1
|
Tomlinson L, Ramsden D, Leite SB, Beken S, Bonzo JA, Brown P, Candarlioglu PL, Chan TS, Chen E, Choi CK, David R, Delrue N, Devine PJ, Ford K, Garcia MI, Gosset JR, Hewitt P, Homan K, Irrechukwu O, Kopec AK, Liras JL, Mandlekar S, Raczynski A, Sadrieh N, Sakatis MZ, Siegel J, Sung K, Sunyovszki I, Van Vleet TR, Ekert JE, Hardwick RN. Considerations from an International Regulatory and Pharmaceutical Industry (IQ MPS Affiliate) Workshop on the Standardization of Complex In Vitro Models in Drug Development. Adv Biol (Weinh) 2024; 8:e2300131. [PMID: 37814378 DOI: 10.1002/adbi.202300131] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/08/2023] [Indexed: 10/11/2023]
Abstract
In May 2022, there is an International Regulatory and Pharmaceutical Industry (Innovation and Quality [IQ] Microphysiological Systems [MPS] Affiliate) Workshop on the standardization of complex in vitro models (CIVMs) in drug development. This manuscript summarizes the discussions and conclusions of this joint workshop organized and executed by the IQ MPS Affiliate and the United States Food and Drug Administration (FDA). A key objective of the workshop is to facilitate discussions around opportunities and/or needs for standardization of MPS and chart potential pathways to increase model utilization in the context of regulatory decision making. Participation in the workshop included 200 attendees from the FDA, IQ MPS Affiliate, and 26 global regulatory organizations and affiliated parties representing Europe, Japan, and Canada. It is agreed that understanding global perspectives regarding the readiness of CIVM/MPS models for regulatory decision making and potential pathways to gaining acceptance is useful to align on globally. The obstacles are currently too great to develop standards for every context of use (COU). Instead, it is suggested that a more tractable approach may be to think of broadly applicable standards that can be applied regardless of COU and/or organ system. Considerations and next steps for this effort are described.
Collapse
Affiliation(s)
| | | | | | - Sonja Beken
- Federal Agency for Medicines and Health Products, Brussels, 1210, Belgium
| | - Jessica A Bonzo
- Center for Drug Evaluation and Research, Office of New Drugs, U.S. Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Paul Brown
- Center for Drug Evaluation and Research, Office of New Drugs, U.S. Food and Drug Administration, Silver Spring, MD, 20993, USA
| | | | - Tom S Chan
- Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, CT, 06877, USA
| | - Eugene Chen
- DMPK, Genentech, South San Francisco, CA, 94080, USA
| | - Colin K Choi
- Preclinical Safety, Biogen, Cambridge, MA, 02142, USA
| | - Rhiannon David
- Clinical Pharmacology & Safety Sciences, AstraZeneca, Cambridge, CB2 0AA, UK
| | - Nathalie Delrue
- Organisation for Economic Co-operation and Development, Paris, 75016, France
| | - Patrick J Devine
- Discovery Toxicology, Bristol Myers Squibb, San Diego, CA, 09130, USA
| | - Kevin Ford
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Science, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Martha Iveth Garcia
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Science, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, 20993, USA
| | | | - Philip Hewitt
- Chemical and Preclinical Safety, Merck Healthcare KGaA, 64293, Darmstadt, Germany
| | - Kimberly Homan
- Complex in Vitro Systems Group, Genentech, South San Francisco, CA, 94080, USA
| | - Onyi Irrechukwu
- Preclinical Sciences and Translational Safety, Johnson and Johnson Innovation Medicine, Spring House, PA, 19002, USA
| | - Anna K Kopec
- Drug Safety Research & Development, Pfizer Inc., Groton, CT, 06340, USA
| | - Jennifer L Liras
- Pharmacokinetics, Dynamics & Metabolism-Medicine Design, Pfizer, Cambridge, MA, 02139, USA
| | - Sandhya Mandlekar
- Clinical Pharmacology, Genentech, South San Francisco, CA, 94080, USA
| | - Arek Raczynski
- Preclinical Safety Assessment, Vertex Pharmaceuticals Inc., Boston, MA, 02210, USA
| | - Nakissa Sadrieh
- Center for Drug Evaluation and Research, Office of New Drugs, U.S. Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Melanie Z Sakatis
- Non-Clinical Safety, In Vitro/In Vivo Translation, GSK R&D, Ware, SG12 9TJ, UK
| | - Jeffrey Siegel
- Center for Drug Evaluation and Research, Office of New Drugs, U.S. Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Kyung Sung
- Center for Biologics Evaluation and Research, Office of Cellular Therapy and Human Tissue, Cellular and Tissue Therapy Branch, U.S. Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Ilona Sunyovszki
- Translational Cellular Sciences, Biogen, Cambridge, MA, 02142, USA
| | | | | | | |
Collapse
|
2
|
Stresser DM, Kopec AK, Hewitt P, Hardwick RN, Van Vleet TR, Mahalingaiah PKS, O'Connell D, Jenkins GJ, David R, Graham J, Lee D, Ekert J, Fullerton A, Villenave R, Bajaj P, Gosset JR, Ralston SL, Guha M, Amador-Arjona A, Khan K, Agarwal S, Hasselgren C, Wang X, Adams K, Kaushik G, Raczynski A, Homan KA. Towards in vitro models for reducing or replacing the use of animals in drug testing. Nat Biomed Eng 2024; 8:930-935. [PMID: 38151640 DOI: 10.1038/s41551-023-01154-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Affiliation(s)
- David M Stresser
- Quantitative, Translational & ADME Sciences, AbbVie, North Chicago, IL, USA.
