1
|
Grootaert MOJ. Cell senescence in cardiometabolic diseases. NPJ AGING 2024; 10:46. [PMID: 39433786 PMCID: PMC11493982 DOI: 10.1038/s41514-024-00170-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 09/05/2024] [Indexed: 10/23/2024]
Abstract
Cellular senescence has been implicated in many age-related pathologies including atherosclerosis, heart failure, age-related cardiac remodeling, diabetic cardiomyopathy and the metabolic syndrome. Here, we will review the characteristics of senescent cells and their endogenous regulators, and summarize the metabolic stressors that induce cell senescence. We will discuss the evidence of cell senescence in the onset and progression of several cardiometabolic diseases and the therapeutic potential of anti-senescence therapies.
Collapse
Affiliation(s)
- Mandy O J Grootaert
- Endocrinology, Diabetes and Nutrition, UCLouvain, Brussels, Belgium.
- Centre for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium.
| |
Collapse
|
2
|
Constantinescu V, Haase R, Akgün K, Ziemssen T. Long-term effects of siponimod on cardiovascular and autonomic nervous system in secondary progressive multiple sclerosis. Front Pharmacol 2024; 15:1431380. [PMID: 39364051 PMCID: PMC11447318 DOI: 10.3389/fphar.2024.1431380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 09/09/2024] [Indexed: 10/05/2024] Open
Abstract
Background Siponimod, a second-generation, selective sphingosine 1-phosphate receptor (S1PR) 1 and 5 modulator, represents an important therapeutic choice for active secondary progressive multiple sclerosis (SPMS). Besides the beneficial immunomodulatory effects, siponimod impacts cardiovascular function through S1PR1 modulation. Short-term vagomimetic effects on cardiac activity have proved to be mitigated by dose titration. However, long-term consequences are less known. Objectives This study aimed to investigate the long-term impact of siponimod on cardiac autonomic modulation in people with SPMS (pwSPMS). Methods Heart rate variability (HRV) and vascular hemodynamic parameters were evaluated using Multiple Trigonometric Regressive Spectral analysis in 47 pwSPMS before siponimod therapy and after one, three, six and 12 months of treatment. Autonomic activation tests (tilt test for the sympathetic and deep breathing test for the parasympathetic cardiac modulation) were performed at each examination. Results pwSPMS preserved regular cardiovascular modulation responses during the autonomic tests reflected in the variation of several HRV parameters, such as RMSSD, pNN50, total power of HRV, high-frequency and low-frequency bands of the spectral domain or hemodynamic vascular parameters (Cwk, Zao, TPR, MAP) and baroreflex sensitivity (BRS). In the long-term follow-up, RMSSD, pNN50, total power, BRS and CwK presented a significant decrease, underlining a reduction of the parasympathetic and a shift towards sympathetic predominance in cardiac autonomic modulation that tends to stabilise after 1 year of treatment. Conclusion Due to dose titration, the short-term effects of siponimod on cardiac autonomic modulation are mitigated. The long-term impact on cardiac autonomic modulation is similar to fingolimod. The autonomic activation tests showed normal cardiovascular responses during 1-year follow-up in pwSPMS, confirming the safety profile of siponimod. Further research on autonomic function could reveal whether the observed sympathetic activation is a compensatory response to S1P signaling intervention or a feature of the disease, while also shedding light on the role of S1PR modulation in MS.
Collapse
Affiliation(s)
- Victor Constantinescu
- Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, Dresden, Technical University of Dresden, Dresden, Germany
- Department of Neurology, University of Medicine and Pharmacy "Grigore T. Popa" Iasi, Iasi, Romania
| | - Rocco Haase
- Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, Dresden, Technical University of Dresden, Dresden, Germany
| | - Katja Akgün
- Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, Dresden, Technical University of Dresden, Dresden, Germany
| | - Tjalf Ziemssen
- Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, Dresden, Technical University of Dresden, Dresden, Germany
| |
Collapse
|
3
|
Tighanimine K. Lipid remodeling in context of cellular senescence. Biochimie 2024:S0300-9084(24)00213-X. [PMID: 39299535 DOI: 10.1016/j.biochi.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/09/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024]
Abstract
Cellular senescence is a response that irreversibly arrests stressed cells thus providing a potent tumor suppressor mechanism. In parallel, senescent cells exhibit an immunogenic secretome called SASP (senescence-associated secretory phenotype) that impairs tissue homeostasis and is involved in numerous age-related diseases. Senescence establishment is achieved through the unfolding of a profound transcriptional reprogramming together with morphological changes. These alterations are accompanied by important metabolic adaptations characterized by biosynthetic pathways reshuffling and lipid remodeling. In this mini-review we highlight the intricate links between lipid metabolism and the senescence program and we discuss the potential interventions on lipid pathways that can alleviate the senescence burden.
Collapse
Affiliation(s)
- Khaled Tighanimine
- Université Paris Cité, CNRS, INSERM, Institut Necker Enfants Malades-INEM, F-75015 Paris, France.
| |
Collapse
|
4
|
Liu F, Liu J, Luo Y, Wu S, Liu X, Chen H, Luo Z, Yuan H, Shen F, Zhu F, Ye J. A Single-Cell Metabolic Profiling Characterizes Human Aging via SlipChip-SERS. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2406668. [PMID: 39231358 DOI: 10.1002/advs.202406668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/12/2024] [Indexed: 09/06/2024]
Abstract
Metabolic dysregulation is a key driver of cellular senescence, contributing to the progression of systemic aging. The heterogeneity of senescent cells and their metabolic shifts are complex and unexplored. A microfluidic SlipChip integrated with surface-enhanced Raman spectroscopy (SERS), termed SlipChip-SERS, is developed for single-cell metabolism analysis. This SlipChip-SERS enables compartmentalization of single cells, parallel delivery of saponin and nanoparticles to release intracellular metabolites and to realize SERS detection with simple slipping operations. Analysis of different cancer cell lines using SlipChip-SERS demonstrated its capability for sensitive and multiplexed metabolic profiling of individual cells. When applied to human primary fibroblasts of different ages, it identified 12 differential metabolites, with spermine validated as a potent inducer of cellular senescence. Prolonged exposure to spermine can induce a classic senescence phenotype, such as increased senescence-associated β-glactosidase activity, elevated expression of senescence-related genes and reduced LMNB1 levels. Additionally, the senescence-inducing capacity of spermine in HUVECs and WRL-68 cells is confirmed, and exogenous spermine treatment increased the accumulation and release of H2O2. Overall, a novel SlipChip-SERS system is developed for single-cell metabolic analysis, revealing spermine as a potential inducer of senescence across multiple cell types, which may offer new strategies for addressing ageing and ageing-related diseases.
Collapse
Affiliation(s)
- Fugang Liu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Jiaqing Liu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Yang Luo
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Siyi Wu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Xu Liu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Haoran Chen
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Zhewen Luo
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Haitao Yuan
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Feng Shen
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Fangfang Zhu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Jian Ye
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, 200240, China
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| |
Collapse
|
5
|
Kim SY, Cheon J. Senescence-associated microvascular endothelial dysfunction: A focus on the blood-brain and blood-retinal barriers. Ageing Res Rev 2024; 100:102446. [PMID: 39111407 DOI: 10.1016/j.arr.2024.102446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/05/2024] [Accepted: 08/02/2024] [Indexed: 08/17/2024]
Abstract
The blood-brain barrier (BBB) and blood-retinal barrier (BRB) constitute critical physiochemical interfaces, precisely orchestrating the bidirectional communication between the brain/retina and blood. Increased permeability or leakage of these barriers has been demonstrably linked to age-related vascular and parenchymal damage. While it has been suggested that the gradual aging process may coincide with disruptions in these barriers, this phenomenon is significantly exacerbated in individuals with age-related neurodegenerative disorders (ARND). This review focuses on the microvascular endothelium, a key constituent of BBB and BRB, highlighting the impact of endothelial senescence on barrier dysfunction and exploring recent discoveries regarding core pathways implicated in its breakdown. Subsequently, we address the "vascular senescence hypothesis" for ARND, with a particular emphasis on Alzheimer's disease and age-related macular degeneration, centered on endothelial senescence. Finally, we discuss potential senotherapeutic strategies targeting barrier dysfunction.
Collapse
Affiliation(s)
- Sung Young Kim
- Department of Biochemistry, Konkuk University School of Medicine, Republic of Korea; Research Institute of Medical Science, Konkuk University, Republic of Korea; IBST, Konkuk University, Republic of Korea.
| | - Jaejoung Cheon
- Department of Biochemistry, Konkuk University School of Medicine, Republic of Korea
| |
Collapse
|
6
|
Bhat OM, Mir RA, Nehvi IB, Wani NA, Dar AH, Zargar MA. Emerging role of sphingolipids and extracellular vesicles in development and therapeutics of cardiovascular diseases. IJC HEART & VASCULATURE 2024; 53:101469. [PMID: 39139609 PMCID: PMC11320467 DOI: 10.1016/j.ijcha.2024.101469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/08/2024] [Accepted: 07/12/2024] [Indexed: 08/15/2024]
Abstract
Sphingolipids are eighteen carbon alcohol lipids synthesized from non-sphingolipid precursors in the endoplasmic reticulum (ER). The sphingolipids serve as precursors for a vast range of moieties found in our cells that play a critical role in various cellular processes, including cell division, senescence, migration, differentiation, apoptosis, pyroptosis, autophagy, nutrition intake, metabolism, and protein synthesis. In CVDs, different subclasses of sphingolipids and other derived molecules such as sphingomyelin (SM), ceramides (CERs), and sphingosine-1-phosphate (S1P) are directly related to diabetic cardiomyopathy, dilated cardiomyopathy, myocarditis, ischemic heart disease (IHD), hypertension, and atherogenesis. Several genome-wide association studies showed an association between genetic variations in sphingolipid pathway genes and the risk of CVDs. The sphingolipid pathway plays an important role in the biogenesis and secretion of exosomes. Small extracellular vesicles (sEVs)/ exosomes have recently been found as possible indicators for the onset of CVDs, linking various cellular signaling pathways that contribute to the disease progression. Important features of EVs like biocompatibility, and crossing of biological barriers can improve the pharmacokinetics of drugs and will be exploited to develop next-generation drug delivery systems. In this review, we have comprehensively discussed the role of sphingolipids, and sphingolipid metabolites in the development of CVDs. In addition, concise deliberations were laid to discuss the role of sEVs/exosomes in regulating the pathophysiological processes of CVDs and the exosomes as therapeutic targets.
Collapse
Affiliation(s)
- Owais Mohmad Bhat
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal, India
| | - Rakeeb Ahmad Mir
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal, India
| | | | - Nissar Ahmad Wani
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal, India
| | - Abid Hamid Dar
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal, India
| | - M Afzal Zargar
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal, India
| |
Collapse
|
7
|
Kim Y, Jang Y, Kim MS, Kang C. Metabolic remodeling in cancer and senescence and its therapeutic implications. Trends Endocrinol Metab 2024; 35:732-744. [PMID: 38453603 DOI: 10.1016/j.tem.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/07/2024] [Accepted: 02/12/2024] [Indexed: 03/09/2024]
Abstract
Cellular metabolism is a flexible and plastic network that often dictates physiological and pathological states of the cell, including differentiation, cancer, and aging. Recent advances in cancer metabolism represent a tremendous opportunity to treat cancer by targeting its altered metabolism. Interestingly, despite their stable growth arrest, senescent cells - a critical component of the aging process - undergo metabolic changes similar to cancer metabolism. A deeper understanding of the similarities and differences between these disparate pathological conditions will help identify which metabolic reprogramming is most relevant to the therapeutic liabilities of senescence. Here, we compare and contrast cancer and senescence metabolism and discuss how metabolic therapies can be established as a new modality of senotherapy for healthy aging.
Collapse
Affiliation(s)
- Yeonju Kim
- School of Biological Sciences, Seoul National University, Seoul 08826, South Korea; Center for Systems Geroscience, Seoul National University, Seoul 08826, South Korea
| | - Yeji Jang
- School of Biological Sciences, Seoul National University, Seoul 08826, South Korea; Center for Systems Geroscience, Seoul National University, Seoul 08826, South Korea
| | - Mi-Sung Kim
- School of Biological Sciences, Seoul National University, Seoul 08826, South Korea; Center for Systems Geroscience, Seoul National University, Seoul 08826, South Korea
| | - Chanhee Kang
- School of Biological Sciences, Seoul National University, Seoul 08826, South Korea; Center for Systems Geroscience, Seoul National University, Seoul 08826, South Korea.
| |
Collapse
|
8
|
Fretts AM, Jensen PN, Sitlani CM, Hoofnagle A, Lidgard B, Umans JG, Siscovick DS, King IB, Howard BV, Cole SA, Lemaitre RN. Circulating Sphingolipids and All-Cause Mortality: The Strong Heart Family Study. J Am Heart Assoc 2024; 13:e032536. [PMID: 38904223 PMCID: PMC11255722 DOI: 10.1161/jaha.123.032536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 05/17/2024] [Indexed: 06/22/2024]
Abstract
BACKGROUND A growing body of research indicates that associations of ceramides and sphingomyelins with mortality depend on the chain length of the fatty acid acylated to the backbone sphingoid base. We examined associations of 8 ceramide and sphingomyelin species with mortality among an American Indian population. METHODS AND RESULTS The analysis comprised 2688 participants from the SHFS (Strong Heart Family Study). Plasma ceramide and sphingomyelin species carrying long-chain (ie, 16:0) and very-long-chain (ie, 20:0, 22:0, 24:0) saturated fatty acids were measured by sequential liquid chromatography and mass spectroscopy using samples from 2001 to 2003. Participants were followed for 18.8 years (2001-2020). Associations of ceramides and sphingomyelins with mortality were assessed using Cox models. The mean age of participants was 40.8 years. There were 574 deaths during a median 17.4-year follow-up. Ceramides and sphingomyelins carrying fatty acid 16:0 were positively associated with mortality. Ceramides and sphingomyelins carrying longer fatty acids were inversely associated with mortality. Per SD difference in each ceramide and sphingomyelin species, hazard ratios for death were: 1.68 (95% CI, 1.44-1.96) for ceramide-16 (Cer-16), 0.82 (95% CI, 0.71-0.95) for Cer-20, 0.60 (95% CI, 0.51-0.70) for Cer-22, 0.67 (95% CI, 0.56-0.79) for Cer-24, 1.80 (95% CI-1.57, 2.05) for sphingomyelin-16 (SM-16), 0.54 (95% CI, 0.47-0.62) for SM-20, 0.50 (95% CI, 0.44-0.57) for SM-22, and 0.59 (95% CI, 0.52-0.67) for SM-24. CONCLUSIONS The direction/magnitude of associations of ceramides and sphingomyelins with mortality differs according to the length of the fatty acid acylated to the backbone sphingoid base. REGISTRATION URL: https://www.clinicatrials.gov; Unique identifier: NCT00005134.
Collapse
Affiliation(s)
- Amanda M. Fretts
- Department of EpidemiologyUniversity of WashingtonSeattleWAUSA
- Cardiovascular Health Research UnitUniversity of WashingtonSeattleWAUSA
| | - Paul N. Jensen
- Cardiovascular Health Research UnitUniversity of WashingtonSeattleWAUSA
- Department of MedicineUniversity of WashingtonSeattleWAUSA
| | - Colleen M. Sitlani
- Cardiovascular Health Research UnitUniversity of WashingtonSeattleWAUSA
- Department of MedicineUniversity of WashingtonSeattleWAUSA
| | - Andy Hoofnagle
- Department of Laboratory MedicineUniversity of WashingtonSeattleWAUSA
| | - Benjamin Lidgard
- Department of NephrologyUniversity of WashingtonSeattleWashingtonUSA
| | | | | | - Irena B. King
- Department of Internal MedicineUniversity of New MexicoAlbuquerqueNMUSA
| | - Barbara V. Howard
- MedStar Health Research InstituteHyattsvilleMDUSA
- Georgetown and Howard Universities Center for Clinical and Translational ScienceWashingtonDCUSA
| | | | - Rozenn N. Lemaitre
- Cardiovascular Health Research UnitUniversity of WashingtonSeattleWAUSA
- Department of MedicineUniversity of WashingtonSeattleWAUSA
| |
Collapse
|
9
|
Taub DG, Woolf CJ. Age-dependent small fiber neuropathy: Mechanistic insights from animal models. Exp Neurol 2024; 377:114811. [PMID: 38723859 PMCID: PMC11131160 DOI: 10.1016/j.expneurol.2024.114811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/07/2024] [Accepted: 05/05/2024] [Indexed: 05/28/2024]
Abstract
Small fiber neuropathy (SFN) is a common and debilitating disease in which the terminals of small diameter sensory axons degenerate, producing sensory loss, and in many patients neuropathic pain. While a substantial number of cases are attributable to diabetes, almost 50% are idiopathic. An underappreciated aspect of the disease is its late onset in most patients. Animal models of human genetic mutations that produce SFN also display age-dependent phenotypes suggesting that aging is an important contributor to the risk of development of the disease. In this review we define how particular sensory neurons are affected in SFN and discuss how aging may drive the disease. We also evaluate how animal models of SFN can define disease mechanisms that will provide insight into early risk detection and suggest novel therapeutic interventions.
