1
|
Liao L, Kim J, Cho K, Kim J, Lim BK, Won KJ. DeepDoublet identifies neighboring cell-dependent gene expression. Genomics Inform 2024; 22:30. [PMID: 39695909 DOI: 10.1186/s44342-024-00031-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 11/13/2024] [Indexed: 12/20/2024] Open
Abstract
Cells interact with each other for proper function and homeostasis. Often, co-expression of ligand-receptor pairs from the single-cell RNAseq (scRNAseq) has been used to identify interacting cell types. Recently, RNA sequencing of physically interacting multi-cells has been used to identify interacting cell types without relying on co-expression of ligand-receptor pairs. This opens a new avenue to study the expression of interacting cell types. We present DeepDoublet, a deep-learning-based tool to decompose the transcriptome of physically interacting two cells (or doublet) into two sets of transcriptome. Applying DeepDoublet to the doublets of hepatocyte and liver endothelial cells (LECs), we successfully decomposed into the transcriptome of each cell type. Especially, DeepDoublet identified specific expression of hepatocytes when they are interacting with LECs. Among them was Angptl3 which has a role in blood vessel formation. DeepDoublet is a tool to identify neighboring cell-dependent gene expression.
Collapse
Affiliation(s)
- Linbu Liao
- Cancer Institution, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Junyoung Kim
- Department of Bioinformatics, Soongsil University, Seoul, Korea
| | - Kanghee Cho
- Department of Bioinformatics, Soongsil University, Seoul, Korea
| | - Junil Kim
- Department of Bioinformatics, Soongsil University, Seoul, Korea
- School of Systems Biomedical Science, Soongsil University, Seoul, Korea
| | - Byung-Kwan Lim
- Department of Biomedical Science, Jungwon University, Goesan-Gun, Chungbuk, Korea.
| | - Kyoung Jae Won
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
2
|
Bastea LI, Liu X, Fleming AK, Pandey V, Döppler H, Edenfield BH, Krishna M, Zhang L, Thompson EA, Grandgenett PM, Hollingsworth MA, Fairweather D, Clemens D, Storz P. Coxsackievirus and adenovirus receptor expression facilitates enteroviral infections to drive the development of pancreatic cancer. Nat Commun 2024; 15:10547. [PMID: 39627248 PMCID: PMC11615305 DOI: 10.1038/s41467-024-55043-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 11/26/2024] [Indexed: 12/06/2024] Open
Abstract
The development of pancreatic cancer requires both, acquisition of an oncogenic mutation in KRAS as well as an inflammatory insult. However, the physiological causes for pancreatic inflammation are less defined. We show here that oncogenic KRas-expressing pre-neoplastic lesion cells upregulate coxsackievirus (CVB) and adenovirus receptor (CAR). This facilitates infections from enteroviruses such as CVB3, which can be detected in approximately 50% of pancreatic cancer patients. Moreover, using an animal model we show that a one-time pancreatic infection with CVB3 in control mice is transient, but in the presence of oncogenic KRas drives chronic inflammation and rapid development of pancreatic cancer. We further demonstrate that a knockout of CAR in pancreatic lesion cells blocks these CVB3-induced effects. Our data demonstrate that KRas-caused lesions promote the development of pancreatic cancer by enabling certain viral infections.
Collapse
Affiliation(s)
- Ligia I Bastea
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Xiang Liu
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, 32224, USA
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Alicia K Fleming
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Veethika Pandey
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Heike Döppler
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, 32224, USA
| | | | - Murli Krishna
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Lizhi Zhang
- Department of Laboratory Medicine & Pathology, Mayo Clinic, Rochester, MN, 55905, USA
| | - E Aubrey Thompson
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Paul M Grandgenett
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Michael A Hollingsworth
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - DeLisa Fairweather
- Department of Cardiovascular Diseases, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Dahn Clemens
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Peter Storz
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, 32224, USA.
| |
Collapse
|
3
|
Kim HG, Park JH, Shin HH, Kim SH, Jeon HE, Shin JH, Won YS, Kwon HJ, Jeon ES, Lim BK. Liver-specific Coxsackievirus and adenovirus receptor deletion develop metabolic dysfunction-associated fatty liver disease. Sci Rep 2024; 14:21642. [PMID: 39285218 PMCID: PMC11405401 DOI: 10.1038/s41598-024-72561-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024] Open
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) is a common liver disease associated with obesity and is caused by the accumulation of ectopic fat without alcohol consumption. Coxsackievirus and adenovirus receptor (CAR) are vital for cardiac myocyte-intercalated discs and endothelial cell-to-cell tight junctions. CAR has also been reported to be associated with obesity and high blood pressure. However, its function in the liver is still not well understood. The liver of obese mice exhibit elevated CAR mRNA and protein levels. Furthermore, in the liver of patients with non-alcoholic steatohepatitis, CAR is reduced in hepatocyte cell-cell junctions compared to normal levels. We generated liver-specific CAR knockout (KO) mice to investigate the role of CAR in the liver. Body and liver weights were not different between wild-type (WT) and KO mice fed a paired or high-fat diet (HFD). However, HFD induced significant liver damage and lipid accumulation in CAR KO mice compared with WT mice. Additionally, inflammatory cytokines transcription, hepatic permeability, and macrophage recruitment considerably increased in CAR KO mice. We identified a new interaction partner of CAR using a protein pull-down assay and mass spectrometry. Apolipoprotein B mRNA editing enzyme catalytic polypeptide-like 3C (APOBEC3C) demonstrated a complex relationship with CAR, and hepatic CAR expression tightly regulated its level. Moreover, Apolipoprotein B (ApoB) and Low-density lipoprotein receptor (LDLR) levels correlated with APOBEC3C expression in the liver of CAR KO mice, suggesting that CAR may regulate lipid accumulation by controlling APOBEC3C activity. In this study, we showed that hepatic CAR deficiency increased cell-to-cell permeability. In addition, CAR deletion significantly increased hepatic lipid accumulation by inducing ApoB and LDLR expression. Although the underlying mechanism is unclear, CARs may be a target for the development of novel therapies for MAFLD.
Collapse
Affiliation(s)
- Hong-Gi Kim
- Department of Biomedical Science, Jungwon University, 85 Munmu-ro, Goesan-eup, Goesan-gun, Chungbuk, 367-700, Korea
| | - Jin-Ho Park
- Department of Biomedical Science, Jungwon University, 85 Munmu-ro, Goesan-eup, Goesan-gun, Chungbuk, 367-700, Korea
| | - Ha-Hyun Shin
- Department of Biomedical Science, Jungwon University, 85 Munmu-ro, Goesan-eup, Goesan-gun, Chungbuk, 367-700, Korea
| | - So-Hee Kim
- Department of Biomedical Science, Jungwon University, 85 Munmu-ro, Goesan-eup, Goesan-gun, Chungbuk, 367-700, Korea
| | - Ha-Eun Jeon
- Department of Biomedical Science, Jungwon University, 85 Munmu-ro, Goesan-eup, Goesan-gun, Chungbuk, 367-700, Korea
| | - Ji-Hwa Shin
- Department of Biomedical Science, Jungwon University, 85 Munmu-ro, Goesan-eup, Goesan-gun, Chungbuk, 367-700, Korea
| | - Young-Suk Won
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Chungbuk, Korea
| | - Hyo-Jung Kwon
- Department of Veterinary Pathology, College of Veterinary Medicine, Chungnam National University, Daejeon, Korea
| | - Eun-Seok Jeon
- Division of Cardiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Irwon Dong, Gangnam-Gu, Seoul, 06351, Korea
| | - Byung-Kwan Lim
- Department of Biomedical Science, Jungwon University, 85 Munmu-ro, Goesan-eup, Goesan-gun, Chungbuk, 367-700, Korea.
| |
Collapse
|
4
|
Nguyen TP, Otani T, Tsutsumi M, Kinoshita N, Fujiwara S, Nemoto T, Fujimori T, Furuse M. Tight junction membrane proteins regulate the mechanical resistance of the apical junctional complex. J Cell Biol 2024; 223:e202307104. [PMID: 38517380 PMCID: PMC10959758 DOI: 10.1083/jcb.202307104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 01/29/2024] [Accepted: 02/16/2024] [Indexed: 03/23/2024] Open
Abstract
Epithelia must be able to resist mechanical force to preserve tissue integrity. While intercellular junctions are known to be important for the mechanical resistance of epithelia, the roles of tight junctions (TJs) remain to be established. We previously demonstrated that epithelial cells devoid of the TJ membrane proteins claudins and JAM-A completely lack TJs and exhibit focal breakages of their apical junctions. Here, we demonstrate that apical junctions fracture when claudin/JAM-A-deficient cells undergo spontaneous cell stretching. The junction fracture was accompanied by actin disorganization, and actin polymerization was required for apical junction integrity in the claudin/JAM-A-deficient cells. Further deletion of CAR resulted in the disruption of ZO-1 molecule ordering at cell junctions, accompanied by severe defects in apical junction integrity. These results demonstrate that TJ membrane proteins regulate the mechanical resistance of the apical junctional complex in epithelial cells.
Collapse
Affiliation(s)
- Thanh Phuong Nguyen
- Division of Cell Structure, National Institute for Physiological Sciences, Okazaki, Japan
- Physiological Sciences Program, Graduate Institute for Advanced Studies, SOKENDAI, Okazaki, Japan
| | - Tetsuhisa Otani
- Division of Cell Structure, National Institute for Physiological Sciences, Okazaki, Japan
- Physiological Sciences Program, Graduate Institute for Advanced Studies, SOKENDAI, Okazaki, Japan
- Japan Science and Technology Agency, Precursory Research for Embryonic Science and Technology, Kawaguchi, Japan
| | - Motosuke Tsutsumi
- Division of Biophotonics, National Institute for Physiological Sciences, Okazaki, Japan
- Biophotonics Research Group, Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, Japan
| | - Noriyuki Kinoshita
- Division of Embryology, National Institute for Basic Biology, Okazaki, Japan
- Basic Biology Program, Graduate Institute for Advanced Studies, SOKENDAI, Okazaki, Japan
| | - Sachiko Fujiwara
- Division of Cell Structure, National Institute for Physiological Sciences, Okazaki, Japan
- Physiological Sciences Program, Graduate Institute for Advanced Studies, SOKENDAI, Okazaki, Japan
| | - Tomomi Nemoto
- Physiological Sciences Program, Graduate Institute for Advanced Studies, SOKENDAI, Okazaki, Japan
- Division of Biophotonics, National Institute for Physiological Sciences, Okazaki, Japan
- Biophotonics Research Group, Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, Japan
| | - Toshihiko Fujimori
- Division of Embryology, National Institute for Basic Biology, Okazaki, Japan
- Basic Biology Program, Graduate Institute for Advanced Studies, SOKENDAI, Okazaki, Japan
| | - Mikio Furuse
- Division of Cell Structure, National Institute for Physiological Sciences, Okazaki, Japan
- Physiological Sciences Program, Graduate Institute for Advanced Studies, SOKENDAI, Okazaki, Japan
- Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
5
|
Padget RL, Zeitz MJ, Blair GA, Wu X, North MD, Tanenbaum MT, Stanley KE, Phillips CM, King DR, Lamouille S, Gourdie RG, Hoeker GS, Swanger SA, Poelzing S, Smyth JW. Acute Adenoviral Infection Elicits an Arrhythmogenic Substrate Prior to Myocarditis. Circ Res 2024; 134:892-912. [PMID: 38415360 PMCID: PMC11003857 DOI: 10.1161/circresaha.122.322437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/12/2024] [Indexed: 02/29/2024]
Abstract
BACKGROUND Viral cardiac infection represents a significant clinical challenge encompassing several etiological agents, disease stages, complex presentation, and a resulting lack of mechanistic understanding. Myocarditis is a major cause of sudden cardiac death in young adults, where current knowledge in the field is dominated by later disease phases and pathological immune responses. However, little is known regarding how infection can acutely induce an arrhythmogenic substrate before significant immune responses. Adenovirus is a leading cause of myocarditis, but due to species specificity, models of infection are lacking, and it is not understood how adenoviral infection may underlie sudden cardiac arrest. Mouse adenovirus type-3 was previously reported as cardiotropic, yet it has not been utilized to understand the mechanisms of cardiac infection and pathology. METHODS We have developed mouse adenovirus type-3 infection as a model to investigate acute cardiac infection and molecular alterations to the infected heart before an appreciable immune response or gross cardiomyopathy. RESULTS Optical mapping of infected hearts exposes decreases in conduction velocity concomitant with increased Cx43Ser368 phosphorylation, a residue known to regulate gap junction function. Hearts from animals harboring a phospho-null mutation at Cx43Ser368 are protected against mouse adenovirus type-3-induced conduction velocity slowing. Additional to gap junction alterations, patch clamping of mouse adenovirus type-3-infected adult mouse ventricular cardiomyocytes reveals prolonged action potential duration as a result of decreased IK1 and IKs current density. Turning to human systems, we find human adenovirus type-5 increases phosphorylation of Cx43Ser368 and disrupts synchrony in human induced pluripotent stem cell-derived cardiomyocytes, indicating common mechanisms with our mouse whole heart and adult cardiomyocyte data. CONCLUSIONS Together, these findings demonstrate that adenoviral infection creates an arrhythmogenic substrate through direct targeting of gap junction and ion channel function in the heart. Such alterations are known to precipitate arrhythmias and likely contribute to sudden cardiac death in acutely infected patients.
