1
|
Banton S, Pezzali JG, Verbrugghe A, Bakovic M, Wood KM, Shoveller AK. Addition of dietary methionine but not dietary taurine or methyl donors/receivers to a grain-free diet increases postprandial homocysteine concentrations in adult dogs. J Anim Sci 2021; 99:6333283. [PMID: 34333630 DOI: 10.1093/jas/skab223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 07/29/2021] [Indexed: 11/14/2022] Open
Abstract
Grain based ingredients are replaced in part by pulse ingredients in grain-free pet foods. Pulse ingredients are lower in methionine and cysteine, amino acid (AA) precursors to taurine synthesis in dogs. While recent work has investigated plasma and whole blood taurine concentrations when feeding grain-free diets, supplementation of a grain-free diet with various nutrients involved in the biosynthesis of taurine has not been evaluated. This study aimed to investigate the effects of supplementing a complete grain-free dry dog food with either methionine (MET), taurine (TAU), or methyl donors (choline) and methyl receivers (creatine and carnitine; CCC) on postprandial AA concentrations. Eight healthy Beagle dogs were fed 1 of 3 treatments or the control grain-free diet (CON) for 7 d in a 4 × 4 Latin square design. On d7, cephalic catheters were placed and one fasted sample (0 min) and a series of 9 post-meal blood samples were collected at 15, 30, 60, 90, 120, 180, 240, 300 and 360 min. Data were analyzed as repeated measures using the PROC GLIMMIX function in SAS (Version 9.4). Dogs fed MET had greater plasma and whole blood methionine concentrations from 30 - 360 min after a meal (P < 0.0001) and greater plasma homocysteine concentrations from 60 - 360 min after a meal (P < 0.0001) compared to dogs fed CON, TAU and CCC. Dogs fed TAU had greater plasma taurine concentrations over time compared to dogs fed CON (P = 0.02), but were not different than dogs fed MET and CCC (P > 0.05). In addition, most AA remained significantly elevated at 6 h post-meal compared to fasted samples across all treatments. Supplementation of creatine, carnitine and choline in grain-free diets may play a role in sparing the methionine requirement without increasing homocysteine concentrations. Supplementing these nutrients could also aid in the treatment of disease that causes metabolic or oxidative stress, including cardiac disease in dogs, but future research is required.
Collapse
Affiliation(s)
- Sydney Banton
- Department of Animal Biosciences, Ontario Agricultural College, University of Guelph, Guelph, Ontario, Canada
| | - Júlia G Pezzali
- Department of Animal Biosciences, Ontario Agricultural College, University of Guelph, Guelph, Ontario, Canada
| | - Adronie Verbrugghe
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Marica Bakovic
- Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Katie M Wood
- Department of Animal Biosciences, Ontario Agricultural College, University of Guelph, Guelph, Ontario, Canada
| | - Anna K Shoveller
- Department of Animal Biosciences, Ontario Agricultural College, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
2
|
Roles of volume-regulatory anion channels, VSOR and Maxi-Cl, in apoptosis, cisplatin resistance, necrosis, ischemic cell death, stroke and myocardial infarction. CURRENT TOPICS IN MEMBRANES 2019; 83:205-283. [DOI: 10.1016/bs.ctm.2019.03.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
3
|
Portales-Castillo I, Sterns RH. Allostasis and the Clinical Manifestations of Mild to Moderate Chronic Hyponatremia: No Good Adaptation Goes Unpunished. Am J Kidney Dis 2018; 73:391-399. [PMID: 30554800 DOI: 10.1053/j.ajkd.2018.10.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 10/14/2018] [Indexed: 01/01/2023]
Abstract
When homeostatic regulatory systems are unable to maintain a normal serum sodium concentration, the organism must adapt to demands of a disordered internal environment, a process known as "allostasis." Human cells respond to osmotic stress created by an abnormal serum sodium level with the same adaptations used by invertebrate organisms that do not regulate body fluid osmolality. To avoid intolerable changes in their volume, cells export organic osmolytes when exposed to a low serum sodium concentration and accumulate these intracellular solutes when serum sodium concentration increases. The brain's adaptation to severe hyponatremia (serum sodium < 120 mEq/L) has been studied extensively. However, adaptive responses occur with less severe hyponatremia and other tissues are affected; the consequences of these adaptations are incompletely understood. Recent epidemiologic studies have shown that mild (sodium, 130-135 mEq/L) and moderate (sodium, 121-129 mEq/L) chronic hyponatremia, long thought to be inconsequential, is associated with adverse outcomes. Adaptations of the heart, bone, brain, and (possibly) immune system to sustained mild to moderate hyponatremia may adversely affect their function and potentially the organism's survival. This review explores what is known about the consequences of mild to moderate chronic hyponatremia and the potential benefits of treating this condition.
Collapse
Affiliation(s)
| | - Richard H Sterns
- Rochester General Hospital, Rochester, NY; University of Rochester School of Medicine and Dentistry, Rochester, NY.
| |
Collapse
|
4
|
de Boer JF, Bloks VW, Verkade E, Heiner-Fokkema MR, Kuipers F. New insights in the multiple roles of bile acids and their signaling pathways in metabolic control. Curr Opin Lipidol 2018; 29:194-202. [PMID: 29553998 DOI: 10.1097/mol.0000000000000508] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW There is a growing awareness that individual bile acid species exert different physiological functions, beyond their classical roles in bile formation and fat absorption, due to differential stimulatory effects on the bile-acid-activated receptors farnesoid X receptor (FXR) and takeda G receptor 5 (TGR5). This review integrates recent findings on the role of individual bile acids and their receptors in metabolic control, with special emphasis on cholesterol homeostasis. RECENT FINDINGS The consequences of altered bile acid metabolism, for example, in type 2 diabetes and during aging, on metabolic control is increasingly recognized but full impact hereof remains to be elucidated. These effects interact with those of newly developed pharmacological FXR and TGR5 modulators that aim to improve metabolic health. Studies in genetically modified mice have provided important new insights, for example, establishment of the role of intestinal FXR in control of the transintestinal cholesterol excretion pathway. However, translation from mice to men is hampered by the presence of rodent-specific bile acid species with special features. SUMMARY Specific bile acids and their signaling pathways play important roles in control of (cholesterol) metabolism. Deeper insight into the interactions between endogenous (i.e., bile acids) and pharmacological modulators of FXR and TGR5 is needed to optimize therapeutic benefit of the latter. The recent identification of cytochrome P450 2C70 as key enzyme in the formation of rodent-specific hydrophilic muricholic acids allows for the development of adequate mouse models for this purpose.
Collapse
Affiliation(s)
- Jan Freark de Boer
- Department of Pediatrics
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | | | | | - M Rebecca Heiner-Fokkema
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Folkert Kuipers
- Department of Pediatrics
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
5
|
Abstract
PURPOSE OF REVIEW Cholesterol metabolism has been the object of intense investigation for decades. This review focuses on classical and novel methods assessing in vivo cholesterol metabolism in humans. Two factors have fueled cholesterol metabolism studies in the last few years: the renewed interest in the study of reverse cholesterol transport (RCT) as an atheroprotective mechanism and the importance of the gut microbiome in affecting cholesterol metabolism. RECENT FINDINGS Recent applications of these methods have spanned from the assessment of the effect on cholesterol synthesis, absorption or excretion of drugs (such as ezetimibe, PCSK9 inhibitors and plant sterols) and the gut microbiome to the more complex assessment of transintestinal cholesterol excretion (TICE) and RCT. SUMMARY These methods continue to be a valuable tool to answer novel questions and investigate the complexity of in-vivo cholesterol metabolism.
Collapse
Affiliation(s)
- John S Millar
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|
6
|
Keith M, Errett L. Myocardial Metabolism and Improved OutcomesAfter High Risk Heart Surgery. Semin Cardiothorac Vasc Anesth 2016; 9:167-71. [PMID: 15920644 DOI: 10.1177/108925320500900212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The healthy heart relies primarily upon the oxidation of fatty acids for energy, with the remaining coming from the oxidation of glucose and lactate. Changes in energy requirements are met by altering the balance of fuels depending upon the hormonal milieu as well as upon the availability of oxygen and substrates. The use of carbohydrates for fuel is metabolically more efficient and may improve the coupling between glycolysis and pyruvate oxidation. Therefore, promoting a shift in metabolic fuel substrate use during times of reduced oxygen availability may represent a cardioprotective strategy. Subsequently, there has been interest in pharmacologic strategies such insulin or drugs like ranolazine and dichloroacetate that stimulate carbohydrate oxidation either by enhancing oxidation at the pyruvate dehydrogenase complex or by limiting fatty acid oxidation. There is evidence that nutrients may also be able to stimulate carbohydrate oxidation. Previous studies by our group suggest that a combination of nutrients (carnitine, coenzyme Q10, and taurine) may work together, resulting in pleiotropic cardioprotective effects. Our current studies are investigating the potential of nutrients as both a preventative and adjunctive treatment before and after an ischemic event. These investigations will determine the role of nutritional supplementation in the care of patients with ischemic injury.
Collapse
Affiliation(s)
- Mary Keith
- Division of Cardiovascular and Thoracic Surgery, Terrence Donnelly Heart Centre, St. Michael's Hospital and The Department of Surgery, University of Toronto, Ontario, Canada
| | | |
Collapse
|
7
|
Ponziani FR, Pecere S, Gasbarrini A, Ojetti V. Physiology and pathophysiology of liver lipid metabolism. Expert Rev Gastroenterol Hepatol 2016; 9:1055-67. [PMID: 26070860 DOI: 10.1586/17474124.2015.1056156] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Liver lipid metabolism and its modulation are involved in many pathologic conditions, such as obesity, non-alcoholic fatty liver disease, diabetes mellitus, atherosclerosis and cardiovascular disease. Metabolic disorders seem to share a similar background of low-grade chronic inflammation, even if the pathophysiological mechanisms leading to tissue and organ damage have not been completely clarified yet. The accumulation of neutral lipids in the liver is now recognized as a beneficial and protective mechanism; on the other hand, lipoperoxidation is involved in the development and progression of non-alcoholic steatohepatitis. The role of the gut microbiota in liver lipid metabolism has been the object of recent scientific investigations. It is likely that the gut microbiota is involved in a complex metabolic modulation and the translocation of gut microflora may also contribute to maintaining the low-grade inflammatory status of metabolic syndrome. Therefore, lipid metabolism pathology has vague limits and complex mechanisms, and the knowledge of these is essential to guide diagnostic and therapeutic decisions.