- International Consortium for Innovation and Quality in Pharmaceutical Development (IQ), .
- IQ Microphysiological Systems Affiliate (IQ-), .
| | - Anna K Kopec
- International Consortium for Innovation and Quality in Pharmaceutical Development (IQ)
- IQ Microphysiological Systems Affiliate (IQ-)
- Drug Safety Research & Development, Pfizer, Inc., Groton, CT, USA
| | - Philip Hewitt
- International Consortium for Innovation and Quality in Pharmaceutical Development (IQ)
- IQ Microphysiological Systems Affiliate (IQ-)
- Chemical and Preclinical Safety, Merck KGaA, Darmstadt, Germany
| | - Rhiannon N Hardwick
- International Consortium for Innovation and Quality in Pharmaceutical Development (IQ)
- IQ Microphysiological Systems Affiliate (IQ-)
- Discovery Toxicology, Pharmaceutical Candidate Optimization, Bristol Myers Squibb, San Diego, CA, USA
| | - Terry R Van Vleet
- International Consortium for Innovation and Quality in Pharmaceutical Development (IQ)
- IQ Microphysiological Systems Affiliate (IQ-)
- Investigative Toxicology and Pathology, AbbVie, North Chicago, IL, USA
| | - Prathap Kumar S Mahalingaiah
- International Consortium for Innovation and Quality in Pharmaceutical Development (IQ)
- IQ Microphysiological Systems Affiliate (IQ-)
- Investigative Toxicology and Pathology, AbbVie, North Chicago, IL, USA
| | - Denice O'Connell
- International Consortium for Innovation and Quality in Pharmaceutical Development (IQ)
- Global Animal Welfare, AbbVie, North Chicago, IL, USA
- IQ 3Rs (Replacement, Reduction, Refinement) Translational and Predictive Sciences Leadership Group
| | - Gary J Jenkins
- Quantitative, Translational & ADME Sciences, AbbVie, North Chicago, IL, USA
- International Consortium for Innovation and Quality in Pharmaceutical Development (IQ)
- IQ Translational and ADME Sciences Leadership Group (TALG)
| | - Rhiannon David
- International Consortium for Innovation and Quality in Pharmaceutical Development (IQ)
- IQ Microphysiological Systems Affiliate (IQ-)
- Clinical Pharmacology & Safety Sciences, AstraZeneca, Cambridge, UK
| | - Jessica Graham
- International Consortium for Innovation and Quality in Pharmaceutical Development (IQ)
- Product Quality & Occupational Toxicology, Genentech, Inc., South San Francisco, CA, USA
- IQ DruSafe
- Safety Assessment, Genentech, Inc., South San Francisco, CA, USA
| | - Donna Lee
- International Consortium for Innovation and Quality in Pharmaceutical Development (IQ)
- IQ 3Rs (Replacement, Reduction, Refinement) Translational and Predictive Sciences Leadership Group
- Safety Assessment, Genentech, Inc., South San Francisco, CA, USA
| | - Jason Ekert
- International Consortium for Innovation and Quality in Pharmaceutical Development (IQ)
- IQ Microphysiological Systems Affiliate (IQ-)
- UCB Pharma, Cambridge, MA, USA
| | - Aaron Fullerton
- International Consortium for Innovation and Quality in Pharmaceutical Development (IQ)
- IQ Microphysiological Systems Affiliate (IQ-)
- Investigative Toxicology, Genentech, Inc., South San Francisco, CA, USA
| | - Remi Villenave
- International Consortium for Innovation and Quality in Pharmaceutical Development (IQ)
