1
|
Baghestani S, Haldin C, Kosijer P, Alam CM, Toivola DM. β-Cell keratin 8 maintains islet mechanical integrity, mitochondrial ultrastructure, and β-cell glucose transporter 2 plasma membrane targeting. Am J Physiol Cell Physiol 2024; 327:C462-C476. [PMID: 38912736 DOI: 10.1152/ajpcell.00123.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/31/2024] [Accepted: 06/12/2024] [Indexed: 06/25/2024]
Abstract
Islet β-cell dysfunction is an underlying factor for type I diabetes (T1D) development. Insulin sensing and secretion are tightly regulated in β-cells at multiple subcellular levels. The epithelial intermediate filament (IF) protein keratin (K) 8 is the main β-cell keratin, constituting the filament network with K18. To identify the cell-autonomous functions of K8 in β-cells, mice with targeted deletion of β-cell K8 (K8flox/flox; Ins-Cre) were analyzed for islet morphology, ultrastructure, and integrity, as well as blood glucose regulation and streptozotocin (STZ)-induced diabetes development. Glucose transporter 2 (GLUT2) localization was studied in β-cells in vivo and in MIN6 cells with intact or disrupted K8/K18 filaments. Loss of β-cell K8 leads to a major reduction in K18. Islets without β-cell K8 are more fragile, and these β-cells display disjointed plasma membrane organization with less membranous E-cadherin and smaller mitochondria with diffuse cristae. Lack of β-cell K8 also leads to a reduced glucose-stimulated insulin secretion (GSIS) response in vivo, despite undisturbed systemic blood glucose regulation. K8flox/flox, Ins-Cre mice have a decreased sensitivity to STZ compared with K8 wild-type mice, which is in line with decreased membranous GLUT2 expression observed in vivo, as GLUT2 is required for STZ uptake in β-cells. In vitro, MIN6 cell plasma membrane GLUT2 is rescued in cells overexpressing K8/K18 filaments but mistargeted in cells with disrupted K8/K18 filaments. β-Cell K8 is required for islet and β-cell structural integrity, normal mitochondrial morphology, and GLUT2 plasma membrane targeting, and has implications on STZ sensitivity as well as systemic insulin responses.NEW & NOTEWORTHY Keratin 8 is the main cytoskeletal protein in the cytoplasmic intermediate filament network in β-cells. Here for the first time, we assessed the β-cell autonomous mechanical and nonmechanical roles of keratin 8 in β-cell function. We demonstrated the importance of keratin 8 in islet and β-cell structural integrity, maintaining mitochondrial morphology and GLUT2 plasma membrane targeting.
Collapse
Affiliation(s)
- Sarah Baghestani
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship, Åbo Akademi University, Turku, Finland
| | - Caroline Haldin
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship, Åbo Akademi University, Turku, Finland
| | - Petar Kosijer
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship, Åbo Akademi University, Turku, Finland
| | - Catharina M Alam
- School of Applied Sciences, Edinburgh Napier University, Edinburg, United Kingdom
| | - Diana M Toivola
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship, Åbo Akademi University, Turku, Finland
- Turku Center for Disease Modeling, University of Turku, Turku, Finland
| |
Collapse
|
2
|
Sun J, Li P, Gui H, Rittié L, Lombard DB, Rietscher K, Magin TM, Xie Q, Liu L, Omary MB. Deacetylation via SIRT2 prevents keratin-mutation-associated injury and keratin aggregation. JCI Insight 2023; 8:e166314. [PMID: 37485877 PMCID: PMC10443796 DOI: 10.1172/jci.insight.166314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 06/02/2023] [Indexed: 07/25/2023] Open
Abstract
Keratin (K) and other intermediate filament (IF) protein mutations at conserved arginines disrupt keratin filaments into aggregates and cause human epidermolysis bullosa simplex (EBS; K14-R125C) or predispose to mouse liver injury (K18-R90C). The challenge for more than 70 IF-associated diseases is the lack of clinically utilized IF-targeted therapies. We used high-throughput drug screening to identify compounds that normalized mutation-triggered keratin filament disruption. Parthenolide, a plant sesquiterpene lactone, dramatically reversed keratin filament disruption and protected cells and mice expressing K18-R90C from apoptosis. K18-R90C became hyperacetylated compared with K18-WT and treatment with parthenolide normalized K18 acetylation. Parthenolide upregulated the NAD-dependent SIRT2, and increased SIRT2-keratin association. SIRT2 knockdown or pharmacologic inhibition blocked the parthenolide effect, while site-specific Lys-to-Arg mutation of keratin acetylation sites normalized K18-R90C filaments. Treatment of K18-R90C-expressing cells and mice with nicotinamide mononucleotide had a parthenolide-like protective effect. In 2 human K18 variants that associate with human fatal drug-induced liver injury, parthenolide protected K18-D89H- but not K8-K393R-induced filament disruption and cell death. Importantly, parthenolide normalized K14-R125C-mediated filament disruption in keratinocytes and inhibited dispase-triggered keratinocyte sheet fragmentation and Fas-mediated apoptosis. Therefore, keratin acetylation may provide a novel therapeutic target for some keratin-associated diseases.
Collapse
Affiliation(s)
- Jingyuan Sun
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, New Jersey, USA
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, PR China
| | - Pei Li
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, New Jersey, USA
| | - Honglian Gui
- Department of Infectious Diseases, Ruijin Hospital, Jiaotong University School of Medicine, Shanghai, PR China
| | - Laure Rittié
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA
| | - David B. Lombard
- Sylvester Comprehensive Cancer Center, and Department of Pathology & Laboratory Medicine, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Katrin Rietscher
- Division of Cell and Developmental Biology, Institute of Biology, Leipzig University, Leipzig, Germany
| | - Thomas M. Magin
- Division of Cell and Developmental Biology, Institute of Biology, Leipzig University, Leipzig, Germany
| | - Qing Xie
- Department of Infectious Diseases, Ruijin Hospital, Jiaotong University School of Medicine, Shanghai, PR China
| | - Li Liu
- Hepatology Unit and Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, PR China
| | - M. Bishr Omary
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, New Jersey, USA
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
3
|
Li P, Maitra D, Kuo N, Kwan R, Song Y, Tang W, Chen L, Xie Q, Liu L, Omary MB. PP2 protects from keratin mutation-associated liver injury and filament disruption via SRC kinase inhibition in male but not female mice. Hepatology 2023; 77:144-158. [PMID: 35586977 DOI: 10.1002/hep.32574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 02/03/2023]
Abstract
BACKGROUND AND AIMS Hepatocyte keratin polypeptides 8/18 (K8/K18) are unique among intermediate filaments proteins (IFs) in that their mutation predisposes to, rather than causes, human disease. Mice that overexpress human K18 R90C manifest disrupted hepatocyte keratin filaments with hyperphosphorylated keratins and predisposition to Fas-induced liver injury. We hypothesized that high-throughput screening will identify compounds that protect the liver from mutation-triggered predisposition to injury. APPROACH AND RESULTS Using A549 cells transduced with a lentivirus K18 construct and high-throughput screening, we identified the SRC-family tyrosine kinases inhibitor, PP2, as a compound that reverses keratin filament disruption and protects from apoptotic cell death caused by K18 R90C mutation at this highly conserved arginine. PP2 also ameliorated Fas-induced apoptosis and liver injury in male but not female K18 R90C mice. The PP2 male selectivity is due to its lower turnover in male versus female livers. Knockdown of SRC but not another kinase target of PP2, protein tyrosine kinase 6, in A549 cells abrogated the hepatoprotective effect of PP2. Phosphoproteomic analysis and validation showed that the protective effect of PP2 associates with Ser/Thr but not Tyr keratin hypophosphorylation, and differs from the sex-independent effect of the Ser/Thr kinase inhibitor PKC412. Inhibition of RAF kinase, a downstream target of SRC, by vemurafenib had a similar protective effect to PP2 in A549 cells and male K18 R90C mice. CONCLUSIONS PP2 protects, in a male-selective manner, keratin mutation-induced mouse liver injury by inhibiting SRC-triggered downstream Ser/Thr phosphorylation of K8/K18, which is phenocopied by RAF kinase inhibitor vemurafenib. The PP2/vemurafenib-associated findings, and their unique mechanisms of action, further support the potential role of select kinase inhibition as therapeutic opportunities for keratin and other IF-associated human diseases.
Collapse
Affiliation(s)
- Pei Li
- Robert Wood Johnson Medical School , Rutgers University , New Brunswick , New Jersey , USA
- Center for Advanced Biotechnology & Medicine , Rutgers University , Piscataway , New Jersey , USA
| | - Dhiman Maitra
- Robert Wood Johnson Medical School , Rutgers University , New Brunswick , New Jersey , USA
- Center for Advanced Biotechnology & Medicine , Rutgers University , Piscataway , New Jersey , USA
- Early-Stage Method Development & Characterization Unit , Bristol Myers Squibb , New Brunswick , New Jersey , USA
| | - Ning Kuo
- Robert Wood Johnson Medical School , Rutgers University , New Brunswick , New Jersey , USA
- Center for Advanced Biotechnology & Medicine , Rutgers University , Piscataway , New Jersey , USA
| | - Raymond Kwan
- Robert Wood Johnson Medical School , Rutgers University , New Brunswick , New Jersey , USA
- Center for Advanced Biotechnology & Medicine , Rutgers University , Piscataway , New Jersey , USA
| | - Yang Song
- Department of Radiation Oncology , Nanfang Hospital, Southern Medical University , Guangzhou , People's Republic of China
| | - Weiliang Tang
- Department of Infectious Diseases , Ruijin Hospital, Jiao Tong University School of Medicine , Shanghai , People's Republic of China
| | - Lu Chen
- Department of Infectious Diseases , Ruijin Hospital, Jiao Tong University School of Medicine , Shanghai , People's Republic of China
| | - Qing Xie
- Department of Infectious Diseases , Ruijin Hospital, Jiao Tong University School of Medicine , Shanghai , People's Republic of China
| | - Li Liu
- Hepatology Unit and Department of Infectious Diseases, Nanfang Hospital , Southern Medical University , Guangzhou , People's Republic of China
| | - M Bishr Omary
- Robert Wood Johnson Medical School , Rutgers University , New Brunswick , New Jersey , USA
- Center for Advanced Biotechnology & Medicine , Rutgers University , Piscataway , New Jersey , USA
| |
Collapse
|
4
|
Kim S, Lim Y, Lee SY, Yoon HN, Yi H, Jang KH, Ku NO. Keratin 8 mutations in transgenic mice predispose to lung injury. J Cell Sci 2021; 134:jcs250167. [PMID: 34342355 DOI: 10.1242/jcs.250167] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 06/28/2021] [Indexed: 11/20/2022] Open
Abstract
Keratin 8 (K8) is the cytoskeletal intermediate filament protein of simple-type epithelia. Mutations in K8 predispose the affected individual and transgenic mouse to liver disease. However, the role of K8 in the lung has not been reported in mutant transgenic mouse models. Here, we investigated the susceptibility of two different transgenic mice expressing K8 Gly62-Cys (Gly62 replaced with Cys) or Ser74-Ala (Ser74 replaced with Ala) to lung injury. The mutant transgenic mice were highly susceptible to two independent acute and chronic lung injuries compared with control mice. Both K8 Gly62-Cys mice and K8 Ser74-Ala mice showed markedly increased mouse lethality (∼74% mutant mice versus ∼34% control mice) and more severe lung damage, with increased inflammation and apoptosis, under L-arginine-mediated acute lung injury. Moreover, the K8 Ser74-Ala mice had more severe lung damage, with extensive hemorrhage and prominent fibrosis, under bleomycin-induced chronic lung injury. Our study provides the first direct evidence that K8 mutations predispose to lung injury in transgenic mice.
