1
|
Gao M, Wang X, Su S, Feng W, Lai Y, Huang K, Cao D, Wang Q. Meningeal lymphatic vessel crosstalk with central nervous system immune cells in aging and neurodegenerative diseases. Neural Regen Res 2025; 20:763-778. [PMID: 38886941 PMCID: PMC11433890 DOI: 10.4103/nrr.nrr-d-23-01595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 12/22/2023] [Indexed: 06/20/2024] Open
Abstract
Meningeal lymphatic vessels form a relationship between the nervous system and periphery, which is relevant in both health and disease. Meningeal lymphatic vessels not only play a key role in the drainage of brain metabolites but also contribute to antigen delivery and immune cell activation. The advent of novel genomic technologies has enabled rapid progress in the characterization of myeloid and lymphoid cells and their interactions with meningeal lymphatic vessels within the central nervous system. In this review, we provide an overview of the multifaceted roles of meningeal lymphatic vessels within the context of the central nervous system immune network, highlighting recent discoveries on the immunological niche provided by meningeal lymphatic vessels. Furthermore, we delve into the mechanisms of crosstalk between meningeal lymphatic vessels and immune cells in the central nervous system under both homeostatic conditions and neurodegenerative diseases, discussing how these interactions shape the pathological outcomes. Regulation of meningeal lymphatic vessel function and structure can influence lymphatic drainage, cerebrospinal fluid-borne immune modulators, and immune cell populations in aging and neurodegenerative disorders, thereby playing a key role in shaping meningeal and brain parenchyma immunity.
Collapse
Affiliation(s)
- Minghuang Gao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Xinyue Wang
- The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Shijie Su
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Weicheng Feng
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Yaona Lai
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Kongli Huang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Dandan Cao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Qi Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| |
Collapse
|
2
|
Chen YL, Lin YN, Xu J, Qiu YX, Wu YH, Qian XG, Wu YQ, Wang ZN, Zhang WW, Li YC. Macrophage-derived VEGF-C reduces cardiac inflammation and prevents heart dysfunction in CVB3-induced viral myocarditis via remodeling cardiac lymphatic vessels. Int Immunopharmacol 2024; 143:113377. [PMID: 39405931 DOI: 10.1016/j.intimp.2024.113377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/27/2024] [Accepted: 10/07/2024] [Indexed: 10/30/2024]
Abstract
BACKGROUND Cardiac lymphatic vessels are important channels for cardiac fluid circulation and immune regulation. In myocardial infarction and chronic heart failure, promoting cardiac lymphangiogenesis is beneficial in reducing cardiac edema and inflammation. However, the specific involvement of cardiac lymphangiogenesis in viral myocarditis (VMC) has not been studied. Despite the recognized participation of macrophages in lymphangiogenesis, the contribution of macrophages to cardiac lymphangiogenesis in VMC is still unclear. METHODS The male Balb/c mice with VMC were grouped according to the time to explore changes in inflammation, cardiac function and lymphangiogenesis. Adeno-associated virus (AAV) was used to determine the effect of cardiac lymphangiogenesis in VMC. Macrophage depletion and VEGF-CC156S treatment were used to investigate the connection between macrophages and cardiac lymphangiogenesis. RESULTS Cardiac inflammation and lymphatic vessel density were both upregulated, peaking on day 7 following CVB3 infection. After treatment with AAV-sVEGFR3, lymphangiogenesis was inhibited, leading to worsened cardiac dysfunction and aggravated inflammation. However, these effects were reversed by AAV-VEGF-C treatment. Furthermore, macrophages infiltrated the inflamed myocardium and secreted VEGF-C. In vitro, VEGF-C was upregulated when RAW264.7 cells were co-cultured with CVB3. Macrophage depletion in mice with VMC inhibited lymphangiogenesis, while supplementation with VEGF-CC156S depressed it. CONCLUSION Collectively, these results indicate that activation of the VEGF-C/VEGFR3 axis exerts a protective effect in CVB3-induced VMC by resolving inflammation and alleviating cardiac dysfunction through increased lymphatic vasculature density, with macrophage-derived VEGF-C partially contributing to this effect.
Collapse
Affiliation(s)
- Yi-Lian Chen
- Department of Cardiology, Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yuan-Nan Lin
- Department of Cardiology, Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jing Xu
- Department of Cardiology, Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yi-Xuan Qiu
- Department of Cardiology, Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yi-Hao Wu
- Department of Cardiology, Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xin-Ge Qian
- Department of Cardiology, Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yu-Qing Wu
- Department of Cardiology, Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhe-Ning Wang
- Department of Cardiology, Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wen-Wu Zhang
- Department of Intensive Care Unit, Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Yue-Chun Li
- Department of Cardiology, Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
3
|
Ghajar-Rahimi G, Barwinska D, Whipple GE, Kamocka MM, Khan S, Winfree S, Lafontaine J, Soliman RH, Melkonian AL, Zmijewska AA, Cheung MD, Traylor AM, Jiang Y, Yang Z, Bolisetty S, Zarjou A, Lee T, George JF, El-Achkar TM, Agarwal A. Acute kidney injury results in long-term alterations of kidney lymphatics in mice. Am J Physiol Renal Physiol 2024; 327:F869-F884. [PMID: 39323387 DOI: 10.1152/ajprenal.00120.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/14/2024] [Accepted: 09/11/2024] [Indexed: 09/27/2024] Open
Abstract
The long-term effects of a single episode of acute kidney injury (AKI) induced by bilateral ischemia-reperfusion injury (BIRI) on kidney lymphatic dynamics are not known. The purpose of this study was to determine if alterations in kidney lymphatics are sustained in the long term and how they relate to inflammation and injury. Mice underwent BIRI as a model of AKI and were followed up to 9 mo. Although kidney function markers normalized following initial injury, histological analysis revealed sustained tissue damage and inflammation for up to 9 mo. Transcriptional analysis showed both acute and late-stage lymphangiogenesis, supported by increased expression of lymphatic markers, with unique signatures at each phase. Expression of Ccl21a was distinctly upregulated during late-stage lymphangiogenesis. Three-dimensional tissue cytometry confirmed increased lymphatic vessel abundance, particularly in the renal cortex, at early and late timepoints postinjury. In addition, the study identified the formation of tertiary lymphoid structures composed of CCR7+ lymphocytes and observed changes in immune cell composition over time, suggesting a complex and dynamic response to AKI involving tissue remodeling and immune cell involvement. This study provides new insights into the role of lymphatics in the progression of AKI to chronic kidney disease.NEW & NOTEWORTHY Here, we perform the first, comprehensive study of long-term lymphatic dynamics following a single acute kidney injury (AKI) event. Using improved three-dimensional image analysis and an expanded panel of transcriptional markers, we identify multiple stages of lymphatic responses with distinct transcriptional signatures, associations with the immune microenvironment, and collagen deposition. This research advances kidney lymphatic biology, emphasizing the significance of longitudinal studies in understanding AKI and the transition to chronic kidney disease.
Collapse
Affiliation(s)
- Gelare Ghajar-Rahimi
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Daria Barwinska
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Grace E Whipple
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Malgorzata M Kamocka
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Shehnaz Khan
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Seth Winfree
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, United States
| | - Jennifer Lafontaine
- Birmingham Veterans Administration Medical Center, Birmingham, Alabama, United States
| | - Reham H Soliman
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Arin L Melkonian
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Anna A Zmijewska
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Matthew D Cheung
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Amie M Traylor
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Yanlin Jiang
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Zhengqin Yang
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Subhashini Bolisetty
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Abolfazl Zarjou
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Timmy Lee
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
- Birmingham Veterans Administration Medical Center, Birmingham, Alabama, United States
| | - James F George
- Division of Cardiothoracic Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Tarek M El-Achkar
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States
- Indianapolis Veterans Affairs Medical Center, Indianapolis, Indiana, United States
| | - Anupam Agarwal
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| |
Collapse
|
4
|
Kronk TA, Solorzano E, Robinson GT, Castor J, Ball HC, Safadi FF. The expression and function of Gpnmb in lymphatic endothelial cells. Gene 2024:148993. [PMID: 39389329 DOI: 10.1016/j.gene.2024.148993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/03/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024]
Abstract
The lymphatic system functions in fluid homeostasis, lipid absorption and the modulation of the immune response. The role of Gpnmb (osteoactivin), an established osteoinductive molecule with newly identified anti-inflammatory properties, has not been studied in lymphangiogenesis. Here, we demonstrate that Gpnmb increases lymphatic endothelial cell (LEC) migration and lymphangiogenesis marker gene expression in vitro by enhancing pro-autophagic gene expression, while no changes were observed in cell proliferation or viability. In addition, cellular spreading and cytoskeletal reorganization was not altered following Gpnmb treatment. We show that systemic Gpnmb overexpression in vivo leads to increases in lymphatic tubule number per area. Overall, data presented in this study suggest Gpnmb is a positive modulator of lymphangiogenesis.
Collapse
Affiliation(s)
- Trinity A Kronk
- Department of Anatomy and Neurobiology, College of Medicine, Northeast Ohio Medical University, OH, USA; Basic and Translational Biomedicine, College of Graduate Studies, Northeast Ohio Medical University, OH, USA; Musculoskeletal Research Group, Northeast Ohio Medical University, Rootstown, OH, USA; Department of Orthopaedics, Akron Children's Hospital, OH, USA; University Hospitals, Cleveland, OH, USA
| | - Ernesto Solorzano
- Department of Anatomy and Neurobiology, College of Medicine, Northeast Ohio Medical University, OH, USA; Basic and Translational Biomedicine, College of Graduate Studies, Northeast Ohio Medical University, OH, USA; Musculoskeletal Research Group, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Gabrielle T Robinson
- Department of Anatomy and Neurobiology, College of Medicine, Northeast Ohio Medical University, OH, USA; Basic and Translational Biomedicine, College of Graduate Studies, Northeast Ohio Medical University, OH, USA; Musculoskeletal Research Group, Northeast Ohio Medical University, Rootstown, OH, USA; University Hospitals, Cleveland, OH, USA
| | - Joshua Castor
- Department of Anatomy and Neurobiology, College of Medicine, Northeast Ohio Medical University, OH, USA; Foundations of Medicine, College of Graduate Studies, Northeast Ohio Medical University, OH, USA
| | - Hope C Ball
- Rebecca D. Considine Research Institute, Akron Children's Hospital, OH, USA
| | - Fayez F Safadi
- Department of Anatomy and Neurobiology, College of Medicine, Northeast Ohio Medical University, OH, USA; Basic and Translational Biomedicine, College of Graduate Studies, Northeast Ohio Medical University, OH, USA; Musculoskeletal Research Group, Northeast Ohio Medical University, Rootstown, OH, USA; University Hospitals, Cleveland, OH, USA; Rebecca D. Considine Research Institute, Akron Children's Hospital, OH, USA; School of Biomedical Sciences, Kent State University, Kent, OH, USA.
| |
Collapse
|
5
|
Jian Y, Li Y, Zhang Y, Tang M, Deng M, Liu C, Cheng M, Xiao S, Deng C, Wei Z. Lymphangiogenesis: novel strategies to promote cutaneous wound healing. BURNS & TRAUMA 2024; 12:tkae040. [PMID: 39328366 PMCID: PMC11427083 DOI: 10.1093/burnst/tkae040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 05/31/2024] [Accepted: 06/05/2024] [Indexed: 09/28/2024]
Abstract
The cutaneous lymphatic system regulates tissue inflammation, fluid balance and immunological responses. Lymphangiogenesis or lymphatic dysfunction may lead to lymphedema, immune deficiency, chronic inflammation etc. Tissue regeneration and healing depend on angiogenesis and lymphangiogenesis during wound healing. Tissue oedema and chronic inflammation can slow wound healing due to impaired lymphangiogenesis or lymphatic dysfunction. For example, impaired lymphangiogenesis or lymphatic dysfunction has been detected in nonhealing wounds such as diabetic ulcers, venous ulcers and bedsores. This review summarizes the structure and function of the cutaneous lymphatic vessel system and lymphangiogenesis in wounds. Furthermore, we review wound lymphangiogenesis processes and remodelling, especially the influence of the inflammatory phase. Finally, we outline how to control lymphangiogenesis to promote wound healing, assess the possibility of targeting lymphangiogenesis as a novel treatment strategy for chronic wounds and provide an analysis of the possible problems that need to be addressed.
Collapse
Affiliation(s)
- Yang Jian
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, No. 149 Dalian Road, Hui chuan District, Zunyi, Guizhou, 563003, China
| | - Yanqi Li
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, No. 149 Dalian Road, Hui chuan District, Zunyi, Guizhou, 563003, China
| | - Yanji Zhang
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, No. 149 Dalian Road, Hui chuan District, Zunyi, Guizhou, 563003, China
| | - Mingyuan Tang
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, No. 149 Dalian Road, Hui chuan District, Zunyi, Guizhou, 563003, China
| | - Mingfu Deng
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, No. 149 Dalian Road, Hui chuan District, Zunyi, Guizhou, 563003, China
| | - Chenxiaoxiao Liu
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, No. 149 Dalian Road, Hui chuan District, Zunyi, Guizhou, 563003, China
| | - Maolin Cheng
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, No. 149 Dalian Road, Hui chuan District, Zunyi, Guizhou, 563003, China
| | - Shune Xiao
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, No. 149 Dalian Road, Hui chuan District, Zunyi, Guizhou, 563003, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, No. 6 West Xuefu Road, Xinpu District, Zunyi, Guizhou, 563003, China
| | - Chengliang Deng
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, No. 149 Dalian Road, Hui chuan District, Zunyi, Guizhou, 563003, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, No. 6 West Xuefu Road, Xinpu District, Zunyi, Guizhou, 563003, China
| | - Zairong Wei
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, No. 149 Dalian Road, Hui chuan District, Zunyi, Guizhou, 563003, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, No. 6 West Xuefu Road, Xinpu District, Zunyi, Guizhou, 563003, China
| |
Collapse
|
6
|
Capuano A, Vescovo M, Canesi S, Pivetta E, Doliana R, Nadin MG, Yamamoto M, Tsukamoto T, Nomura S, Pilozzi E, Palumbo A, Canzonieri V, Cannizzaro R, Scanziani E, Baldassarre G, Mongiat M, Spessotto P. The extracellular matrix protein EMILIN-1 impacts on the microenvironment by hampering gastric cancer development and progression. Gastric Cancer 2024; 27:1016-1030. [PMID: 38941035 PMCID: PMC11335817 DOI: 10.1007/s10120-024-01528-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/19/2024] [Indexed: 06/29/2024]
Abstract
BACKGROUND The contribution of the tumor microenvironment and extracellular matrix to the aggressive biology of Gastric Cancer (GC) has been recently characterized; however, the role of EMILIN-1 in this context is unknown. EMILIN-1 is an essential structural element for the maintenance of lymphatic vessel (LV) integrity and displays anti-proliferative properties as demonstrated in skin and colon cancer. Given the key role of LVs in GC progression, the aim of this study was to investigate the role of EMILIN-1 in GC mouse models. METHODS We used the syngeneic YTN16 cells which were injected subcutaneously and intraperitoneally in genetically modified EMILIN-1 mice. In alternative, carcinogenesis was induced using N-Methyl-N-nitrosourea (MNU). Mouse-derived samples and human biopsies were analyzed by IHC and IF to the possible correlation between EMILIN-1 expression and LV pattern. RESULTS Transgenic mice developed tumors earlier compared to WT animals. 20 days post-injection tumors developed in EMILIN-1 mutant mice were larger and displayed a significant increase of lymphangiogenesis. Treatment of transgenic mice with MNU associated with an increased number of tumors, exacerbated aggressive lesions and higher levels of LV abnormalities. A significant correlation between the levels of EMILIN-1 and podoplanin was detected also in human samples, confirming the results obtained with the pre-clinical models. CONCLUSIONS This study demonstrates for the first time that loss of EMILIN-1 in GC leads to lymphatic dysfunction and proliferative advantages that sustain tumorigenesis, and assess the use of our animal model as a valuable tool to verify the fate of GC upon loss of EMILIN-1.