Collapse
|
8
|
Mongin AA. Volume-regulated anion channel--a frenemy within the brain. Pflugers Arch 2015; 468:421-41. [PMID: 26620797 DOI: 10.1007/s00424-015-1765-6] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 11/16/2015] [Accepted: 11/20/2015] [Indexed: 10/22/2022]
Abstract
The volume-regulated anion channel (VRAC) is a ubiquitously expressed yet highly enigmatic member of the superfamily of chloride/anion channels. It is activated by cellular swelling and mediates regulatory cell volume decrease in a majority of vertebrate cells, including those in the central nervous system (CNS). In the brain, besides its crucial role in cellular volume regulation, VRAC is thought to play a part in cell proliferation, apoptosis, migration, and release of physiologically active molecules. Although these roles are not exclusive to the CNS, the relative significance of VRAC in the brain is amplified by several unique aspects of its physiology. One important example is the contribution of VRAC to the release of the excitatory amino acid neurotransmitters glutamate and aspartate. This latter process is thought to have impact on both normal brain functioning (such as astrocyte-neuron signaling) and neuropathology (via promoting the excitotoxic death of neuronal cells in stroke and traumatic brain injury). In spite of much work in the field, the molecular nature of VRAC remained unknown until less than 2 years ago. Two pioneer publications identified VRAC as the heterohexamer formed by the leucine-rich repeat-containing 8 (LRRC8) proteins. These findings galvanized the field and are likely to result in dramatic revisions to our understanding of the place and role of VRAC in the brain, as well as other organs and tissues. The present review briefly recapitulates critical findings in the CNS and focuses on anticipated impact on the LRRC8 discovery on further progress in neuroscience research.
Collapse
Affiliation(s)
- Alexander A Mongin
- Center for Neuropharmacology and Neuroscience, Albany Medical College, 47 New Scotland Ave., Albany, NY, 12208, USA.
| |
Collapse
|
9
|
Alphonse PAS, Jones PJH. Revisiting Human Cholesterol Synthesis and Absorption: The Reciprocity Paradigm and its Key Regulators. Lipids 2015; 51:519-36. [PMID: 26620375 DOI: 10.1007/s11745-015-4096-7] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 11/09/2015] [Indexed: 12/22/2022]
Abstract
Hypercholesterolemia is a major risk factor for cardiovascular disease. Cholesterol homeostasis in the body is governed by the interplay between absorption, synthesis, and excretion or conversion of cholesterol into bile acids. A reciprocal relationship between cholesterol synthesis and absorption is known to regulate circulating cholesterol in response to dietary or therapeutic interventions. However, the degree to which these factors affect synthesis and absorption and the extent to which one vector shifts in response to the other are not thoroughly understood. Also, huge inter-individual variability exists in the manner in which the two systems act in response to any cholesterol-lowering treatment. Various factors are known to account for this variability and in light of recent experimental advances new players such as gene-gene interactions, gene-environmental effects, and gut microbiome hold immense potential in offering an explanation to the complex traits of inter-individual variability in human cholesterol metabolism. In this context, the objective of the present review is to provide an overview on cholesterol metabolism and discuss the role of potential factors such as genetics, epigenetics, epistasis, and gut microbiome, as well as other regulators in modulating cholesterol metabolism, especially emphasizing the reciprocal relationship between cholesterol synthesis and absorption. Furthermore, an evaluation of the implications of this push-pull mechanism on cholesterol-lowering strategies is presented.
Collapse
Affiliation(s)
- Peter A S Alphonse
- Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada. .,Richardson Centre for Functional Foods and Nutraceuticals (RCFFN), University of Manitoba, 196, Innovation Drive, SmartPark, Winnipeg, MB, R3T 2N2, Canada.
| | - Peter J H Jones
- Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada.,Richardson Centre for Functional Foods and Nutraceuticals (RCFFN), University of Manitoba, 196, Innovation Drive, SmartPark, Winnipeg, MB, R3T 2N2, Canada.,Food Science, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
10
|
Schober AL, Mongin AA. Intracellular levels of glutamate in swollen astrocytes are preserved via neurotransmitter reuptake and de novo synthesis: implications for hyponatremia. J Neurochem 2015; 135:176-85. [PMID: 26235094 DOI: 10.1111/jnc.13229] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 06/25/2015] [Accepted: 06/29/2015] [Indexed: 01/01/2023]
Abstract
Hyponatremia and several other CNS pathologies are associated with substantial astrocytic swelling. To counteract cell swelling, astrocytes lose intracellular osmolytes, including l-glutamate and taurine, through volume-regulated anion channel. In vitro, when swollen by exposure to hypo-osmotic medium, astrocytes lose endogenous taurine faster, paradoxically, than l-glutamate or l-aspartate. Here, we explored the mechanisms responsible for differences between the rates of osmolyte release in primary rat astrocyte cultures. In radiotracer assays, hypo-osmotic efflux of preloaded [(14) C]taurine was indistinguishable from d-[(3) H]aspartate and only 30-40% faster than l-[(3) H]glutamate. However, when we used HPLC to measure the endogenous intracellular amino acid content, hypo-osmotic loss of taurine was approximately fivefold greater than l-glutamate, and no loss of l-aspartate was detected. The dramatic difference between loss of endogenous taurine and glutamate was eliminated after inhibition of both glutamate reuptake [with 300 μM dl-threo-β-benzyloxyaspartic acid (TBOA)] and glutamate synthesis by aminotransferases [with 1 mM aminooxyacetic acid (AOA)]. Treatment with TBOA+AOA made reductions in the intracellular taurine and l-glutamate levels approximately equal. Taken together, these data suggest that swollen astrocytes actively conserve intracellular glutamate via reuptake and de novo synthesis. Our findings likely also explain why in animal models of acute hyponatremia, extracellular levels of taurine are dramatically elevated with minimal impact on extracellular l-glutamate. We identified mechanisms that allow astrocytes to conserve intracellular l-glutamate (Glu) upon exposure to hypo-osmotic environment. Cell swelling activates volume-regulated anion channel (VRAC) and triggers loss of Glu, taurine (Tau), and other cytosolic amino acids. Glu is conserved via reuptake by Na(+) -dependent transporters and de novo synthesis in the reactions of mitochondrial transamination (TA). These findings explain why, in acute hyponatremia, extracellular levels of Tau can be dramatically elevated with minimal changes in extracellular Glu.
Collapse
Affiliation(s)
- Alexandra L Schober
- Center for Neuropharmacology and Neuroscience, Albany Medical College, Albany, New York, USA
| | - Alexander A Mongin
- Center for Neuropharmacology and Neuroscience, Albany Medical College, Albany, New York, USA
| |
Collapse
|
11
|
Beysen C, Murphy EJ, Deines K, Chan M, Tsang E, Glass A, Turner SM, Protasio J, Riiff T, Hellerstein MK. Effect of bile acid sequestrants on glucose metabolism, hepatic de novo lipogenesis, and cholesterol and bile acid kinetics in type 2 diabetes: a randomised controlled study. Diabetologia 2012; 55:432-42. [PMID: 22134839 DOI: 10.1007/s00125-011-2382-3] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Accepted: 09/26/2011] [Indexed: 12/28/2022]
Abstract
AIMS/HYPOTHESIS The primary aim of this completed multicentre randomised, parallel, double-blind placebo-controlled study was to elucidate the mechanisms of glucose-lowering with colesevelam and secondarily to investigate its effects on lipid metabolism (hepatic de novo lipogenesis, cholesterol and bile acid synthesis). METHODS Participants with type 2 diabetes (HbA(1c) 6.7-10.0% [50-86 mmol/mol], fasting glucose <16.7 mmol/l, fasting triacylglycerols <3.9 mmol/l and LDL-cholesterol >1.55 mmol/l) treated with diet and exercise, sulfonylurea, metformin or a combination thereof, were randomised by a central coordinator to either 3.75 g/day colesevelam (n = 30) or placebo (n = 30) for 12 weeks at three clinical sites in the USA. The primary measure was the change from baseline in glucose kinetics with colesevelam compared to placebo treatment. Fasting and postprandial glucose, lipid and bile acid pathways were measured at baseline and post-treatment using stable isotope techniques. Plasma glucose, insulin, total glucagon-like peptide-1 (GLP-1), total glucose-dependent insulinotropic polypeptide (GIP), glucagon and fibroblast growth factor-19 (FGF-19) concentrations were measured during the fasting state and following a meal tolerance test. Data was collected by people blinded to treatment. RESULTS Compared with placebo, colesevelam improved HbA(1c) (mean change from baseline of 0.3 [SD 1.1]% for placebo [n = 28] and -0.3 [1.1]% for colesevelam [n = 26]), glucose concentrations, fasting plasma glucose clearance and glycolytic disposal of oral glucose. Colesevelam did not affect gluconeogenesis or appearance rate (absorption) of oral glucose. Fasting endogenous glucose production and glycogenolysis significantly increased with placebo but were unchanged with colesevelam (treatment effect did not reach statistical significance). Compared with placebo, colesevelam increased total GLP-1 and GIP concentrations and improved HOMA-beta cell function while insulin, glucagon and HOMA-insulin resistance were unchanged. Colesevelam increased cholesterol and bile acid synthesis and decreased FGF-19 concentrations. However, no effect was seen on fractional hepatic de novo lipogenesis. CONCLUSIONS/INTERPRETATION Colesevelam, a non-absorbed bile acid sequestrant, increased circulating incretins and improved tissue glucose metabolism in both the fasting and postprandial states in a manner different from other approved oral agents. TRIAL REGISTRATION ClinicalTrials.gov NCT00596427 FUNDING The study was funded by Daiichi Sankyo.
Collapse
Affiliation(s)
- C Beysen
- Kinemed, Inc., 5980 Horton Street Suite 470, Emeryville, CA 94608, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Amarnath D, Wakayama S, Zhu J, Moawad AR, Wakayama T, Campbell KHS. The novel use of modified pig zygotic medium for the efficient culture of the preimplantation mouse embryos. Theriogenology 2011; 76:1639-46. [PMID: 21958643 DOI: 10.1016/j.theriogenology.2011.06.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2011] [Revised: 06/25/2011] [Accepted: 06/25/2011] [Indexed: 11/19/2022]
Abstract
A high potassium concentration in culture media is considered detrimental to in vitro culture of mouse embryos. Here we show that pig zygotic medium (PZM) containing a higher concentration of potassium, and modified to contain 0.2 mM glucose and 0.01 mM EDTA, supported efficient pre- and post-implantation development of mouse zygotes to blastocysts and live pups, respectively. At first, modified PZM (mPZM) was compared with other culture media such as M16, CZB and KSOM-AA for its ability to support development of in vivo mouse zygotes to the blastocyst stage. The proportions of zygotes reaching 2-cell (94-99%) and blastocyst (90-96%) stages in mPZM and other media were not different. However, hatching rates of blastocysts were different (P < 0.05); whereas more than 90% of the blastocysts were hatching in mPZM or KSOM-AA, only 60% of the blastocysts did in M16 or CZB media (P < 0.05). Next we compared post-implantation development of in vitro fertilized zygotes developed to blastocysts in mPZM and KSOM-AA. The proportion of blastocysts developing into live pups was not different between mPZM (49%) and KSOM-AA (44%). Finally, we evaluated whether mPZM could be also used as a fertilization medium. Modified PZM containing 5.56 mM of glucose and 0.4% BSA efficiently supported IVF of mouse gametes. The percent of zygotes cleaving to 2-cell (94-98%) and blastocysts (91-93%) stage was not different from zygotes fertilized in human tubal fluid medium. We concluded that modified pig zygotic medium containing a higher potassium concentration than any other commonly used mouse media supported not only culture of mouse embryos, but also efficient IVF of mouse gametes.
