1
|
Gorodisky L, Honigstein D, Weissbrod A, Weissgross R, Soroka T, Shushan S, Sobel N. Humans without a sense of smell breathe differently. Nat Commun 2024; 15:8809. [PMID: 39438441 PMCID: PMC11496694 DOI: 10.1038/s41467-024-52650-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/18/2024] [Indexed: 10/25/2024] Open
Abstract
Olfaction may play a restricted role in human behavior, yet paradoxically, its absence in anosmia is associated with diverse deleterious outcomes, culminating in reduced life expectancy. The mammalian nose serves two purposes: olfaction and breathing. Because respiratory patterns are impacted by odors, we hypothesized that nasal respiratory airflow may be altered in anosmia. We apply a wearable device that precisely logs nasal airflow for 24-hour-long sessions in participants with isolated congenital anosmia and controls. We observe significantly altered patterns of respiratory nasal airflow in anosmia in wake and in sleep. These differences allow classification of anosmia at 83% accuracy using the respiratory trace alone. Patterns of respiratory airflow have pronounced impact on health, emotion and cognition. We therefore suggest that a portion of the deleterious outcomes associated with anosmia may be attributed to altered patterns of respiratory nasal airflow rather than a direct result of lost odor perception per se.
Collapse
Affiliation(s)
- Lior Gorodisky
- The Azrieli National Institute for Human Brain Imaging and Research, Weizmann Institute of Science, Rehovot, Israel.
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel.
| | - Danielle Honigstein
- The Azrieli National Institute for Human Brain Imaging and Research, Weizmann Institute of Science, Rehovot, Israel
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Aharon Weissbrod
- The Azrieli National Institute for Human Brain Imaging and Research, Weizmann Institute of Science, Rehovot, Israel
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Reut Weissgross
- The Azrieli National Institute for Human Brain Imaging and Research, Weizmann Institute of Science, Rehovot, Israel
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Timna Soroka
- The Azrieli National Institute for Human Brain Imaging and Research, Weizmann Institute of Science, Rehovot, Israel
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Sagit Shushan
- The Azrieli National Institute for Human Brain Imaging and Research, Weizmann Institute of Science, Rehovot, Israel
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
- The Institute of Nose and Sinus Therapy and Clinical Investigations, The Edith Wolfson Medical Center, Holon, Israel
- Department of Otolaryngology-Head & Neck Surgery, The Edith Wolfson Medical Center, Holon, Israel
- Faculty of Medical & Health Sciences, Tel-Aviv University, Tel Aviv, Israel
| | - Noam Sobel
- The Azrieli National Institute for Human Brain Imaging and Research, Weizmann Institute of Science, Rehovot, Israel.
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
2
|
Hu Q, Tuluhong M, Han P. Odor awareness modulates the association between perceived stress and chemosensory anhedonia in women. Psych J 2024; 13:870-879. [PMID: 38757253 PMCID: PMC11444723 DOI: 10.1002/pchj.769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 04/14/2024] [Indexed: 05/18/2024]
Abstract
Chronic stress alters reward sensitivity and contributes to anhedonia. Chemosensation is dominated by a hedonic dimension, but little is known about the association between chronic perceived stress and hedonic chemosensation in non-clinical populations. In the current study, 325 participants (201 females) completed a questionnaire-based survey measuring their chronic perceived stress (Perceived Stress Scale; PSS), chemosensory pleasure (Chemosensory Pleasure Scale; CPS), and olfactory metacognitive abilities (odor awareness, affective impact of odor, importance of olfaction). For females, higher PSS scores significantly predicted lower CPS scores, which is mediated by the positive odor awareness. Moreover, negative odor awareness was identified as a moderator underlying the relationship between PSS and CPS scores in females but not in males. For females, higher PSS predicted lower CPS for those with lower, but not for those with higher levels of negative odor awareness. These results show that the link between chronic perceived stress and chemosensory anhedonia is pronounced in females, with olfactory perception playing a key role. The current study provides insights into the understanding of stress-related anhedonia and into the development of effective treatments.
Collapse
Affiliation(s)
- Qian Hu
- Faculty of PsychologySouthwest UniversityChongqingChina
| | | | - Pengfei Han
- Faculty of PsychologySouthwest UniversityChongqingChina
- MOE Key Laboratory of Cognition and PersonalitySouthwest UniversityChongqingChina
| |
Collapse
|
3
|
Hörberg T, Kurfalı M, Larsson M, Jonsson Laukka E, Herman P, Olofsson JK. A Rose by Another Name? Odor Misnaming is Associated with Linguistic Properties. Cogn Sci 2024; 48:e70003. [PMID: 39439400 DOI: 10.1111/cogs.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/20/2024] [Accepted: 10/03/2024] [Indexed: 10/25/2024]
Abstract
Naming common odors is a surprisingly difficult task: Odors are frequently misnamed. Little is known about the linguistic properties of odor misnamings. We test whether odor misnamings of old adults carry information about olfactory perception and its connection to lexical-semantic processing. We analyze the olfactory-semantic content of odor source naming failures in a large sample of older adults in Sweden (n = 2479; age 58-100 years). We investigate whether linguistic factors and semantic proximity to the target odor name predict how odors are misnamed, and how these factors relate to overall odor identification performance. We also explore the primary semantic dimensions along which misnamings are distributed. We find that odor misnamings consist of surprisingly many vague and unspecific terms, such as category names (e.g., fruit) or abstract or evaluative terms (e.g., sweet). Odor misnamings are often strongly associated with the correct name, capturing properties such as its category or other abstract features. People are also biased toward misnaming odors with high-frequency terms that are associated with olfaction or gustation. Linguistic properties of odor misnamings and their semantic proximity to the target odor name predict odor identification performance, suggesting that linguistic processing facilitates odor identification. Further, odor misnamings constitute an olfactory-semantic space that is similar to the olfactory vocabulary of English. This space is primarily differentiated along pleasantness, edibility, and concreteness dimensions. Odor naming failures thus contain plenty of information about semantic odor knowledge.
Collapse
Affiliation(s)
- Thomas Hörberg
- Sensory-Cognitive Interaction Lab & Gösta Ekman Laboratory, Department of Psychology, Stockholm University
| | - Murathan Kurfalı
- Sensory-Cognitive Interaction Lab & Gösta Ekman Laboratory, Department of Psychology, Stockholm University
- RISE Research Institutes of Sweden
| | - Maria Larsson
- Sensory-Cognitive Interaction Lab & Gösta Ekman Laboratory, Department of Psychology, Stockholm University
| | - Erika Jonsson Laukka
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet-Stockholm University
- Stockholm Gerontology Research Center
| | - Pawel Herman
- Computational Brain Science Lab, Division of Computational Science and Technology, KTH Royal Institute of Technology
| | - Jonas K Olofsson
- Sensory-Cognitive Interaction Lab & Gösta Ekman Laboratory, Department of Psychology, Stockholm University
| |
Collapse
|
4
|
Drnovsek E, Haehner A, Bensafi M, Hummel T. Olfactory perceptual fingerprints of people with olfactory dysfunction and healthy controls. Laryngoscope Investig Otolaryngol 2024; 9:e1267. [PMID: 39139801 PMCID: PMC11320747 DOI: 10.1002/lio2.1267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/27/2024] [Accepted: 04/28/2024] [Indexed: 08/15/2024] Open
Abstract
Objectives An olfactory perceptual fingerprint (OPF) defines one's olfactory perception using perceptual descriptor ratings (such as odor pleasantness, intensity) for a set of odors. OPFs have been shown to distinguish patients with COVID-related olfactory dysfunction (OD) and healthy controls with 86% accuracy. However, all participants rated the same odorants. With the aim to evaluate whether the OPFs are indeed odorant independent, previously published dataset by Lötsch et al. was reanalyzed. Furthermore, this independent dataset was used to check whether the OPFs separate patients with OD due to various causes from controls. Methods The study included 104 controls and 42 patients, who were randomized into four odor sets with 10 odorants each. Odorants were presented using a computer-controlled olfactometer and evaluated on scales from 1 (not at all) to 5 (very) using perceptual descriptors pleasant, intensive, familiar, edible, irritating, cold/warm, and painful. Results Permutational multivariate analysis of variance showed that the odor set did not have a significant effect on the OPFs, confirming that the OPFs are indeed odorant independent. On the other hand, both diagnosis and age affected the OPFs (p < .001) and explained around 11% and 5% of the variance of the OPFs, respectively. Furthermore, a supervised machine learning method, random forest classifier, showed that OPF can distinguish patients and controls with 80% accuracy. Conclusion OPFs are odorant independent. Patients perceived odors as less familiar, less intense, and less edible than controls. Other perceptual descriptors were much less important for the separation of patients and controls. Level of evidence 3.
Collapse
Affiliation(s)
- Eva Drnovsek
- Smell and Taste Clinic, Department of OtorhinolaryngologyTechnische Universität DresdenDresdenGermany
| | - Antje Haehner
- Smell and Taste Clinic, Department of OtorhinolaryngologyTechnische Universität DresdenDresdenGermany
| | - Moustafa Bensafi
- CNRS, UMR5292, INSERM U1028, Lyon Neuroscience Research CenterUniversity LyonLyonFrance
| | - Thomas Hummel
- Smell and Taste Clinic, Department of OtorhinolaryngologyTechnische Universität DresdenDresdenGermany
| |
Collapse
|
5
|
Fryer E, Guha S, Rogel-Hernandez LE, Logan-Garbisch T, Farah H, Rezaei E, Mollhoff IN, Nekimken AL, Xu A, Seyahi LS, Fechner S, Druckmann S, Clandinin TR, Rhee SY, Goodman MB. A high-throughput behavioral screening platform for measuring chemotaxis by C. elegans. PLoS Biol 2024; 22:e3002672. [PMID: 38935621 PMCID: PMC11210793 DOI: 10.1371/journal.pbio.3002672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 05/11/2024] [Indexed: 06/29/2024] Open
Abstract
Throughout history, humans have relied on plants as a source of medication, flavoring, and food. Plants synthesize large chemical libraries and release many of these compounds into the rhizosphere and atmosphere where they affect animal and microbe behavior. To survive, nematodes must have evolved the sensory capacity to distinguish plant-made small molecules (SMs) that are harmful and must be avoided from those that are beneficial and should be sought. This ability to classify chemical cues as a function of their value is fundamental to olfaction and represents a capacity shared by many animals, including humans. Here, we present an efficient platform based on multiwell plates, liquid handling instrumentation, inexpensive optical scanners, and bespoke software that can efficiently determine the valence (attraction or repulsion) of single SMs in the model nematode, Caenorhabditis elegans. Using this integrated hardware-wetware-software platform, we screened 90 plant SMs and identified 37 that attracted or repelled wild-type animals but had no effect on mutants defective in chemosensory transduction. Genetic dissection indicates that for at least 10 of these SMs, response valence emerges from the integration of opposing signals, arguing that olfactory valence is often determined by integrating chemosensory signals over multiple lines of information. This study establishes that C. elegans is an effective discovery engine for determining chemotaxis valence and for identifying natural products detected by the chemosensory nervous system.