Collapse
Affiliation(s)
- Rachel L. Padget
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA 24061, USA
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA 24016, USA
- Center for Vascular and Heart Research, FBRI at VTC, Roanoke, VA 24016, USA
| | - Michael J. Zeitz
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA 24016, USA
- Center for Vascular and Heart Research, FBRI at VTC, Roanoke, VA 24016, USA
| | - Grace A. Blair
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA 24061, USA
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA 24016, USA
- Center for Vascular and Heart Research, FBRI at VTC, Roanoke, VA 24016, USA
| | - Xiaobo Wu
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA 24016, USA
- Center for Vascular and Heart Research, FBRI at VTC, Roanoke, VA 24016, USA
| | - Michael D. North
- Virginia Tech Carilion School of Medicine, Roanoke, VA 24016, USA
| | | | - Kari E. Stanley
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA 24061, USA
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA 24016, USA
- Center for Vascular and Heart Research, FBRI at VTC, Roanoke, VA 24016, USA
| | - Chelsea M. Phillips
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA 24016, USA
- Center for Vascular and Heart Research, FBRI at VTC, Roanoke, VA 24016, USA
| | - D. Ryan King
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA 24061, USA
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA 24016, USA
- Center for Vascular and Heart Research, FBRI at VTC, Roanoke, VA 24016, USA
| | - Samy Lamouille
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA 24016, USA
- Center for Vascular and Heart Research, FBRI at VTC, Roanoke, VA 24016, USA
- Virginia Tech Carilion School of Medicine, Roanoke, VA 24016, USA
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Robert G. Gourdie
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA 24016, USA
- Center for Vascular and Heart Research, FBRI at VTC, Roanoke, VA 24016, USA
- Virginia Tech Carilion School of Medicine, Roanoke, VA 24016, USA
- Department of Biomedical Engineering and Mechanics, College of Engineering, Virginia Tech, Blacksburg, VA 24061, USA
| | - Gregory S. Hoeker
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA 24016, USA
- Center for Vascular and Heart Research, FBRI at VTC, Roanoke, VA 24016, USA
| | - Sharon A. Swanger
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA 24016, USA
- Virginia Tech Carilion School of Medicine, Roanoke, VA 24016, USA
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA
| | - Steven Poelzing
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA 24016, USA
- Center for Vascular and Heart Research, FBRI at VTC, Roanoke, VA 24016, USA
- Virginia Tech Carilion School of Medicine, Roanoke, VA 24016, USA
- Department of Biomedical Engineering and Mechanics, College of Engineering, Virginia Tech, Blacksburg, VA 24061, USA
| | - James W. Smyth
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA 24016, USA
- Center for Vascular and Heart Research, FBRI at VTC, Roanoke, VA 24016, USA
- Virginia Tech Carilion School of Medicine, Roanoke, VA 24016, USA
- Department of Biomedical Engineering and Mechanics, College of Engineering, Virginia Tech, Blacksburg, VA 24061, USA
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
6
|
Pelz L, Dossou L, Kompier N, Jüttner R, Siemonsmeier G, Meyer N, Lowenstein ED, Lahmann I, Kettenmann H, Birchmeier C, Rathjen FG. The IgCAM BT-IgSF (IgSF11) is essential for connexin43-mediated astrocyte-astrocyte coupling in mice. eNeuro 2024; 11:ENEURO.0283-23.2024. [PMID: 38388443 PMCID: PMC10957231 DOI: 10.1523/eneuro.0283-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 01/19/2024] [Accepted: 01/24/2024] [Indexed: 02/24/2024] Open
Abstract
The type I transmembrane protein BT-IgSF is predominantly localized in the brain and testes. It belongs to the CAR subgroup of Ig cell adhesion proteins, that are hypothesized to regulate connexin expression or localization. Here, we studied the putative link between BT-IgSF and connexins in astrocytes, ependymal cells and neurons of the mouse. Global knockout of BT-IgSF caused an increase in the clustering of connexin43 (Gja1), but not of connexin30 (Gjb6), on astrocytes and ependymal cells. Additionally, knockout animals displayed reduced expression levels of connexin43 protein in the cortex and hippocampus. Importantly, analysis of biocytin spread in hippocampal or cortical slices from mature mice of either sex revealed a decrease in astrocytic cell-cell coupling in the absence of BT-IgSF. Blocking either protein biosynthesis or proteolysis showed that the lysosomal pathway increased connexin43 degradation in astrocytes. Localization of connexin43 in subcellular compartments was not impaired in astrocytes of BT-IgSF mutants. In contrast to connexin43 the localization and expression of connexin36 (Gjd2) on neurons was not affected by the absence of BT-IgSF. Overall, our data indicate that the IgCAM BT-IgSF is essential for correct gap junction-mediated astrocyte-to-astrocyte cell communication.Significance Statement Astrocytes regulate a variety of physiological processes in the developing and adult brain that are essential for proper brain function. Astrocytes form extensive networks in the brain and communicate via gap junctions. Disruptions of gap junction coupling are found in several diseases such as neurodegeneration or epilepsy. Here, we demonstrate that the cell adhesion protein BT-IgSF is essential for gap junction mediated coupling between astrocytes in the cortex and hippocampus.
Collapse
Affiliation(s)
- Laura Pelz
- Max-Delbrück-Center for Molecular Medicine, Berlin DE-13092, Germany
| | - Laura Dossou
- Max-Delbrück-Center for Molecular Medicine, Berlin DE-13092, Germany
| | - Nine Kompier
- Max-Delbrück-Center for Molecular Medicine, Berlin DE-13092, Germany
| | - René Jüttner
- Max-Delbrück-Center for Molecular Medicine, Berlin DE-13092, Germany
| | | | - Niklas Meyer
- Max-Delbrück-Center for Molecular Medicine, Berlin DE-13092, Germany
| | | | - Ines Lahmann
- Max-Delbrück-Center for Molecular Medicine, Berlin DE-13092, Germany
| | - Helmut Kettenmann
- Max-Delbrück-Center for Molecular Medicine, Berlin DE-13092, Germany
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Carmen Birchmeier
- Max-Delbrück-Center for Molecular Medicine, Berlin DE-13092, Germany
- NeuroCure Cluster of Excellence, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin 10117, Germany
| | - Fritz G. Rathjen
- Max-Delbrück-Center for Molecular Medicine, Berlin DE-13092, Germany
| |
Collapse
|
7
|
Mraz V, Lohmann RKD, Menzel M, Hawkes A, Vaher H, Funch AB, Jee MH, Gadsbøll ASØ, Weber JF, Yeung K, Ødum N, Woetmann A, McKay D, Witherden D, Geisler C, Bonefeld CM. The junctional adhesion molecule-like protein (JAML) is important for the inflammatory response during contact hypersensitivity. Contact Dermatitis 2023; 89:323-334. [PMID: 37619972 PMCID: PMC11034946 DOI: 10.1111/cod.14409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 08/26/2023]
Abstract
BACKGROUND The junctional adhesion molecule-like protein (JAML) plays important roles in wound healing and activation of epidermal γδ T cells in mice. Whether JAML plays a role in contact hypersensitivity (CHS), the animal model of allergic contact dermatitis (ACD), is not known. METHODS To examine the role of JAML in CHS, we used various mouse models of CHS in JAML knockout (KO) and wild-type (WT) mice. Furthermore, the expression of the JAML ligand coxsackievirus and adenovirus receptor (CXADR) on keratinocytes was accessed in vitro and in vivo. RESULTS JAML KO mice had a diminished inflammatory response during both the sensitization and elicitation phase of CHS and had reduced numbers of CD8+ and CD4+ T cells in the epidermis. Furthermore, interferon γ (IFNγ), interleukin 1β (IL-1β) and CXCL10 production were significantly reduced in JAML KO mice during the elicitation phase. We found that CD8+ T cells express JAML and that JAML is essential for rapid flare-up responses to contact allergens. Finally, we show that keratinocytes up-regulate the JAML ligand CXADR following exposure to contact allergens. CONCLUSION Our study is the first to show a central role of JAML in CHS and reveals a potential new target for the treatment of ACD in humans.
Collapse
Affiliation(s)
- Veronika Mraz
- The LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, The University of Copenhagen, Copenhagen, Denmark
| | - Rebecca K. D. Lohmann
- The LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, The University of Copenhagen, Copenhagen, Denmark
| | - Mandy Menzel
- The LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, The University of Copenhagen, Copenhagen, Denmark
- Respiratory Research Unit, Department of Respiratory Medicine, Bispebjerg Hospital, Copenhagen, Denmark
| | - Alana Hawkes
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, USA
| | - Helen Vaher
- The LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, The University of Copenhagen, Copenhagen, Denmark
| | - Anders B. Funch
- The LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, The University of Copenhagen, Copenhagen, Denmark
- Department of Dermatology and Allergy, National Allergy Research Center, Copenhagen University Hospital Gentofte, Hellerup, Denmark
| | - Mia H. Jee
- The LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, The University of Copenhagen, Copenhagen, Denmark
| | - Anne-Sofie Ø. Gadsbøll
- The LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, The University of Copenhagen, Copenhagen, Denmark
| | - Julie F. Weber
- The LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, The University of Copenhagen, Copenhagen, Denmark
| | - Kelvin Yeung
- The LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, The University of Copenhagen, Copenhagen, Denmark
- Department of Dermatology and Allergy, National Allergy Research Center, Copenhagen University Hospital Gentofte, Hellerup, Denmark
| | - Niels Ødum
- The LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, The University of Copenhagen, Copenhagen, Denmark
| | - Anders Woetmann
- The LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, The University of Copenhagen, Copenhagen, Denmark
| | - Dianne McKay
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, USA
| | - Deborah Witherden
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, USA
| | - Carsten Geisler
- The LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, The University of Copenhagen, Copenhagen, Denmark
| | - Charlotte M. Bonefeld
- The LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, The University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
8
|
Ramamoorthy S, Garg S, Mishra B, Radotra BD, Saikia UN. Coxsackievirus and Adenovirus Receptor (CAR) Expression in Autopsy Tissues: Organ-Specific Patterns and Clinical Significance. Cureus 2023; 15:e37138. [PMID: 37153286 PMCID: PMC10159945 DOI: 10.7759/cureus.37138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/02/2023] [Indexed: 05/09/2023] Open
Abstract
Coxsackievirus and adenovirus receptor (CAR) homologs have been identified in many species, and their proteins appeared to be highly conserved in evolution. While most of the human studies are about pathological conditions, the animal studies were more about the physiological and developmental functions of receptors. The expression of CAR is developmentally regulated, and its tissue localization is complex. Hence, we planned to study CAR expression in five different human organs at autopsy in different age groups. CAR expression was analyzed in the pituitary, heart, liver, pancreas, and kidney by immunohistochemistry, and CAR mRNA expression in the heart and pituitary by real-time PCR. In the current study, CAR expression was strong in cells of the anterior pituitary, hepatocytes, and bile ducts in the liver, acini, and pancreas and distal convoluted tubule/collecting duct in the kidney, with uniform expression in all age groups. We have noted high CAR expression in fetuses and infantile hearts, which get reduced drastically in adults due to its presumed developmental role in intrauterine life studied in animal models. In addition, the receptor was expressed in glomerular podocytes around the period of fetus viability (37 weeks) but not in early fetuses and adults. We have hypothesized that this intermittent expression could be responsible for the intercellular contact normally formed between the podocytes during the developmental phase. Pancreatic islets also showed increased expression after the emergence of the viability period but not in early fetuses and adults, which might be related to an increase in fetal insulin secretion at that particular age group.
Collapse
Affiliation(s)
| | - Sumit Garg
- Department of Histopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, IND
| | - Baijayantimala Mishra
- Department of Microbiology, All India Institute of Medical Sciences, Bhubaneswar, Bhubaneswar, IND
| | - Bishan Dass Radotra
- Department of Histopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, IND
| | - Uma Nahar Saikia
- Department of Histopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, IND
| |
Collapse
|
9
|
Freiberg F, Thakkar M, Hamann W, Lopez Carballo J, Jüttner R, Voss FK, Becher PM, Westermann D, Tschöpe C, Heuser A, Rocks O, Fischer R, Gotthardt M. CAR links hypoxia signaling to improved survival after myocardial infarction. Exp Mol Med 2023; 55:643-652. [PMID: 36941462 PMCID: PMC10073142 DOI: 10.1038/s12276-023-00963-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 11/08/2022] [Accepted: 12/25/2022] [Indexed: 03/23/2023] Open
Abstract
The coxsackievirus and adenovirus receptor (CAR) mediates homo- and heterotopic interactions between neighboring cardiomyocytes at the intercalated disc. CAR is upregulated in the hypoxic areas surrounding myocardial infarction (MI). To elucidate whether CAR contributes to hypoxia signaling and MI pathology, we used a gain- and loss-of-function approach in transfected HEK293 cells, H9c2 cardiomyocytes and CAR knockout mice. CAR overexpression increased RhoA activity, HIF-1α expression and cell death in response to chemical and physical hypoxia. In vivo, we subjected cardiomyocyte-specific CAR knockout (KO) and wild-type mice (WT) to coronary artery ligation. Survival was drastically improved in KO mice with largely preserved cardiac function as determined by echocardiography. Histological analysis revealed a less fibrotic, more compact lesion. Thirty days after MI, there was no compensatory hypertrophy or reduced cardiac output in hearts from CAR KO mice, in contrast to control mice with increased heart weight and reduced ejection fraction as signs of the underlying pathology. Based on these findings, we suggest CAR as a therapeutic target for the improved future treatment or prevention of myocardial infarction.
Collapse
Affiliation(s)
- Fabian Freiberg
- Translational Cardiology and Functional Genomics, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Meghna Thakkar
- Translational Cardiology and Functional Genomics, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Wiebke Hamann
- Translational Cardiology and Functional Genomics, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Jacobo Lopez Carballo
- Translational Cardiology and Functional Genomics, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Department of Cardiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Rene Jüttner
- Translational Cardiology and Functional Genomics, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Felizia K Voss
- Translational Cardiology and Functional Genomics, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Peter M Becher
- Department of General and Interventional Cardiology, University Heart Center Hamburg Eppendorf, Hamburg, Germany
- DZHK Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Dirk Westermann
- Department of General and Interventional Cardiology, University Heart Center Hamburg Eppendorf, Hamburg, Germany
- DZHK Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Carsten Tschöpe
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
- Department of Cardiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- BCRT (Berlin-Brandenburg Center for Regenerative Therapies), Berlin, Germany
| | - Arnd Heuser
- Animal Phenotyping, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Oliver Rocks
- Spatiotemporal Control of Rho GTPase Signaling, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Robert Fischer
- Department of Cardiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Michael Gotthardt
- Translational Cardiology and Functional Genomics, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany.
- Department of Cardiology, Charité-Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
10
|
Rathjen FG, Jüttner R. The IgSF Cell Adhesion Protein CLMP and Congenital Short Bowel Syndrome (CSBS). Int J Mol Sci 2023; 24:5719. [PMID: 36982793 PMCID: PMC10056934 DOI: 10.3390/ijms24065719] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/09/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
The immunoglobulin-like cell adhesion molecule CLMP is a member of the CAR family of cell adhesion proteins and is implicated in human congenital short-bowel syndrome (CSBS). CSBS is a rare but very severe disease for which no cure is currently available. In this review, we compare data from human CSBS patients and a mouse knockout model. These data indicate that CSBS is characterized by a defect in intestinal elongation during embryonic development and impaired peristalsis. The latter is driven by uncoordinated calcium signaling via gap junctions, which is linked to a reduction in connexin43 and 45 levels in the circumferential smooth muscle layer of the intestine. Furthermore, we discuss how mutations in the CLMP gene affect other organs and tissues, including the ureter. Here, the absence of CLMP produces a severe bilateral hydronephrosis-also caused by a reduced level of connexin43 and associated uncoordinated calcium signaling via gap junctions.