Collapse
Affiliation(s)
- Sujin Kim
- Interdisciplinary Program of Integrated OMICS for Biomedical Science, Graduate School, Yonsei University, Seoul 03722, Korea
| | - Younglan Lim
- Interdisciplinary Program of Integrated OMICS for Biomedical Science, Graduate School, Yonsei University, Seoul 03722, Korea
| | - So-Young Lee
- Interdisciplinary Program of Integrated OMICS for Biomedical Science, Graduate School, Yonsei University, Seoul 03722, Korea
| | - Han-Na Yoon
- Interdisciplinary Program of Integrated OMICS for Biomedical Science, Graduate School, Yonsei University, Seoul 03722, Korea
| | - Hayan Yi
- Interdisciplinary Program of Integrated OMICS for Biomedical Science, Graduate School, Yonsei University, Seoul 03722, Korea
| | - Kwi-Hoon Jang
- Interdisciplinary Program of Integrated OMICS for Biomedical Science, Graduate School, Yonsei University, Seoul 03722, Korea
| | - Nam-On Ku
- Interdisciplinary Program of Integrated OMICS for Biomedical Science, Graduate School, Yonsei University, Seoul 03722, Korea
- Department of Bio-Convergence ISED, Underwood International College, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
5
|
Muriel JM, O'Neill A, Kerr JP, Kleinhans-Welte E, Lovering RM, Bloch RJ. Keratin 18 is an integral part of the intermediate filament network in murine skeletal muscle. Am J Physiol Cell Physiol 2020; 318:C215-C224. [PMID: 31721615 PMCID: PMC6985829 DOI: 10.1152/ajpcell.00279.2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 11/07/2019] [Accepted: 11/08/2019] [Indexed: 01/26/2023]
Abstract
Intermediate filaments (IFs) contribute to force transmission, cellular integrity, and signaling in skeletal muscle. We previously identified keratin 19 (Krt19) as a muscle IF protein. We now report the presence of a second type I muscle keratin, Krt18. Krt18 mRNA levels are about half those for Krt19 and only 1:1,000th those for desmin; the protein was nevertheless detectable in immunoblots. Muscle function, measured by maximal isometric force in vivo, was moderately compromised in Krt18-knockout (Krt18-KO) or dominant-negative mutant mice (Krt18 DN), but structure was unaltered. Exogenous Krt18, introduced by electroporation, was localized in a reticulum around the contractile apparatus in wild-type muscle and to a lesser extent in muscle lacking Krt19 or desmin or both proteins. Exogenous Krt19, which was either reticular or aggregated in controls, became reticular more frequently in Krt19-null than in Krt18-null, desmin-null, or double-null muscles. Desmin was assembled into the reticulum normally in all genotypes. Notably, all three IF proteins appeared in overlapping reticular structures. We assessed the effect of Krt18 on susceptibility to injury in vivo by electroporating siRNA into tibialis anterior (TA) muscles of control and Krt19-KO mice and testing 2 wk later. Results showed a 33% strength deficit (reduction in maximal torque after injury) compared with siRNA-treated controls. Conversely, electroporation of siRNA to Krt19 into Krt18-null TA yielded a strength deficit of 18% after injury compared with controls. Our results suggest that Krt18 plays a complementary role to Krt19 in skeletal muscle in both assembling keratin-based filaments and transducing contractile force.
Collapse
Affiliation(s)
- Joaquin M Muriel
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Andrea O'Neill
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Jaclyn P Kerr
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Emily Kleinhans-Welte
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Richard M Lovering
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, Maryland
| | - Robert J Bloch
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
6
|
The role of keratins in the digestive system: lessons from transgenic mouse models. Histochem Cell Biol 2018; 150:351-359. [PMID: 30039330 DOI: 10.1007/s00418-018-1695-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2018] [Indexed: 01/17/2023]
Abstract
Keratins are the largest subfamily of intermediate filament proteins. They are either type I acidic or type II basic keratins. Keratins form obligate heteropolymer in epithelial cells and their expression patterns are tissue-specific. Studies have shown that keratin mutations are the cause of many diseases in humans or predispose humans to acquiring them. Using mouse models to study keratin-associated human diseases is critical, because they allow researchers to get a better understanding of these diseases and their progressions, and so many such studies have been conducted. Acknowledging the importance, researches with genetically modified mice expressing human disease-associated keratin mutants have been widely done. Numerous studies using keratin knockout mice, keratin-overexpressed mice, or transgenic mice expressing keratin mutants have been conducted. This review summarizes the mouse models that have been used to study type I and type II keratin expression in the digestive organs, namely, the liver, pancreas, and colon.
Collapse
|
7
|
Tarbet HJ, Dolat L, Smith TJ, Condon BM, O'Brien ET, Valdivia RH, Boyce M. Site-specific glycosylation regulates the form and function of the intermediate filament cytoskeleton. eLife 2018. [PMID: 29513221 PMCID: PMC5841932 DOI: 10.7554/elife.31807] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Intermediate filaments (IF) are a major component of the metazoan cytoskeleton and are essential for normal cell morphology, motility, and signal transduction. Dysregulation of IFs causes a wide range of human diseases, including skin disorders, cardiomyopathies, lipodystrophy, and neuropathy. Despite this pathophysiological significance, how cells regulate IF structure, dynamics, and function remains poorly understood. Here, we show that site-specific modification of the prototypical IF protein vimentin with O-linked β-N-acetylglucosamine (O-GlcNAc) mediates its homotypic protein-protein interactions and is required in human cells for IF morphology and cell migration. In addition, we show that the intracellular pathogen Chlamydia trachomatis, which remodels the host IF cytoskeleton during infection, requires specific vimentin glycosylation sites and O-GlcNAc transferase activity to maintain its replicative niche. Our results provide new insight into the biochemical and cell biological functions of vimentin O-GlcNAcylation, and may have broad implications for our understanding of the regulation of IF proteins in general. Like the body's skeleton, the cytoskeleton gives shape and structure to the inside of a cell. Yet, unlike a skeleton, the cytoskeleton is ever changing. The cytoskeleton consists of many fibers each made from chains of protein molecules. One of these proteins is called vimentin and it forms intermediate filaments in the cytoskeleton. Many different types of cells contain vimentin and a lot of it is found in cancer cells that have spread beyond their original location to other sites in the body. Cells use chemical modifications to regulate cytoskeleton proteins. For example, through a process called glycosylation, cells can reversibly attach a sugar modification called O-GlcNAc to vimentin. O-GlcNAc can be attached to several different parts of vimentin and each location may have a different effect. It is not currently clear how cells control their vimentin filaments or what role O-GlcNAc plays in this process. Using genetic engineering, Tarbet et al. produced human cells in the laboratory with modified vimentin proteins. These altered proteins lacked some of the sites for O-GlcNAc attachment. The goal was to see whether the loss of O-GlcNAc at a specific location would affect fiber formation and cell behavior. The results showed one site where vimentin needs O-GlcNAc to form fibers. Without O-GlcNAc at this site, cells could not migrate towards chemical signals. In addition, in normal human cells, Chlamydia bacteria hijack vimentin and rearrange the filaments to form a cage around themselves for protection. However, the cells lacking O-GlcNAc on vimentin were resistant to infection by Chlamydia bacteria. These findings highlight the importance of O-GlcNAc on vimentin in healthy cells and during infection. Vimentin’s contribution to cell migration may also help to explain its role in the spread of cancer. The importance of O-GlcNAc suggests it could be a new target for therapies. Yet, it also highlights the need for caution due to the delicate balance between the activity of vimentin in healthy and diseased cells. In addition, human cells produce about 70 other vimentin-like proteins and further work will examine if they are also affected by O-GlcNAc.
Collapse
Affiliation(s)
- Heather J Tarbet
- Department of Biochemistry, Duke University School of Medicine, Durham, United States
| | - Lee Dolat
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, United States.,Center for Host-Microbial Interactions, Duke University School of Medicine, Durham, United States
| | - Timothy J Smith
- Department of Biochemistry, Duke University School of Medicine, Durham, United States
| | - Brett M Condon
- Department of Biochemistry, Duke University School of Medicine, Durham, United States
| | - E Timothy O'Brien
- Department of Biochemistry, Duke University School of Medicine, Durham, United States.,Department of Physics and Astronomy, University of North Carolina, Chapel Hill, United States
| | - Raphael H Valdivia
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, United States.,Center for Host-Microbial Interactions, Duke University School of Medicine, Durham, United States
| | - Michael Boyce
- Department of Biochemistry, Duke University School of Medicine, Durham, United States.,Center for Host-Microbial Interactions, Duke University School of Medicine, Durham, United States
| |
Collapse
|
8
|
Sanghvi-Shah R, Weber GF. Intermediate Filaments at the Junction of Mechanotransduction, Migration, and Development. Front Cell Dev Biol 2017; 5:81. [PMID: 28959689 PMCID: PMC5603733 DOI: 10.3389/fcell.2017.00081] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 08/30/2017] [Indexed: 01/04/2023] Open
Abstract
Mechanically induced signal transduction has an essential role in development. Cells actively transduce and respond to mechanical signals and their internal architecture must manage the associated forces while also being dynamically responsive. With unique assembly-disassembly dynamics and physical properties, cytoplasmic intermediate filaments play an important role in regulating cell shape and mechanical integrity. While this function has been recognized and appreciated for more than 30 years, continually emerging data also demonstrate important roles of intermediate filaments in cell signal transduction. In this review, with a particular focus on keratins and vimentin, the relationship between the physical state of intermediate filaments and their role in mechanotransduction signaling is illustrated through a survey of current literature. Association with adhesion receptors such as cadherins and integrins provides a critical interface through which intermediate filaments are exposed to forces from a cell's environment. As a consequence, these cytoskeletal networks are posttranslationally modified, remodeled and reorganized with direct impacts on local signal transduction events and cell migratory behaviors important to development. We propose that intermediate filaments provide an opportune platform for cells to both cope with mechanical forces and modulate signal transduction.
Collapse
Affiliation(s)
- Rucha Sanghvi-Shah
- Department of Biological Sciences, Rutgers University-NewarkNewark, NJ, United States
| | - Gregory F Weber
- Department of Biological Sciences, Rutgers University-NewarkNewark, NJ, United States
| |
Collapse
|
9
|
Wong JKL, Campbell D, Ngo ND, Yeung F, Cheng G, Tang CSM, Chung PHY, Tran NS, So MT, Cherny SS, Sham PC, Tam PK, Garcia-Barcelo MM. Genetic study of congenital bile-duct dilatation identifies de novo and inherited variants in functionally related genes. BMC Med Genomics 2016; 9:75. [PMID: 27955658 PMCID: PMC5154011 DOI: 10.1186/s12920-016-0236-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 12/07/2016] [Indexed: 12/18/2022] Open
Abstract
Background Congenital dilatation of the bile-duct (CDD) is a rare, mostly sporadic, disorder that results in bile retention with severe associated complications. CDD affects mainly Asians. To our knowledge, no genetic study has ever been conducted. Methods We aim to identify genetic risk factors by a “trio-based” exome-sequencing approach, whereby 31 CDD probands and their unaffected parents were exome-sequenced. Seven-hundred controls from the local population were used to detect gene-sets significantly enriched with rare variants in CDD patients. Results Twenty-one predicted damaging de novo variants (DNVs; 4 protein truncating and 17 missense) were identified in several evolutionarily constrained genes (p < 0.01). Six genes carrying DNVs were associated with human developmental disorders involving epithelial, connective or bone morphologies (PXDN, RTEL1, ANKRD11, MAP2K1, CYLD, ACAN) and four linked with cholangio- and hepatocellular carcinomas (PIK3CA, TLN1 CYLD, MAP2K1). Importantly, CDD patients have an excess of DNVs in cancer-related genes (p < 0.025). Thirteen genes were recurrently mutated at different sites, forming compound heterozygotes or functionally related complexes within patients. Conclusions Our data supports a strong genetic basis for CDD and show that CDD is not only genetically heterogeneous but also non-monogenic, requiring mutations in more than one genes for the disease to develop. The data is consistent with the rarity and sporadic presentation of CDD. Electronic supplementary material The online version of this article (doi:10.1186/s12920-016-0236-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- John K L Wong
- Department of Psychiatry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 1F Room 5D HKJCBIR, 5 Sassoon Road, Hong Kong, SAR, China
| | - Desmond Campbell
- Department of Psychiatry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 1F Room 5D HKJCBIR, 5 Sassoon Road, Hong Kong, SAR, China
| | | | - Fanny Yeung
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, China
| | - Guo Cheng
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, China
| | - Clara S M Tang
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, China
| | - Patrick H Y Chung
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, China
| | | | - Man-Ting So
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, China
| | - Stacey S Cherny
- Department of Psychiatry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 1F Room 5D HKJCBIR, 5 Sassoon Road, Hong Kong, SAR, China.,Center for Genomic Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, China
| | - Pak C Sham
- Department of Psychiatry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 1F Room 5D HKJCBIR, 5 Sassoon Road, Hong Kong, SAR, China.,Center for Genomic Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, China.,Centre for Reproduction, Development, and Growth, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, China
| | - Paul K Tam
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, China.,Centre for Reproduction, Development, and Growth, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, China
| | - Maria-Mercè Garcia-Barcelo
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, China. .,Centre for Reproduction, Development, and Growth, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, China.
| |
Collapse
|
10
|
Siemionow K, Teul J, Drągowski P, Pałka J, Miltyk W. New potential biomarkers of acetaminophen-induced hepatotoxicity. Adv Med Sci 2016; 61:325-330. [PMID: 27471017 DOI: 10.1016/j.advms.2016.05.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 02/29/2016] [Accepted: 05/16/2016] [Indexed: 12/26/2022]
Abstract
Acetaminophen (APAP) is one of the most common antipyretic and analgesic drugs. Despite various precautions patients use APAP in amounts exceeding acceptable daily doses. APAP overdosing contributes to APAP intoxication, which leads to acute liver injury or necessity of exigent liver transplantation. Biomarkers that can be helpful in early diagnosis of liver injury during APAP overdosing are studied worldwide. This review presents recent reports on new potential biomarkers and their prospective application in clinical practice.
