rapamycin activation as one of the converging pathways. There is an overlap of genes and enriched cell-specific expression between monogenic and polygenic IBD. CONCLUSION Our taxonomy integrates genetic, clinical and multi-omic data; providing a basis for genomic diagnostics and testable hypotheses for disease functions and treatment responses.
Collapse
Affiliation(s)
- Chrissy Bolton
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK
- Medical Sciences, University College London, London, UK
| | | | - Rasa Elmentaite
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Gabrielle Wei
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Carmen Argmann
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Kylie R James
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Dermot P.B McGovern
- F. Widjaja Foundation, Inflammatory Bowel and Immunobiology Research Institute,, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Marina Macchi
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK
| | - Judy Cho
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dror Shouval
- Pediatric Gastroenterology Unit, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Ramat Gan, Israel, affiliated to Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Jochen Kammermeier
- Gastroenterology Department, Evelina London Children’s Hospital, London, UK
| | - Sibylle Koletzko
- Dr. von Hauner Children’s Hospital, Department of Pediatrics, University Hospital, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Lauren Peters
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Simon P.L. Travis
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK
- Biomedical Research Center, University of Oxford, Oxford, United Kingdom
| | - Luke Jostins
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | | | - Scott Snapper
- Division of Gastroenterology and Nutrition, Boston Children’s Hospital, Boston, USA
| | - Christoph Klein
- Dr. von Hauner Children’s Hospital, Department of Pediatrics, University Hospital, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Eric Schadt
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Matthias Zilbauer
- Department of Paediatric Gastroenterology, Hepatology and Nutrition, Addenbrooke’s Hospital, Cambridge, UK
- Department of Paediatrics, University of Cambridge, Cambridge, UK
| | - Ramnik Xavier
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, United States
| | - Sarah Teichmann
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Theory of Condensed Matter, Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge UK
- European Molecular Biology Laboratory, European Bioinformatics Institute (EBI), Wellcome Genome Campus, Hinxton UK
| | - Aleixo M. Muise
- Gastroenterology Division, The Hospital for Sick Children, Toronto, Canada
- SickKids Inflammatory Bowel Disease Center and Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, ON, Canada
- Department of Pediatrics and Biochemistry, University of Toronto, Hospital for Sick Children, Toronto, ON, Canada
| | - Aviv Regev
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, United States
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge MA, USA
| | - Holm H. Uhlig
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK
- Biomedical Research Center, University of Oxford, Oxford, United Kingdom
- Department of Pediatrics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
48
|
Ruan J, Schlüter D, Naumann M, Waisman A, Wang X. Ubiquitin-modifying enzymes as regulators of colitis. Trends Mol Med 2022; 28:304-318. [PMID: 35177326 DOI: 10.1016/j.molmed.2022.01.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/24/2022] [Accepted: 01/24/2022] [Indexed: 12/18/2022]
Abstract
Inflammatory bowel disease (IBD), including Crohn's disease (CD) and ulcerative colitis (UC), is a chronic inflammatory disorder of the gastrointestinal tract. Although the pathophysiology of IBD is multifaceted, ubiquitination, a post-translational modification, has been shown to have essential roles in its pathogenesis and development. Ubiquitin-modifying enzymes (UMEs) work in synergy to orchestrate the optimal ubiquitination of target proteins, thereby maintaining intestinal homeostasis. Genome-wide association studies (GWAS) have identified multiple UME genes as IBD susceptibility loci, implying the importance of UMEs in IBD. Furthermore, accumulative evidence demonstrates that UMEs affect intestinal inflammation by regulating various aspects, such as intestinal barrier functions and immune responses. Considering the significant functions of UMEs in IBD, targeting UMEs could become a favorable therapeutic approach for IBD.