Collapse
Affiliation(s)
- Emily Fryer
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California, United States of America
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, United States of America
| | - Sujay Guha
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California, United States of America
| | - Lucero E. Rogel-Hernandez
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California, United States of America
| | - Theresa Logan-Garbisch
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California, United States of America
- Neurosciences Graduate Program, Stanford University, Stanford, California, United States of America
| | - Hodan Farah
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California, United States of America
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, United States of America
| | - Ehsan Rezaei
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California, United States of America
| | - Iris N. Mollhoff
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Adam L. Nekimken
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California, United States of America
- Department of Mechanical Engineering, Stanford University, Stanford, California, United States of America
| | - Angela Xu
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, United States of America
| | - Lara Selin Seyahi
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California, United States of America
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, United States of America
| | - Sylvia Fechner
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California, United States of America
| | - Shaul Druckmann
- Department of Neurobiology, Stanford University, Stanford, California, United States of America
| | - Thomas R. Clandinin
- Department of Neurobiology, Stanford University, Stanford, California, United States of America
| | - Seung Y. Rhee
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, United States of America
| | - Miriam B. Goodman
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California, United States of America
| |
Collapse
|
6
|
Fryer E, Guha S, Rogel-Hernandez LE, Logan-Garbisch T, Farah H, Rezaei E, Mollhoff IN, Nekimken AL, Xu A, Selin Seyahi L, Fechner S, Druckmann S, Clandinin TR, Rhee SY, Goodman MB. An efficient behavioral screening platform classifies natural products and other chemical cues according to their chemosensory valence in C. elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.02.542933. [PMID: 37333363 PMCID: PMC10274637 DOI: 10.1101/2023.06.02.542933] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Throughout history, humans have relied on plants as a source of medication, flavoring, and food. Plants synthesize large chemical libraries and release many of these compounds into the rhizosphere and atmosphere where they affect animal and microbe behavior. To survive, nematodes must have evolved the sensory capacity to distinguish plant-made small molecules (SMs) that are harmful and must be avoided from those that are beneficial and should be sought. This ability to classify chemical cues as a function of their value is fundamental to olfaction, and represents a capacity shared by many animals, including humans. Here, we present an efficient platform based on multi-well plates, liquid handling instrumentation, inexpensive optical scanners, and bespoke software that can efficiently determine the valence (attraction or repulsion) of single SMs in the model nematode, Caenorhabditis elegans. Using this integrated hardware-wetware-software platform, we screened 90 plant SMs and identified 37 that attracted or repelled wild-type animals, but had no effect on mutants defective in chemosensory transduction. Genetic dissection indicates that for at least 10 of these SMs, response valence emerges from the integration of opposing signals, arguing that olfactory valence is often determined by integrating chemosensory signals over multiple lines of information. This study establishes that C. elegans is an effective discovery engine for determining chemotaxis valence and for identifying natural products detected by the chemosensory nervous system.
Collapse
Affiliation(s)
- Emily Fryer
- Department of Plant Biology, Carnegie Institution for Science
- Department of Molecular and Cellular Physiology, Stanford University
| | - Sujay Guha
- Department of Molecular and Cellular Physiology, Stanford University
| | | | - Theresa Logan-Garbisch
- Department of Molecular and Cellular Physiology, Stanford University
- Neurosciences Graduate Program, Stanford University
| | - Hodan Farah
- Department of Plant Biology, Carnegie Institution for Science
- Department of Molecular and Cellular Physiology, Stanford University
| | - Ehsan Rezaei
- Department of Molecular and Cellular Physiology, Stanford University
| | - Iris N. Mollhoff
- Department of Plant Biology, Carnegie Institution for Science
- Department of Molecular and Cellular Physiology, Stanford University
- Department of Biology, Stanford University
| | - Adam L. Nekimken
- Department of Molecular and Cellular Physiology, Stanford University
- Department of Mechanical Engineering, Stanford University
| | - Angela Xu
- Department of Plant Biology, Carnegie Institution for Science
| | - Lara Selin Seyahi
- Department of Plant Biology, Carnegie Institution for Science
- Department of Molecular and Cellular Physiology, Stanford University
| | - Sylvia Fechner
- Department of Molecular and Cellular Physiology, Stanford University
| | | | | | - Seung Y. Rhee
- Department of Plant Biology, Carnegie Institution for Science
| | - Miriam B. Goodman
- Department of Molecular and Cellular Physiology, Stanford University
| |
Collapse
|
7
|
Sjörs Dahlman A, Ljung Aust M, Mama Y, Hasson D, Anund A. In-vehicle fragrance administration as a countermeasure for driver fatigue. ACCIDENT; ANALYSIS AND PREVENTION 2024; 195:107429. [PMID: 38128240 DOI: 10.1016/j.aap.2023.107429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 12/04/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023]
Abstract
Driver fatigue is a contributing factor in about 10-30% of all fatal crashes. Prevention of fatigue-related crashes relies on robust detection of driver fatigue and application of effective countermeasures. A potential countermeasure is fragrance administration since odors can have alerting effects on humans. The aim here was to investigate if a fragrance incorporating trigeminal components could be used as an in-vehicle countermeasure for driver fatigue. The fragrance was tested in a driving simulator with 21 healthy but sleep-deprived participants. Each participant performed a monotonous driving task twice, once with active fragrance containing a trigeminal component and once with olfactory fragrance, in a cross-over single-blind design. The order of trigeminal/olfactory fragrance was randomized and blinded to the participants. Both fragrances (trigeminal/olfactory) were administered either when the participant fell asleep (defined as eye closure > 3 s) or after approximately 45 min if the participant did not fall asleep. Self-reported sleepiness was assessed using the Karolinska Sleepiness Scale (KSS) every 5 min during driving. Variability in speed and lateral position and line crossing frequency were logged for each drive to measure driving performance. Heart rate measurements (ECG) and eye blinks (EOG) were collected to investigate potential arousing effects of the fragrance and to track objective signs of sleepiness. Mean blink duration, which was used as an objective measure of sleepiness, decreased significantly, after fragrance exposure, as did the frequency of line crossings, but there were no statistically significant differences between the fragrance with trigeminal stimulus and the pure olfactory fragrance. The results are in line with the effects found for other commonly used fatigue countermeasures, like playing loud music. These countermeasures can restore alertness and driving performance for a short while. Whether this is sufficient to support driving performance until the driver can make a safe stop in real traffic remains a topic for future studies.
Collapse
Affiliation(s)
- Anna Sjörs Dahlman
- Swedish National Road and Transport Research Institute (VTI), Linköping, Sweden; Chalmers University of Technology, Department of Electrical Engineering and SAFER Vehicle and Traffic Safety Centre, Gothenburg, Sweden.
| | | | - Yaniv Mama
- Ariel University, Department of Psychology, Israel; Moodify Inc, Kfar Saba, Israel
| | - Dan Hasson
- Karolinska Institutet, Department Learning Informatics Management and Ethics, Medical Management Centre, Sweden and Mayo Clinic, Scottsdale, USA
| | - Anna Anund
- Swedish National Road and Transport Research Institute (VTI), Linköping, Sweden
| |
Collapse
|
8
|
Boot E, Levy A, Gaeta G, Gunasekara N, Parkkinen E, Kontaris E, Jacquot M, Tachtsidis I. fNIRS a novel neuroimaging tool to investigate olfaction, olfactory imagery, and crossmodal interactions: a systematic review. Front Neurosci 2024; 18:1266664. [PMID: 38356646 PMCID: PMC10864673 DOI: 10.3389/fnins.2024.1266664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 01/02/2024] [Indexed: 02/16/2024] Open
Abstract
Olfaction is understudied in neuroimaging research compared to other senses, but there is growing evidence of its therapeutic benefits on mood and well-being. Olfactory imagery can provide similar health benefits as olfactory interventions. Harnessing crossmodal visual-olfactory interactions can facilitate olfactory imagery. Understanding and employing these cross-modal interactions between visual and olfactory stimuli could aid in the research and applications of olfaction and olfactory imagery interventions for health and wellbeing. This review examines current knowledge, debates, and research on olfaction, olfactive imagery, and crossmodal visual-olfactory integration. A total of 56 papers, identified using the PRISMA method, were evaluated to identify key brain regions, research themes and methods used to determine the suitability of fNIRS as a tool for studying these topics. The review identified fNIRS-compatible protocols and brain regions within the fNIRS recording depth of approximately 1.5 cm associated with olfactory imagery and crossmodal visual-olfactory integration. Commonly cited regions include the orbitofrontal cortex, inferior frontal gyrus and dorsolateral prefrontal cortex. The findings of this review indicate that fNIRS would be a suitable tool for research into these processes. Additionally, fNIRS suitability for use in naturalistic settings may lead to the development of new research approaches with greater ecological validity compared to existing neuroimaging techniques.
Collapse
Affiliation(s)
| | - Andrew Levy
- Metabolight Ltd., London, United Kingdom
- Wellcome Centre for Human Neuroimaging, University College, London, United Kingdom
| | - Giuliano Gaeta
- Health and Well-being Centre of Excellence, Givaudan UK Limited, Ashford, United Kingdom
| | - Natalie Gunasekara
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Emilia Parkkinen
- Health and Well-being Centre of Excellence, Givaudan UK Limited, Ashford, United Kingdom
| | - Emily Kontaris
- Health and Well-being Centre of Excellence, Givaudan UK Limited, Ashford, United Kingdom
| | - Muriel Jacquot
- Health and Well-being Centre of Excellence, Givaudan UK Limited, Ashford, United Kingdom
| | - Ilias Tachtsidis
- Metabolight Ltd., London, United Kingdom
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| |
Collapse
|
9
|
Chen L. Synesthetic Correspondence: An Overview. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1437:101-119. [PMID: 38270856 DOI: 10.1007/978-981-99-7611-9_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Intramodal and cross-modal perceptual grouping based on the spatial proximity and temporal closeness between multiple sensory stimuli, as an operational principle has built a coherent and meaningful representation of the multisensory event/object. To implement and investigate the cross-modal perceptual grouping, researchers have employed excellent paradigms of spatial/temporal ventriloquism and cross-modal dynamic capture and have revealed the conditional constraints as well as the functional facilitations among various correspondence of sensory properties, with featured behavioral evidence, computational framework as well as brain oscillation patterns. Typically, synesthetic correspondence as a special type of cross-modal correspondence can shape the efficiency and effect-size of cross-modal interaction. For example, factors such as pitch/loudness in the auditory dimension with size/brightness in the visual dimension could modulate the strength of the cross-modal temporal capture. The empirical behavioral findings, as well as psychophysical and neurophysiological evidence to address the cross-modal perceptual grouping and synesthetic correspondence, were summarized in this review. Finally, the potential applications (such as artificial synesthesia device) and how synesthetic correspondence interface with semantics (sensory linguistics), as well as the promising research questions in this field have been discussed.
Collapse
Affiliation(s)
- Lihan Chen
- School of Psychological and Cognitive Sciences, Peking University, Beijing, China.
- Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, China.
- Key Laboratory of Machine Perception (Ministry of Education), Peking University, Beijing, China.
- National Key Laboratory of General Artificial Intelligence, Peking University, Beijing, China.
- National Engineering Laboratory for Big Data Analysis and Applications, Peking University, Beijing, China.
| |
Collapse
|
10
|
Brewer AA, Barton B. Cortical field maps across human sensory cortex. Front Comput Neurosci 2023; 17:1232005. [PMID: 38164408 PMCID: PMC10758003 DOI: 10.3389/fncom.2023.1232005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 11/07/2023] [Indexed: 01/03/2024] Open
Abstract
Cortical processing pathways for sensory information in the mammalian brain tend to be organized into topographical representations that encode various fundamental sensory dimensions. Numerous laboratories have now shown how these representations are organized into numerous cortical field maps (CMFs) across visual and auditory cortex, with each CFM supporting a specialized computation or set of computations that underlie the associated perceptual behaviors. An individual CFM is defined by two orthogonal topographical gradients that reflect two essential aspects of feature space for that sense. Multiple adjacent CFMs are then organized across visual and auditory cortex into macrostructural patterns termed cloverleaf clusters. CFMs within cloverleaf clusters are thought to share properties such as receptive field distribution, cortical magnification, and processing specialization. Recent measurements point to the likely existence of CFMs in the other senses, as well, with topographical representations of at least one sensory dimension demonstrated in somatosensory, gustatory, and possibly olfactory cortical pathways. Here we discuss the evidence for CFM and cloverleaf cluster organization across human sensory cortex as well as approaches used to identify such organizational patterns. Knowledge of how these topographical representations are organized across cortex provides us with insight into how our conscious perceptions are created from our basic sensory inputs. In addition, studying how these representations change during development, trauma, and disease serves as an important tool for developing improvements in clinical therapies and rehabilitation for sensory deficits.