Collapse
|
11
|
Kakade PS, Budnar S, Kalraiya RD, Vaidya MM. Functional Implications of O-GlcNAcylation-dependent Phosphorylation at a Proximal Site on Keratin 18. J Biol Chem 2016; 291:12003-13. [PMID: 27059955 DOI: 10.1074/jbc.m116.728717] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Indexed: 01/16/2023] Open
Abstract
Keratins 8/18 (K8/18) are phosphoglycoproteins and form the major intermediate filament network of simple epithelia. The three O-GlcNAcylation (Ser(29), Ser(30), and Ser(48)) and two phosphorylation (Ser(33) and Ser(52)) serine sites on K18 are well characterized. Both of these modifications have been reported to increase K18 solubility and regulate its filament organization. In this report, we investigated the site-specific interplay between these two modifications in regulating the functional properties of K18, like solubility, stability, and filament organization. An immortalized hepatocyte cell line (HHL-17) stably expressing site-specific single, double, and triple O-GlcNAc and phosphomutants of K18 were used to identify the site(s) critical for regulating these functions. Keratin 18 mutants where O-GlcNAcylation at Ser(30) was abolished (K18-S30A) exhibited reduced phosphorylation induced solubility, increased stability, defective filament architecture, and slower migration. Interestingly, K18-S30A mutants also showed loss of phosphorylation at Ser(33), a modification known to regulate the solubility of K18. Further to this, the K18 phosphomutant (K18-S33A) mimicked K18-S30A in its stability, filament organization, and cell migration. These results indicate that O-GlcNAcylation at Ser(30) promotes phosphorylation at Ser(33) to regulate the functional properties of K18 and also impact cellular processes like migration. O-GlcNAcylation and phosphorylation on the same or adjacent sites on most proteins antagonize each other in regulating protein functions. Here we report a novel, positive interplay between O-GlcNAcylation and phosphorylation at adjacent sites on K18 to regulate its fundamental properties.
Collapse
Affiliation(s)
- Poonam S Kakade
- From the Advanced Centre for Treatment, Research, and Education in Cancer (ACTREC), Tata Memorial Centre, Sector 22, Kharghar, Navi Mumbai 410210, India
| | - Srikanth Budnar
- From the Advanced Centre for Treatment, Research, and Education in Cancer (ACTREC), Tata Memorial Centre, Sector 22, Kharghar, Navi Mumbai 410210, India
| | - Rajiv D Kalraiya
- From the Advanced Centre for Treatment, Research, and Education in Cancer (ACTREC), Tata Memorial Centre, Sector 22, Kharghar, Navi Mumbai 410210, India
| | - Milind M Vaidya
- From the Advanced Centre for Treatment, Research, and Education in Cancer (ACTREC), Tata Memorial Centre, Sector 22, Kharghar, Navi Mumbai 410210, India
| |
Collapse
|
12
|
Clarke JI, Dear JW, Antoine DJ. Recent advances in biomarkers and therapeutic interventions for hepatic drug safety – false dawn or new horizon? Expert Opin Drug Saf 2016; 15:625-34. [DOI: 10.1517/14740338.2016.1160057] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Joanna I. Clarke
- MRC Centre for Drug Safety Science and Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - James W. Dear
- Pharmacology, Toxicology and Therapeutics Unit, BHF/University Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Daniel J. Antoine
- MRC Centre for Drug Safety Science and Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| |
Collapse
|
13
|
|
14
|
Kwan R, Chen L, Looi K, Tao GZ, Weerasinghe SV, Snider NT, Conti MA, Adelstein RS, Xie Q, Omary MB. PKC412 normalizes mutation-related keratin filament disruption and hepatic injury in mice by promoting keratin-myosin binding. Hepatology 2015; 62:1858-69. [PMID: 26126491 PMCID: PMC4681638 DOI: 10.1002/hep.27965] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 06/29/2015] [Indexed: 12/22/2022]
Abstract
UNLABELLED Keratins, among other cytoskeletal intermediate filament proteins, are mutated at a highly conserved arginine with consequent severe disease phenotypes due to disruption of keratin filament organization. We screened a kinase inhibitor library, using A549 cells that are transduced with a lentivirus keratin 18 (K18) construct, to identify compounds that normalize filament disruption due to K18 Arg90Cys mutation at the conserved arginine. High-throughput screening showed that PKC412, a multikinase inhibitor, ameliorated K18 Arg90Cys-mediated keratin filament disruption in cells and in the livers of previously described transgenic mice that overexpress K18 Arg90Cys. Furthermore, PKC412 protected cultured A549 cells that express mutant or wild-type K18 and mouse livers of the K18 Arg90Cys-overexpressing transgenic mice from Fas-induced apoptosis. Proteomic analysis of proteins that associated with keratins after exposure of K18-expressing A549 cells to PKC412 showed that nonmuscle myosin heavy chain-IIA (NMHC-IIA) partitions with the keratin fraction. The nonmuscle myosin-IIA (NM-IIA) association with keratins was confirmed by immune staining and by coimmunoprecipitation. The keratin-myosin association is myosin dephosphorylation-dependent; occurs with K8, the obligate K18 partner; is enhanced by PKC412 in cells and mouse liver; and is blocked by hyperphosphorylation conditions in cultured cells and mouse liver. Furthermore, NMHC-IIA knockdown inhibits PKC412-mediated normalization of K18 R90C filaments. CONCLUSION The inhibitor PKC412 normalizes K18 Arg90Cys mutation-induced filament disruption and disorganization by enhancing keratin association with NM-IIA in a myosin dephosphorylation-regulated manner. Targeting of intermediate filament disorganization by compounds that alter keratin interaction with their associated proteins offers a potential novel therapeutic approach for keratin and possibly other intermediate filament protein-associated diseases.
Collapse
Affiliation(s)
- Raymond Kwan
- Departments of Molecular & Integrative Physiology and Medicine, University of Michigan, Ann Arbor, Michigan, USA,VA Ann Arbor Healthcare System, Ann Arbor, Michigan, USA
| | - Lu Chen
- Departments of Molecular & Integrative Physiology and Medicine, University of Michigan, Ann Arbor, Michigan, USA,Infectious Diseases Department, Ruijin Hospital, Shanghai Jiao Tong University Medical School, Shanghai, Peoples Republic of China
| | - Koksun Looi
- Departments of Molecular & Integrative Physiology and Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Guo-Zhong Tao
- Department of Surgery, Stanford University, Palo Alto, California, USA
| | - Sujith V Weerasinghe
- Departments of Molecular & Integrative Physiology and Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Natasha T Snider
- Departments of Molecular & Integrative Physiology and Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Mary Anne Conti
- The Laboratory of Molecular Cardiology, NHLBI, National Institutes of Health, Bethesda, Maryland, USA
| | - Robert S Adelstein
- The Laboratory of Molecular Cardiology, NHLBI, National Institutes of Health, Bethesda, Maryland, USA
| | - Qing Xie
- Infectious Diseases Department, Ruijin Hospital, Shanghai Jiao Tong University Medical School, Shanghai, Peoples Republic of China
| | - M Bishr Omary
- Departments of Molecular & Integrative Physiology and Medicine, University of Michigan, Ann Arbor, Michigan, USA,VA Ann Arbor Healthcare System, Ann Arbor, Michigan, USA
| |
Collapse
|
15
|
Usachov V, Urban TJ, Fontana RJ, Gross A, Iyer S, Omary MB, Strnad P. Prevalence of genetic variants of keratins 8 and 18 in patients with drug-induced liver injury. BMC Med 2015; 13:196. [PMID: 26286715 PMCID: PMC4545365 DOI: 10.1186/s12916-015-0418-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 07/03/2015] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Keratin 8 and 18 (K8/K18) cytoskeletal proteins protect hepatocytes from undergoing apoptosis and their mutations predispose to adverse outcomes in acute liver failure (ALF). All known K8/K18 variants occur at relatively non-conserved residues and do not cause keratin cytoskeleton reorganization, whereas epidermal keratin-conserved residue mutations disrupt the keratin cytoskeleton and cause severe skin disease. The aim of our study was to identify keratin variants in idiosyncratic drug-induced liver injury (DILI). METHODS Genomic DNA was isolated from 800 patients enrolled in an ongoing US multicenter study, with DILI attributed to a wide range of drugs. Specific K8/K18 exonic regions were PCR-amplified and screened by denaturing HPLC followed by DNA sequencing. The functional impact of keratin variants was assessed using cell transfection and immune staining. RESULTS Heterozygous and compound amino acid-altering K8/K18 variants were identified in 86 DILI patients and non-coding variants in 15 subjects. Five novel amino acid-altering (K8 Lys393Arg, K8 Ala351Val, K8 Ala358Val, K8 Ile346Val, K18 Asp89His) and two non-coding variants were observed. Several variants segregated with specific ethnic backgrounds but were found at similar frequencies in DILI subjects and ethnically matched population controls. Notably, variants in highly conserved residues of K8 Lys393Arg (ezetimibe/simvastatin-related) and K18 Asp89His (isoniazid-related) were found in patients with fatal DILI. These novel variants also led to keratin network disruption in transfected cells. CONCLUSIONS Novel K8/K18 cytoskeleton-disrupting variants were identified in two patients and segregated with fatal DILI. Other non-cytoskeleton-disrupting keratin variants did not preferentially associate with DILI.