Collapse
Affiliation(s)
- Daniel G Taub
- F. M. Kirby Neurobiology Center and Department of Neurology, Boston Children's Hospital, Boston, MA, USA; Department of Neurobiology, Harvard Medical School, Boston, MA, USA.
| | - Clifford J Woolf
- F. M. Kirby Neurobiology Center and Department of Neurology, Boston Children's Hospital, Boston, MA, USA; Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
10
|
Zeng Q, Gong Y, Zhu N, Shi Y, Zhang C, Qin L. Lipids and lipid metabolism in cellular senescence: Emerging targets for age-related diseases. Ageing Res Rev 2024; 97:102294. [PMID: 38583577 DOI: 10.1016/j.arr.2024.102294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 03/27/2024] [Accepted: 04/03/2024] [Indexed: 04/09/2024]
Abstract
Cellular senescence is a kind of cellular state triggered by endogenous or exogenous stimuli, which is mainly characterized by stable cell cycle arrest and complex senescence-associated secretory phenotype (SASP). Once senescent cells accumulate in tissues, they may eventually accelerate the progression of age-related diseases, such as atherosclerosis, osteoarthritis, chronic lung diseases, cancers, etc. Recent studies have shown that the disorders of lipid metabolism are not only related to age-related diseases, but also regulate the cellular senescence process. Based on existing research evidences, the changes in lipid metabolism in senescent cells are mainly concentrated in the metabolic processes of phospholipids, fatty acids and cholesterol. Obviously, the changes in lipid-metabolizing enzymes and proteins involved in these pathways play a critical role in senescence. However, the link between cellular senescence, changes in lipid metabolism and age-related disease remains to be elucidated. Herein, we summarize the lipid metabolism changes in senescent cells, especially the senescent cells that promote age-related diseases, as well as focusing on the role of lipid-related enzymes or proteins in senescence. Finally, we explore the prospect of lipids in cellular senescence and their potential as drug targets for preventing and delaying age-related diseases.
Collapse
Affiliation(s)
- Qing Zeng
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Yongzhen Gong
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Neng Zhu
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan 410021, China
| | - Yaning Shi
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China; Science and Technology Innovation Center, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Chanjuan Zhang
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Li Qin
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China; Institutional Key Laboratory of Vascular Biology and Translational Medicine in Hunan Province, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China.
| |
Collapse
|
11
|
Liu M, You Y, Zhu H, Chen Y, Hu Z, Duan J. N-Acetylcysteine Alleviates Impaired Muscular Function Resulting from Sphingosine Phosphate Lyase Functional Deficiency-Induced Sphingoid Base and Ceramide Accumulation in Caenorhabditis elegans. Nutrients 2024; 16:1623. [PMID: 38892556 PMCID: PMC11174433 DOI: 10.3390/nu16111623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/18/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Sphingosine-1-phosphate lyase (SPL) resides at the endpoint of the sphingolipid metabolic pathway, catalyzing the irreversible breakdown of sphingosine-1-phosphate. Depletion of SPL precipitates compromised muscle morphology and function; nevertheless, the precise mechanistic underpinnings remain elusive. Here, we elucidate a model of SPL functional deficiency in Caenorhabditis elegans using spl-1 RNA interference. Within these SPL-deficient nematodes, we observed diminished motility and perturbed muscle fiber organization, correlated with the accumulation of sphingoid bases, their phosphorylated forms, and ceramides (collectively referred to as the "sphingolipid rheostat"). The disturbance in mitochondrial morphology was also notable, as SPL functional loss resulted in heightened levels of reactive oxygen species. Remarkably, the administration of the antioxidant N-acetylcysteine (NAC) ameliorates locomotor impairment and rectifies muscle fiber disarray, underscoring its therapeutic promise for ceramide-accumulation-related muscle disorders. Our findings emphasize the pivotal role of SPL in preserving muscle integrity and advocate for exploring antioxidant interventions, such as NAC supplementation, as prospective therapeutic strategies for addressing muscle function decline associated with sphingolipid/ceramide metabolism disruption.
Collapse
Affiliation(s)
| | | | | | | | - Zhenying Hu
- Jiangxi Province Key Laboratory of Aging and Disease, Human Aging Research Institute (HARI), School of Life Science, Nanchang University, Nanchang 330031, China
| | - Jingjing Duan
- Jiangxi Province Key Laboratory of Aging and Disease, Human Aging Research Institute (HARI), School of Life Science, Nanchang University, Nanchang 330031, China
| |
Collapse
|
12
|
Sztolsztener K, Chabowski A. Hepatic-Metabolic Activity of α-Lipoic Acid-Its Influence on Sphingolipid Metabolism and PI3K/Akt/mTOR Pathway in a Rat Model of Metabolic Dysfunction-Associated Steatotic Liver Disease. Nutrients 2024; 16:1501. [PMID: 38794739 PMCID: PMC11124255 DOI: 10.3390/nu16101501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/13/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Excessive lipid deposition affects hepatic homeostasis and contributes to the development of insulin resistance as a crucial factor for the deterioration of simple steatosis to steatohepatitis. So, it is essential to search for an effective agent for a new therapy for hepatic steatosis development before it progresses to the more advanced stages. Our study aimed to evaluate the potential protective effect of α-lipoic acid (α-LA) administration on the intrahepatic metabolism of sphingolipid and insulin signaling transduction in rats with metabolic dysfunction-associated steatotic liver disease (MASLD). The experiment was conducted on male Wistar rats subjected to a standard diet or a high-fat diet (HFD) and an intragastrically α-LA administration for eight weeks. High-performance liquid chromatography (HPLC) was used to determine sphingolipid content. Immunoblotting was used to measure the expression of selected proteins from sphingolipid and insulin signaling pathways. Multiplex assay kit was used to assess the level of the phosphorylated form of proteins from PI3K/Akt/mTOR transduction. The results revealed that α-LA decreased sphinganine, dihydroceramide, and sphingosine levels and increased ceramide level. We also observed an increased the concentration of phosphorylated forms of sphingosine and sphinganine. Changes in the expression of proteins from sphingolipid metabolism were consistent with changes in sphingolipid pools. Treatment with α-LA activated the PI3K/Akt/mTOR pathway, which enhanced the hepatic phosphorylation of Akt and mTOR. Based on these data, we concluded that α-lipoic acid may alleviate glucose intolerance and may have a protective influence on the sphingolipid metabolism under HFD; thus, this antioxidant appears to protect from MASLD development and steatosis deterioration.
Collapse
Affiliation(s)
- Klaudia Sztolsztener
- Department of Physiology, Medical University of Bialystok, Mickiewicz 2C Str., 15-222 Bialystok, Poland;
| | | |
Collapse
|
13
|
Moseholm KF, Horn JW, Fitzpatrick AL, Djoussé L, Longstreth WT, Lopez OL, Hoofnagle AN, Jensen MK, Lemaitre RN, Mukamal KJ. Circulating sphingolipids and subclinical brain pathology: the cardiovascular health study. Front Neurol 2024; 15:1385623. [PMID: 38765262 PMCID: PMC11099203 DOI: 10.3389/fneur.2024.1385623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/08/2024] [Indexed: 05/21/2024] Open
Abstract
Background Sphingolipids are implicated in neurodegeneration and neuroinflammation. We assessed the potential role of circulating ceramides and sphingomyelins in subclinical brain pathology by investigating their association with brain magnetic resonance imaging (MRI) measures and circulating biomarkers of brain injury, neurofilament light chain (NfL) and glial fibrillary acidic protein (GFAP) in the Cardiovascular Health Study (CHS), a large and intensively phenotyped cohort of older adults. Methods Brain MRI was offered twice to CHS participants with a mean of 5 years between scans, and results were available from both time points in 2,116 participants (mean age 76 years; 40% male; and 25% APOE ε4 allele carriers). We measured 8 ceramide and sphingomyelin species in plasma samples and examined the associations with several MRI, including worsening grades of white matter hyperintensities and ventricular size, number of brain infarcts, and measures of brain atrophy in a subset with quantitative measures. We also investigated the sphingolipid associations with serum NfL and GFAP. Results In the fully adjusted model, higher plasma levels of ceramides and sphingomyelins with a long (16-carbon) saturated fatty acid were associated with higher blood levels of NfL [β = 0.05, false-discovery rate corrected P (PFDR) = 0.004 and β = 0.06, PFDR = < 0.001, respectively]. In contrast, sphingomyelins with very long (20- and 22-carbon) saturated fatty acids tended to have an inverse association with levels of circulating NfL. In secondary analyses, we found an interaction between ceramide d18:1/20:0 and sex (P for interaction = <0.001), such that ceramide d18:1/20:0 associated with higher odds for infarcts in women [OR = 1.26 (95%CI: 1.07, 1.49), PFDR = 0.03]. We did not observe any associations with GFAP blood levels, white matter grade, ventricular grade, mean bilateral hippocampal volume, or total brain volume. Conclusion Overall, our comprehensive investigation supports the evidence that ceramides and sphingomyelins are associated with increased aging brain pathology and that the direction of association depends on the fatty acid attached to the sphingosine backbone.
Collapse
Affiliation(s)
- Kristine F. Moseholm
- Department of Public Health, Section of Epidemiology, University of Copenhagen, Copenhagen, Denmark
| | - Jens W. Horn
- Department of Internal Medicine, Levanger Hospital, Health Trust Nord-Trøndelag, Levanger, Norway
| | - Annette L. Fitzpatrick
- Departments of Family Medicine and Epidemiology, School of Public Health, University of Washington, Seattle, WA, United States
| | - Luc Djoussé
- Division of Aging, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - W. T. Longstreth
- Departments of Family Medicine and Epidemiology, School of Public Health, University of Washington, Seattle, WA, United States
- Department of Neurology, School of Medicine, University of Washington, Seattle, WA, United States
| | - Oscar L. Lopez
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Andrew N. Hoofnagle
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Seattle, WA, United States
| | - Majken K. Jensen
- Department of Public Health, Section of Epidemiology, University of Copenhagen, Copenhagen, Denmark
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Rozenn N. Lemaitre
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, United States
| | - Kenneth J. Mukamal
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, United States
| |
Collapse
|
14
|
Hachmann M, Gülcan G, Rajendran R, Höring M, Liebisch G, Bachhuka A, Kohlhaas M, Maack C, Ergün S, Dudek J, Karnati S. Tafazzin deficiency causes substantial remodeling in the lipidome of a mouse model of Barth Syndrome cardiomyopathy. FRONTIERS IN MOLECULAR MEDICINE 2024; 4:1389456. [PMID: 39086433 PMCID: PMC11285559 DOI: 10.3389/fmmed.2024.1389456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/09/2024] [Indexed: 08/02/2024]
Abstract
Barth Syndrome (BTHS) is a rare X-linked disease, characterized clinically by cardiomyopathy, skeletal myopathy, neutropenia, and growth retardation. BTHS is caused by mutations in the phospholipid acyltransferase tafazzin (Gene: TAFAZZIN, TAZ). Tafazzin catalyzes the final step in the remodeling of cardiolipin (CL), a glycerophospholipid located in the inner mitochondrial membrane. As the phospholipid composition strongly determines membrane properties, correct biosynthesis of CL and other membrane lipids is essential for mitochondrial function. Mitochondria provide 95% of the energy demand in the heart, particularly due to their role in fatty acid oxidation. Alterations in lipid homeostasis in BTHS have an impact on mitochondrial membrane proteins and thereby contribute to cardiomyopathy. We analyzed a transgenic TAFAZZIN-knockdown (TAZ-KD) BTHS mouse model and determined the distribution of 193 individual lipid species in TAZ-KD and WT hearts at 10 and 50 weeks of age, using electrospray ionization tandem mass spectrometry (ESI-MS/MS). Our results revealed significant lipid composition differences between the TAZ-KD and WT groups, indicating genotype-dependent alterations in most analyzed lipid species. Significant changes in the myocardial lipidome were identified in both young animals without cardiomyopathy and older animals with heart failure. Notable alterations were found in phosphatidylcholine (PC), phosphatidylethanolamine (PE), lysophosphatidylethanolamine (LPE), lysophosphatidylcholine (LPC) and plasmalogen species. PC species with 2-4 double bonds were significantly increased, while polyunsaturated PC species showed a significant decrease in TAZ-KD mice. Furthermore, Linoleic acid (LA, 18:2) containing PC and PE species, as well as arachidonic acid (AA, 20:4) containing PE 38:4 species are increased in TAZ-KD. We found higher levels of AA containing LPE and PE-based plasmalogens (PE P-). Furthermore, we are the first to show significant changes in sphingomyelin (SM) and ceramide (Cer) lipid species Very long-chained SM species are accumulating in TAZ-KD hearts, whereas long-chained Cer and several hexosyl ceramides (HexCer) species accumulate only in 50-week-old TAZ-KD hearts These findings offer potential avenues for the diagnosis and treatment of BTHS, presenting new possibilities for therapeutic approaches.
Collapse
Affiliation(s)
- Malte Hachmann
- Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany
| | - Güntas Gülcan
- Department of Medical Biochemistry, Faculty of Medicine, Atlas University, Istanbul, Turkey
| | - Ranjithkumar Rajendran
- Experimental Neurology, Department of Neurology, Justus Liebig University, Giessen, Germany
| | - Marcus Höring
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital of Regensburg, Regensburg, Germany
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital of Regensburg, Regensburg, Germany
| | - Akash Bachhuka
- Department of Electronics, Electric, and Automatic Engineering, Rovira I Virgili University, Tarragona, Spain
| | - Michael Kohlhaas
- Department of Translational Research, Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg, Germany
| | - Christoph Maack
- Department of Translational Research, Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg, Germany
- Medical Clinic 1, University Hospital Würzburg, Würzburg, Germany
| | - Süleyman Ergün
- Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany
| | - Jan Dudek
- Department of Translational Research, Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg, Germany
| | - Srikanth Karnati
- Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
15
|
Pandey T, Wang B, Wang C, Zu J, Deng H, Shen K, do Vale GD, McDonald JG, Ma DK. LPD-3 as a megaprotein brake for aging and insulin-mTOR signaling in C. elegans. Cell Rep 2024; 43:113899. [PMID: 38446666 PMCID: PMC11019932 DOI: 10.1016/j.celrep.2024.113899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 01/21/2024] [Accepted: 02/15/2024] [Indexed: 03/08/2024] Open
Abstract
Insulin-mechanistic target of rapamycin (mTOR) signaling drives anabolic growth during organismal development; its late-life dysregulation contributes to aging and limits lifespans. Age-related regulatory mechanisms and functional consequences of insulin-mTOR remain incompletely understood. Here, we identify LPD-3 as a megaprotein that orchestrates the tempo of insulin-mTOR signaling during C. elegans aging. We find that an agonist insulin, INS-7, is drastically overproduced from early life and shortens lifespan in lpd-3 mutants. LPD-3 forms a bridge-like tunnel megaprotein to facilitate non-vesicular cellular lipid trafficking. Lipidomic profiling reveals increased hexaceramide species in lpd-3 mutants, accompanied by up-regulation of hexaceramide biosynthetic enzymes, including HYL-1. Reducing the abundance of HYL-1, insulin receptor/DAF-2 or mTOR/LET-363, normalizes INS-7 levels and rescues the lifespan of lpd-3 mutants. LPD-3 antagonizes SINH-1, a key mTORC2 component, and decreases expression with age. We propose that LPD-3 acts as a megaprotein brake for organismal aging and that its age-dependent decline restricts lifespan through the sphingolipid-hexaceramide and insulin-mTOR pathways.
Collapse
Affiliation(s)
- Taruna Pandey
- Cardiovascular Research Institute and Department of Physiology, University of California San Francisco, San Francisco, CA, USA
| | - Bingying Wang
- Cardiovascular Research Institute and Department of Physiology, University of California San Francisco, San Francisco, CA, USA
| | - Changnan Wang
- Cardiovascular Research Institute and Department of Physiology, University of California San Francisco, San Francisco, CA, USA
| | - Jenny Zu
- Cardiovascular Research Institute and Department of Physiology, University of California San Francisco, San Francisco, CA, USA
| | - Huichao Deng
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Kang Shen
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Goncalo Dias do Vale
- Center for Human Nutrition and Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jeffrey G McDonald
- Center for Human Nutrition and Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Dengke K Ma
- Cardiovascular Research Institute and Department of Physiology, University of California San Francisco, San Francisco, CA, USA; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
16
|
Mu J, Lam SM, Shui G. Emerging roles and therapeutic potentials of sphingolipids in pathophysiology: emphasis on fatty acyl heterogeneity. J Genet Genomics 2024; 51:268-278. [PMID: 37364711 DOI: 10.1016/j.jgg.2023.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/29/2023] [Accepted: 06/15/2023] [Indexed: 06/28/2023]
Abstract
Sphingolipids not only exert structural roles in cellular membranes, but also act as signaling molecules in various physiological and pathological processes. A myriad of studies have shown that abnormal levels of sphingolipids and their metabolic enzymes are associated with a variety of human diseases. Moreover, blood sphingolipids can also be used as biomarkers for disease diagnosis. This review summarizes the biosynthesis, metabolism, and pathological roles of sphingolipids, with emphasis on the biosynthesis of ceramide, the precursor for the biosynthesis of complex sphingolipids with different fatty acyl chains. The possibility of using sphingolipids for disease prediction, diagnosis, and treatment is also discussed. Targeting endogenous ceramides and complex sphingolipids along with their specific fatty acyl chain to promote future drug development will also be discussed.