Collapse
Affiliation(s)
- Alyssa A. Brewer
- mindSPACE Laboratory, Departments of Cognitive Sciences and Language Science (by Courtesy), Center for Hearing Research, University of California, Irvine, Irvine, CA, United States
| | - Brian Barton
- mindSPACE Laboratory, Department of Cognitive Sciences, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
11
|
Bontempi C, Jacquot L, Brand G. Diet and odor hedonic ratings: comparative study between vegetarians, flexitarians, and omnivores. Nutr Neurosci 2023; 26:1232-1242. [PMID: 36384439 DOI: 10.1080/1028415x.2022.2145425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
OBJECTIVES Odor hedonic perception is well known to exhibit great variability and to depend on several parameters, i.e. stimulus, context, and subject characteristics. As hedonic perception (pleasant/unpleasant character) of food odors is considered one of the most prominent dimensions in eating behavior, the question of hedonic variability in this context arises. Thus, the aim of the present study was to compare odor hedonic ratings in three populations with regard to diet (i.e. omnivore, vegetarian, and flexitarian diets). METHODS Four categories of odors were compared: meat, vegetable, other food, and non-food odors. RESULTS The results showed that vegetarian and flexitarian individuals rated meat odors as more unpleasant than omnivores, while no significant difference was found for other categories of odors. DISCUSSION The question of whether the diet influences the hedonic perception or/and inversely is discussed, regarding several aspects of food consumption such as eating disorders, food education, … and could further serve to manage eating behaviors. PRACTICAL APPLICATIONS This study evidenced that vegetarians and flexitarians specifically rated meat odors as being more unpleasant than those of omnivores. Because of the growing number of vegetarians and flexitarians in the general population, it could be suggested to take into account the odor hedonic perception (especially regarding food odors) in studies related to diets. Besides, the present results could further serve research in several aspects of food consumption such as eating disorders (anorexia, bulimia … etc.) or food education as well as the management of eating behaviors, especially in an elderly population.
Collapse
Affiliation(s)
- Charlotte Bontempi
- Laboratoire de Recherches Intégratives en Neurosciences et Psychologie Cognitive - UR481, University of Franche-Comté, 25000 Besançon, France
| | - Laurence Jacquot
- Laboratoire de Recherches Intégratives en Neurosciences et Psychologie Cognitive - UR481, University of Franche-Comté, 25000 Besançon, France
| | - Gérard Brand
- CSGA Centre des Sciences du Gout et de l'Alimentation, University of Franche-Comté, 21000 Dijon, France
| |
Collapse
|
12
|
Dove G. Language is a Source of Grounding and a Mode of Action. Top Cogn Sci 2023; 15:688-692. [PMID: 37212318 DOI: 10.1111/tops.12665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 05/01/2023] [Accepted: 05/03/2023] [Indexed: 05/23/2023]
Abstract
Kemmerer argues that grounded cognition explains how language-specific semantic structures can influence nonlinguistic cognition. In this commentary, I argue that his proposal fails to fully consider the possibility that language itself can serve as a source of grounding. Our concepts are not merely shaped by a disembodied language system; they emerge in the context of linguistic experience and action. This inclusive approach to grounded cognition offers an expanded conception of the phenomena associated with linguistic relativity. I provide empirical and theoretical reasons to adopt this theoretical perspective.
Collapse
Affiliation(s)
- Guy Dove
- Department of Philosophy, University of Louisville
| |
Collapse
|
13
|
Sagar V, Shanahan LK, Zelano CM, Gottfried JA, Kahnt T. High-precision mapping reveals the structure of odor coding in the human brain. Nat Neurosci 2023; 26:1595-1602. [PMID: 37620443 PMCID: PMC10726579 DOI: 10.1038/s41593-023-01414-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 07/18/2023] [Indexed: 08/26/2023]
Abstract
Odor perception is inherently subjective. Previous work has shown that odorous molecules evoke distributed activity patterns in olfactory cortices, but how these patterns map on to subjective odor percepts remains unclear. In the present study, we collected neuroimaging responses to 160 odors from 3 individual subjects (18 h per subject) to probe the neural coding scheme underlying idiosyncratic odor perception. We found that activity in the orbitofrontal cortex (OFC) represents the fine-grained perceptual identity of odors over and above coarsely defined percepts, whereas this difference is less pronounced in the piriform cortex (PirC) and amygdala. Furthermore, the implementation of perceptual encoding models enabled us to predict olfactory functional magnetic resonance imaging responses to new odors, revealing that the dimensionality of the encoded perceptual spaces increases from the PirC to the OFC. Whereas encoding of lower-order dimensions generalizes across subjects, encoding of higher-order dimensions is idiosyncratic. These results provide new insights into cortical mechanisms of odor coding and suggest that subjective olfactory percepts reside in the OFC.
Collapse
Affiliation(s)
- Vivek Sagar
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | - Christina M Zelano
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Jay A Gottfried
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA
| | - Thorsten Kahnt
- National Institute on Drug Abuse Intramural Research Program, Baltimore, MD, USA.
| |
Collapse
|
14
|
De Blasio C, Dind J, Petitpierre G. Odor hedonic responses in children and young people with profound intellectual and multiple disabilities. Front Psychiatry 2023; 14:1066286. [PMID: 37692315 PMCID: PMC10484511 DOI: 10.3389/fpsyt.2023.1066286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 07/21/2023] [Indexed: 09/12/2023] Open
Abstract
Introduction Odors are closely linked to emotions, play an important role in the well-being of individuals and can influence mood. Despite these crucial properties, the hedonic responses to odors of people with profound intellectual and multiple disabilities (PIMD) remain little explored. Aim This within-subjects study aims to examine whether children and young people with PIMD react in a differentiated way to odors evaluated as pleasant or unpleasant by neurotypical adults and, if so, with which behaviors. The influence of their global mood on their emotional responses to odors is also examined. Method Twenty children and young people (7-18 years old) with PIMD were exposed to four pairs of hedonically contrasted odors. A control stimulus was presented before each odorant. Five emotional responses, one physiological reaction (nausea reactions), and three responses reflecting approach toward or avoidance of the stimulus were recorded throughout the duration of the stimulus exposure. The participants' global mood status was measured before the start of the research with the French version of the Mood, Interest and Pleasure Questionnaire (Ross and Oliver, 2003). Results The results show that when exposed to pleasant odorants, participants kept their heads aligned with the odorant source longer, smiled longer, and produced more positive vocalizations. In contrast, unpleasant odorants elicit more pouts and grimaces. Nausea reactions occurred in the presence of unpleasant odorants. The hedonic responses were more marked during the second presentation of the stimuli. Participants with a higher MIPQ score showed significantly more emotional reactions to odors. Conclusion The results confirm the presence of olfactory preferences in participants with PIMD and the existence of a link between their mood, emotions and olfactory hedonic processing. They prompt the use of odors to support not only the cognitive development of this population, but also their mood and their emotional regulation abilities.
Collapse
|
15
|
Athanassi A, Breton M, Chalençon L, Brunelin J, Didier A, Bath K, Mandairon N. Chronic unpredictable mild stress alters odor hedonics and adult olfactory neurogenesis in mice. Front Neurosci 2023; 17:1224941. [PMID: 37600017 PMCID: PMC10435088 DOI: 10.3389/fnins.2023.1224941] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023] Open
Abstract
Experiencing chronic stress significantly increases the risk for depression. Depression is a complex disorder with varied symptoms across patients. However, feeling of sadness and decreased motivation, and diminished feeling of pleasure (anhedonia) appear to be core to most depressive pathology. Odorants are potent signals that serve a critical role in social interactions, avoiding danger, and consummatory behaviors. Diminished quality of olfactory function is associated with negative effects on quality of life leading to and aggravating the symptoms of depression. Odor hedonic value (I like or I dislike this smell) is a dominant feature of olfaction and guides approach or avoidance behavior of the odor source. The neural representation of the hedonic value of odorants is carried by the granule cells in the olfactory bulb, which functions to modulate the cortical relay of olfactory information. The granule cells of the olfactory bulb and those of the dentate gyrus are the two major populations of cells in the adult brain with continued neurogenesis into adulthood. In hippocampus, decreased neurogenesis has been linked to development or maintenance of depression symptoms. Here, we hypothesize that chronic mild stress can alter olfactory hedonics through effects on the olfactory bulb neurogenesis, contributing to the broader anhedonia phenotype in stress-associated depression. To test this, mice were subjected to chronic unpredictable mild stress and then tested on measures of depressive-like behaviors, odor hedonics, and measures of olfactory neurogenesis. Chronic unpredictable mild stress led to a selective effect on odor hedonics, diminishing attraction to pleasant but not unpleasant odorants, an effect that was accompanied by a specific decrease in adult neurogenesis and of the percentage of adult-born cells responding to pleasant odorants in the olfactory bulb.
Collapse
Affiliation(s)
- Anna Athanassi
- INSERM, U1028, CNRS UMR5292, Neuropop Team, Lyon Neuroscience Research Center, Université Claude Bernard Lyon 1, Université Jean Monnet, Bron, France
| | - Marine Breton
- INSERM, U1028, CNRS UMR5292, Neuropop Team, Lyon Neuroscience Research Center, Université Claude Bernard Lyon 1, Université Jean Monnet, Bron, France
| | - Laura Chalençon
- INSERM, U1028, CNRS UMR5292, Neuropop Team, Lyon Neuroscience Research Center, Université Claude Bernard Lyon 1, Université Jean Monnet, Bron, France
| | - Jérome Brunelin
- Centre Hospitalier Le Vinatier, Bron, France
- INSERM, U1028, CNRS UMR5292, PSYR2 Team, Lyon Neuroscience Research Center, Université Claude Bernard Lyon 1, Université Jean Monnet, Bron, France
| | - Anne Didier
- INSERM, U1028, CNRS UMR5292, Neuropop Team, Lyon Neuroscience Research Center, Université Claude Bernard Lyon 1, Université Jean Monnet, Bron, France
| | - Kevin Bath
- Division of Developmental Neuroscience, New York State Psychiatric Institute, Research Foundation for Mental Hygiene, New York, NY, United States
- Department of Psychiatry, Columbia University Medical College, New York, NY, United States
| | - Nathalie Mandairon
- INSERM, U1028, CNRS UMR5292, Neuropop Team, Lyon Neuroscience Research Center, Université Claude Bernard Lyon 1, Université Jean Monnet, Bron, France
| |
Collapse
|
16
|
Li H, Gerkin RC, Bakke A, Norel R, Cecchi G, Laudamiel C, Niv MY, Ohla K, Hayes JE, Parma V, Meyer P. Text-based predictions of COVID-19 diagnosis from self-reported chemosensory descriptions. COMMUNICATIONS MEDICINE 2023; 3:104. [PMID: 37500763 PMCID: PMC10374642 DOI: 10.1038/s43856-023-00334-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 07/19/2023] [Indexed: 07/29/2023] Open
Abstract
BACKGROUND There is a prevailing view that humans' capacity to use language to characterize sensations like odors or tastes is poor, providing an unreliable source of information. METHODS Here, we developed a machine learning method based on Natural Language Processing (NLP) using Large Language Models (LLM) to predict COVID-19 diagnosis solely based on text descriptions of acute changes in chemosensation, i.e., smell, taste and chemesthesis, caused by the disease. The dataset of more than 1500 subjects was obtained from survey responses early in the COVID-19 pandemic, in Spring 2020. RESULTS When predicting COVID-19 diagnosis, our NLP model performs comparably (AUC ROC ~ 0.65) to models based on self-reported changes in function collected via quantitative rating scales. Further, our NLP model could attribute importance of words when performing the prediction; sentiment and descriptive words such as "smell", "taste", "sense", had strong contributions to the predictions. In addition, adjectives describing specific tastes or smells such as "salty", "sweet", "spicy", and "sour" also contributed considerably to predictions. CONCLUSIONS Our results show that the description of perceptual symptoms caused by a viral infection can be used to fine-tune an LLM model to correctly predict and interpret the diagnostic status of a subject. In the future, similar models may have utility for patient verbatims from online health portals or electronic health records.