- IQ Microphysiological Systems Affiliate (IQ-)
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Piyush Bajaj
- International Consortium for Innovation and Quality in Pharmaceutical Development (IQ)
- IQ Microphysiological Systems Affiliate (IQ-)
- Global Investigative Toxicology, Preclinical Safety, Sanofi, Cambridge, MA, USA
| | - James R Gosset
- International Consortium for Innovation and Quality in Pharmaceutical Development (IQ)
- IQ Microphysiological Systems Affiliate (IQ-)
- Pharmacokinetics, Dynamics and Metabolism, Medicine Design, Pfizer, Inc, Cambridge, MA, USA
| | - Sherry L Ralston
- International Consortium for Innovation and Quality in Pharmaceutical Development (IQ)
- IQ 3Rs (Replacement, Reduction, Refinement) Translational and Predictive Sciences Leadership Group
- Preclinical Safety, AbbVie, North Chicago, IL, USA
| | - Manti Guha
- International Consortium for Innovation and Quality in Pharmaceutical Development (IQ)
- IQ Microphysiological Systems Affiliate (IQ-)
- Discovery Biology, Incyte, Wilmington, DE, USA
| | - Alejandro Amador-Arjona
- International Consortium for Innovation and Quality in Pharmaceutical Development (IQ)
- IQ Microphysiological Systems Affiliate (IQ-)
- Discovery Biology, Incyte, Wilmington, DE, USA
| | - Kainat Khan
- International Consortium for Innovation and Quality in Pharmaceutical Development (IQ)
- IQ Microphysiological Systems Affiliate (IQ-)
- Clinical Pharmacology & Safety Sciences, AstraZeneca, Cambridge, UK
| | - Saket Agarwal
- International Consortium for Innovation and Quality in Pharmaceutical Development (IQ)
- IQ Microphysiological Systems Affiliate (IQ-)
- Investigative Toxicology, Early Development, Alnylam Pharmaceuticals, Cambridge, MA, USA
| | - Catrin Hasselgren
- International Consortium for Innovation and Quality in Pharmaceutical Development (IQ)
- IQ DruSafe
- Predictive Toxicology, Genentech, Inc., South San Francisco, CA, USA
| | - Xiaoting Wang
- International Consortium for Innovation and Quality in Pharmaceutical Development (IQ)
- IQ Microphysiological Systems Affiliate (IQ-)
- Translational Safety & Bioanalytical Sciences, Amgen Research, Amgen Inc., South San Francisco, CA, USA
| | - Khary Adams
- International Consortium for Innovation and Quality in Pharmaceutical Development (IQ)
- IQ 3Rs (Replacement, Reduction, Refinement) Translational and Predictive Sciences Leadership Group
- Laboratory Animal Resources, Incyte, Wilmington, DE, USA
| | - Gaurav Kaushik
- International Consortium for Innovation and Quality in Pharmaceutical Development (IQ)
- IQ Microphysiological Systems Affiliate (IQ-)
- Nonclinical Drug Safety, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, CT, USA
| | - Arkadiusz Raczynski
- International Consortium for Innovation and Quality in Pharmaceutical Development (IQ)
- IQ Microphysiological Systems Affiliate (IQ-)
- Preclinical Safety Assessment, Vertex Pharmaceuticals, Inc, Boston, MA, USA
| | - Kimberly A Homan
- International Consortium for Innovation and Quality in Pharmaceutical Development (IQ), .
- IQ Microphysiological Systems Affiliate (IQ-), .