Collapse
Affiliation(s)
- Alessandra Capuano
- Molecular Oncology Unit, Centro di Riferimento Oncologico Aviano, (CRO) IRCCS, Via Franco Gallini 2, 33081, Aviano, PN, Italy
| | - Maddalena Vescovo
- Molecular Oncology Unit, Centro di Riferimento Oncologico Aviano, (CRO) IRCCS, Via Franco Gallini 2, 33081, Aviano, PN, Italy
| | - Simone Canesi
- Dipartimento di Medicina Veterinaria e Scienze Animali (DIVAS), Università Degli Studi di Milano, Milan, Italy
| | - Eliana Pivetta
- Molecular Oncology Unit, Centro di Riferimento Oncologico Aviano, (CRO) IRCCS, Via Franco Gallini 2, 33081, Aviano, PN, Italy
- Clinical Pathology Unit, Ospedale Santa Maria Degli Angeli, Pordenone, Italy
| | - Roberto Doliana
- Molecular Oncology Unit, Centro di Riferimento Oncologico Aviano, (CRO) IRCCS, Via Franco Gallini 2, 33081, Aviano, PN, Italy
| | - Maria Grazia Nadin
- Oncological Gastroenterology Unit, Centro di Riferimento Oncologico Aviano, (CRO) IRCCS, Aviano, Italy
| | - Masami Yamamoto
- Laboratory of Physiological Pathology, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Tetsuya Tsukamoto
- Department of Pathology, Graduate School of Medicine, Fujita Health University, Toyoake, Japan
| | - Sachiyo Nomura
- Department of Clinical Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, Tokyo, Japan
| | - Emanuela Pilozzi
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Azienda Ospedaliero-Universitaria Sant'Andrea, Rome, Italy
| | - Antonio Palumbo
- Pathology Unit, Centro di Riferimento Oncologico Aviano, (CRO) IRCCS, Aviano, Italy
| | - Vincenzo Canzonieri
- Pathology Unit, Centro di Riferimento Oncologico Aviano, (CRO) IRCCS, Aviano, Italy
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Renato Cannizzaro
- Oncological Gastroenterology Unit, Centro di Riferimento Oncologico Aviano, (CRO) IRCCS, Aviano, Italy
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Eugenio Scanziani
- Dipartimento di Medicina Veterinaria e Scienze Animali (DIVAS), Università Degli Studi di Milano, Milan, Italy
| | - Gustavo Baldassarre
- Molecular Oncology Unit, Centro di Riferimento Oncologico Aviano, (CRO) IRCCS, Via Franco Gallini 2, 33081, Aviano, PN, Italy
| | - Maurizio Mongiat
- Molecular Oncology Unit, Centro di Riferimento Oncologico Aviano, (CRO) IRCCS, Via Franco Gallini 2, 33081, Aviano, PN, Italy
| | - Paola Spessotto
- Molecular Oncology Unit, Centro di Riferimento Oncologico Aviano, (CRO) IRCCS, Via Franco Gallini 2, 33081, Aviano, PN, Italy.
| |
Collapse
|
7
|
Shang Y, Liu T, Wang W. The potential of lenvatinib in breast cancer therapy. Med Oncol 2024; 41:233. [PMID: 39172293 DOI: 10.1007/s12032-024-02477-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 08/12/2024] [Indexed: 08/23/2024]
Abstract
Breast cancer, as a highly prevalent cancer among women, is one of the main causes of female mortality due to cancer. There is a need for more treatment options to improve the survival time of breast cancer patients. Metastasis to distant organs is a standard indicator of advanced breast cancer and a primary cause of breast cancer mortality, making the control of breast cancer metastasis crucial. Targeted therapy, with its advantages of precision, high effectiveness, and minimal side effects, has garnered significant attention as a hot research topic in breast cancer treatment. Among these therapies, anti-angiogenic therapy aim to inhibit tumor angiogenesis, control tumor growth, and reduce metastasis. Additionally, anti-angiogenic therapy can restructure the tumor vasculature, enhancing the effectiveness of other anti-cancer drugs. Lenvatinib, an orally available small molecule multi-targeted tyrosine kinase inhibitor, exerts its anti-tumor effects mainly by inhibiting tumor angiogenesis and tumor cell proliferation. It has been approved for the treatment of thyroid cancer, renal cell carcinoma, and hepatocellular carcinoma. Due to its multi-targeted nature, lenvatinib not only has direct anti-tumor effects but also possesses immunomodulatory activity, which can enhance the tumor immune response. This makes it a promising candidate for a broad range of cancers. Recent studies have explored the role of lenvatinib in breast cancer, including its various mechanisms of action and its use as a monotherapy or in combination to control breast cancer progression. This review will summarize the molecular mechanisms and research progress of lenvatinib in breast cancer treatment, discussing its potential applications and therapeutic prospects in managing breast cancer.
Collapse
Affiliation(s)
- Yuefeng Shang
- Department of Radiation Oncology, Tumor Hospital of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
- Department of Breast Surgery, Tumor Hospital of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| | - Tong Liu
- Department of Radiation Oncology, Tumor Hospital of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
- Department of Breast Surgery, Tumor Hospital of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| | - Wenjing Wang
- Beijing Institute of Hepatology, Beijing YouAn Hospital, Capital Medical University, Beijing, People's Republic of China.
| |
Collapse
|
8
|
Salvador AFM, Abduljawad N, Kipnis J. Meningeal Lymphatics in Central Nervous System Diseases. Annu Rev Neurosci 2024; 47:323-344. [PMID: 38648267 DOI: 10.1146/annurev-neuro-113023-103045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Since its recent discovery, the meningeal lymphatic system has reshaped our understanding of central nervous system (CNS) fluid exchange, waste clearance, immune cell trafficking, and immune privilege. Meningeal lymphatics have also been demonstrated to functionally modify the outcome of neurological disorders and their responses to treatment, including brain tumors, inflammatory diseases such as multiple sclerosis, CNS injuries, and neurodegenerative disorders such as Alzheimer's and Parkinson's diseases. In this review, we discuss recent evidence of the contribution of meningeal lymphatics to neurological diseases, as well as the available experimental methods for manipulating meningeal lymphatics in these conditions. Finally, we also provide a discussion of the pressing questions and challenges in utilizing meningeal lymphatics as a prime target for CNS therapeutic intervention and possibly drug delivery for brain disorders.
Collapse
Affiliation(s)
- Andrea Francesca M Salvador
- Brain Immunology and Glia (BIG) Center and Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA;
| | - Nora Abduljawad
- Neuroscience Graduate Program, Washington University School of Medicine, St. Louis, Missouri, USA
- Brain Immunology and Glia (BIG) Center and Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA;
| | - Jonathan Kipnis
- Neuroscience Graduate Program, Washington University School of Medicine, St. Louis, Missouri, USA
- Brain Immunology and Glia (BIG) Center and Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA;
| |
Collapse
|
9
|
Kavyani B, Ahn SB, Missailidis D, Annesley SJ, Fisher PR, Schloeffel R, Guillemin GJ, Lovejoy DB, Heng B. Dysregulation of the Kynurenine Pathway, Cytokine Expression Pattern, and Proteomics Profile Link to Symptomology in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). Mol Neurobiol 2024; 61:3771-3787. [PMID: 38015302 DOI: 10.1007/s12035-023-03784-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/07/2023] [Indexed: 11/29/2023]
Abstract
Dysregulation of the kynurenine pathway (KP) is believed to play a significant role in neurodegenerative and cognitive disorders. While some evidence links the KP to myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS), further studies are needed to clarify the overall picture of how inflammation-driven KP disturbances may contribute to symptomology in ME/CFS. Here, we report that plasma levels of most bioactive KP metabolites differed significantly between ME/CFS patients and healthy controls in a manner consistent with their known contribution to symptomology in other neurological disorders. Importantly, we found that enhanced production of the first KP metabolite, kynurenine (KYN), correlated with symptom severity, highlighting the relationship between inflammation, KP dysregulation, and ME/CFS symptomology. Other significant changes in the KP included lower levels of the downstream KP metabolites 3-HK, 3-HAA, QUIN, and PIC that could negatively impact cellular energetics. We also rationalized KP dysregulation to changes in the expression of inflammatory cytokines and, for the first time, assessed levels of the iron (Fe)-regulating hormone hepcidin that is also inflammation-responsive. Levels of hepcidin in ME/CFS decreased nearly by half, which might reflect systemic low Fe levels or possibly ongoing hypoxia. We next performed a proteomics screen to survey for other significant differences in protein expression in ME/CFS. Interestingly, out of the seven most significantly modulated proteins in ME/CFS patient plasma, 5 proteins have roles in maintaining gut health, which considering the new appreciation of how gut microbiome and health modulates systemic KP could highlight a new explanation of symptomology in ME/CFS patients and potential new prognostic biomarker/s and/or treatment avenues.
Collapse
Affiliation(s)
- Bahar Kavyani
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Seong Beom Ahn
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Daniel Missailidis
- Department of Microbiology, Anatomy, Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, Australia
| | - Sarah J Annesley
- Department of Microbiology, Anatomy, Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, Australia
| | - Paul R Fisher
- Department of Microbiology, Anatomy, Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, Australia
| | | | - Gilles J Guillemin
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - David B Lovejoy
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia.
| | - Benjamin Heng
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia.
| |
Collapse
|
10
|
Liu Z, Liu K, Shi S, Chen X, Gu X, Wang W, Mao K, Yibulayi R, Wu W, Zeng L, Zhou W, Lin X, Zhang F, Lou B. Alkali injury-induced pathological lymphangiogenesis in the iris facilitates the infiltration of T cells and ocular inflammation. JCI Insight 2024; 9:e175479. [PMID: 38587075 PMCID: PMC11128208 DOI: 10.1172/jci.insight.175479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 02/14/2024] [Indexed: 04/09/2024] Open
Abstract
Inflammatory lymphangiogenesis is intimately linked to immune regulation and tissue homeostasis. However, current evidence has suggested that classic lymphatic vessels are physiologically absent in intraocular structures. Here, we show that neolymphatic vessels were induced in the iris after corneal alkali injury (CAI) in a VEGFR3-dependent manner. Cre-loxP-based lineage tracing revealed that these lymphatic endothelial cells (LECs) originate from existing Prox1+ lymphatic vessels. Notably, the ablation of iridial lymphangiogenesis via conditional deletion of VEGFR3 alleviated the ocular inflammatory response and pathological T cell infiltration. Our findings demonstrate that iridial neolymphatics actively participate in pathological immune responses following injury and suggest intraocular lymphangiogenesis as a valuable therapeutic target for the treatment of ocular inflammation.
Collapse
Affiliation(s)
- Zheng Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Keli Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Shunhua Shi
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xun Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xinyu Gu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Weifa Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Keli Mao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Rukeye Yibulayi
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Wanwen Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Lei Zeng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Weibin Zhou
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaofeng Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Feng Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Bingsheng Lou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| |
Collapse
|
11
|
Costanzo A, Clarke D, Holt M, Sharma S, Nagy K, Tan X, Kain L, Abe B, Luce S, Boitard C, Wyseure T, Mosnier LO, Su AI, Grimes C, Finn MG, Savage PB, Gottschalk M, Pettus J, Teyton L. Repositioning the Early Pathology of Type 1 Diabetes to the Extraislet Vasculature. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1094-1104. [PMID: 38426888 PMCID: PMC10944819 DOI: 10.4049/jimmunol.2300769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/29/2024] [Indexed: 03/02/2024]
Abstract
Type 1 diabetes (T1D) is a prototypic T cell-mediated autoimmune disease. Because the islets of Langerhans are insulated from blood vessels by a double basement membrane and lack detectable lymphatic drainage, interactions between endocrine and circulating T cells are not permitted. Thus, we hypothesized that initiation and progression of anti-islet immunity required islet neolymphangiogenesis to allow T cell access to the islet. Combining microscopy and single cell approaches, the timing of this phenomenon in mice was situated between 5 and 8 wk of age when activated anti-insulin CD4 T cells became detectable in peripheral blood while peri-islet pathology developed. This "peri-insulitis," dominated by CD4 T cells, respected the islet basement membrane and was limited on the outside by lymphatic endothelial cells that gave it the attributes of a tertiary lymphoid structure. As in most tissues, lymphangiogenesis seemed to be secondary to local segmental endothelial inflammation at the collecting postcapillary venule. In addition to classic markers of inflammation such as CD29, V-CAM, and NOS, MHC class II molecules were expressed by nonhematopoietic cells in the same location both in mouse and human islets. This CD45- MHC class II+ cell population was capable of spontaneously presenting islet Ags to CD4 T cells. Altogether, these observations favor an alternative model for the initiation of T1D, outside of the islet, in which a vascular-associated cell appears to be an important MHC class II-expressing and -presenting cell.