Collapse
Affiliation(s)
- Jinming Mu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100101, China
| | - Sin Man Lam
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Lipidall Technologies Company Limited, Changzhou, Jiangsu 213000, China.
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
17
|
Richardson WJ, Humphrey SB, Sears SM, Hoffman NA, Orwick AJ, Doll MA, Doll CL, Xia C, Hernandez-Corbacho M, Snider JM, Obeid LM, Hannun YA, Snider AJ, Siskind LJ. Expression of Ceramide Synthases in Mice and Their Roles in Regulating Acyl-Chain Sphingolipids: A Framework for Baseline Levels and Future Implications in Aging and Disease. Mol Pharmacol 2024; 105:131-143. [PMID: 38164625 PMCID: PMC10877707 DOI: 10.1124/molpharm.123.000788] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/25/2023] [Accepted: 11/28/2023] [Indexed: 01/03/2024] Open
Abstract
Sphingolipids are an important class of lipids present in all eukaryotic cells that regulate critical cellular processes. Disturbances in sphingolipid homeostasis have been linked to several diseases in humans. Ceramides are central in sphingolipid metabolism and are largely synthesized by six ceramide synthase (CerS) isoforms (CerS1-6), each with a preference for different fatty acyl chain lengths. Although the tissue distribution of CerS mRNA expression in humans and the roles of CerS isoforms in synthesizing ceramides with different acyl chain lengths are known, it is unknown how CerS expression dictates ceramides and downstream metabolites within tissues. In this study, we analyzed sphingolipid levels and CerS mRNA expression in 3-month-old C57BL/6J mouse brain, heart, kidney, liver, lung, and skeletal muscle. The results showed that CerS expression and sphingolipid species abundance varied by tissue and that CerS expression was a predictor of ceramide species within tissues. Interestingly, although CerS expression was not predictive of complex sphingolipid species within all tissues, composite scores for CerSs contributions to total sphingolipids measured in each tissue correlated to CerS expression. Lastly, we determined that the most abundant ceramide species in mouse tissues aligned with CerS mRNA expression in corresponding human tissues (based on chain length preference), suggesting that mice are relevant preclinical models for ceramide and sphingolipid research. SIGNIFICANCE STATEMENT: The current study demonstrates that ceramide synthase (CerS) expression in specific tissues correlates not only with ceramide species but contributes to the generation of complex sphingolipids as well. As many of the CerSs and/or specific ceramide species have been implicated in disease, these studies suggest the potential for CerSs as therapeutic targets and the use of sphingolipid species as diagnostics in specific tissues.
Collapse
Affiliation(s)
- Whitney J Richardson
- Department of Medicine, Division of Medical Oncology and Hematology, University of Louisville School of Medicine, Louisville, Kentucky (W.J.R., S.B.H., S.M.S., N.A.H., A.J.O., M.A.D., L.J.S.); Department of Medicine and Stony Brook Cancer Center, Stony Brook University, Stony Brook, New York (M.H.-C., L.M.O., Y.A.H.); Northport Veteran Affairs Medical Center, Northport, New York (L.M.O., Y.A.H.); School of Nutritional Sciences, College of Agriculture, Life and Environmental Sciences, and University of Arizona Cancer Center, University of Arizona, Tucson, Arizona (C.L.D., C.X., J.M.S., A.J.S.); and Brown Cancer Center, University of Louisville, Louisville, Kentucky (L.J.S.)
| | - Sophia B Humphrey
- Department of Medicine, Division of Medical Oncology and Hematology, University of Louisville School of Medicine, Louisville, Kentucky (W.J.R., S.B.H., S.M.S., N.A.H., A.J.O., M.A.D., L.J.S.); Department of Medicine and Stony Brook Cancer Center, Stony Brook University, Stony Brook, New York (M.H.-C., L.M.O., Y.A.H.); Northport Veteran Affairs Medical Center, Northport, New York (L.M.O., Y.A.H.); School of Nutritional Sciences, College of Agriculture, Life and Environmental Sciences, and University of Arizona Cancer Center, University of Arizona, Tucson, Arizona (C.L.D., C.X., J.M.S., A.J.S.); and Brown Cancer Center, University of Louisville, Louisville, Kentucky (L.J.S.)
| | - Sophia M Sears
- Department of Medicine, Division of Medical Oncology and Hematology, University of Louisville School of Medicine, Louisville, Kentucky (W.J.R., S.B.H., S.M.S., N.A.H., A.J.O., M.A.D., L.J.S.); Department of Medicine and Stony Brook Cancer Center, Stony Brook University, Stony Brook, New York (M.H.-C., L.M.O., Y.A.H.); Northport Veteran Affairs Medical Center, Northport, New York (L.M.O., Y.A.H.); School of Nutritional Sciences, College of Agriculture, Life and Environmental Sciences, and University of Arizona Cancer Center, University of Arizona, Tucson, Arizona (C.L.D., C.X., J.M.S., A.J.S.); and Brown Cancer Center, University of Louisville, Louisville, Kentucky (L.J.S.)
| | - Nicholas A Hoffman
- Department of Medicine, Division of Medical Oncology and Hematology, University of Louisville School of Medicine, Louisville, Kentucky (W.J.R., S.B.H., S.M.S., N.A.H., A.J.O., M.A.D., L.J.S.); Department of Medicine and Stony Brook Cancer Center, Stony Brook University, Stony Brook, New York (M.H.-C., L.M.O., Y.A.H.); Northport Veteran Affairs Medical Center, Northport, New York (L.M.O., Y.A.H.); School of Nutritional Sciences, College of Agriculture, Life and Environmental Sciences, and University of Arizona Cancer Center, University of Arizona, Tucson, Arizona (C.L.D., C.X., J.M.S., A.J.S.); and Brown Cancer Center, University of Louisville, Louisville, Kentucky (L.J.S.)
| | - Andrew J Orwick
- Department of Medicine, Division of Medical Oncology and Hematology, University of Louisville School of Medicine, Louisville, Kentucky (W.J.R., S.B.H., S.M.S., N.A.H., A.J.O., M.A.D., L.J.S.); Department of Medicine and Stony Brook Cancer Center, Stony Brook University, Stony Brook, New York (M.H.-C., L.M.O., Y.A.H.); Northport Veteran Affairs Medical Center, Northport, New York (L.M.O., Y.A.H.); School of Nutritional Sciences, College of Agriculture, Life and Environmental Sciences, and University of Arizona Cancer Center, University of Arizona, Tucson, Arizona (C.L.D., C.X., J.M.S., A.J.S.); and Brown Cancer Center, University of Louisville, Louisville, Kentucky (L.J.S.)
| | - Mark A Doll
- Department of Medicine, Division of Medical Oncology and Hematology, University of Louisville School of Medicine, Louisville, Kentucky (W.J.R., S.B.H., S.M.S., N.A.H., A.J.O., M.A.D., L.J.S.); Department of Medicine and Stony Brook Cancer Center, Stony Brook University, Stony Brook, New York (M.H.-C., L.M.O., Y.A.H.); Northport Veteran Affairs Medical Center, Northport, New York (L.M.O., Y.A.H.); School of Nutritional Sciences, College of Agriculture, Life and Environmental Sciences, and University of Arizona Cancer Center, University of Arizona, Tucson, Arizona (C.L.D., C.X., J.M.S., A.J.S.); and Brown Cancer Center, University of Louisville, Louisville, Kentucky (L.J.S.)
| | - Chelsea L Doll
- Department of Medicine, Division of Medical Oncology and Hematology, University of Louisville School of Medicine, Louisville, Kentucky (W.J.R., S.B.H., S.M.S., N.A.H., A.J.O., M.A.D., L.J.S.); Department of Medicine and Stony Brook Cancer Center, Stony Brook University, Stony Brook, New York (M.H.-C., L.M.O., Y.A.H.); Northport Veteran Affairs Medical Center, Northport, New York (L.M.O., Y.A.H.); School of Nutritional Sciences, College of Agriculture, Life and Environmental Sciences, and University of Arizona Cancer Center, University of Arizona, Tucson, Arizona (C.L.D., C.X., J.M.S., A.J.S.); and Brown Cancer Center, University of Louisville, Louisville, Kentucky (L.J.S.)
| | - Catherine Xia
- Department of Medicine, Division of Medical Oncology and Hematology, University of Louisville School of Medicine, Louisville, Kentucky (W.J.R., S.B.H., S.M.S., N.A.H., A.J.O., M.A.D., L.J.S.); Department of Medicine and Stony Brook Cancer Center, Stony Brook University, Stony Brook, New York (M.H.-C., L.M.O., Y.A.H.); Northport Veteran Affairs Medical Center, Northport, New York (L.M.O., Y.A.H.); School of Nutritional Sciences, College of Agriculture, Life and Environmental Sciences, and University of Arizona Cancer Center, University of Arizona, Tucson, Arizona (C.L.D., C.X., J.M.S., A.J.S.); and Brown Cancer Center, University of Louisville, Louisville, Kentucky (L.J.S.)
| | - Maria Hernandez-Corbacho
- Department of Medicine, Division of Medical Oncology and Hematology, University of Louisville School of Medicine, Louisville, Kentucky (W.J.R., S.B.H., S.M.S., N.A.H., A.J.O., M.A.D., L.J.S.); Department of Medicine and Stony Brook Cancer Center, Stony Brook University, Stony Brook, New York (M.H.-C., L.M.O., Y.A.H.); Northport Veteran Affairs Medical Center, Northport, New York (L.M.O., Y.A.H.); School of Nutritional Sciences, College of Agriculture, Life and Environmental Sciences, and University of Arizona Cancer Center, University of Arizona, Tucson, Arizona (C.L.D., C.X., J.M.S., A.J.S.); and Brown Cancer Center, University of Louisville, Louisville, Kentucky (L.J.S.)
| | - Justin M Snider
- Department of Medicine, Division of Medical Oncology and Hematology, University of Louisville School of Medicine, Louisville, Kentucky (W.J.R., S.B.H., S.M.S., N.A.H., A.J.O., M.A.D., L.J.S.); Department of Medicine and Stony Brook Cancer Center, Stony Brook University, Stony Brook, New York (M.H.-C., L.M.O., Y.A.H.); Northport Veteran Affairs Medical Center, Northport, New York (L.M.O., Y.A.H.); School of Nutritional Sciences, College of Agriculture, Life and Environmental Sciences, and University of Arizona Cancer Center, University of Arizona, Tucson, Arizona (C.L.D., C.X., J.M.S., A.J.S.); and Brown Cancer Center, University of Louisville, Louisville, Kentucky (L.J.S.)
| | - Lina M Obeid
- Department of Medicine, Division of Medical Oncology and Hematology, University of Louisville School of Medicine, Louisville, Kentucky (W.J.R., S.B.H., S.M.S., N.A.H., A.J.O., M.A.D., L.J.S.); Department of Medicine and Stony Brook Cancer Center, Stony Brook University, Stony Brook, New York (M.H.-C., L.M.O., Y.A.H.); Northport Veteran Affairs Medical Center, Northport, New York (L.M.O., Y.A.H.); School of Nutritional Sciences, College of Agriculture, Life and Environmental Sciences, and University of Arizona Cancer Center, University of Arizona, Tucson, Arizona (C.L.D., C.X., J.M.S., A.J.S.); and Brown Cancer Center, University of Louisville, Louisville, Kentucky (L.J.S.)
| | - Yusuf A Hannun
- Department of Medicine, Division of Medical Oncology and Hematology, University of Louisville School of Medicine, Louisville, Kentucky (W.J.R., S.B.H., S.M.S., N.A.H., A.J.O., M.A.D., L.J.S.); Department of Medicine and Stony Brook Cancer Center, Stony Brook University, Stony Brook, New York (M.H.-C., L.M.O., Y.A.H.); Northport Veteran Affairs Medical Center, Northport, New York (L.M.O., Y.A.H.); School of Nutritional Sciences, College of Agriculture, Life and Environmental Sciences, and University of Arizona Cancer Center, University of Arizona, Tucson, Arizona (C.L.D., C.X., J.M.S., A.J.S.); and Brown Cancer Center, University of Louisville, Louisville, Kentucky (L.J.S.)
| | - Ashley J Snider
- Department of Medicine, Division of Medical Oncology and Hematology, University of Louisville School of Medicine, Louisville, Kentucky (W.J.R., S.B.H., S.M.S., N.A.H., A.J.O., M.A.D., L.J.S.); Department of Medicine and Stony Brook Cancer Center, Stony Brook University, Stony Brook, New York (M.H.-C., L.M.O., Y.A.H.); Northport Veteran Affairs Medical Center, Northport, New York (L.M.O., Y.A.H.); School of Nutritional Sciences, College of Agriculture, Life and Environmental Sciences, and University of Arizona Cancer Center, University of Arizona, Tucson, Arizona (C.L.D., C.X., J.M.S., A.J.S.); and Brown Cancer Center, University of Louisville, Louisville, Kentucky (L.J.S.)
| | - Leah J Siskind
- Department of Medicine, Division of Medical Oncology and Hematology, University of Louisville School of Medicine, Louisville, Kentucky (W.J.R., S.B.H., S.M.S., N.A.H., A.J.O., M.A.D., L.J.S.); Department of Medicine and Stony Brook Cancer Center, Stony Brook University, Stony Brook, New York (M.H.-C., L.M.O., Y.A.H.); Northport Veteran Affairs Medical Center, Northport, New York (L.M.O., Y.A.H.); School of Nutritional Sciences, College of Agriculture, Life and Environmental Sciences, and University of Arizona Cancer Center, University of Arizona, Tucson, Arizona (C.L.D., C.X., J.M.S., A.J.S.); and Brown Cancer Center, University of Louisville, Louisville, Kentucky (L.J.S.)
| |
Collapse
|
18
|
Meas SJ, Daire GM, Friedman MA, DeNapoli R, Ghosh P, Farr JN, Donahue HJ. A comparison of bone microarchitectural and transcriptomic changes in murine long bones in response to hindlimb unloading and aging. Bone 2024; 179:116973. [PMID: 37996046 DOI: 10.1016/j.bone.2023.116973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023]
Abstract
Age- and disuse-related bone loss both result in decreases in bone mineral density, cortical thickness, and trabecular thickness and connectivity. Disuse induces changes in the balance of bone formation and bone resorption like those seen with aging. There is a need to experimentally compare these two mechanisms at a structural and transcriptomic level to better understand how they may be similar or different. Bone microarchitecture and biomechanical properties were compared between 6- and 22-month-old C57BL/6 J male control mice and 6-month-old mice that were hindlimb unloaded (HLU) for 3 weeks. Epiphyseal trabecular bone was the compartment most affected by HLU and demonstrated an intermediate bone phenotype between age-matched controls and aged controls. RNA extracted from whole-bone marrow-flushed tibiae was sequenced and analyzed. Differential gene expression analysis additionally included 4-month-old male mice unloaded for 3 weeks compared to age-matched controls. Gene ontology analysis demonstrated that there were age-dependent differences in differentially expressed genes in young adult mice. Genes related to downregulation of cellular processes were most affected in 4-month-old mice after disuse whereas those related to mitochondrial function were most affected in 6-month-old mice. Cell-cycle transition was downregulated with aging. A publicly available dataset (GSE169292) from 3-month female C57BL/6 N mice unloaded for 7 days was included in ingenuity pathway analysis (IPA) with the other datasets. IPA was used to identify the leading canonical pathways and upstream regulators in each HLU age group. IPA identified "Senescence Pathway" as the second leading canonical pathway enriched in mice exposed to HLU. HLU induced activation of the senescence pathway in 3-month and 4-month-old mice but inhibited it in 6-month-old mice. In conclusion, we demonstrate that hindlimb unloading and aging initiate similar changes in bone microarchitecture and gene expression. However, aging is responsible for more significant transcriptome and tissue-level changes compared to hindlimb unloading.
Collapse
Affiliation(s)
- Steven J Meas
- Virginia Commonwealth University, Richmond, VA 23284, USA.
| | | | | | | | - Preetam Ghosh
- Virginia Commonwealth University, Richmond, VA 23284, USA.
| | - Joshua N Farr
- Mayo Clinic College of Medicine, Rochester, MN 55905, USA.
| | | |
Collapse
|
19
|
Choi BJ, Park MH, Jin HK, Bae JS. Acid sphingomyelinase as a pathological and therapeutic target in neurological disorders: focus on Alzheimer's disease. Exp Mol Med 2024; 56:301-310. [PMID: 38337058 PMCID: PMC10907607 DOI: 10.1038/s12276-024-01176-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 02/12/2024] Open
Abstract
Over the past decade, numerous studies have highlighted the importance of acid sphingomyelinase (ASM) in disease treatment in humans. This enzyme functions primarily to generate ceramide, maintain the cellular membrane, and regulate cellular function. However, in the blood and brain of patients with neurological disorders, including major depression, ischemic stroke, amyotrophic lateral sclerosis, multiple sclerosis, and Alzheimer's disease (AD), elevated ASM levels significantly suggest disease onset or progression. In these diseases, increased ASM is profoundly involved in neuronal death, abnormal autophagy, neuroinflammation, blood-brain barrier disruption, hippocampal neurogenesis loss, and immune cell dysfunction. Moreover, genetic and pharmacological inhibition of ASM can prevent or ameliorate various diseases. The therapeutic effects of ASM inhibition have prompted the urgent need to develop ASM inhibitors, and several ASM inhibitors have been identified. In this review, we summarize the current knowledge on the critical roles and mechanisms of ASM in brain cells and blood that are associated with different neuropathological features, especially those observed in AD. Furthermore, we elucidate the potential possibility and limitations of existing ASM-targeting drugs according to experimental studies in neurological disorder mouse models.