Collapse
Affiliation(s)
- Fritz G. Rathjen
- Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Str. 10, 13092 Berlin, Germany;
| | | |
Collapse
|
11
|
Shin HH, Jeon ES, Lim BK. Macrophage-Specific Coxsackievirus and Adenovirus Receptor Deletion Enhances Macrophage M1 Polarity in CVB3-Induced Myocarditis. Int J Mol Sci 2023; 24:ijms24065309. [PMID: 36982385 PMCID: PMC10049483 DOI: 10.3390/ijms24065309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/05/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
The coxsackievirus and adenovirus receptor (CAR) is very well known as an epithelial tight junction and cardiac intercalated disc protein; it mediates attachment and infection via the coxsackievirus B3 (CVB3) and type 5 adenovirus. Macrophages play important roles in early immunity during viral infections. However, the role of CAR in macrophages is not well studied in relation to CVB3 infection. In this study, the function of CAR was observed in the Raw264.7 mouse macrophage cell line. CAR expression was stimulated by treatment with lipopolysaccharide (LPS) and tumor necrosis factor-α (TNF-α). In thioglycollate-induced peritonitis, the peritoneal macrophage was activated and CAR expression was increased. The macrophage-specific CAR conditional knockout mice (KO) were generated from lysozyme Cre mice. The expression of inflammatory cytokine (IL-1β and TNF-α) was attenuated in the KO mice’s peritoneal macrophage after LPS treatment. In addition, the virus was not replicated in CAR-deleted macrophages. The organ virus replication was not significantly different in both wild-type (WT) and KO mice at days three and seven post-infection (p.i). However, the inflammatory M1 polarity genes (IL-1β, IL-6, TNF-α and MCP-1) were significantly increased, with increased rates of myocarditis in the heart of KO mice compared to those of WT mice. In contrast, type1 interferon (IFN-α and β) was significantly decreased in the heart of KO mice. Serum chemokine CXCL-11 was increased in the KO mice at day three p.i. compared to the WT mice. The attenuation of IFN-α and β in macrophage CAR deletion induced higher levels of CXCL-11 and more increased CD4 and CD8 T cells in KO mice hearts compared to those of WT mice at day seven p.i. These results demonstrate that macrophage-specific CAR deletion increased the macrophage M1 polarity and myocarditis in CVB3 infection. In addition, chemokine CXCL-11 expression was increased, and stimulated CD4 and CD8 T cell activity. Macrophage CAR may be important for the regulation of innate-immunity-induced local inflammation in CVB3 infection.
Collapse
Affiliation(s)
- Ha-Hyeon Shin
- Department of Biomedical Science, Jungwon University, Goesan-gun 28024, Republic of Korea
| | - Eun-Seok Jeon
- Division of Cardiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Irwon Dong, Gangnam-gu, Seoul 06351, Republic of Korea
| | - Byung-Kwan Lim
- Department of Biomedical Science, Jungwon University, Goesan-gun 28024, Republic of Korea
- Correspondence: ; Tel.: +82-43-830-8605
| |
Collapse
|
12
|
CXADR: From an Essential Structural Component to a Vital Signaling Mediator in Spermatogenesis. Int J Mol Sci 2023; 24:ijms24021288. [PMID: 36674801 PMCID: PMC9865082 DOI: 10.3390/ijms24021288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/27/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Canonical coxsackievirus and adenovirus receptor (CXADR) is a transmembrane component of cell junctions that is crucial for cardiac and testicular functions via its homophilic and heterophilic interaction. CXADR is expressed in both Sertoli cells and germ cells and is localized mainly at the interface between Sertoli-Sertoli cells and Sertoli-germ cells. Knockout of CXADR in mouse Sertoli cells specifically impairs male reproductive functions, including a compromised blood-testis barrier, apoptosis of germ cells, and premature loss of spermatids. Apart from serving as an important component for cell junctions, recent progress has showed the potential roles of CXADR as a signaling mediator in spermatogenesis. This review summarizes current research progress related to the regulation and role of CXADR in spermatogenesis as well as in pathological conditions. We hope this review provides some future directions and a blueprint to promote the further study on the roles of CXADR.
Collapse
|
13
|
Petrov N, Stoyanova M, Stoyanova A, Nikolova I, Grozdanov P, Galabov A. Gene silencing of VP1 gene of coxsackievirus B3 neurotropic strain Nancy by dsRNAs and siRNAs. BIOTECHNOL BIOTEC EQ 2022. [DOI: 10.1080/13102818.2022.2082320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Nikolay Petrov
- Laboratory of Virology, Department of Natural Sciences, New Bulgarian University, Sofia, Bulgaria
| | - Mariya Stoyanova
- Department of Plant Protection, Institute of Soil Science, Agrotechnologies and Plant Protection “N. Pushkarov”, Agricultural Academy, Sofia, Bulgaria
| | - Adelina Stoyanova
- Department of Virology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Ivanka Nikolova
- Department of Virology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Petar Grozdanov
- Department of Virology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Angel Galabov
- Department of Virology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| |
Collapse
|
14
|
Matthaeus C, Jüttner R, Gotthardt M, Rathjen FG. The IgCAM CAR Regulates Gap Junction-Mediated Coupling on Embryonic Cardiomyocytes and Affects Their Beating Frequency. Life (Basel) 2022; 13:14. [PMID: 36675963 PMCID: PMC9866089 DOI: 10.3390/life13010014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/29/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
The IgCAM coxsackie-adenovirus receptor (CAR) is essential for embryonic heart development and electrical conduction in the mature heart. However, it is not well-understood how CAR exerts these effects at the cellular level. To address this question, we analyzed the spontaneous beating of cultured embryonic hearts and cardiomyocytes from wild type and CAR knockout (KO) embryos. Surprisingly, in the absence of the CAR, cultured cardiomyocytes showed increased frequencies of beating and calcium cycling. Increased beatings of heart organ cultures were also induced by the application of reagents that bind to the extracellular region of the CAR, such as the adenovirus fiber knob. However, the calcium cycling machinery, including calcium extrusion via SERCA2 and NCX, was not disrupted in CAR KO cells. In contrast, CAR KO cardiomyocytes displayed size increases but decreased in the total numbers of membrane-localized Cx43 clusters. This was accompanied by improved cell-cell coupling between CAR KO cells, as demonstrated by increased intercellular dye diffusion. Our data indicate that the CAR may modulate the localization and oligomerization of Cx43 at the plasma membrane, which could in turn influence electrical propagation between cardiomyocytes via gap junctions.
Collapse
Affiliation(s)
- Claudia Matthaeus
- Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Str. 10, DE-13092 Berlin, Germany
- Laboratory of Cellular Biophysics, NHLBI, NIH, 50 South Drive, Building 50 RM 3312, Bethesda, MD 20892, USA
| | - René Jüttner
- Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Str. 10, DE-13092 Berlin, Germany
| | - Michael Gotthardt
- Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Str. 10, DE-13092 Berlin, Germany
| | - Fritz G. Rathjen
- Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Str. 10, DE-13092 Berlin, Germany
| |
Collapse
|
15
|
Podyacheva E, Toropova Y. SIRT1 activation and its effect on intercalated disc proteins as a way to reduce doxorubicin cardiotoxicity. Front Pharmacol 2022; 13:1035387. [PMID: 36408244 PMCID: PMC9672938 DOI: 10.3389/fphar.2022.1035387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022] Open
Abstract
According to the World Health Organization, the neoplasm is one of the main reasons for morbidity and mortality worldwide. At the same time, application of cytostatic drugs like an independent type of cancer treatment and in combination with surgical methods, is often associated with the development of cardiovascular complications both in the early and in the delayed period of treatment. Doxorubicin (DOX) is the most commonly used cytotoxic anthracycline antibiotic. DOX can cause both acute and delayed side effects. The problem is still not solved, as evidenced by the continued activity of researchers in terms of developing approaches for the prevention and treatment of cardiovascular complications. It is known, the heart muscle consists of cardiomyocytes connected by intercalated discs (ID), which ensure the structural, electrical, metabolic unity of the heart. Various defects in the ID proteins can lead to the development of cardiovascular diseases of various etiologies, including DOX-induced cardiomyopathy. The search for ways to influence the functioning of ID proteins of the cardiac muscle can become the basis for the creation of new therapeutic approaches to the treatment and prevention of cardiac pathologies. SIRT1 may be an interesting cardioprotective variant due to its wide functional significance. SIRT1 activation triggers nuclear transcription programs that increase the efficiency of cellular, mitochondrial metabolism, increases resistance to oxidative stress, and promotes cell survival. It can be assumed that SIRT1 can not only provide a protective effect at the cardiomyocytes level, leading to an improvement in mitochondrial and metabolic functions, reducing the effects of oxidative stress and inflammatory processes, but also have a protective effect on the functioning of IDs structures of the cardiac muscle.
Collapse
|
16
|
Tag SH, Kim B, Bae J, Chang KA, Im HI. Neuropathological and behavioral features of an APP/PS1/MAPT (6xTg) transgenic model of Alzheimer’s disease. Mol Brain 2022; 15:51. [PMID: 35676711 PMCID: PMC9175339 DOI: 10.1186/s13041-022-00933-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 05/14/2022] [Indexed: 11/30/2022] Open
Abstract
Alzheimer's disease is associated with various brain dysfunctions, including memory impairment, neuronal loss, astrocyte activation, amyloid-β plaques, and neurofibrillary tangles. Transgenic animal models of Alzheimer's disease have proven to be invaluable for the basic research of Alzheimer's disease. However, Alzheimer's disease mouse models developed so far do not fully recapitulate the pathological and behavioral features reminiscent of Alzheimer's disease in humans. Here, we investigated the neurobehavioral sequelae in the novel 6xTg mouse model of Alzheimer's disease, which was developed by incorporating human tau containing P301L mutation in the widely used 5xFAD mouse model of Alzheimer's disease. At 11-months-old, 6xTg mice displayed the core pathological processes found in Alzheimer's disease, including accumulation of amyloid-β plaque, extensive neuronal loss, elevated level of astrocyte activation, and abnormal tau phosphorylation in the brain. At 9 to 11-months-old, 6xTg mice exhibited both cognitive and non-cognitive behavioral impairments relevant to Alzheimer’s disease, including memory loss, hyperlocomotion, anxiety-like behavior, depression-like behavior, and reduced sensorimotor gating. Our data suggest that the aged 6xTg mouse model of Alzheimer's disease presents pathological and cognitive-behavioral features reminiscent of Alzheimer's disease in humans. Thus, the 6xTg mouse model of Alzheimer's disease may be a valuable model for studying Alzheimer’s disease-relevant non-cognitive behaviors.
Collapse
|
17
|
Human Coxsackie- and adenovirus receptor is a putative target of neutrophil elastase-mediated shedding. Mol Biol Rep 2022; 49:3213-3223. [PMID: 35122600 PMCID: PMC8924087 DOI: 10.1007/s11033-022-07153-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 01/17/2022] [Indexed: 12/04/2022]
Abstract
Background During viral-induced myocarditis, immune cells migrate towards the site of infection and secrete proteases, which in turn can act as sheddases by cleaving extracellular domains of transmembrane proteins. We were interested in the shedding of the Coxsackie- and adenovirus receptor (CAR) that acts as an entry receptor for both eponymous viruses, which cause myocarditis. CAR shedding by secreted immune proteases could result in a favourable outcome of myocarditis as CAR’s extracellular domain would be removed from the cardiomyocytes’ surface leading to decreased susceptibility to ongoing viral infections. Methods and results In this work, matrix metalloproteinases and serine proteinases were screened for their proteolytic activity towards human CAR. Whereas matrix metalloproteinases, proteinase 3, and cathepsin G did not cleave human recombinant CAR or only within long incubation times, neutrophil elastase showed a distinct cleavage pattern of CAR’s extracellular domain that was time- and dose-dependent. Neutrophil elastase cleaves CAR at its membrane-proximal immunoglobulin domain as we determined by nanoLC-MS/MS. Furthermore, neutrophil elastase treatment of cells reduced CAR surface levels as seen by flow cytometry and immunofluorescence microscopy. Conclusions With this study, we show that CAR might be a target for shedding by neutrophil elastase. Supplementary Information The online version contains supplementary material available at 10.1007/s11033-022-07153-2.
Collapse
|
18
|
Bang ML, Bogomolovas J, Chen J. Understanding the molecular basis of cardiomyopathy. Am J Physiol Heart Circ Physiol 2022; 322:H181-H233. [PMID: 34797172 PMCID: PMC8759964 DOI: 10.1152/ajpheart.00562.2021] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/16/2021] [Accepted: 11/16/2021] [Indexed: 02/03/2023]
Abstract
Inherited cardiomyopathies are a major cause of mortality and morbidity worldwide and can be caused by mutations in a wide range of proteins located in different cellular compartments. The present review is based on Dr. Ju Chen's 2021 Robert M. Berne Distinguished Lectureship of the American Physiological Society Cardiovascular Section, in which he provided an overview of the current knowledge on the cardiomyopathy-associated proteins that have been studied in his laboratory. The review provides a general summary of the proteins in different compartments of cardiomyocytes associated with cardiomyopathies, with specific focus on the proteins that have been studied in Dr. Chen's laboratory.
Collapse
Affiliation(s)
- Marie-Louise Bang
- Institute of Genetic and Biomedical Research (IRGB), National Research Council (CNR), Milan Unit, Milan, Italy
- IRCCS Humanitas Research Hospital, Rozzano (Milan), Italy
| | - Julius Bogomolovas
- Division of Cardiovascular Medicine, Department of Medicine Cardiology, University of California, San Diego, La Jolla, California
| | - Ju Chen
- Division of Cardiovascular Medicine, Department of Medicine Cardiology, University of California, San Diego, La Jolla, California
| |
Collapse
|
19
|
Kotha Lakshmi Narayan P, Readler JM, Alghamri MS, Brockman TL, Yan R, Sharma P, Snitsarev V, Excoffon KJDA, Kolawole AO. The Coxsackievirus and Adenovirus Receptor Has a Short Half-Life in Epithelial Cells. Pathogens 2022; 11:173. [PMID: 35215116 PMCID: PMC8880067 DOI: 10.3390/pathogens11020173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/18/2022] [Accepted: 01/24/2022] [Indexed: 12/10/2022] Open
Abstract
The coxsackievirus and adenovirus receptor (CAR) is an essential cellular protein that is involved in cell adhesion, cell signaling, and viral infection. The 8-exon encoded isoform (CAREx8) resides at the apical surface of polarized epithelia, where it is accessible as a receptor for adenovirus entering the airway lumen. Given its pivotal role in viral infection, it is a target for antiviral strategies. To understand the regulation of CAREx8 and determine the feasibility of receptor downregulation, the half-life of total and apical localized CAREx8 was determined and correlated with adenovirus transduction. Total and apical CAREx8 has a relatively short half-life of approximately 2 h. The half-life of apical CAREx8 correlates well with adenovirus transduction. These results suggest that antiviral strategies that aim to degrade the primary receptor for apical adenovirus infection will be effective within a relatively short time frame after application.
Collapse
Affiliation(s)
- Poornima Kotha Lakshmi Narayan
- Department of Biological Sciences, Wright State University, Dayton, OH 45435, USA; (P.K.L.N.); (J.M.R.); (M.S.A.); (T.L.B.); (R.Y.); (P.S.); (K.J.D.A.E.)
- Biomedical Sciences PhD Program, Wright State University, Dayton, OH 45435, USA
| | - James M. Readler
- Department of Biological Sciences, Wright State University, Dayton, OH 45435, USA; (P.K.L.N.); (J.M.R.); (M.S.A.); (T.L.B.); (R.Y.); (P.S.); (K.J.D.A.E.)
- Biomedical Sciences PhD Program, Wright State University, Dayton, OH 45435, USA
| | - Mahmoud S. Alghamri
- Department of Biological Sciences, Wright State University, Dayton, OH 45435, USA; (P.K.L.N.); (J.M.R.); (M.S.A.); (T.L.B.); (R.Y.); (P.S.); (K.J.D.A.E.)