Collapse
Affiliation(s)
- Dasari Amarnath
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Leics, UK
| | | | | | | | | | | |
Collapse
|
13
|
Schaffer SW, Jong CJ, Ramila KC, Azuma J. Physiological roles of taurine in heart and muscle. J Biomed Sci 2010; 17 Suppl 1:S2. [PMID: 20804594 PMCID: PMC2994395 DOI: 10.1186/1423-0127-17-s1-s2] [Citation(s) in RCA: 230] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Taurine (aminoethane sulfonic acid) is an ubiquitous compound, found in very high concentrations in heart and muscle. Although taurine is classified as an amino acid, it does not participate in peptide bond formation. Nonetheless, the amino group of taurine is involved in a number of important conjugation reactions as well as in the scavenging of hypochlorous acid. Because taurine is a fairly inert compound, it is an ideal modulator of basic processes, such as osmotic pressure, cation homeostasis, enzyme activity, receptor regulation, cell development and cell signalling. The present review discusses several physiological functions of taurine. First, the observation that taurine depletion leads to the development of a cardiomyopathy indicates a role for taurine in the maintenance of normal contractile function. Evidence is provided that this function of taurine is mediated by changes in the activity of key Ca2+ transporters and the modulation Ca2+ sensitivity of the myofibrils. Second, in some species, taurine is an established osmoregulator, however, in mammalian heart the osmoregulatory function of taurine has recently been questioned. Third, taurine functions as an indirect regulator of oxidative stress. Although this action of taurine has been widely discussed, its mechanism of action is unclear. A potential mechanism for the antioxidant activity of taurine is discussed. Fourth, taurine stabilizes membranes through direct interactions with phospholipids. However, its inhibition of the enzyme, phospholipid N-methyltransferase, alters the phosphatidylcholine and phosphatidylethanolamine content of membranes, which in turn affects the function of key proteins within the membrane. Finally, taurine serves as a modulator of protein kinases and phosphatases within the cardiomyocyte. The mechanism of this action has not been studied. Taurine is a chemically simple compound, but it has profound effects on cells. This has led to the suggestion that taurine is an essential or semi-essential nutrient for many mammals.
Collapse
Affiliation(s)
- Stephen W Schaffer
- Department of Pharmacology, University of South Alabama, College of Medicine, Mobile, Alabama 36688, USA.
| | | | | | | |
Collapse
|
14
|
Berthold HK, Sudhop T, von Bergmann K, Gouni-Berthold I. Lifibrol as a model compound for a novel lipid-lowering mechanism of action. J Cardiovasc Pharmacol Ther 2010; 15:364-72. [PMID: 20693157 DOI: 10.1177/1074248410371100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Lifibrol is a potent lipid-lowering drug with an unknown mechanism of action. We investigated its effects on lipoprotein and sterol metabolism in normocholesterolemic male participants. Seven participants were treated for 4 weeks with 600 mg/d lifibrol and 9 with 40 mg/d pravastatin in a double-blind randomized parallel-group trial. Kinetic studies were performed at baseline and under acute and chronic treatment. Turnover of apolipoprotein B-100 was investigated with endogenous stable-isotope labeling, and kinetic parameters were derived by multicompartmental modeling. Lathosterol and cholesterol metabolism were investigated using mass isotopomer distribution analysis (MIDA) after [1-(13)C]acetate labeling. Carbon metabolism was investigated by calculating the total isotope incorporation into newly formed sterols and measuring the disposal of acetate by (13)CO(2) breath analysis. Total- and low-density lipoprotein (LDL) cholesterol decreased by 18% and 27% under lifibrol and by 17% and 28% under pravastatin, respectively, whereas very-low-density lipoprotein (VLDL) cholesterol, triglycerides, and high-density lipoprotein (HDL) cholesterol did not change. Very-low-density lipoprotein apoB fractional synthesis and production increased under lifibrol but remained unchanged under pravastatin. Low-density lipoprotein apoB fractional synthesis and production increased under pravastatin but remained unchanged under lifibrol. Mass isotopomer distribution analysis indicated that both drugs decrease endogenous sterol synthesis after acute administration, but pravastatin had more powerful effects. Carbon-13 appearance in breath was higher during pravastatin than during lifibrol treatment. Mass isotopomer distribution analysis and carbon metabolism analysis indicated compartmentalization at the site of sterol synthesis, thus suggesting differential effects of the 2 drugs. Although having comparable lipid-lowering properties, lifibrol seems to have a mechanism of action distinct from that of statins. Lifibrol could serve as a model compound for the development of new lipid-lowering agents.
Collapse
Affiliation(s)
- Heiner K Berthold
- Department of Clinical Pharmacology, University of Bonn, Bonn, Germany.
| | | | | | | |
Collapse
|
15
|
van Meer H, van Straten EME, Baller JFW, van Dijk TH, Plösch T, Kuipers F, Verkade HJ. The effects of intrauterine malnutrition on maternal-fetal cholesterol transport and fetal lipid synthesis in mice. Pediatr Res 2010; 68:10-5. [PMID: 20386142 DOI: 10.1203/pdr.0b013e3181e1219b] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Intrauterine malnutrition is associated with increased susceptibility to chronic diseases in adulthood. Growth-restricted infants display a less favorable lipid profile already shortly postnatal. Maternal low protein diet (LPD) during gestation is a well-defined model of fetal programming in rodents and affects lipid metabolism of the offspring. Effects of LPD throughout gestation on physiologic relevant parameters of lipid metabolism are unclear. We aimed to determine effects of LPD on maternal-fetal cholesterol fluxes and fetal lipid synthesis in mice. Pregnant mice (dams) were fed with a control (18% casein) or an LPD (9% casein) from E0.5 onward. We quantified maternal-fetal cholesterol transport and maternal cholesterol absorption at E19.5 using stable isotopes. We determined fetal lipid biosynthesis at E19.5, after administration of (1-C)-acetate from E17.5 onward. LPD did not change fetal and maternal plasma and hepatic concentrations of cholesterol and triglycerides. LPD affected neither the magnitudes of maternal-fetal cholesterol flux, maternal cholesterol absorption, nor fetal synthesis of cholesterol and palmitate (both groups, approximately 14% and approximately 13%, respectively). We conclude that LPD throughout gestation in mice does not affect maternal-fetal cholesterol transport, fetal cholesterol or fatty acid synthesis, indicating that programming effects of LPD are not mediated by short-term changes in maternal-fetal lipid metabolism.
Collapse
Affiliation(s)
- Hester van Meer
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, 9713 BN Groningen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
16
|
Godin JP, Ross AB, Rezzi S, Poussin C, Martin FP, Fuerholz A, Cléroux M, Mermoud AF, Tornier L, Arce Vera F, Pouteau E, Ramadan Z, Kochhar S, Fay LB. Isotopomics: A Top-Down Systems Biology Approach for Understanding Dynamic Metabolism in Rats Using [1,2-13C2] Acetate. Anal Chem 2009; 82:646-53. [DOI: 10.1021/ac902086g] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
| | - Alastair B. Ross
- Nestlé Research Centre, Vers-Chez-les-Blanc, 1000 Lausanne 26, Switzerland
| | - Serge Rezzi
- Nestlé Research Centre, Vers-Chez-les-Blanc, 1000 Lausanne 26, Switzerland
| | - Carine Poussin
- Nestlé Research Centre, Vers-Chez-les-Blanc, 1000 Lausanne 26, Switzerland
| | | | - Andreas Fuerholz
- Nestlé Research Centre, Vers-Chez-les-Blanc, 1000 Lausanne 26, Switzerland
| | - Marilyn Cléroux
- Nestlé Research Centre, Vers-Chez-les-Blanc, 1000 Lausanne 26, Switzerland
| | | | - Lionel Tornier
- Nestlé Research Centre, Vers-Chez-les-Blanc, 1000 Lausanne 26, Switzerland
| | - Francia Arce Vera
- Nestlé Research Centre, Vers-Chez-les-Blanc, 1000 Lausanne 26, Switzerland
| | - Etienne Pouteau
- Nestlé Research Centre, Vers-Chez-les-Blanc, 1000 Lausanne 26, Switzerland
| | - Ziad Ramadan
- Nestlé Research Centre, Vers-Chez-les-Blanc, 1000 Lausanne 26, Switzerland
| | - Sunil Kochhar
- Nestlé Research Centre, Vers-Chez-les-Blanc, 1000 Lausanne 26, Switzerland
| | | |
Collapse
|
17
|
van der Veen JN, van Dijk TH, Vrins CLJ, van Meer H, Havinga R, Bijsterveld K, Tietge UJF, Groen AK, Kuipers F. Activation of the liver X receptor stimulates trans-intestinal excretion of plasma cholesterol. J Biol Chem 2009; 284:19211-9. [PMID: 19416968 DOI: 10.1074/jbc.m109.014860] [Citation(s) in RCA: 164] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Recent studies have indicated that direct intestinal secretion of plasma cholesterol significantly contributes to fecal neutral sterol loss in mice. The physiological relevance of this novel route, which represents a part of the reverse cholesterol transport pathway, has not been directly established in vivo as yet. We have developed a method to quantify the fractional and absolute contributions of several cholesterol fluxes to total fecal neutral sterol loss in vivo in mice, by assessing the kinetics of orally and intravenously administered stable isotopically labeled cholesterol combined with an isotopic approach to assess the fate of de novo synthesized cholesterol. Our results show that trans-intestinal cholesterol excretion significantly contributes to removal of blood-derived free cholesterol in C57Bl6/J mice (33% of 231 micromol/kg/day) and that pharmacological activation of LXR with T0901317 strongly stimulates this pathway (63% of 706 micromol/kg/day). Trans-intestinal cholesterol excretion is impaired in mice lacking Abcg5 (-4%), suggesting that the cholesterol transporting Abcg5/Abcg8 heterodimer is involved in this pathway. Our data demonstrate that intestinal excretion represents a quantitatively important route for fecal removal of neutral sterols independent of biliary secretion in mice. This pathway is sensitive to pharmacological activation of the LXR system. These data support the concept that the intestine substantially contributes to reverse cholesterol transport.
Collapse
Affiliation(s)
- Jelske N van der Veen
- Department of Pediatrics, Center for Liver, Digestive, and Metabolic Diseases, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Bell JR, Lloyd D, Curl CL, Delbridge LMD, Shattock MJ. Cell volume control in phospholemman (PLM) knockout mice: do cardiac myocytes demonstrate a regulatory volume decrease and is this influenced by deletion of PLM? Exp Physiol 2008; 94:330-43. [PMID: 19074587 DOI: 10.1113/expphysiol.2008.045823] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In addition to modulatory actions on Na+-K+-ATPase, phospholemman (PLM) has been proposed to play a role in cell volume regulation. Overexpression of PLM induces ionic conductances, with 'PLM channels' exhibiting selectivity for taurine. Osmotic challenge of host cells overexpressing PLM increases taurine efflux and augments the cellular regulatory volume decrease (RVD) response, though a link between PLM and cell volume regulation has not been studied in the heart. We recently reported a depressed cardiac contractile function in PLM knockout mice in vivo, which was exacerbated in crystalloid-perfused isolated hearts, indicating that these hearts were osmotically challenged. To address this, the present study investigated the role of PLM in osmoregulation in the heart. Isolated PLM wild-type and knockout hearts were perfused with a crystalloid buffer supplemented with mannitol in a bid to prevent perfusate-induced cell swelling and maintain function. Accordingly, and in contrast to wild-type control hearts, contractile function was improved in PLM knockout hearts with 30 mM mannitol. To investigate further, isolated PLM wild-type and knockout cardiomyocytes were subjected to increasing hyposmotic challenges. Initial validation studies showed the IonOptix video edge-detection system to be a simple and accurate 'real-time' method for tracking cell width as a marker of cell size. Myocytes swelled equally in both genotypes, indicating that PLM, when expressed at physiological levels in cardiomyocytes, is not essential to limit water accumulation in response to a hyposmotic challenge. Interestingly, freshly isolated adult cardiomyocytes consistently failed to mount RVDs in response to cell swelling, adding to conflicting reports in the literature. A proposed perturbation of the RVD response as a result of the cell isolation process was not restored, however, with short-term culture in either adult or neonatal cardiomyocytes.