- Complex in vitro Systems Group, Genentech, Inc., South San Francisco, CA, USA.
| |
Collapse
|
3
|
Jadalannagari S, Ewart L. Beyond the hype and toward application: liver complex in vitro models in preclinical drug safety. Expert Opin Drug Metab Toxicol 2024; 20:607-619. [PMID: 38465923 DOI: 10.1080/17425255.2024.2328794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/06/2024] [Indexed: 03/12/2024]
Abstract
INTRODUCTION Drug induced Liver-Injury (DILI) is a leading cause of drug attrition and complex in vitro models (CIVMs), including three dimensional (3D) spheroids, 3D bio printed tissues and flow-based systems, could improve preclinical prediction. Although CIVMs have demonstrated good sensitivity and specificity in DILI detection their adoption remains limited. AREAS COVERED This article describes DILI, the challenges with its prediction and the current strategies and models that are being used. It reviews data from industry-FDA collaborations and strategic partnerships and finishes with an outlook of CIVMs in preclinical toxicity testing. Literature searches were performed using PubMed and Google Scholar while product information was collected from manufacturer websites. EXPERT OPINION Liver CIVMs are promising models for predicting DILI although, a decade after their introduction, routine use by the pharmaceutical industry is limited. To accelerate their adoption, several industry-regulator-developer partnerships or consortia have been established to guide the development and qualification. Beyond this, liver CIVMs should continue evolving to capture greater immunological mimicry while partnering with computational approaches to deliver systems that change the paradigm of predicting DILI.
Collapse
Affiliation(s)
| | - Lorna Ewart
- Department of Bioinnovations, Emulate Inc, Boston, MA, USA
| |
Collapse
|
4
|
Reyes DR, Esch MB, Ewart L, Nasiri R, Herland A, Sung K, Piergiovanni M, Lucchesi C, Shoemaker JT, Vukasinovic J, Nakae H, Hickman J, Pant K, Taylor A, Heinz N, Ashammakhi N. From animal testing to in vitro systems: advancing standardization in microphysiological systems. LAB ON A CHIP 2024; 24:1076-1087. [PMID: 38372151 DOI: 10.1039/d3lc00994g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Limitations with cell cultures and experimental animal-based studies have had the scientific and industrial communities searching for new approaches that can provide reliable human models for applications such as drug development, toxicological assessment, and in vitro pre-clinical evaluation. This has resulted in the development of microfluidic-based cultures that may better represent organs and organ systems in vivo than conventional monolayer cell cultures. Although there is considerable interest from industry and regulatory bodies in this technology, several challenges need to be addressed for it to reach its full potential. Among those is a lack of guidelines and standards. Therefore, a multidisciplinary team of stakeholders was formed, with members from the US Food and Drug Administration (FDA), the National Institute of Standards and Technology (NIST), European Union, academia, and industry, to provide a framework for future development of guidelines/standards governing engineering concepts of organ-on-a-chip models. The result of this work is presented here for interested parties, stakeholders, and other standards development organizations (SDOs) to foster further discussion and enhance the impact and benefits of these efforts.
Collapse
Affiliation(s)
- Darwin R Reyes
- National Institute of Standards and Technology (NIST), Gaithersburg, MD, USA.
| | - Mandy B Esch
- National Institute of Standards and Technology (NIST), Gaithersburg, MD, USA.
| | | | | | - Anna Herland
- Royal Institute of Technology, Stockholm, Sweden
| | - Kyung Sung
- Food and Drug Administration (FDA), Silver Spring, Maryland, USA
| | | | | | | | | | - Hiroki Nakae
- JMAC Japan bio Measurement & Analysis Consortium, Tokyo, Japan
| | | | | | - Anne Taylor
- Xona Microfluidics, Inc., Research Triangle Park, North Carolina, USA
| | - Niki Heinz
- Altis Biosystems, Inc., Durham, North Carolina, USA
| | - Nureddin Ashammakhi
- Institute for Quantitative Health Science and Engineering, Department of Biomedical Engineering, College of Engineering, and College of Human Medicine, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
5
|
Baker TK, Van Vleet TR, Mahalingaiah PK, Grandhi TSP, Evers R, Ekert J, Gosset JR, Chacko SA, Kopec AK. The Current Status and Use of Microphysiological Systems by the Pharmaceutical Industry: The International Consortium for Innovation and Quality Microphysiological Systems Affiliate Survey and Commentary. Drug Metab Dispos 2024; 52:198-209. [PMID: 38123948 DOI: 10.1124/dmd.123.001510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/21/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023] Open
Abstract
Microphysiological systems (MPS) are comprised of one or multiple cell types of human or animal origins that mimic the biochemical/electrical/mechanical responses and blood-tissue barrier properties of the cells observed within a complex organ. The goal of incorporating these in vitro systems is to expedite and advance the drug discovery and development paradigm with improved predictive and translational capabilities. Considering the industry need for improved efficiency and the broad challenges of model qualification and acceptance, the International Consortium for Innovation and Quality (IQ) founded an IQ MPS working group in 2014 and Affiliate in 2018. This group connects thought leaders and end users, provides a forum for crosspharma collaboration, and engages with regulators to qualify translationally relevant MPS models. To understand how pharmaceutical companies are using MPS, the IQ MPS Affiliate conducted two surveys in 2019, survey 1, and 2021, survey 2, which differed slightly in the scope of definition of the complex in vitro models under question. The surveys captured demographics, resourcing, rank order for organs of interest, compound modalities tested, and MPS organ-specific questions, including nonclinical species needs and cell types. The major focus of this manuscript is on results from survey 2, where we specifically highlight the context of use for MPS within safety, pharmacology, or absorption, disposition, metabolism, and excretion and discuss considerations for including MPS data in regulatory submissions. In summary, these data provide valuable insights for developers, regulators, and pharma, offering a view into current industry practices and future considerations while highlighting key challenges impacting MPS adoption. SIGNIFICANCE STATEMENT: The application of microphysiological systems (MPS) represents a growing area of interest in the drug discovery and development framework. This study surveyed 20+ pharma companies to understand resourcing, current areas of application, and the key challenges and barriers to internal MPS adoption. These results will provide regulators, tech providers, and pharma industry leaders a starting point to assess the current state of MPS applications along with key learnings to effectively realize the potential of MPS as an emerging technology.