Collapse
Affiliation(s)
- Byung Jo Choi
- KNU Alzheimer's Disease Research Institute, Kyungpook National University, Daegu, 41566, South Korea
- Department of Physiology, School of Medicine, Kyungpook National University, Daegu, 41944, South Korea
| | - Min Hee Park
- KNU Alzheimer's Disease Research Institute, Kyungpook National University, Daegu, 41566, South Korea
- Department of Physiology, School of Medicine, Kyungpook National University, Daegu, 41944, South Korea
| | - Hee Kyung Jin
- KNU Alzheimer's Disease Research Institute, Kyungpook National University, Daegu, 41566, South Korea
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Kyungpook National University, Daegu, 41566, South Korea
| | - Jae-Sung Bae
- KNU Alzheimer's Disease Research Institute, Kyungpook National University, Daegu, 41566, South Korea.
- Department of Physiology, School of Medicine, Kyungpook National University, Daegu, 41944, South Korea.
| |
Collapse
|
20
|
Park AY, Leney-Greene M, Lynberg M, Gabrielski JQ, Xu X, Schwarz B, Zheng L, Balasubramaniyam A, Ham H, Chao B, Zhang Y, Matthews HF, Cui J, Yao Y, Kubo S, Chanchu JM, Morawski AR, Cook SA, Jiang P, Ravell JC, Cheng YH, George A, Faruqi A, Pagalilauan AM, Bergerson JRE, Ganesan S, Chauvin SD, Aluri J, Edwards-Hicks J, Bohrnsen E, Tippett C, Omar H, Xu L, Butcher GW, Pascall J, Karakoc-Aydiner E, Kiykim A, Maecker H, Tezcan İ, Esenboga S, Heredia RJ, Akata D, Tekin S, Kara A, Kuloglu Z, Unal E, Kendirli T, Dogu F, Karabiber E, Atkinson TP, Cochet C, Filhol O, Bosio CM, Davis MM, Lifton RP, Pearce EL, Daumke O, Aytekin C, Şahin GE, Aksu AÜ, Uzel G, Koneti Rao V, Sari S, Dalgıç B, Boztug K, Cagdas D, Haskologlu S, Ikinciogullari A, Schwefel D, Vilarinho S, Baris S, Ozen A, Su HC, Lenardo MJ. GIMAP5 deficiency reveals a mammalian ceramide-driven longevity assurance pathway. Nat Immunol 2024; 25:282-293. [PMID: 38172257 PMCID: PMC11151279 DOI: 10.1038/s41590-023-01691-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 10/26/2023] [Indexed: 01/05/2024]
Abstract
Preserving cells in a functional, non-senescent state is a major goal for extending human healthspans. Model organisms reveal that longevity and senescence are genetically controlled, but how genes control longevity in different mammalian tissues is unknown. Here, we report a new human genetic disease that causes cell senescence, liver and immune dysfunction, and early mortality that results from deficiency of GIMAP5, an evolutionarily conserved GTPase selectively expressed in lymphocytes and endothelial cells. We show that GIMAP5 restricts the pathological accumulation of long-chain ceramides (CERs), thereby regulating longevity. GIMAP5 controls CER abundance by interacting with protein kinase CK2 (CK2), attenuating its ability to activate CER synthases. Inhibition of CK2 and CER synthase rescues GIMAP5-deficient T cells by preventing CER overaccumulation and cell deterioration. Thus, GIMAP5 controls longevity assurance pathways crucial for immune function and healthspan in mammals.
Collapse
Affiliation(s)
- Ann Y Park
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Michael Leney-Greene
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Matthew Lynberg
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Justin Q Gabrielski
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Xijin Xu
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Benjamin Schwarz
- Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Lixin Zheng
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Arasu Balasubramaniyam
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Department of Structural Biology, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Hyoungjun Ham
- Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Brittany Chao
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Yu Zhang
- Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Helen F Matthews
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jing Cui
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Yikun Yao
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Satoshi Kubo
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jean Michel Chanchu
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Aaron R Morawski
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sarah A Cook
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ping Jiang
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Juan C Ravell
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Department of Internal Medicine, Hackensack Meridian School of Medicine, Nutley, NJ, USA
| | - Yan H Cheng
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Alex George
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Aiman Faruqi
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Alison M Pagalilauan
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jenna R E Bergerson
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sundar Ganesan
- Biological Imaging Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Samuel D Chauvin
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jahnavi Aluri
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Joy Edwards-Hicks
- Department of Immunometabolism, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Eric Bohrnsen
- Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Caroline Tippett
- Section of Digestive Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Habib Omar
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Leilei Xu
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Geoffrey W Butcher
- Laboratory of Lymphocyte Signaling and Development, The Babraham Institute, Cambridge, United Kingdom
| | - John Pascall
- Laboratory of Lymphocyte Signaling and Development, The Babraham Institute, Cambridge, United Kingdom
| | - Elif Karakoc-Aydiner
- Division of Pediatric Allergy and Immunology, Marmara University, School of Medicine Pendik, Istanbul, Turkey
- The Isil Berat Barlan Center for Translational Medicine, Marmara University, Pendik, Istanbul, Turkey
| | - Ayca Kiykim
- Division of Pediatric Allergy and Immunology, Marmara University, School of Medicine Pendik, Istanbul, Turkey
| | - Holden Maecker
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Palo Alto, CA, USA
| | - İlhan Tezcan
- Department of Pediatrics, Division of Pediatric Immunology, Hacettepe University, Faculty of Medicine, Ankara, Turkey
| | - Saliha Esenboga
- Department of Pediatrics, Division of Pediatric Immunology, Hacettepe University, Faculty of Medicine, Ankara, Turkey
| | - Raul Jimenez Heredia
- St Anna Children's Cancer Research Institute, Vienna, Austria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Deniz Akata
- Department of Radiology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Saban Tekin
- Department of Basic Medical Sciences, Hamidiye Faculty of Medicine, Division of Medical Biology, University of Health Sciences, İstanbul, Turkey
| | - Altan Kara
- TUBITAK Marmara Research Center, Gene Engineering and Biotechnology Institute, Gebze, Turkey
| | - Zarife Kuloglu
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Ankara University School of Medicine, Ankara, Türkiye
| | - Emel Unal
- Department of Pediatric Oncology, Ankara University Medical School, Ankara, Turkey
| | - Tanıl Kendirli
- Department of Pediatric Intensive Care Unit, Ankara University Medical School, Ankara, Turkey
| | - Figen Dogu
- Department of Pediatric Immunology and Allergy, Ankara University Medical School, Ankara, Turkey
| | - Esra Karabiber
- Department of Chest Diseases, Faculty of Medicine, Division of Adult Allergy-Immunology, Marmara University, Istanbul, Turkey
| | - T Prescott Atkinson
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Claude Cochet
- University Grenoble Alpes, INSERM, CEA, UMR Biosanté, Grenoble, France
| | - Odile Filhol
- University Grenoble Alpes, INSERM, CEA, UMR Biosanté, Grenoble, France
| | - Catherine M Bosio
- Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Mark M Davis
- Institute for Immunity, Transplantation and Infection, Stanford University, Palo Alto, CA, USA
| | - Richard P Lifton
- Department of Genetics, Yale School of Medicine, Yale University, New Haven, CT, USA
- Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, NY, USA
| | - Erika L Pearce
- Department of Immunometabolism, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy at Johns Hopkins, Johns Hopkins University, Baltimore, MD, USA
| | - Oliver Daumke
- Department of Structural Biology, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Caner Aytekin
- Department of Pediatric Immunology, Dr Sami Ulus Maternity and Children's Health and Diseases Training and Research Hospital, Ankara, Turkey
| | - Gülseren Evirgen Şahin
- Department of Pediatric Gastroenterology, Hepatology and Nutrition, University of Health Sciences, Dr Sami Ulus Maternity and Children's Health and Diseases Training and Research Hospital, Ankara, Turkey
| | - Aysel Ünlüsoy Aksu
- Department of Pediatric Gastroenterology, Hepatology and Nutrition, University of Health Sciences, Dr Sami Ulus Maternity and Children's Health and Diseases Training and Research Hospital, Ankara, Turkey
| | - Gulbu Uzel
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - V Koneti Rao
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sinan Sari
- Department of Pediatric Gastroenterology, Gazi University Faculty of Medicine, Ankara, Turkey
| | - Buket Dalgıç
- Department of Pediatric Gastroenterology, Gazi University Faculty of Medicine, Ankara, Turkey
| | - Kaan Boztug
- St Anna Children's Cancer Research Institute, Vienna, Austria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- St Anna Children's Hospital, Vienna, Austria
| | - Deniz Cagdas
- Department of Pediatrics, Division of Pediatric Immunology, Hacettepe University, Faculty of Medicine, Ankara, Turkey
| | - Sule Haskologlu
- Department of Pediatric Immunology and Allergy, Ankara University Medical School, Ankara, Turkey
| | - Aydan Ikinciogullari
- Department of Pediatric Immunology and Allergy, Ankara University Medical School, Ankara, Turkey
| | - David Schwefel
- Department of Structural Biology, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
- Bioanalytics Unit, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Silvia Vilarinho
- Section of Digestive Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Safa Baris
- Division of Pediatric Allergy and Immunology, Marmara University, School of Medicine Pendik, Istanbul, Turkey
- The Isil Berat Barlan Center for Translational Medicine, Marmara University, Pendik, Istanbul, Turkey
| | - Ahmet Ozen
- Division of Pediatric Allergy and Immunology, Marmara University, School of Medicine Pendik, Istanbul, Turkey
- The Isil Berat Barlan Center for Translational Medicine, Marmara University, Pendik, Istanbul, Turkey
| | - Helen C Su
- Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Michael J Lenardo
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
- Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
21
|
Salama YA, Hassan HM, El-Gayar AM, Abdel-Rahman N. Combined quercetin and simvastatin attenuate hepatic fibrosis in rats by modulating SphK1/NLRP3 pathways. Life Sci 2024; 337:122349. [PMID: 38128755 DOI: 10.1016/j.lfs.2023.122349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/05/2023] [Accepted: 12/09/2023] [Indexed: 12/23/2023]
Abstract
Liver fibrosis involves several signalling pathways working in concert regulating the deposition of extracellular matrix. In this study, we evaluated the effect of quercetin and simvastatin alone and their combination on the treatment of experimentally induced hepatic fibrosis in rats. To decipher the potential mechanisms involved, liver fibrosis was induced in rats by administration of 40 % carbon tetrachloride (CCl4) (1 μl/g rat, i.p., twice weekly) for 6 weeks. Quercetin (50 mg/kg, orally), simvastatin (40 mg/kg, orally) either individually or combined were administered for another 4 weeks. The three treatment groups ameliorated hepatic dysfunction and altered parameters of sphingolipid and pyroptosis pathways. Yet, the combined group showed a more pronounced effect. Treatments lowered serum levels of GOT, GPT, ALP and elevated albumin and total protein levels. Histopathological and electron microscope examination of liver tissue revealed diminished fibrosis and inflammation. Protein expression levels of α-SMA, IL-1β, PPAR-γ, TGF-β1, caspase-1 and caspase-3 expression in liver tissues were reduced. Additionally, hepatic mRNA levels of SphK1 and NLRP3 decreased after treatment. Furthermore, the three groups lowered MDA levels and elevated total antioxidant capacity, GSH and Nrf2 expression levels. Treatments downregulated sphingolipid pathway and NLRP3-mediated pyroptosis and stimulated an anti-apoptotic, anti-proliferative and antioxidant activity. This suggests that targeting the SphK1/NLRP3 pathway could be a prospective therapeutic strategy against liver fibrosis.
Collapse
Affiliation(s)
- Yasmin A Salama
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, 35516, Egypt; Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 11152, Egypt
| | - Hanan M Hassan
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 11152, Egypt
| | - Amal M El-Gayar
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, 35516, Egypt
| | - Noha Abdel-Rahman
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, 35516, Egypt.
| |
Collapse
|
22
|
Jamjoum R, Majumder S, Issleny B, Stiban J. Mysterious sphingolipids: metabolic interrelationships at the center of pathophysiology. Front Physiol 2024; 14:1229108. [PMID: 38235387 PMCID: PMC10791800 DOI: 10.3389/fphys.2023.1229108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 11/27/2023] [Indexed: 01/19/2024] Open
Abstract
Metabolic pathways are complex and intertwined. Deficiencies in one or more enzymes in a given pathway are directly linked with genetic diseases, most of them having devastating manifestations. The metabolic pathways undertaken by sphingolipids are diverse and elaborate with ceramide species serving as the hubs of sphingolipid intermediary metabolism and function. Sphingolipids are bioactive lipids that serve a multitude of cellular functions. Being pleiotropic in function, deficiency or overproduction of certain sphingolipids is associated with many genetic and chronic diseases. In this up-to-date review article, we strive to gather recent scientific evidence about sphingolipid metabolism, its enzymes, and regulation. We shed light on the importance of sphingolipid metabolism in a variety of genetic diseases and in nervous and immune system ailments. This is a comprehensive review of the state of the field of sphingolipid biochemistry.
Collapse
Affiliation(s)
- Rama Jamjoum
- Department of Pharmacy, Birzeit University, West Bank, Palestine
| | - Saurav Majumder
- National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, Rockville, MD, United States
| | - Batoul Issleny
- Department of Pharmacy, Birzeit University, West Bank, Palestine
| | - Johnny Stiban
- Department of Biology and Biochemistry, Birzeit University, West Bank, Palestine
| |
Collapse
|
23
|
Moaddel R, Ubaida‐Mohien C, Tanaka T, Tian Q, Candia J, Moore AZ, Lovett J, Fantoni G, Shehadeh N, Turek L, Collingham V, Kaileh M, Chia CW, Sen R, Egan JM, Ferrucci L. Cross-sectional analysis of healthy individuals across decades: Aging signatures across multiple physiological compartments. Aging Cell 2024; 23:e13902. [PMID: 37350292 PMCID: PMC10776121 DOI: 10.1111/acel.13902] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/28/2023] [Accepted: 05/27/2023] [Indexed: 06/24/2023] Open
Abstract
The study of age-related biomarkers from different biofluids and tissues within the same individual might provide a more comprehensive understanding of age-related changes within and between compartments as these changes are likely highly interconnected. Understanding age-related differences by compartments may shed light on the mechanism of their reciprocal interactions, which may contribute to the phenotypic manifestations of aging. To study such possible interactions, we carried out a targeted metabolomic analysis of plasma, skeletal muscle, and urine collected from healthy participants, age 22-92 years, and identified 92, 34, and 35 age-associated metabolites, respectively. The metabolic pathways that were identified across compartments included inflammation and cellular senescence, microbial metabolism, mitochondrial health, sphingolipid metabolism, lysosomal membrane permeabilization, vascular aging, and kidney function.