Collapse
Affiliation(s)
- James R Bell
- Cardiac Physiology, Cardiovascular Division, King's College London, The Rayne Institute, St Thomas' Hospital, London SE17EH, UK
| | | | | | | | | |
Collapse
|
19
|
Ruiz JL, Souza MM. Osmotic stress and muscle tissue volume response of a freshwater bivalve. Comp Biochem Physiol A Mol Integr Physiol 2008; 151:399-406. [PMID: 17462930 DOI: 10.1016/j.cbpa.2007.03.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2006] [Revised: 03/23/2007] [Accepted: 03/26/2007] [Indexed: 11/26/2022]
Abstract
The freshwater bivalve, Corbicula fluminea, when submitted to hyperosmotic solutions, behaves as a hyperosmoconformer; we have observed an increase in osmolality and ions in its extracellular fluid. Osmotic and ionic changes in its watery environment represent a challenge for the tissues of this mollusk. Thus we evaluated, in vitro, muscle tissue volume variations (based on wet weight change) under anisosmotic salines, as well the possible regulatory mechanisms involved in the processes. This tissue did not exhibit complete volume regulation under anisosmotic saline solutions, but showed less variation than would be predicted by Van't Hoff's law, and tissue volume remained essentially stable throughout 90 min of exposure. To minimize tissue swelling in hyposmotic situations, C. fluminea muscle mobilizes organic osmolytes (ninhydrin positive substances) and inorganic ions (K(+) and Cl(-)). While under hyperosmotic stimulus, apparently only inorganic osmolytes (Na(+) and Cl(-)) are mobilized by the tissue. Our results indicate ionic accumulation by the Na(+)-K(+)-2Cl(-) cotransporter and the Na(+)/H(+) coupled to Cl(-)/HCO(3)(-) exchangers. Exposure of the muscle tissue to Ca(2+)-free anisosmotic saline did not result in a detectable inhibition of the mechanisms described above. The Ca(2+) gradient that derives from the absence of this ion, even apparently enhances the regulatory mechanisms. These responses of this freshwater mollusk in hyperosmotic solutions, and the muscle tissue under anisosmotic (hypo and hyperosmotic) saline solutions, have not been previously characterized in the manner and approach as reported here. Specifically, we analyze both organic and inorganic osmolytes mobilized under hyposmotic stress, and can infer the participation of Na(+) and Cl(-) pathways stimulated by hyperosmotic stress. From the perspective gained in this study, tissue volume responses may be used as models for toxicological investigations.
Collapse
Affiliation(s)
- Juliana L Ruiz
- Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Brazil
| | - M M Souza
- Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Brazil.
| |
Collapse
|
20
|
Cruz LN, Souza MM. Volume regulation mechanisms in Rana castebeiana cardiac tissue under hyperosmotic stress. ZOOLOGY 2008; 111:287-94. [DOI: 10.1016/j.zool.2007.07.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2007] [Revised: 06/14/2007] [Accepted: 07/11/2007] [Indexed: 10/22/2022]
|
21
|
Bandsma RHJ, Prinsen BH, van Der Velden MDS, Rake JP, Boer T, Smit GPA, Reijngoud DJ, Kuipers F. Increased de novo lipogenesis and delayed conversion of large VLDL into intermediate density lipoprotein particles contribute to hyperlipidemia in glycogen storage disease type 1a. Pediatr Res 2008; 63:702-7. [PMID: 18520334 DOI: 10.1203/pdr.0b013e31816c9013] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Glycogen storage disease type 1a (GSD-1a) is a metabolic disorder characterized by fasting-induced hypoglycemia, hepatic steatosis, and hyperlipidemia. The mechanisms underlying the lipid abnormalities are largely unknown. To investigate these mechanisms seven GSD-1a patients and four healthy control subjects received an infusion of [1-(13)C]acetate to quantify cholesterogenesis and lipogenesis. In a subset of patients, [1-(13)C]valine was given to assess lipoprotein metabolism and [2-(13)C]glycerol to determine whole body lipolysis. Cholesterogenesis was 274 +/- 112 mg/d in controls and 641 +/- 201 mg/d in GSD-1a patients (p < 0.01). Plasma triglyceride-palmitate derived from de novo lipogenesis was 7.1 +/- 9.4 and 86.3 +/- 42.5 micromol/h in controls and patients, respectively (p < 0.01). Production of VLDL did not show a consistent difference between the groups, but conversion of VLDL into intermediate density lipoproteins was relatively retarded in all patients (0.6 +/- 0.5 pools/d) compared with controls (4.3 +/- 1.8 pools/d). Fractional catabolic rate of intermediate density lipoproteins was lower in patients (0.8 +/- 0.6 pools/d) compared with controls (3.1 +/- 1.5 pools/d). Whole body lipolysis was similar, i.e., 4.5 +/- 1.9 micromol/kg/min in patients and 3.8 +/- 1.9 micromol/kg/min in controls. Hyperlipidemia in GSD-1a is associated with strongly increased lipid production and a slower relative conversion of VLDL to LDL.
Collapse
Affiliation(s)
- Robert H J Bandsma
- Center for Liver, Digestive and Metabolic Diseases, University of Groningen, Groningen, 9700 RB, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Alves TC, Nunes PM, Palmeira CM, Jones JG, Carvalho RA. Estimating gluconeogenesis by NMR isotopomer distribution analysis of [13C]bicarbonate and [1-13C]lactate. NMR IN BIOMEDICINE 2008; 21:337-44. [PMID: 17683055 DOI: 10.1002/nbm.1195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The gluconeogenic contribution to glucose production in livers isolated from rats fasted for 24 h was determined by 13C-NMR isotopomer distribution analysis of secreted glucose enriched from 99% [13C]bicarbonate (n = 4) and 99% [1-13C]lactate (n = 4). Experiments with 3% 2H2O were also performed, allowing the gluconeogenic contribution to be measured by the relative 2H enrichments at positions 5 and 2 of glucose. From 13C-NMR analyses, the contribution of gluconeogenesis to glucose output was estimated to be 93 +/- 3% for [13C]bicarbonate perfusion and 91 +/- 3% for [1-13C]lactate perfusion, in good agreement with the 2H-NMR analysis of the gluconeogenic contribution to glucose production (100 +/- 1% and 99 +/- 1%, respectively) and consistent with the expected negligible contribution from glycogenolysis. These results indicate that 13C-NMR analysis of glucose 13C-isotopomer distribution from either [13C]bicarbonate or [1-13C]lactate precursor provides realistic estimates of the gluconeogenic contribution to hepatic glucose output.
Collapse
Affiliation(s)
- Tiago Cardoso Alves
- Department of Biochemistry, Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal
| | | | | | | | | |
Collapse
|
23
|
Krylova IB, Evdokimova NR, Gavrovskaya LK, Sapronov NS. Cardioprotective effect of Taurhythman: the experimental study. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2006; 583:535-41. [PMID: 17153642 DOI: 10.1007/978-0-387-33504-9_61] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Affiliation(s)
- Irina B Krylova
- Institute of Experimental Medicine, Russian Academy of Medical Sciences, Saint-Petersburg, Russia 197376.
| | | | | | | |
Collapse
|
24
|
Díaz-Elizondo J, Chiong M, Rojas-Rivera D, Olea-Azar C, Kwon HM, Lavandero S. Reactive oxygen species inhibit hyposmotic stress-dependent volume regulation in cultured rat cardiomyocytes. Biochem Biophys Res Commun 2006; 350:1076-81. [PMID: 17045960 DOI: 10.1016/j.bbrc.2006.10.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2006] [Accepted: 10/03/2006] [Indexed: 11/24/2022]
Abstract
Cells have developed compensatory mechanisms to restore cell volume, and the ability to resist osmotic swelling or shrinkage parallels their resistance to necrosis or apoptosis. There are several mechanisms by which cells adapt to hyposmotic stress including that of regulatory volume decrease. In ischemia and reperfusion, cardiomyocytes are exposed to hyposmotic stress, but little is known as to how their volume is controlled. Exposure of cultured neonatal rat cardiomyocytes to hyposmotic media induced a rapid swelling without any compensatory regulatory volume decrease. The hyposmotic stress increased the production of reactive oxygen species, mainly through NADPH oxidase. Adenoviral overexpression of catalase inhibited the hyposmosis-dependent OH(*) production, induced the regulatory volume decrease mechanism, and prevented cell death. These results suggest that hyposmotic stress of cardiomyocytes stimulates production of reactive oxygen species which are closely linked to volume regulation and cell death.
Collapse
Affiliation(s)
- Jessica Díaz-Elizondo
- Departamento Bioquímica y Biología Molecular, Universidad de Chile, Santiago 8380492, Chile
| | | | | | | | | | | |
Collapse
|
25
|
Plösch T, Kosters A, Groen AK, Kuipers F. The ABC of hepatic and intestinal cholesterol transport. Handb Exp Pharmacol 2006:465-82. [PMID: 16596811 DOI: 10.1007/3-540-27661-0_17] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
The liver and (small) intestine are key organs in maintenance of cholesterol homeostasis: both organs show active de novo cholesterogenesis and are able to transport impressive amounts of newly synthesized and diet-derived cholesterol via a number of distinct pathways. Cholesterol trafficking involves the concerted action of a number of transporter proteins, some of which have been identified only recently. In particular, several ATP-binding cassette (ABC) transporters fulfil critical roles. For instance, the ABCG5/ABCG8 couple is crucial for hepatobiliary and intestinal cholesterol excretion, while ABCA1 is essential for high-density lipoprotein formation and, hence, for inter-organ trafficking of the highly water-insoluble cholesterol molecules. Very recently, the Niemann-Pick C1-like 1 protein has been identified as a key player in cholesterol absorption by the small intestine and may represent a target of the cholesterol absorption inhibitor ezetimibe. Alterations in hepatic and intestinal cholesterol transport affect circulating levels of atherogenic lipoproteins and thus the risk for cardiovascular disease. This review specifically deals with the processes of hepatobiliary cholesterol excretion and intestinal cholesterol absorption as well as the interactions between these important transport routes. During the last few years, insight into the mechanisms of hepatic and intestinal cholesterol transport has greatly increased not in the least by the identification of involved transporter proteins and the (partial) elucidation of their mode of action. In addition, information has become available on (transcription) factors regulating expression of the encoding genes. This knowledge is of great importance for the development of a tailored design of novel plasma cholesterol-lowering strategies.