Collapse
Affiliation(s)
- Valentyn Usachov
- Department of Internal Medicine III and IZKF, University Hospital Aachen, RWTH Aachen, Pauwelsstrasse 30, D-52074, Aachen, Germany. .,Department of Internal Medicine I, University Medical Center Ulm, Ulm, Germany.
| | - Thomas J Urban
- Division of Pharmacotherapy and Experimental Therapeutics, Center for Pharmacogenomics and Individualized Therapy, UNC Eshelman School of Pharmacy, UNC Hamner Institute for Drug Safety Sciences, University of North Carolina, Chapel Hill, NC, USA.
| | - Robert J Fontana
- Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI, USA.
| | - Annika Gross
- Department of Internal Medicine III and IZKF, University Hospital Aachen, RWTH Aachen, Pauwelsstrasse 30, D-52074, Aachen, Germany.
| | - Sapna Iyer
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - M Bishr Omary
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Pavel Strnad
- Department of Internal Medicine III and IZKF, University Hospital Aachen, RWTH Aachen, Pauwelsstrasse 30, D-52074, Aachen, Germany.
| | | |
Collapse
|
16
|
Leube RE, Moch M, Kölsch A, Windoffer R. "Panta rhei": Perpetual cycling of the keratin cytoskeleton. BIOARCHITECTURE 2014; 1:39-44. [PMID: 21866261 DOI: 10.4161/bioa.1.1.14815] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 01/12/2011] [Accepted: 01/12/2011] [Indexed: 01/13/2023]
Abstract
The filamentous cytoskeletal systems fulfil seemingly incompatible functions by maintaining a stable scaffolding to ensure tissue integrity and simultaneously facilitating rapid adaptation to intracellular processes and environmental stimuli. This paradox is particularly obvious for the abundant keratin intermediate filaments in epithelial tissues. The epidermal keratin cytoskeleton, for example, supports the protective and selective barrier function of the skin while enabling rapid growth and remodelling in response to physical, chemical and microbial challenges. We propose that these dynamic properties are linked to the perpetual re-cycling of keratin intermediate filaments that we observe in cultured cells. This cycle of assembly and disassembly is independent of protein biosynthesis and consists of distinct, temporally and spatially defined steps. In this way, the keratin cytoskeleton remains in constant motion but stays intact and is also able to restructure rapidly in response to specific regulatory cues as is needed, e.g., during division, differentiation and wound healing.
Collapse
Affiliation(s)
- Rudolf E Leube
- Institute of Molecular and Cellular Anatomy; RWTH Aachen University; Aachen, Germany
| | | | | | | |
Collapse
|
17
|
Snider NT, Omary MB. Post-translational modifications of intermediate filament proteins: mechanisms and functions. Nat Rev Mol Cell Biol 2014; 15:163-77. [PMID: 24556839 PMCID: PMC4079540 DOI: 10.1038/nrm3753] [Citation(s) in RCA: 374] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Intermediate filaments (IFs) are cytoskeletal and nucleoskeletal structures that provide mechanical and stress-coping resilience to cells, contribute to subcellular and tissue-specific biological functions, and facilitate intracellular communication. IFs, including nuclear lamins and those in the cytoplasm (keratins, vimentin, desmin, neurofilaments and glial fibrillary acidic protein, among others), are functionally regulated by post-translational modifications (PTMs). Proteomic advances highlight the enormous complexity and regulatory potential of IF protein PTMs, which include phosphorylation, glycosylation, sumoylation, acetylation and prenylation, with novel modifications becoming increasingly appreciated. Future studies will need to characterize their on-off mechanisms, crosstalk and utility as biomarkers and targets for diseases involving the IF cytoskeleton.
Collapse
Affiliation(s)
- Natasha T. Snider
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan
| | - M. Bishr Omary
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan
- VA Ann Arbor Healthcare System, Ann Arbor, Michigan
| |
Collapse
|
18
|
Weerasinghe SVW, Ku NO, Altshuler PJ, Kwan R, Omary MB. Mutation of caspase-digestion sites in keratin 18 interferes with filament reorganization, and predisposes to hepatocyte necrosis and loss of membrane integrity. J Cell Sci 2014; 127:1464-75. [PMID: 24463813 DOI: 10.1242/jcs.138479] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Keratin 18 (K18 or KRT18) undergoes caspase-mediated cleavage during apoptosis, the significance of which is poorly understood. Here, we mutated the two caspase-cleavage sites (D238E and D397E) in K18 (K18-DE), followed by transgenic overexpression of the resulting mutant. We found that K18-DE mice develop extensive Fas-mediated liver damage compared to wild-type mice overexpressing K18 (K18-WT). Fas-stimulation of K18-WT mice or isolated hepatocytes caused K18 degradation. By contrast, K18-DE livers or hepatocytes maintained intact keratins following Fas-stimulation, but showed hypo-phosphorylation at a major stress-kinase-related keratin 8 (K8) phosphorylation site. Although K18-WT and K18-DE hepatocytes showed similar Fas-mediated caspase activation, K18-DE hepatocytes were more 'leaky' after a mild hypoosmotic challenge and were more susceptible to necrosis after Fas-stimulation or severe hypoosmotic stress. K8 hypophosphorylation was not due to the inhibition of kinase binding to the keratin but was due to mutation-induced inaccessibility to the kinase that phosphorylates K8. A stress-modulated keratin phospho-mutant expressed in hepatocytes phenocopied the hepatocyte susceptibility to necrosis but was found to undergo keratin filament reorganization during apoptosis. Therefore, the caspase cleavage of keratins might promote keratin filament reorganization during apoptosis. Interference with keratin caspase cleavage shunts hepatocytes towards necrosis and increases liver injury through the inhibition of keratin phosphorylation. These findings might extend to other intermediate filament proteins that undergo proteolysis during apoptosis.
Collapse
Affiliation(s)
- Sujith V W Weerasinghe
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | | | | | | | | |
Collapse
|
19
|
Antoine DJ, Harrill AH, Watkins PB, Park BK. Safety biomarkers for drug-induced liver injury – current status and future perspectives. Toxicol Res (Camb) 2014. [DOI: 10.1039/c3tx50077b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
20
|
CK8 phosphorylation induced by compressive loads underlies the downregulation of CK8 in human disc degeneration by activating protein kinase C. J Transl Med 2013; 93:1323-30. [PMID: 24166186 DOI: 10.1038/labinvest.2013.122] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2013] [Revised: 08/21/2013] [Accepted: 09/23/2013] [Indexed: 12/23/2022] Open
Abstract
Cytokeratin 8 (CK8) is a member of the cytokeratins family with multiple functions on the basis of its unique structural hallmark. The aberrant expression of CK8 and its phosphorylation are pertinent with various diseases. We have previously shown that CK8 exists in normal human nucleus pulposus (NP) cells and decreases as the intervertebral disc degenerates. However, the underlying molecular regulatory machinery of CK8 in intervertebral disc degeneration (IDD) has not been clarified. Here, we collected NP samples from patients with idiopathic scoliosis as control and IDD as degenerate groups. We found that CK8 expression decreased in IDD with an increased phosphorylation in degenerate NP cells. Moreover, NP cells were cultured under different compressive load schemes for diverse time duration. We found that compressive loads resulted in phosphorylation and disassembly of CK8 in a time-dependent and degree-dependent manner in vitro. The activation of protein kinase C was a significant molecular factor contributing to this phenomenon. Taken together, this study is the first to address the molecular mechanisms of CK8 downregulation in NP cells. Importantly, our findings provide clues regarding a molecular link between compressive loads and CK8 alterations, which shed a novel light on the etiology of IDD.
Collapse
|
21
|
Zierden M, Penner AH, Montesinos-Rongen M, Weferling M, Drebber U, Stift J, Fries JWU, Odenthal M, Rosenkranz S, Dienes HP. Keratin 8 variants are associated with cryptogenic hepatitis. Virchows Arch 2012; 460:389-97. [DOI: 10.1007/s00428-012-1216-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 02/13/2012] [Accepted: 02/22/2012] [Indexed: 12/13/2022]
|
22
|
Windoffer R, Beil M, Magin TM, Leube RE. Cytoskeleton in motion: the dynamics of keratin intermediate filaments in epithelia. ACTA ACUST UNITED AC 2012; 194:669-78. [PMID: 21893596 PMCID: PMC3171125 DOI: 10.1083/jcb.201008095] [Citation(s) in RCA: 137] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Epithelia are exposed to multiple forms of stress. Keratin intermediate filaments are abundant in epithelia and form cytoskeletal networks that contribute to cell type–specific functions, such as adhesion, migration, and metabolism. A perpetual keratin filament turnover cycle supports these functions. This multistep process keeps the cytoskeleton in motion, facilitating rapid and protein biosynthesis–independent network remodeling while maintaining an intact network. The current challenge is to unravel the molecular mechanisms underlying the regulation of the keratin cycle in relation to actin and microtubule networks and in the context of epithelial tissue function.
Collapse
Affiliation(s)
- Reinhard Windoffer
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, 52057 Aachen, Germany
| | | | | | | |
Collapse
|
23
|
Machado MV, Cortez-Pinto H. Cell death and nonalcoholic steatohepatitis: where is ballooning relevant? Expert Rev Gastroenterol Hepatol 2011; 5:213-22. [PMID: 21476916 DOI: 10.1586/egh.11.16] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common form of liver disease in the Western world. Progression to more aggressive forms of liver injury, such as nonalcoholic steatohepatitis (NASH) and cirrhosis, occurs in less than a third of affected subjects. Human data and both in vivo and in vitro models demonstrate that cell death, particularly apoptosis, is increased in NAFLD and NASH patients, suggesting that it is crucial in disease progression. Indeed, fatty acids - more specifically, saturated fatty acids - strongly induce hepatocyte apoptosis. In addition, hepatic steatosis renders hepatocytes more susceptible to apoptotic injury. Ballooned hepatocytes and Mallory-Denk bodies are important hallmarks of NASH and correlate with disease progression. There are complex correlations between ballooning, Mallory-Denk bodies and apoptosis through keratin metabolism and depletion, as well as through the endoplasmic reticulum stress response. Whether apoptosis may promote hepatocellular ballooning, or vice versa, will be discussed in this article.
Collapse
|
24
|
Absence of keratin 8 confers a paradoxical microflora-dependent resistance to apoptosis in the colon. Proc Natl Acad Sci U S A 2011; 108:1445-50. [PMID: 21220329 DOI: 10.1073/pnas.1010833108] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Keratin 8 (K8) is a major intermediate filament protein present in enterocytes and serves an antiapoptotic function in hepatocytes. K8-null mice develop colonic hyperplasia and colitis that are reversed after antibiotic treatment. To investigate the pathways that underlie the mechanism of colonocyte hyperplasia and the normalization of the colonic phenotype in response to antibiotics, we performed genome-wide microarray analysis. Functional annotation of genes that are differentially regulated in K8(-/-) and K8(+/+) isolated colon crypts (colonocytes) identified apoptosis as a major altered pathway. Exposure of K8(-/-) colonocytes or colon organ ("organoid") cultures, but not K8(-/-) small intestine organoid cultures, to apoptotic stimuli showed, surprisingly, that they are resistant to apoptosis compared with their wild-type counterparts. This resistance is not related to inflammation per se because T-cell receptor α-null (TCR-α(-/-)) and wild-type colon cultures respond similarly upon induction of apoptosis. Following antibiotic treatment, K8(-/-) colonocytes and organ cultures become less resistant to apoptosis and respond similarly to the wild-type colonocytes. Antibiotics also normalize most differentially up-regulated genes, including survivin and β4-integrin. Treatment of K8(-/-) mice with anti-β4-integrin antibody up-regulated survivin, and induced phosphorylation of focal adhesion kinase with decreased activation of caspases. Therefore, unlike the proapoptotic effect of K8 mutation or absence in hepatocytes, lack of K8 confers resistance to colonocyte apoptosis in a microflora-dependent manner.
Collapse
|
25
|
Strnad P, Zhou Q, Hanada S, Lazzeroni LC, Zhong BH, So P, Davern TJ, Lee WM, Omary MB. Keratin variants predispose to acute liver failure and adverse outcome: race and ethnic associations. Gastroenterology 2010; 139:828-35, 835.e1-3. [PMID: 20538000 PMCID: PMC3249217 DOI: 10.1053/j.gastro.2010.06.007] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Revised: 05/26/2010] [Accepted: 06/02/2010] [Indexed: 12/16/2022]
Abstract
BACKGROUND & AIMS Keratins 8 and 18 (K8/K18) provide anti-apoptotic functions upon liver injury. The cytoprotective function of keratins explains the overrepresentation of K8/K18 variants in patients with cirrhosis. However, K8/K18 variant-associated susceptibility to acute liver injury, which is well-described in animal models, has not been studied in humans. METHODS We analyzed the entire coding regions of KRT8 and KRT18 genes (15 total exons and their exon-intron boundaries) to determine the frequency of K8/K18 variants in 344 acute liver failure (ALF) patients (49% acetaminophen-related) and 2 control groups (African-American [n = 245] and previously analyzed white [n = 727] subjects). RESULTS Forty-five ALF patients had significant amino-acid-altering K8/K18 variants, including 23 with K8 R341H and 11 with K8 G434S. K8 variants were significantly more common (total of 42 patients) than K18 variants (3 patients) (P < .001). We found increased frequency of variants in white ALF patients (9.1%) versus controls (3.7%) (P = .01). K8 R341H was more common in white (P = .01) and G434S was more common in African-American (P = .02) ALF patients versus controls. White patients with K8/K18 variants were less likely to survive ALF without transplantation (P = .02). K8 A333A and G434S variants associated exclusively with African Americans (23% combined frequency in African American but none in white controls; P < .0001), while overall, K18 variants were more common in non-white liver-disease subjects compared to whites (2.8% vs 0.6%, respectively; P = .008). CONCLUSIONS KRT8 and KRT18 are important susceptibility genes for ALF development. Presence of K8/K18 variants predisposes to adverse ALF outcome, and some variants segregate with unique ethnic and race backgrounds.