Collapse
Affiliation(s)
- Anne Costanzo
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA
| | - Don Clarke
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA
| | - Marie Holt
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA
| | - Siddhartha Sharma
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA
| | - Kenna Nagy
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA
| | - Xuqian Tan
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA
| | - Lisa Kain
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA
| | - Brian Abe
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA
| | | | | | - Tine Wyseure
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA
| | - Laurent O. Mosnier
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA
| | - Andrew I. Su
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA
| | - Catherine Grimes
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE
| | - M. G. Finn
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA
| | - Paul B. Savage
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT
| | - Michael Gottschalk
- Rady Children’s Hospital, University of California San Diego, San Diego, CA
| | - Jeremy Pettus
- UC San Diego School of Medicine, University of California San Diego, San Diego, CA
| | - Luc Teyton
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA
| |
Collapse
|
12
|
Hu J, Dong X, Lv Y, Hu D, Fei D, Dong H, Liu B, Li H, Yin H. Biphasic photobiomodulation of inflammation in mouse models of common wounds, infected wounds, and diabetic wounds. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 252:112868. [PMID: 38387147 DOI: 10.1016/j.jphotobiol.2024.112868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/30/2024] [Accepted: 02/12/2024] [Indexed: 02/24/2024]
Abstract
Bidirectional photobiomodulation (PBM) therapy is an active research area. However, most studies have focused on its dependence on optical parameters rather than on its tissue-dependent effects. We constructed mouse models of wounds in three inflammatory states (normal, low, and high levels of inflammations) to assess the bidirectional regulatory effect of PBM on inflammation. Mice were divided into three groups to prepare common wounds, diabetic wounds, and bacteria-infected wounds. The same PBM protocol was used to regularly irradiate the wounds over a 14 d period. PBM promoted healing of all three kinds of wounds, but the inflammatory manifestations in each were significantly different. In common wounds, PBM slightly increased the aggregation of inflammatory cells and expression of IL-6 but had no effect on the inflammatory score. For wounds in a high level of inflammation caused by infection, PBM significantly increased TNF-α expression in the first 3 d of treatment but quickly eliminated inflammation after the acute phase. For the diabetic wounds in a low level of inflammation, PBM intervention significantly increased inflammation scores and prevented neutrophils from falling below baseline levels at the end of the 14 d observation period. Under fixed optical conditions, PBM has a bidirectional (pro- or anti-inflammatory) effect on inflammation, depending on the immune state of the target organism and the presence of inflammatory stimulants. Our results provide a basis for the formulation of clinical guidelines for PBM application.
Collapse
Affiliation(s)
- Jiashen Hu
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Xiaoxi Dong
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Yue Lv
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Dian Hu
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Duheng Fei
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Huajiang Dong
- Logistics University of People's Armed Police Force, Tianjin 300309, China
| | - Bin Liu
- Characteristic Medical Center of Chinese People's Armed Police Force, Tianjin 300162, China.
| | - Hongxiao Li
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China.
| | - Huijuan Yin
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China.
| |
Collapse
|
13
|
Licastro E, Pignataro G, Iliff JJ, Xiang Y, Lo EH, Hayakawa K, Esposito E. Glymphatic and lymphatic communication with systemic responses during physiological and pathological conditions in the central nervous system. Commun Biol 2024; 7:229. [PMID: 38402351 PMCID: PMC10894274 DOI: 10.1038/s42003-024-05911-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 02/12/2024] [Indexed: 02/26/2024] Open
Abstract
Crosstalk between central nervous system (CNS) and systemic responses is important in many pathological conditions, including stroke, neurodegeneration, schizophrenia, epilepsy, etc. Accumulating evidence suggest that signals for central-systemic crosstalk may utilize glymphatic and lymphatic pathways. The glymphatic system is functionally connected to the meningeal lymphatic system, and together these pathways may be involved in the distribution of soluble proteins and clearance of metabolites and waste products from the CNS. Lymphatic vessels in the dura and meninges transport cerebrospinal fluid, in part collected from the glymphatic system, to the cervical lymph nodes, where solutes coming from the brain (i.e., VEGFC, oligomeric α-syn, β-amyloid) might activate a systemic inflammatory response. There is also an element of time since the immune system is strongly regulated by circadian rhythms, and both glymphatic and lymphatic dynamics have been shown to change during the day and night. Understanding the mechanisms regulating the brain-cervical lymph node (CLN) signaling and how it might be affected by diurnal or circadian rhythms is fundamental to find specific targets and timing for therapeutic interventions.
Collapse
Affiliation(s)
- Ester Licastro
- Neuroprotection Research Laboratories, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
- Division of Pharmacology, Department of Neuroscience, School of Medicine, University "Federico II", Naples, Italy
| | - Giuseppe Pignataro
- Division of Pharmacology, Department of Neuroscience, School of Medicine, University "Federico II", Naples, Italy
| | - Jeffrey J Iliff
- Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Yanxiao Xiang
- Neuroprotection Research Laboratories, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
- Department of Pharmacy, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Eng H Lo
- Neuroprotection Research Laboratories, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
- Consortium International pour la Recherche Circadienne sur l'AVC (CIRCA), Radcliffe Department of Medicine, University of Oxford, Headington, Oxford, UK
| | - Kazuhide Hayakawa
- Neuroprotection Research Laboratories, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.
| | - Elga Esposito
- Neuroprotection Research Laboratories, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.
- Consortium International pour la Recherche Circadienne sur l'AVC (CIRCA), Radcliffe Department of Medicine, University of Oxford, Headington, Oxford, UK.
| |
Collapse
|
14
|
Chang HC, Wang X, Gu X, Jiang S, Wang W, Wu T, Ye M, Qu X, Bao Z. Correlation of serum VEGF-C, ANGPTL4, and activin A levels with frailty. Exp Gerontol 2024; 185:112345. [PMID: 38092160 DOI: 10.1016/j.exger.2023.112345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/07/2023] [Accepted: 12/09/2023] [Indexed: 12/17/2023]
Abstract
BACKGROUND Secretory factors linked to lymphogenesis, such as vascular endothelial growth factor C (VEGF-C), angiopoietin like protein 4 (ANGPTL4), and activin A (ACV-A), have been recognized as potential markers of chronic inflammatory status and age-related diseases. Furthermore, these factors may also be linked to frailty. The primary objective of this study was to examine the serum VEGF-C, ANGPTL4, and ACV-A levels in young individuals, healthy older individuals, and older individuals with pre-frailty and frailty, and to determine their association with pro-inflammatory factor levels. METHODS We conducted an observational study, enrolling a total of 210 older individuals and 20 young healthy volunteers. Participants were divided into four groups based on the Freid frailty phenotype: healthy young group, older patients without frailty group, pre-frail older group, and frail older group. Plasma and peripheral blood mononuclear cells (PBMCs) were collected from all four groups. ELISA was used to measure the serum levels of VEGF-C, ANGPTL4, ACV-A, and pro-inflammatory cytokines, while RT-qPCR was used to measure the transcription level of VEGF-C, ANGPTL4 and ACV-A in PBMCs. RESULTS In comparison to healthy young individuals and older participants without frailty, older participants with frailty exhibited lower renal function, higher serum levels and transcription levels of VEGF-C, ANGPTL4, ACV-A, and elevated levels of pro-inflammatory cytokines (CRP, IL-1β, and TNF-α). Multiple linear regression analysis revealed that serum levels of VEGF-C, ANGPTL4, and ACV-A were positively correlated with the frailty index, independent of age, eGFR, and comorbidities. Furthermore, the receiver operating characteristic (ROC) curve analysis demonstrated that serum levels of VEGF-C, ANGPTL4, and ACV-A have great accuracy in predicting frailty. CONCLUSION Elevated serum levels of VEGF-C, ANGPTL4, and ACV-A are associated with frailty status.
Collapse
Affiliation(s)
- Hung-Chen Chang
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China; Department of Cardiology, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China
| | - Xiaojun Wang
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China; Department of Gerontology, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China
| | - Xuchao Gu
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China; Department of Traditional Chinese Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China
| | - Shuai Jiang
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China; Department of Thoracic Surgery, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China
| | - Wenhao Wang
- Department of Traditional Chinese Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China
| | - Tao Wu
- Department of Traditional Chinese Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China
| | - Maoqing Ye
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China; Department of Cardiology, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China; Shanghai institute of geriatric medicine, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China.
| | - Xinkai Qu
- Department of Cardiology, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China.
| | - Zhijun Bao
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China; Department of Gerontology, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China; Shanghai institute of geriatric medicine, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China.
| |
Collapse
|
15
|
Kraus S, Lee E. A human initial lymphatic chip reveals distinct mechanisms of primary lymphatic valve dysfunction in acute and chronic inflammation. LAB ON A CHIP 2023; 23:5180-5194. [PMID: 37981867 PMCID: PMC10908576 DOI: 10.1039/d3lc00486d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Interstitial fluid uptake and retention by lymphatic vessels (LVs) play a role in maintaining interstitial fluid homeostasis. While it is well-established that intraluminal lymphatic valves in the collecting LVs prevent fluid backflow (secondary lymphatic valves), a separate valve system in the initial LVs that only permits interstitial fluid influx into the LVs, preventing fluid leakage back to the interstitium (primary lymphatic valves), remains incompletely understood. Although lymphatic dysfunction is commonly observed in inflammation and autoimmune diseases, how the primary lymphatic valves are affected by acute and chronic inflammation has scarcely been explored and even less so using in vitro lymphatic models. Here, we developed a human initial lymphatic vessel chip where interstitial fluid pressure and luminal fluid pressure are controlled to examine primary lymph valve function. In normal conditions, lymphatic drainage (fluid uptake) and permeability (fluid leakage) in engineered LVs were maintained high and low, respectively, which was consistent with our understanding of healthy primary lymph valves. Next, we examined the effects of acute and chronic inflammation. Under the acute inflammation condition with a TNF-α treatment (2 hours), degradation of fibrillin and impeded lymphatic drainage were observed, which were reversed by treatment with anti-inflammatory dexamethasone. Surprisingly, the chronic inflammation condition (repeated TNF-α treatments during 48 hours) deposited fibrillin to compensate for the fibrillin loss, showing no change in lymphatic drainage. Instead, the chronic inflammation condition led to cell death and disruption of lymphatic endothelial cell-cell junctions, increasing lymphatic permeability and fluid leakage. Our human lymphatic model shows two distinct mechanisms by which primary lymphatic valve dysfunction occurs in acute and chronic inflammation.
Collapse
Affiliation(s)
- Samantha Kraus
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA.
| | - Esak Lee
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
16
|
Subileau M, Vittet D. Ontogenesis of the Mouse Ocular Surface Lymphatic Vascular Network. Invest Ophthalmol Vis Sci 2023; 64:7. [PMID: 38054922 DOI: 10.1167/iovs.64.15.7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023] Open
Abstract
Purpose Ocular lymphatic vessels play major physiological role in eye homeostasis and their dysfunction can contribute to the progression of several eye diseases. In this study, we characterized their spatiotemporal development and the cellular mechanisms occurring during their ontogenesis in the mouse eye. Methods Whole mount immunofluorescent staining and imaging by standard or lightsheet fluorescence microscopy were performed on late embryonic and early postnatal eye mouse samples. Results We observed that the ocular surface lymphatic vascular network develops at the early postnatal stages (between P0 and P5) from two nascent trunks arising at the nasal side on both sides of the nictitating membrane. These nascent vessels further branch and encircle the whole eye surface by sprouting lymphangiogenesis. In addition, we got evidence for the existence of a transient lymphvasculogenesis process generating lymphatic vessel fragments that will mostly formed the corneolimbal lymphatic vasculature which further connect to the conjunctival lymphatic network. Our results also support that CD206-positive macrophages can transdifferentiate and then integrate into the lymphatic neovessels. Conclusions Several complementary cellular processes participate in the development of the lymphatic ocular surface vasculature. This knowledge paves the way for the design of new therapeutic strategies to interfere with ocular lymphatic vessel formation when needed.
Collapse
Affiliation(s)
- Mariela Subileau
- University Grenoble Alpes, CEA, Inserm, IRIG, UA13 BGE, Grenoble, France
| | - Daniel Vittet
- University Grenoble Alpes, CEA, Inserm, IRIG, UA13 BGE, Grenoble, France
| |
Collapse
|
17
|
Mehrara BJ, Radtke AJ, Randolph GJ, Wachter BT, Greenwel P, Rovira II, Galis ZS, Muratoglu SC. The emerging importance of lymphatics in health and disease: an NIH workshop report. J Clin Invest 2023; 133:e171582. [PMID: 37655664 PMCID: PMC10471172 DOI: 10.1172/jci171582] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023] Open
Abstract
The lymphatic system (LS) is composed of lymphoid organs and a network of vessels that transport interstitial fluid, antigens, lipids, cholesterol, immune cells, and other materials in the body. Abnormal development or malfunction of the LS has been shown to play a key role in the pathophysiology of many disease states. Thus, improved understanding of the anatomical and molecular characteristics of the LS may provide approaches for disease prevention or treatment. Recent advances harnessing single-cell technologies, clinical imaging, discovery of biomarkers, and computational tools have led to the development of strategies to study the LS. This Review summarizes the outcomes of the NIH workshop entitled "Yet to be Charted: Lymphatic System in Health and Disease," held in September 2022, with emphasis on major areas for advancement. International experts showcased the current state of knowledge regarding the LS and highlighted remaining challenges and opportunities to advance the field.
Collapse
Affiliation(s)
- Babak J. Mehrara
- Department of Plastic and Reconstructive Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Andrea J. Radtke
- Lymphocyte Biology Section and Center for Advanced Tissue Imaging, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Gwendalyn J. Randolph
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Brianna T. Wachter
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Patricia Greenwel
- Division of Digestive Diseases & Nutrition, National Institute of Diabetes and Digestive and Kidney Diseases, and
| | - Ilsa I. Rovira
- Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, USA
| | - Zorina S. Galis
- Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, USA
| | - Selen C. Muratoglu
- Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, USA
| |
Collapse
|
18
|
Salvador AFM, Dykstra T, Rustenhoven J, Gao W, Blackburn SM, Bhasiin K, Dong MQ, Guimarães RM, Gonuguntla S, Smirnov I, Kipnis J, Herz J. Age-dependent immune and lymphatic responses after spinal cord injury. Neuron 2023; 111:2155-2169.e9. [PMID: 37148871 PMCID: PMC10523880 DOI: 10.1016/j.neuron.2023.04.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 02/13/2023] [Accepted: 04/12/2023] [Indexed: 05/08/2023]
Abstract
Spinal cord injury (SCI) causes lifelong debilitating conditions. Previous works demonstrated the essential role of the immune system in recovery after SCI. Here, we explored the temporal changes of the response after SCI in young and aged mice in order to characterize multiple immune populations within the mammalian spinal cord. We revealed substantial infiltration of myeloid cells to the spinal cord in young animals, accompanied by changes in the activation state of microglia. In contrast, both processes were blunted in aged mice. Interestingly, we discovered the formation of meningeal lymphatic structures above the lesion site, and their role has not been examined after contusive injury. Our transcriptomic data predicted lymphangiogenic signaling between myeloid cells in the spinal cord and lymphatic endothelial cells (LECs) in the meninges after SCI. Together, our findings delineate how aging affects the immune response following SCI and highlight the participation of the spinal cord meninges in supporting vascular repair.