- Biomedical Sciences PhD Program, Wright State University, Dayton, OH 45435, USA
| | - Trisha L. Brockman
- Department of Biological Sciences, Wright State University, Dayton, OH 45435, USA; (P.K.L.N.); (J.M.R.); (M.S.A.); (T.L.B.); (R.Y.); (P.S.); (K.J.D.A.E.)
| | - Ran Yan
- Department of Biological Sciences, Wright State University, Dayton, OH 45435, USA; (P.K.L.N.); (J.M.R.); (M.S.A.); (T.L.B.); (R.Y.); (P.S.); (K.J.D.A.E.)
| | - Priyanka Sharma
- Department of Biological Sciences, Wright State University, Dayton, OH 45435, USA; (P.K.L.N.); (J.M.R.); (M.S.A.); (T.L.B.); (R.Y.); (P.S.); (K.J.D.A.E.)
| | | | - Katherine J. D. A. Excoffon
- Department of Biological Sciences, Wright State University, Dayton, OH 45435, USA; (P.K.L.N.); (J.M.R.); (M.S.A.); (T.L.B.); (R.Y.); (P.S.); (K.J.D.A.E.)
- Biomedical Sciences PhD Program, Wright State University, Dayton, OH 45435, USA
| | - Abimbola O. Kolawole
- Department of Biological Sciences, Wright State University, Dayton, OH 45435, USA; (P.K.L.N.); (J.M.R.); (M.S.A.); (T.L.B.); (R.Y.); (P.S.); (K.J.D.A.E.)
- Biomedical Sciences PhD Program, Wright State University, Dayton, OH 45435, USA
| |
Collapse
|
20
|
Navaratnarajah CK, Pease DR, Halfmann PJ, Taye B, Barkhymer A, Howell KG, Charlesworth JE, Christensen TA, Kawaoka Y, Cattaneo R, Schneider JW. Highly Efficient SARS-CoV-2 Infection of Human Cardiomyocytes: Spike Protein-Mediated Cell Fusion and Its Inhibition. J Virol 2021; 95:e0136821. [PMID: 34613786 PMCID: PMC8610601 DOI: 10.1128/jvi.01368-21] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/26/2021] [Indexed: 12/15/2022] Open
Abstract
Severe cardiovascular complications can occur in coronavirus disease of 2019 (COVID-19) patients. Cardiac damage is attributed mostly to the aberrant host response to acute respiratory infection. However, direct infection of cardiac tissue by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) also occurs. We examined here the cardiac tropism of SARS-CoV-2 in spontaneously beating human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). These cardiomyocytes express the angiotensin-converting enzyme 2 (ACE2) receptor but not the transmembrane protease serine 2 (TMPRSS2) that mediates spike protein cleavage in the lungs. Nevertheless, SARS-CoV-2 infection of hiPSC-CMs was prolific; viral transcripts accounted for about 88% of total mRNA. In the cytoplasm of infected hiPSC-CMs, smooth-walled exocytic vesicles contained numerous 65- to 90-nm particles with canonical ribonucleocapsid structures, and virus-like particles with knob-like spikes covered the cell surface. To better understand how SARS-CoV-2 spreads in hiPSC-CMs, we engineered an expression vector coding for the spike protein with a monomeric emerald-green fluorescent protein fused to its cytoplasmic tail (S-mEm). Proteolytic processing of S-mEm and the parental spike were equivalent. Live cell imaging tracked spread of S-mEm cell-to-cell and documented formation of syncytia. A cell-permeable, peptide-based molecule that blocks the catalytic site of furin and furin-like proteases abolished cell fusion. A spike mutant with the single amino acid change R682S that disrupts the multibasic furin cleavage motif was fusion inactive. Thus, SARS-CoV-2 replicates efficiently in hiPSC-CMs and furin, and/or furin-like-protease activation of its spike protein is required for fusion-based cytopathology. This hiPSC-CM platform enables target-based drug discovery in cardiac COVID-19. IMPORTANCE Cardiac complications frequently observed in COVID-19 patients are tentatively attributed to systemic inflammation and thrombosis, but viral replication has occasionally been confirmed in cardiac tissue autopsy materials. We developed an in vitro model of SARS-CoV-2 spread in myocardium using induced pluripotent stem cell-derived cardiomyocytes. In these highly differentiated cells, viral transcription levels exceeded those previously documented in permissive transformed cell lines. To better understand the mechanisms of SARS-CoV-2 spread, we expressed a fluorescent version of its spike protein that allowed us to characterize a fusion-based cytopathic effect. A mutant of the spike protein with a single amino acid mutation in the furin/furin-like protease cleavage site lost cytopathic function. Of note, the fusion activities of the spike protein of other coronaviruses correlated with the level of cardiovascular complications observed in infections with the respective viruses. These data indicate that SARS-CoV-2 may cause cardiac damage by fusing cardiomyocytes.
Collapse
Affiliation(s)
| | - David R. Pease
- Discovery Engine/Program for Hypoplastic Left Heart Syndrome, Mayo Clinic, Rochester, Minnesota, USA
| | - Peter J. Halfmann
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Biruhalem Taye
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Alison Barkhymer
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Kyle G. Howell
- Mayo Microscopy and Cell Analysis Core, Mayo Clinic, Rochester, Minnesota, USA
| | - Jon E. Charlesworth
- Mayo Microscopy and Cell Analysis Core, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Yoshihiro Kawaoka
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Roberto Cattaneo
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Jay W. Schneider
- Discovery Engine/Program for Hypoplastic Left Heart Syndrome, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
21
|
Coxsackievirus and Adenovirus Receptor (CXADR): Recent Findings and Its Role and Regulation in Spermatogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1288:95-109. [PMID: 34453733 DOI: 10.1007/978-3-030-77779-1_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Coxsackievirus and adenovirus receptor (CXADR) belongs to immunoglobulin superfamily of cell adhesion molecules. It expresses in most tissues, but displays unique and indispensable functions in some tissues such as heart and testis. CXADR is a multifunctional protein that can serve as a viral receptor, a junction structural protein and a signalling molecule. Thus, it exerts a wide range of functions such as facilitating leukocyte transmigration, regulating barrier function and cell adhesion, promoting EMT transition, and mediating spermatogenesis. This review aims to provide an overview and highlights some recent findings on CXADR in the field with emphasis on studies in the testis, upon which future studies can be designed to delineate the roles and regulation of CXADR in spermatogenesis.
Collapse
|
22
|
Wu G, Cheng Zhang C. Membrane protein CAR promotes hematopoietic regeneration upon stress. Haematologica 2021; 106:2180-2190. [PMID: 32586901 PMCID: PMC8327706 DOI: 10.3324/haematol.2019.243998] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Indexed: 12/16/2022] Open
Abstract
Adult hematopoietic stem cells (HSC) are quiescent most of the time, and how HSC switch from quiescence to proliferation following hematopoietic stress is unclear. Here we demonstrate that upon stress the coxsackievirus and adenovirus receptor CAR (also known as CXADR) is upregulated in HSC and critical for HSC entry into the cell cycle. Wild-type HSC were detected with more rapid repopulation ability than the CAR knockout counterparts. After fluorouracil treatment, CAR knockout HSC had lower levels of Notch1 expression and elevated protein level of Numb, a Notch antagonist. The Notch signaling inhibitor DAPT, dominant negative form of MAML (a transcriptional coactivator of Notch), or dominant negative mutant of LNX2 (an E3 ligase that acts on Numb and binds to CAR), all were capable of abrogating the function of CAR in HSC. We conclude that CAR activates Notch1 signaling by downregulating Numb protein expression to facilitate entry of quiescent HSC into the cell cycle during regeneration.
Collapse
Affiliation(s)
- Guojin Wu
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Cheng Cheng Zhang
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
23
|
Park JH, Shin HH, Rhyu HS, Kim SH, Jeon ES, Lim BK. Vascular Endothelial Integrity Affects the Severity of Enterovirus-Mediated Cardiomyopathy. Int J Mol Sci 2021; 22:3053. [PMID: 33802680 PMCID: PMC8002520 DOI: 10.3390/ijms22063053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/14/2021] [Accepted: 03/15/2021] [Indexed: 12/22/2022] Open
Abstract
Coxsackievirus and adenovirus receptor (CAR) is present in epithelial and vascular endothelial cell junctions. We have previously shown a hemorrhagic phenotype in germ-line CAR knock-out mouse embryos; we have also found that CAR interacts with ZO-1 and β-catenin. However, the role of CAR in vascular endothelial junction permeability has not been proven. To understand the roles of CAR in the vascular endothelial junctions, we generated endothelium-specific CAR knockout (CAR-eKO) mice. In the absence of CAR, the endothelial cell layer showed an increase in transmembrane electrical resistance (TER, Ω) and coxsackievirus permeability. Evans blue dye and 70 kDa dextran-FITC were delivered by tail vein injection. We observed increased vascular permeability in the hearts of adult CAR-eKO mice compare with wild-type (WT) mice. There was a marked increase in monocyte and macrophage penetration into the peritoneal cavity caused by thioglycolate-induced peritonitis. We found that CAR ablation in endothelial cells was not significantly increased coxsackievirus B3 (CVB3) induced myocarditis in murine model. However, tissue virus titers were significantly higher in CAR-eKO mice compared with WT. Moreover, CVB3 was detected in the brain of CAR-eKO mice. Endothelial CAR deletion affects the expression of major endothelial junction proteins, such as cadherin and platelet endothelial cell adhesion molecule-1 (PECAM-1) in the cultured endothelial cells as well as liver vessel. We suggest that CAR expression is required for normal vascular permeability and endothelial tight junction homeostasis. Furthermore, CVB3 organ penetration and myocarditis severities were dependent on the endothelial CAR level.
Collapse
Affiliation(s)
- Jin-Ho Park
- Department of Biomedical Science, Jungwon University, 85 Munmu-ro, Goesan-eup, Goesan-gun, Chungbuk 28024, Korea; (J.-H.P.); (H.-H.S.); (H.-S.R.); (S.-H.K.)
| | - Ha-Hyeon Shin
- Department of Biomedical Science, Jungwon University, 85 Munmu-ro, Goesan-eup, Goesan-gun, Chungbuk 28024, Korea; (J.-H.P.); (H.-H.S.); (H.-S.R.); (S.-H.K.)
| | - Hyun-Seung Rhyu
- Department of Biomedical Science, Jungwon University, 85 Munmu-ro, Goesan-eup, Goesan-gun, Chungbuk 28024, Korea; (J.-H.P.); (H.-H.S.); (H.-S.R.); (S.-H.K.)
| | - So-Hee Kim
- Department of Biomedical Science, Jungwon University, 85 Munmu-ro, Goesan-eup, Goesan-gun, Chungbuk 28024, Korea; (J.-H.P.); (H.-H.S.); (H.-S.R.); (S.-H.K.)
| | - Eun-Seok Jeon
- Division of Cardiology, Samsung Medical Center, Sungkyunkwan University School of Medicine 50 Irwon dong, Gangnam-gu, Seoul 06351, Korea;
| | - Byung-Kwan Lim
- Department of Biomedical Science, Jungwon University, 85 Munmu-ro, Goesan-eup, Goesan-gun, Chungbuk 28024, Korea; (J.-H.P.); (H.-H.S.); (H.-S.R.); (S.-H.K.)
| |
Collapse
|
24
|
Liang D, Xue J, Geng L, Zhou L, Lv B, Zeng Q, Xiong K, Zhou H, Xie D, Zhang F, Liu J, Liu Y, Li L, Yang J, Xue Z, Chen YH. Cellular and molecular landscape of mammalian sinoatrial node revealed by single-cell RNA sequencing. Nat Commun 2021; 12:287. [PMID: 33436583 PMCID: PMC7804277 DOI: 10.1038/s41467-020-20448-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 12/03/2020] [Indexed: 02/07/2023] Open
Abstract
Bioelectrical impulses intrinsically generated within the sinoatrial node (SAN) trigger the contraction of the heart in mammals. Though discovered over a century ago, the molecular and cellular features of the SAN that underpin its critical function in the heart are uncharted territory. Here, we identify four distinct transcriptional clusters by single-cell RNA sequencing in the mouse SAN. Functional analysis of differentially expressed genes identifies a core cell cluster enriched in the electrogenic genes. The similar cellular features are also observed in the SAN from both rabbit and cynomolgus monkey. Notably, Vsnl1, a core cell cluster marker in mouse, is abundantly expressed in SAN, but is barely detectable in atrium or ventricle, suggesting that Vsnl1 is a potential SAN marker. Importantly, deficiency of Vsnl1 not only reduces the beating rate of human induced pluripotent stem cell - derived cardiomyocytes (hiPSC-CMs) but also the heart rate of mice. Furthermore, weighted gene co-expression network analysis (WGCNA) unveiled the core gene regulation network governing the function of the SAN in mice. Overall, these findings reveal the whole transcriptome profiling of the SAN at single-cell resolution, representing an advance toward understanding of both the biology and the pathology of SAN. The spontaneous bioelectrical activity of pacemaker cells in sinoatrial node (SAN) triggers the heartbeats. Here, the authors perform single-cell RNA sequencing in the mouse SAN and identify molecular and cellular features of the SAN conserved in rabbit and cynomolgus monkey, identifying a new potential SAN marker.
Collapse
Affiliation(s)
- Dandan Liang
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.,Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.,Institute of Medical Genetics, Tongji University, Shanghai, 200092, China
| | - Jinfeng Xue
- Department of Regenerative Medicine, Tongji University School of Medicine, Shanghai, 200092, China
| | - Li Geng
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.,Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.,Institute of Medical Genetics, Tongji University, Shanghai, 200092, China
| | - Liping Zhou
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.,Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.,Institute of Medical Genetics, Tongji University, Shanghai, 200092, China
| | - Bo Lv
- Department of Regenerative Medicine, Tongji University School of Medicine, Shanghai, 200092, China
| | - Qiao Zeng
- Department of Regenerative Medicine, Tongji University School of Medicine, Shanghai, 200092, China
| | - Ke Xiong
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.,Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.,Institute of Medical Genetics, Tongji University, Shanghai, 200092, China
| | - Huixing Zhou
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.,Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.,Institute of Medical Genetics, Tongji University, Shanghai, 200092, China
| | - Duanyang Xie
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.,Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.,Institute of Medical Genetics, Tongji University, Shanghai, 200092, China
| | - Fulei Zhang
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.,Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.,Institute of Medical Genetics, Tongji University, Shanghai, 200092, China
| | - Jie Liu
- Translational Center of Stem Cell Research, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Yi Liu
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.,Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.,Institute of Medical Genetics, Tongji University, Shanghai, 200092, China
| | - Li Li
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.,Institute of Medical Genetics, Tongji University, Shanghai, 200092, China.,Department of Pathology and Pathophysiology, Tongji University School of Medicine, Shanghai, 200092, China
| | - Jian Yang
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.,Institute of Medical Genetics, Tongji University, Shanghai, 200092, China.,Department of Pathology and Pathophysiology, Tongji University School of Medicine, Shanghai, 200092, China
| | - Zhigang Xue
- Department of Regenerative Medicine, Tongji University School of Medicine, Shanghai, 200092, China. .,Reproductive Medicine Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China.
| | - Yi-Han Chen
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China. .,Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China. .,Institute of Medical Genetics, Tongji University, Shanghai, 200092, China. .,Department of Pathology and Pathophysiology, Tongji University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
25
|
Sharma V, Perry DJ, Eghtesady P. Role of coxsackie-adenovirus receptor in cardiac development and pathogenesis of congenital heart disease. Birth Defects Res 2020; 113:535-545. [PMID: 33369284 DOI: 10.1002/bdr2.1860] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 11/30/2020] [Accepted: 12/17/2020] [Indexed: 12/13/2022]
Abstract
The coxsackie-adenovirus receptor (CAR) is a cell surface transmembrane protein originally recognized for its role as a binding site for coxsackie- and adeno-viruses. As such, it is believed to play an important role in pathogenesis of myocarditis. Other studies have suggested that CAR also plays an important role in embryonic development, which is not surprising given the strong expression of the receptor in heart, brain, liver, pancreas, kidney, small intestine, and various epithelia during development. A number of studies have looked at downregulation and upregulation of CAR and have confirmed the central role of CAR during critical periods of development. These studies all demonstrated embryonic lethality with variable phenotypes: electrophysiological abnormalities, cardiac structural deformations, and extracardiac abnormalities, such as lymphatic malformations. The purpose of this review is to summarize the existing literature about CAR and formulate some questions for future studies, with an emphasis on the role of CAR during embryonic heart development.