Collapse
Affiliation(s)
- Pavel Strnad
- Department of Internal Medicine I, University Medical Center Ulm, Ulm, Germany.
| | - Qin Zhou
- Department of Internal Medicine I, University Medical Center Ulm, Albert-Einstein-Allee 23, D-89081 Ulm, Germany
| | - Shinichiro Hanada
- Palo Alto VA Medical Center and Stanford University School of Medicine, Palo Alto, CA
| | - Laura C. Lazzeroni
- Department of Medicine, Kurume University School of Medicine, Kurume 830-0011, Japan
| | - Bi Hui Zhong
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA
| | - Phillip So
- Department of Internal Medicine I, University Medical Center Ulm, Albert-Einstein-Allee 23, D-89081 Ulm, Germany
| | - Timothy J. Davern
- Division of Gastroenterology, The first affiliated hospital of Sun Yat-sen University, Guangzhou, PR China
| | | | | | | |
Collapse
|
26
|
Fortier AM, Riopel K, Désaulniers M, Cadrin M. Novel insights into changes in biochemical properties of keratins 8 and 18 in griseofulvin-induced toxic liver injury. Exp Mol Pathol 2010; 89:117-25. [PMID: 20643122 DOI: 10.1016/j.yexmp.2010.07.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Revised: 07/08/2010] [Accepted: 07/08/2010] [Indexed: 12/11/2022]
Abstract
Keratins 8 and 18 (K8/18) intermediate filament proteins are believed to play an essential role in the protection of hepatocytes against mechanical and toxic stress. This assertion is mainly based on increased hepatocyte fragility observed in transgenic mice deficient in K8/18, or carrying mutations on K8/18. The molecular mechanism by which keratins accomplish their protective functions has not been totally elucidated. Liver diseases such as alcoholic hepatitis and copper metabolism diseases are associated with modifications, in hepatocytes, of intermediate filament organisation and the formation of K8/18 containing aggregates named Mallory-Denk bodies. Treatment of mice with a diet containing griseofulvin induces the formation of Mallory-Denk bodies in hepatocytes. This provides a reliable animal model for assessing the molecular mechanism by which keratins accomplish their protective role in the response of hepatocytes to chemical injuries. In this study, we found that griseofulvin intoxication induced changes in keratin solubility and that there was a 5% to 25% increase in the relative amounts of soluble keratin. Keratin phosphorylation on specific sites (K8 pS79, K8 pS436 and K18 pS33) was increased and prominent in the insoluble protein fractions. Since at least six K8 phosphoepitopes were detected after GF treatment, phosphorylation sites other than the ones studied need to be accounted for. Immunofluorescence staining showed that K8 pS79 epitope was present in clusters of hepatocytes that surrounded apoptotic cells. Activated p38 MAPK was associated with, but not present in K8 pS79-positive cells. These results indicate that griseofulvin intoxication mediates changes in the physicochemical properties of keratin, which result in the remodelling of keratin intermediate filaments which in turn could modulate the signalling pathways in which they are involved by modifying their binding to signalling proteins.
Collapse
Affiliation(s)
- Anne-Marie Fortier
- Molecular oncology and endocrinology research group, Department of Chemistry-Biology, University of Quebec at Trois-Rivières, 3351 Blv Des Forges, Trois-Rivières, Québec, Canada G9A 5H7
| | | | | | | |
Collapse
|
27
|
The role of the ubiquitin proteasome pathway in keratin intermediate filament protein degradation. Ann Am Thorac Soc 2010; 7:71-6. [PMID: 20160151 DOI: 10.1513/pats.200908-089js] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Lung injury, whether caused by hypoxic or mechanical stresses, elicits a variety of responses at the cellular level. Alveolar epithelial cells respond and adapt to such injurious stimuli by reorganizing the cellular cytoskeleton, mainly accomplished through modification of the intermediate filament (IF) network. The structural and mechanical integrity in epithelial cells is maintained through this adaptive reorganization response. Keratin, the predominant IF expressed in epithelial cells, displays highly dynamic properties in response to injury, sometimes in the form of degradation of the keratin IF network. Post-translational modification, such as phosphorylation, targets keratin proteins for degradation in these circumstances. As with other structural and regulatory proteins, turnover of keratin is regulated by the ubiquitin (Ub)-proteasome pathway. The degradation process begins with activation of Ub by the Ub-activating enzyme (E1), followed by the exchange of Ub to the Ub-conjugating enzyme (E2). E2 shuttles the Ub molecule to the substrate-specific Ub ligase (E3), which then delivers the Ub to the substrate protein, thereby targeting it for degradation. In some cases of injury and IF-related disease, aggresomes form in epithelial cells. The mechanisms that regulate aggresome formation are currently unknown, although proteasome overload may play a role. Therefore, a more complete understanding of keratin degradation--causes, mechanisms, and consequences--will allow for a greater understanding of epithelial cell biology and lung pathology alike.
Collapse
|
28
|
Omary MB, Ku NO, Strnad P, Hanada S. Toward unraveling the complexity of simple epithelial keratins in human disease. J Clin Invest 2009; 119:1794-805. [PMID: 19587454 DOI: 10.1172/jci37762] [Citation(s) in RCA: 209] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Simple epithelial keratins (SEKs) are found primarily in single-layered simple epithelia and include keratin 7 (K7), K8, K18-K20, and K23. Genetically engineered mice that lack SEKs or overexpress mutant SEKs have helped illuminate several keratin functions and served as important disease models. Insight into the contribution of SEKs to human disease has indicated that K8 and K18 are the major constituents of Mallory-Denk bodies, hepatic inclusions associated with several liver diseases, and are essential for inclusion formation. Furthermore, mutations in the genes encoding K8, K18, and K19 predispose individuals to a variety of liver diseases. Hence, as we discuss here, the SEK cytoskeleton is involved in the orchestration of several important cellular functions and contributes to the pathogenesis of human liver disease.
Collapse
Affiliation(s)
- M Bishr Omary
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | | | | | | |
Collapse
|
29
|
Pujal J, Huch M, José A, Abasolo I, Rodolosse A, Duch A, Sánchez-Palazón L, Smith FJD, McLean WHI, Fillat C, Real FX. Keratin 7 promoter selectively targets transgene expression to normal and neoplastic pancreatic ductal cells in vitro and in vivo. FASEB J 2009; 23:1366-75. [PMID: 19124560 DOI: 10.1096/fj.08-115576] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Keratin 7 is expressed in simple epithelia but is expressed at low or undetectable levels in gastrointestinal epithelial cells. In the pancreas, it is present in ductal but not in acinar cells. K7 mRNA is overexpressed in pancreatic cancers. Here we use luciferase reporter assays to analyze the tissue-specific regulatory elements of murine keratin 7 (Krt7) promoter in vitro and in vivo. All elements required for appropriate cell and tissue specificity in reporter assays are present within the Krt7 -234 bp sequence. This fragment appears more selective to pancreatic ductal cells than the Krt19 promoter. GC-rich sequences corresponding to putative Sp1, AP-2 binding sites are essential for in vitro activity. Krt7-LacZ transgenic mice were generated to analyze in vivo activity. Sequences located 1.5 or 0.25 kb upstream of the transcription initiation site drive reporter expression to ductal, but not acinar, cells in transgenic mice. LacZ mRNA was detected in the pancreas as well as in additional epithelial tissues--such as the intestine and the lung--using both promoter constructs. An AdK7Luc adenovirus was generated to assess targeting selectivity in vivo by intravenous injection to immunocompetent mice and in a xenograft model of pancreatic cancer. The -0.25 kb region showed pancreatic selectivity, high activity in pancreatic cancers, and sustained transgene expression in xenografts. In conclusion, the krt7 promoter is useful to target pancreatic ductal adenocarcinoma cells in vitro and in vivo.
Collapse
Affiliation(s)
- Judit Pujal
- Unitat de Biologia Cellular i Molecular, Institut Municipal d'Investigació Mèdica, Parc de Recerca Biomèdica de Barcelona, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Jaitovich A, Mehta S, Na N, Ciechanover A, Goldman RD, Ridge KM. Ubiquitin-proteasome-mediated degradation of keratin intermediate filaments in mechanically stimulated A549 cells. J Biol Chem 2008; 283:25348-25355. [PMID: 18617517 DOI: 10.1074/jbc.m801635200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We previously reported that shear stress induces phosphorylation and disassembly of keratin intermediate filaments (IFs). Shear stress also induces a time- and strain-dependent degradation of keratin IFs, and the current study examines the mechanisms involved in degradation of keratin proteins in human A549 cells exposed to 0-24 h of shear stress (7.5-30 dynes/cm(2)). Ubiquitin was found to be covalently associated with keratin proteins immunoprecipitated from shear-stressed cells, and pretreatment with the proteasomal inhibitor MG132 prevented the degradation of the keratin IF network. Importantly, phosphorylation of K8 Ser-73 is required for the shear stress-mediated ubiquitination, disassembly, and degradation of the keratin IF network. Immunofluorescence microscopy revealed that shear stress caused the thin array of keratin fibrils observed in control cells to be reorganized into a perinuclear aggregate, known as an aggresome, and that ubiquitin was also associated with this structure. Finally, the E2 enzymes, UbcH5b, -c, and Ubc3, but not E2-25K are required for the shear stress-mediated ubiquitin-proteasomal degradation of keratin proteins. These data suggest that shear stress promotes the disassembly and degradation of the keratin IF network via phosphorylation and the ubiquitin-proteasome pathway.
Collapse
Affiliation(s)
- Ariel Jaitovich
- Division of Pulmonary and Critical Care Medicine, Illinois 60611
| | - Semil Mehta
- Division of Pulmonary and Critical Care Medicine, Illinois 60611
| | - Ni Na
- Division of Pulmonary and Critical Care Medicine, Illinois 60611
| | - Aaron Ciechanover
- The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Robert D Goldman
- Division of Pulmonary and Critical Care Medicine, Illinois 60611; Department of Cell and Molecular Biology, Northwestern University Medical School, Chicago, Illinois 60611
| | - Karen M Ridge
- Division of Pulmonary and Critical Care Medicine, Illinois 60611; Department of Cell and Molecular Biology, Northwestern University Medical School, Chicago, Illinois 60611.
| |
Collapse
|
31
|
Bajpai M, Liu J, Geng X, Souza RF, Amenta PS, Das KM. Repeated exposure to acid and bile selectively induces colonic phenotype expression in a heterogeneous Barrett's epithelial cell line. J Transl Med 2008; 88:643-51. [PMID: 18427553 DOI: 10.1038/labinvest.2008.34] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Barrett's epithelium is a precancerous, specialized columnar metaplasia in the distal esophagus. We demonstrate the changes in cellular phenotype in a non-neoplastic Barrett's cell line (BAR-T), following exposure to acid and bile salt, the two important components of gastroesophageal refluxate. Cell phenotypes in BAR-T cell line were quantified by fluorescence-activated cell sorting (FACS) using monoclonal antibodies against markers: cytokeratin 8/18 (CK8/18) for columnar, CK4 for squamous, mAbDas-1 for colonic epithelial cell phenotype and p75NTR for esophageal progenitors. Cells were exposed for 5 min each day to 200 microM glycochenodeoxycholic acid at pH 4, pH 6 and pH 7.4 or only to acid (pH 4) for up to 6 weeks. The BAR-T cell line comprised 35+/-5.2% CK8/18, 32+/-3.5% mAbDas-1, 9.5+/-3% CK4 and 4+/-2.5% p75NTR-positive cells. Single exposure to acid and or bile did not change cell phenotypes. However, chronic treatment for at least 2 weeks significantly enhanced (P<0.05) the expression of colonic phenotype and CK8/18-positive cells, as evidenced by FACS analysis. Bile salt at pH 4 and bile salt followed by acid (pH 4) in succession were the strongest stimulators (P<0.01) for induction of colonic phenotype cells. Squamous (CK4(+)) phenotype did not change by the treatments. Cox-2 expression was induced after acute treatment and increased to twofold during chronic treatment, particularly in response to acidic pH. We conclude that BAR-T cells can be utilized as an 'in vitro' model to study the effect of environmental factors and their influence on the cellular phenotype and molecular changes in the pathogenesis of esophageal cancer.