Collapse
Affiliation(s)
- Ruin Moaddel
- Biomedical Research CentreNational Institute on Aging, NIHBaltimoreMarylandUSA
| | | | - Toshiko Tanaka
- Biomedical Research CentreNational Institute on Aging, NIHBaltimoreMarylandUSA
| | - Qu Tian
- Biomedical Research CentreNational Institute on Aging, NIHBaltimoreMarylandUSA
| | - Julián Candia
- Biomedical Research CentreNational Institute on Aging, NIHBaltimoreMarylandUSA
| | - Ann Zenobia Moore
- Biomedical Research CentreNational Institute on Aging, NIHBaltimoreMarylandUSA
| | - Jacqueline Lovett
- Biomedical Research CentreNational Institute on Aging, NIHBaltimoreMarylandUSA
| | - Giovanna Fantoni
- Biomedical Research CentreNational Institute on Aging, NIHBaltimoreMarylandUSA
| | - Nader Shehadeh
- Biomedical Research CentreNational Institute on Aging, NIHBaltimoreMarylandUSA
| | - Lisa Turek
- Biomedical Research CentreNational Institute on Aging, NIHBaltimoreMarylandUSA
| | - Victoria Collingham
- Biomedical Research CentreNational Institute on Aging, NIHBaltimoreMarylandUSA
| | - Mary Kaileh
- Biomedical Research CentreNational Institute on Aging, NIHBaltimoreMarylandUSA
| | - Chee W. Chia
- Biomedical Research CentreNational Institute on Aging, NIHBaltimoreMarylandUSA
| | - Ranjan Sen
- Biomedical Research CentreNational Institute on Aging, NIHBaltimoreMarylandUSA
| | - Josephine M. Egan
- Biomedical Research CentreNational Institute on Aging, NIHBaltimoreMarylandUSA
| | - Luigi Ferrucci
- Biomedical Research CentreNational Institute on Aging, NIHBaltimoreMarylandUSA
| |
Collapse
|
24
|
Lee YC, Nam Y, Kim M, Kim SI, Lee JW, Eun YG, Kim D. Prognostic significance of senescence-related tumor microenvironment genes in head and neck squamous cell carcinoma. Aging (Albany NY) 2023; 16:985-1001. [PMID: 38154113 PMCID: PMC10866405 DOI: 10.18632/aging.205346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/06/2023] [Indexed: 12/30/2023]
Abstract
The impact of the senescence related microenvironment on cancer prognosis and therapeutic response remains poorly understood. In this study, we investigated the prognostic significance of senescence related tumor microenvironment genes (PSTGs) and their potential implications for immunotherapy response. Using the Cancer Genome Atlas- head and neck squamous cell carcinoma (HNSC) data, we identified two subtypes based on the expression of PSTGs, acquired from tumor-associated senescence genes, tumor microenvironment (TME)-related genes, and immune-related genes, using consensus clustering. Using the LASSO, we constructed a risk model consisting of senescence related TME core genes (STCGs). The two subtypes exhibited significant differences in prognosis, genetic alterations, methylation patterns, and enriched pathways, and immune infiltration. Our risk model stratified patients into high-risk and low-risk groups and validated in independent cohorts. The high-risk group showed poorer prognosis and immune inactivation, suggesting reduced responsiveness to immunotherapy. Additionally, we observed a significant enrichment of STCGs in stromal cells using single-cell RNA transcriptome data. Our findings highlight the importance of the senescence related TME in HNSC prognosis and response to immunotherapy. This study contributes to a deeper understanding of the complex interplay between senescence and the TME, with potential implications for precision medicine and personalized treatment approaches in HNSC.
Collapse
Affiliation(s)
- Young Chan Lee
- Department of Otolaryngology-Head and Neck Surgery, Kyung Hee University School of Medicine, Kyung Hee University Hospital at Gangdong, Seoul, Republic of Korea
- Department of Medicine (AgeTech-Service Convergence Major) College of Medicine, Kyung Hee University, Seoul, Republic of Korea
- Department of Biostatistics, Epidemiology and Informatics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yonghyun Nam
- Department of Biostatistics, Epidemiology and Informatics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Minjeong Kim
- Department of Medicine (AgeTech-Service Convergence Major) College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Su Il Kim
- Department of Otolaryngology-Head and Neck Surgery, Kyung Hee University School of Medicine, Kyung Hee University Hospital at Gangdong, Seoul, Republic of Korea
| | - Jung-Woo Lee
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Kyung Hee University, Seoul, Republic of Korea
| | - Young-Gyu Eun
- Department of Otolaryngology-Head and Neck Surgery, Kyung Hee University School of Medicine, Kyung Hee University Medical Center, Seoul, Republic of Korea
| | - Dokyoon Kim
- Department of Biostatistics, Epidemiology and Informatics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Biomedical Informatics, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
25
|
Jiang G, Shao J, Tang T, Wang M, Wang J, Jia X, Lai S. TMT-Based Proteomics Analysis Revealed the Protein Changes in Perirenal Fat from Obese Rabbits. Int J Mol Sci 2023; 24:17167. [PMID: 38138996 PMCID: PMC10743514 DOI: 10.3390/ijms242417167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
Obesity has become increasingly prevalent in recent years, and there is a need for a deeper understanding of the complex pathogenesis underlying the obesity condition. Therefore, the objective of this study was to investigate how a high-fat diet (HFD) affects protein expression in a female-rabbit model compared to a standard normal-diet group (SND), to gain comprehensive insights into the molecular mechanisms involved in obesity. To achieve this objective, a tandem mass tag (TMT)-based quantitative proteomics analysis was conducted to examine the molecular changes occurring in the white adipose tissue (WAT) from the HFD and SND groups. The sequencing results identified a total of 4215 proteins, among which 151 proteins exhibited significant differential expression. Specifically, there were 85 upregulated proteins and 66 downregulated proteins in the HFD group compared to the SND group. Further analysis of these differentially expressed proteins (DEPs) revealed their involvement in crucial biological processes, including energy metabolism, hormonal regulation, and inflammatory response. In conclusion, this study sheds light on the impact of HFD on protein expression in a female-rabbit model, providing new insights into the molecular mechanisms underlying obesity and the associated metabolic disorders.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Songjia Lai
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (G.J.); (J.S.); (T.T.); (M.W.); (J.W.); (X.J.)
| |
Collapse
|
26
|
Kato D, Aoyama Y, Nishida K, Takahashi Y, Sakamoto T, Takeda I, Tatematsu T, Go S, Saito Y, Kunishima S, Cheng J, Hou L, Tachibana Y, Sugio S, Kondo R, Eto F, Sato S, Moorhouse AJ, Yao I, Kadomatsu K, Setou M, Wake H. Regulation of lipid synthesis in myelin modulates neural activity and is required for motor learning. Glia 2023; 71:2591-2608. [PMID: 37475643 DOI: 10.1002/glia.24441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 06/11/2023] [Accepted: 07/03/2023] [Indexed: 07/22/2023]
Abstract
Brain function relies on both rapid electrical communication in neural circuitry and appropriate patterns or synchrony of neural activity. Rapid communication between neurons is facilitated by wrapping nerve axons with insulation by a myelin sheath composed largely of different lipids. Recent evidence has indicated that the extent of myelination of nerve axons can adapt based on neural activity levels and this adaptive myelination is associated with improved learning of motor tasks, suggesting such plasticity may enhance effective learning. In this study, we examined whether another aspect of myelin plasticity-changes in myelin lipid synthesis and composition-may also be associated with motor learning. We combined a motor learning task in mice with in vivo two-photon imaging of neural activity in the primary motor cortex (M1) to distinguish early and late stages of learning and then probed levels of some key myelin lipids using mass spectrometry analysis. Sphingomyelin levels were elevated in the early stage of motor learning while galactosylceramide levels were elevated in the middle and late stages of motor learning, and these changes were correlated across individual mice with both learning performance and neural activity changes. Targeted inhibition of oligodendrocyte-specific galactosyltransferase expression, the enzyme that synthesizes myelin galactosylceramide, impaired motor learning. Our results suggest regulation of myelin lipid composition could be a novel facet of myelin adaptations associated with learning.
Collapse
Affiliation(s)
- Daisuke Kato
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Division of Multicellular Circuit Dynamics, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan
| | - Yuki Aoyama
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kazuki Nishida
- Division of System Neuroscience, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yutaka Takahashi
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Takumi Sakamoto
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Ikuko Takeda
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Division of Multicellular Circuit Dynamics, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan
| | - Tsuyako Tatematsu
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shiori Go
- Institute for Glyco-core Research, Nagoya University, Nagoya, Japan
| | - Yutaro Saito
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shiho Kunishima
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Jinlei Cheng
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Lingnan Hou
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshihisa Tachibana
- Division of System Neuroscience, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Shouta Sugio
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Reon Kondo
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Fumihiro Eto
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Japan
- Department of Biomedical Chemistry, School of Science and Technology, Kwansei Gakuin University, Sanda, Japan
| | - Shumpei Sato
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Andrew J Moorhouse
- School of Medical Sciences, UNSW Sydney, Sydney, New South Wales, Australia
| | - Ikuko Yao
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Japan
- Department of Biomedical Chemistry, School of Science and Technology, Kwansei Gakuin University, Sanda, Japan
| | - Kenji Kadomatsu
- Institute for Glyco-core Research, Nagoya University, Nagoya, Japan
| | - Mitsutoshi Setou
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hiroaki Wake
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Division of Multicellular Circuit Dynamics, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan
- Center of Optical Scattering Image Science, Kobe University, Kobe, Japan
- Department of Physiological Sciences, Graduate University for Advanced Studies, SOKENDAI, Hayama, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Saitama, Japan
| |
Collapse
|
27
|
Meas SJ, Daire GM, Friedman MA, DeNapoli R, Ghosh P, Farr JN, Donahue HJ. Hindlimb Unloading Induces Bone Microarchitectural and Transcriptomic Changes in Murine Long Bones in an Age-Dependent Manner. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.09.561510. [PMID: 37873408 PMCID: PMC10592678 DOI: 10.1101/2023.10.09.561510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Age and disuse-related bone loss both result in decreases in bone mineral density, cortical thickness, and trabecular thickness and connectivity. Disuse induces physiological changes in bone like those seen with aging. Bone microarchitecture and biomechanical properties were compared between 6- and 22-month-old C57BL/6J male control mice and 6-month-old mice that were hindlimb unloaded (HLU) for 3 weeks. Epiphyseal trabecular bone was the compartment most affected by HLU and demonstrated an intermediate bone phenotype between age-matched controls and aged controls. RNA extracted from whole-bone marrow-flushed tibiae was sequenced and analyzed. Differential gene expression analysis additionally included 4-month-old male mice unloaded for 3 weeks compared to age-matched controls. Gene ontology analysis demonstrated that there were age-dependent differences in differentially expressed genes. Genes related to downregulation of cellular processes were most affected in 4-month-old mice after disuse whereas those related to mitochondrial function were most affected in 6- month-old mice. Cell-cycle transition was downregulated with aging. A publicly available dataset (GSE169292) from 3-month female C57BL/6N mice unloaded for 7 days was included in ingenuity pathway analysis with the other datasets. IPA was used to identify the leading canonical pathways and upstream regulators in each HLU age group. IPA identified "Senescence Pathway" as the second leading canonical pathway enriched in mice exposed to HLU. HLU induced activation of the senescence pathway in 3- month and 4-month-old mice but inhibited it in 6-month-old mice. In conclusion, we demonstrate that hindlimb unloading and aging initiate similar changes in bone microarchitecture and gene expression. However, aging is responsible for more significant transcriptome and tissue-level changes compared to hindlimb unloading. Highlights Epiphyseal trabecular bone is most susceptible to hindlimb unloading.Hindlimb unloaded limbs resemble an intermediate phenotype between age-matched and aged controls.Hindlimb unloading induces gene expression changes that are age dependent and may lead to inflammation and/or mitochondrial dysfunction depending on context.Younger mice (3-4 months) activate the senescence pathway upon hindlimb unloading, whereas skeletally mature (6 months) mice inhibit it.
Collapse
|
28
|
Zhao T, Li J, Wang Y, Guo X, Sun Y. Integrative metabolome and lipidome analyses of plasma in neovascular macular degeneration. Heliyon 2023; 9:e20329. [PMID: 37780745 PMCID: PMC10539639 DOI: 10.1016/j.heliyon.2023.e20329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/09/2023] [Accepted: 09/19/2023] [Indexed: 10/03/2023] Open
Abstract
Age-related macular degeneration (AMD) causes irreversible vision-loss among the elderly in industrial countries. Neovascular AMD (nAMD), which refers to late-stage AMD, is characterized by severe vision-threatening choroidal neovascularization (CNV). Herein, we constructed a global metabolic network of nAMD, based on untargeted metabolomic and lipidomic analysis of plasma samples collected from sixty subjects (30 nAMD patients and 30 age-matched controls). Among the nAMD and control groups, 62 and 44 significantly different metabolites were detected in the positive and negative ion modes, respectively. Grouping analysis further showed that lipid and lipid-like molecule-based superclasses contained the highest number of significantly different metabolites. Lipidomic analysis revealed that 53 lipids among the nAMD and control groups differed significantly; these belonged to four major lipid categories (glycerophospholipids, sphingolipids, glycerolipids, and fatty acids). A discriminative biomarker panel comprising 16 metabolites and lipids, which was constructed using multivariate statistical machine learning methods, could effectively identify nAMD cases. Among these 16 compounds, eight were lipids that belonged to three lipid categories (glycerophospholipids, sphingolipids, and prenol lipids). The top three biomarkers with the highest importance scores were all lipids (a glycerophospholipid and two sphingolipids), highlighting the crucial role played by glycerophospholipid and sphingolipid pathways in nAMD. These differences between the metabolic and lipid profiles of nAMD patients and elderly individuals without AMD provide a readout of the overall metabolic status of nAMD. Further insights into the identified discriminative biomarkers may pave the way for future diagnostic and therapeutic interventions for nAMD.
Collapse
Affiliation(s)
- Tantai Zhao
- Department of Ophthalmology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Jiani Li
- Department of Ophthalmology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Yanbin Wang
- Department of Ophthalmology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Xiaojian Guo
- Department of Ophthalmology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Yun Sun
- Department of Ophthalmology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| |
Collapse
|
29
|
Obis E, Sol J, Andres-Benito P, Martín-Gari M, Mota-Martorell N, Galo-Licona JD, Piñol-Ripoll G, Portero-Otin M, Ferrer I, Jové M, Pamplona R. Lipidomic Alterations in the Cerebral Cortex and White Matter in Sporadic Alzheimer's Disease. Aging Dis 2023; 14:1887-1916. [PMID: 37196109 PMCID: PMC10529741 DOI: 10.14336/ad.2023.0217] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/17/2023] [Indexed: 05/19/2023] Open
Abstract
Non-targeted LC-MS/MS-based lipidomic analysis was conducted in post-mortem human grey matter frontal cortex area 8 (GM) and white matter of the frontal lobe centrum semi-ovale (WM) to identify lipidome fingerprints in middle-aged individuals with no neurofibrillary tangles and senile plaques, and cases at progressive stages of sporadic Alzheimer's disease (sAD). Complementary data were obtained using RT-qPCR and immunohistochemistry. The results showed that WM presents an adaptive lipid phenotype resistant to lipid peroxidation, characterized by a lower fatty acid unsaturation, peroxidizability index, and higher ether lipid content than the GM. Changes in the lipidomic profile are more marked in the WM than in GM in AD with disease progression. Four functional categories are associated with the different lipid classes affected in sAD: membrane structural composition, bioenergetics, antioxidant protection, and bioactive lipids, with deleterious consequences affecting both neurons and glial cells favoring disease progression.
Collapse
Affiliation(s)
- Elia Obis
- Department of Experimental Medicine, Lleida University (UdL), Lleida Biomedical Research Institute (IRBLleida), Lleida, Spain.
| | - Joaquim Sol
- Department of Experimental Medicine, Lleida University (UdL), Lleida Biomedical Research Institute (IRBLleida), Lleida, Spain.
- Catalan Institute of Health (ICS), Lleida, Spain, Research Support Unit (USR), Fundació Institut Universitari per a la Recerca en Atenció Primària de Salut Jordi Gol i Gurina (IDIAP JGol), Lleida, Spain.
| | - Pol Andres-Benito
- CIBERNED (Network Centre of Biomedical Research of Neurodegenerative Diseases), Institute of Health Carlos III, Ministry of Economy and Competitiveness, Madrid, Spain.
- Bellvitge University Hospital-Bellvitge Biomedical Research Institute (IDIBELL), E-08907 Hospitalet de Llobregat, Barcelona, Spain.
| | - Meritxell Martín-Gari
- Department of Experimental Medicine, Lleida University (UdL), Lleida Biomedical Research Institute (IRBLleida), Lleida, Spain.
| | - Natàlia Mota-Martorell
- Department of Experimental Medicine, Lleida University (UdL), Lleida Biomedical Research Institute (IRBLleida), Lleida, Spain.
| | - José Daniel Galo-Licona
- Department of Experimental Medicine, Lleida University (UdL), Lleida Biomedical Research Institute (IRBLleida), Lleida, Spain.
| | - Gerard Piñol-Ripoll
- Unitat Trastorns Cognitius, Clinical Neuroscience Research, Santa Maria University Hospital, IRBLleida, Lleida, Spain.
| | - Manuel Portero-Otin
- Department of Experimental Medicine, Lleida University (UdL), Lleida Biomedical Research Institute (IRBLleida), Lleida, Spain.
| | - Isidro Ferrer
- CIBERNED (Network Centre of Biomedical Research of Neurodegenerative Diseases), Institute of Health Carlos III, Ministry of Economy and Competitiveness, Madrid, Spain.
- Bellvitge University Hospital-Bellvitge Biomedical Research Institute (IDIBELL), E-08907 Hospitalet de Llobregat, Barcelona, Spain.