Collapse
Affiliation(s)
- Vipul Sharma
- Division of Pediatric Cardiothoracic Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Daniel J Perry
- Division of Pediatric Cardiothoracic Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Pirooz Eghtesady
- Division of Pediatric Cardiothoracic Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
26
|
Rathjen FG. The CAR group of Ig cell adhesion proteins–Regulators of gap junctions? Bioessays 2020; 42:e2000031. [DOI: 10.1002/bies.202000031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 09/01/2020] [Indexed: 12/29/2022]
|
27
|
Falk MM. Do CAR and CAR family members aid in gap junction formation? Bioessays 2020; 42:e2000276. [PMID: 33145803 DOI: 10.1002/bies.202000276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Indexed: 12/31/2022]
Affiliation(s)
- Matthias M Falk
- Lehigh University, Biological Sciences, 111 Research Drive, Bethlehem, Pennsylvania, 18049, USA
| |
Collapse
|
28
|
Affiliation(s)
- Yan Liang
- From the Department of Medicine, University of California San Diego, La Jolla
| | - Farah Sheikh
- From the Department of Medicine, University of California San Diego, La Jolla
| |
Collapse
|
29
|
Dai W, Nadadur RD, Brennan JA, Smith HL, Shen KM, Gadek M, Laforest B, Wang M, Gemel J, Li Y, Zhang J, Ziman BD, Yan J, Ai X, Beyer EC, Lakata EG, Kasthuri N, Efimov IR, Broman MT, Moskowitz IP, Shen L, Weber CR. ZO-1 Regulates Intercalated Disc Composition and Atrioventricular Node Conduction. Circ Res 2020; 127:e28-e43. [PMID: 32347164 PMCID: PMC7334106 DOI: 10.1161/circresaha.119.316415] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
RATIONALE ZO-1 (Zona occludens 1), encoded by the tight junction protein 1 (TJP1) gene, is a regulator of paracellular permeability in epithelia and endothelia. ZO-1 interacts with the actin cytoskeleton, gap, and adherens junction proteins and localizes to intercalated discs in cardiomyocytes. However, the contribution of ZO-1 to cardiac physiology remains poorly defined. OBJECTIVE We aim to determine the role of ZO-1 in cardiac function. METHODS AND RESULTS Inducible cardiomyocyte-specific Tjp1 deletion mice (Tjp1fl/fl; Myh6Cre/Esr1*) were generated by crossing the Tjp1 floxed mice and Myh6Cre/Esr1* transgenic mice. Tamoxifen-induced loss of ZO-1 led to atrioventricular (AV) block without changes in heart rate, as measured by ECG and ex vivo optical mapping. Mice with tamoxifen-induced conduction system-specific deletion of Tjp1 (Tjp1fl/fl; Hcn4CreERt2) developed AV block while tamoxifen-induced conduction system deletion of Tjp1 distal to the AV node (Tjp1fl/fl; Kcne1CreERt2) did not demonstrate conduction defects. Western blot and immunostaining analyses of AV nodes showed that ZO-1 loss decreased Cx (connexin) 40 expression and intercalated disc localization. Consistent with the mouse model study, immunohistochemical staining showed that ZO-1 is abundantly expressed in the human AV node and colocalizes with Cx40. Ventricular conduction was not altered despite decreased localization of ZO-1 and Cx43 at the ventricular intercalated disc and modestly decreased left ventricular ejection fraction, suggesting ZO-1 is differentially required for AV node and ventricular conduction. CONCLUSIONS ZO-1 is a key protein responsible for maintaining appropriate AV node conduction through maintaining gap junction protein localization.
Collapse
Affiliation(s)
- Wenli Dai
- Pathology, University of Chicago, 5841 S. Maryland Ave., Chicago, IL 60637
| | - Rangarajan D. Nadadur
- Pediatrics, Pathology, and Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Jaclyn A. Brennan
- Department of Biomedical Engineering, The George Washington University, 800 22nd St NW, Washington, DC 20052
| | - Heather L. Smith
- Pathology, University of Chicago, 5841 S. Maryland Ave., Chicago, IL 60637
| | - Kaitlyn M. Shen
- Pediatrics, Pathology, and Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Margaret Gadek
- Pediatrics, Pathology, and Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Brigitte Laforest
- Medicine, Section of Cardiology, University of Chicago, 5841 S. Maryland Ave., Chicago, IL 60637
| | - Mingyi Wang
- Laboratory of Cardiovascular Science, National Institution on Aging-NIH, BRC-9B0127 251 Bayview Blvd, Baltimore, MD 21224
| | - Joanna Gemel
- Pediatrics, University of Chicago, Chicago, IL 60637, USA
| | - Ye Li
- Pathology, University of Chicago, 5841 S. Maryland Ave., Chicago, IL 60637
| | - Jing Zhang
- Laboratory of Cardiovascular Science, National Institution on Aging-NIH, BRC-9B0127 251 Bayview Blvd, Baltimore, MD 21224
| | - Bruce D. Ziman
- Laboratory of Cardiovascular Science, National Institution on Aging-NIH, BRC-9B0127 251 Bayview Blvd, Baltimore, MD 21224
| | - Jiajie Yan
- Physiology and Biophysics, Rush University, 1750 West Harrison St., Chicago, IL 60612
| | - Xun Ai
- Physiology and Biophysics, Rush University, 1750 West Harrison St., Chicago, IL 60612
| | - Eric C. Beyer
- Pediatrics, University of Chicago, Chicago, IL 60637, USA
| | - Edward G. Lakata
- Laboratory of Cardiovascular Science, National Institution on Aging-NIH, BRC-9B0127 251 Bayview Blvd, Baltimore, MD 21224
| | - Narayanan Kasthuri
- Neurobiology, University of Chicago, 5841 S. Maryland Ave., Chicago, IL 60637
| | - Igor R. Efimov
- Department of Biomedical Engineering, The George Washington University, 800 22nd St NW, Washington, DC 20052
| | - Michael T. Broman
- Medicine, Section of Cardiology, University of Chicago, 5841 S. Maryland Ave., Chicago, IL 60637
| | - Ivan P. Moskowitz
- Pediatrics, Pathology, and Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Le Shen
- Pathology, University of Chicago, 5841 S. Maryland Ave., Chicago, IL 60637
- Section of Neurosurgery, Department of Surgery, University of Chicago, 5841 S. Maryland Ave., Chicago, IL 60637
| | | |
Collapse
|
30
|
Naturally occurring variants in the transmembrane and cytoplasmic domains of the human Coxsackie- and adenovirus receptor have no impact on virus internalisation. Biochem Biophys Res Commun 2020; 527:401-405. [PMID: 32334832 DOI: 10.1016/j.bbrc.2020.03.082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 03/15/2020] [Indexed: 11/21/2022]
Abstract
The Coxsackie- and adenovirus receptor (CAR) mediates homophilic cell-cell contacts and susceptibility to both human pathogenic viruses through its membrane-distal immunoglobulin domain. In the present study, we screened five missense variants of the human CAR gene for their influence on adenovector or Coxsackievirus entry into Chinese hamster ovary cells. The CAR variants facilitated virus internalisation to a similar extent as wild type CAR. This underlines CAR's presumed invariance and essential physiological role in embryogenesis.
Collapse
|
31
|
Calhoun PJ, Phan AV, Taylor JD, James CC, Padget RL, Zeitz MJ, Smyth JW. Adenovirus targets transcriptional and posttranslational mechanisms to limit gap junction function. FASEB J 2020; 34:9694-9712. [PMID: 32485054 DOI: 10.1096/fj.202000667r] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 05/05/2020] [Accepted: 05/12/2020] [Indexed: 01/19/2023]
Abstract
Adenoviruses are responsible for a spectrum of pathogenesis including viral myocarditis. The gap junction protein connexin43 (Cx43, gene name GJA1) facilitates rapid propagation of action potentials necessary for each heartbeat. Gap junctions also propagate innate and adaptive antiviral immune responses, but how viruses may target these structures is not understood. Given this immunological role of Cx43, we hypothesized that gap junctions would be targeted during adenovirus type 5 (Ad5) infection. We find reduced Cx43 protein levels due to decreased GJA1 mRNA transcripts dependent upon β-catenin transcriptional activity during Ad5 infection, with early viral protein E4orf1 sufficient to induce β-catenin phosphorylation. Loss of gap junction function occurs prior to reduced Cx43 protein levels with Ad5 infection rapidly inducing Cx43 phosphorylation events consistent with altered gap junction conductance. Direct Cx43 interaction with ZO-1 plays a critical role in gap junction regulation. We find loss of Cx43/ZO-1 complexing during Ad5 infection by co-immunoprecipitation and complementary studies in human induced pluripotent stem cell derived-cardiomyocytes reveal Cx43 gap junction remodeling by reduced ZO-1 complexing. These findings reveal specific targeting of gap junction function by Ad5 leading to loss of intercellular communication which would contribute to dangerous pathological states including arrhythmias in infected hearts.
Collapse
Affiliation(s)
- Patrick J Calhoun
- Fralin Biomedical Research Institute at VTC, Roanoke, VA, USA.,Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Allen V Phan
- Virginia Tech Carilion School of Medicine, Roanoke, VA, USA
| | | | - Carissa C James
- Fralin Biomedical Research Institute at VTC, Roanoke, VA, USA.,Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA, USA
| | - Rachel L Padget
- Fralin Biomedical Research Institute at VTC, Roanoke, VA, USA.,Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA, USA
| | - Michael J Zeitz
- Fralin Biomedical Research Institute at VTC, Roanoke, VA, USA
| | - James W Smyth
- Fralin Biomedical Research Institute at VTC, Roanoke, VA, USA.,Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA.,Virginia Tech Carilion School of Medicine, Roanoke, VA, USA
| |
Collapse
|
32
|
Excoffon KJDA. The coxsackievirus and adenovirus receptor: virological and biological beauty. FEBS Lett 2020; 594:1828-1837. [PMID: 32298477 DOI: 10.1002/1873-3468.13794] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 03/31/2020] [Accepted: 04/04/2020] [Indexed: 12/17/2022]
Abstract
The coxsackievirus and adenovirus receptor (CAR) is an essential multifunctional cellular protein that is only beginning to be understood. CAR serves as a receptor for many adenoviruses, human group B coxsackieviruses, swine vesicular disease virus, and possibly other viruses. While named for its function as a viral receptor, CAR is also involved in cell adhesion, immune cell activation, synaptic transmission, and signaling. Knockout mouse models were first to identify some of these biological functions; however, tissue-specific model systems have shed light on the complexity of different CAR isoforms and their specific activities. Many of these functions are mediated by the large number of interacting proteins described so far, and several new putative interactions have recently been discovered. As antiviral and gene therapy strategies that target CAR continue to emerge, future work poised to understand the biological implications of manipulating CAR in vivo is critical.
Collapse
Affiliation(s)
- Katherine J D A Excoffon
- Biological Sciences, Wright State University, Dayton, OH, USA.,Spirovant Sciences, Inc, Philadelphia, PA, USA
| |
Collapse
|
33
|
Abstract
Intercalated discs (ICDs) are highly orchestrated structures that connect neighboring cardiomyocytes in the heart. Three major complexes are distinguished in ICD: desmosome, adherens junction (AJ), and gap junction (GJ). Desmosomes are major cell adhesion junctions that anchor cell membrane to the intermediate filament network; AJs connect the actin cytoskeleton of adjacent cells; and gap junctions metabolically and electrically connect the cytoplasm of adjacent cardiomyocytes. All these complexes work as a single unit, the so-called area composita, interdependently rather than individually. Mutation or altered expression of ICD proteins results in various cardiac diseases, such as ARVC (arrhythmogenic right ventricular cardiomyopathy), dilated cardiomyopathy, and hypotrophy cardiomyopathy, eventually leading to heart failure. In this article, we first review the recent findings on the structural organization of ICD and their functions and then focus on the recent advances in molecular pathogenesis of the ICD-related heart diseases, which include two major areas: i) the ICD gene mutations in cardiac diseases, and ii) the involvement of ICD proteins in signal transduction pathways leading to myocardium remodeling and eventual heart failure. These major ICD-related signaling pathways include Wnt/β-catenin pathway, p38 MAPK cascade, Rho-dependent serum response factor (SRF) signaling, calcineurin/NFAT signaling, Hippo kinase cascade, etc., which are differentially regulated in pathological conditions.
Collapse
|
34
|
Zhang J, Vincent KP, Peter AK, Klos M, Cheng H, Huang SM, Towne JK, Ferng D, Gu Y, Dalton ND, Chan Y, Li R, Peterson KL, Chen J, McCulloch AD, Knowlton KU, Ross RS. Cardiomyocyte Expression of ZO-1 Is Essential for Normal Atrioventricular Conduction but Does Not Alter Ventricular Function. Circ Res 2020; 127:284-297. [PMID: 32345129 DOI: 10.1161/circresaha.119.315539] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE ZO-1 (Zonula occludens-1), a plasma membrane-associated scaffolding protein regulates signal transduction, transcription, and cellular communication. Global deletion of ZO-1 in the mouse is lethal by embryonic day 11.5. The function of ZO-1 in cardiac myocytes (CM) is largely unknown. OBJECTIVE To determine the function of CM ZO-1 in the intact heart, given its binding to other CM proteins that have been shown instrumental in normal cardiac conduction and function. METHODS AND RESULTS We generated ZO-1 CM-specific knockout (KO) mice using α-Myosin Heavy Chain-nuclear Cre (ZO-1cKO) and investigated physiological and electrophysiological function by echocardiography, surface ECG and conscious telemetry, intracardiac electrograms and pacing, and optical mapping studies. ZO-1cKO mice were viable, had normal Mendelian ratios, and had a normal lifespan. Ventricular morphometry and function were not significantly different between the ZO-1cKO versus control (CTL) mice, basally in young or aged mice, or even when hearts were subjected to hemodynamic loading. Atrial mass was increased in ZO-1cKO. Electrophysiological and optical mapping studies indicated high-grade atrioventricular (A-V) block in ZO-1cKO comparing to CTL hearts. While ZO-1-associated proteins such as vinculin, connexin 43, N-cadherin, and α-catenin showed no significant change with the loss of ZO-1, Connexin-45 and Coxsackie-adenovirus (CAR) proteins were reduced in atria of ZO-1cKO. Further, with loss of ZO-1, ZO-2 protein was increased significantly in ventricular CM in a presumed compensatory manner but was still not detected in the AV nodal myocytes. Importantly, the expression of the sodium channel protein NaV1.5 was altered in AV nodal cells of the ZO-1cKO versus CTL. CONCLUSIONS ZO-1 protein has a unique physiological role in cardiac nodal tissue. This is in alignment with its known interaction with CAR and Cx45, and a new function in regulating the expression of NaV1.5 in AV node. Uniquely, ZO-1 is dispensable for function of the working myocardium.