Collapse
Affiliation(s)
- Manisha Bajpai
- Division of Gastroenterology and Hepatology, Department of Medicine, UMDNJ-Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | | | | | | | | | | |
Collapse
|
32
|
Strnad P, Stumptner C, Zatloukal K, Denk H. Intermediate filament cytoskeleton of the liver in health and disease. Histochem Cell Biol 2008; 129:735-49. [PMID: 18443813 PMCID: PMC2386529 DOI: 10.1007/s00418-008-0431-x] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2008] [Indexed: 02/06/2023]
Abstract
Intermediate filaments (IFs) represent the largest cytoskeletal gene family comprising approximately 70 genes expressed in tissue specific manner. In addition to scaffolding function, they form complex signaling platforms and interact with various kinases, adaptor, and apoptotic proteins. IFs are established cytoprotectants and IF variants are associated with >30 human diseases. Furthermore, IF-containing inclusion bodies are characteristic features of several neurodegenerative, muscular, and other disorders. Acidic (type I) and basic keratins (type II) build obligatory type I and type II heteropolymers and are expressed in epithelial cells. Adult hepatocytes contain K8 and K18 as their only cytoplasmic IF pair, whereas cholangiocytes express K7 and K19 in addition. K8/K18-deficient animals exhibit a marked susceptibility to various toxic agents and Fas-induced apoptosis. In humans, K8/K18 variants predispose to development of end-stage liver disease and acute liver failure (ALF). K8/K18 variants also associate with development of liver fibrosis in patients with chronic hepatitis C. Mallory-Denk bodies (MDBs) are protein aggregates consisting of ubiquitinated K8/K18, chaperones and sequestosome1/p62 (p62) as their major constituents. MDBs are found in various liver diseases including alcoholic and non-alcoholic steatohepatitis and can be formed in mice by feeding hepatotoxic substances griseofulvin and 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC). MDBs also arise in cell culture after transfection with K8/K18, ubiquitin, and p62. Major factors that determine MDB formation in vivo are the type of stress (with oxidative stress as a major player), the extent of stress-induced protein misfolding and resulting chaperone, proteasome and autophagy overload, keratin 8 excess, transglutaminase activation with transamidation of keratin 8 and p62 upregulation.
Collapse
Affiliation(s)
- P Strnad
- Department of Internal Medicine I, University of Ulm, Robert-Koch-Strabe 8, 89081, Ulm, Germany.
| | | | | | | |
Collapse
|
33
|
Strnad P, Tao GZ, Zhou Q, Harada M, Toivola DM, Brunt EM, Omary MB. Keratin mutation predisposes to mouse liver fibrosis and unmasks differential effects of the carbon tetrachloride and thioacetamide models. Gastroenterology 2008; 134:1169-79. [PMID: 18395095 PMCID: PMC2692280 DOI: 10.1053/j.gastro.2008.01.035] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2007] [Accepted: 01/04/2008] [Indexed: 01/07/2023]
Abstract
BACKGROUND & AIMS Keratins 8 and 18 (K8/K18) are important hepatoprotective proteins. Animals expressing K8/K18 mutants show a marked susceptibility to acute/subacute liver injury. K8/K18 variants predispose to human end-stage liver disease and associate with fibrosis progression during chronic hepatitis C infection. We sought direct evidence for a keratin mutation-related predisposition to liver fibrosis using transgenic mouse models because the relationship between keratin mutations and cirrhosis is based primarily on human association studies. METHODS Mouse hepatofibrosis was induced by carbon tetrachloride (CCl(4)) or thioacetamide. Nontransgenic mice, or mice that over express either human Arg89-to-Cys (R89C mice) or wild-type K18 (WT mice) were used. The extent of fibrosis was evaluated by quantitative real-time reverse-transcription polymerase chain reaction of fibrosis-related genes, liver hydroxyproline measurement, and Picro-Sirius red staining and collagen immunofluorescence staining. RESULTS Compared with control animals, CCl(4) led to similar liver fibrosis but increased injury in K18 R89C mice. In contrast, thioacetamide caused more severe liver injury and fibrosis in K18 R89C as compared with WT and nontransgenic mice and resulted in increased messenger RNA levels of collagen, tissue inhibitor of metalloproteinase 1, matrix metalloproteinase 2, and matrix metalloproteinase 13. Analysis in nontransgenic mice showed that thioacetamide and CCl(4) have dramatically different molecular expression responses involving cytoskeletal and chaperone proteins. CONCLUSIONS Over expression of K18 R89C predisposes transgenic mice to thioacetamide- but not CCl(4)-induced liver fibrosis. Differences in the keratin mutation-associated fibrosis response among the 2 models raise the hypothesis that keratin variants may preferentially predispose to fibrosis in unique human liver diseases. Findings herein highlight distinct differences in the 2 widely used fibrosis models.
Collapse
Affiliation(s)
| | | | | | - Masaru Harada
- Department of Medicine, Kurume University School of Medicine, Kurume 830-0011, Japan
| | | | - Elizabeth M. Brunt
- Department of Pathology and Immunology, Washington University School of Medicine, 660 S. Euclid Ave, Campus Box 8118, St. Louis, MO 63110
| | - M. Bishr Omary
- Corresponding Author Address: Bishr Omary, Palo Alto VA Medical Center, 3801 Miranda Avenue, Mail code 154J, Palo Alto, CA 94304, Tel: (650) 493-5000, x63140; Fax: (650) 852-3259, E-Mail:
| |
Collapse
|
34
|
Toivola DM, Nakamichi I, Strnad P, Michie SA, Ghori N, Harada M, Zeh K, Oshima RG, Baribault H, Omary MB. Keratin overexpression levels correlate with the extent of spontaneous pancreatic injury. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 172:882-92. [PMID: 18349119 DOI: 10.2353/ajpath.2008.070830] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mutation of the adult hepatocyte keratins K8 and K18 predisposes to liver disease. In contrast, exocrine pancreas K8 and K18 are dispensable and are co-expressed with limited levels of membrane-proximal K19 and K20. Overexpression of mutant K18 or genetic ablation of K8 in mouse pancreas is well tolerated whereas overexpression of K8 causes spontaneous chronic pancreatitis. To better understand the effect of exocrine pancreatic keratin overexpression, we compared transgenic mice that overexpress K18, K8, or K8/K18, associated with minimal, modest, or large increases in keratin expression, respectively, with nontransgenic wild-type (WT) mice. Overexpression of the type-II keratin K8 up-regulated type-I keratins K18, K19, and K20 and generated K19/K20-containing neocytoplasmic typical or short filaments; however, overexpression of K18 had no effect on K8 levels. K8- and K18-overexpressing pancreata were histologically similar to WT, whereas K8/K18 pancreata displayed age-enhanced vacuolization and atrophy of the exocrine pancreas and exhibited keratin hyperphosphorylation. Zymogen granules in K8/K18 pancreata were 50% smaller and more dispersed than their normal apical concentration but were twice as numerous as in WT controls. Therefore, modest keratin overexpression has minor effects on the exocrine pancreas whereas significant keratin overexpression alters zymogen granule organization and causes aging-associated exocrine atrophy. Keratin absence or mutation is well tolerated after pancreatic but not liver injury, whereas excessive overexpression is toxic to the pancreas but not the liver when induced under basal conditions.
Collapse
Affiliation(s)
- Diana M Toivola
- Department of Medicine, Veterans Administration Palo Alto Health Care System, Palo Alto, CA, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Zhong B, Strnad P, Toivola DM, Tao GZ, Ji X, Greenberg HB, Omary MB. Reg-II is an exocrine pancreas injury-response product that is up-regulated by keratin absence or mutation. Mol Biol Cell 2007; 18:4969-78. [PMID: 17898082 PMCID: PMC2096595 DOI: 10.1091/mbc.e07-02-0180] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The major keratins in the pancreas and liver are keratins 8 and 18 (K8/K18), but their function seemingly differs in that liver K8/K18 are essential cytoprotective proteins, whereas pancreatic K8/K18 are dispensable. This functional dichotomy raises the hypothesis that K8-null pancreata may undergo compensatory cytoprotective gene expression. We tested this hypothesis by comparing the gene expression profile in pancreata of wild-type and K8-null mice. Most prominent among the up-regulated genes in K8-null pancreas was mRNA for regenerating islet-derived (Reg)-II, which was confirmed by quantitative reverse transcription-polymerase chain reaction and by an anti-Reg-II peptide antibody we generated. Both K8-null and wild-type mice express Reg-II predominantly in acinar cells as determined by in situ hybridization and immunostaining. Analysis of Reg-II expression in various keratin-related transgenic mouse models showed that its induction also occurs in response to keratin cytoplasmic filament collapse, absence, or ablation of K18 Ser52 but not Ser33 phosphorylation via Ser-to-Ala mutation, which represent situations associated with predisposition to liver but not pancreatic injury. In wild-type mice, Reg-II is markedly up-regulated in two established pancreatitis models in response to injury and during the recovery phase. Thus, Reg-II is a likely mouse exocrine pancreas cytoprotective candidate protein whose expression is regulated by keratin filament organization and phosphorylation.
Collapse
Affiliation(s)
- Bihui Zhong
- *Department of Medicine, Palo Alto Veterans Affairs Medical Center, Palo Alto, CA 94304
- Stanford University Digestive Disease Center, Stanford, CA 94305
- Division of Gastroenterology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China; and
| | - Pavel Strnad
- *Department of Medicine, Palo Alto Veterans Affairs Medical Center, Palo Alto, CA 94304
- Stanford University Digestive Disease Center, Stanford, CA 94305
| | - Diana M. Toivola
- *Department of Medicine, Palo Alto Veterans Affairs Medical Center, Palo Alto, CA 94304
- Stanford University Digestive Disease Center, Stanford, CA 94305
- Biosciences, Department of Biology, Abo Akademi University, FI-20520, Turku, Finland
| | - Guo-Zhong Tao
- *Department of Medicine, Palo Alto Veterans Affairs Medical Center, Palo Alto, CA 94304
- Stanford University Digestive Disease Center, Stanford, CA 94305
| | - Xuhuai Ji
- *Department of Medicine, Palo Alto Veterans Affairs Medical Center, Palo Alto, CA 94304
- Stanford University Digestive Disease Center, Stanford, CA 94305
| | - Harry B. Greenberg
- *Department of Medicine, Palo Alto Veterans Affairs Medical Center, Palo Alto, CA 94304
- Stanford University Digestive Disease Center, Stanford, CA 94305
| | - M. Bishr Omary
- *Department of Medicine, Palo Alto Veterans Affairs Medical Center, Palo Alto, CA 94304
- Stanford University Digestive Disease Center, Stanford, CA 94305
| |
Collapse
|
36
|
Marceau N, Schutte B, Gilbert S, Loranger A, Henfling MER, Broers JLV, Mathew J, Ramaekers FCS. Dual roles of intermediate filaments in apoptosis. Exp Cell Res 2007; 313:2265-81. [PMID: 17498695 DOI: 10.1016/j.yexcr.2007.03.038] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2007] [Revised: 03/05/2007] [Accepted: 03/12/2007] [Indexed: 02/06/2023]
Abstract
New roles have emerged recently for intermediate filaments (IFs), namely in modulating cell adhesion and growth, and providing resistance to various forms of stress and to apoptosis. In this context, we first summarize findings on the IF association with the cell response to mechanical stress and growth stimulation, in light of growth-related signaling events that are relevant to death-receptor engagement. We then address the molecular mechanisms by which IFs can provide cell resistance to apoptosis initiated by death-receptor stimulation and to necrosis triggered by excessive oxidative stress. In the same way, we examine IF involvement, along with cytolinker participation, in sequential caspase-mediated protein cleavages that are part of the overall cell death execution, particularly those that generate new functional IF protein fragments and uncover neoantigen markers. Finally, we report on the usefulness of these markers as diagnostic tools for disease-related aspects of apoptosis in humans. Clearly, the data accumulated in recent years provide new and significant insights into the multiple functions of IFs, particularly their dual roles in cell response to apoptotic insults.