- Department of Pathology and Experimental Therapeutics, University of Barcelona, L’Hospitalet de Llobregat, Barcelona, Spain.
| | - Mariona Jové
- Department of Experimental Medicine, Lleida University (UdL), Lleida Biomedical Research Institute (IRBLleida), Lleida, Spain.
| | - Reinald Pamplona
- Department of Experimental Medicine, Lleida University (UdL), Lleida Biomedical Research Institute (IRBLleida), Lleida, Spain.
| |
Collapse
|
30
|
Lidgard B, Hoofnagle AN, Zelnick LR, de Boer IH, Fretts AM, Kestenbaum BR, Lemaitre RN, Robinson-Cohen C, Bansal N. High-Density Lipoprotein Lipidomics and Mortality in CKD. Kidney Med 2023; 5:100708. [PMID: 37731962 PMCID: PMC10507644 DOI: 10.1016/j.xkme.2023.100708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023] Open
Abstract
Rationale & Objective Patients with chronic kidney disease (CKD) have dysfunctional high-density lipoprotein (HDL) particles that lack cardioprotective properties; altered lipid composition may be associated with these changes. To investigate HDL lipids as potential cardiovascular risk factors in CKD, we tested the associations of HDL ceramides, sphingomyelins, and phosphatidylcholines with mortality. Study Design We leveraged data from a longitudinal prospective cohort of participants with CKD. Setting & Participants We included participants aged greater than 21 years with CKD, excluding those on maintenance dialysis or with prior kidney transplant. Exposure HDL particles were isolated using density gradient ultracentrifugation. We quantified the relative abundance of HDL ceramides, sphingomyelins, and phosphatidylcholines via liquid chromatography tandem mass spectrometry (LC-MS/MS). Outcomes Our primary outcome was all-cause mortality. Analytical Approach We tested associations using Cox regressions adjusted for demographics, comorbid conditions, laboratory values, medication use, and highly correlated lipids with opposed effects, controlling for multiple comparisons with false discovery rates (FDR). Results There were 168 deaths over a median follow-up of 6.12 years (interquartile range, 3.71-9.32). After adjustment, relative abundance of HDL ceramides (HR, 1.22 per standard deviation; 95% CI, 1.06-1.39), sphingomyelins with long fatty acids (HR, 1.44; 95% CI, 1.05-1.98), and saturated and monounsaturated phosphatidylcholines (HR, 1.22; 95% CI, 1.06-1.41) were significantly associated with increased risk of all-cause mortality (FDR < 5%). Limitations We were unable to test associations with cardiovascular disease given limited power. HDL lipidomics may not reflect plasma lipidomics. LC-MS/MS is unable to differentiate between glucosylceramides and galactosylceramides. The cohort was comprised of research volunteers in the Seattle area with CKD. Conclusions Greater relative HDL abundance of 3 classes of lipids was associated with higher risk of all-cause mortality in CKD; sphingomyelins with very long fatty acids were associated with a lower risk. Altered lipid composition of HDL particles may be a novel cardiovascular risk factor in CKD. Plain-Language Summary Patients with chronic kidney disease have abnormal high-density lipoprotein (HDL) particles that lack the beneficial properties associated with these particles in patients with normal kidney function. To investigate if small lipid molecules found on the surface of HDL might be associated with these changes, we tested the associations of lipid molecules found on HDL with death among patients with chronic kidney disease. We found that several lipid molecules found on the surface of HDL were associated with increased risk of death among these patients. These findings suggest that lipid molecules may be risk factors for death among patients with chronic kidney disease.
Collapse
|
31
|
Sharma R, Diwan B. Lipids and the hallmarks of ageing: From pathology to interventions. Mech Ageing Dev 2023; 215:111858. [PMID: 37652278 DOI: 10.1016/j.mad.2023.111858] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/21/2023] [Accepted: 08/28/2023] [Indexed: 09/02/2023]
Abstract
Lipids are critical structural and functional architects of cellular homeostasis. Change in systemic lipid profile is a clinical indicator of underlying metabolic pathologies, and emerging evidence is now defining novel roles of lipids in modulating organismal ageing. Characteristic alterations in lipid metabolism correlate with age, and impaired systemic lipid profile can also accelerate the development of ageing phenotype. The present work provides a comprehensive review of the extent of lipids as regulators of the modern hallmarks of ageing viz., cellular senescence, chronic inflammation, gut dysbiosis, telomere attrition, genome instability, proteostasis and autophagy, epigenetic alterations, and stem cells dysfunctions. Current evidence on the modulation of each of these hallmarks has been discussed with emphasis on inherent age-dependent deficiencies in lipid metabolism as well as exogenous lipid changes. There appears to be sufficient evidence to consider impaired lipid metabolism as key driver of the ageing process although much of knowledge is yet fragmented. Considering dietary lipids, the type and quantity of lipids in the diet is a significant, but often overlooked determinant that governs the effects of lipids on ageing. Further research using integrative approaches amidst the known aging hallmarks is highly desirable for understanding the therapeutics of lipids associated with ageing.
Collapse
Affiliation(s)
- Rohit Sharma
- Nutrigerontology Laboratory, Faculty of Applied Sciences & Biotechnology, Shoolini University, Solan 173229, India.
| | - Bhawna Diwan
- Nutrigerontology Laboratory, Faculty of Applied Sciences & Biotechnology, Shoolini University, Solan 173229, India
| |
Collapse
|
32
|
Spanos F, Deleidi M. Glycolipids in Parkinson's disease: beyond neuronal function. FEBS Open Bio 2023; 13:1558-1579. [PMID: 37219461 PMCID: PMC10476577 DOI: 10.1002/2211-5463.13651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/10/2023] [Accepted: 05/22/2023] [Indexed: 05/24/2023] Open
Abstract
Glycolipid balance is key to normal body function, and its alteration can lead to a variety of diseases involving multiple organs and tissues. Glycolipid disturbances are also involved in Parkinson's disease (PD) pathogenesis and aging. Increasing evidence suggests that glycolipids affect cellular functions beyond the brain, including the peripheral immune system, intestinal barrier, and immunity. Hence, the interplay between aging, genetic predisposition, and environmental exposures could initiate systemic and local glycolipid changes that lead to inflammatory reactions and neuronal dysfunction. In this review, we discuss recent advances in the link between glycolipid metabolism and immune function and how these metabolic changes can exacerbate immunological contributions to neurodegenerative diseases, with a focus on PD. Further understanding of the cellular and molecular mechanisms that control glycolipid pathways and their impact on both peripheral tissues and the brain will help unravel how glycolipids shape immune and nervous system communication and the development of novel drugs to prevent PD and promote healthy aging.
Collapse
Affiliation(s)
- Fokion Spanos
- Institut Imagine, INSERM UMR1163Paris Cité UniversityFrance
- Aligning Science Across Parkinson's (ASAP) Collaborative Research NetworkChevy ChaseMDUSA
| | - Michela Deleidi
- Institut Imagine, INSERM UMR1163Paris Cité UniversityFrance
- Aligning Science Across Parkinson's (ASAP) Collaborative Research NetworkChevy ChaseMDUSA
- Department of Neurodegenerative Diseases, Center of Neurology, Hertie Institute for Clinical Brain ResearchUniversity of TübingenGermany
| |
Collapse
|
33
|
Lidgard B, Bansal N, Zelnick LR, Hoofnagle AN, Fretts AM, Longstreth WT, Shlipak MG, Siscovick DS, Umans JG, Lemaitre RN. Evaluation of plasma sphingolipids as mediators of the relationship between kidney disease and cardiovascular events. EBioMedicine 2023; 95:104765. [PMID: 37634384 PMCID: PMC10474367 DOI: 10.1016/j.ebiom.2023.104765] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/04/2023] [Accepted: 08/06/2023] [Indexed: 08/29/2023] Open
Abstract
BACKGROUND Sphingolipids are a family of circulating lipids with regulatory and signaling roles that are strongly associated with both eGFR and cardiovascular disease. Patients with chronic kidney disease (CKD) are at high risk for cardiovascular events, and have different plasma concentrations of certain plasma sphingolipids compared to patients with normal kidney function. We hypothesize that circulating sphingolipids partially mediate the associations between eGFR and cardiovascular events. METHODS We measured the circulating concentrations of 8 sphingolipids, including 4 ceramides and 4 sphingomyelins with the fatty acids 16:0, 20:0, 22:0, and 24:0, in plasma from 3,463 participants in a population-based cohort (Cardiovascular Health Study) without prevalent cardiovascular disease. We tested the adjusted mediation effects by these sphingolipids of the associations between eGFR and incident cardiovascular disease via quasi-Bayesian Monte Carlo method with 2,000 simulations, using a Bonferroni correction for significance. FINDINGS The mean (±SD) eGFR was 70 (±16) mL/min/1.73 m2; 62% of participants were women. Lower eGFR was associated with higher plasma ceramide-16:0 and sphingomyelin-16:0, and lower ceramides and sphingomyelins-20:0 and -22:0. Lower eGFR was associated with risk of incident heart failure and ischemic stroke, but not myocardial infarction. Five of eight sphingolipids partially mediated the association between eGFR and heart failure. The sphingolipids associated with the greatest proportion mediated were ceramide-16:0 (proportion mediated 13%, 95% CI 8-22%) and sphingomyelin-16:0 (proportion mediated 10%, 95% CI 5-17%). No sphingolipids mediated the association between eGFR and ischemic stroke. INTERPRETATION Plasma sphingolipids partially mediated the association between lower eGFR and incident heart failure. Altered sphingolipids metabolism may be a novel mechanism for heart failure in patients with CKD. FUNDING This study was supported by T32 DK007467 and a KidneyCure Ben J. Lipps Research Fellowship (Dr. Lidgard). Sphingolipid measurements were supported by R01 HL128575 (Dr. Lemaitre) and R01 HL111375 (Dr. Hoofnagle) from the National Heart, Lung, and Blood Institute (NHLBI).
Collapse
Affiliation(s)
- Benjamin Lidgard
- Department of Medicine, University of Washington, United States.
| | - Nisha Bansal
- Department of Medicine, University of Washington, United States
| | - Leila R Zelnick
- Department of Medicine, University of Washington, United States
| | | | - Amanda M Fretts
- Department of Medicine, University of Washington, United States
| | | | - Michael G Shlipak
- Kidney Health Research Collaborative, San Francisco Veterans Affairs Healthcare System and University of California San Francisco, United States
| | | | | | | |
Collapse
|
34
|
Issleny BM, Jamjoum R, Majumder S, Stiban J. Sphingolipids: From structural components to signaling hubs. Enzymes 2023; 54:171-201. [PMID: 37945171 DOI: 10.1016/bs.enz.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
In late November 2019, Prof. Lina M. Obeid passed away from cancer, a disease she spent her life researching and studying its intricate molecular underpinnings. Along with her husband, Prof. Yusuf A. Hannun, Obeid laid down the foundations of sphingolipid biochemistry and oversaw its remarkable evolution over the years. Lipids are a class of macromolecules that are primarily associated with cellular architecture. In fact, lipids constitute the perimeter of the cell in such a way that without them, there cannot be cells. Hence, much of the early research on lipids identified the function of this class of biological molecules as merely structural. Nevertheless, unlike proteins, carbohydrates, and nucleic acids, lipids are elaborately diverse as they are not made up of monomers in polymeric forms. This diversity in structure is clearly mirrored by functional pleiotropy. In this chapter, we focus on a major subset of lipids, sphingolipids, and explore their historic rise from merely inert structural components of plasma membranes to lively and necessary signaling molecules that transmit various signals and control many cellular processes. We will emphasize the works of Lina Obeid since she was an integral pillar of the sphingolipid research world.
Collapse
Affiliation(s)
- Batoul M Issleny
- Department of Pharmacy, Birzeit University, West Bank, Palestine
| | - Rama Jamjoum
- Department of Pharmacy, Birzeit University, West Bank, Palestine
| | | | - Johnny Stiban
- Department of Biology and Biochemistry, Birzeit University, West Bank, Palestine.
| |
Collapse
|
35
|
Liu B, Meng Q, Gao X, Sun H, Xu Z, Wang Y, Zhou H. Lipid and glucose metabolism in senescence. Front Nutr 2023; 10:1157352. [PMID: 37680899 PMCID: PMC10481967 DOI: 10.3389/fnut.2023.1157352] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 08/09/2023] [Indexed: 09/09/2023] Open
Abstract
Senescence is an inevitable biological process. Disturbances in glucose and lipid metabolism are essential features of cellular senescence. Given the important roles of these types of metabolism, we review the evidence for how key metabolic enzymes influence senescence and how senescence-related secretory phenotypes, autophagy, apoptosis, insulin signaling pathways, and environmental factors modulate glucose and lipid homeostasis. We also discuss the metabolic alterations in abnormal senescence diseases and anti-cancer therapies that target senescence through metabolic interventions. Our work offers insights for developing pharmacological strategies to combat senescence and cancer.
Collapse
Affiliation(s)
- Bin Liu
- Department of Urology II, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Qingfei Meng
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, Jilin, China
| | - Xin Gao
- Department of Urology II, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Huihui Sun
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, Jilin, China
| | - Zhixiang Xu
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, Jilin, China
| | - Yishu Wang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, Jilin, China
| | - Honglan Zhou
- Department of Urology II, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
36
|
Pandey T, Wang B, Wang C, Zu J, Deng H, Shen K, do Vale GD, McDonald JG, Ma DK. LPD-3 as a megaprotein brake for aging and insulin-mTOR signaling in C. elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.14.528431. [PMID: 36824874 PMCID: PMC9949100 DOI: 10.1101/2023.02.14.528431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Insulin-mTOR signaling drives anabolic growth during organismal development, while its late-life dysregulation may detrimentally contribute to aging and limit lifespans. Age-related regulatory mechanisms and functional consequences of insulin-mTOR remain incompletely understood. Here we identify LPD-3 as a megaprotein that orchestrates the tempo of insulin-mTOR signaling during C. elegans aging. We find that an agonist insulin INS-7 is drastically over-produced in early life and shortens lifespan in lpd-3 mutants, a C. elegans model of human Alkuraya-Kučinskas syndrome. LPD-3 forms a bridge-like tunnel megaprotein to facilitate phospholipid trafficking to plasma membranes. Lipidomic profiling reveals increased abundance of hexaceramide species in lpd-3 mutants, accompanied by up-regulation of hexaceramide biosynthetic enzymes, including HYL-1 (Homolog of Yeast Longevity). Reducing HYL-1 activity decreases INS-7 levels and rescues the lifespan of lpd-3 mutants through insulin receptor/DAF-2 and mTOR/LET-363. LPD3 antagonizes SINH-1, a key mTORC2 component, and decreases expression with age in wild type animals. We propose that LPD-3 acts as a megaprotein brake for aging and its age-dependent decline restricts lifespan through the sphingolipid-hexaceramide and insulin-mTOR pathways.
Collapse
Affiliation(s)
- Taruna Pandey
- Cardiovascular Research Institute and Department of Physiology, University of California San Francisco, San Francisco, USA
| | - Bingying Wang
- Cardiovascular Research Institute and Department of Physiology, University of California San Francisco, San Francisco, USA
| | - Changnan Wang
- Cardiovascular Research Institute and Department of Physiology, University of California San Francisco, San Francisco, USA
| | - Jenny Zu
- Cardiovascular Research Institute and Department of Physiology, University of California San Francisco, San Francisco, USA
| | - Huichao Deng
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, USA
| | - Kang Shen
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, USA
| | - Goncalo Dias do Vale
- Center for Human Nutrition and Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, USA
| | - Jeffrey G. McDonald
- Center for Human Nutrition and Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, USA
| | - Dengke K. Ma
- Cardiovascular Research Institute and Department of Physiology, University of California San Francisco, San Francisco, USA
- Innovative Genomics Institute, University of California, Berkeley, USA
| |
Collapse
|
37
|
Maus KD, Stephenson DJ, Macknight HP, Vu NT, Hoeferlin LA, Kim M, Diegelmann RF, Xie X, Chalfant CE. Skewing cPLA 2α activity toward oxoeicosanoid production promotes neutrophil N2 polarization, wound healing, and the response to sepsis. Sci Signal 2023; 16:eadd6527. [PMID: 37433004 PMCID: PMC10565596 DOI: 10.1126/scisignal.add6527] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 06/16/2023] [Indexed: 07/13/2023]
Abstract
Uncontrolled inflammation is linked to poor outcomes in sepsis and wound healing, both of which proceed through distinct inflammatory and resolution phases. Eicosanoids are a class of bioactive lipids that recruit neutrophils and other innate immune cells. The interaction of ceramide 1-phosphate (C1P) with the eicosanoid biosynthetic enzyme cytosolic phospholipase A2 (cPLA2) reduces the production of a subtype of eicosanoids called oxoeicosanoids. We investigated the effect of shifting the balance in eicosanoid biosynthesis on neutrophil polarization and function. Knockin mice expressing a cPLA2 mutant lacking the C1P binding site (cPLA2αKI/KI mice) showed enhanced and sustained neutrophil infiltration into wounds and the peritoneum during the inflammatory phase of wound healing and sepsis, respectively. The mice exhibited improved wound healing and reduced susceptibility to sepsis, which was associated with an increase in anti-inflammatory N2-type neutrophils demonstrating proresolution behaviors and a decrease in proinflammatory N1-type neutrophils. The N2 polarization of cPLA2αKI/KI neutrophils resulted from increased oxoeicosanoid biosynthesis and autocrine signaling through the oxoeicosanoid receptor OXER1 and partially depended on OXER1-dependent inhibition of the pentose phosphate pathway (PPP). Thus, C1P binding to cPLA2α suppresses neutrophil N2 polarization, thereby impairing wound healing and the response to sepsis.