Collapse
Affiliation(s)
- Jing Ruan
- Department of Pathology, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Dirk Schlüter
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany; Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Michael Naumann
- Institute of Experimental Internal Medicine, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Ari Waisman
- Institute for Molecular Medicine, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Xu Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, China; Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
49
|
Li G, Lin J, Zhang C, Gao H, Lu H, Gao X, Zhu R, Li Z, Li M, Liu Z. Microbiota metabolite butyrate constrains neutrophil functions and ameliorates mucosal inflammation in inflammatory bowel disease. Gut Microbes 2022; 13:1968257. [PMID: 34494943 PMCID: PMC8437544 DOI: 10.1080/19490976.2021.1968257] [Citation(s) in RCA: 183] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Host-microbial cross-talk plays a crucial role in maintenance of gut homeostasis. However, how microbiota-derived metabolites, e.g., butyrate, regulate functions of neutrophils in the pathogenesis of inflammatory bowel disease (IBD) remains elusive. We sought to investigate the effects of butyrate on IBD neutrophils and elucidate the therapeutic potential in regulating mucosal inflammation. Peripheral neutrophils were isolated from IBD patients and healthy donors, and profiles of proinflammatory cytokines and chemokines were determined by qRT-PCR and ELISA, respectively. The migration and release of neutrophil extracellular traps (NETs) were studied by a Transwell model and immunofluorescence, respectively. The in vivo role of butyrate in regulating IBD neutrophils was evaluated in a DSS-induced colitis model in mice. We found that butyrate significantly inhibited IBD neutrophils to produce proinflammatory cytokines, chemokines, and calprotectins. Blockade of GPCR signaling with pertussis toxin (PTX) did not interfere the effects whereas pan-histone deacetylase (HDAC) inhibitor, trichostatin A (TSA) effectively mimicked the role of butyrate. Furthermore, in vitro studies confirmed that butyrate suppressed neutrophil migration and formation of NETs from both CD and UC patients. RNA sequencing analysis revealed that the immunomodulatory effects of butyrate on IBD neutrophils were involved in leukocyte activation, regulation of innate immune response and response to oxidative stress. Consistently, oral administration of butyrate markedly ameliorated mucosal inflammation in DSS-induced murine colitis through inhibition of neutrophil-associated immune responses such as proinflammatory mediators and NET formation. Our data thus reveal that butyrate constrains neutrophil functions and may serve as a novel therapeutic potential in the treatment of IBD.
Collapse
Affiliation(s)
- Gengfeng Li
- Center for IBD Research, Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jian Lin
- Center for IBD Research, Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Cui Zhang
- Center for IBD Research, Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Han Gao
- Center for IBD Research, Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Huiying Lu
- Center for IBD Research, Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiang Gao
- Center for IBD Research, Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ruixin Zhu
- Center for IBD Research, Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China,Department of Bioinformatics, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Zhitao Li
- Division of Immunology, School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, China
| | - Mingsong Li
- Department of Gastroenterology, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China,Mingsong Li Department of Gastroenterology, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhanju Liu
- Center for IBD Research, Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China,Division of Immunology, School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, China,CONTACT Zhanju Liu Center for IBD Research, Department of Gastroenterology, The Shanghai Tenth People’s Hospital, Tongji University, No. 301 Yanchang Road, Shanghai200072, China
| |
Collapse
|
50
|
Huang F, Thokerunga E, He F, Zhu X, Wang Z, Tu J. Research progress of the application of mesenchymal stem cells in chronic inflammatory systemic diseases. Stem Cell Res Ther 2022; 13:1. [PMID: 34998430 PMCID: PMC8742935 DOI: 10.1186/s13287-021-02613-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/04/2021] [Indexed: 02/08/2023] Open
Abstract
Chronic inflammatory systemic diseases are the result of the body's immune imbalance, with a long course and recurring episodes. Immunosuppressants are the main treatment, but not all patients respond well to it. Being capable of both self-renewal and differentiation into multiple tissue cells and low immunogenicity, mesenchymal stem cell is a promising treatment for chronic inflammatory systemic diseases. In this article, we describe the research progress and clinical application of mesenchymal stem cells in chronic inflammatory systemic diseases and look for influencing factors and biomarkers that can predict the outcome of patient with mesenchymal stem cell transplantation.
Collapse
Affiliation(s)
- Fangfang Huang
- Program and Department of Clinical Laboratory Medicine, Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Erick Thokerunga
- Program and Department of Clinical Laboratory Medicine, Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Fajian He
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Xinyu Zhu
- Program and Department of Clinical Laboratory Medicine, Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Zi Wang
- Program and Department of Clinical Laboratory Medicine, Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Jiancheng Tu
- Program and Department of Clinical Laboratory Medicine, Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| |
Collapse
|