Collapse
Affiliation(s)
- Hongyang Li
- Health Care and Life Sciences, IBM T.J. Watson Research Center, Yorktown Heights, NY, USA
| | - Richard C Gerkin
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
- Osmo, Cambridge, MA, USA
| | - Alyssa Bakke
- Department of Food Science, The Pennsylvania State University, University Park, PA, USA
| | - Raquel Norel
- Health Care and Life Sciences, IBM T.J. Watson Research Center, Yorktown Heights, NY, USA
| | - Guillermo Cecchi
- Health Care and Life Sciences, IBM T.J. Watson Research Center, Yorktown Heights, NY, USA
| | | | - Masha Y Niv
- The Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Kathrin Ohla
- Department of Food Science, The Pennsylvania State University, University Park, PA, USA
- Science & Research, dsm-firmenich, Satigny, Switzerland
| | - John E Hayes
- Department of Food Science, The Pennsylvania State University, University Park, PA, USA
| | | | - Pablo Meyer
- Health Care and Life Sciences, IBM T.J. Watson Research Center, Yorktown Heights, NY, USA.
| |
Collapse
|
17
|
Ward RJ, Wuerger SM, Ashraf M, Marshall A. Physicochemical features partially explain olfactory crossmodal correspondences. Sci Rep 2023; 13:10590. [PMID: 37391587 PMCID: PMC10313698 DOI: 10.1038/s41598-023-37770-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 06/27/2023] [Indexed: 07/02/2023] Open
Abstract
During the olfactory perception process, our olfactory receptors are thought to recognize specific chemical features. These features may contribute towards explaining our crossmodal perception. The physicochemical features of odors can be extracted using an array of gas sensors, also known as an electronic nose. The present study investigates the role that the physicochemical features of olfactory stimuli play in explaining the nature and origin of olfactory crossmodal correspondences, which is a consistently overlooked aspect of prior work. Here, we answer the question of whether the physicochemical features of odors contribute towards explaining olfactory crossmodal correspondences and by how much. We found a similarity of 49% between the perceptual and the physicochemical spaces of our odors. All of our explored crossmodal correspondences namely, the angularity of shapes, smoothness of textures, perceived pleasantness, pitch, and colors have significant predictors for various physicochemical features, including aspects of intensity and odor quality. While it is generally recognized that olfactory perception is strongly shaped by context, experience, and learning, our findings show that a link, albeit small (6-23%), exists between olfactory crossmodal correspondences and their underlying physicochemical features.
Collapse
Affiliation(s)
- Ryan J Ward
- School of Computer Science and Mathematics, Liverpool John Moores University, Liverpool, L3 3AF, UK.
- Digital Innovation Facility, University of Liverpool, Liverpool, L69 3RF, UK.
| | - Sophie M Wuerger
- Department of Psychology, University of Liverpool, Liverpool, L69 7ZA, UK
| | - Maliha Ashraf
- Department of Psychology, University of Liverpool, Liverpool, L69 7ZA, UK
| | - Alan Marshall
- Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool, L69 3GJ, UK
| |
Collapse
|
18
|
Cecchetto C, Dal Bò E, Aiello M, Fischmeister FPS, Gentili C, Osimo SA. Alexithymia modulates the attitudes towards odors but not the olfactory abilities or the affective reactions to odors. PLoS One 2023; 18:e0278496. [PMID: 37279254 DOI: 10.1371/journal.pone.0278496] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 05/23/2023] [Indexed: 06/08/2023] Open
Abstract
Although emotion and olfaction are closely linked, only a few studies have investigated olfactory processing in alexithymia, a condition characterized by altered emotional processing. These results do not allow comprehensive conclusions on whether individuals with alexithymia present lower olfactory abilities or only altered affective reactions and awareness of odors. Three pre-registered experiments were conducted to clarify this relation. We assessed olfactory functions, the affective qualities of odors, the awareness of odors, the attitudes towards them, and the ability to form olfactory images in the mind. Bayesian statistics were used to assess differences between low, medium and high alexithymia groups, and Linear Mixed Models (LMMs) were applied to investigate the modulation of the affective and cognitive components of alexithymia. We observed that individuals with a high level of alexithymia presented the same olfactory abilities, and did not show differences in their rating of odors compared to individuals with low alexithymia levels, while they reported lower levels of social and common odor awareness and a more indifferent attitude towards odors. Olfactory imagery was not affected by alexithymia level, and the affective and cognitive components of alexithymia, when considered separately, modulated olfactory perception differently. Learning more about olfactory perception in individuals with alexithymia leads to a better understanding of how alexithymia impacts the perception of hedonic stimuli coming from different sensory modalities. Our results imply that treatment goals for alexithymia should be the enhancement of the conscious perception of odors, supporting the use of mindfulness-based protocols in the alexithymia treatment.
Collapse
Affiliation(s)
- Cinzia Cecchetto
- Department of General Psychology, University of Padua, Padua, Italy
| | - Elisa Dal Bò
- Department of General Psychology, University of Padua, Padua, Italy
- Padova Neuroscience Center (PNC), University of Padua, Padua, Italy
| | - Marilena Aiello
- Department of Psychology "Renzo Canestrari", University of Bologna, Bologna, Italy
| | - Florian Ph S Fischmeister
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
- Institute of Psychology, University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Claudio Gentili
- Department of General Psychology, University of Padua, Padua, Italy
- Padova Neuroscience Center (PNC), University of Padua, Padua, Italy
| | - Sofia Adelaide Osimo
- Department of Psychology, MibTec, Università degli Studi di Milano-Bicocca, Milan, Italy
| |
Collapse
|
19
|
Zung JL, Kotb SM, McBride CS. Exploring natural odour landscapes: A case study with implications for human-biting insects. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.08.539789. [PMID: 37398328 PMCID: PMC10312452 DOI: 10.1101/2023.05.08.539789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
The natural world is full of odours-blends of volatile chemicals emitted by potential sources of food, social partners, predators, and pathogens. Animals rely heavily on these signals for survival and reproduction. Yet we remain remarkably ignorant of the composition of the chemical world. How many compounds do natural odours typically contain? How often are those compounds shared across stimuli? What are the best statistical strategies for discrimination? Answering these questions will deliver crucial insight into how brains can most efficiently encode olfactory information. Here, we undertake the first large-scale survey of vertebrate body odours, a set of stimuli relevant to blood-feeding arthropods. We quantitatively characterize the odour of 64 vertebrate species (mostly mammals), representing 29 families and 13 orders. We confirm that these stimuli are complex blends of relatively common, shared compounds and show that they are much less likely to contain unique components than are floral odours-a finding with implications for olfactory coding in blood feeders and floral visitors. We also find that vertebrate body odours carry little phylogenetic information, yet show consistency within a species. Human odour is especially unique, even compared to the odour of other great apes. Finally, we use our newfound understanding of odour-space statistics to make specific predictions about olfactory coding, which align with known features of mosquito olfactory systems. Our work provides one of the first quantitative descriptions of a natural odour space and demonstrates how understanding the statistics of sensory environments can provide novel insight into sensory coding and evolution.
Collapse
Affiliation(s)
- Jessica L. Zung
- Department of Ecology and Evolutionary Biology and Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA 08544
| | | | - Carolyn S. McBride
- Department of Ecology and Evolutionary Biology and Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA 08544
| |
Collapse
|
20
|
Science interrupted Our attempt to study disgust sensitivity and the development of political attitudes among children and their parents. Politics Life Sci 2023; 41:3-14. [PMID: 36877104 DOI: 10.1017/pls.2022.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Recent research contends that the behavioral immune system, operating largely outside conscious awareness, motivates individuals to exhibit higher levels of prejudice toward unfamiliar out-groups. This research finds that individual variance in disgust sensitivity correlates with support for political policies that facilitate the avoidance of out-groups. We were interested in developing less intrusive indicators of disgust sensitivity via olfactory measures (i.e., ratings of disgusting odors) and behavioral measures (e.g., willingness to touch disgusting objects) and studying the association between measures of disgust sensitivity and in-group bias among children and adults. We submitted a registered report to conduct this research and received an in-principle acceptance. Unfortunately, unforeseen events impaired our data collection, leaving us with a limited sample (nchildren = 32, nadults = 29) and reducing our ability to draw reliable conclusions from our results. In this essay, we describe our motivation and plan of research, the events that made completing the research impossible, and our preliminary results. In doing so, we hope to offer support for studying the effects of the behavioral immune system, even in ways that we did not originally plan. We conclude with a reflection on the value of registered reports for advancing science.
Collapse
|
21
|
Deroy O. Olfactory abstraction: a communicative and metacognitive account. Philos Trans R Soc Lond B Biol Sci 2023; 378:20210369. [PMID: 36571118 PMCID: PMC9791486 DOI: 10.1098/rstb.2021.0369] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 08/05/2022] [Indexed: 12/27/2022] Open
Abstract
The usual puzzle raised about olfaction is that of a deficit of abstraction: smells, by contrast notably with colours, do not easily lend themselves to abstract categories and labels. Some studies have argued that the puzzle is culturally restricted and that abstraction is more common outside urban Western societies. Here, I argue that the puzzle is misconstrued and should be reversed: given that odours are constantly changing and that their commonalities are difficult for humans to identify, what is surprising is not that abstract terms are rare, but that they should be used at all for olfaction. Given the nature of the olfactory environment and our cognitive equipment, concrete labels referring to sources seem most adaptive. To explain the use and presence of abstract terms, we need to examine their social and communicative benefits. Here these benefits are spelt out as securing a higher agreement among individuals varying in their olfactory experiences as well as the labels they use, as well as feeling a heightened sense of confidence in one's naming capacities. This article is part of the theme issue 'Concepts in interaction: social engagement and inner experiences'.
Collapse
Affiliation(s)
- Ophelia Deroy
- Faculty of Philosophy, Ludwig Maximilian University, D-80539 Munich, Germany
- Munich Center for Neuroscience, Ludwig Maximilian University, D-80539 Munich, Germany
- Institute of Philosophy, School of Advanced Study, University of London, London EC1E 7HU, UK
| |
Collapse
|
22
|
Drnovsek E, Rommel M, Bierling AL, Croy A, Croy I, Hummel T. An olfactory perceptual fingerprint in people with olfactory dysfunction due to COVID-19. Chem Senses 2023; 48:bjad050. [PMID: 38098233 DOI: 10.1093/chemse/bjad050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024] Open
Abstract
The sense of smell is based on sensory detection of the molecule(s), which is then further perceptually interpreted. A possible measure of olfactory perception is an odor-independent olfactory perceptual fingerprint (OPF) defined by Snitz et al. We aimed to investigate whether OPF can distinguish patients with olfactory dysfunction (OD) due to coronavirus disease (COVID-19) from controls and which perceptual descriptors are important for that separation. Our study included 99 healthy controls and 41 patients. They rated 10 odors using 8 descriptors such as "pleasant," "intense," "familiar," "warm," "cold," "irritating," "edible," and "disgusting." An unsupervised machine learning method, hierarchical cluster analysis, showed that OPF can distinguish patients from controls with an accuracy of 83%, a sensitivity of 51%, and a specificity of 96%. Furthermore, a supervised machine learning method, random forest classifier, showed that OPF can distinguish patients and controls in the testing dataset with an accuracy of 86%, a sensitivity of 64%, and a specificity of 96%. Principal component analysis and random forest classifier showed that familiarity and intensity were the key qualities to explain the variance of the data. In conclusion, people with COVID-19-related OD have a fundamentally different olfactory perception.