Collapse
Affiliation(s)
- Thomas K Baker
- Investigative Toxicology, Eli Lilly, Indianapolis, Indiana (T.K.B.); Investigative Toxicology and Pathology, AbbVie, Inc., Chicago, Illinois (T.R.V.F., P.K.M.); Complex In Vitro Models Group, GSK, Collegeville, Pennsylvania (T.S.P.G.); Preclinical Sciences and Translational Safety, Johnson & Johnson, Janssen Pharmaceuticals, Spring House, Pennsylvania (R.E.); UCB Pharma, Cambridge, Massachusetts (J.E.); Pharmacokinetics, Dynamics and Metabolism, Medicine Design, Pfizer, Inc., Cambridge, Massachusetts (J.R.G.); Research and Development, Bristol Myers Squibb Company, Princeton, New Jersey (S.A.C.); and Drug Safety Research & Development, Pfizer, Inc., Groton, Connecticut (A.K.K.) baker_thomas_k@lilly
| | - Terry R Van Vleet
- Investigative Toxicology, Eli Lilly, Indianapolis, Indiana (T.K.B.); Investigative Toxicology and Pathology, AbbVie, Inc., Chicago, Illinois (T.R.V.F., P.K.M.); Complex In Vitro Models Group, GSK, Collegeville, Pennsylvania (T.S.P.G.); Preclinical Sciences and Translational Safety, Johnson & Johnson, Janssen Pharmaceuticals, Spring House, Pennsylvania (R.E.); UCB Pharma, Cambridge, Massachusetts (J.E.); Pharmacokinetics, Dynamics and Metabolism, Medicine Design, Pfizer, Inc., Cambridge, Massachusetts (J.R.G.); Research and Development, Bristol Myers Squibb Company, Princeton, New Jersey (S.A.C.); and Drug Safety Research & Development, Pfizer, Inc., Groton, Connecticut (A.K.K.)
| | - Prathap Kumar Mahalingaiah
- Investigative Toxicology, Eli Lilly, Indianapolis, Indiana (T.K.B.); Investigative Toxicology and Pathology, AbbVie, Inc., Chicago, Illinois (T.R.V.F., P.K.M.); Complex In Vitro Models Group, GSK, Collegeville, Pennsylvania (T.S.P.G.); Preclinical Sciences and Translational Safety, Johnson & Johnson, Janssen Pharmaceuticals, Spring House, Pennsylvania (R.E.); UCB Pharma, Cambridge, Massachusetts (J.E.); Pharmacokinetics, Dynamics and Metabolism, Medicine Design, Pfizer, Inc., Cambridge, Massachusetts (J.R.G.); Research and Development, Bristol Myers Squibb Company, Princeton, New Jersey (S.A.C.); and Drug Safety Research & Development, Pfizer, Inc., Groton, Connecticut (A.K.K.)