Collapse
Affiliation(s)
- Normand Marceau
- Centre de recherche en cancérologie de l'Université Laval and L'Hôtel-Dieu de Québec (CHUQ), Québec, Canada G1R 2J6
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Zidek N, Hellmann J, Kramer PJ, Hewitt PG. Acute Hepatotoxicity: A Predictive Model Based on Focused Illumina Microarrays. Toxicol Sci 2007; 99:289-302. [PMID: 17522070 DOI: 10.1093/toxsci/kfm131] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Drug-induced hepatotoxicity is a major issue for drug development, and toxicogenomics has the potential to predict toxicity during early toxicity screening. A bead-based Illumina oligonucleotide microarray containing 550 liver specific genes has been developed. We have established a predictive screening system for acute hepatotoxicity by analyzing differential gene expression profiles of well-known hepatotoxic and nonhepatotoxic compounds. Low and high doses of tetracycline, carbon tetrachloride (CCL4), 1-naphthylisothiocyanate (ANIT), erythromycin estolate, acetaminophen (AAP), or chloroform as hepatotoxicants, clofibrate, theophylline, naloxone, estradiol, quinidine, or dexamethasone as nonhepatotoxic compounds, were administered as a single dose to male Sprague-Dawley rats. After 6, 24, and 72 h, livers were taken for histopathological evaluation and for analysis of gene expression alterations. All hepatotoxic compounds tested generated individual gene expression profiles. Based on leave-one-out cross-validation analysis, gene expression profiling allowed the accurate discrimination of all model compounds, 24 h after high dose treatment. Even during the regeneration phase, 72 h after treatment, CCL4, ANIT, and AAP were predicted to be hepatotoxic, and only these three compounds showed histopathological changes at this time. Furthermore, we identified 64 potential marker genes responsible for class prediction, which reflected typical hepatotoxicity responses. These genes and pathways, commonly deregulated by hepatotoxicants, may be indicative of the early characterization of hepatotoxicity and possibly predictive of later hepatotoxicity onset. Two unknown test compounds were used for prevalidating the screening test system, with both being correctly predicted. We conclude that focused gene microarrays are sufficient to classify compounds with respect to toxicity prediction.
Collapse
Affiliation(s)
- Nadine Zidek
- Molecular Toxicology, Institute of Toxicology, Merck KGaA, Darmstadt, Germany
| | | | | | | |
Collapse
|
38
|
Harada M, Strnad P, Resurreccion EZ, Ku NO, Omary MB. Keratin 18 overexpression but not phosphorylation or filament organization blocks mouse Mallory body formation. Hepatology 2007; 45:88-96. [PMID: 17187412 DOI: 10.1002/hep.21471] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
UNLABELLED Several human liver diseases are associated with formation of Mallory body (MB) inclusions. These hepatocyte cytoplasmic deposits are composed primarily of hyperphosphorylated keratins 8 and 18 (K8/K18). Feeding a 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC)-containing diet is a well-established mouse model of MBs. K8 overexpression, and K8-null or K18-null mouse models, indicate that a K8-greater-than-K18 expression ratio is critical for MB formation. We used established transgenic mouse models to study the effect of K18 overexpression and phosphorylation, or keratin filament disorganization, on MB formation. Five mouse lines were used: nontransgenic, those that overexpress wild-type K18 or the K18 phosphorylation mutants Ser33-to-Ala (S33A) or Ser52-to-Ala (S52A), and mice that overexpress K18 Arg89-to-Cys, which causes collapse of the keratin filament network into dots. DDC feeding induced MBs in nontransgenic livers, but MBs were rarely seen in any of the K18 transgenic mice. Wild-type K18 overexpression protected mice from DDC-induced liver injury. CONCLUSION K18 overexpression protects mice from MB formation and from DDC-induced liver injury, which supports the importance of the K8-to-K18 ratio in MB formation. The effect of K18 on MB formation is independent of hepatocyte keratin filament organization or K18 Ser33/Ser52 phosphorylation. Keratin filament collapse, which is a major risk for acute liver injury, is well tolerated in the context of chronic DDC-mediated liver injury.
Collapse
Affiliation(s)
- Masaru Harada
- Department of Medicine, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | | | | | | | | |
Collapse
|
39
|
Tao GZ, Kirby C, Whelan SA, Rossi F, Bi X, MacLaren M, Gentalen E, O'Neill RA, Hart GW, Omary MB. Reciprocal keratin 18 Ser48 O-GlcNAcylation and Ser52 phosphorylation using peptide analysis. Biochem Biophys Res Commun 2006; 351:708-12. [PMID: 17084817 PMCID: PMC2692749 DOI: 10.1016/j.bbrc.2006.10.092] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2006] [Accepted: 10/19/2006] [Indexed: 12/19/2022]
Abstract
Phosphorylation and O-GlcNAcylation of keratin 18 (K18) are highly dynamic and involve primarily independent K18 populations. We used in vitro phosphorylation and O-GlcNAcylation of wild-type, phospho-Ser52, glyco-Ser48, and Ser-to-Ala mutant 17mer peptides (K18 amino acids 40-56), which include the major K18 glycosylation (Ser48) and phosphorylation (Ser52) sites, to address whether each modification blocks the other. The glyco-K18 peptide blocks Ser52 phosphorylation by protein kinase C, an in vivo K18 kinase, while the phospho-K18 peptide blocks its O-GlcNAcylation. Our findings support the reciprocity of these two post-translational modifications. Therefore, regulation of protein Ser/Thr phosphorylation and glycosylation at proximal sites can be interdependent and provides a potential mechanism of counter regulation.
Collapse
Affiliation(s)
- Guo-Zhong Tao
- Palo Alto VA Medical Center, Stanford University, Palo Alto, CA 94304, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
BACKGROUND Epithelial tissues of the gastrointestinal tract and the liver express predominantly cytokeratin 8 and cytokeratin 18. In vitro experiments and animal studies have demonstrated a protective influence of keratin 8 and keratin 18 against toxic damage of hepatocytes. A specific mutation of keratin 8 (G61C) was found to be a genetic risk factor for the development of cryptogenic liver cirrhosis. The purpose of the present paper was therefore to determine the prevalence of cytokeratin 8 (G61C) and cytokeratin 18 mutations (Y53H) in patients with liver disease. METHODS Overall 152 patients (male, n = 93, 61%; female, n = 59, 39%) were included in the present study. The 152 patients consisted of 107 patients with liver disease (70.4%; male, n = 71, 66.4%; female, n = 36, 33.6%) and 45 control patients (29.6%; male, n = 22, 48,9%; female, n = 23, 51,1%) without liver disease. Of the patients with liver disease 46 had alcoholic liver disease; 25, chronic hepatitis C; 15, cryptogenic liver disease; and 21, other liver diseases of various etiologies. Cytokeratin 8 and 18 genotypes were specified by polymerase chain reaction (PCR) amplification and direct sequence analysis was used to detect the previously described mutations in cytokeratin 8 (G61C) and in cytokeratin 18 (Y53H). RESULTS Four out of 152 patients (male n = 2, female n = 2) with a mutation (G61C) in cytokeratin 8 were found. The etiology was alcoholic liver disease (n = 1), cryptogenic liver disease (n = 1) and idiopathic liver disease with minimal changes in liver biopsy (n = 1). Also, one out 45 disease control patients with an adenoma of the colon but without liver disease was found to carry the mutation G61C of cytokeratin 8. Therefore, the mutation G61C in cytokeratin 8 was found in 2.8% of patients with liver disease and in 2.2% of control patients without liver disease. Two of 15 patients (13.3%) with cryptogenic liver disease had the mutation G61C in cytokeratin 8 (P = 0.069 vs patients with non-cryptogenic liver disease). In the 152 patients studied, no mutation in cytokeratin 18 was found. DISCUSSION The mutation G61C in the cytokeratin 8 gene was found in one patient with alcoholic liver disease and in two patients with liver disease of unknown etiology. Also, one patient without liver disease had the cytokeratin 8 G61C mutation. In summary, the cytokeratin 8 mutation G61C, which has been found to be associated with cryptogenic liver cirrhosis, was also found in the present patient population. However, the clinical relevance is yet to be determined in further investigations.
Collapse
Affiliation(s)
- Maximilian Schöniger-Hekele
- Department of Internal Medicine 4, Division of Gastroenterology and Hepatology, Medical University of Vienna, Austria
| | | | | |
Collapse
|
41
|
Abstract
Keratin 8 (K8) variants predispose to human liver injury via poorly understood mechanisms. We generated transgenic mice that overexpress the human disease-associated K8 Gly61-to-Cys (G61C) variant and showed that G61C predisposes to liver injury and apoptosis and dramatically inhibits K8 phosphorylation at serine 73 (S73) via stress-activated kinases. This led us to generate mice that overexpress K8 S73-to-Ala (S73A), which mimicked the susceptibility of K8 G61C mice to injury, thereby providing a molecular link between K8 phosphorylation and disease-associated mutation. Upon apoptotic stimulation, G61C and S73A hepatocytes have persistent and increased nonkeratin proapoptotic substrate phosphorylation by stress-activated kinases, compared with wild-type hepatocytes, in association with an inability to phosphorylate K8 S73. Our findings provide the first direct link between patient-related human keratin variants and liver disease predisposition. The highly abundant cytoskeletal protein K8, and possibly other keratins with the conserved S73-containing phosphoepitope, can protect tissue from injury by serving as a phosphate “sponge” for stress-activated kinases and thereby provide a novel nonmechanical function for intermediate filament proteins.
Collapse
Affiliation(s)
- Nam-On Ku
- Department of Medicine, Palo Alto VA Medical Center and Stanford University School of Medicine, Palo Alto, CA 94304, USA.
| | | |
Collapse
|
42
|
Gut J, Bagatto D. Theragenomic knowledge management for individualised safety of drugs, chemicals, pollutants and dietary ingredients. Expert Opin Drug Metab Toxicol 2005; 1:537-54. [PMID: 16863460 DOI: 10.1517/17425255.1.3.537] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Severe adverse drug reactions (ADRs) are a major problem in drug development and clinical practice and the most common cause of market withdrawals of drugs. Individualised drug safety aims at the prospective identification of single patients who carry genetic predispositions for the development of serious or fatal ADRs under drug treatment. For a comprehensive individualised drug safety evaluation a clearly structured organisation, linkage and representation of diverse and heterogeneous, yet related, knowledge is imperative. To efficiently support experts in this process a platform, coined OKAPI, was specified that combines multiple concepts in knowledge management to perform ontological knowledge acquisition, processing and integration. SafeBase (TheraSTrat) is an ontology driven implementation of the OKAPI specification and an innovative, user-friendly and interactive platform for storage, management and visualisation of knowledge across multiple scientific disciplines pertinent to current and future theragenomics-based drug discovery and development and to strategies of individualised drug safety.