Collapse
Affiliation(s)
- Eva Drnovsek
- Smell and Taste Clinic, Department of Otorhinolaryngology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Maria Rommel
- Smell and Taste Clinic, Department of Otorhinolaryngology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Antonie Louise Bierling
- Institute for Materials Science, Technische Universität Dresden, 01062 Dresden, Germany
- Department of Psychotherapy and Psychosomatics, Technische Universität Dresden, 01062 Dresden, Germany
- Department of Clinical Psychology, Friedrich-Schiller-University of Jena, 07743 Jena, Germany
| | - Alexander Croy
- Institute of Physical Chemistry, Friedrich-Schiller-University of Jena, 07743 Jena, Germany
| | - Ilona Croy
- Department of Psychotherapy and Psychosomatics, Technische Universität Dresden, 01062 Dresden, Germany
- Department of Clinical Psychology, Friedrich-Schiller-University of Jena, 07743 Jena, Germany
| | - Thomas Hummel
- Smell and Taste Clinic, Department of Otorhinolaryngology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| |
Collapse
|
23
|
Tu L, Wang Z, Lv X, Xie T, Fan Z, Zhang M, Wang H, Yu X. Characteristics of Odor Identification and Hedonics and Their Association with Piriform Cortex-Based Resting-State Functional Connectivity in Amnestic Mild Cognitive Impairment. J Alzheimers Dis 2023; 94:247-258. [PMID: 37212099 DOI: 10.3233/jad-221163] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
BACKGROUND Olfactory identification dysfunction (OID) might be an early sign of amnestic mild cognitive impairment (aMCI). However, odor hedonics, the ability to perceive odor pleasantness, is neglected. Also, the neural substrate of OID remains unclear. OBJECTIVE To explore the characteristics of odor identification and hedonics in aMCI and examine the potential neural correlates of OID by analyzing olfactory functional connectivity (FC) patterns in MCI. METHODS Forty-five controls and 83 aMCI patients were examined. The Chinese smell identification test was used to assess olfaction. Global cognition, memory, and social cognition were assessed. Resting-state functional networks associated with olfactory cortex seeds were compared between the cognitively normal (CN) and aMCI groups, as well as between aMCI subgroups by the degree of OID. RESULTS Compared to controls, aMCI patients had a significant deficit in olfactory identification, mainly reflected in the identification of pleasant and neutral odors. aMCI patients also rated pleasant and neutral odors much lower than controls. A positive correlation between olfaction and social cognition was found in aMCI. The seed-based FC analysis found that aMCI patients had higher FC between the right orbitofrontal cortex and right frontal lobe/middle frontal gyrus than controls. Subgroup analysis showed that, compared to aMCI without OID, aMCI with severe OID had abnormal FC in the bilateral piriform region. CONCLUSION Our results suggest that OID in aMCI primarily refers to the identification of pleasant and neutral odors. The FC alterations in bilateral orbitofrontal cortex and piriform cortices might contribute to the impairment in odor identification.
Collapse
Affiliation(s)
- Lihui Tu
- Dementia Care and Research Center, Clinical Research Division, Peking University Institute of Mental Health, Sixth Hospital, Haidian District, Beijing, China
- Beijing Dementia Key Lab, National Clinical Research Center for Mental Disorders, Key Laboratory of Mental Health, Ministry of Health, Peking University, Beijing, China
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Zhijiang Wang
- Dementia Care and Research Center, Clinical Research Division, Peking University Institute of Mental Health, Sixth Hospital, Haidian District, Beijing, China
- Beijing Dementia Key Lab, National Clinical Research Center for Mental Disorders, Key Laboratory of Mental Health, Ministry of Health, Peking University, Beijing, China
| | - Xiaozhen Lv
- Dementia Care and Research Center, Clinical Research Division, Peking University Institute of Mental Health, Sixth Hospital, Haidian District, Beijing, China
- Beijing Dementia Key Lab, National Clinical Research Center for Mental Disorders, Key Laboratory of Mental Health, Ministry of Health, Peking University, Beijing, China
| | - Teng Xie
- Dementia Care and Research Center, Clinical Research Division, Peking University Institute of Mental Health, Sixth Hospital, Haidian District, Beijing, China
- Beijing Dementia Key Lab, National Clinical Research Center for Mental Disorders, Key Laboratory of Mental Health, Ministry of Health, Peking University, Beijing, China
| | - Zili Fan
- Dementia Care and Research Center, Clinical Research Division, Peking University Institute of Mental Health, Sixth Hospital, Haidian District, Beijing, China
- Beijing Dementia Key Lab, National Clinical Research Center for Mental Disorders, Key Laboratory of Mental Health, Ministry of Health, Peking University, Beijing, China
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Ming Zhang
- Dementia Care and Research Center, Clinical Research Division, Peking University Institute of Mental Health, Sixth Hospital, Haidian District, Beijing, China
- Beijing Dementia Key Lab, National Clinical Research Center for Mental Disorders, Key Laboratory of Mental Health, Ministry of Health, Peking University, Beijing, China
- Department of Psychiatry, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Huali Wang
- Dementia Care and Research Center, Clinical Research Division, Peking University Institute of Mental Health, Sixth Hospital, Haidian District, Beijing, China
- Beijing Dementia Key Lab, National Clinical Research Center for Mental Disorders, Key Laboratory of Mental Health, Ministry of Health, Peking University, Beijing, China
| | - Xin Yu
- Dementia Care and Research Center, Clinical Research Division, Peking University Institute of Mental Health, Sixth Hospital, Haidian District, Beijing, China
- Beijing Dementia Key Lab, National Clinical Research Center for Mental Disorders, Key Laboratory of Mental Health, Ministry of Health, Peking University, Beijing, China
| |
Collapse
|
24
|
Dhurandhar A, Li H, Cecchi GA, Meyer P. Expansive linguistic representations to predict interpretable odor mixture discriminability. Chem Senses 2023; 48:bjad018. [PMID: 37262433 DOI: 10.1093/chemse/bjad018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Indexed: 06/03/2023] Open
Abstract
Language is often thought as being poorly adapted to precisely describe or quantify smell and olfactory attributes. In this work, we show that semantic descriptors of odors can be implemented in a model to successfully predict odor mixture discriminability, an olfactory attribute. We achieved this by taking advantage of the structure-to-percept model we previously developed for monomolecular odorants, using chemical descriptors to predict pleasantness, intensity and 19 semantic descriptors such as "fish," "cold," "burnt," "garlic," "grass," and "sweet" for odor mixtures, followed by a metric learning to obtain odor mixture discriminability. Through this expansion of the representation of olfactory mixtures, our Semantic model outperforms state of the art methods by taking advantage of the intermediary semantic representations learned from human perception data to enhance and generalize the odor discriminability/similarity predictions. As 10 of the semantic descriptors were selected to predict discriminability/similarity, our approach meets the need of rapidly obtaining interpretable attributes of odor mixtures as illustrated by the difficulty of finding olfactory metamers. More fundamentally, it also shows that language can be used to establish a metric of discriminability in the everyday olfactory space.
Collapse
Affiliation(s)
- Amit Dhurandhar
- Foundations of Trusted Artificial Intelligence, T.J. Watson IBM Research Laboratory, 1101 Kitchawan Rd, Yorktown Heights, NY 10598, United States
| | - Hongyang Li
- Healthcare and Life Sciences, T.J. Watson IBM Research Laboratory, 1101 Kitchawan Rd, Yorktown Heights, NY 10598, United States
| | - Guillermo A Cecchi
- Healthcare and Life Sciences, T.J. Watson IBM Research Laboratory, 1101 Kitchawan Rd, Yorktown Heights, NY 10598, United States
| | - Pablo Meyer
- Healthcare and Life Sciences, T.J. Watson IBM Research Laboratory, 1101 Kitchawan Rd, Yorktown Heights, NY 10598, United States
| |
Collapse
|
25
|
Wine Minerality and Funkiness: Blending the Two Tales of the Same Story. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8120745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In wines, minerality is a complex concept with increasing popularity in scientific research and the wine press. The flavour conceptual space of mineral wines comprises sulphur-reduced aromas, such as flint, wet stone or chalk associated with freshness and lingering mouth perceptions. Professionals do not consider the perception of sulphur-reduced flavours as an off-flavour. Indeed, this sort of reduction is a cue for the recognition of minerality under a likely top-down mental process. However, untrained consumers perceive these aromas as unpleasant. This different qualitative assessment hampers the communication between professionals and amateurs. This review aimed to describe the perceptions of minerality by experts and novices to promote their mutual understanding. Funkiness is proposed as a descriptor of mineral wines when tasted by unexperienced consumers. The chemical basis of minerality and winemaking options were explored to understand their implications on sensory perception. Mineral flavours have two main features. The first comprises ephemeral aromas that may be described as funky, given their association with sulphur-reduced molecules. The second is linked to the fresh and vivacious lingering mouthfeel perceptions that remain after the reductive aromas vanish. Consumers recognise this dual perception by demonstrating positive emotional responses of surprise during tasting. Then, the perception of minerality is a question of cognition and not of particularly developed sensory skills. Appropriate tasting approaches encompassing emotional responses and emergent properties (e.g., harmony, depth, persistence, complexity) appear essential to understand the nature of wine minerality and to determine when it may be regarded as a surrogate for fine wine quality.
Collapse
|
26
|
Speed LJ, Iravani B, Lundström JN, Majid A. Losing the sense of smell does not disrupt processing of odor words. BRAIN AND LANGUAGE 2022; 235:105200. [PMID: 36347207 DOI: 10.1016/j.bandl.2022.105200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 09/14/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
Whether language is grounded in action and perception has been a key question in cognitive science, yet little attention has been given to the sense of smell. We directly test whether smell is necessary for comprehension of odor language, by comparing language processing in a group of participants with no sense of smell (anosmics) to a group of control participants. We found no evidence for a difference in online comprehension of odor and taste language between anosmics and controls using a lexical decision task and a semantic similarity judgment task, suggesting olfaction is not critical to the comprehension of odor language. Contrary to predictions, anosmics were better at remembering odor words, and rated odor and taste words as more positively valenced than control participants. This study finds no detriment to odor language after losing the sense of smell, supporting the proposal that odor language is not grounded in odor perception.
Collapse
Affiliation(s)
- Laura J Speed
- Centre for Language Studies, Radboud University, Nijmegen, Netherlands.
| | - Behzad Iravani
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Johan N Lundström
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Stockholm University Brain Imaging Centre, Stockholm University, Stockholm, Sweden
| | - Asifa Majid
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| |
Collapse
|
27
|
A study on the relationship between odor hedonic ratings and individual odor detection threshold. Sci Rep 2022; 12:18482. [PMID: 36323760 PMCID: PMC9628383 DOI: 10.1038/s41598-022-23068-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 10/25/2022] [Indexed: 11/07/2022] Open
Abstract
Odor hedonic perception (pleasant/unpleasant character) is considered as the first and one of the most prominent dimensions in olfaction and is known to depend on several parameters. Among them, the relation between the odorant concentration and the hedonic estimation has been widely studied. However, few studies have considered odor hedonic ratings (OHR) in relation to individual detection thresholds (IDT). Thus, the aim of this study was to determine olfactory detection thresholds and to describe hedonic rating variations from individual thresholds to higher concentrations. IDT were performed for two pleasant (apple and jasmine) and two unpleasant (durian and trimethylamine) odorant stimuli. The experimenter presented one by one in a randomized order, the different odorant concentrations above IDT. Participants rated odor hedonic valence of these stimuli on a visual analog scale. Results showed, except for trimethylamine, the same relationship between hedonic ratings and stimulus concentration, i.e., an increase of pleasantness (apple and jasmine)/unpleasantness (durian) ratings at low and middle concentrations followed by a plateau at high concentrations. Correlations between OHR and concentrations as well as between OHR and threshold steps were always significant. Moreover, comparisons between both conditions showed that the correlation coefficient was significantly higher for trimethylamine (and a trend for apple) when IDTs were considered, while no difference was found for jasmine and durian. Overall, results suggested that the relationship between OHR and IDT is odor specific. These findings contribute to explain the large variability of the hedonic tone (i.e., weakly vs. very pleasant, weakly vs. very unpleasant) at specific concentration in the general population and could serve future research in this field (e.g., olfactory preferences in nutrition studies, anhedonia in psychiatric disorders…).