Collapse
Affiliation(s)
- Jianlin Zhang
- From the Department of Medicine (J.Z., A.K.P., M.K., H.C., S.M.H., J.K.T., D.F., Y.G., N.D.D., Y.C., J.K.T., D.F., Y.G., N.D.D., Y.C., R.L., K.L.P., J.C., A.D.M., R.S.R.), University of California San Diego, La Jolla, CA
| | - Kevin P Vincent
- Department of Bioengineering (K.P.V., A.D.M.), University of California San Diego, La Jolla, CA
| | - Angela K Peter
- From the Department of Medicine (J.Z., A.K.P., M.K., H.C., S.M.H., J.K.T., D.F., Y.G., N.D.D., Y.C., J.K.T., D.F., Y.G., N.D.D., Y.C., R.L., K.L.P., J.C., A.D.M., R.S.R.), University of California San Diego, La Jolla, CA
| | - Matthew Klos
- From the Department of Medicine (J.Z., A.K.P., M.K., H.C., S.M.H., J.K.T., D.F., Y.G., N.D.D., Y.C., J.K.T., D.F., Y.G., N.D.D., Y.C., R.L., K.L.P., J.C., A.D.M., R.S.R.), University of California San Diego, La Jolla, CA
| | - Hongqiang Cheng
- From the Department of Medicine (J.Z., A.K.P., M.K., H.C., S.M.H., J.K.T., D.F., Y.G., N.D.D., Y.C., J.K.T., D.F., Y.G., N.D.D., Y.C., R.L., K.L.P., J.C., A.D.M., R.S.R.), University of California San Diego, La Jolla, CA
| | - Selina M Huang
- From the Department of Medicine (J.Z., A.K.P., M.K., H.C., S.M.H., J.K.T., D.F., Y.G., N.D.D., Y.C., J.K.T., D.F., Y.G., N.D.D., Y.C., R.L., K.L.P., J.C., A.D.M., R.S.R.), University of California San Diego, La Jolla, CA
| | - Jordan K Towne
- From the Department of Medicine (J.Z., A.K.P., M.K., H.C., S.M.H., J.K.T., D.F., Y.G., N.D.D., Y.C., J.K.T., D.F., Y.G., N.D.D., Y.C., R.L., K.L.P., J.C., A.D.M., R.S.R.), University of California San Diego, La Jolla, CA
| | - Debbie Ferng
- From the Department of Medicine (J.Z., A.K.P., M.K., H.C., S.M.H., J.K.T., D.F., Y.G., N.D.D., Y.C., J.K.T., D.F., Y.G., N.D.D., Y.C., R.L., K.L.P., J.C., A.D.M., R.S.R.), University of California San Diego, La Jolla, CA
| | - Yusu Gu
- From the Department of Medicine (J.Z., A.K.P., M.K., H.C., S.M.H., J.K.T., D.F., Y.G., N.D.D., Y.C., J.K.T., D.F., Y.G., N.D.D., Y.C., R.L., K.L.P., J.C., A.D.M., R.S.R.), University of California San Diego, La Jolla, CA
| | - Nancy D Dalton
- From the Department of Medicine (J.Z., A.K.P., M.K., H.C., S.M.H., J.K.T., D.F., Y.G., N.D.D., Y.C., J.K.T., D.F., Y.G., N.D.D., Y.C., R.L., K.L.P., J.C., A.D.M., R.S.R.), University of California San Diego, La Jolla, CA
| | - Yunghang Chan
- From the Department of Medicine (J.Z., A.K.P., M.K., H.C., S.M.H., J.K.T., D.F., Y.G., N.D.D., Y.C., J.K.T., D.F., Y.G., N.D.D., Y.C., R.L., K.L.P., J.C., A.D.M., R.S.R.), University of California San Diego, La Jolla, CA
| | - Ruixia Li
- From the Department of Medicine (J.Z., A.K.P., M.K., H.C., S.M.H., J.K.T., D.F., Y.G., N.D.D., Y.C., J.K.T., D.F., Y.G., N.D.D., Y.C., R.L., K.L.P., J.C., A.D.M., R.S.R.), University of California San Diego, La Jolla, CA
| | - Kirk L Peterson
- From the Department of Medicine (J.Z., A.K.P., M.K., H.C., S.M.H., J.K.T., D.F., Y.G., N.D.D., Y.C., J.K.T., D.F., Y.G., N.D.D., Y.C., R.L., K.L.P., J.C., A.D.M., R.S.R.), University of California San Diego, La Jolla, CA
| | - Ju Chen
- From the Department of Medicine (J.Z., A.K.P., M.K., H.C., S.M.H., J.K.T., D.F., Y.G., N.D.D., Y.C., J.K.T., D.F., Y.G., N.D.D., Y.C., R.L., K.L.P., J.C., A.D.M., R.S.R.), University of California San Diego, La Jolla, CA
| | - Andrew D McCulloch
- From the Department of Medicine (J.Z., A.K.P., M.K., H.C., S.M.H., J.K.T., D.F., Y.G., N.D.D., Y.C., J.K.T., D.F., Y.G., N.D.D., Y.C., R.L., K.L.P., J.C., A.D.M., R.S.R.), University of California San Diego, La Jolla, CA
- Department of Bioengineering (K.P.V., A.D.M.), University of California San Diego, La Jolla, CA
| | | | - Robert S Ross
- From the Department of Medicine (J.Z., A.K.P., M.K., H.C., S.M.H., J.K.T., D.F., Y.G., N.D.D., Y.C., J.K.T., D.F., Y.G., N.D.D., Y.C., R.L., K.L.P., J.C., A.D.M., R.S.R.), University of California San Diego, La Jolla, CA
- Veterans Administration Healthcare, Cardiology Section, San Diego, CA (R.S.R.)
| |
Collapse
|
35
|
Glinge C, Engstrøm T, Midgley SE, Tanck MWT, Madsen JEH, Pedersen F, Ravn Jacobsen M, Lodder EM, Al-Hussainy NR, Kjær Stampe N, Trebbien R, Køber L, Gerds T, Torp-Pedersen C, Kølsen Fischer T, Bezzina CR, Tfelt-Hansen J, Jabbari R. Seasonality of ventricular fibrillation at first myocardial infarction and association with viral exposure. PLoS One 2020; 15:e0226936. [PMID: 32101559 PMCID: PMC7043782 DOI: 10.1371/journal.pone.0226936] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 11/25/2019] [Indexed: 11/19/2022] Open
Abstract
AIMS To investigate seasonality and association of increased enterovirus and influenza activity in the community with ventricular fibrillation (VF) risk during first ST-elevation myocardial infarction (STEMI). METHODS This study comprised all consecutive patients with first STEMI (n = 4,659; aged 18-80 years) admitted to the invasive catheterization laboratory between 2010-2016, at Copenhagen University Hospital, Rigshospitalet, covering eastern Denmark (2.6 million inhabitants, 45% of the Danish population). Hospital admission, prescription, and vital status data were assessed using Danish nationwide registries. We utilized monthly/weekly surveillance data for enterovirus and influenza from the Danish National Microbiology Database (2010-2016) that receives copies of laboratory tests from all Danish departments of clinical microbiology. RESULTS Of the 4,659 consecutively enrolled STEMI patients, 581 (12%) had VF before primary percutaneous coronary intervention. In a subset (n = 807), we found that VF patients experienced more generalized fatigue and flu-like symptoms within 7 days before STEMI compared with the patients without VF (OR 3.39, 95% CI 1.76-6.54). During the study period, 2,704 individuals were diagnosed with enterovirus and 19,742 with influenza. No significant association between enterovirus and VF (OR 1.00, 95% CI 0.99-1.02), influenza and VF (OR 1.00, 95% CI 1.00-1.00), or week number and VF (p-value 0.94 for enterovirus and 0.89 for influenza) was found. CONCLUSION We found no clear seasonality of VF during first STEMI. Even though VF patients had experienced more generalized fatigue and flu-like symptoms within 7 days before STEMI compared with patients without VF, no relationship was found between enterovirus or influenza exposure and occurrence of VF.
Collapse
Affiliation(s)
- Charlotte Glinge
- The Heart Centre, Department of Cardiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Amsterdam UMC, University of Amsterdam, Heart Center, Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Thomas Engstrøm
- The Heart Centre, Department of Cardiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Cardiology, University of Lund, Lund, Sweden
| | - Sofie E. Midgley
- Department of Virus and Microbiological Special Diagnostics, Division of Infectious Disease Preparedness, Statens Serum Institut, Copenhagen, Denmark
| | - Michael W. T. Tanck
- Amsterdam UMC, University of Amsterdam, Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Amsterdam Public Health (APH), Amsterdam, The Netherlands
| | - Jeppe Ekstrand Halkjær Madsen
- The Heart Centre, Department of Cardiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Section of Biostatistics, Faculty of Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Frants Pedersen
- The Heart Centre, Department of Cardiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Mia Ravn Jacobsen
- The Heart Centre, Department of Cardiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Elisabeth M. Lodder
- Amsterdam UMC, University of Amsterdam, Heart Center, Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Nour R. Al-Hussainy
- The Heart Centre, Department of Cardiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Niels Kjær Stampe
- The Heart Centre, Department of Cardiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Ramona Trebbien
- Department of Virus and Microbiological Special Diagnostics, Division of Infectious Disease Preparedness, Statens Serum Institut, Copenhagen, Denmark
| | - Lars Køber
- The Heart Centre, Department of Cardiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Thomas Gerds
- Section of Biostatistics, Faculty of Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christian Torp-Pedersen
- Department of Clinical Investigation and Cardiology, Nordsjaellands Hospital, Hillerød, Denmark
- Department of Cardiology, Aalborg University Hospital, Aalborg, Denmark
| | - Thea Kølsen Fischer
- Department of Virus and Microbiological Special Diagnostics, Division of Infectious Disease Preparedness, Statens Serum Institut, Copenhagen, Denmark
- Department of Infectious Diseases and Department of Global Health, Clinical Institute, University of Southern Denmark, Odense, Denmark
| | - Connie R. Bezzina
- Amsterdam UMC, University of Amsterdam, Heart Center, Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Jacob Tfelt-Hansen
- The Heart Centre, Department of Cardiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Forensic Medicine, Faculty of Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Reza Jabbari
- The Heart Centre, Department of Cardiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- International External Collaborator Sponsored Staff at Division of Preventive Medicine, Brigham & Women's Hospital, Boston, MA, United States of America
| |
Collapse
|
36
|
Park JS, Lee J, Jung ES, Kim MH, Kim IB, Son H, Kim S, Kim S, Park YM, Mook-Jung I, Yu SJ, Lee JH. Brain somatic mutations observed in Alzheimer's disease associated with aging and dysregulation of tau phosphorylation. Nat Commun 2019; 10:3090. [PMID: 31300647 PMCID: PMC6626023 DOI: 10.1038/s41467-019-11000-7] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 06/14/2019] [Indexed: 01/24/2023] Open
Abstract
The role of brain somatic mutations in Alzheimer’s disease (AD) is not well understood. Here, we perform deep whole-exome sequencing (average read depth 584×) in 111 postmortem hippocampal formation and matched blood samples from 52 patients with AD and 11 individuals not affected by AD. The number of somatic single nucleotide variations (SNVs) in AD brain specimens increases significantly with aging, and the rate of mutation accumulation in the brain is 4.8-fold slower than that in AD blood. The putatively pathogenic brain somatic mutations identified in 26.9% (14 of 52) of AD individuals are enriched in PI3K-AKT, MAPK, and AMPK pathway genes known to contribute to hyperphosphorylation of tau. We show that a pathogenic brain somatic mutation in PIN1 leads to a loss-of-function mutation. In vitro mimicking of haploinsufficiency of PIN1 aberrantly increases tau phosphorylation and aggregation. This study provides new insights into the genetic architecture underlying the pathogenesis of AD. The role of brain somatic mutations in neurodegenerative diseases such as Alzheimer’s disease (AD) is not well understood. Here the authors carry out high-depth exome sequencing ~500× on brain tissue from patients with AD and controls, and identify mutations in a number of genes that are known to contribute to phosphorylation and aggregation of tau, including PIN1.
Collapse
Affiliation(s)
- Jun Sung Park
- Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Junehawk Lee
- Center for Supercomputing Applications, Division of National Supercomputing, Korea Institute of Science and Technology Information, Daejeon, 34141, Republic of Korea
| | - Eun Sun Jung
- Department of Biochemistry and Biomedical Sciences, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea.,Neuroscience Research Institute, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea
| | - Myeong-Heui Kim
- Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Il Bin Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Hyeonju Son
- Department of Biomedical Systems Informatics, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Sangwoo Kim
- Department of Biomedical Systems Informatics, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Sanghyeon Kim
- Laboratory of Brain Research, Stanley Medical Research Institute (SMRI), 9800 Medical Center Drive, Suite C-050, Rockville, MD, 20850, USA
| | - Young Mok Park
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, 34126, Republic of Korea
| | - Inhee Mook-Jung
- Department of Biochemistry and Biomedical Sciences, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea.,Neuroscience Research Institute, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea
| | - Seok Jong Yu
- Center for Supercomputing Applications, Division of National Supercomputing, Korea Institute of Science and Technology Information, Daejeon, 34141, Republic of Korea.
| | - Jeong Ho Lee
- Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea. .,Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| |
Collapse
|
37
|
Chen D, Drombosky KW, Hou Z, Sari L, Kashmer OM, Ryder BD, Perez VA, Woodard DR, Lin MM, Diamond MI, Joachimiak LA. Tau local structure shields an amyloid-forming motif and controls aggregation propensity. Nat Commun 2019; 10:2493. [PMID: 31175300 PMCID: PMC6555816 DOI: 10.1038/s41467-019-10355-1] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 05/08/2019] [Indexed: 11/09/2022] Open
Abstract
Tauopathies are neurodegenerative diseases characterized by intracellular amyloid deposits of tau protein. Missense mutations in the tau gene (MAPT) correlate with aggregation propensity and cause dominantly inherited tauopathies, but their biophysical mechanism driving amyloid formation is poorly understood. Many disease-associated mutations localize within tau's repeat domain at inter-repeat interfaces proximal to amyloidogenic sequences, such as 306VQIVYK311. We use cross-linking mass spectrometry, recombinant protein and synthetic peptide systems, in silico modeling, and cell models to conclude that the aggregation-prone 306VQIVYK311 motif forms metastable compact structures with its upstream sequence that modulates aggregation propensity. We report that disease-associated mutations, isomerization of a critical proline, or alternative splicing are all sufficient to destabilize this local structure and trigger spontaneous aggregation. These findings provide a biophysical framework to explain the basis of early conformational changes that may underlie genetic and sporadic tau pathogenesis.