Collapse
Affiliation(s)
- T Plösch
- Laboratory of Pediatrics, Center for Liver, Digestive and Metabolic Diseases, University Medical Center Groningen, The Netherlands
| | | | | | | |
Collapse
|
26
|
Klass DM, Bührmann K, Sauter G, Del Puppo M, Scheibner J, Fuchs M, Stange EF. Biliary lipids, cholesterol and bile synthesis: different adaptive mechanisms to dietary cholesterol in lean and obese subjects. Aliment Pharmacol Ther 2006; 23:895-905. [PMID: 16573792 DOI: 10.1111/j.1365-2036.2006.02836.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Increased biliary cholesterol secretion together with elevated cholesterol synthesis may predispose obese subjects to cholesterol gallstone formation. AIM To investigate whether processing of dietary cholesterol is altered in obesity, we enrolled eight lean and seven obese subjects in a double-blind crossover study. METHODS Cholesterol consumption was 300 mg/day on low and 1300 mg/day on high cholesterol diet. After 3 weeks on either diet, hepatic bile was collected to determine biliary lipid secretion, and bile salt composition by high-performance liquid chromatography and cholesterol saturation index was calculated. Cholesterol synthesis was measured employing mass isotopomer distribution analysis. Bile acid synthesis via neutral and acidic pathway was assessed by serum levels of 7alpha-hydroxy-4-cholesten-3-one and 27-hydroxycholesterol. RESULTS Cholesterol synthesis was increased in obese compared with lean and feedback inhibited only in obese. On low cholesterol diet, cholesterol secretion was doubled in obese but bile acid composition and synthesis was similar between the two groups. After high cholesterol diet, cholesterol saturation index and bile secretion were unchanged. In contrast to obese, lean increased bile acid synthesis only via the acidic pathway. CONCLUSIONS Dietary cholesterol appears to preferentially induce bile acid synthesis via the acidic pathway in lean, whereas cholesterol synthesis was inhibited in obese. Thus, stable cholesterol saturation index may be achieved by different mechanisms.
Collapse
Affiliation(s)
- D M Klass
- Division of Gastroenterology, University Hospital of Schleswig-Holstein, Campus Lübeck, Germany
| | | | | | | | | | | | | |
Collapse
|
27
|
Stellaard F, Elzinga H. Analytical techniques in biomedical stable isotope applications: (isotope ratio) mass spectrometry or infrared spectrometry? ISOTOPES IN ENVIRONMENTAL AND HEALTH STUDIES 2005; 41:345-61. [PMID: 16543190 DOI: 10.1080/10256010500384333] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
An overview is presented of biomedical applications of stable isotopes in general, but mainly focused on the activities of the Center for Liver, Digestive and Metabolic Diseases of the University Medical Center Groningen. The aims of metabolic studies in the areas of glucose, fat, cholesterol and protein metabolism are briefly explained, as well as the principle of breath testing and the techniques to study body composition and energy expenditure. Much attention is paid to the analytical considerations based upon metabolite concentrations, sample size restrictions, the availability of stable isotope labelled substrates and dose requirements in relation to compound-specific isotope analysis. The instrumental advantages and limitations of the generally used techniques gas chromatography/reaction/isotope ratio mass spectrometry and gas chromatography/mass spectrometry are described as well as the novelties of the recently commercialised liquid chromatography/combustion/isotope ratio mass spectrometry. The present use and future perspective of infrared (IR) spectrometry for clinical and biomedical stable isotope applications are reviewed. In this respect, the analytical demands on IR spectrometry are discussed to enable replacement of isotope ratio mass spectrometry by IR spectrometry, in particular, for the purpose of compound-specific isotope ratio analysis in biological matrices.
Collapse
Affiliation(s)
- Frans Stellaard
- Laboratory of Pediatrics, Center for Liver, Digestive and Metabolic Diseases, University Hospital Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands.
| | | |
Collapse
|
28
|
Ando S, Tanaka Y. Mass spectrometric studies on brain metabolism, using stable isotopes. MASS SPECTROMETRY REVIEWS 2005; 24:865-86. [PMID: 16052499 DOI: 10.1002/mas.20045] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In fields related to biomedicine, mass spectrometry has been applied to metabolism research and chemical structural analysis. The introduction of stable isotopes has advanced research related to in vivo metabolism. Stable-isotope labeling combined with mass spectrometry appears to be a superior method for the metabolism studies, because it compensates for the shortcomings of conventional techniques that use radioisotopes. Biomolecules labeled with stable isotopes have provided solid evidence of their metabolic pathways. Labeled large molecules, however, cannot homogeneously mix in vivo with the corresponding endogenous pools. To overcome that problem, small tracers labeled with stable isotopes have been applied to in vivo studies because they can diffuse and attain a homogeneous distribution throughout the inter- and intracellular spaces. In particular, D(2)O-labeling methods have been used for studies of the metabolism in different organs, including the brain, which is isolated from other extraneural organs by the blood-brain barrier (BBB). Cellular components, such as lipids, carbohydrates, proteins, and DNA, can be endogenously and concurrently labeled with deuterium, and their metabolic fluxes examined by mass spectrometry. Application of the D(2)O-labeling method to the measurements of lipid metabolism and membrane turnover in the brain is described, and the potential advantages of this method are discussed in this review. This methodology also appears to have the potential to be applied to dynamic and functional metabolomics.
Collapse
Affiliation(s)
- Susumu Ando
- Tokyo Metropolitan Institute of Gerontology, Sakaecho, Itabashi-ku, Tokyo 173-0015, Japan.
| | | |
Collapse
|
29
|
Missan S, Zhabyeyev P, Dyachok O, Ogura T, McDonald TF. Inward-rectifier K+ current in guinea-pig ventricular myocytes exposed to hyperosmotic solutions. J Membr Biol 2005; 202:151-60. [PMID: 15798903 DOI: 10.1007/s00232-004-0726-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2004] [Accepted: 11/04/2004] [Indexed: 11/25/2022]
Abstract
Superfusion of heart cells with hyperosmotic solution causes cell shrinkage and inhibition of membrane ionic currents, including delayed-rectifer K+ currents. To determine whether osmotic shrinkage also inhibits inwardly-rectifying K+ current (I(K1)), guinea-pig ventricular myocytes in the perforated-patch or ruptured-patch configuration were superfused with a Tyrode's solution whose osmolarity (T) relative to isosmotic (1T) solution was increased to 1.3-2.2T by addition of sucrose. Hyperosmotic superfusate caused a rapid shrinkage that was accompanied by a negative shift in the reversal potential of Ba(2+)-sensitive I(K1), an increase in the amplitude of outward I(K1), and a steepening of the slope of the inward I(K1)-voltage (V) relation. The magnitude of these effects increased with external osmolarity. To evaluate the underlying changes in chord conductance (G(K1)) and rectification, G(K1)-V data were fitted with Boltzmann functions to determine maximal G(K1) (G(K1)max) and voltage at one-half G(K1)max (V(0.5)). Superfusion with hyperosmotic sucrose solutions led to significant increases in G(K1)max (e.g., 28 +/- 2% with 1.8T), and significant negative shifts in V(0.5) (e.g., -6.7 +/- 0.6 mV with 1.8T). Data from myocytes investigated under hyperosmotic conditions that do not induce shrinkage indicate that G(K1)max and V(0.5) were insensitive to hyperosmotic stress per se but sensitive to elevation of intracellular K+. We conclude that the effects of hyperosmotic sucrose solutions on I(K1) are related to shrinkage-induced concentrating of intracellular K+.
Collapse
Affiliation(s)
- S Missan
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia, B3H 4H7, Canada
| | | | | | | | | |
Collapse
|
30
|
Fraser JA, Middlebrook CE, Usher-Smith JA, Schwiening CJ, Huang CLH. The effect of intracellular acidification on the relationship between cell volume and membrane potential in amphibian skeletal muscle. J Physiol 2005; 563:745-64. [PMID: 15618273 PMCID: PMC1665619 DOI: 10.1113/jphysiol.2004.079657] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 11/22/2004] [Accepted: 12/23/2004] [Indexed: 12/23/2022] Open
Abstract
The relationship between cell volume (V(c)) and membrane potential (E(m)) in Rana temporaria striated muscle fibres was investigated under different conditions of intracellular acidification. Confocal microscope xz-scanning monitored the changes in V(c), whilst conventional KCl and pH-sensitive microelectrodes measured E(m) and intracellular pH (pH(i)), respectively. Applications of Ringer solutions with added NH(4)Cl induced rapid reductions in V(c) that rapidly reversed upon their withdrawal. These could be directly attributed to the related alterations in extracellular tonicity. However: (1) a slower and persistent decrease in V(c) followed the NH(4)Cl withdrawal, leaving V(c) up to 10% below its resting value; (2) similar sustained decreases in resting V(c) were produced by the addition and subsequent withdrawal of extracellular solutions in which NaCl was isosmotically replaced with NH(4)Cl; (3) the same manoeuvres also produced a marked intracellular acidification, that depended upon the duration of the preceding exposure to NH(4)Cl, of up to 0.53 +/- 0.10 pH units; and (4) the corresponding reductions in V(c) similarly increased with this exposure time. These reductions in V(c) persisted and became more rapid with Cl(-) deprivation, thus excluding mechanisms involving either direct or indirect actions of pH(i) upon Cl(-)-dependent membrane transport. However they were abolished by the Na(+),K(+)-ATPase inhibitor ouabain. The E(m) changes that accompanied the addition and withdrawal of NH(4)(+) conformed to a Nernst equation modified to include realistic NH(4)(+) permeability terms, and thus the withdrawal of NH(4)(+) restored E(m) to close to control values despite a persistent change in V(c). Finally these E(m) changes persisted and assumed faster kinetics with Cl(-) deprivation. The relative changes in V(c), E(m) and pH(i) were compared to predictions from the recent model of Fraser and Huang published in 2004 that related steady-state values of V(c) and E(m) to the mean charge valency (z(x)) of intracellular membrane-impermeant anions, X(-)(i). By assuming accepted values of intracellular buffering capacity (beta(i)), intracellular acidification was shown to produce quantitatively predictable decreases in V(c). These findings thus provide experimental evidence that titration of the anionic z(x) by increased intracellular [H(+)] causes cellular volume decrease in the presence of normal Na(+),K(+)- ATPase activity, with Cl(-)-dependent membrane fluxes only influencing the kinetics of such changes.
Collapse
Affiliation(s)
- James A Fraser
- Physiological Laboratory, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK.
| | | | | | | | | |
Collapse
|
31
|
Rasgado-Flores H, Peña-Rasgado C, Ehrenpreis S. Cell volume and drug action: Some interactions and perspectives. Drug Dev Res 2004. [DOI: 10.1002/ddr.430360202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
32
|
Renfurm LN, Bandsma RHJ, Verkade HJ, Hulzebos CV, van Dijk T, Boer T, Stellaard F, Kuipers F, Sauer PJJ. Cholesterol synthesis and de novo lipogenesis in premature infants determined by mass isotopomer distribution analysis. Pediatr Res 2004; 56:602-7. [PMID: 15295085 DOI: 10.1203/01.pdr.0000139482.88468.46] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Premature infants change from placental supply of mainly carbohydrates to an enteral supply of mainly lipids earlier in their development than term infants. The metabolic consequences hereof are not known but might have long-lasting health effects. In fact, knowledge of lipid metabolism in premature infants is very limited. We have quantified de novo lipogenesis and cholesterogenesis on d 3 of life in seven premature infants (birth weight, 1319 +/- 417 g; gestational age, 30 +/- 2 wk). For comparison, five healthy adult subjects were also studied. All subjects received a 12-h [1-(13)C] acetate infusion, followed by mass isotopomer distribution analysis (MIDA) on lipoprotein-palmitate and plasma unesterified cholesterol. The fraction of lipoprotein-palmitate synthesized at the end of the infusion period was 5.4 +/- 3.9% in infants, which was in the same range as found in adult subjects on a normal diet, suggesting that hepatic de novo lipogenesis is not a major contributor to fat accumulation in these premature neonates. The fractional contribution of newly synthesized cholesterol to plasma unesterified cholesterol was 7.4 +/- 1.3% after a 12-h infusion. The calculated rate of endogenous cholesterol synthesis was 31 +/- 7 mg/kg/d, a value approximately three times higher than that found in adult subjects (10 +/- 6 mg/kg/d). These results indicate that the cholesterol-synthesizing machinery is well developed in premature infants.