Collapse
|
28
|
Hörberg T, Larsson M, Olofsson JK. The Semantic Organization of the English Odor Vocabulary. Cogn Sci 2022; 46:e13205. [PMID: 36334010 DOI: 10.1111/cogs.13205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 09/06/2022] [Accepted: 09/16/2022] [Indexed: 11/11/2022]
Abstract
The vocabulary for describing odors in English natural language is not well understood, as prior studies of odor descriptions have often relied on preselected descriptors and odor ratings. Here, we present a data-driven approach that automatically identifies English odor descriptors based on their degree of olfactory association, and derive their semantic organization from their distributions in natural texts, using a distributional-semantic language model. We identify 243 descriptors that are much more strongly associated with olfaction than English words in general. We then derive the semantic organization of these olfactory descriptors, and find that it is captured by four clusters that we name Offensive, Malodorous, Fragrant, and Edible. The semantic space derived from our model primarily differentiates descriptors in terms of pleasantness and edibility along which our four clusters are positioned, and is similar to a space derived from perceptual data. The semantic organization of odor vocabulary can thus be mapped using natural language data (e.g., online text), without the limitations of odor-perceptual data and preselected descriptors. Our method may thus facilitate research on olfaction, a sensory system known to often elude verbal description.
Collapse
|
29
|
Odor Pleasantness Modulates Functional Connectivity in the Olfactory Hedonic Processing Network. Brain Sci 2022; 12:brainsci12101408. [PMID: 36291341 PMCID: PMC9599424 DOI: 10.3390/brainsci12101408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/10/2022] [Accepted: 10/14/2022] [Indexed: 11/18/2022] Open
Abstract
Olfactory hedonic evaluation is the primary dimension of olfactory perception and thus central to our sense of smell. It involves complex interactions between brain regions associated with sensory, affective and reward processing. Despite a recent increase in interest, several aspects of olfactory hedonic evaluation remain ambiguous: uncertainty surrounds the communication between, and interaction among, brain areas during hedonic evaluation of olfactory stimuli with different levels of pleasantness, as well as the corresponding supporting oscillatory mechanisms. In our study we investigated changes in functional interactions among brain areas in response to odor stimuli using electroencephalography (EEG). To this goal, functional connectivity networks were estimated based on phase synchronization between EEG signals using the weighted phase lag index (wPLI). Graph theoretic metrics were subsequently used to quantify the resulting changes in functional connectivity of relevant brain regions involved in olfactory hedonic evaluation. Our results indicate that odor stimuli of different hedonic values evoke significantly different interaction patterns among brain regions within the olfactory cortex, as well as in the anterior cingulate and orbitofrontal cortices. Furthermore, significant hemispheric laterality effects have been observed in the prefrontal and anterior cingulate cortices, specifically in the beta ((13–30) Hz) and gamma ((30–40) Hz) frequency bands.
Collapse
|
30
|
Bogenschütz L, Bermeitinger C, Brörken A, Schlüter H, Hackländer RP. Odor associated memories are not necessarily highly emotional. Acta Psychol (Amst) 2022; 230:103767. [DOI: 10.1016/j.actpsy.2022.103767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 09/27/2022] [Accepted: 10/08/2022] [Indexed: 11/01/2022] Open
|
31
|
Spence C. Odour hedonics and the ubiquitous appeal of vanilla. NATURE FOOD 2022; 3:837-846. [PMID: 37117893 DOI: 10.1038/s43016-022-00611-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 09/06/2022] [Indexed: 04/30/2023]
Abstract
Our food choices and consumption behaviours are often influenced by odour hedonics, especially in the case of those orthonasally experienced aromas (that is, those odours that are food-related). The origins of odour hedonics remain one of the most intriguing puzzles in olfactory science and, over the years, several fundamentally different accounts have been put forwards to try and explain the varying hedonic responses that people have to a wide range of odorants. Associative learning, innate and molecular accounts of odour pleasantness have all been suggested. Here the origins of the hedonic response to vanilla, which is one of the most liked smells cross-culturally, are explored. The history of vanilla's use in food and medicine is outlined, with a focus on its neurocognitive appeal. While vanilla is one of the most widely liked aromas, it is also rated as smelling sweet to most people. Food scientists are becoming increasingly interested in the possibility that such 'sweet smells' could be used to help maintain the sweetness of commercial food products while, at the same time, reducing the use of calorific sweeteners. Such an approach is likely to be facilitated by the low cost of artificial vanilla flavouring (when compared with the high and fluctuating price of natural vanilla pods).
Collapse
Affiliation(s)
- Charles Spence
- Crossmodal Research Laboratory, Oxford University, Oxford, UK.
| |
Collapse
|
32
|
Larsen EM, Donaldson KR, Jonas KG, Lian W, Bromet EJ, Kotov R, Mohanty A. Pleasant and unpleasant odor identification ability is associated with distinct dimensions of negative symptoms transdiagnostically in psychotic disorders. Schizophr Res 2022; 248:183-193. [PMID: 36084492 PMCID: PMC10774004 DOI: 10.1016/j.schres.2022.08.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/12/2022] [Accepted: 08/20/2022] [Indexed: 10/14/2022]
Abstract
Negative symptoms are among the greatest sources of functional impairment for individuals with schizophrenia, yet their mechanisms remain poorly understood. Olfactory impairment is associated with negative symptoms. The processing of pleasant olfactory stimuli is subserved by reward-related neural circuitry while unpleasant olfactory processing is subserved by emotion-related neural circuitry, suggesting that these two odor dimensions may offer a window into differential mechanisms of negative symptoms. We examined whether pleasant and unpleasant odor identification bears differential relationships with avolition and inexpressivity dimensions of negative symptoms, whether these relationships are transdiagnostic, and whether pleasant and unpleasant odor processing also relate differently to other domains of functioning in a sample of individuals diagnosed with schizophrenia (N = 54), other psychotic disorders (N = 65), and never-psychotic adults (N = 160). Hierarchical regressions showed that pleasant odor identification was uniquely associated with avolition, while unpleasant odor identification was uniquely associated with inexpressivity. These relationships were largely transdiagnostic across groups. Additionally, pleasant and unpleasant odor identification displayed signs of specificity with other functional and cognitive measures. These results align with past work suggesting dissociable pathomechanisms of negative symptoms and provide a potential avenue for future work using valence-specific olfactory dysfunction as a semi-objective and low-cost marker for understanding and predicting the severity of specific negative symptom profiles.
Collapse
Affiliation(s)
- Emmett M. Larsen
- Department of Psychology, Stony Brook University, Stony Brook, NY
| | | | - Katherine G. Jonas
- Department of Psychiatry, Stony Brook University School of Medicine, Stony Brook, NY
| | - Wenxuan Lian
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY
| | - Evelyn J. Bromet
- Department of Psychiatry, Stony Brook University School of Medicine, Stony Brook, NY
| | - Roman Kotov
- Department of Psychiatry, Stony Brook University School of Medicine, Stony Brook, NY
| | - Aprajita Mohanty
- Department of Psychology, Stony Brook University, Stony Brook, NY
| |
Collapse
|
33
|
Mastinu M, Melis M, Yousaf NY, Barbarossa IT, Tepper BJ. Emotional responses to taste and smell stimuli: Self-reports, physiological measures, and a potential role for individual and genetic factors. J Food Sci 2022; 88:65-90. [PMID: 36169921 DOI: 10.1111/1750-3841.16300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/24/2022] [Accepted: 07/26/2022] [Indexed: 11/30/2022]
Abstract
Taste and olfaction elicit conscious feelings by direct connection with the neural circuits of emotions that affects physiological responses in the body (e.g., heart rate and skin conductance). While sensory attributes are strong determinants of food liking, other factors such as emotional reactions to foods may be better predictors of consumer choices even for products that are equally-liked. Thus, important insights can be gained for understanding the full spectrum of emotional reactions to foods that inform the activities of product developers and marketers, eating psychologist and nutritionists, and policy makers. Today, self-reported questionnaires and physiological measures are the most common tools applied to study variations in emotional perception. The present review discusses these methodological approaches, underlining their different strengths and weaknesses. We also discuss a small, emerging literature suggesting that individual differences and genetic variations in taste and smell perception, like the genetic ability to perceive the bitter compound PROP, may also play a role in emotional reactions to aromas and foods.
Collapse
Affiliation(s)
- Mariano Mastinu
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy.,Center for Sensory Sciences & Innovation & Department of Food Science, Rutgers University, New Brunswick, New Jersey, USA
| | - Melania Melis
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | - Neeta Y Yousaf
- Center for Sensory Sciences & Innovation & Department of Food Science, Rutgers University, New Brunswick, New Jersey, USA
| | | | - Beverly J Tepper
- Center for Sensory Sciences & Innovation & Department of Food Science, Rutgers University, New Brunswick, New Jersey, USA
| |
Collapse
|
34
|
Spatiotemporal dynamics of odor representations in the human brain revealed by EEG decoding. Proc Natl Acad Sci U S A 2022; 119:e2114966119. [PMID: 35584113 PMCID: PMC9173780 DOI: 10.1073/pnas.2114966119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
To elucidate when and where in the brain different aspects of odor perception emerge, we decoded odors from an electroencephalogram and associated the results with perception and source activities. The odor information was decoded 100 ms after odor onset at the earliest, with its signal sources estimated in and around the olfactory areas. The neural representation of odor unpleasantness emerged 300 ms after odor onset, followed by pleasantness and perceived quality at 500 ms. During this time, brain regions representing odor information spread rapidly from the olfactory areas to regions associated with emotional, semantic, and memory processing. The results suggested that odor perception emerges through computations in these areas, with different perceptual aspects having different spatiotemporal dynamics. How the human brain translates olfactory inputs into diverse perceptions, from pleasurable floral smells to sickening smells of decay, is one of the fundamental questions in olfaction. To examine how different aspects of olfactory perception emerge in space and time in the human brain, we performed time-resolved multivariate pattern analysis of scalp-recorded electroencephalogram responses to 10 perceptually diverse odors and associated the resulting decoding accuracies with perception and source activities. Mean decoding accuracies of odors exceeded the chance level 100 ms after odor onset and reached maxima at 350 ms. The result suggests that the neural representations of individual odors were maximally separated at 350 ms. Perceptual representations emerged following the decoding peak: unipolar unpleasantness (neutral to unpleasant) from 300 ms, and pleasantness (neutral to pleasant) and perceptual quality (applicability to verbal descriptors such as “fruity” or “flowery”) from 500 ms after odor onset, with all these perceptual representations reaching their maxima after 600 ms. A source estimation showed that the areas representing the odor information, estimated based on the decoding accuracies, were localized in and around the primary and secondary olfactory areas at 100 to 350 ms after odor onset. Odor representations then expanded into larger areas associated with emotional, semantic, and memory processing, with the activities of these later areas being significantly associated with perception. These results suggest that initial odor information coded in the olfactory areas (<350 ms) evolves into their perceptual realizations (300 to >600 ms) through computations in widely distributed cortical regions, with different perceptual aspects having different spatiotemporal dynamics.