Collapse
Affiliation(s)
- Kenneth D Maus
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL 33620, USA
| | - Daniel J Stephenson
- Department of Medicine, Division of Hematology and Oncology, University of Virginia, Charlottesville, VA 22903, USA
| | - H Patrick Macknight
- Department of Medicine, Division of Hematology and Oncology, University of Virginia, Charlottesville, VA 22903, USA
| | - Ngoc T Vu
- Department of Applied Biochemistry, School of Biotechnology, International University-VNU HCM, Ho Chi Minh City, Vietnam
| | - L Alexis Hoeferlin
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University-School of Medicine, Richmond VA 23298, USA
| | - Minjung Kim
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL 33620, USA
| | - Robert F Diegelmann
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University-School of Medicine, Richmond VA 23298, USA
| | - Xiujie Xie
- Department of Medicine, Division of Hematology and Oncology, University of Virginia, Charlottesville, VA 22903, USA
| | - Charles E Chalfant
- Department of Medicine, Division of Hematology and Oncology, University of Virginia, Charlottesville, VA 22903, USA
- Department of Cell Biology, University of Virginia, Charlottesville, VA 22903, USA
- Program in Cancer Biology, University of Virginia Cancer Center, Charlottesville, VA 22903, USA
- Research Service, Richmond Veterans Administration Medical Center, Richmond VA, 23298, USA
| |
Collapse
|
38
|
Yuan H, Zhu B, Li C, Zhao Z. Ceramide in cerebrovascular diseases. Front Cell Neurosci 2023; 17:1191609. [PMID: 37333888 PMCID: PMC10272456 DOI: 10.3389/fncel.2023.1191609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/18/2023] [Indexed: 06/20/2023] Open
Abstract
Ceramide, a bioactive sphingolipid, serves as an important second messenger in cell signal transduction. Under stressful conditions, it can be generated from de novo synthesis, sphingomyelin hydrolysis, and/or the salvage pathway. The brain is rich in lipids, and abnormal lipid levels are associated with a variety of brain disorders. Cerebrovascular diseases, which are mainly caused by abnormal cerebral blood flow and secondary neurological injury, are the leading causes of death and disability worldwide. There is a growing body of evidence for a close connection between elevated ceramide levels and cerebrovascular diseases, especially stroke and cerebral small vessel disease (CSVD). The increased ceramide has broad effects on different types of brain cells, including endothelial cells, microglia, and neurons. Therefore, strategies that reduce ceramide synthesis, such as modifying sphingomyelinase activity or the rate-limiting enzyme of the de novo synthesis pathway, serine palmitoyltransferase, may represent novel and promising therapeutic approaches to prevent or treat cerebrovascular injury-related diseases.
Collapse
|
39
|
Lee M, Lee SY, Bae YS. Functional roles of sphingolipids in immunity and their implication in disease. Exp Mol Med 2023; 55:1110-1130. [PMID: 37258585 PMCID: PMC10318102 DOI: 10.1038/s12276-023-01018-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 06/02/2023] Open
Abstract
Sphingolipids, which are components of cellular membranes and organ tissues, can be synthesized or degraded to modulate cellular responses according to environmental cues, and the balance among the different sphingolipids is important for directing immune responses, regardless of whether they originate, as intra- or extracellular immune events. Recent progress in multiomics-based analyses and methodological approaches has revealed that human health and diseases are closely related to the homeostasis of sphingolipid metabolism, and disease-specific alterations in sphingolipids and related enzymes can be prognostic markers of human disease progression. Accumulating human clinical data from genome-wide association studies and preclinical data from disease models provide support for the notion that sphingolipids are the missing pieces that supplement our understanding of immune responses and diseases in which the functions of the involved proteins and nucleotides have been established. In this review, we analyze sphingolipid-related enzymes and reported human diseases to understand the important roles of sphingolipid metabolism. We discuss the defects and alterations in sphingolipid metabolism in human disease, along with functional roles in immune cells. We also introduce several methodological approaches and provide summaries of research on sphingolipid modulators in this review that should be helpful in studying the roles of sphingolipids in preclinical studies for the investigation of experimental and molecular medicines.
Collapse
Affiliation(s)
- Mingyu Lee
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, 06355, Republic of Korea
| | - Suh Yeon Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Yoe-Sik Bae
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, 06355, Republic of Korea.
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
40
|
Lima TI, Laurila PP, Wohlwend M, Morel JD, Goeminne LJE, Li H, Romani M, Li X, Oh CM, Park D, Rodríguez-López S, Ivanisevic J, Gallart-Ayala H, Crisol B, Delort F, Batonnet-Pichon S, Silveira LR, Sankabattula Pavani Veera Venkata L, Padala AK, Jain S, Auwerx J. Inhibiting de novo ceramide synthesis restores mitochondrial and protein homeostasis in muscle aging. Sci Transl Med 2023; 15:eade6509. [PMID: 37196064 DOI: 10.1126/scitranslmed.ade6509] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 04/28/2023] [Indexed: 05/19/2023]
Abstract
Disruption of mitochondrial function and protein homeostasis plays a central role in aging. However, how these processes interact and what governs their failure in aging remain poorly understood. Here, we showed that ceramide biosynthesis controls the decline in mitochondrial and protein homeostasis during muscle aging. Analysis of transcriptome datasets derived from muscle biopsies obtained from both aged individuals and patients with a diverse range of muscle disorders revealed that changes in ceramide biosynthesis, as well as disturbances in mitochondrial and protein homeostasis pathways, are prevalent features in these conditions. By performing targeted lipidomics analyses, we found that ceramides accumulated in skeletal muscle with increasing age across Caenorhabditis elegans, mice, and humans. Inhibition of serine palmitoyltransferase (SPT), the rate-limiting enzyme of the ceramide de novo synthesis, by gene silencing or by treatment with myriocin restored proteostasis and mitochondrial function in human myoblasts, in C. elegans, and in the skeletal muscles of mice during aging. Restoration of these age-related processes improved health and life span in the nematode and muscle health and fitness in mice. Collectively, our data implicate pharmacological and genetic suppression of ceramide biosynthesis as potential therapeutic approaches to delay muscle aging and to manage related proteinopathies via mitochondrial and proteostasis remodeling.
Collapse
Affiliation(s)
- Tanes I Lima
- Laboratory of Integrative Systems Physiology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Pirkka-Pekka Laurila
- Laboratory of Integrative Systems Physiology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Martin Wohlwend
- Laboratory of Integrative Systems Physiology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Jean David Morel
- Laboratory of Integrative Systems Physiology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Ludger J E Goeminne
- Laboratory of Integrative Systems Physiology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Hao Li
- Laboratory of Integrative Systems Physiology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Mario Romani
- Laboratory of Integrative Systems Physiology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Xiaoxu Li
- Laboratory of Integrative Systems Physiology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Chang-Myung Oh
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, South Korea
| | - Dohyun Park
- Laboratory of Integrative Systems Physiology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Sandra Rodríguez-López
- Laboratory of Integrative Systems Physiology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Julijana Ivanisevic
- Metabolomics Platform, Faculty of Biology and Medicine, University of Lausanne (UNIL), Lausanne 1005, Switzerland
| | - Hector Gallart-Ayala
- Metabolomics Platform, Faculty of Biology and Medicine, University of Lausanne (UNIL), Lausanne 1005, Switzerland
| | - Barbara Crisol
- Laboratory of Integrative Systems Physiology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Florence Delort
- Laboratoire Biologie Fonctionnelle et Adaptative, UMR 8251, CNRS and Université Paris Cité, Paris 8251, France
| | - Sabrina Batonnet-Pichon
- Laboratoire Biologie Fonctionnelle et Adaptative, UMR 8251, CNRS and Université Paris Cité, Paris 8251, France
| | - Leonardo R Silveira
- Obesity and Comorbidities Research Center, University of Campinas, Campinas 13083-864, Brazil
| | | | - Anil K Padala
- Intonation Research Laboratories, Hyderabad 500076, India
| | - Suresh Jain
- Intonation Research Laboratories, Hyderabad 500076, India
| | - Johan Auwerx
- Laboratory of Integrative Systems Physiology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| |
Collapse
|
41
|
Sood A, Fernandes V, Preeti K, Khatri DK, Singh SB. Sphingosine 1 phosphate lyase inhibition rescues cognition in diabetic mice by promoting anti-inflammatory microglia. Behav Brain Res 2023; 446:114415. [PMID: 36997095 DOI: 10.1016/j.bbr.2023.114415] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023]
Abstract
Sphingosine-1-phosphate (S1P) is emerging as a crucial sphingolipid modulating neuroinflammation and cognition. S1P levels in the brain have been found to be decreased in cognitive impairment. S1P lyase (S1PL) is the key enzyme in metabolizing S1P and has been implicated in neuroinflammation. This study evaluated the effect of S1PL inhibition on cognition in type 2 diabetic mice. Fingolimod (0.5mg/kg and 1mg/kg) rescued cognition in high-fat diet and streptozotocin-induced diabetic mice, as evident in the Y maze and passive avoidance test. We further evaluated the effect of fingolimod on the activation of microglia in the pre-frontal cortex (PFC) and hippocampus of diabetic mice. Our study revealed that fingolimod inhibited S1PL and promoted anti-inflammatory microglia in both PFC and hippocampus of diabetic mice as it increased Ym-1 and arginase-1. The levels of p53 and apoptotic proteins (Bax and caspase-3) were elevated in the PFC and hippocampus of type 2 diabetic mice which fingolimod reversed. The underlying mechanism promoting anti-inflammatory microglial phenotype was also explored in this study. TIGAR, TP53-associated glycolysis and apoptosis regulator, is known to foster anti-inflammatory microglia and was found to be downregulated in the brain of type 2 diabetic mice. S1PL inhibition decreased the levels of p53 and promoted TIGAR, thereby increasing anti-inflammatory microglial phenotype and inhibiting apoptosis in the brain of diabetic mice. Our study reveals that S1PL inhibition could be beneficial in mitigating cognitive deficits in diabetic mice.
Collapse
Affiliation(s)
- Anika Sood
- Molecular & Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Telangana 500037, Hyderabad, India
| | - Valencia Fernandes
- Molecular & Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Telangana 500037, Hyderabad, India
| | - Kumari Preeti
- Molecular & Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Telangana 500037, Hyderabad, India
| | - Dharmendra Kumar Khatri
- Molecular & Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Telangana 500037, Hyderabad, India.
| | - Shashi Bala Singh
- Molecular & Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Telangana 500037, Hyderabad, India.
| |
Collapse
|
42
|
Salminen A. Aryl hydrocarbon receptor (AhR) impairs circadian regulation: impact on the aging process. Ageing Res Rev 2023; 87:101928. [PMID: 37031728 DOI: 10.1016/j.arr.2023.101928] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/23/2023] [Accepted: 04/06/2023] [Indexed: 04/11/2023]
Abstract
Circadian clocks control the internal sleep-wake rhythmicity of 24hours which is synchronized by the solar cycle. Circadian regulation of metabolism evolved about 2.5 billion years ago, i.e., the rhythmicity has been conserved from cyanobacteria and Archaea through to mammals although the mechanisms utilized have developed with evolution. While the aryl hydrocarbon receptor (AhR) is an evolutionarily conserved defence mechanism against environmental threats, it has gained many novel functions during evolution, such as the regulation of cell cycle, proteostasis, and many immune functions. There is robust evidence that AhR signaling impairs circadian rhythmicity, e.g., by interacting with the core BMAL1/CLOCK complex and disturbing the epigenetic regulation of clock genes. The maintenance of circadian rhythms is impaired with aging, disturbing metabolism and many important functions in aged organisms. Interestingly, it is known that AhR signaling promotes an age-related tissue degeneration, e.g., it is able to inhibit autophagy, enhance cellular senescence, and disrupt extracellular matrix. These alterations are rather similar to those induced by a long-term impairment of circadian rhythms. However, it is not known whether AhR signaling enhances the aging process by impairing circadian homeostasis. I will examine the experimental evidence indicating that AhR signaling is able to promote the age-related degeneration via a disruption of circadian rhythmicity.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland.
| |
Collapse
|
43
|
Burtscher J, Pepe G, Maharjan N, Riguet N, Di Pardo A, Maglione V, Millet GP. Sphingolipids and impaired hypoxic stress responses in Huntington disease. Prog Lipid Res 2023; 90:101224. [PMID: 36898481 DOI: 10.1016/j.plipres.2023.101224] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/20/2023] [Accepted: 03/05/2023] [Indexed: 03/11/2023]
Abstract
Huntington disease (HD) is a debilitating, currently incurable disease. Protein aggregation and metabolic deficits are pathological hallmarks but their link to neurodegeneration and symptoms remains debated. Here, we summarize alterations in the levels of different sphingolipids in an attempt to characterize sphingolipid patterns specific to HD, an additional molecular hallmark of the disease. Based on the crucial role of sphingolipids in maintaining cellular homeostasis, the dynamic regulation of sphingolipids upon insults and their involvement in cellular stress responses, we hypothesize that maladaptations or blunted adaptations, especially following cellular stress due to reduced oxygen supply (hypoxia) contribute to the development of pathology in HD. We review how sphingolipids shape cellular energy metabolism and control proteostasis and suggest how these functions may fail in HD and in combination with additional insults. Finally, we evaluate the potential of improving cellular resilience in HD by conditioning approaches (improving the efficiency of cellular stress responses) and the role of sphingolipids therein. Sphingolipid metabolism is crucial for cellular homeostasis and for adaptations following cellular stress, including hypoxia. Inadequate cellular management of hypoxic stress likely contributes to HD progression, and sphingolipids are potential mediators. Targeting sphingolipids and the hypoxic stress response are novel treatment strategies for HD.
Collapse
Affiliation(s)
- Johannes Burtscher
- Institute of Sport Sciences, University of Lausanne, 1015 Lausanne, Switzerland; Department of Biomedical Sciences, University of Lausanne, 1005 Lausanne, Switzerland.
| | - Giuseppe Pepe
- IRCCS Neuromed, Via Dell'Elettronica, 86077 Pozzilli, Italy
| | - Niran Maharjan
- Department of Neurology, Center for Experimental Neurology, Inselspital University Hospital, 3010 Bern, Switzerland; Department for Biomedical Research (DBMR), University of Bern, 3010 Bern, Switzerland
| | | | - Alba Di Pardo
- IRCCS Neuromed, Via Dell'Elettronica, 86077 Pozzilli, Italy
| | | | - Grégoire P Millet
- Institute of Sport Sciences, University of Lausanne, 1015 Lausanne, Switzerland; Department of Biomedical Sciences, University of Lausanne, 1005 Lausanne, Switzerland
| |
Collapse
|
44
|
The role of ApoE-mediated microglial lipid metabolism in brain aging and disease. IMMUNOMETABOLISM (COBHAM (SURREY, ENGLAND)) 2023; 5:e00018. [PMID: 36710921 PMCID: PMC9869962 DOI: 10.1097/in9.0000000000000018] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/20/2022] [Indexed: 01/31/2023]
Abstract
Microglia are a unique population of immune cells resident in the brain that integrate complex signals and dynamically change phenotypes in response to the brain microenvironment. In recent years, single-cell sequencing analyses have revealed profound cellular heterogeneity and context-specific transcriptional plasticity of microglia during brain development, aging, and disease. Emerging evidence suggests that microglia adapt phenotypic plasticity by flexibly reprogramming cellular metabolism to fulfill distinct immune functions. The control of lipid metabolism is central to the appropriate function and homeostasis of the brain. Microglial lipid metabolism regulated by apolipoprotein E (ApoE), a crucial lipid transporter in the brain, has emerged as a critical player in regulating neuroinflammation. The ApoE gene allelic variant, ε4, is associated with a greater risk for neurodegenerative diseases. In this review, we explore novel discoveries in microglial lipid metabolism mediated by ApoE. We elaborate on the functional impact of perturbed microglial lipid metabolism on the underlying pathogenesis of brain aging and disease.
Collapse
|
45
|
López-Hernández Y, Oropeza-Valdez JJ, García Lopez DA, Borrego JC, Murgu M, Valdez J, López JA, Monárrez-Espino J. Untargeted analysis in post-COVID-19 patients reveals dysregulated lipid pathways two years after recovery. Front Mol Biosci 2023; 10:1100486. [PMID: 36936993 PMCID: PMC10022496 DOI: 10.3389/fmolb.2023.1100486] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 02/16/2023] [Indexed: 03/06/2023] Open
Abstract
Introduction: Similar to what it has been reported with preceding viral epidemics (such as MERS, SARS, or influenza), SARS-CoV-2 infection is also affecting the human immunometabolism with long-term consequences. Even with underreporting, an accumulated of almost 650 million people have been infected and 620 million recovered since the start of the pandemic; therefore, the impact of these long-term consequences in the world population could be significant. Recently, the World Health Organization recognized the post-COVID syndrome as a new entity, and guidelines are being established to manage and treat this new condition. However, there is still uncertainty about the molecular mechanisms behind the large number of symptoms reported worldwide. Aims and Methods: In this study we aimed to evaluate the clinical and lipidomic profiles (using non-targeted lipidomics) of recovered patients who had a mild and severe COVID-19 infection (acute phase, first epidemic wave); the assessment was made two years after the initial infection. Results: Fatigue (59%) and musculoskeletal (50%) symptoms as the most relevant and persistent. Functional analyses revealed that sterols, bile acids, isoprenoids, and fatty esters were the predicted metabolic pathways affected in both COVID-19 and post-COVID-19 patients. Principal Component Analysis showed differences between study groups. Several species of phosphatidylcholines and sphingomyelins were identified and expressed in higher levels in post-COVID-19 patients compared to controls. The paired analysis (comparing patients with an active infection and 2 years after recovery) show 170 dysregulated features. The relationship of such metabolic dysregulations with the clinical symptoms, point to the importance of developing diagnostic and therapeuthic markers based on cell signaling pathways.