Collapse
Affiliation(s)
- Lorraine N Renfurm
- Groningen University Institute for Drug Exploration, Center for Liver, Digestive and Metabolic Diseases, Department of Pediatrics, University Hospital Groningen, 9700 RB Groningen, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Fraser JA, Huang CLH. A quantitative analysis of cell volume and resting potential determination and regulation in excitable cells. J Physiol 2004; 559:459-78. [PMID: 15243134 PMCID: PMC1665115 DOI: 10.1113/jphysiol.2004.065706] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2004] [Accepted: 07/02/2004] [Indexed: 12/20/2022] Open
Abstract
This paper quantifies recent experimental results through a general physical description of the mechanisms that might control two fundamental cellular parameters, resting potential (Em) and cell volume (Vc), thereby clarifying the complex relationships between them. Em was determined directly from a charge difference (CD) equation involving total intracellular ionic charge and membrane capacitance (Cm). This avoided the equilibrium condition dEm/dt = 0 required in determinations of Em by previous work based on the Goldman-Hodgkin-Katz equation and its derivatives and thus permitted precise calculation of Em even under non-equilibrium conditions. It could accurately model the influence upon Em of changes in Cm or Vc and of membrane transport processes such as the Na+-K+-ATPase and ion cotransport. Given a stable and adequate membrane Na+-K+-ATPase density (N), Vc and Em both converged to unique steady-state values even from sharply divergent initial intracellular ionic concentrations. For any constant set of transmembrane ion permeabilities, this set point of Vc was then determined by the intracellular membrane-impermeant solute content (X-i) and its mean charge valency (zX), while in contrast, the set point of Em was determined solely by zX. Independent changes in membrane Na+ (PNa) or K+ permeabilities (PK) or activation of cation-chloride cotransporters could perturb Vc and Em but subsequent reversal of such changes permitted full recovery of both Vc and Em to the original set points. Proportionate changes in PNa, PK and N, or changes in Cl- permeability (PCl) instead conserved steady-state Vc and Em but altered their rates of relaxation following any discrete perturbation. PCl additionally determined the relative effect of cotransporter activity on Vc and Em, in agreement with recent experimental results. In contrast, changes in Xi- produced by introduction of a finite permeability term to X- (PX) that did not alter zX caused sustained changes in Vc that were independent of Em and that persisted when PX returned to zero. Where such fluxes also altered the effective zX they additionally altered the steady state Em. This offers a basis for the suggested roles of amino acid fluxes in long-term volume regulatory processes in a variety of excitable tissues.
Collapse
Affiliation(s)
- James A Fraser
- Physiological Laboratory, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK.
| | | |
Collapse
|
34
|
Takatani T, Takahashi K, Uozumi Y, Shikata E, Yamamoto Y, Ito T, Matsuda T, Schaffer SW, Fujio Y, Azuma J. Taurine inhibits apoptosis by preventing formation of the Apaf-1/caspase-9 apoptosome. Am J Physiol Cell Physiol 2004; 287:C949-53. [PMID: 15253891 DOI: 10.1152/ajpcell.00042.2004] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cardiomyocyte apoptosis contributes to cell death during myocardial infarction. One of the factors that regulate the degree of apoptosis during ischemia is the amino acid taurine. To study the mechanism underlying the beneficial effect of taurine, we examined the interaction between taurine and mitochondria-mediated apoptosis using a simulated ischemia model with cultured rat neonatal cardiomyocytes sealed in closed flasks. Exposure to medium containing 20 mM taurine reduced the degree of apoptosis following periods of ischemia varying from 24 to 72 h. In the untreated group, simulated ischemia for 24 h led to mitochondrial depolarization accompanied by cytochrome c release. The apoptotic cascade was also activated, as evidenced by the activation of caspase-9 and -3. Taurine treatment had no effect on mitochondrial membrane potential and cytochrome c release; however, it inhibited ischemia-induced cleavage of caspase-9 and -3. Taurine loading also suppressed the formation of the Apaf-1/caspase-9 apoptosome and the interaction of caspase-9 with Apaf-1. These findings demonstrate that taurine effectively prevents myocardial ischemia-induced apoptosis by inhibiting the assembly of the Apaf-1/caspase-9 apoptosome.
Collapse
Affiliation(s)
- Tomoka Takatani
- Department of Clinical Evaluation of Medicines and Therapeutics, Graduate School of Pharmaceutical Sciences, Osaka Univ., Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Ruiz-Meana M, Pina P, Garcia-Dorado D, Rodríguez-Sinovas A, Barba I, Miró-Casas E, Mirabet M, Soler-Soler J. Glycine protects cardiomyocytes against lethal reoxygenation injury by inhibiting mitochondrial permeability transition. J Physiol 2004; 558:873-82. [PMID: 15218075 PMCID: PMC1665014 DOI: 10.1113/jphysiol.2004.068320] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Post-ischaemic reperfusion may precipitate cardiomyocyte death upon correction of intracellular acidosis due in part to mitochondrial permeability transition. We investigated whether glycine, an amino acid with poorly understood cytoprotective properties, may interfere with this mechanism. In cardiomyocyte cultures, addition of glycine during re-energization following 1 h of simulated ischaemia (NaCN/2-deoxyglucose, pH 6.4) completely prevented necrotic cell death associated with pH normalization. Glycine also protected against cell death associated with pH normalization in reoxygenated rat hearts. Glycine prevented cyclosporin-sensitive swelling and calcein release associated with re-energization in rat heart mitochondria submitted to simulated ischaemia or to Ca(2+) stress under normoxia. NMR spectroscopy revealed a marked glycine depletion in re-energized cardiomyocytes that was reversed by exposure to 3 mm glycine. These results suggest that intracellular glycine exerts a previously unrecognized inhibition on mitochondrial permeability transition in cardiac myocytes, and that intracellular glycine depletion during myocardial hypoxia/reoxygenation makes the cell more vulnerable to necrotic death.
Collapse
Affiliation(s)
- Marisol Ruiz-Meana
- Unidad de Investigacion B, Hospital Universitario Vall d'Hebron, Pg. Vall d'Hebron 119-129, 08035 Barcelona, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Takatani T, Takahashi K, Uozumi Y, Matsuda T, Ito T, Schaffer SW, Fujio Y, Azuma J. Taurine prevents the ischemia-induced apoptosis in cultured neonatal rat cardiomyocytes through Akt/caspase-9 pathway. Biochem Biophys Res Commun 2004; 316:484-9. [PMID: 15020243 DOI: 10.1016/j.bbrc.2004.02.066] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2004] [Indexed: 11/24/2022]
Abstract
Activated Akt kinase has been proposed as a central role in suppressing apoptosis by modulating the activities of Bcl-2 family proteins and/or caspase-9. To study the mechanism underlying the anti-apoptotic effect of taurine, the interaction between taurine and Akt/caspase-9 pathway was examined using a simulated ischemia model with cultured rat neonatal cardiomyocytes sealed in closed flasks. Taurine (20mM) treatment attenuated simulated ischemia-induced decline in the activity of Akt. Although taurine treatment had no effect on the expression of Bcl-2 in mitochondria and the level of cytosolic cytochrome c, it inhibited ischemia-induced cleavage of caspases 9 and 3. Moreover, adenovirus transfer of the dominant negative form of Akt objected taurine-mediated anti-apoptotic effects, cancelling the suppression of caspase-9 and caspase-3 activities by taurine. These findings provide the first evidence that taurine inhibits ischemia-induced apoptosis in cardiac myocytes with the increase in Akt activities, by inactivating caspase-9.
Collapse
Affiliation(s)
- Tomoka Takatani
- Department of Clinical Evaluation of Medicines and Therapeutics, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Baumgarten CM, Clemo HF. Swelling-activated chloride channels in cardiac physiology and pathophysiology. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2003; 82:25-42. [PMID: 12732266 DOI: 10.1016/s0079-6107(03)00003-8] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Characteristics and functions of the cardiac swelling-activated Cl current (I(Cl,swell)) are considered in physiologic and pathophysiologic settings. I(Cl,swell) is broadly distributed throughout the heart and is stimulated not only by osmotic and hydrostatic increases in cell volume, but also by agents that alter membrane tension and direct mechanical stretch. The current is outwardly rectifying, reverses between the plateau and resting potentials (E(m)), and is time-independent over the physiologic voltage range. Consequently, I(Cl,swell) shortens action potential duration, depolarizes E(m), and acts to decrease cell volume. Because it is activated by stimuli that also activate cation stretch-activated channels, I(Cl,swell) should be considered as a potential effector of mechanoelectrical feedback. I(Cl,swell) is activated in ischemic and non-ischemic dilated cardiomyopathies and perhaps during ischemia and reperfusion. I(Cl,swell) plays a role in arrhythmogenesis, myocardial injury, preconditioning, and apoptosis of myocytes. As a result, I(Cl,swell) potentially is a novel therapeutic target.
Collapse
Affiliation(s)
- Clive M Baumgarten
- Department of Physiology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA 23298-0551, USA. clive.baumgarten.vcu.edu
| | | |
Collapse
|
38
|
Akar JG, Everett TH, Ho R, Craft J, Haines DE, Somlyo AP, Somlyo AV. Intracellular chloride accumulation and subcellular elemental distribution during atrial fibrillation. Circulation 2003; 107:1810-5. [PMID: 12665494 DOI: 10.1161/01.cir.0000058462.23347.93] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Ion channel remodeling occurs during atrial fibrillation (AF); however, the extent of alteration in the subcellular distribution of elements (Na, K, Cl, Ca, Mg, P) is unknown. Electron probe microanalysis was used to determine the total (free+bound) in vivo subcellular concentration of these elements during AF. METHODS AND RESULTS The left atrial appendage (LAA) was snap-frozen in situ after pacing (640 bpm) for 3 minutes (n=5 dogs), 30 minutes (n=3), or 48 hours (n=5). Dogs in sinus rhythm (n=3) served as controls. Whole-cell, cytosolic, and mitochondrial elemental concentrations were measured in cryosections. LAA effective refractory period (ERP) was measured before and after pacing. LAA ERP decreased significantly after 48 hours (116+/-3 to 88+/-10 ms, P=0.02). Whole-cell Cl increased by 9.0 mmol/L and 17 mmol/L after 3 and 30 minutes of pacing, respectively (P<0.0001), without a concomitant increase in Na. However, at 48 hours, whole-cell Na was reduced by 51% (P<0.01). Cytosolic Ca increased by 1.1 mmol/kg dry wt after 3 minutes (P<0.005), but mitochondrial Ca remained low and unchanged. Cell size measured in transverse cryosections increased after 3 minutes of pacing (75+/-5 to 109+/-11 microm2, P=0.007) but returned to baseline by 30 minutes (66+/-5 microm2). CONCLUSIONS Intracellular Cl accumulation induced by rapid pacing is a novel finding and may play a role in AF pathogenesis by causing resting membrane depolarization and ERP reduction. There was no evidence of cellular or mitochondrial Ca overload despite the development of electrical remodeling and transient increase in cytoplasmic Ca.