Collapse
|
35
|
Rekow D, Baudouin JY, Durand K, Leleu A. Smell what you hardly see: Odors assist visual categorization in the human brain. Neuroimage 2022; 255:119181. [PMID: 35413443 DOI: 10.1016/j.neuroimage.2022.119181] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 01/06/2022] [Accepted: 04/04/2022] [Indexed: 01/23/2023] Open
Abstract
Visual categorization is the brain ability to rapidly and automatically respond to a certain category of inputs. Whether category-selective neural responses are purely visual or can be influenced by other sensory modalities remains unclear. Here, we test whether odors modulate visual categorization, expecting that odors facilitate the neural categorization of congruent visual objects, especially when the visual category is ambiguous. Scalp electroencephalogram (EEG) was recorded while natural images depicting various objects were displayed in rapid 12-Hz streams (i.e., 12 images / second) and variable exemplars of a target category (either human faces, cars, or facelike objects in dedicated sequences) were interleaved every 9th stimulus to tag category-selective responses at 12/9 = 1.33 Hz in the EEG frequency spectrum. During visual stimulation, participants (N = 26) were implicitly exposed to odor contexts (either body, gasoline or baseline odors) and performed an orthogonal cross-detection task. We identify clear category-selective responses to every category over the occipito-temporal cortex, with the largest response for human faces and the lowest for facelike objects. Critically, body odor boosts the response to the ambiguous facelike objects (i.e., either perceived as nonface objects or faces) over the right hemisphere, especially for participants reporting their presence post-stimulation. By contrast, odors do not significantly modulate other category-selective responses, nor the general visual response recorded at 12 Hz, revealing a specific influence on the categorization of congruent ambiguous stimuli. Overall, these findings support the view that the brain actively uses cues from the different senses to readily categorize visual inputs, and that olfaction, which has long been considered as poorly functional in humans, is well placed to disambiguate visual information.
Collapse
Affiliation(s)
- Diane Rekow
- Development of Olfactory Communication & Cognition Lab, Center for Taste, Smell & Feeding Behavior, Université Bourgogne Franche-Comté, CNRS, Inrae, Institut Agro Dijon, 21000, Dijon, France.
| | - Jean-Yves Baudouin
- Laboratoire Développement, Individu, Processus, Handicap, Éducation (DIPHE), Département Psychologie du Développement, de l'Éducation et des Vulnérabilités (PsyDÉV), Institut de psychologie, Université de Lyon (Lumière Lyon 2), 5, avenue Pierre-Mendès-France, 69676, Bron, France
| | - Karine Durand
- Development of Olfactory Communication & Cognition Lab, Center for Taste, Smell & Feeding Behavior, Université Bourgogne Franche-Comté, CNRS, Inrae, Institut Agro Dijon, 21000, Dijon, France
| | - Arnaud Leleu
- Development of Olfactory Communication & Cognition Lab, Center for Taste, Smell & Feeding Behavior, Université Bourgogne Franche-Comté, CNRS, Inrae, Institut Agro Dijon, 21000, Dijon, France.
| |
Collapse
|
36
|
The perception of odor pleasantness is shared across cultures. Curr Biol 2022; 32:2061-2066.e3. [DOI: 10.1016/j.cub.2022.02.062] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/16/2021] [Accepted: 02/22/2022] [Indexed: 11/18/2022]
|
37
|
Porcherot C, Raviot-Derrien S, Beague MP, Henneberg S, Niedziela M, Ambroze K, McEwan JA. Effect of context on fine fragrance-elicited emotions: Comparison of three experimental methodologies. Food Qual Prefer 2022. [DOI: 10.1016/j.foodqual.2021.104342] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
38
|
Noto T, Zhou G, Yang Q, Lane G, Zelano C. Human Primary Olfactory Amygdala Subregions Form Distinct Functional Networks, Suggesting Distinct Olfactory Functions. Front Syst Neurosci 2021; 15:752320. [PMID: 34955769 PMCID: PMC8695617 DOI: 10.3389/fnsys.2021.752320] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/08/2021] [Indexed: 12/02/2022] Open
Abstract
Three subregions of the amygdala receive monosynaptic projections from the olfactory bulb, making them part of the primary olfactory cortex. These primary olfactory areas are located at the anterior-medial aspect of the amygdala and include the medial amygdala (MeA), cortical amygdala (CoA), and the periamygdaloid complex (PAC). The vast majority of research on the amygdala has focused on the larger basolateral and basomedial subregions, which are known to be involved in implicit learning, threat responses, and emotion. Fewer studies have focused on the MeA, CoA, and PAC, with most conducted in rodents. Therefore, our understanding of the functions of these amygdala subregions is limited, particularly in humans. Here, we first conducted a review of existing literature on the MeA, CoA, and PAC. We then used resting-state fMRI and unbiased k-means clustering techniques to show that the anatomical boundaries of human MeA, CoA, and PAC accurately parcellate based on their whole-brain resting connectivity patterns alone, suggesting that their functional networks are distinct, relative both to each other and to the amygdala subregions that do not receive input from the olfactory bulb. Finally, considering that distinct functional networks are suggestive of distinct functions, we examined the whole-brain resting network of each subregion and speculated on potential roles that each region may play in olfactory processing. Based on these analyses, we speculate that the MeA could potentially be involved in the generation of rapid motor responses to olfactory stimuli (including fight/flight), particularly in approach/avoid contexts. The CoA could potentially be involved in olfactory-related reward processing, including learning and memory of approach/avoid responses. The PAC could potentially be involved in the multisensory integration of olfactory information with other sensory systems. These speculations can be used to form the basis of future studies aimed at clarifying the olfactory functions of these under-studied primary olfactory areas.
Collapse
Affiliation(s)
- Torben Noto
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Guangyu Zhou
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Qiaohan Yang
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Gregory Lane
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Christina Zelano
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
39
|
Torske A, Koch K, Eickhoff S, Freiherr J. Localizing the human brain response to olfactory stimulation: A meta-analytic approach. Neurosci Biobehav Rev 2021; 134:104512. [PMID: 34968523 DOI: 10.1016/j.neubiorev.2021.12.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/18/2021] [Accepted: 12/20/2021] [Indexed: 11/28/2022]
Abstract
The human sense of smell and the ability to detect and distinguish odors allows for the extraction of valuable information from the environment, thereby driving human behavior. Not only can the sense of smell help to monitor the safety of inhaled air, but it can also help to evaluate the edibility of food. Therefore, in an effort to further our understanding of the human sense of smell, the aim of this meta-analysis was to provide the scientific community with activation probability maps of the functional anatomy of the olfactory system, in addition to separate activation maps for specific odor categories (pleasant, food, and aversive odors). The activation likelihood estimation (ALE) method was utilized to quantify all relevant and available data to perform a formal statistical analysis on the inter-study concordance of various odor categories. A total of 81 studies (108 contrasts, 1053 foci) fulfilled our inclusion criteria. Significant ALE peaks were observed in all odor categories in brain areas typically associated with the functional neuroanatomy of olfaction including the piriform cortex, amygdala, insula, and orbitofrontal cortex, amongst others. Additional contrast analyses indicate clear differences in neural activation patterns between odor categories.
Collapse
Affiliation(s)
- A Torske
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Germany; Neuroimaging Center (TUM-NIC), Klinikum rechts der Isar, Technical University of Munich, Munich, Germany; Graduate School of Systemic Neurosciences, Ludwig Maximilians Universität München, Martinsried, Germany
| | - K Koch
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Germany; Neuroimaging Center (TUM-NIC), Klinikum rechts der Isar, Technical University of Munich, Munich, Germany; Graduate School of Systemic Neurosciences, Ludwig Maximilians Universität München, Martinsried, Germany
| | - S Eickhoff
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
| | - J Freiherr
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; Institute for Process Engineering and Packaging IVV, Sensory Analytics and Technologies, Fraunhofer Freising, Germany.
| |
Collapse
|
40
|
Puleo S, Braghieri A, Pacelli C, Bendini A, Toschi TG, Torri L, Piochi M, Di Monaco R. Food Neophobia, Odor and Taste Sensitivity, and Overall Flavor Perception in Food. Foods 2021; 10:foods10123122. [PMID: 34945673 PMCID: PMC8702209 DOI: 10.3390/foods10123122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/07/2021] [Accepted: 12/14/2021] [Indexed: 01/25/2023] Open
Abstract
Smell, which allows us to gather information about the hedonic value of an odor, is affected by many factors. This study aimed to assess the relationship among individual factors, odor sensitivity, and enjoyment, and to evaluate how overall flavor perception and liking in actual food samples are affected by odor sensitivity. A total of 749 subjects, from four different Italian regions, participated in the study. The olfactory capabilities test on four odors (anise, banana, mint, and pine), as well as PROP (6-n-prpyl-2-thiouracil) status and food neophobia were assessed. The subjects were clustered into three groups of odor sensitivity, based on the perceived intensity of anise. The liking and intensity of the overall flavor were evaluated for four chocolate puddings with increasing sweetness (C1, C2, C3, and C4). The individual variables significantly affected the perceived intensity and liking of the odors. Even if all of the odor sensitivity groups perceived the more intensely flavored samples as the C1 and C4 chocolate puddings, the high-sensitivity group scored the global flavor of all of the samples as more intense than the low-sensitivity group. The low-sensitive subjects evaluated the liking of the sweeter samples with higher scores than the moderate-sensitive subjects, whereas the high-sensitive subjects gave intermediate scores. In conclusion, odor sensitivity plays a pivotal role in the perception and liking of real food products; this has to be taken into account in the formulation of new products, suitable for particular categories with reduced olfactory abilities.
Collapse
Affiliation(s)
- Sharon Puleo
- Department of Agricultural Sciences, Food Science and Technology Division, University of Naples Federico II, 80055 Portici, Italy; (S.P.); (R.D.M.)
| | - Ada Braghieri
- School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, 85100 Potenza, Italy;
- Correspondence: ; Tel.: +39-0971-205101
| | - Corrado Pacelli
- School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, 85100 Potenza, Italy;
| | - Alessandra Bendini
- Department of Agricultural and Food Sciences (DiSTAL), University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy; (A.B.); (T.G.T.)
| | - Tullia Gallina Toschi
- Department of Agricultural and Food Sciences (DiSTAL), University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy; (A.B.); (T.G.T.)
| | - Luisa Torri
- Sensory and Consumer Science, University of Gastronomic Sciences, 12042 Pollenzo, Italy; (L.T.); (M.P.)
| | - Maria Piochi
- Sensory and Consumer Science, University of Gastronomic Sciences, 12042 Pollenzo, Italy; (L.T.); (M.P.)
| | - Rossella Di Monaco
- Department of Agricultural Sciences, Food Science and Technology Division, University of Naples Federico II, 80055 Portici, Italy; (S.P.); (R.D.M.)
| |
Collapse
|
41
|
|
42
|
Pizzoli SFM, Monzani D, Mazzocco K, Maggioni E, Pravettoni G. The Power of Odor Persuasion: The Incorporation of Olfactory Cues in Virtual Environments for Personalized Relaxation. PERSPECTIVES ON PSYCHOLOGICAL SCIENCE 2021; 17:652-661. [PMID: 34752166 PMCID: PMC9069654 DOI: 10.1177/17456916211014196] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Olfaction is the most ancient sense and is directly connected with emotional areas in the brain. It gives rise to perception linked to emotion both in everyday life and in memory-recall activities. Despite its emotional primacy in perception and its role in sampling the real physical world, olfaction is rarely used in clinical psychological settings because it relies on stimuli that are difficult to deliver. However, recent developments in virtual-reality tools are creating novel possibilities for the engagement of the sense of smell in this field. In this article, we present the relevant features of olfaction for relaxation purposes and then discuss possible future applications of involving olfaction in virtual-reality interventions for relaxation. We also discuss clinical applications, the potential of new tools, and current obstacles and limitations.