Collapse
Affiliation(s)
- Andrea Francesca M Salvador
- Brain Immunology and Glia (BIG) Center, Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Division of Immunobiology, Washington University in St. Louis, St. Louis, MO 63110, USA; Neuroscience Graduate Program, University of Virginia, Charlottesville, VA 22903, USA
| | - Taitea Dykstra
- Brain Immunology and Glia (BIG) Center, Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Division of Immunobiology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Justin Rustenhoven
- Brain Immunology and Glia (BIG) Center, Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Division of Immunobiology, Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Pharmacology and Clinical Pharmacology, The University of Auckland, Auckland 1023, New Zealand
| | - Wenqing Gao
- Brain Immunology and Glia (BIG) Center, Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Division of Immunobiology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Susan M Blackburn
- Brain Immunology and Glia (BIG) Center, Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Division of Immunobiology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Kesshni Bhasiin
- Brain Immunology and Glia (BIG) Center, Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Division of Immunobiology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Michael Q Dong
- Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA
| | - Rafaela Mano Guimarães
- Brain Immunology and Glia (BIG) Center, Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Division of Immunobiology, Washington University in St. Louis, St. Louis, MO 63110, USA; Center for Research in Inflammatory Diseases (CRID), Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo 14049-900, Brazil
| | - Sriharsha Gonuguntla
- Brain Immunology and Glia (BIG) Center, Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Division of Immunobiology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Igor Smirnov
- Brain Immunology and Glia (BIG) Center, Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Division of Immunobiology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Jonathan Kipnis
- Brain Immunology and Glia (BIG) Center, Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Division of Immunobiology, Washington University in St. Louis, St. Louis, MO 63110, USA.
| | - Jasmin Herz
- Brain Immunology and Glia (BIG) Center, Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Division of Immunobiology, Washington University in St. Louis, St. Louis, MO 63110, USA.
| |
Collapse
|
19
|
Matsui K, Torii S, Hara S, Maruyama K, Arai T, Imanaka-Yoshida K. Tenascin-C in Tissue Repair after Myocardial Infarction in Humans. Int J Mol Sci 2023; 24:10184. [PMID: 37373332 DOI: 10.3390/ijms241210184] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/09/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Adverse ventricular remodeling after myocardial infarction (MI) is progressive ventricular dilatation associated with heart failure for weeks or months and is currently regarded as the most critical sequela of MI. It is explained by inadequate tissue repair due to dysregulated inflammation during the acute stage; however, its pathophysiology remains unclear. Tenascin-C (TNC), an original member of the matricellular protein family, is highly up-regulated in the acute stage after MI, and a high peak in its serum level predicts an increased risk of adverse ventricular remodeling in the chronic stage. Experimental TNC-deficient or -overexpressing mouse models have suggested the diverse functions of TNC, particularly its pro-inflammatory effects on macrophages. The present study investigated the roles of TNC during human myocardial repair. We initially categorized the healing process into four phases: inflammatory, granulation, fibrogenic, and scar phases. We then immunohistochemically examined human autopsy samples at the different stages after MI and performed detailed mapping of TNC in human myocardial repair with a focus on lymphangiogenesis, the role of which has recently been attracting increasing attention as a mechanism to resolve inflammation. The direct effects of TNC on human lymphatic endothelial cells were also assessed by RNA sequencing. The results obtained support the potential roles of TNC in the regulation of macrophages, sprouting angiogenesis, the recruitment of myofibroblasts, and the early formation of collagen fibrils during the inflammatory phase to the early granulation phase of human MI. Lymphangiogenesis was observed after the expression of TNC was down-regulated. In vitro results revealed that TNC modestly down-regulated genes related to nuclear division, cell division, and cell migration in lymphatic endothelial cells, suggesting its inhibitory effects on lymphatic endothelial cells. The present results indicate that TNC induces prolonged over-inflammation by suppressing lymphangiogenesis, which may be one of the mechanisms underlying adverse post-infarct remodeling.
Collapse
Affiliation(s)
- Kenta Matsui
- Department of Pathology and Matrix Biology, Graduate School of Medicine, Mie University, 2-174 Edobashi, Tsu 514-8507, Japan
| | - Sota Torii
- Department of Pathology and Matrix Biology, Graduate School of Medicine, Mie University, 2-174 Edobashi, Tsu 514-8507, Japan
| | - Shigeru Hara
- Department of Pathology and Matrix Biology, Graduate School of Medicine, Mie University, 2-174 Edobashi, Tsu 514-8507, Japan
| | - Kazuaki Maruyama
- Department of Pathology and Matrix Biology, Graduate School of Medicine, Mie University, 2-174 Edobashi, Tsu 514-8507, Japan
| | - Tomio Arai
- Department of Pathology, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, 3-52 Sakaecho, Itabashi-ku, Tokyo 173-0015, Japan
| | - Kyoko Imanaka-Yoshida
- Department of Pathology and Matrix Biology, Graduate School of Medicine, Mie University, 2-174 Edobashi, Tsu 514-8507, Japan
| |
Collapse
|
20
|
Yu Y, Pan Y, Chang B, Zhao X, Qu K, Song Y. Silica nanoparticles induce pulmonary damage in rats via VEGFC/D-VEGFR3 signaling-mediated lymphangiogenesis and remodeling. Toxicology 2023:153552. [PMID: 37244296 DOI: 10.1016/j.tox.2023.153552] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/11/2023] [Accepted: 05/20/2023] [Indexed: 05/29/2023]
Abstract
Silica nanoparticles (SiNPs) are widely used as drug carriers for improving drug delivery and retention. The lungs are highly sensitive to the toxicity of SiNPs entering the respiratory tract. Furthermore, pulmonary lymphangiogenesis, which is the growth of lymphatic vessels observed during multiple pulmonary diseases, plays a vital role in promoting the lymphatic transport of silica in the lungs. However, more research is required on the effects of SiNPs on pulmonary lymphangiogenesis. We investigated the effect of SiNP-induced pulmonary toxicity on lymphatic vessel formation in rats and evaluated the toxicity and possible molecular mechanisms of 20-nm SiNPs. Saline containing 3.0, 6.0, and 12.0mg/kg of SiNPs was instilled intrathecally into female Wistar rats once a day for five days, then sacrificed on day seven. Lung histopathology, pulmonary permeability, pulmonary lymphatic vessel density changes, and the ultrastructure of the lymph trunk were investigated using light microscopy, spectrophotometry, immunofluorescence, and transmission electron microscopy. CD45 expression in lung tissues was determined using immunohistochemical staining, and protein expression in the lung and lymph trunk was quantified using western blotting. We observed increased pulmonary inflammation and permeability, lymphatic endothelial cell damage, pulmonary lymphangiogenesis, and remodeling with increasing SiNP concentration. Moreover, SiNPs activated the VEGFC/D-VEGFR3 signaling pathway in the lung and lymphatic vessel tissues. SiNPs caused pulmonary damage, increased permeability and resulted in inflammation-associated lymphangiogenesis and remodeling by activating VEGFC/D-VEGFR3 signaling. Our findings provide evidence for SiNP-induced pulmonary damage and a new perspective for the prevention and treatment of occupational exposure to SiNPs. DATA AVAILABILITY: The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.
Collapse
Affiliation(s)
- Yanan Yu
- Department of Occupational Medicine and Clinical Toxicology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Yujie Pan
- Department of Occupational Medicine and Clinical Toxicology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Bing Chang
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Xiaoxu Zhao
- Department of Occupational Medicine and Clinical Toxicology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Kunlong Qu
- Department of Occupational Medicine and Clinical Toxicology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Yuguo Song
- Department of Occupational Medicine and Clinical Toxicology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China.
| |
Collapse
|
21
|
Wang R, Wang H, Mu J, Yuan H, Pang Y, Wang Y, Du Y, Han F. Molecular events in the jaw vascular unit: A traditional review of the mechanisms involved in inflammatory jaw bone diseases. J Biomed Res 2023; 37:313-325. [PMID: 37226540 PMCID: PMC10541772 DOI: 10.7555/jbr.36.20220266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/28/2023] [Accepted: 03/08/2023] [Indexed: 05/26/2023] Open
Abstract
Inflammatory jaw bone diseases are common in stomatology, including periodontitis, peri-implantitis, medication-related osteonecrosis of the jaw, radiation osteomyelitis of the jaw, age-related osteoporosis, and other specific infections. These diseases may lead to tooth loss and maxillofacial deformities, severely affecting patients' quality of life. Over the years, the reconstruction of jaw bone deficiency caused by inflammatory diseases has emerged as a medical and socioeconomic challenge. Therefore, exploring the pathogenesis of inflammatory diseases associated with jaw bones is crucial for improving prognosis and developing new targeted therapies. Accumulating evidence indicates that the integrated bone formation and dysfunction arise from complex interactions among a network of multiple cell types, including osteoblast-associated cells, immune cells, blood vessels, and lymphatic vessels. However, the role of these different cells in the inflammatory process and the 'rules' with which they interact are still not fully understood. Although many investigations have focused on specific pathological processes and molecular events in inflammatory jaw diseases, few articles offer a perspective of integration. Here, we review the changes and mechanisms of various cell types in inflammatory jaw diseases, with the hope of providing insights to drive future research in this field.
Collapse
Affiliation(s)
- Ruyu Wang
- Department of Oral and Maxillofacial Surgery, the Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, Jiangsu 210029, China
| | - Haoran Wang
- Department of Oral and Maxillofacial Surgery, the Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, Jiangsu 210029, China
| | - Junyu Mu
- International Joint Laboratory for Drug Target of Critical Illnesses, Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Hua Yuan
- Department of Oral and Maxillofacial Surgery, the Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, Jiangsu 210029, China
| | - Yongchu Pang
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, Jiangsu 210029, China
- Department of Orthodontics, the Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yuli Wang
- Department of Oral and Maxillofacial Surgery, the Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, Jiangsu 210029, China
| | - Yifei Du
- Department of Oral and Maxillofacial Surgery, the Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, Jiangsu 210029, China
| | - Feng Han
- International Joint Laboratory for Drug Target of Critical Illnesses, Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| |
Collapse
|
22
|
Britzen-Laurent N, Weidinger C, Stürzl M. Contribution of Blood Vessel Activation, Remodeling and Barrier Function to Inflammatory Bowel Diseases. Int J Mol Sci 2023; 24:ijms24065517. [PMID: 36982601 PMCID: PMC10051397 DOI: 10.3390/ijms24065517] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
Inflammatory bowel diseases (IBDs) consist of a group of chronic inflammatory disorders with a complex etiology, which represent a clinical challenge due to their often therapy-refractory nature. In IBD, inflammation of the intestinal mucosa is characterized by strong and sustained leukocyte infiltration, resulting in the loss of epithelial barrier function and subsequent tissue destruction. This is accompanied by the activation and the massive remodeling of mucosal micro-vessels. The role of the gut vasculature in the induction and perpetuation of mucosal inflammation is receiving increasing recognition. While the vascular barrier is considered to offer protection against bacterial translocation and sepsis after the breakdown of the epithelial barrier, endothelium activation and angiogenesis are thought to promote inflammation. The present review examines the respective pathological contributions of the different phenotypical changes observed in the microvascular endothelium during IBD, and provides an overview of potential vessel-specific targeted therapy options for the treatment of IBD.
Collapse
Affiliation(s)
- Nathalie Britzen-Laurent
- Division of Surgical Research, Department of Surgery, Translational Research Center, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), 91054 Erlangen, Germany
- Correspondence:
| | - Carl Weidinger
- Department of Gastroenterology, Infectious Diseases and Rheumatology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, 12203 Berlin, Germany
| | - Michael Stürzl
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), 91054 Erlangen, Germany
- Division of Molecular and Experimental Surgery, Translational Research Center, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| |
Collapse
|
23
|
Indrelid SH, Dongre HN, Nunes IP, Virtej A, Bletsa A, Berggreen E. Human gingival epithelial cells stimulate proliferation, migration, and tube formation of lymphatic endothelial cells in vitro. J Periodontal Res 2023; 58:596-606. [PMID: 36843064 DOI: 10.1111/jre.13110] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 02/01/2023] [Accepted: 02/14/2023] [Indexed: 02/28/2023]
Abstract
OBJECTIVE The aim of this study was to investigate the response of gingival epithelial cells to microbial and inflammatory signals. BACKGROUND The gingival epithelial barrier provides the first line of defense and supports tissue homeostasis by maintaining the cross-talk between gingival epithelium, oral microbiota, and immune cells. Lymphatic vessels are essential to sustaining this homeostasis. The gingival epithelial cells have been shown to produce prolymphangiogenic factors during physiologic conditions, but their role in response to microbial and inflammatory signals is unknown. METHODS Immortalized human gingival epithelial cells (HGEC) and human dermal lymphatic microvascular endothelial cells (LEC) were cultured. HGEC were exposed to Porphyromonas gingivalis derived-LPS, human IL-1 beta/IL-1F2 protein, or recombinant human IL-6/IL-6R. Levels of vascular growth factors (VEGF-A, VEGF-C, and VEGF-D) in cell supernatants were determined by ELISA. LEC were grown to confluence, and a scratch was induced in the monolayer. Uncovered area was measured up to 48 h after exposure to conditioned medium (CM) from HGEC. Tube formation assays were performed with LEC cocultured with labelled HGEC or exposed to CM. RESULTS VEGF-A, VEGF-C, and low levels of VEGF-D were constitutively expressed by HGEC. The expression of VEGF-C and VEGF-D, but not VEGF-A, was upregulated in response to proinflammatory mediators. VEGF-C was upregulated in response to P. gingivalis LPS, but not to Escherichia coli LPS. A scratch migration assay showed that LEC migration was significantly increased by CM from HGEC. Both the CM and coculture with HGEC induced significant tube formation of LEC. CONCLUSIONS HGEC can regulate production of lymphangiogenic/angiogenic factors during inflammatory insults and can stimulate proliferation, migration, and tube formation of LEC in vitro in a paracrine manner.
Collapse
Affiliation(s)
| | - Harsh Nitin Dongre
- Centre for Cancer Biomarkers and Gade Laboratory for Pathology, Department of Clinical Medicine, Faculty of Medicine and Dentistry, University of Bergen, Bergen, Norway
| | | | - Anca Virtej
- Department of Clinical Dentistry, University of Bergen, Bergen, Norway.,Department of Biomedicine, University of Bergen, Bergen, Norway.,Department of Oral and Maxillofacial Surgery, Haukeland University Hospital, Bergen, Norway
| | - Athanasia Bletsa
- Oral Health Center of Expertise, Western Norway, Bergen, Norway.,Department of Clinical Dentistry, University of Bergen, Bergen, Norway
| | - Ellen Berggreen
- Oral Health Center of Expertise, Western Norway, Bergen, Norway.,Department of Biomedicine, University of Bergen, Bergen, Norway
| |
Collapse
|
24
|
Xia D, Toy R, Pradhan P, Hejri A, Chae J, Grossniklaus HE, Cursiefen C, Roy K, Prausnitz MR. Enhanced immune responses to vaccine antigens in the corneal stroma. J Control Release 2023; 353:434-446. [PMID: 36462639 PMCID: PMC9892265 DOI: 10.1016/j.jconrel.2022.11.045] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 11/24/2022] [Accepted: 11/26/2022] [Indexed: 12/12/2022]
Abstract
To examine the widely accepted dogma that the eye is an immune-privileged organ that can suppress antigen immunogenicity, we explored systemic immune responses to a model vaccine antigen (tetanus toxoid) delivered to six compartments of the rodent eye (ocular surface, corneal stroma, anterior chamber, subconjunctival space, suprachoroidal space, vitreous body). We discovered that antigens delivered to corneal stroma induced enhanced, rather than suppressed, antigen-specific immune responses, which were 18- to 30-fold greater than conventional intramuscular injection and comparable to intramuscular vaccination with alum adjuvant. Systemic immune responses to antigen delivered to the other ocular compartments were much weaker. The enhanced systemic immune responses after intrastromal injection were related to a sequence of events involving the formation of an antigen "depot" in the avascular stroma, infiltration of antigen-presenting cells, up-regulation of MHC class II and costimulatory molecules CD80/CD86, and induction of lymphangiogenesis in the corneal stroma facilitating sustained presentation of antigen to the lymphatic system. These enhanced immune responses in corneal stroma suggest new approaches to medical interventions for ocular immune diseases and vaccination methods.