Collapse
Affiliation(s)
- Joseph G Akar
- Department of Molecular Physiology and Biological Physics and the Cardiovascular Division, University of Virginia Health Sciences Center, Charlottesville, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Martinez CBR, Souza MM. Acute effects of nitrite on ion regulation in two neotropical fish species. Comp Biochem Physiol A Mol Integr Physiol 2002; 133:151-60. [PMID: 12160881 DOI: 10.1016/s1095-6433(02)00144-7] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
To broaden the understanding of physiological responses of tropical fish to environmental stressors, the effects of nitrite on haematological parameters and plasma and red blood cell ion regulation were studied in two neotropical fish species, Astyanax altiparanae and Prochilodus lineatus. Both fish species were exposed to NaNO2 (30 mg l(-1)) over a 96-h period and blood samples were taken for ion and haematological analyses. The results revealed that nitrite leads to a decrease in P. lineatus blood haematocrit and haemoglobin content and an increase in blood methaemoglobin. A. altiparanae did not exhibit any significant difference in these haematological parameters. During the exposure to NO2- both fish species had significantly reduced plasma Na+ concentration and red blood cell (RBC) K+ concentration, but only P. lineatus showed an increase in extracellular K+ concentration. When RBC volume was analyzed in vitro, after 2 min of exposure to NaNO2, a 36% shrinkage was observed in P. lineatus cells, while only a 10% shrinkage was observed in A. altiparanae cells. These results suggest that for P. lineatus, nitrite entrance into the cell leads to methaemoglobin formation and K+ efflux, causing red cell shrinkage and increased plasma K+. However, A. altiparanae proved to be a species more resistant to nitrite, exhibiting fewer responses to this compound.
Collapse
Affiliation(s)
- Cláudia B R Martinez
- Departamento de Ciências Fisiológicas, Universidade Estadual de Londrina, C.P. 6001 CEP: 86051-990, Londrina, Paraná, Brazil.
| | | |
Collapse
|
40
|
Schaffer SW, Solodushko V, Kakhniashvili D. Beneficial effect of taurine depletion on osmotic sodium and calcium loading during chemical hypoxia. Am J Physiol Cell Physiol 2002; 282:C1113-20. [PMID: 11940527 DOI: 10.1152/ajpcell.00485.2001] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cellular sodium excess is cytotoxic because it increases both the intracellular osmotic load and intracellular calcium concentration ([Ca(2+)](i)). Because sodium levels rise during hypoxia, it is thought to contribute to hypoxic injury. Thus the present study tested the hypothesis that taurine-linked reductions in [Na(+)](i) reduce hypoxia-induced cell injury. Taurine depletion was achieved by exposing isolated neonatal cardiomyocytes to medium containing the taurine analog beta-Alanine. As predicted, the beta-Alanine-treated cell exhibited less hypoxia-induced necrosis and apoptosis than the control, as evidenced by less swelling, shrinkage, TdT-mediated dUTP nick end labeling staining, and accumulation of trypan blue. After 1 h of chemical hypoxia, [Na(+)](i) was 3.5-fold greater in the control than the taurine-deficient cell. Although more taurine was lost from the control cell than from the beta-Alanine-treated cell during hypoxia, the combined taurine and sodium osmotic load was lower in the beta-Alanine-treated cell. Taurine deficiency also reduced the degree of hypoxia-induced calcium overload. Thus the observed resistance against hypoxia-induced necrosis and apoptosis is probably related to an improvement in sodium and calcium handling.
Collapse
Affiliation(s)
- Stephen W Schaffer
- Department of Pharmacology, University of South Alabama School of Medicine, Mobile, Alabama 36688, USA.
| | | | | |
Collapse
|
41
|
Groen AK, Bloks VW, Bandsma RH, Ottenhoff R, Chimini G, Kuipers F. Hepatobiliary cholesterol transport is not impaired in Abca1-null mice lacking HDL. J Clin Invest 2001. [DOI: 10.1172/jci200112473] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
42
|
Zemgulis V, Ronquist G, Bjerner T, Henze A, Waldenström A, Thelin S, Wikström G. Energy-related metabolites during and after induced myocardial infarction with special emphasis on the reperfusion injury after extracorporeal circulation. ACTA ACUST UNITED AC 2001; 171:129-43. [PMID: 11350273 DOI: 10.1046/j.1365-201x.2001.00798.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the clinical setting great efforts have been made with contradictory results to operate upon acutely myocardial ischaemic patients. The reasons for the absence of clear-cut results are not well understood nor are they scientifically explored. To resolve this problem further, we attempted to design an experimental in vivo model to mimic acute myocardial ischaemia followed by extracorporeal circulation (ECC) and reperfusion. One of the main targets of our protocol was monitoring of myocardial energy metabolism by microdialysis (MCD) during the periods of coronary occlusion (60 min), hypothermic (30 degrees C) ECC and cardioplegia (45 min), followed by reperfusion with (30 min) and without (60 min) ECC. In eight anaesthetized, open-chest pigs, myocardial lactate, pyruvate, adenosine, taurine, inosine, hypoxanthine and guanosine were sampled with MCD in both ischaemic and non-ischaemic areas. Myocardial area at risk and infarct size were quantified with the modified topographical evaluation methods. The principal finding with this experimental setup was a biphasic release pattern of lactate, adenosine, taurine, inosine, hypoxanthine and guanosine from ischaemic myocardium. Lactate levels were equally high in reperfused ischaemic and non-ischaemic myocardial tissue. Pyruvate demonstrated consistently higher values in non-ischaemic myocardium throughout the experiment. A pattern was discernible, lactate being a marker of compromised cell energy metabolism, and taurine being a marker of disturbed cell integrity. Of special interest was the increased level of pyruvate in microdialysates of non-ischaemic myocardium as compared with its ischaemic counterpart. In conclusion, we found disturbances in energy metabolism and cell integrity not only in ischaemic but also in non-ischaemic tissue during reperfusion implying that non-ischaemic myocardium demonstrated an unexpected accumulation of lactate and pyruvate. These new findings could at least partly be explicatory to the increased risk of heart surgery in connection with acute myocardial infarction.
Collapse
Affiliation(s)
- V Zemgulis
- Department of Cardiothoracic Surgery, University Hospital, Uppsala, Sweden
| | | | | | | | | | | | | |
Collapse
|
43
|
Zemgulis V, Wikström G, Henze A, Waldenström A, Thelin S, Ronquist G. Nucleoside transport inhibition in ischemic myocardium results in enhanced taurine efflux. Eur J Pharmacol 2001; 411:143-154. [PMID: 11137869 DOI: 10.1016/s0014-2999(00)00844-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We measured with the microdialysis technique energy-related metabolites in ischemic myocardium over time in an experimental pig model. Emphasis was put on the dipyridamole effect when administered in the microdialysis probe inserted in ischemic myocardium. Not only adenosine but also taurine and pyruvate concentrations were significantly higher in the microdialysate during the periods of ischemia and extracorporeal circulation with cardioplegia. The enhanced efflux of taurine in ischemic myocardium induced by dipyridamole is a new finding. A mechanistic role of taurine in the prevention of Ca(2+) overload in ischemic myocytes is discussed. Also, taurine may have stimulatory effects on glycolysis in ischemic heart.
Collapse
Affiliation(s)
- V Zemgulis
- Department of Cardiothoracic Surgery, University Hospital, S-751 85, Uppsala, Sweden.
| | | | | | | | | | | |
Collapse
|
44
|
Souza MM, Boyle RT. A moderate decrease in temperature inhibits the calcium signaling mechanism(s) of the regulatory volume decrease in chick embryo cardiomyocytes. Braz J Med Biol Res 2001; 34:137-41. [PMID: 11151040 DOI: 10.1590/s0100-879x2001000100018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Chick cardiomyocytes, when submitted to hyposmotic swelling, exhibit a partial regulatory volume decrease (RVD). A Ca2+ influx by stretch-activated channels signals a taurine efflux and the RVD at 37 degrees C. We evaluated the cell's performance at room temperature. Cardiomyocytes isolated and cultured from 11-day-old chick embryos were submitted to a hyposmotic solution (180 mOsm/kg H2O) at 37 degrees C and at room temperature (26 degrees C). Under these conditions we measured the changes in cell volume as well as the intracellular free Ca2+ (using fura-2). During hyposmotic swelling, cells at 37 degrees C displayed a peak relative volume of 1.61 +/- 0.03 and recovery to 1.22 +/- 0.04 (N = 14), while cells at 26 degrees C presented a peak swell relative volume of 1.74 +/- 0.06 and did not recover (1.59 +/- 0.09, N = 9). Transient increases in intracellular Ca2+, which are characteristic of the normal RVD, were observed at both temperatures (29.1 +/- 4.5% (N = 8) and 115.2 +/- 42.8% (N = 5) increase at 37 degrees and 26 degrees C (P<0.05), respectively). A delay in the Ca2+ transient increase was also observed when the cells were at 26 degrees C (109 +/- 34 s compared to 38 +/- 9 s at 37 degrees C, P<0.05). At room temperature the RVD does not occur because the calcium transient increase, which is an early event in the signaling of the RVD, is delayed. Also, free calcium is not cleared as in the 37 degrees C RVD. In the normal RVD the free calcium returns to baseline levels. The very high and persistent free calcium levels seen at room temperature can lead to unregulated enzyme activities and may promote irreversible injury and cell death.
Collapse
Affiliation(s)
- M M Souza
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA.
| | | |
Collapse
|
45
|
Sejersted OM, Sjøgaard G. Dynamics and consequences of potassium shifts in skeletal muscle and heart during exercise. Physiol Rev 2000; 80:1411-81. [PMID: 11015618 DOI: 10.1152/physrev.2000.80.4.1411] [Citation(s) in RCA: 350] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Since it became clear that K(+) shifts with exercise are extensive and can cause more than a doubling of the extracellular [K(+)] ([K(+)](s)) as reviewed here, it has been suggested that these shifts may cause fatigue through the effect on muscle excitability and action potentials (AP). The cause of the K(+) shifts is a transient or long-lasting mismatch between outward repolarizing K(+) currents and K(+) influx carried by the Na(+)-K(+) pump. Several factors modify the effect of raised [K(+)](s) during exercise on membrane potential (E(m)) and force production. 1) Membrane conductance to K(+) is variable and controlled by various K(+) channels. Low relative K(+) conductance will reduce the contribution of [K(+)](s) to the E(m). In addition, high Cl(-) conductance may stabilize the E(m) during brief periods of large K(+) shifts. 2) The Na(+)-K(+) pump contributes with a hyperpolarizing current. 3) Cell swelling accompanies muscle contractions especially in fast-twitch muscle, although little in the heart. This will contribute considerably to the lowering of intracellular [K(+)] ([K(+)](c)) and will attenuate the exercise-induced rise of intracellular [Na(+)] ([Na(+)](c)). 4) The rise of [Na(+)](c) is sufficient to activate the Na(+)-K(+) pump to completely compensate increased K(+) release in the heart, yet not in skeletal muscle. In skeletal muscle there is strong evidence for control of pump activity not only through hormones, but through a hitherto unidentified mechanism. 5) Ionic shifts within the skeletal muscle t tubules and in the heart in extracellular clefts may markedly affect excitation-contraction coupling. 6) Age and state of training together with nutritional state modify muscle K(+) content and the abundance of Na(+)-K(+) pumps. We conclude that despite modifying factors coming into play during muscle activity, the K(+) shifts with high-intensity exercise may contribute substantially to fatigue in skeletal muscle, whereas in the heart, except during ischemia, the K(+) balance is controlled much more effectively.