Collapse
Affiliation(s)
- Yamilé López-Hernández
- CONACyT-Metabolomics and Proteomics Laboratory, Academic Unit of Biological Sciences, Autonomous University of Zacatecas, Zacatecas, Mexico
- *Correspondence: Yamilé López-Hernández, ; Juan José Oropeza-Valdez,
| | - Juan José Oropeza-Valdez
- Metabolomics and Proteomics Laboratory, Academic Unit of Biological Sciences, Autonomous University of Zacatecas, Zacatecas, Mexico
- *Correspondence: Yamilé López-Hernández, ; Juan José Oropeza-Valdez,
| | | | - Juan Carlos Borrego
- Departamento de Epidemiología, Hospital General de Zona #1 “Emilio Varela Luján”, Instituto Mexicano del Seguro Social, Centro, Zacatecas, Mexico
| | - Michel Murgu
- Waters Technologies of Brazil, Alameda Tocantins, Barueri, Brazil
| | | | - Jesús Adrián López
- MicroRNAs and Cancer Laboratory, Academic Unit of Biological Sciences, Autonomous University of Zacatecas, Zacatecas, Mexico
| | - Joel Monárrez-Espino
- Department of Health Research, Christus Muguerza del Parque Hospital Chihuahua, University of Monterrey, San Pedro Garza García, Mexico
| |
Collapse
|
46
|
Laurila PP, Wohlwend M, Imamura de Lima T, Luan P, Herzig S, Zanou N, Crisol B, Bou-Sleiman M, Porcu E, Gallart-Ayala H, Handzlik MK, Wang Q, Jain S, D'Amico D, Salonen M, Metallo CM, Kutalik Z, Eichmann TO, Place N, Ivanisevic J, Lahti J, Eriksson JG, Auwerx J. Sphingolipids accumulate in aged muscle, and their reduction counteracts sarcopenia. NATURE AGING 2022; 2:1159-1175. [PMID: 37118545 DOI: 10.1038/s43587-022-00309-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 10/07/2022] [Indexed: 04/30/2023]
Abstract
Age-related muscle dysfunction and sarcopenia are major causes of physical incapacitation in older adults and currently lack viable treatment strategies. Here we find that sphingolipids accumulate in mouse skeletal muscle upon aging and that both genetic and pharmacological inhibition of sphingolipid synthesis prevent age-related decline in muscle mass while enhancing strength and exercise capacity. Inhibition of sphingolipid synthesis confers increased myogenic potential and promotes protein synthesis. Within the sphingolipid pathway, we show that accumulation of dihydroceramides is the culprit disturbing myofibrillar homeostasis. The relevance of sphingolipid pathways in human aging is demonstrated in two cohorts, the UK Biobank and Helsinki Birth Cohort Study in which gene expression-reducing variants of SPTLC1 and DEGS1 are associated with improved and reduced fitness of older individuals, respectively. These findings identify sphingolipid synthesis inhibition as an attractive therapeutic strategy for age-related sarcopenia and co-occurring pathologies.
Collapse
Affiliation(s)
- Pirkka-Pekka Laurila
- Laboratory of Integrative Systems Physiology, École polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| | - Martin Wohlwend
- Laboratory of Integrative Systems Physiology, École polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Tanes Imamura de Lima
- Laboratory of Integrative Systems Physiology, École polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Peiling Luan
- Laboratory of Integrative Systems Physiology, École polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Sébastien Herzig
- Laboratory of Integrative Systems Physiology, École polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Nadège Zanou
- Institute of Sport Sciences and Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Barbara Crisol
- Laboratory of Integrative Systems Physiology, École polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Maroun Bou-Sleiman
- Laboratory of Integrative Systems Physiology, École polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Eleonora Porcu
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Hector Gallart-Ayala
- Metabolomics Platform, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Michal K Handzlik
- Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Qi Wang
- Laboratory of Integrative Systems Physiology, École polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Suresh Jain
- Intonation Research Laboratories, Secunderabad, India
| | - Davide D'Amico
- Laboratory of Integrative Systems Physiology, École polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Minna Salonen
- Chronic Disease Prevention Unit, National Institute for Health and Welfare, Helsinki, Finland
| | - Christian M Metallo
- Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Zoltan Kutalik
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- University Center for Primary Care and Public Health, University of Lausanne, Lausanne, Switzerland
| | - Thomas O Eichmann
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- Center for Explorative Lipidomics, BioTechMed-Graz, Graz, Austria
| | - Nicolas Place
- Institute of Sport Sciences and Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Julijana Ivanisevic
- Metabolomics Platform, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Jari Lahti
- Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland
- Turku Institute for Advanced Studies, University of Turku, Turku, Finland
| | - Johan G Eriksson
- Department of General Practice and Primary Health Care, University of Helsinki and Helsinki University Hospital, University of Helsinki, Helsinki, Finland
- Folkhälsan Research Center, University of Helsinki, Helsinki, Finland
- Department of Obstetrics and Gynecology, National University Singapore, Yong Loo Lin School of Medicine, Singapore, Singapore
| | - Johan Auwerx
- Laboratory of Integrative Systems Physiology, École polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
47
|
Constantinescu V, Haase R, Akgün K, Ziemssen T. S1P receptor modulators and the cardiovascular autonomic nervous system in multiple sclerosis: a narrative review. Ther Adv Neurol Disord 2022; 15:17562864221133163. [PMID: 36437849 PMCID: PMC9685213 DOI: 10.1177/17562864221133163] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 09/29/2022] [Indexed: 01/21/2024] Open
Abstract
UNLABELLED Sphingosine 1-phosphate (S1P) receptor (S1PR) modulators have a complex mechanism of action, which are among the most efficient therapeutic options in multiple sclerosis (MS) and represent a promising approach for other immune-mediated diseases. The S1P signaling pathway involves the activation of five extracellular S1PR subtypes (S1PR1-S1PR5) that are ubiquitous and have a wide range of effects. Besides the immunomodulatory beneficial outcome in MS, S1P signaling regulates the cardiovascular function via S1PR1-S1PR3 subtypes, which reside on cardiac myocytes, endothelial, and vascular smooth muscle cells. In our review, we describe the mechanisms and clinical effects of S1PR modulators on the cardiovascular system. In the past, mostly short-term effects of S1PR modulators on the cardiovascular system have been studied, while data on long-term effects still need to be investigated. Immediate effects detected after treatment initiation are due to parasympathetic overactivation. In contrast, long-term effects may arise from a shift of the autonomic regulation toward sympathetic predominance along with S1PR1 downregulation. A mild increase in blood pressure has been reported in long-term studies, as well as decreased baroreflex sensitivity. In most studies, sustained hypertension was found to represent a significant adverse event related to treatment. The shift in the autonomic control and blood pressure values could not be just a consequence of disease progression but also related to S1PR modulation. Reduced cardiac autonomic activation and decreased heart rate variability during the long-term treatment with S1PR modulators may increase the risk for subsequent cardiac events. For second-generation S1PR modulators, this observation has to be confirmed in further studies with longer follow-ups. The periodic surveillance of cardiovascular function and detection of any cardiac autonomic dysfunction can help predict cardiac outcomes not only after the first dose but also throughout treatment. PLAIN LANGUAGE SUMMARY What is the cardiovascular effect of S1P receptor modulator therapy in multiple sclerosis? Sphingosine 1-phosphate (S1P) receptor (S1PR) modulators are among the most efficient therapies for multiple sclerosis. As small molecules, they are not only acting on the immune but on cardiovascular and nervous systems as well. Short-term effects of S1PR modulators on the cardiovascular system have already been extensively described, while long-term effects are less known. Our review describes the mechanisms of action and the short- and long-term effects of these therapeutic agents on the cardiovascular system in different clinical trials. We systematically reviewed the literature that had been published by January 2022. One hundred seven articles were initially identified by title and abstract using targeted keywords, and thirty-nine articles with relevance to cardiovascular effects of S1PR therapy in multiple sclerosis patients were thereafter considered, including their references for further accurate clarification. Studies on fingolimod, the first S1PR modulator approved for treating multiple sclerosis, primarily support the safety profile of this therapeutic class. The second-generation therapeutic agents along with a different treatment initiation approach helped mitigate several of the cardiovascular adverse effects that had previously been observed at the start of treatment. The heart rate may decrease when initiating S1PR modulators and, less commonly, the atrioventricular conduction may be prolonged, requiring cardiac monitoring for the first 6 h of medication. Continuous therapy with S1PR modulators can increase blood pressure values; therefore, the presence of arterial hypertension should be checked during long-term treatment. Periodic surveillance of the cardiovascular and autonomic functions can help predict cardiac outcomes and prevent possible adverse events in S1PR modulators treatment. Further studies with longer follow-ups are needed, especially for the second-generation of S1PR modulators, to confirm the safety profile of this therapeutic class.
Collapse
Affiliation(s)
- Victor Constantinescu
- Department of Neurology, Center of Clinical
Neuroscience, University Hospital Carl Gustav Carus, Dresden University of
Technology, Dresden, Germany
| | - Rocco Haase
- Department of Neurology, Center of Clinical
Neuroscience, University Hospital Carl Gustav Carus, Dresden University of
Technology, Dresden, Germany
| | - Katja Akgün
- Department of Neurology, Center of Clinical
Neuroscience, University Hospital Carl Gustav Carus, Dresden University of
Technology, Dresden, Germany
| | - Tjalf Ziemssen
- Department of Neurology, Center of Clinical
Neuroscience, University Hospital Carl Gustav Carus, Dresden University of
Technology, Fetscherstrasse 74, D-01307 Dresden, Germany
| |
Collapse
|
48
|
Raza Y, Atallah J, Luberto C. Advancements on the Multifaceted Roles of Sphingolipids in Hematological Malignancies. Int J Mol Sci 2022; 23:12745. [PMID: 36361536 PMCID: PMC9654982 DOI: 10.3390/ijms232112745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/07/2022] [Accepted: 10/17/2022] [Indexed: 09/19/2023] Open
Abstract
Dysregulation of sphingolipid metabolism plays a complex role in hematological malignancies, beginning with the first historical link between sphingolipids and apoptosis discovered in HL-60 leukemic cells. Numerous manuscripts have reviewed the field including the early discoveries that jumpstarted the studies. Many studies discussed here support a role for sphingolipids, such as ceramide, in combinatorial therapeutic regimens to enhance anti-leukemic effects and reduce resistance to standard therapies. Additionally, inhibitors of specific nodes of the sphingolipid pathway, such as sphingosine kinase inhibitors, significantly reduce leukemic cell survival in various types of leukemias. Acid ceramidase inhibitors have also shown promising results in acute myeloid leukemia. As the field moves rapidly, here we aim to expand the body of literature discussed in previously published reviews by focusing on advances reported in the latter part of the last decade.
Collapse
Affiliation(s)
- Yasharah Raza
- Department of Pharmacological Sciences, Molecular and Cellular Pharmacology, Stony Brook University, Stony Brook, NY 11794, USA
- Stony Brook Cancer Center, Stony Brook University Hospital, Stony Brook, NY 11794, USA
| | - Jane Atallah
- Stony Brook Cancer Center, Stony Brook University Hospital, Stony Brook, NY 11794, USA
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY 11794, USA
| | - Chiara Luberto
- Stony Brook Cancer Center, Stony Brook University Hospital, Stony Brook, NY 11794, USA
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
49
|
Luo L, Gong J, Wang Z, Liu Y, Cao J, Qin J, Zuo R, Zhang H, Wang S, Zhao P, Yang D, Zhang M, Wang Y, Zhang J, Zhou Y, Li C, Ni B, Tian Z, Liu M. Injectable cartilage matrix hydrogel loaded with cartilage endplate stem cells engineered to release exosomes for non-invasive treatment of intervertebral disc degeneration. Bioact Mater 2022; 15:29-43. [PMID: 35386360 PMCID: PMC8940768 DOI: 10.1016/j.bioactmat.2021.12.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 11/21/2021] [Accepted: 12/13/2021] [Indexed: 12/12/2022] Open
Abstract
Low back pain, mainly caused by intervertebral disc degeneration (IVDD), is a common health problem; however, current surgical treatments are less than satisfactory. Thus, it is essential to develop novel non-invasive surgical methods for IVDD treatment. Here, we describe a therapeutic strategy to inhibit IVDD by injecting hydrogels modified with the extracellular matrix of costal cartilage (ECM-Gels) that are loaded with cartilage endplate stem cells (CESCs). After loaded with CESCs overexpressing Sphk2 (Lenti-Sphk2-CESCs) and injected near the cartilage endplate (CEP) of rats in vivo, ECM-Gels produced Sphk2-engineered exosomes (Lenti-Sphk2-Exos). These exosomes penetrated the annulus fibrosus (AF) and transported Sphk2 into the nucleus pulposus cells (NPCs). Sphk2 activated the phosphatidylinositol 3-kinase (PI3K)/p-AKT pathway as well as the intracellular autophagy of NPCs, ultimately ameliorating IVDD. This study provides a novel and efficient non-invasive combinational strategy for IVDD treatment using injectable ECM-Gels loaded with CESCs that express Sphk2 with sustained release of functional exosomes.
Collapse
Affiliation(s)
- Liwen Luo
- Department of Orthopaedics, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- Institute of Immunology, PLA, Army Medical University (Third Military Medical University), Chongqing, China
| | - Junfeng Gong
- Department of Orthopaedics, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Zhouguang Wang
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
- Corresponding authors. Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
| | - Yao Liu
- Department of Pharmacy, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jiaming Cao
- Institute of Geophysics and Geomatics, China University of Geosciences, Wuhan, China
| | - Jinghao Qin
- Department of Orthopaedics, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Rui Zuo
- Department of Orthopaedics, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Hongyu Zhang
- Department of Emergency, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shuai Wang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Ping Zhao
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, China
| | - Di Yang
- Institute of Immunology, PLA, Army Medical University (Third Military Medical University), Chongqing, China
| | - Mengjie Zhang
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University, Chongqing, China
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yanqiu Wang
- Department of Orthopaedics, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Junfeng Zhang
- Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China
| | - Yue Zhou
- Department of Orthopaedics, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Changqing Li
- Department of Orthopaedics, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- Corresponding author. Department of Orthopaedics, Xinqiao Hospital, Army Medical University, Chongqing, China.
| | - Bing Ni
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University, Chongqing, China
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Army Medical University (Third Military Medical University), Chongqing, China
- Corresponding author. , Department of Pathophysiology, College of High Altitude Military Medicine, & Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Army Military Medical University, Chongqing, 400038, China.
| | - Zhiqiang Tian
- Institute of Immunology, PLA, Army Medical University (Third Military Medical University), Chongqing, China
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, China
- Corresponding author. Institute of Immunology, Army Medical University, Chongqing, 400038, China.
| | - MingHan Liu
- Department of Orthopaedics, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- Corresponding author. Department of Orthopaedics, Xinqiao Hospital, Army Medical University, Chongqing, China.
| |
Collapse
|
50
|
Salminen A. Aryl hydrocarbon receptor (AhR) reveals evidence of antagonistic pleiotropy in the regulation of the aging process. Cell Mol Life Sci 2022; 79:489. [PMID: 35987825 PMCID: PMC9392714 DOI: 10.1007/s00018-022-04520-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/14/2022] [Accepted: 08/08/2022] [Indexed: 11/24/2022]
Abstract
The antagonistic pleiotropy hypothesis is a well-known evolutionary theory to explain the aging process. It proposes that while a particular gene may possess beneficial effects during development, it can exert deleterious properties in the aging process. The aryl hydrocarbon receptor (AhR) has a significant role during embryogenesis, but later in life, it promotes several age-related degenerative processes. For instance, AhR factor (i) controls the pluripotency of stem cells and the stemness of cancer stem cells, (ii) it enhances the differentiation of embryonal stem cells, especially AhR signaling modulates the differentiation of hematopoietic stem cells and progenitor cells, (iii) it also stimulates the differentiation of immunosuppressive Tregs, Bregs, and M2 macrophages, and finally, (iv) AhR signaling participates in the differentiation of many peripheral tissues. On the other hand, AhR signaling is involved in many processes promoting cellular senescence and pathological processes, e.g., osteoporosis, vascular dysfunction, and the age-related remodeling of the immune system. Moreover, it inhibits autophagy and aggravates extracellular matrix degeneration. AhR signaling also stimulates oxidative stress, promotes excessive sphingolipid synthesis, and disturbs energy metabolism by catabolizing NAD+ degradation. The antagonistic pleiotropy of AhR signaling is based on the complex and diverse connections with major signaling pathways in a context-dependent manner. The major regulatory steps include, (i) a specific ligand-dependent activation, (ii) modulation of both genetic and non-genetic responses, (iii) a competition and crosstalk with several transcription factors, such as ARNT, HIF-1α, E2F1, and NF-κB, and (iv) the epigenetic regulation of target genes with binding partners. Thus, not only mTOR signaling but also the AhR factor demonstrates antagonistic pleiotropy in the regulation of the aging process.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland.
| |
Collapse
|