Collapse
Affiliation(s)
- Dengning Xia
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Randall Toy
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Pallab Pradhan
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Amir Hejri
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Jeremy Chae
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Hans E Grossniklaus
- Departments of Ophthalmology and Pathology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Claus Cursiefen
- Department of Ophthalmology, University of Cologne, Cologne 50937, Germany
| | - Krishnendu Roy
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| | - Mark R Prausnitz
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| |
Collapse
|
25
|
The Impact of Stem/Progenitor Cells on Lymphangiogenesis in Vascular Disease. Cells 2022; 11:cells11244056. [PMID: 36552820 PMCID: PMC9776475 DOI: 10.3390/cells11244056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/03/2022] [Accepted: 12/12/2022] [Indexed: 12/16/2022] Open
Abstract
Lymphatic vessels, as the main tube network of fluid drainage and leukocyte transfer, are responsible for the maintenance of homeostasis and pathological repairment. Recently, by using genetic lineage tracing and single-cell RNA sequencing techniques, significant cognitive progress has been made about the impact of stem/progenitor cells during lymphangiogenesis. In the embryonic stage, the lymphatic network is primarily formed through self-proliferation and polarized-sprouting from the lymph sacs. However, the assembly of lymphatic stem/progenitor cells also guarantees the sustained growth of lymphvasculogenesis to obtain the entire function. In addition, there are abundant sources of stem/progenitor cells in postnatal tissues, including circulating progenitors, mesenchymal stem cells, and adipose tissue stem cells, which can directly differentiate into lymphatic endothelial cells and participate in lymphangiogenesis. Specifically, recent reports indicated a novel function of lymphangiogenesis in transplant arteriosclerosis and atherosclerosis. In the present review, we summarized the latest evidence about the diversity and incorporation of stem/progenitor cells in lymphatic vasculature during both the embryonic and postnatal stages, with emphasis on the impact of lymphangiogenesis in the development of vascular diseases to provide a rational guidance for future research.
Collapse
|
26
|
Lou B, Wu W, Zeng L, Zhou W, Zhang X, Zhou X, Liu Z, Liu K, Gu X, Chen X, Wang Y, Chen Y, Gao X, Zhang F. Alleviating experimental allergic eye disease by inhibiting pro-lymphangiogenic VEGFR3 signal. Ocul Surf 2022; 26:1-12. [PMID: 35931408 DOI: 10.1016/j.jtos.2022.07.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 06/29/2022] [Accepted: 07/18/2022] [Indexed: 12/13/2022]
Abstract
PURPOSE Ocular allergy leads to acute and chronic inflammation that may deteriorate the conjunctiva and other ocular tissue. The conjunctiva is covered with abundant lymphatic vessels but how the conjunctival lymphatic system patriciates in the development of allergic eye disease (AED) remains to be elucidated. METHODS AND RESULTS By using ovalbumin (OVA)+pertussis toxin (PTX) as a sensitizer followed by daily OVA challenges, we induced optimized AED manifestations in mice. We show that conjunctival lymphatics underwent significant expansion after 28 days of chronic OVA challenge, and this process can be prevented by inducible genetic ablation of lymphatic Vegfr3. Through transcriptomic profile analysis in combination with histopathological examinations, we found that pro-lymphangiogenic VEGFR3 signal promoted allergy-induced activation of T helper 2 (Th2) type immune responses, including antigen presentation, and Th2 cells, B cells and mast cell-related pathways in the conjunctiva, thereby critically contributing to the immunoglobulin E (IgE) production and AED manifestations. As a result, ocular allergy can be alleviated by genetic inhibition of lymphatic Vegfr3. Interestingly, pro-lymphangiogenic VEGFR3 signal did not appear to affect the obstruction of meibomian glands (MGs) or the activation of Th17 type and neutrophil pathways that are associated with AED. CONCLUSIONS These data reveal the key role of pro-lymphangiogenic VEGFR3 signaling in the development of AED and provide experimental evidence that VEGFR3 inhibition may be useful in treating ocular allergy in patients.
Collapse
Affiliation(s)
- Bingsheng Lou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Wanwen Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Lei Zeng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Weibin Zhou
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xuan Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Xuetong Zhou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Zheng Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Keli Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Xinyu Gu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Xun Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Yeqi Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, 400044, China; State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, China
| | - Yangxin Chen
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xinbo Gao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Feng Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China.
| |
Collapse
|
27
|
Zhang L, Yuan J, Kofi Wiredu Ocansey D, Lu B, Wan A, Chen X, Zhang X, Qiu W, Mao F. Exosomes derived from human umbilical cord mesenchymal stem cells regulate lymphangiogenesis via the miR-302d-3p/VEGFR3/AKT axis to ameliorate inflammatory bowel disease. Int Immunopharmacol 2022; 110:109066. [DOI: 10.1016/j.intimp.2022.109066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/01/2022] [Accepted: 07/12/2022] [Indexed: 11/26/2022]
|
28
|
Ghajar-Rahimi G, Agarwal A. Endothelial KLF11 as a Nephroprotectant in AKI. KIDNEY360 2022; 3:1302-1305. [PMID: 36176668 PMCID: PMC9416841 DOI: 10.34067/kid.0003422022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 06/14/2022] [Indexed: 06/16/2023]
Affiliation(s)
- Gelare Ghajar-Rahimi
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, Alabama
- Division of Cardiothoracic Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama
| | - Anupam Agarwal
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Birmingham Veterans Administration Health Care Services, Birmingham, Alabama
| |
Collapse
|
29
|
Goad J, Rudolph J, Zandigohar M, Tae M, Dai Y, Wei JJ, Bulun SE, Chakravarti D, Rajkovic A. Single-cell sequencing reveals novel cellular heterogeneity in uterine leiomyomas. Hum Reprod 2022; 37:2334-2349. [PMID: 36001050 PMCID: PMC9802286 DOI: 10.1093/humrep/deac183] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/29/2022] [Indexed: 01/07/2023] Open
Abstract
STUDY QUESTION What are the cellular composition and single-cell transcriptomic differences between myometrium and leiomyomas as defined by single-cell RNA sequencing? SUMMARY ANSWER We discovered cellular heterogeneity in smooth muscle cells (SMCs), fibroblast and endothelial cell populations in both myometrium and leiomyoma tissues. WHAT IS KNOWN ALREADY Previous studies have shown the presence of SMCs, fibroblasts, endothelial cells and immune cells in myometrium and leiomyomas. However, there is no information on the cellular heterogeneity in these tissues and the transcriptomic differences at the single-cell level between these tissues. STUDY DESIGN, SIZE, DURATION We collected five leiomyoma and five myometrium samples from a total of eight patients undergoing hysterectomy. We then performed single-cell RNA sequencing to generate a cell atlas for both tissues. We utilized our single-cell sequencing data to define cell types, compare cell types by tissue type (leiomyoma versus myometrium) and determine the transcriptional changes at a single-cell resolution between leiomyomas and myometrium. Additionally, we performed MED12-variant analysis at the single-cell level to determine the genotype heterogeneity within leiomyomas. PARTICIPANTS/MATERIALS, SETTING, METHODS We collected five MED12-variant positive leiomyomas and five myometrium samples from a total of eight patients. We then performed single-cell RNA sequencing on freshly isolated single-cell preparations. Histopathological assessment confirmed the identity of the samples. Sanger sequencing was performed to confirm the presence of the MED12 variant in leiomyomas. MAIN RESULTS AND ROLE OF CHANCE Our data revealed previously unknown heterogeneity in the SMC, fibroblast cell and endothelial cell populations of myometrium and leiomyomas. We discovered the presence of two different lymphatic endothelial cell populations specific to uterine leiomyomas. We showed that both myometrium and MED12-variant leiomyomas are relatively similar in cellular composition but differ in cellular transcriptomic profiles. We found that fibroblasts influence the leiomyoma microenvironment through their interactions with endothelial cells, immune cells and SMCs. Variant analysis at the single-cell level revealed the presence of both MED12 variants as well as the wild-type MED12 allele in SMCs of leiomyomatous tissue. These results indicate genotype heterogeneity of cellular composition within leiomyomas. LARGE SCALE DATA The datasets are available in the NCBI Gene Expression Omnibus (GEO) using GSE162122. LIMITATIONS, REASONS FOR CAUTION Our study focused on MED12-variant positive leiomyomas for single-cell RNA sequencing analyses. Leiomyomas carrying other genetic rearrangements may differ in their cellular composition and transcriptomic profiles. WIDER IMPLICATIONS FOR THE FINDINGS Our study provides a cellular atlas for myometrium and MED12-variant positive leiomyomas as defined by single-cell RNA sequencing. Our analysis provides significant insight into the differences between myometrium and leiomyomas at the single-cell level and reveals hitherto unknown genetic heterogeneity in multiple cell types within human leiomyomas. Our results will be important for future studies into the origin and growth of human leiomyomas. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by funding from the National Institute of Child Health and Human Development (HD098580 and HD088629). The authors declare no competing interests.
Collapse
Affiliation(s)
- Jyoti Goad
- Correspondence address. Department of Pathology, HSW-518, 513 Parnassus Ave, San Francisco, CA 94143, USA. Tel: +415-502-4961; E-mail: (A.R.); Tel: +415-514-4687, E-mail: (J.G.)
| | - Joshua Rudolph
- Department of Medicine, Lung Biology Center, University of California, San Francisco, CA, USA
| | - Mehrdad Zandigohar
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Matthew Tae
- Department of Pathology, University of California, San Francisco, CA, USA
| | - Yang Dai
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Jian-Jun Wei
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Serdar E Bulun
- Division of Reproductive Sciences in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Debabrata Chakravarti
- Division of Reproductive Sciences in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Aleksandar Rajkovic
- Correspondence address. Department of Pathology, HSW-518, 513 Parnassus Ave, San Francisco, CA 94143, USA. Tel: +415-502-4961; E-mail: (A.R.); Tel: +415-514-4687, E-mail: (J.G.)
| |
Collapse
|
30
|
Abstract
The lymphatic vessels play an essential role in maintaining immune and fluid homeostasis and in the transport of dietary lipids. The discovery of lymphatic endothelial cell-specific markers facilitated the visualization and mechanistic analysis of lymphatic vessels over the past two decades. As a result, lymphatic vessels have emerged as a crucial player in the pathogenesis of several cardiovascular diseases, as demonstrated by worsened disease progression caused by perturbations to lymphatic function. In this review, we discuss the major findings on the role of lymphatic vessels in cardiovascular diseases such as hypertension, obesity, atherosclerosis, myocardial infarction, and heart failure.
Collapse
Affiliation(s)
- Dakshnapriya Balasubbramanian
- Vascular Biology Program, Boston Children's Hospital, Boston, Massachusetts 02115, USA
- Department of Surgery, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Brett M Mitchell
- Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, Texas 77807, USA
| |
Collapse
|
31
|
Ogino R, Yokooji T, Hayashida M, Suda S, Yamakawa S, Hayashida K. Emerging Anti-Inflammatory Pharmacotherapy and Cell-Based Therapy for Lymphedema. Int J Mol Sci 2022; 23:ijms23147614. [PMID: 35886961 PMCID: PMC9322118 DOI: 10.3390/ijms23147614] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 02/04/2023] Open
Abstract
Secondary lymphedema is a common complication of lymph node dissection or radiation therapy for cancer treatment. Conventional therapies such as compression sleeve therapy, complete decongestive physiotherapy, and surgical therapies decrease edema; however, they are not curative because they cannot modulate the pathophysiology of lymphedema. Recent advances reveal that the activation and accumulation of CD4+ T cells are key in the development of lymphedema. Based on this pathophysiology, the efficacy of pharmacotherapy (tacrolimus, anti-IL-4/IL-13 antibody, or fingolimod) and cell-based therapy for lymphedema has been demonstrated in animal models and pilot studies. In addition, mesenchymal stem/stromal cells (MSCs) have attracted attention as candidates for cell-based lymphedema therapy because they improve symptoms and decrease edema volume in the long term with no serious adverse effects in pilot studies. Furthermore, MSC transplantation promotes functional lymphatic regeneration and improves the microenvironment in animal models. In this review, we focus on inflammatory cells involved in the pathogenesis of lymphedema and discuss the efficacy and challenges of pharmacotherapy and cell-based therapies for lymphedema.
Collapse
Affiliation(s)
- Ryohei Ogino
- Department of Frontier Science for Pharmacotherapy, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan; (R.O.); (T.Y.)
| | - Tomoharu Yokooji
- Department of Frontier Science for Pharmacotherapy, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan; (R.O.); (T.Y.)
| | - Maiko Hayashida
- Department of Psychiatry, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo 693-8501, Japan;
| | - Shota Suda
- Division of Plastic and Reconstructive Surgery, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo 693-8501, Japan; (S.S.); (S.Y.)
| | - Sho Yamakawa
- Division of Plastic and Reconstructive Surgery, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo 693-8501, Japan; (S.S.); (S.Y.)
| | - Kenji Hayashida
- Division of Plastic and Reconstructive Surgery, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo 693-8501, Japan; (S.S.); (S.Y.)