Collapse
Affiliation(s)
- O M Sejersted
- Institute for Experimental Medical Research, University of Oslo, Ullevaal Hospital, Oslo, Norway.
| | | |
Collapse
|
46
|
Azuma M, Takahashi K, Fukuda T, Ohyabu Y, Yamamoto I, Kim S, Iwao H, Schaffer SW, Azuma J. Taurine attenuates hypertrophy induced by angiotensin II in cultured neonatal rat cardiac myocytes. Eur J Pharmacol 2000; 403:181-8. [PMID: 10973617 DOI: 10.1016/s0014-2999(00)00483-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The effect of taurine on angiotensin II-induced changes in cell morphology and biochemistry of the cultured neonatal cardiomyocyte was examined. Angiotensin II (1-100 nM) alone caused a slow increase in the surface area of the myocyte accompanied by an induction of the expression of atrial natriuretic peptide (ANP) and an upregulation of transforming growth factor beta(1) gene (TGF-beta(1)). The signaling pathway of angiotensin II (1-100 nM) was found to proceed through protein kinase C and the rapid activation of mitogen-activated protein (MAP) kinases. Pretreatment of the myocyte with taurine (20 mM) in the absence of angiotensin II had no visible effect on cell size or growth rate. However, the cells that were pretreated with taurine (20 mM) for 24 h exhibited reduced responsiveness to angiotensin II (100 nM) relative to surface cell area enlargement and the upregulation of the late and growth factor genes(ANP, TGF-beta(1)). Angiotensin II-mediated activation of the MAP kinases (extracellular signal-regulated protein kinase 1/2: ERK1/2) was not blocked by taurine. Taurine reduced the phosphorylation of a 29-kDa protein, a reaction which was enhanced by angiotensin II and appears to involve protein kinase C step. The results indicate that taurine is an effective inhibitor of certain aspects of angiotensin II action.
Collapse
Affiliation(s)
- M Azuma
- Department of Clinical Evaluation of Medicines and Therapeutics, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565,-0871, Suita, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Matthan NR, Raeini-Sarjaz M, Lichtenstein AH, Ausman LM, Jones PJ. Deuterium uptake and plasma cholesterol precursor levels correspond as methods for measurement of endogenous cholesterol synthesis in hypercholesterolemic women. Lipids 2000; 35:1037-44. [PMID: 11026626 DOI: 10.1007/s11745-000-0616-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
To assess the validity of two techniques used to measure human cholesterol synthesis, the rate of uptake of deuterium (D) into plasma free cholesterol (FC), and plasma cholesterol precursor (squalene, lanosterol, desmosterol and lathosterol) levels were compared in 14 women [65-71 yr with low density lipoprotein-cholesterol (LDL-C) > or = 3.36 mmol x L(-1)]. Subjects consumed each of six diets for 5-wk periods according to a randomized crossover design. The experimental diets included a baseline diet (39% energy as fat, 164 mg chol x 4.2 MJ(-1)) and five reduced-fat diets (30% of energy as fat), where two-thirds of the fat was either soybean oil; squeeze, tub or stick margarines; or butter. Fractional and absolute synthesis rates (FSR and ASR) of FC were determined using the deuterium incorporation (DI) method, while cholesterol precursor levels were measured using gas-liquid chromatography. Data were pooled across diets for each variable and correlation coefficients were calculated to determine if associations were present. There was good agreement among levels of the various cholesterol precursors. In addition, FSR in pools/d (p x d(-1)) and ASR in grams/d (g x d(-1)) were strongly associated with lathosterol (r= 0.72 and 0.71, P= 0.0001), desmosterol (r= 0.75 and 0.75, P = 0.0001), lanosterol (r = 0.67 and 0.67), and squalene (r = 0.69 and 0.68) when levels of the precursors were expressed as micromol x mmol(-1) C. Significant but lower correlations were observed between the D uptake and plasma cholesterol precursor levels when the latter were expressed in absolute amounts (micromol x L(-1)). The wide range of fatty acid profiles of the experimental diets did not influence the degree of association between methods. In conclusion, the DI method and levels of some cholesterol precursors correspond as methods for shortterm measurement of cholesterol synthesis.
Collapse
Affiliation(s)
- N R Matthan
- School of Dietetics and Human Nutrition, McGill University, Macdonald Campus, Ste-Anne-de-Bellevue, Quebec, Canada
| | | | | | | | | |
Collapse
|
48
|
Souza MM, Gross S, Boyle RT, Lieberman M. Na+/K+-ATPase inhibition during cardiac myocyte swelling: involvement of intracellular pH and Ca2+. Mol Cell Biochem 2000; 210:173-83. [PMID: 10976771 DOI: 10.1023/a:1007154412805] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Previous studies in chick embryo cardiac myocytes have shown that the inhibition of Na+/K+-ATPase with ouabain induces cell shrinkage in an isosmotic environment (290 mOsm). The same inhibition produces an enhanced RVD (regulatory volume decrease) in hyposmotic conditions (100 mOsm). It is also known that submitting chick embryo cardiomyocytes to a hyperosmotic solution induces shrinkage and a concurrent intracellular alkalization. The objective of this study was to evaluate the involvement of intracellular pH (pHi), intracellular Ca2+ ([Ca2+]i) and Na+/K+-ATPase inhibition during hyposmotic swelling. Changes in intracellular pH and Ca2+ were monitored using BCECF and fura-2, respectively. The addition of ouabain (100 microM) under both isosmotic and hyposmotic stimuli resulted in a large increase in [Ca2+]i (200%). A decrease in pHi (from 7.3 +/- 0.09 to 6.4 +/- 0.08, n = 6; p < 0.05) was only observed when ouabain was applied during hyposmotic swelling. This acidification was prevented by the removal of extracellular Ca2+. Inhibition of Na+/H+ exchange with amiloride (1 mM) had no effect on the ouabain-induced acidification. Preventing the mitochondrial accumulation of Ca2+ using CCCP (10 microM) resulted in a blockade of the progressive acidification normally induced by ouabain. The inhibition of mitochondrial membrane K+/H+ exchange with DCCD (1 mM) also completely prevented the acidification. Our results suggest that intracellular acidification upon cell swelling is mediated by an initial Ca2+ influx via Na+/Ca2+ exchange, which under hyposmotic conditions activates the K+ and Ca2+ mitochondrial exchange systems (K+/H+ and Ca2+/H+).
Collapse
Affiliation(s)
- M M Souza
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
| | | | | | | |
Collapse
|
49
|
Souza MM, Boyle RT, Lieberman M. Comparisons of different stages of chick embryonic development by the physiological regulatory response to hyposmotic challenge. Comp Biochem Physiol A Mol Integr Physiol 2000; 125:451-8. [PMID: 10840220 DOI: 10.1016/s1095-6433(00)00172-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Cardiac myocytes isolated and cultured from 11 day chick embryos present a Ca(2+)-dependent regulatory volume decrease (RVD) when exposed to hyposmotic stimulus. The RVD of myocytes from different embryonic stages were analyzed to evaluate their physiological performance through development. Among the several embryonic stages analyzed (6, 11, 16 and 19 days) only 19 day cardiac myocytes present a greater RVD when compared with 11 day (considered as control), the other ages showed no difference in the regulatory response. As it is known that RVD is Ca(2+) dependent, we decided to investigate the transient free Ca(2+) response during the hyposmotic swelling of the 11 and 19 day stages. The 11 day cardiac myocyte showed a transient 40% increase in intracellular free Ca(2+) when submitted to hyposmotic solutions, and the free Ca(2+) returned to baseline levels while the cells remained in hyposmotic buffer. However, the intracellular free Ca(2+) transient in the 19 day cells during hyposmotic challenge increases 100% and instead of returning to baseline levels, declines to 55% above control, well after the 11 day transient has returned to baseline. Also, quantitative fluorescence microscopy revealed that 19 day cardiac myocytes have more sarcoplasmic reticulum (SR) Ca(2+) ATPase sites per cell as compared to the 11 day cells. Our findings suggest that 19 day cells have more developed intracellular Ca(2+) stores (SR). By evoking the mechanism of Ca(2+) induced Ca(2+) release, the cells have more free Ca(2+) available for signaling the RVD during hyposmotic swelling.
Collapse
Affiliation(s)
- M M Souza
- Department of Cell Biology, Division of Physiology, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | |
Collapse
|
50
|
Mühling J, Weiss S, Knülle V, Sablotzki A, Dehne MG, Hempelmann G. Effects of etomidate on free intracellular amino acid concentrations in polymorphonuclear leucocytes in vitro. Acta Anaesthesiol Scand 2000; 44:429-35. [PMID: 10757576 DOI: 10.1034/j.1399-6576.2000.440412.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND Previous studies have shown the inhibitory effects of etomidate on polymorphonuclear leucocyte (PMN) function. No reports exist, however, regarding free intracellular amino acid metabolism, although physiological cell metabolism and basic cell functions rely upon a balanced intracellular amino acid content and the cell membrane-mediated separation of cellular amino acids from the extracellular plasma amino acid pool. Thus, in the current study, we evaluated the effects of etomidate on free intracellular amino acid metabolism in PMN. METHODS With ethics committee approval, blood was withdrawn from 35 healthy volunteers and incubated (1 h) either with 0 microg/ml, 0.0156 microg/ml, 0.0625 microg/ml or 0.5 microg/ml of etomidate as well as with its additives (propylene glycol and Lipofundin MCT 10%). The PMN were separated using standardized Percoll-gradient and centrifugation procedure before deep-freezing and lyophilization techniques were employed. All PMN samples were dissolved in methanol/H2O, and the concentrations of free intracellular amino acids were monitored using both novel advanced PMN-separation and high-performance liquid chromatography techniques. RESULTS Etomidate influenced important free amino acid profiles in PMN in a dose-dependent manner, indicating complex changes of cellular amino acid turnover. Neither propylene glycol nor Lipofundin MCT 10% changed free amino acid concentrations in PMN. CONCLUSIONS For the first time, the effects of etomidate on free intracellular amino acid metabolism in PMN have been investigated. Our results draw attention to the biochemical pathways which may be involved in etomidate-induced alterations in PMN function and cellular immunocompetence.
Collapse
Affiliation(s)
- J Mühling
- Department of Anaesthesiology and Intensive Care Medicine, Justus-Liebig-University, Giessen, Germany
| | | | | | | | | | | |
Collapse
|