Collapse
Affiliation(s)
- Dailu Chen
- Center for Alzheimer's and Neurodegenerative Diseases, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Molecular Biophysics Graduate Program, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Kenneth W Drombosky
- Center for Alzheimer's and Neurodegenerative Diseases, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Zhiqiang Hou
- Center for Alzheimer's and Neurodegenerative Diseases, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Levent Sari
- Green Center for Molecular, Computational and Systems Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Omar M Kashmer
- Center for Alzheimer's and Neurodegenerative Diseases, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Bryan D Ryder
- Center for Alzheimer's and Neurodegenerative Diseases, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Molecular Biophysics Graduate Program, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Valerie A Perez
- Center for Alzheimer's and Neurodegenerative Diseases, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Molecular Biophysics Graduate Program, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - DaNae R Woodard
- Center for Alzheimer's and Neurodegenerative Diseases, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Milo M Lin
- Green Center for Molecular, Computational and Systems Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Marc I Diamond
- Center for Alzheimer's and Neurodegenerative Diseases, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Lukasz A Joachimiak
- Center for Alzheimer's and Neurodegenerative Diseases, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
38
|
Outhwaite JE, Patel J, Simmons DG. Secondary Placental Defects in Cxadr Mutant Mice. Front Physiol 2019; 10:622. [PMID: 31338035 PMCID: PMC6628872 DOI: 10.3389/fphys.2019.00622] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 05/02/2019] [Indexed: 12/20/2022] Open
Abstract
The Coxsackie virus and adenovirus receptor (CXADR) is an adhesion molecule known for its role in virus-cell interactions, epithelial integrity, and organogenesis. Loss of Cxadr causes numerous embryonic defects in mice, notably abnormal development of the cardiovascular system, and embryonic lethality. While CXADR expression has been reported in the placenta, the precise cellular localization and function within this tissue are unknown. Since impairments in placental development and function can cause secondary cardiovascular abnormalities, a phenomenon referred to as the placenta-heart axis, it is possible placental phenotypes in Cxadr mutant embryos may underlie the reported cardiovascular defects and embryonic lethality. In the current study, we determine the cellular localization of placental Cxadr expression and whether there are placental abnormalities in the absence of Cxadr. In the placenta, CXADR is expressed specifically by trophoblast labyrinth progenitors as well as cells of the visceral yolk sac (YS). In the absence of Cxadr, we observed altered expression of angiogenic factors coupled with poor expansion of trophoblast and fetal endothelial cell subpopulations, plus diminished placental transport. Unexpectedly, preserving endogenous trophoblast Cxadr expression revealed the placental defects to be secondary to primary embryonic and/or YS phenotypes. Moreover, further tissue-restricted deletions of Cxadr suggest that the secondary placental defects are likely influenced by embryonic lineages such as the fetal endothelium or those within the extraembryonic YS vascular plexus.
Collapse
Affiliation(s)
- Jennifer E Outhwaite
- Faculty of Medicine, School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Jatin Patel
- Translational Research Institute, UQ Diamantina Institute, The University of Queensland, Brisbane, QLD, Australia
| | - David G Simmons
- Faculty of Medicine, School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
39
|
Wrackmeyer U, Kaldrack J, Jüttner R, Pannasch U, Gimber N, Freiberg F, Purfürst B, Kainmueller D, Schmitz D, Haucke V, Rathjen FG, Gotthardt M. The cell adhesion protein CAR is a negative regulator of synaptic transmission. Sci Rep 2019; 9:6768. [PMID: 31043663 PMCID: PMC6494904 DOI: 10.1038/s41598-019-43150-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 04/17/2019] [Indexed: 11/09/2022] Open
Abstract
The Coxsackievirus and adenovirus receptor (CAR) is essential for normal electrical conductance in the heart, but its role in the postnatal brain is largely unknown. Using brain specific CAR knockout mice (KO), we discovered an unexpected role of CAR in neuronal communication. This includes increased basic synaptic transmission at hippocampal Schaffer collaterals, resistance to fatigue, and enhanced long-term potentiation. Spontaneous neurotransmitter release and speed of endocytosis are increased in KOs, accompanied by increased expression of the exocytosis associated calcium sensor synaptotagmin 2. Using proximity proteomics and binding studies, we link CAR to the exocytosis machinery as it associates with syntenin and synaptobrevin/VAMP2 at the synapse. Increased synaptic function does not cause adverse effects in KO mice, as behavior and learning are unaffected. Thus, unlike the connexin-dependent suppression of atrioventricular conduction in the cardiac knockout, communication in the CAR deficient brain is improved, suggesting a role for CAR in presynaptic processes.
Collapse
Affiliation(s)
- Uta Wrackmeyer
- Neuromuscular and Cardiovascular Cell Biology, Max Delbrück Center for Molecular Medicine, 13125, Berlin, Germany
| | - Joanna Kaldrack
- Neuromuscular and Cardiovascular Cell Biology, Max Delbrück Center for Molecular Medicine, 13125, Berlin, Germany
| | - René Jüttner
- Neuromuscular and Cardiovascular Cell Biology, Max Delbrück Center for Molecular Medicine, 13125, Berlin, Germany.,Developmental Neurobiology, Max Delbrück Center for Molecular Medicine, 13125, Berlin, Germany
| | - Ulrike Pannasch
- Neuroscience Research Center, Cluster of Excellence NeuroCure, Charité, 10117, Berlin, Germany
| | - Niclas Gimber
- Department of Molecular Pharmacology and Cell Biology, Leibniz Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125, Berlin, Germany
| | - Fabian Freiberg
- Neuromuscular and Cardiovascular Cell Biology, Max Delbrück Center for Molecular Medicine, 13125, Berlin, Germany
| | - Bettina Purfürst
- Core Facility Electron Microscopy, Max Delbrück Center for Molecular Medicine, 13125, Berlin, Germany
| | - Dagmar Kainmueller
- Biomedical Image Analysis, Max Delbrück Center for Molecular Medicine and Berlin Institute of Health, 13125, Berlin, Germany
| | - Dietmar Schmitz
- Neuroscience Research Center, Cluster of Excellence NeuroCure, Charité, 10117, Berlin, Germany
| | - Volker Haucke
- Department of Molecular Pharmacology and Cell Biology, Leibniz Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125, Berlin, Germany
| | - Fritz G Rathjen
- Developmental Neurobiology, Max Delbrück Center for Molecular Medicine, 13125, Berlin, Germany
| | - Michael Gotthardt
- Neuromuscular and Cardiovascular Cell Biology, Max Delbrück Center for Molecular Medicine, 13125, Berlin, Germany.
| |
Collapse
|
40
|
Rehmani T, Salih M, Tuana BS. Cardiac-Specific Cre Induces Age-Dependent Dilated Cardiomyopathy (DCM) in Mice. Molecules 2019; 24:molecules24061189. [PMID: 30917606 PMCID: PMC6471127 DOI: 10.3390/molecules24061189] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/18/2019] [Accepted: 03/19/2019] [Indexed: 11/16/2022] Open
Abstract
The genetic modification of the mouse genome using the cre-lox system has been an invaluable tool in deciphering gene and protein function in a temporal and/or spatial manner. However, it has its pitfalls, as researchers have shown that the unregulated expression of cre recombinase can cause DNA damage, the consequences of which can be very detrimental to mouse health. Previously published literature on the most utilized cardiac-specific cre, αMHC-cre, mouse model exhibited a nonlethal hypertrophic cardiomyopathy (HCM) with aging. However, using the same αMHC-cre mice, we observed a cardiac pathology, resulting in complete lethality by 11 months of age. Echocardiography and histology revealed that the αMHC-cre mice were displaying symptoms of dilated cardiomyopathy (DCM) by seven months of age, which ultimately led to their demise in the absence of any HCM at any age. Molecular analysis showed that this phenotype was associated with the DNA damage response through the downregulation of activated p38 and increased expression of JNK, p53, and Bax, known inducers of myocyte death resulting in fibrosis. Our data urges strong caution when interpreting the phenotypic impact of gene responses using αMHC-cre mice, since a lethal DCM was induced by the cre driver in an age-dependent manner in this commonly utilized model system.
Collapse
Affiliation(s)
- Taha Rehmani
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada.
| | - Maysoon Salih
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada.
| | - Balwant S Tuana
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada.
| |
Collapse
|
41
|
Park JH, Park JH, Choi W, Lim BK. Specific elimination of coxsackievirus B3 infected cells with a protein engineered toxin-antitoxin system. Mol Cell Toxicol 2019; 15:425-430. [PMID: 32226459 PMCID: PMC7097453 DOI: 10.1007/s13273-019-0046-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 01/24/2019] [Indexed: 11/28/2022]
Abstract
Backgrounds Coxsackievirus B3 (CVB3) is a member of the family Picornaviridae, and along with polio-viruses, belongs to the Enterovirus genus. The CVB3 genome is composed single-stranded RNA encoding polyproteins, which are cleaved to individual functional proteins by 2A and 3C proteases proteins which have been targeted for drug development. Here, we showed that protease activity required to activate a toxic protein may be used to prevent viral infection. Methods We modified the MazE-MazF antitoxin-toxin system of Escherichia coli to fuse a C-terminal fragment of MazE to the N-terminal end of toxin MazF with a linker having a specific protease cleavage site for CVB3. This fusion protein formed a stable dimer and was capable of inactivating the mRNA interferase activity of MazF which cleaves the ACA sequence in mRNA substrates. Results The incubation of 2A proteases with the fusion proteins induced cleavage between the MazE and MazF fragments from the fusion proteins; the subsequent release of MazF significantly inhibited virus replication. Additionally, we note that, CVB3 infected HeLa cells quickly died through a MazF toxin mediated effect before virus protein expression. Conclusion These findings suggest that the MazEF fusion protein has a strong potential to be developed as an anti-virus therapy following CVB3 infection.
Collapse
Affiliation(s)
- Jung-Ho Park
- 1Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28120 Republic of Korea
| | - Jin-Ho Park
- 2Department of Biomedical Science, Jungwon University, Goesan-gun, Chungbuk, 28024 Republic of Korea
| | - Wonho Choi
- 1Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28120 Republic of Korea
| | - Byung-Kwan Lim
- 2Department of Biomedical Science, Jungwon University, Goesan-gun, Chungbuk, 28024 Republic of Korea
| |
Collapse
|
42
|
Mok SA, Condello C, Freilich R, Gillies A, Arhar T, Oroz J, Kadavath H, Julien O, Assimon VA, Rauch JN, Dunyak BM, Lee J, Tsai FTF, Wilson MR, Zweckstetter M, Dickey CA, Gestwicki JE. Mapping interactions with the chaperone network reveals factors that protect against tau aggregation. Nat Struct Mol Biol 2018; 25:384-393. [PMID: 29728653 PMCID: PMC5942583 DOI: 10.1038/s41594-018-0057-1] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Accepted: 03/14/2018] [Indexed: 12/31/2022]
Abstract
A network of molecular chaperones is known to bind proteins ('clients') and balance their folding, function and turnover. However, it is often unclear which chaperones are critical for selective recognition of individual clients. It is also not clear why these key chaperones might fail in protein-aggregation diseases. Here, we utilized human microtubule-associated protein tau (MAPT or tau) as a model client to survey interactions between ~30 purified chaperones and ~20 disease-associated tau variants (~600 combinations). From this large-scale analysis, we identified human DnaJA2 as an unexpected, but potent, inhibitor of tau aggregation. DnaJA2 levels were correlated with tau pathology in human brains, supporting the idea that it is an important regulator of tau homeostasis. Of note, we found that some disease-associated tau variants were relatively immune to interactions with chaperones, suggesting a model in which avoiding physical recognition by chaperone networks may contribute to disease.
Collapse
Affiliation(s)
- Sue-Ann Mok
- Department of Neurology, University of California at San Francisco, San Francisco, CA, USA
| | - Carlo Condello
- Department of Neurology, University of California at San Francisco, San Francisco, CA, USA
| | - Rebecca Freilich
- Department of Pharmaceutical Chemistry, University of California at San Francisco, San Francisco, CA, USA
| | - Anne Gillies
- Department of Pharmaceutical Chemistry, University of California at San Francisco, San Francisco, CA, USA
| | - Taylor Arhar
- Department of Pharmaceutical Chemistry, University of California at San Francisco, San Francisco, CA, USA
| | - Javier Oroz
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Göttingen, Germany
| | | | - Olivier Julien
- Department of Pharmaceutical Chemistry, University of California at San Francisco, San Francisco, CA, USA
| | - Victoria A Assimon
- Department of Pharmaceutical Chemistry, University of California at San Francisco, San Francisco, CA, USA
| | - Jennifer N Rauch
- Department of Pharmaceutical Chemistry, University of California at San Francisco, San Francisco, CA, USA
| | - Bryan M Dunyak
- Department of Pharmaceutical Chemistry, University of California at San Francisco, San Francisco, CA, USA
| | - Jungsoon Lee
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Francis T F Tsai
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Mark R Wilson
- llawarra Health and Medical Research Institute, School of Biological Sciences, University of Wollongong, Wollongong, New South Wales, Australia
| | - Markus Zweckstetter
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Göttingen, Germany
- Max-Planck-Institut für Biophysikalische Chemie, Goettingen, Germany
- Department of Neurology, University Medical Center Göttingen, University of Göttingen, Göttingen, Germany
| | - Chad A Dickey
- Department of Molecular Medicine and Byrd Alzheimer's Research Institute, University of South Florida, Tampa, FL, USA
| | - Jason E Gestwicki
- Department of Neurology, University of California at San Francisco, San Francisco, CA, USA.
- Department of Pharmaceutical Chemistry, University of California at San Francisco, San Francisco, CA, USA.
| |
Collapse
|
43
|
Langhorst H, Jüttner R, Groneberg D, Mohtashamdolatshahi A, Pelz L, Purfürst B, Schmidt-Ott KM, Friebe A, Rathjen FG. The IgCAM CLMP regulates expression of Connexin43 and Connexin45 in intestinal and ureteral smooth muscle contraction in mice. Dis Model Mech 2018; 11:dmm.032128. [PMID: 29361518 PMCID: PMC5894946 DOI: 10.1242/dmm.032128] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 01/09/2018] [Indexed: 11/25/2022] Open
Abstract
CAR-like membrane protein (CLMP), an immunoglobulin cell adhesion molecule (IgCAM), has been implicated in congenital short-bowel syndrome in humans, a condition with high mortality for which there is currently no cure. We therefore studied the function of CLMP in a Clmp-deficient mouse model. Although we found that the levels of mRNAs encoding Connexin43 or Connexin45 were not or were only marginally affected, respectively, by Clmp deficiency, the absence of CLMP caused a severe reduction of both proteins in smooth muscle cells of the intestine and of Connexin43 in the ureter. Analysis of calcium signaling revealed a disordered cell-cell communication between smooth muscle cells, which in turn induced an impaired and uncoordinated motility of the intestine and the ureter. Consequently, insufficient transport of chyme and urine caused a fatal delay to thrive, a high rate of mortality, and provoked a severe hydronephrosis in CLMP knockouts. Neurotransmission and the capability of smooth muscle cells to contract in ring preparations of the intestine were not altered. Physical obstructions were not detectable and an overall normal histology in the intestine as well as in the ureter was observed, except for a slight hypertrophy of smooth muscle layers. Deletion of Clmp did not lead to a reduced length of the intestine as shown for the human CLMP gene but resulted in gut malrotations. In sum, the absence of CLMP caused functional obstructions in the intestinal tract and ureter by impaired peristaltic contractions most likely due to a lack of gap-junctional communication between smooth muscle cells. Summary: The function of the immunoglobulin cell adhesion molecule CLMP was investigated in a mouse model. CLMP is essential for intestinal and ureteral peristalsis, and for expression of Connexin43 and 45 in smooth muscle cells.