Collapse
Affiliation(s)
- Silvia Francesca Maria Pizzoli
- Department of Oncology and Hemato-Oncology, University of Milan.,Applied Research Division for Cognitive and Psychological Science, European Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS)
| | - Dario Monzani
- Department of Oncology and Hemato-Oncology, University of Milan.,Applied Research Division for Cognitive and Psychological Science, European Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS)
| | - Ketti Mazzocco
- Department of Oncology and Hemato-Oncology, University of Milan.,Applied Research Division for Cognitive and Psychological Science, European Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS)
| | - Emanuela Maggioni
- Sussex Computer Human Interaction (SCHI) Lab, Creative Technology Research Group, School of Engineering and Informatics, University of Sussex
| | - Gabriella Pravettoni
- Department of Oncology and Hemato-Oncology, University of Milan.,Applied Research Division for Cognitive and Psychological Science, European Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS)
| |
Collapse
|
43
|
Imputation of sensory properties using deep learning. J Comput Aided Mol Des 2021; 35:1125-1140. [PMID: 34716833 DOI: 10.1007/s10822-021-00424-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 10/15/2021] [Indexed: 10/19/2022]
Abstract
Predicting the sensory properties of compounds is challenging due to the subjective nature of the experimental measurements. This testing relies on a panel of human participants and is therefore also expensive and time-consuming. We describe the application of a state-of-the-art deep learning method, Alchemite™, to the imputation of sparse physicochemical and sensory data and compare the results with conventional quantitative structure-activity relationship methods and a multi-target graph convolutional neural network. The imputation model achieved a substantially higher accuracy of prediction, with improvements in R2 between 0.26 and 0.45 over the next best method for each sensory property. We also demonstrate that robust uncertainty estimates generated by the imputation model enable the most accurate predictions to be identified and that imputation also more accurately predicts activity cliffs, where small changes in compound structure result in large changes in sensory properties. In combination, these results demonstrate that the use of imputation, based on data from less expensive, early experiments, enables better selection of compounds for more costly studies, saving experimental time and resources.
Collapse
|
44
|
The human olfactory bulb processes odor valence representation and cues motor avoidance behavior. Proc Natl Acad Sci U S A 2021; 118:2101209118. [PMID: 34645711 PMCID: PMC8545486 DOI: 10.1073/pnas.2101209118] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2021] [Indexed: 11/18/2022] Open
Abstract
Determining the valence of an odor to guide rapid approach-avoidance behavior is thought to be one of the core tasks of the olfactory system, and yet little is known of the initial neural mechanisms supporting this process or of its subsequent behavioral manifestation in humans. In two experiments, we measured the functional processing of odor valence perception in the human olfactory bulb (OB)-the first processing stage of the olfactory system-using a noninvasive method as well as assessed the subsequent motor avoidance response. We demonstrate that odor valence perception is associated with both gamma and beta activity in the human OB. Moreover, we show that negative, but not positive, odors initiate an early beta response in the OB, a response that is linked to a preparatory neural motor response in the motor cortex. Finally, in a separate experiment, we show that negative odors trigger a full-body motor avoidance response, manifested as a rapid leaning away from the odor, within the time period predicted by the OB results. Taken together, these results demonstrate that the human OB processes odor valence in a sequential manner in both the gamma and beta frequency bands and suggest that rapid processing of unpleasant odors in the OB might underlie rapid approach-avoidance decisions.
Collapse
|
45
|
Damon F, Mezrai N, Magnier L, Leleu A, Durand K, Schaal B. Olfaction in the Multisensory Processing of Faces: A Narrative Review of the Influence of Human Body Odors. Front Psychol 2021; 12:750944. [PMID: 34675855 PMCID: PMC8523678 DOI: 10.3389/fpsyg.2021.750944] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 09/06/2021] [Indexed: 01/08/2023] Open
Abstract
A recent body of research has emerged regarding the interactions between olfaction and other sensory channels to process social information. The current review examines the influence of body odors on face perception, a core component of human social cognition. First, we review studies reporting how body odors interact with the perception of invariant facial information (i.e., identity, sex, attractiveness, trustworthiness, and dominance). Although we mainly focus on the influence of body odors based on axillary odor, we also review findings about specific steroids present in axillary sweat (i.e., androstenone, androstenol, androstadienone, and estratetraenol). We next survey the literature showing body odor influences on the perception of transient face properties, notably in discussing the role of body odors in facilitating or hindering the perception of emotional facial expression, in relation to competing frameworks of emotions. Finally, we discuss the developmental origins of these olfaction-to-vision influences, as an emerging literature indicates that odor cues strongly influence face perception in infants. Body odors with a high social relevance such as the odor emanating from the mother have a widespread influence on various aspects of face perception in infancy, including categorization of faces among other objects, face scanning behavior, or facial expression perception. We conclude by suggesting that the weight of olfaction might be especially strong in infancy, shaping social perception, especially in slow-maturing senses such as vision, and that this early tutoring function of olfaction spans all developmental stages to disambiguate a complex social environment by conveying key information for social interactions until adulthood.
Collapse
Affiliation(s)
- Fabrice Damon
- Developmental Ethology and Cognitive Psychology Laboratory, Centre des Sciences du Goût et de l’Alimentation, Inrae, AgroSup Dijon, CNRS (UMR 6265), Université Bourgogne Franche-Comté, Dijon, France
| | | | | | | | | | | |
Collapse
|
46
|
E-Nose and Olfactory Assessment: Teamwork or a Challenge to the Last Data? The Case of Virgin Olive Oil Stability and Shelf Life. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11188453] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Electronic nose (E-nose) devices represent one of the most trailblazing innovations in current technological research, since mimicking the functioning of the biological sense of smell has always represented a fascinating challenge for technological development applied to life sciences and beyond. Sensor array tools are right now used in a plethora of applications, including, but not limited to, (bio-)medical, environmental, and food industry related. In particular, the food industry has seen a significant rise in the application of technological tools for determining the quality of edibles, progressively replacing human panelists, therefore changing the whole quality control chain in the field. To this end, the present review, conducted on PubMed, Science Direct and Web of Science, screening papers published between January 2010 and May 2021, sought to investigate the current trends in the usage of human panels and sensorized tools (E-nose and similar) in the food industry, comparing the performances between the two different approaches. In particular, the focus was mainly addressed towards the stability and shelf life assessment of olive oil, the main constituent of the renowned “Mediterranean diet”, and nowadays appreciated in cuisines from all around the world. The obtained results demonstrate that, despite the satisfying performances of both approaches, the best strategy merges the potentialities of human sensory panels and technological sensor arrays, (i.e., E-nose somewhat supported by E-tongue and/or E-eye). The current investigation can be used as a reference for future guidance towards the choice between human panelists and sensorized tools, to the benefit of food manufacturers.
Collapse
|
47
|
Kaiser E. Consequences of Sensory Modality for Perspective-Taking: Comparing Visual, Olfactory and Gustatory Perception. Front Psychol 2021; 12:701486. [PMID: 34484049 PMCID: PMC8415443 DOI: 10.3389/fpsyg.2021.701486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/05/2021] [Indexed: 11/13/2022] Open
Abstract
Perspective-taking is fundamental for language comprehension, including the interpretation of subjective adjectives (e.g., fun, tasty, and amazing). To understand these adjectives, one needs to know whose opinion is being conveyed—in other words, who is the attitude-holder or perspectival center. Although the perspective-sensitivity of subjective adjectives has received considerable attention in prior work in formal semantics, potential effects of sensory modality (e.g., sight, taste, and smell) on the process of attitude-holder identification have not been systematically investigated. This paper reports a series of studies testing whether interpretation of subjective adjectives depends on whether they refer to the visual, olfactory (smell) vs. gustatory (taste) domains. The results provide evidence that sensory modality has a significant impact on the process of identifying the attitude-holder. This outcome suggests that perspective-sensitivity is highly context-dependent, and the observed modality effects align well with the biological and social properties of sight, taste, and smell.
Collapse
Affiliation(s)
- Elsi Kaiser
- Department of Linguistics, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
48
|
Malfeito-Ferreira M. Fine wine flavour perception and appreciation: Blending neuronal processes, tasting methods and expertise. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.06.053] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
49
|
Abstract
Olfaction is fundamentally distinct from other sensory modalities. Natural odor stimuli are complex mixtures of volatile chemicals that interact in the nose with a receptor array that, in rodents, is built from more than 1,000 unique receptors. These interactions dictate a peripheral olfactory code, which in the brain is transformed and reformatted as it is broadcast across a set of highly interconnected olfactory regions. Here we discuss the problems of characterizing peripheral population codes for olfactory stimuli, of inferring the specific functions of different higher olfactory areas given their extensive recurrence, and of ultimately understanding how odor representations are linked to perception and action. We argue that, despite the differences between olfaction and other sensory modalities, addressing these specific questions will reveal general principles underlying brain function.
Collapse
Affiliation(s)
- David H Brann
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115, USA;
| | - Sandeep Robert Datta
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115, USA;
| |
Collapse
|
50
|
Jo HG, Wudarczyk O, Leclerc M, Regenbogen C, Lampert A, Rothermel M, Habel U. Effect of odor pleasantness on heat-induced pain: An fMRI study. Brain Imaging Behav 2021; 15:1300-1312. [PMID: 32770446 DOI: 10.1007/s11682-020-00328-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Odor modulates the experience of pain, but the neural basis of how the two sensory modalities, olfaction and pain, are linked in the central nervous system is far from clear. In this study, we investigated the mechanisms by which the brain modulates the pain experience under concurrent odorant stimulation. We conducted an fMRI study using a 2 × 3 factorial design, in which one of two temperatures (warm, hot) and one of three types of odors (pleasant, unpleasant, no odor) were presented simultaneously. "Hot" temperatures were individually determined as those perceived as painful (mean temperature = 46.9 °C). The non-painful "warm" temperature was set to 40 °C. Participants rated hot compared to warm stimuli as more intense and unpleasant, especially in the presence of an unpleasant odor. Parametric modeling on the intensity ratings activated the pain network, covering brain regions activated by the hot stimuli. The presence of an odor, irrespective of its valence, activated the amygdalae. In addition, the amygdalae showed stimulus-dependent functional couplings with the right supramarginal gyrus and with the left superior frontal gyrus. The coupling between the right amygdala and the left superior frontal gyrus was related to the intensity and unpleasantness ratings of the pain experience. Our results suggest that these functional connections may reflect the integrating process of the two sensory modalities, enabling olfactory influence on the pain experience.
Collapse
Affiliation(s)
- Han-Gue Jo
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen University, Aachen, Germany. .,JARA-Institute Brain Structure Function Relationship (INM-10), Research Center Jülich and RWTH Aachen University, Jülich, Germany. .,School of Computer, Information and Communication Engineering, Kunsan National University, Gunsan, South Korea.
| | - Olga Wudarczyk
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen University, Aachen, Germany.,Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany.,Cluster of Excellence Science of Intelligence, Technische Universität Berlin and Humboldt Universität zu Berlin, 10587, Berlin, Germany
| | - Marcel Leclerc
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Christina Regenbogen
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen University, Aachen, Germany.,JARA-Institute Brain Structure Function Relationship (INM-10), Research Center Jülich and RWTH Aachen University, Jülich, Germany.,Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Angelika Lampert
- Institute of Physiology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Markus Rothermel
- Department of Chemosensation, AG Neuromodulation, Institute for Biology II, RWTH Aachen University, Aachen, Germany
| | - Ute Habel
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen University, Aachen, Germany.,JARA-Institute Brain Structure Function Relationship (INM-10), Research Center Jülich and RWTH Aachen University, Jülich, Germany
| |
Collapse
|