- Correspondence: ; Tel.: +81-853-20-2210
| |
Collapse
|
32
|
Liu J, Yu C. Lymphangiogenesis and Lymphatic Barrier Dysfunction in Renal Fibrosis. Int J Mol Sci 2022; 23:ijms23136970. [PMID: 35805972 PMCID: PMC9267103 DOI: 10.3390/ijms23136970] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/20/2022] [Accepted: 06/20/2022] [Indexed: 11/16/2022] Open
Abstract
As an integral part of the vascular system, the lymphatic vasculature is essential for tissue fluid homeostasis, nutritional lipid assimilation and immune regulation. The composition of the lymphatic vasculature includes fluid-absorbing initial lymphatic vessels (LVs), transporting collecting vessels and anti-regurgitation valves. Although, in recent decades, research has drastically enlightened our view of LVs, investigations of initial LVs, also known as lymphatic capillaries, have been stagnant due to technical limitations. In the kidney, the lymphatic vasculature mainly presents in the cortex, keeping the local balance of fluid, solutes and immune cells. The contribution of renal LVs to various forms of pathology, especially chronic kidney diseases, has been addressed in previous studies, however with diverging and inconclusive results. In this review, we discuss the most recent advances in the proliferation and permeability of lymphatic capillaries as well as their influencing factors. Novel technologies to visualize and measure LVs function are described. Then, we highlight the role of the lymphatic network in renal fibrosis and the crosstalk between kidney and other organs, such as gut and heart.
Collapse
|
33
|
Hooks JST, Bernard FC, Cruz-Acuña R, Nepiyushchikh Z, Gonzalez-Vargas Y, García AJ, Dixon JB. Synthetic hydrogels engineered to promote collecting lymphatic vessel sprouting. Biomaterials 2022; 284:121483. [PMID: 35428014 PMCID: PMC9134840 DOI: 10.1016/j.biomaterials.2022.121483] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 03/14/2022] [Accepted: 03/21/2022] [Indexed: 12/16/2022]
Abstract
The lymphatic vasculature is an essential component of the body's circulation providing a network of vessels to return fluid and proteins from the tissue space to the blood, to facilitate immune ce-ll and antigen transport to lymph nodes, and to take up dietary lipid from the intestine. The development of biomaterial-based strategies to facilitate the growth of lymphatics either for regenerative purposes or as model system to study lymphatic biology is still in its nascent stages. In particular, platforms that encourage the sprouting and formation of lymphatic networks from collecting vessels are particularly underdeveloped. Through implementation of a modular, poly(ethylene glycol) (PEG)-based hydrogel, we explored the independent contributions of matrix elasticity, degradability, and adhesive peptide presentation on sprouting of implanted segments of rat lymphatic collecting vessels. An engineered hydrogel with 680 Pa elasticity, 2.0 mM RGD adhesive peptide, and full susceptibility to protease degradability produced the highest levels of sprouting relative to other physicochemical matrix properties. This engineered hydrogel was then utilized as a scaffold to facilitate the implantation of a donor vessel that functionally grafted into the host vasculature. This hydrogel provides a promising platform for facilitating lymphangiogenesis in vivo or as a means to understand the cellular mechanisms involved in the sprout process during collecting lymphatic vessel collateralization.
Collapse
Affiliation(s)
- Joshua S T Hooks
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Dr. Atlanta, GA, 30332, USA; George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 801 Ferst Dr. Atlanta, GA, 30313, USA
| | - Fabrice C Bernard
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Dr. Atlanta, GA, 30332, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, 313 Ferst Dr NW, Atlanta, GA, 30332, USA
| | - Ricardo Cruz-Acuña
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Dr. Atlanta, GA, 30332, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, 313 Ferst Dr NW, Atlanta, GA, 30332, USA
| | - Zhanna Nepiyushchikh
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Dr. Atlanta, GA, 30332, USA; George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 801 Ferst Dr. Atlanta, GA, 30313, USA
| | - Yarelis Gonzalez-Vargas
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Dr. Atlanta, GA, 30332, USA; George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 801 Ferst Dr. Atlanta, GA, 30313, USA
| | - Andrés J García
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Dr. Atlanta, GA, 30332, USA; George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 801 Ferst Dr. Atlanta, GA, 30313, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, 313 Ferst Dr NW, Atlanta, GA, 30332, USA
| | - J Brandon Dixon
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Dr. Atlanta, GA, 30332, USA; George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 801 Ferst Dr. Atlanta, GA, 30313, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, 313 Ferst Dr NW, Atlanta, GA, 30332, USA.
| |
Collapse
|
34
|
Rodas L, Barnadas E, Pereira A, Castrejon N, Saurina A, Calls J, Calzada Y, Madrid Á, Blasco M, Poch E, García-Herrera A, Quintana LF. The Density of Renal Lymphatics Correlates With Clinical Outcomes in IgA Nephropathy. Kidney Int Rep 2022; 7:823-830. [PMID: 35497787 PMCID: PMC9039908 DOI: 10.1016/j.ekir.2021.12.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/19/2021] [Accepted: 12/27/2021] [Indexed: 11/06/2022] Open
Abstract
Introduction IgA nephropathy (IgAN) is the most common primary glomerulonephritis (GN) worldwide. The disease course fluctuates, and the most important challenge is the considerable variation in the time lag between diagnosis and the development of a hard clinical end point, such as end-stage kidney disease (ESKD). The reaction of renal tissue to damage resembles the common wound-healing response. One part of this repair in IgAN is the expansion of lymphatic vessels known as lymphangiogenesis. The aim of this work was to establish the prognostic value of the density of lymphatic vessels in the renal biopsy at the time of diagnosis, for predicting the risk of ESKD in a Spanish cohort of patients with IgAN. Methods We performed a retrospective multicenter study of 76 patients with IgAN. The end point of the study was progression to ESKD. The morphometric analysis of lymphatic vessels was performed on tissue sections stained with antipodoplanin antibody. Results Density of lymphatic vessels was significantly higher in patients with IgAN with mesangial hypercellularity >50%, segmental sclerosis, higher degrees of interstitial fibrosis, and tubular atrophy. Patients with more lymphatic vessels had significantly higher values of proteinuria and lower estimated glomerular filtration rate (eGFR). A density of lymphatic vessels ≥8 per mm2 was associated with a significantly higher rate of progression to ESKD at 3 years from biopsy. After adjustment for the International IgAN prediction score, at the multivariate logistic regression, high density of lymphatic vessels (≥8 per mm2) remained significantly associated with a higher rate of early progression to ESKD. Conclusion This study contributes to the understanding of the natural history of the progression to ESKD in patients with IgAN revealing the density of lymphatics vessels may optimize the prognostic value of the International IgA predicting tool to calculate the risk of ESKD, favoring the evaluation of new targeted therapies.
Collapse
Affiliation(s)
- Lida Rodas
- Department of Nephrology and Renal Transplantation, Hospital Clínic, Department of Medicine, University of Barcelona, IDIBAPS and Centro de Referencia en Enfermedad Glomerular Compleja del Sistema Nacional de Salud de España (CSUR), Barcelona, Spain
| | - Esther Barnadas
- Department of Pathology, Hospital Clínic, University of Barcelona, IDIBAPS and Centro de Referencia en Enfermedad Glomerular Compleja del Sistema Nacional de Salud de España (CSUR), Barcelona, Spain
| | - Arturo Pereira
- Department of Hematology, Hospital Clínic, University of Barcelona, IDIBAPS, Barcelona, Spain
| | - Natalia Castrejon
- Department of Pathology, Hospital Clínic, University of Barcelona, IDIBAPS and Centro de Referencia en Enfermedad Glomerular Compleja del Sistema Nacional de Salud de España (CSUR), Barcelona, Spain
| | - Anna Saurina
- Department of Nephrology, Hospital Terrasa, Cataluña, Spain
| | - Jordi Calls
- Department of Nephrology, Hospital de Mollet, Cataluña, Spain
| | - Yolanda Calzada
- Department of Nephrology, Hospital Sant Joan de Déu Barcelona, Barcelona, Spain
| | - Álvaro Madrid
- Department of Nephrology, Hospital Sant Joan de Déu Barcelona, Barcelona, Spain
| | - Miquel Blasco
- Department of Nephrology and Renal Transplantation, Hospital Clínic, Department of Medicine, University of Barcelona, IDIBAPS and Centro de Referencia en Enfermedad Glomerular Compleja del Sistema Nacional de Salud de España (CSUR), Barcelona, Spain
| | - Esteban Poch
- Department of Nephrology and Renal Transplantation, Hospital Clínic, Department of Medicine, University of Barcelona, IDIBAPS and Centro de Referencia en Enfermedad Glomerular Compleja del Sistema Nacional de Salud de España (CSUR), Barcelona, Spain
| | - Adriana García-Herrera
- Department of Pathology, Hospital Clínic, University of Barcelona, IDIBAPS and Centro de Referencia en Enfermedad Glomerular Compleja del Sistema Nacional de Salud de España (CSUR), Barcelona, Spain
| | - Luis F. Quintana
- Department of Nephrology and Renal Transplantation, Hospital Clínic, Department of Medicine, University of Barcelona, IDIBAPS and Centro de Referencia en Enfermedad Glomerular Compleja del Sistema Nacional de Salud de España (CSUR), Barcelona, Spain
| | - Catalán Group for the Study of Glomerular Diseases (GLOMCAT)
- Department of Nephrology and Renal Transplantation, Hospital Clínic, Department of Medicine, University of Barcelona, IDIBAPS and Centro de Referencia en Enfermedad Glomerular Compleja del Sistema Nacional de Salud de España (CSUR), Barcelona, Spain
- Department of Pathology, Hospital Clínic, University of Barcelona, IDIBAPS and Centro de Referencia en Enfermedad Glomerular Compleja del Sistema Nacional de Salud de España (CSUR), Barcelona, Spain
- Department of Hematology, Hospital Clínic, University of Barcelona, IDIBAPS, Barcelona, Spain
- Department of Nephrology, Hospital Terrasa, Cataluña, Spain
- Department of Nephrology, Hospital de Mollet, Cataluña, Spain
- Department of Nephrology, Hospital Sant Joan de Déu Barcelona, Barcelona, Spain
| |
Collapse
|
35
|
Masood F, Bhattaram R, Rosenblatt MI, Kazlauskas A, Chang JH, Azar DT. Lymphatic Vessel Regression and Its Therapeutic Applications: Learning From Principles of Blood Vessel Regression. Front Physiol 2022; 13:846936. [PMID: 35392370 PMCID: PMC8980686 DOI: 10.3389/fphys.2022.846936] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/25/2022] [Indexed: 02/03/2023] Open
Abstract
Aberrant lymphatic system function has been increasingly implicated in pathologies such as lymphedema, organ transplant rejection, cardiovascular disease, obesity, and neurodegenerative diseases including Alzheimer's disease and Parkinson's disease. While some pathologies are exacerbated by lymphatic vessel regression and dysfunction, induced lymphatic regression could be therapeutically beneficial in others. Despite its importance, our understanding of lymphatic vessel regression is far behind that of blood vessel regression. Herein, we review the current understanding of blood vessel regression to identify several hallmarks of this phenomenon that can be extended to further our understanding of lymphatic vessel regression. We also summarize current research on lymphatic vessel regression and an array of research tools and models that can be utilized to advance this field. Additionally, we discuss the roles of lymphatic vessel regression and dysfunction in select pathologies, highlighting how an improved understanding of lymphatic vessel regression may yield therapeutic insights for these disease states.
Collapse
|
36
|
Bekisz S, Baudin L, Buntinx F, Noël A, Geris L. In Vitro, In Vivo, and In Silico Models of Lymphangiogenesis in Solid Malignancies. Cancers (Basel) 2022; 14:1525. [PMID: 35326676 PMCID: PMC8946816 DOI: 10.3390/cancers14061525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/24/2022] [Accepted: 03/08/2022] [Indexed: 12/04/2022] Open
Abstract
Lymphangiogenesis (LA) is the formation of new lymphatic vessels by lymphatic endothelial cells (LECs) sprouting from pre-existing lymphatic vessels. It is increasingly recognized as being involved in many diseases, such as in cancer and secondary lymphedema, which most often results from cancer treatments. For some cancers, excessive LA is associated with cancer progression and metastatic dissemination to the lymph nodes (LNs) through lymphatic vessels. The study of LA through in vitro, in vivo, and, more recently, in silico models is of paramount importance in providing novel insights and identifying the key molecular actors in the biological dysregulation of this process under pathological conditions. In this review, the different biological (in vitro and in vivo) models of LA, especially in a cancer context, are explained and discussed, highlighting their principal modeled features as well as their advantages and drawbacks. Imaging techniques of the lymphatics, complementary or even essential to in vivo models, are also clarified and allow the establishment of the link with computational approaches. In silico models are introduced, theoretically described, and illustrated with examples specific to the lymphatic system and the LA. Together, these models constitute a toolbox allowing the LA research to be brought to the next level.
Collapse
Affiliation(s)
- Sophie Bekisz
- Biomechanics Research Unit, GIGA In silico Medicine, ULiège, 4000 Liège, Belgium;
| | - Louis Baudin
- Laboratory of Biology of Tumor and Development, GIGA Cancer, ULiège, 4000 Liège, Belgium; (L.B.); (F.B.); (A.N.)
| | - Florence Buntinx
- Laboratory of Biology of Tumor and Development, GIGA Cancer, ULiège, 4000 Liège, Belgium; (L.B.); (F.B.); (A.N.)
| | - Agnès Noël
- Laboratory of Biology of Tumor and Development, GIGA Cancer, ULiège, 4000 Liège, Belgium; (L.B.); (F.B.); (A.N.)
| | - Liesbet Geris
- Biomechanics Research Unit, GIGA In silico Medicine, ULiège, 4000 Liège, Belgium;
- Biomechanics Section, KU Leuven, 3000 Leuven, Belgium
- Skeletal Biology and Engineering Research Center, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
37
|
Cadamuro M, Fabris L, Zhang X, Strazzabosco M. Tumor microenvironment and immunology of cholangiocarcinoma. HEPATOMA RESEARCH 2022; 8:11. [PMID: 39301518 PMCID: PMC11412615 DOI: 10.20517/2394-5079.2021.140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Cholangiocarcinoma (CCA), an aggressive tumor originating from both intra- and extra-hepatic biliary cells, represents an unmet need in liver oncology, as treatment remains largely unsatisfactory. A typical feature of CCA is the presence of a complex tumor microenvironment (TME) composed of neoplastic cells, a rich inflammatory infiltrate, and cancer-associated fibroblasts and desmoplastic matrix that makes it extremely chemoresistant to traditional chemotherapeutic drugs. In this review, we describe the cell populations within the TME, in particular those involved in the innate and adaptive immune response and how they interact with tumor cells and with matrix proteins. The TME is crucial for CCA to mount an immune escape response and is the battlefield where molecularly targeted therapies and immune therapy, particularly in combination, may actually prove their therapeutic value.