Collapse
Affiliation(s)
- Hanna Langhorst
- Max-Delbrück-Center for Molecular Medicine, DE-13092 Berlin, Germany
| | - René Jüttner
- Max-Delbrück-Center for Molecular Medicine, DE-13092 Berlin, Germany
| | - Dieter Groneberg
- Physiologisches Institut der Universität Würzburg, Röntgenring 9, DE-97070 Würzburg, Germany
| | | | - Laura Pelz
- Max-Delbrück-Center for Molecular Medicine, DE-13092 Berlin, Germany
| | - Bettina Purfürst
- Max-Delbrück-Center for Molecular Medicine, DE-13092 Berlin, Germany
| | - Kai M Schmidt-Ott
- Charité-Universitätsmedizin Berlin, Department of Nephrology, Charitéplatz 1, DE-10117 Berlin, Germany
| | - Andreas Friebe
- Physiologisches Institut der Universität Würzburg, Röntgenring 9, DE-97070 Würzburg, Germany
| | - Fritz G Rathjen
- Max-Delbrück-Center for Molecular Medicine, DE-13092 Berlin, Germany
| |
Collapse
|
44
|
Xie Z, Xia W, Hou M. Long intergenic non‑coding RNA‑p21 mediates cardiac senescence via the Wnt/β‑catenin signaling pathway in doxorubicin-induced cardiotoxicity. Mol Med Rep 2017; 17:2695-2704. [PMID: 29207090 DOI: 10.3892/mmr.2017.8169] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 11/06/2017] [Indexed: 11/06/2022] Open
Abstract
Doxorubicin (Dox)-induced cardiotoxicity has been a well‑known phenomenon to clinicians and scientists for decades. It has been confirmed that Dox‑dependent cardiotoxicity is accompanied by cardiac cellular senescence. However, the molecular mechanisms underlying Dox cardiotoxicity remains to be fully elucidated. Long non‑coding (lnc) RNAs regulate gene transcription and the fate of post‑transcriptional mRNA, which affects a broad range of age‑associated physiological and pathological conditions, including cardiovascular disease and cellular senescence. However, the functional role of lncRNAs in Dox‑induced cardiac cellular senescence remains largely unknown. Using the reverse transcription‑quantitative polymerase chain reaction method, the present study indicated that long intergenic non‑coding (linc) RNA‑p21 was highly expressed in Dox‑treated HL‑1 murine cardiomyocytes. Dox‑induced cardiac senescence was accompanied by decreased cellular proliferation and viability, increased expression of p53 and p16, and decreased telomere length and telomerase activity, while these effects were relieved by silencing endogenous lincRNA‑p21. We found that lincRNA‑p21 interacted with β‑catenin and that silencing β‑catenin abolished the anti‑senescent effect of lincRNA‑p21 silencing. It was observed that modulating lincRNA‑p21 to exert an anti‑senescent effect was dependent on decreasing oxidant stress. To conclude, the present findings suggest that lincRNA‑p21 may be involved in Dox‑associated cardiac cellular senescence and that silencing lincRNA‑p21 effectively protects against Dox cardiotoxicity by regulating the Wnt/β‑catenin signaling pathway and decreasing oxidant stress. Furthermore, modulating lincRNA‑p21 may have cardioprotective potential in patients with cancer receiving Dox treatment.
Collapse
Affiliation(s)
- Zhongdong Xie
- Department of General Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Wenzheng Xia
- Department of Neurosurgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Meng Hou
- Department of Radiation Oncology, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| |
Collapse
|
45
|
Ortiz-Zapater E, Santis G, Parsons M. CAR: A key regulator of adhesion and inflammation. Int J Biochem Cell Biol 2017; 89:1-5. [PMID: 28545889 DOI: 10.1016/j.biocel.2017.05.025] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 05/17/2017] [Accepted: 05/20/2017] [Indexed: 10/19/2022]
Abstract
The coxsackie and adenovirus receptor (CAR) is a transmembrane receptor that plays a key role in controlling adhesion between adjacent epithelial cells. CAR is highly expressed in epithelial cells and was originally identified as a primary receptor for adenovirus cell binding. However, studies over the last 10 years have demonstrated that CAR plays a key role in co-ordinating cell-cell adhesion under homeostatic conditions including neuronal and cardiac development and cell junction stability; it has also been implicated in pathological states such as cancer growth and leukocyte transmigration during inflammation. Here we provide an overview of the functions of CAR as an adhesion molecule and highlight the emerging important role for CAR in controlling both recruitment of immune cells and in tumorigenesis.
Collapse
Affiliation(s)
- Elena Ortiz-Zapater
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guys Campus, London, SE1 1UL, UK; Division of Asthma, Allergy & Lung Biology, King's College London, 5th Floor Tower Wing, Guy's Hospital Campus, London, SE1 1UL, UK
| | - George Santis
- Division of Asthma, Allergy & Lung Biology, King's College London, 5th Floor Tower Wing, Guy's Hospital Campus, London, SE1 1UL, UK
| | - Maddy Parsons
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guys Campus, London, SE1 1UL, UK.
| |
Collapse
|
46
|
Kondo A, Albayram O, Zhou XZ, Lu KP. Pin1 Knockout Mice: A Model for the Study of Tau Pathology in Alzheimer's Disease. Methods Mol Biol 2017; 1523:415-425. [PMID: 27975268 DOI: 10.1007/978-1-4939-6598-4_28] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Pin1 knockout in mice causes age-dependent neuropathy characterized by motor and behavioral deficits, tau hyper phosphorylation, tau filament formation, and neuronal degradation. Here, we describe the methods with mouse behavior test, immunostaining, and immunoblotting to detect many aspects of neurodegeneration in Pin1 knockout mice.
Collapse
Affiliation(s)
- Asami Kondo
- Division of Translational Therapeutics, Department of Medicine and the Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, 3 Blackfan Circle, Boston, MA, 02115, USA
| | - Onder Albayram
- Division of Translational Therapeutics, Department of Medicine and the Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, 3 Blackfan Circle, Boston, MA, 02115, USA
| | - Xiao Zhen Zhou
- Division of Translational Therapeutics, Department of Medicine and the Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, 3 Blackfan Circle, Boston, MA, 02115, USA.
| | - Kun Ping Lu
- Division of Translational Therapeutics, Department of Medicine and the Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, 3 Blackfan Circle, Boston, MA, 02115, USA.
| |
Collapse
|
47
|
Sharma P, Martis PC, Excoffon KJDA. Adenovirus transduction: More complicated than receptor expression. Virology 2016; 502:144-151. [PMID: 28049062 DOI: 10.1016/j.virol.2016.12.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 12/02/2016] [Accepted: 12/19/2016] [Indexed: 02/06/2023]
Abstract
The abundance and accessibility of a primary virus receptor are critical factors that impact the susceptibility of a host cell to virus infection. The Coxsackievirus and adenovirus receptor (CAR) has two transmembrane isoforms that occur due to alternative splicing and differ in localization and function in polarized epithelia. To determine the relevance of isoform-specific expression across cell types, the abundance and localization of both isoforms were determined in ten common cell lines, and correlated with susceptibility to adenovirus transduction relative to polarized primary human airway epithelia. Data show that the gene and protein expression for each isoform of CAR varies significantly between cell lines and polarization, as indicated by high transepithelial resistance, is inversely related to adenovirus transduction. In summary, the variability of polarity and isoform-specific expression among model cells are critical parameters that must be considered when evaluating the clinical relevance of potential adenovirus-mediated gene therapy and anti-adenovirus strategies.
Collapse
Affiliation(s)
- Priyanka Sharma
- Department of Biological Sciences, Wright State University, Dayton, OH, USA
| | - Prithy C Martis
- Biomedical Sciences PhD Program, Wright State University, Dayton, OH 45435, USA
| | - Katherine J D A Excoffon
- Department of Biological Sciences, Wright State University, Dayton, OH, USA; Biomedical Sciences PhD Program, Wright State University, Dayton, OH 45435, USA.
| |
Collapse
|
48
|
Matthäus C, Langhorst H, Schütz L, Jüttner R, Rathjen FG. Cell-cell communication mediated by the CAR subgroup of immunoglobulin cell adhesion molecules in health and disease. Mol Cell Neurosci 2016; 81:32-40. [PMID: 27871939 DOI: 10.1016/j.mcn.2016.11.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 11/16/2016] [Accepted: 11/17/2016] [Indexed: 12/21/2022] Open
Abstract
The immunoglobulin superfamily represents a diverse set of cell-cell contact proteins and includes well-studied members such as NCAM1, DSCAM, L1 or the contactins which are strongly expressed in the nervous system. In this review we put our focus on the biological function of a less understood subgroup of Ig-like proteins composed of CAR (coxsackievirus and adenovirus receptor), CLMP (CAR-like membrane protein) and BT-IgSF (brain and testis specific immunoglobulin superfamily). The CAR-related proteins are type I transmembrane proteins containing an N-terminal variable (V-type) and a membrane proximal constant (C2-type) Ig domain in their extracellular region which are implicated in homotypic adhesion. They are highly expressed during embryonic development in a variety of tissues including the nervous system whereby in adult stages the protein level of CAR and CLMP decreases, only BT-IgSF expression increases within age. CAR-related proteins are concentrated at specialized cell-cell communication sites such as gap or tight junctions and are present at the plasma membrane in larger protein complexes. Considerable progress has been made on the molecular structure and interactions of CAR while research on CLMP and BT-IgSF is at an early stage. Studies on mouse mutants revealed biological functions of CAR in the heart and for CLMP in the gastrointestinal and urogenital systems. Furthermore, CAR and BT-IgSF appear to regulate synaptic function in the hippocampus.
Collapse
Affiliation(s)
- Claudia Matthäus
- Max-Delbrück-Center for Molecular Medicine, Developmental Neurobiology, 13092 Berlin, Germany.
| | - Hanna Langhorst
- Max-Delbrück-Center for Molecular Medicine, Developmental Neurobiology, 13092 Berlin, Germany
| | - Laura Schütz
- Max-Delbrück-Center for Molecular Medicine, Developmental Neurobiology, 13092 Berlin, Germany
| | - René Jüttner
- Max-Delbrück-Center for Molecular Medicine, Developmental Neurobiology, 13092 Berlin, Germany
| | - Fritz G Rathjen
- Max-Delbrück-Center for Molecular Medicine, Developmental Neurobiology, 13092 Berlin, Germany.
| |
Collapse
|
49
|
Peter AK, Bradford WH, Dalton ND, Gu Y, Chao CJ, Peterson KL, Knowlton KU. Increased Echogenicity and Radiodense Foci on Echocardiogram and MicroCT in Murine Myocarditis. PLoS One 2016; 11:e0159971. [PMID: 27486657 PMCID: PMC4972301 DOI: 10.1371/journal.pone.0159971] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 07/11/2016] [Indexed: 01/12/2023] Open
Abstract
Objectives To address the question as to whether echocardiographic and/or microcomputed tomography (microCT) analysis can be utilized to assess the extent of Coxsackie B virus (CVB) induced myocarditis in the absence of left ventricular dysfunction in the mouse. Background Viral myocarditis is a significant clinical problem with associated inflammation of the myocardium and myocardial injury. Murine models of myocarditis are commonly used to study the pathophysiology of the disease, but methods for imaging the mouse myocardium have been limited to echocardiographic assessment of ventricular dysfunction and, to a lesser extent, MRI imaging. Methods Using a murine model of myocarditis, we used both echocardiography and microCT to assess the extent of myocardial involvement in murine myocarditis using both wild-type mice and CVB cleavage-resistant dystrophin knock-in mice. Results Areas of increased echogenicity were only observed in the myocardium of Coxsackie B virus infected mice. These echocardiographic abnormalities correlated with the extent of von Kossa staining (a marker of membrane permeability), inflammation, and fibrosis. Given that calcium phosphate uptake as imaged by von Kossa staining might also be visualized using microCT, we utilized microCT imaging which allowed for high-resolution, 3-dimensional images of radiodensities that likely represent calcium phosphate uptake. As with echocardiography, only mice infected with Coxsackie B virus displayed abnormal accumulation of calcium within individual myocytes indicating increased membrane permeability only upon exposure to virus. Conclusions These studies demonstrate new, quantitative, and semi-quantitative imaging approaches for the assessment of myocardial involvement in the setting of viral myocarditis in the commonly utilized mouse model of viral myocarditis.
Collapse
Affiliation(s)
- Angela K. Peter
- Department of Medicine, University of California San Diego, San Diego, California, United States of America
- BioFrontiers, University of Colorado, Boulder, Colorado, United States of America
| | - William H. Bradford
- Department of Medicine, University of California San Diego, San Diego, California, United States of America
| | - Nancy D. Dalton
- Department of Medicine, University of California San Diego, San Diego, California, United States of America
| | - Yusu Gu
- Department of Medicine, University of California San Diego, San Diego, California, United States of America
| | - Chieh-Ju Chao
- Department of Medicine, University of California San Diego, San Diego, California, United States of America
- Department of Internal Medicine, Mayo Clinic College of Medicine, Phoenix, Arizona, United States of America
- Department of Medicine, John H. Stroger Jr. Hospital of Cook County, Chicago, Illinois, United States of America
| | - Kirk L. Peterson
- Department of Medicine, University of California San Diego, San Diego, California, United States of America
| | - Kirk U. Knowlton
- Department of Medicine, University of California San Diego, San Diego, California, United States of America
- Intermountain Heart Institute, Intermountain Medical Center, Salt Lake City, Utah, United States of America
- * E-mail:
| |
Collapse
|
50
|
Abstract
Targeted drugs have changed cancer treatment but are often ineffective in the long term against solid tumours, largely because of the activation of heterogeneous oncogenic pathways. A central common signalling mechanism in many of these pathways is proline-directed phosphorylation, which is regulated by many kinases and phosphatases. The structure and function of these phosphorylated proteins are further controlled by a single proline isomerase: PIN1. PIN1 is overactivated in cancers and it promotes cancer and cancer stem cells by disrupting the balance of oncogenes and tumour suppressors. This Review discusses the roles of PIN1 in cancer and the potential of PIN1 inhibitors to restore this balance.
Collapse
Affiliation(s)
- Xiao Zhen Zhou
- Division of Translational Therapeutics, Department of Medicine and Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Kun Ping Lu
- Division of Translational Therapeutics, Department of Medicine and Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| |
Collapse
|