Collapse
Affiliation(s)
- Joseph Gut
- TheraSTrat AG, Gewerbestrasse 25, 4123 Allschwil, Switzerland.
| | | |
Collapse
|
43
|
Ridge KM, Linz L, Flitney FW, Kuczmarski ER, Chou YH, Omary MB, Sznajder JI, Goldman RD. Keratin 8 phosphorylation by protein kinase C delta regulates shear stress-mediated disassembly of keratin intermediate filaments in alveolar epithelial cells. J Biol Chem 2005; 280:30400-5. [PMID: 15972820 DOI: 10.1074/jbc.m504239200] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Phosphorylation of keratin intermediate filaments (IF) is known to affect their assembly state and organization; however, little is known about the mechanisms regulating keratin phosphorylation. In this study, we demonstrate that shear stress, but not stretch, causes disassembly of keratin IF in lung alveolar epithelial cells (AEC) and that this disassembly is regulated by protein kinase C delta-mediated phosphorylation of keratin 8 (K8) Ser-73. Specifically, in AEC subjected to shear stress, keratin IF are disassembled, as reflected by their increased solubility. In contrast, AEC subjected to stretch showed no changes in the state of assembly of IF. Pretreatment with the protein kinase C (PKC) inhibitor, bisindolymaleimide, prevents the increase in solubility of either K8 or its assembly partner K18 in shear-stressed AEC. Phosphoserine-specific antibodies demonstrate that K8 Ser-73 is phosphorylated in a time-dependent manner in shear-stressed AEC. Furthermore, we showed that shear stress activates PKC delta and that the PKC delta peptide antagonist, delta V1-1, significantly attenuates the shear stress-induced increase in keratin phosphorylation and solubility. These data suggested that shear stress mediates the phosphorylation of serine residues in K8, leading to the disassembly of IF in alveolar epithelial cells. Importantly, these data provided clues regarding a molecular link between mechanically induced signal transduction and alterations in cytoskeletal IF.
Collapse
Affiliation(s)
- Karen M Ridge
- Division of Pulmonary and Critical Care Medicine, Northwestern University Medical School, Chicago, Illinois 60611, USA.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Inui A, Sogo T, Komatsu H, Miyakawa H, Fujisawa T. Antibodies against cytokeratin 8/18 in a patient with de novo autoimmune hepatitis after living-donor liver transplantation. Liver Transpl 2005; 11:504-7. [PMID: 15838910 DOI: 10.1002/lt.20404] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Graft dysfunction mimicking autoimmune hepatitis rarely develops after liver transplantation for nonautoimmune disease. The mechanism(s) and causes of de novo autoimmune hepatitis are unknown. We examined autoantibodies serially in a patient with de novo autoimmune hepatitis and in patients without de novo autoimmune hepatitis after liver transplantation. Anticytokeratin 8/18 antibodies were detected in the first patient's sera after the onset of de novo autoimmune hepatitis, whereas other patients without de novo autoimmune hepatitis were seronegative throughout the follow-up period even with acute cellular rejection or other cause of liver dysfunction. In conclusion, the changes in cytokeratin 8/18 in hepatocytes might be one of the sources of pathogenesis of de novo autoimmune hepatitis after liver transplantation.
Collapse
Affiliation(s)
- Ayano Inui
- Department of Pediatrics, International University of Health and Welfare, Atami Hospital, Japan.
| | | | | | | | | |
Collapse
|
45
|
Rugg EL, Leigh IM. The keratins and their disorders. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2005; 131C:4-11. [PMID: 15452838 DOI: 10.1002/ajmg.c.30029] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Diseases caused by mutations in gene encoding keratin intermediate filaments (IF) are characterized by a loss of structural integrity in the cells expressing those keratins in vivo. This is manifested as cell fragility, compensatory epidermal hyperkeratosis, and keratin filament aggregation in some affected tissues. Keratin disorders are a novel molecular category including quite different phenotypes such as epidermolysis bullosa simplex (EBS), bullous congenital ichthyosiform erthroderma (BCIE), pachyonychia congenital (PC), steatocystoma multiplex, ichthyosis bullosa of Siemens (IBS), and white sponge nevus (WSN) of the orogenital mucosa.
Collapse
Affiliation(s)
- Elizabeth L Rugg
- Department of Dermatology, University of California Irvine, 92697-2400, USA.
| | | |
Collapse
|
46
|
Abstract
Mutation of the cytoskeletal intermediate filament proteins keratin 8 and keratin 18 (K8/K18) is associated with cirrhosis in humans, whereas transgenic mice that overexpress K18 Arg89-->Cys (R89C) have significant predisposition to liver injury. To study the mechanism of keratin-associated predisposition to liver injury, we used mouse microarrays to examine genetic changes associated with hepatocyte keratin mutation and assessed the consequences of such changes. Liver gene expression was compared in R89C versus nontransgenic or wild-type K18-overexpressing mice. Microarray-defined genetic changes were confirmed by quantitative polymerase chain reaction. Nineteen genes had a more than two-fold altered expression (nine downregulated, 10 upregulated). Upregulated genes in keratin-mutant hepatocytes included the oxidative metabolism genes cytochrome P450, S-adenosylhomocysteine (SAH) hydrolase, cysteine sulfinic acid decarboxylase, and oxidation-reduction pathway genes. Downregulated genes included fatty acid binding protein 5, cyclin D1, and some signaling molecules. Several methionine metabolism-related and glutathione synthetic pathway intermediates, including S-adenosylmethionine (SAMe) and SAH, were modulated in R89C versus control mice. R89C livers had higher lipid and protein oxidation by-products as reflected by increased malondialdehyde and oxidized albumin. In conclusion, K18 point mutation in transgenic mice modulates several hepatocyte oxidative stress-related genes and leads to lipid and protein oxidative by-products. Mutation-associated decreases in SAH and SAMe could compromise needed cysteine availability to generate glutathione during oxidative stress. Hence keratin mutations may prime hepatocytes to oxidative injury, which provides a new potential mechanism for how keratin mutations may predispose patients to cirrhosis.
Collapse
Affiliation(s)
- Qin Zhou
- Department of Medicine, Palo Alto Veterans Affairs Medical Center and Stanford University Digestive Disease Center, Palo Alto, CA, USA
| | | | | | | | | | | |
Collapse
|
47
|
Wong P, Domergue R, Coulombe PA. Overcoming functional redundancy to elicit pachyonychia congenita-like nail lesions in transgenic mice. Mol Cell Biol 2005; 25:197-205. [PMID: 15601842 PMCID: PMC538767 DOI: 10.1128/mcb.25.1.197-205.2005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Mutations affecting the coding sequence of intermediate filament (IF) proteins account for >30 disorders, including numerous skin bullous diseases, myopathies, neuropathies, and even progeria. The manipulation of IF genes in mice has been widely successful for modeling key features of such clinically distinct disorders. A notable exception is pachyonychia congenita (PC), a disorder in which the nail and other epithelial appendages are profoundly aberrant. Most cases of PC are due to mutations in one of the following keratin-encoding genes: K6, K16, and K17. Yet null alleles obliterating the function of both K6 genes (K6alpha and K6beta) or the K17 gene, as well as the targeted expression of a dominant-negative K6alpha mutant, elicit only a subset of PC-specific epithelial lesions (excluding that of the nail in mice). We show that newborn mice null for K6alpha, K6beta, and K17 exhibit severe lysis restricted to the nail bed epithelium, where all three genes are robustly expressed, providing strong evidence that this region of the nail unit is initially targeted in PC. Our findings point to significant redundancy among the multiple keratins expressed in hair and nail, which can be related to the common ancestry, clustered organization, and sequence relatedness of specific keratin genes.
Collapse
Affiliation(s)
- Pauline Wong
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, 725 North Wolfe St., Baltimore, MD 21205, USA
| | | | | |
Collapse
|
48
|
Green KJ, Böhringer M, Gocken T, Jones JCR. Intermediate filament associated proteins. ADVANCES IN PROTEIN CHEMISTRY 2005; 70:143-202. [PMID: 15837516 DOI: 10.1016/s0065-3233(05)70006-1] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Intermediate filament associated proteins (IFAPs) coordinate interactions between intermediate filaments (IFs) and other cytoskeletal elements and organelles, including membrane-associated junctions such as desmosomes and hemidesmosomes in epithelial cells, costameres in striated muscle, and intercalated discs in cardiac muscle. IFAPs thus serve as critical connecting links in the IF scaffolding that organizes the cytoplasm and confers mechanical stability to cells and tissues. However, in recent years it has become apparent that IFAPs are not limited to structural crosslinkers and bundlers but also include chaperones, enzymes, adapters, and receptors. IF networks can therefore be considered scaffolding upon which associated proteins are organized and regulated to control metabolic activities and maintain cell homeostasis.
Collapse
Affiliation(s)
- Kathleen J Green
- Departments of Pathology and Dermatology and R.H. Lurie Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | | | | | | |
Collapse
|
49
|
Bantel H, Lügering A, Heidemann J, Volkmann X, Poremba C, Strassburg CP, Manns MP, Schulze-Osthoff K. Detection of apoptotic caspase activation in sera from patients with chronic HCV infection is associated with fibrotic liver injury. Hepatology 2004; 40:1078-87. [PMID: 15486927 DOI: 10.1002/hep.20411] [Citation(s) in RCA: 214] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Chronic hepatitis C virus (HCV) infection is characterized by inflammatory liver damage and is associated with a high risk of development of cirrhosis and hepatocellular carcinoma. Although histological examination of liver biopsies is currently the gold standard for the detection of early liver damage, there is a strong need for better noninvasive methods. We recently demonstrated that the proapoptotic activation of caspases is considerably enhanced in histological sections from HCV-infected liver tissue, suggesting an important role of apoptosis in liver damage. Here, we investigated whether caspase activation is detectable also in sera from patients with chronic HCV infection. Using a novel enzyme-linked immunosorbent assay that selectively recognizes a proteolytic neoepitope of the caspase substrate cytokeratin-18, we demonstrate that caspase activity is markedly increased in the sera of HCV patients. Interestingly, while 27% of patients with chronic HCV infection showed normal aminotransferase levels despite inflammatory and fibrotic liver damage, more than 50% of those patients exhibited already elevated serum caspase activity. Moreover, 30% of patients with normal aminotransferase but elevated caspase activity revealed higher stages of fibrosis. In conclusion, compared with conventional surrogate markers such as aminotransferases, detection of caspase activity in serum might be a more sensitive method of detecting early liver injury. Thus, measurement of caspase activity might provide a novel diagnostic tool, especially for patients with normal aminotransferases but otherwise undiagnosed histologically active hepatitis and progressive fibrosis.
Collapse
Affiliation(s)
- Heike Bantel
- Institute of Molecular Medicine, University of Düsseldorf, Düsseldorf, Germany
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Casanova ML, Bravo A, Martínez-Palacio J, Fernández-Aceñero MJ, Villanueva C, Larcher F, Conti CJ, Jorcano JL. Epidermal abnormalities and increased malignancy of skin tumors in human epidermal keratin 8-expressing transgenic mice. FASEB J 2004; 18:1556-8. [PMID: 15319370 DOI: 10.1096/fj.04-1683fje] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Keratins K8 and K18 are the major components of the intermediate filament cytoskeleton of simple epithelia. Increased levels of these keratins have been associated with invasive growth and progression to malignancy in different types of human and murine epithelial tumors (including skin tumors), and even in tumors from nonepithelial origin. However, it has not yet clarified whether K8/K18 expression in tumors is cause or consequence of malignancy. Given the increasing incidence of epidermal cancer in humans (40% of all tumors diagnosed), we generated a mouse model to examine the role of simple epithelium keratins in the establishment and progression of human skin cancer. Transgenic mice expressing human K8 in the epidermis showed severe epidermal and hair follicle dysplasia with concomitant alteration in epidermal differentiation markers. The severity of the skin phenotype of these transgenic mice increases with age, leading to areas of preneoplastic transformation. Skin carcinogenesis assays showed a dramatic increase in the progression of papillomas toward malignancy in transgenic animals. These results support the idea that K8 alters the epidermal cell differentiation, favors the neoplastic transformation of cells, and is ultimately responsible of the invasive behavior of transformed epidermal cells leading of conversion of benign to malignant tumors.
Collapse
Affiliation(s)
- M Llanos Casanova
- Epithelial Damage, Repair and Tissue Engineering, CIEMAT, Avenida Complutense 22, 28040 Madrid, Spain.
| | | | | | | | | | | | | | | |
Collapse
|