Collapse
Affiliation(s)
| | - Luca Fabris
- Department of Molecular Medicine (DMM), University of Padua, Padua 35131, Italy
| | - Xuchen Zhang
- Department of Pathology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Mario Strazzabosco
- Liver Center, Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
38
|
Ambler W, Santambrogio L, Lu TT. Advances in understanding and examining lymphatic function: relevance for understanding autoimmunity. Curr Opin Rheumatol 2022; 34:133-138. [PMID: 34954700 DOI: 10.1097/bor.0000000000000864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW The aim of this review is to give insights into how novel lymphatics functions may influence autoimmunity. RECENT FINDINGS The lymphatic system connects peripheral tissues to draining lymph nodes to regulate adaptive immunity and directly interfaces with leukocytes in lymph vessels and in the lymph node. Here, we discuss recent findings showing evidence of dysfunctional lymphatics in autoimmune disease, new understanding of how afferent lymphatic regulation can modulate immunity, lymph node lymphatic heterogeneity and how these lymphatics can directly modulate lymphocyte function, how this understanding can be harnessed for new therapeutics, and new tools for the investigation of lymphatic and immune biology. SUMMARY Lymphatics have an active role in the regulation of inflammation and the adaptive immune response. Here, we review recent findings in lymphatics biology in peripheral tissues and lymph nodes and emphasize the relevance for better understanding autoimmune diseases.
Collapse
Affiliation(s)
- William Ambler
- Autoimmunity and Inflammation Program, Hospital for Special Surgery
- Pediatric Rheumatology, Department of Medicine, Hospital for Special Surgery
| | - Laura Santambrogio
- Englander Institute of Precision Medicine
- Radiation Oncology, Weill Cornell Medicine
| | - Theresa T Lu
- Autoimmunity and Inflammation Program, Hospital for Special Surgery
- Pediatric Rheumatology, Department of Medicine, Hospital for Special Surgery
- Rheumatology, Department of Medicine, Hospital for Special Surgery
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
39
|
Wiśniewska K, Rybak Z, Szymonowicz M, Kuropka P, Dobrzyński M. Review on the Lymphatic Vessels in the Dental Pulp. BIOLOGY 2021; 10:biology10121257. [PMID: 34943171 PMCID: PMC8698795 DOI: 10.3390/biology10121257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 11/28/2021] [Accepted: 11/30/2021] [Indexed: 01/09/2023]
Abstract
Simple Summary It is debatable whether lymphatic vessels exist in the dental pulp. Most researchers confirm their presence; however, the lymphatic system in the dental pulp is much less developed compared to other tissues of the body. Lymphangiogenesis occurs in the dental pulp with inflammatory changes as a response to inflammatory stimuli acting on the tooth. If lymphangiogenesis is defined as the development of lymphatic vessels from already existing ones, such a mechanism is possible only when lymphatic vessels are present in healthy teeth. Research papers have not conclusively proved whether lymphatic vessels can form in the dental pulp. The use of an immunohistochemical examination can very likely prove the presence of a lymphatic system in dental tissues. However, the evaluation of the lymphatic system of the teeth is problematic because it is quite difficult to clearly distinguish lymphatic vessels from small blood vessels. Abstract Despite many studies, opinions on the lymphatic system of the teeth are still incompatible. Studies using light and electron microscopy and directly using methods such as a radioisotope (radionuclide) scan and interstitial fluid pressure measurement reported incomplete results. Immunohistochemistry (IHC) plays the main role in investigating presence of the lymphatic system in dental tissues. This method uses labeled antibodies against antigens typical of lymphatic vessels. The use of appropriate staining enables the detection of antigen-antibody reaction products using a light (optical), electron or fluorescence microscope. However, these studies do not show the system of vessels, their histologic structure under physiological conditions and inflammation as well as the lymphangiogenesis process in the dental pulp. Unfortunately, there is a lack of studies associating the presence of lymphatic vessels in the dental pulp with local lymphatic nodes or large vessels outside the tooth. In the scientific and research environment, the evaluation of the lymphatic system of the teeth is problematic because it is quite difficult to clearly distinguish lymphatic vessels from small blood vessels. Despite many indications of the presence of lymphatic vessels in the pulp chamber, this problem remains open and needs further research.
Collapse
Affiliation(s)
- Kamila Wiśniewska
- Department of Dental Surgery, Wroclaw Medical University, Krakowska 26, 50-425 Wroclaw, Poland
- Correspondence: ; Tel.: +48-500211130
| | - Zbigniew Rybak
- Pre-Clinical Research Centre, Wroclaw Medical University, Bujwida 44, 50-345 Wroclaw, Poland; (Z.R.); (M.S.)
| | - Maria Szymonowicz
- Pre-Clinical Research Centre, Wroclaw Medical University, Bujwida 44, 50-345 Wroclaw, Poland; (Z.R.); (M.S.)
| | - Piotr Kuropka
- Department of Histology and Embryology, Wroclaw University of Environmental and Life Sciences, Norwida 25, 50-375 Wroclaw, Poland;
| | - Maciej Dobrzyński
- Department of Pediatric Dentistry and Preclinical Dentistry, Wroclaw Medical University, Krakowska 26, 50-425 Wroclaw, Poland;
| |
Collapse
|
40
|
Cho Y, Na K, Jun Y, Won J, Yang JH, Chung S. Three-Dimensional In Vitro Lymphangiogenesis Model in Tumor Microenvironment. Front Bioeng Biotechnol 2021; 9:697657. [PMID: 34671596 PMCID: PMC8520924 DOI: 10.3389/fbioe.2021.697657] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 08/30/2021] [Indexed: 11/25/2022] Open
Abstract
Lymphangiogenesis is a stage of new lymphatic vessel formation in development and pathology, such as inflammation and tumor metastasis. Physiologically relevant models of lymphatic vessels have been in demand because studies on lymphatic vessels are required for understanding the mechanism of tumor metastasis. In this study, a new three-dimensional lymphangiogenesis model in a tumor microenvironment is proposed, using a newly designed macrofluidic platform. It is verified that controllable biochemical and biomechanical cues, which contribute to lymphangiogenesis, can be applied in this platform. In particular, this model demonstrates that a reconstituted lymphatic vessel has an in vivo–like lymphatic vessel in both physical and biochemical aspects. Since biomechanical stress with a biochemical factor influences robust directional lymphatic sprouting, whether our model closely approximates in vivo, the initial lymphatics in terms of the morphological and genetic signatures is investigated. Furthermore, attempting an incorporation with a tumor spheroid, this study successfully develops a complex tumor microenvironment model for use in lymphangiogenesis and reveals the microenvironment factors that contribute to tumor metastasis. As a first attempt at a coculture model, this reconstituted model is a novel system with a fully three-dimensional structure and can be a powerful tool for pathological drug screening or disease model.
Collapse
Affiliation(s)
- Youngkyu Cho
- Department of IT Convergence, Korea University, Seoul, South Korea.,Samsung Research, Samsung Electronics Co. Ltd., Seoul, South Korea
| | - Kyuhwan Na
- School of Mechanical Engineering, Korea University, Seoul, South Korea
| | - Yesl Jun
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center, University of California, La Jolla, CA, United States.,Drug Discovery Platform Research Center, Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon, South Korea
| | - Jihee Won
- School of Mechanical Engineering, Korea University, Seoul, South Korea
| | - Ji Hun Yang
- School of Mechanical Engineering, Korea University, Seoul, South Korea.,Next&Bio Inc., Seoul, South Korea
| | - Seok Chung
- Department of IT Convergence, Korea University, Seoul, South Korea.,School of Mechanical Engineering, Korea University, Seoul, South Korea
| |
Collapse
|
41
|
Biologically active lipids in the regulation of lymphangiogenesis in disease states. Pharmacol Ther 2021; 232:108011. [PMID: 34614423 DOI: 10.1016/j.pharmthera.2021.108011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/31/2021] [Accepted: 09/01/2021] [Indexed: 02/06/2023]
Abstract
Lymphatic vessels have crucial roles in the regulation of interstitial fluids, immune surveillance, and the absorption of dietary fat in the intestine. Lymphatic function is also closely related to the pathogenesis of various disease states such as inflammation, lymphedema, endometriosis, liver dysfunction, and tumor metastasis. Lymphangiogenesis, the formation of new lymphatic vessels from pre-existing lymphatic vessels, is a critical determinant in the above conditions. Although the effect of growth factors on lymphangiogenesis is well-characterized, and biologically active lipids are known to affect smooth muscle contractility and vasoaction, there is accumulating evidence that biologically active lipids are also important inducers of growth factors and cytokines that regulate lymphangiogenesis. This review discusses recent advances in our understanding of biologically active lipids, including arachidonic acid metabolites, sphingosine 1-phosphate, and lysophosphatidic acid, as regulators of lymphangiogenesis, and the emerging importance of the lymphangiogenesis as a therapeutic target.
Collapse
|
42
|
Byun KA, Oh S, Son M, Park CH, Son KH, Byun K. Dieckol Decreases Caloric Intake and Attenuates Nonalcoholic Fatty Liver Disease and Hepatic Lymphatic Vessel Dysfunction in High-Fat-Diet-Fed Mice. Mar Drugs 2021; 19:495. [PMID: 34564157 PMCID: PMC8469311 DOI: 10.3390/md19090495] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/20/2021] [Accepted: 08/27/2021] [Indexed: 02/06/2023] Open
Abstract
Increased inflammation is the main pathophysiology of nonalcoholic fatty liver disease (NAFLD). Inflammation affects lymphatic vessel function that contributes to the removal of immune cells or macromolecules. Dysfunctional lymphatic vessels with decreased permeability are present in NAFLD. High-fat diet (HFD) is known to increase body weight, food intake, and inflammation in the liver. Previously, it was reported that Ecklonia cava extracts (ECE) decreased food intake or weight gain, and low-calorie diet and weight loss is known as a treatment for NAFLD. In this study, the effects of ECE and dieckol (DK)-which is one component of ECE that decreases inflammation and increases lymphangiogenesis and lymphatic drainage by controlling lymphatic permeability in high-fat diet (HFD)-fed mice-on weight gain and food intake were investigated. ECE and DK decreased weight gain and food intake in the HFD-fed mice. NAFLD activities such as steatosis, lobular inflammation, and ballooning were increased by HFD and attenuated by ECE and DK. The expression of inflammatory cytokines such as IL-6 and TNF-α and infiltration of M1 macrophages were increased by HFD, and they were decreased by ECE or DK. The signaling pathways of lymphangiogenesis, VEGFR-3, PI3K/pAKT, and pERK were decreased by HFD, and they were restored by either ECE or DK. The expression of VE-cadherin (which represents lymphatic junctional function) was increased by HFD, although it was restored by either ECE or DK. In conclusion, ECE and DK attenuated NAFLD by decreasing weight gain and food intake, decreasing inflammation, and increasing lymphangiogenesis, as well as modulating lymphatic vessel permeability.
Collapse
Affiliation(s)
- Kyung-A Byun
- Department of Anatomy & Cell Biology, College of Medicine, Gachon University, Incheon 21936, Korea; (K.-A.B.); (M.S.)
- Functional Cellular Networks Laboratory, Lee Gil Ya Cancer and Diabetes Institute, College of Medicine, Gachon University, Incheon 21999, Korea;
| | - Seyeon Oh
- Functional Cellular Networks Laboratory, Lee Gil Ya Cancer and Diabetes Institute, College of Medicine, Gachon University, Incheon 21999, Korea;
| | - Myeongjoo Son
- Department of Anatomy & Cell Biology, College of Medicine, Gachon University, Incheon 21936, Korea; (K.-A.B.); (M.S.)
- Functional Cellular Networks Laboratory, Lee Gil Ya Cancer and Diabetes Institute, College of Medicine, Gachon University, Incheon 21999, Korea;
| | - Chul-Hyun Park
- Department of Thoracic and Cardiovascular Surgery, Gil Medical Center, Gachon University, Incheon 21565, Korea;
| | - Kuk Hui Son
- Department of Thoracic and Cardiovascular Surgery, Gil Medical Center, Gachon University, Incheon 21565, Korea;
| | - Kyunghee Byun
- Department of Anatomy & Cell Biology, College of Medicine, Gachon University, Incheon 21936, Korea; (K.-A.B.); (M.S.)
- Functional Cellular Networks Laboratory, Lee Gil Ya Cancer and Diabetes Institute, College of Medicine, Gachon University, Incheon 21999, Korea;
| |
Collapse
|
43
|
Kataru RP, Baik JE, Park HJ, Ly CL, Shin J, Schwartz N, Lu TT, Ortega S, Mehrara BJ. Lymphatic-specific intracellular modulation of receptor tyrosine kinase signaling improves lymphatic growth and function. Sci Signal 2021; 14:eabc0836. [PMID: 34376570 PMCID: PMC8567054 DOI: 10.1126/scisignal.abc0836] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Exogenous administration of lymphangiogenic growth factors is widely used to study changes in lymphatic function in pathophysiology. However, this approach can result in off-target effects, thereby generating conflicting data. To circumvent this issue, we modulated intracellular VEGF-C signaling by conditionally knocking out the lipid phosphatase PTEN using the Vegfr3 promoter to drive the expression of Cre-lox in lymphatic endothelial cells (LECs). PTEN is an intracellular brake that inhibits the downstream effects of the activation of VEGFR3 by VEGF-C. Activation of Cre-lox recombination in adult mice resulted in an expanded functional lymphatic network due to LEC proliferation that was independent of lymphangiogenic growth factor production. Furthermore, compared with lymphangiogenesis induced by VEGF-C injection, LECPTEN animals had mature, nonleaky lymphatics with intact cell-cell junctions and reduced local tissue inflammation. Last, compared with wild-type or VEGF-C-injected mice, LECPTEN animals had an improved capacity to resolve inflammatory responses. Our findings indicate that intracellular modulation of lymphangiogenesis is effective in inducing functional lymphatic networks and has no off-target inflammatory effects.
Collapse
Affiliation(s)
- Raghu P Kataru
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA.
| | - Jung Eun Baik
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA
| | - Hyeung Ju Park
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA
| | - Catherine L Ly
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA
| | - Jinyeon Shin
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA
| | - Noa Schwartz
- Autoimmunity and Inflammation Program and Rheumatology, Hospital for Special Surgery, New York, NY 10021, USA
| | - Theresa T Lu
- Autoimmunity and Inflammation Program and Rheumatology, Hospital for Special Surgery, New York, NY 10021, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Sagrario Ortega
- Transgenic Mice Unit, Biotechnology Programme, Spanish National Cancer Research Center (CNIO), Madrid, 20829, Spain
| | - Babak J Mehrara
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA
| |
Collapse
|
44
|
Geng X, Ho YC, Srinivasan RS. Biochemical and mechanical signals in the lymphatic vasculature. Cell Mol Life Sci 2021; 78:5903-5923. [PMID: 34240226 PMCID: PMC11072415 DOI: 10.1007/s00018-021-03886-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 06/15/2021] [Accepted: 06/18/2021] [Indexed: 12/15/2022]
Abstract
Lymphatic vasculature is an integral part of the cardiovascular system where it maintains interstitial fluid balance. Additionally, lymphatic vasculature regulates lipid assimilation and inflammatory response. Lymphatic vasculature is composed of lymphatic capillaries, collecting lymphatic vessels and valves that function in synergy to absorb and transport fluid against gravitational and pressure gradients. Defects in lymphatic vessels or valves leads to fluid accumulation in tissues (lymphedema), chylous ascites, chylothorax, metabolic disorders and inflammation. The past three decades of research has identified numerous molecules that are necessary for the stepwise development of lymphatic vasculature. However, approaches to treat lymphatic disorders are still limited to massages and compression bandages. Hence, better understanding of the mechanisms that regulate lymphatic vascular development and function is urgently needed to develop efficient therapies. Recent research has linked mechanical signals such as shear stress and matrix stiffness with biochemical pathways that regulate lymphatic vessel growth, patterning and maturation and valve formation. The goal of this review article is to highlight these innovative developments and speculate on unanswered questions.
Collapse
Affiliation(s)
- Xin Geng
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73013, USA
| | - Yen-Chun Ho
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73013, USA
| | - R Sathish Srinivasan
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73013, USA.
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73117, USA.
| |
Collapse
|
45
|
Satici C, Cengel F, Gurkan O, Demirkol MA, Altunok ES, Esatoglu SN. Mediastinal lymphadenopathy may predict 30-day mortality in patients with COVID-19. Clin Imaging 2021; 75:119-124. [PMID: 33545439 PMCID: PMC8064813 DOI: 10.1016/j.clinimag.2021.01.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/27/2020] [Accepted: 01/27/2021] [Indexed: 12/30/2022]
Abstract
PURPOSE There is scarce data on the impact of the presence of mediastinal lymphadenopathy on the prognosis of coronavirus-disease 2019 (COVID-19). We aimed to investigate whether its presence is associated with increased risk for 30-day mortality in a large group of patients with COVID-19. METHOD In this retrospective cross-sectional study, 650 adult laboratory-confirmed hospitalized COVID-19 patients were included. Patients with comorbidities that may cause enlarged mediastinal lymphadenopathy were excluded. Demographics, clinical characteristics, vital and laboratory findings, and outcome were obtained from electronic medical records. Computed tomography scans were evaluated by two blinded radiologists. Univariate and multivariate logistic regression analyses were performed to determine independent predictive factors of 30-day mortality. RESULTS Patients with enlarged mediastinal lymphadenopathy (n = 60, 9.2%) were older and more likely to have at least one comorbidity than patients without enlarged mediastinal lymphadenopathy (p = 0.03, p = 0.003). There were more deaths in patients with enlarged mediastinal lymphadenopathy than in those without (11/60 vs 45/590, p = 0.01). Older age (OR:3.74, 95% CI: 2.06-6.79; p < 0.001), presence of consolidation pattern (OR:1.93, 95% CI: 1.09-3.40; p = 0.02) and enlarged mediastinal lymphadenopathy (OR:2.38, 95% CI:1.13-4.98; p = 0.02) were independently associated with 30-day mortality. CONCLUSION In this large group of hospitalized patients with COVID-19, we found that in addition to older age and consolidation pattern on CT scan, enlarged mediastinal lymphadenopathy were independently associated with increased mortality. Mediastinal evaluation should be performed in all patients with COVID-19.
Collapse
Affiliation(s)
- Celal Satici
- Department of Chest Diseases, Gaziosmanpasa Training and Research Hospital, University of Health Sciences, Istanbul, Turkey.
| | - Ferhat Cengel
- Department of Radiology, Gaziosmanpasa Training and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | - Okan Gurkan
- Department of Radiology, Gaziosmanpasa Training and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | - Mustafa Asim Demirkol
- Department of Chest Diseases, Gaziosmanpasa Training and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | - Elif Sargin Altunok
- Department of Infectious Disease and Clinical Microbiology, Gaziosmanpasa Training and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | - Sinem Nihal Esatoglu
- Department of Rheumatology, Gaziosmanpasa Training and Research Hospital, University of Health Sciences, Istanbul, Turkey
| |
Collapse
|
46
|
Hsu M, Laaker C, Sandor M, Fabry Z. Neuroinflammation-Driven Lymphangiogenesis in CNS Diseases. Front Cell Neurosci 2021; 15:683676. [PMID: 34248503 PMCID: PMC8261156 DOI: 10.3389/fncel.2021.683676] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 05/05/2021] [Indexed: 11/13/2022] Open
Abstract
The central nervous system (CNS) undergoes immunosurveillance despite the lack of conventional antigen presenting cells and lymphatic vessels in the CNS parenchyma. Additionally, the CNS is bathed in a cerebrospinal fluid (CSF). CSF is continuously produced, and consequently must continuously clear to maintain fluid homeostasis despite the lack of conventional lymphatics. During neuroinflammation, there is often an accumulation of fluid, antigens, and immune cells to affected areas of the brain parenchyma. Failure to effectively drain these factors may result in edema, prolonged immune response, and adverse clinical outcome as observed in conditions including traumatic brain injury, ischemic and hypoxic brain injury, CNS infection, multiple sclerosis (MS), and brain cancer. Consequently, there has been renewed interest surrounding the expansion of lymphatic vessels adjacent to the CNS which are now thought to be central in regulating the drainage of fluid, cells, and waste out of the CNS. These lymphatic vessels, found at the cribriform plate, dorsal dural meninges, base of the brain, and around the spinal cord have each been implicated to have important roles in various CNS diseases. In this review, we discuss the contribution of meningeal lymphatics to these processes during both steady-state conditions and neuroinflammation, as well as discuss some of the many still unknown aspects regarding the role of meningeal lymphatics in neuroinflammation. Specifically, we focus on the observed phenomenon of lymphangiogenesis by a subset of meningeal lymphatics near the cribriform plate during neuroinflammation, and discuss their potential roles in immunosurveillance, fluid clearance, and access to the CSF and CNS compartments. We propose that manipulating CNS lymphatics may be a new therapeutic way to treat CNS infections, stroke, and autoimmunity.
Collapse
Affiliation(s)
- Martin Hsu
- Neuroscience Training Program, University of Wisconsin Madison, Madison, WI, United States
| | - Collin Laaker
- Neuroscience Training Program, University of Wisconsin Madison, Madison, WI, United States
| | - Matyas Sandor
- Department of Pathology and Laboratory Medicine, University of Wisconsin Madison, Madison, WI, United States
| | - Zsuzsanna Fabry
- Department of Pathology and Laboratory Medicine, University of Wisconsin Madison, Madison, WI, United States
| |
Collapse
|
47
|
Ocansey DKW, Pei B, Xu X, Zhang L, Olovo CV, Mao F. Cellular and molecular mediators of lymphangiogenesis in inflammatory bowel disease. J Transl Med 2021; 19:254. [PMID: 34112196 PMCID: PMC8190852 DOI: 10.1186/s12967-021-02922-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/02/2021] [Indexed: 02/07/2023] Open
Abstract
Background Recent studies reporting the intricate crosstalk between cellular and molecular mediators and the lymphatic endothelium in the development of inflammatory bowel diseases (IBD) suggest altered inflammatory cell drainage and lymphatic vasculature, implicating the lymphatic system as a player in the occurrence, development, and recurrence of intestinal diseases. This article aims to review recent data on the modulatory functions of cellular and molecular components of the IBD microenvironment on the lymphatic system, particularly lymphangiogenesis. It serves as a promising therapeutic target for IBD management and treatment. The interaction with gut microbiota is also explored. Main text Evidence shows that cells of the innate and adaptive immune system and certain non-immune cells participate in the complex processes of inflammatory-induced lymphangiogenesis through the secretion of a wide spectrum of molecular factors, which vary greatly among the various cells. Lymphangiogenesis enhances lymphatic fluid drainage, hence reduced infiltration of immunomodulatory cells and associated-inflammatory cytokines. Interestingly, some of the cellular mediators, including mast cells, neutrophils, basophils, monocytes, and lymphatic endothelial cells (LECs), are a source of lymphangiogenic molecules, and a target as they express specific receptors for lymphangiogenic factors. Conclusion The effective target of lymphangiogenesis is expected to provide novel therapeutic interventions for intestinal inflammatory conditions, including IBD, through both immune and non-immune cells and based on cellular and molecular mechanisms of lymphangiogenesis that facilitate inflammation resolution.
Collapse
Affiliation(s)
- Dickson Kofi Wiredu Ocansey
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, People's Republic of China.,Directorate of University Health Services, University of Cape Coast, Cape Coast, Ghana
| | - Bing Pei
- Department of Clinical Laboratory, The Affiliated Suqian First People's Hospital of Nanjing Medical University, Suqian, 223800, Jiangsu, People's Republic of China
| | - Xinwei Xu
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Lu Zhang
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Chinasa Valerie Olovo
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, People's Republic of China.,Department of Microbiology, University of Nigeria, Nsukka, 410001, Nigeria
| | - Fei Mao
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, People's Republic of China.
| |
Collapse
|
48
|
Zhong J, Yang HC, Yermalitsky V, Shelton EL, Otsuka T, Wiese CB, May-Zhang LS, Banan B, Abumrad N, Huang J, Cavnar AB, Kirabo A, Yancey PG, Fogo AB, Vickers KC, Linton MF, Davies SS, Kon V. Kidney injury-mediated disruption of intestinal lymphatics involves dicarbonyl-modified lipoproteins. Kidney Int 2021; 100:585-596. [PMID: 34102217 DOI: 10.1016/j.kint.2021.05.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 04/06/2021] [Accepted: 05/06/2021] [Indexed: 12/24/2022]
Abstract
Kidney disease affects intestinal structure and function. Although intestinal lymphatics are central in absorption and remodeling of dietary and synthesized lipids/lipoproteins, little is known about how kidney injury impacts the intestinal lymphatic network, or lipoproteins transported therein. To study this, we used puromycin aminoglycoside-treated rats and NEP25 transgenic mice to show that proteinuric injury expanded the intestinal lymphatic network, activated lymphatic endothelial cells and increased mesenteric lymph flow. The lymph was found to contain increased levels of cytokines, immune cells, and isolevuglandin (a highly reactive dicarbonyl) and to have a greater output of apolipoprotein AI. Plasma levels of cytokines and isolevuglandin were not changed. However, isolevuglandin was also increased in the ileum of proteinuric animals, and intestinal epithelial cells exposed to myeloperoxidase produced more isolevuglandin. Apolipoprotein AI modified by isolevuglandin directly increased lymphatic vessel contractions, activated lymphatic endothelial cells, and enhanced the secretion of the lymphangiogenic promoter vascular endothelial growth factor-C by macrophages. Inhibition of isolevuglandin synthesis by a carbonyl scavenger reduced intestinal isolevuglandin adduct level and lymphangiogenesis. Thus, our data reveal a novel mediator, isolevuglandin modified apolipoprotein AI, and uncover intestinal lymphatic network structure and activity as a new pathway in the crosstalk between kidney and intestine that may contribute to the adverse impact of kidney disease on other organs.
Collapse
Affiliation(s)
- Jianyong Zhong
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Hai-Chun Yang
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA.
| | - Valery Yermalitsky
- Department of Clinical Pharmacology, Vanderbilt University, Nashville, Tennessee, USA
| | - Elaine L Shelton
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Tadashi Otsuka
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Carrie B Wiese
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Linda S May-Zhang
- Department of Clinical Pharmacology, Vanderbilt University, Nashville, Tennessee, USA
| | - Babak Banan
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Naji Abumrad
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jiansheng Huang
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Ashley B Cavnar
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Annet Kirabo
- Department of Clinical Pharmacology, Vanderbilt University, Nashville, Tennessee, USA
| | - Patricia G Yancey
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Agnes B Fogo
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Kasey C Vickers
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - MacRae F Linton
- Department of Clinical Pharmacology, Vanderbilt University, Nashville, Tennessee, USA; Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Sean S Davies
- Department of Clinical Pharmacology, Vanderbilt University, Nashville, Tennessee, USA
| | - Valentina Kon
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA.
| |
Collapse
|
49
|
Donnan MD. Kidney lymphatics: new insights in development and disease. Curr Opin Nephrol Hypertens 2021; 30:450-455. [PMID: 34027907 DOI: 10.1097/mnh.0000000000000717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW This review will highlight recent advances in our understanding of the kidney lymphatics regarding their development, physiologic function, and their potential role in the progression of kidney disease. RECENT FINDINGS Although sparse in comparison to the blood vasculature, lymphatic vessels within the healthy kidney perform an important role in maintaining homeostasis. Additionally, in response to kidney injury, lymphatic vessels undergo substantial expansion, termed lymphangiogenesis, which shows a direct correlation to the extent of tubulointerstitial fibrosis. Kidney lymphatics expand through both the proliferation of lymphatic endothelial cells from existing lymphatic vessels, as well as from direct contribution by other cell types of nonvenous origin. The primary driver of lymphatic growth is vascular endothelial growth factor C, both in development and in response to injury. The clinical implications of lymphangiogenesis in the setting of kidney diseases remains debated, however growing evidence suggests lymphatic vessels may perform a protective role in clearing away accumulating interstitial fluid, inflammatory cytokines, and cellular infiltrates that occur with injury. SUMMARY There is increasing evidence the kidney lymphatics perform an active role in the response to kidney injury and the development of fibrosis. Recent advances in our understanding of these vessels raise the possibility of targeting kidney lymphatics for the treatment of kidney disease.
Collapse
Affiliation(s)
- Michael D Donnan
- Feinberg Cardiovascular & Renal Research Institute.,Division of Nephrology & Hypertension, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
50
|
In Sickness and in Health: The Immunological Roles of the Lymphatic System. Int J Mol Sci 2021; 22:ijms22094458. [PMID: 33923289 PMCID: PMC8123157 DOI: 10.3390/ijms22094458] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/15/2021] [Accepted: 04/18/2021] [Indexed: 02/06/2023] Open
Abstract
The lymphatic system plays crucial roles in immunity far beyond those of simply providing conduits for leukocytes and antigens in lymph fluid. Endothelial cells within this vasculature are distinct and highly specialized to perform roles based upon their location. Afferent lymphatic capillaries have unique intercellular junctions for efficient uptake of fluid and macromolecules, while expressing chemotactic and adhesion molecules that permit selective trafficking of specific immune cell subsets. Moreover, in response to events within peripheral tissue such as inflammation or infection, soluble factors from lymphatic endothelial cells exert “remote control” to modulate leukocyte migration across high endothelial venules from the blood to lymph nodes draining the tissue. These immune hubs are highly organized and perfectly arrayed to survey antigens from peripheral tissue while optimizing encounters between antigen-presenting cells and cognate lymphocytes. Furthermore, subsets of lymphatic endothelial cells exhibit differences in gene expression relating to specific functions and locality within the lymph node, facilitating both innate and acquired immune responses through antigen presentation, lymph node remodeling and regulation of leukocyte entry and exit. This review details the immune cell subsets in afferent and efferent lymph, and explores the mechanisms by which endothelial cells of the lymphatic system regulate such trafficking, for immune surveillance and tolerance during steady-state conditions, and in response to infection, acute and chronic inflammation, and subsequent resolution.
Collapse
|