| | - Taraka Sai Pavan Grandhi
- Investigative Toxicology, Eli Lilly, Indianapolis, Indiana (T.K.B.); Investigative Toxicology and Pathology, AbbVie, Inc., Chicago, Illinois (T.R.V.F., P.K.M.); Complex In Vitro Models Group, GSK, Collegeville, Pennsylvania (T.S.P.G.); Preclinical Sciences and Translational Safety, Johnson & Johnson, Janssen Pharmaceuticals, Spring House, Pennsylvania (R.E.); UCB Pharma, Cambridge, Massachusetts (J.E.); Pharmacokinetics, Dynamics and Metabolism, Medicine Design, Pfizer, Inc., Cambridge, Massachusetts (J.R.G.); Research and Development, Bristol Myers Squibb Company, Princeton, New Jersey (S.A.C.); and Drug Safety Research & Development, Pfizer, Inc., Groton, Connecticut (A.K.K.)
| | - Raymond Evers
- Investigative Toxicology, Eli Lilly, Indianapolis, Indiana (T.K.B.); Investigative Toxicology and Pathology, AbbVie, Inc., Chicago, Illinois (T.R.V.F., P.K.M.); Complex In Vitro Models Group, GSK, Collegeville, Pennsylvania (T.S.P.G.); Preclinical Sciences and Translational Safety, Johnson & Johnson, Janssen Pharmaceuticals, Spring House, Pennsylvania (R.E.); UCB Pharma, Cambridge, Massachusetts (J.E.); Pharmacokinetics, Dynamics and Metabolism, Medicine Design, Pfizer, Inc., Cambridge, Massachusetts (J.R.G.); Research and Development, Bristol Myers Squibb Company, Princeton, New Jersey (S.A.C.); and Drug Safety Research & Development, Pfizer, Inc., Groton, Connecticut (A.K.K.)
| | - Jason Ekert
- Investigative Toxicology, Eli Lilly, Indianapolis, Indiana (T.K.B.); Investigative Toxicology and Pathology, AbbVie, Inc., Chicago, Illinois (T.R.V.F., P.K.M.); Complex In Vitro Models Group, GSK, Collegeville, Pennsylvania (T.S.P.G.); Preclinical Sciences and Translational Safety, Johnson & Johnson, Janssen Pharmaceuticals, Spring House, Pennsylvania (R.E.); UCB Pharma, Cambridge, Massachusetts (J.E.); Pharmacokinetics, Dynamics and Metabolism, Medicine Design, Pfizer, Inc., Cambridge, Massachusetts (J.R.G.); Research and Development, Bristol Myers Squibb Company, Princeton, New Jersey (S.A.C.); and Drug Safety Research & Development, Pfizer, Inc., Groton, Connecticut (A.K.K.)
| | - James R Gosset
- Investigative Toxicology, Eli Lilly, Indianapolis, Indiana (T.K.B.); Investigative Toxicology and Pathology, AbbVie, Inc., Chicago, Illinois (T.R.V.F., P.K.M.); Complex In Vitro Models Group, GSK, Collegeville, Pennsylvania (T.S.P.G.); Preclinical Sciences and Translational Safety, Johnson & Johnson, Janssen Pharmaceuticals, Spring House, Pennsylvania (R.E.); UCB Pharma, Cambridge, Massachusetts (J.E.); Pharmacokinetics, Dynamics and Metabolism, Medicine Design, Pfizer, Inc., Cambridge, Massachusetts (J.R.G.); Research and Development, Bristol Myers Squibb Company, Princeton, New Jersey (S.A.C.); and Drug Safety Research & Development, Pfizer, Inc., Groton, Connecticut (A.K.K.)
| | - Silvi A Chacko
- Investigative Toxicology, Eli Lilly, Indianapolis, Indiana (T.K.B.); Investigative Toxicology and Pathology, AbbVie, Inc., Chicago, Illinois (T.R.V.F., P.K.M.); Complex In Vitro Models Group, GSK, Collegeville, Pennsylvania (T.S.P.G.); Preclinical Sciences and Translational Safety, Johnson & Johnson, Janssen Pharmaceuticals, Spring House, Pennsylvania (R.E.); UCB Pharma, Cambridge, Massachusetts (J.E.); Pharmacokinetics, Dynamics and Metabolism, Medicine Design, Pfizer, Inc., Cambridge, Massachusetts (J.R.G.); Research and Development, Bristol Myers Squibb Company, Princeton, New Jersey (S.A.C.); and Drug Safety Research & Development, Pfizer, Inc., Groton, Connecticut (A.K.K.)
| | - Anna K Kopec
- Investigative Toxicology, Eli Lilly, Indianapolis, Indiana (T.K.B.); Investigative Toxicology and Pathology, AbbVie, Inc., Chicago, Illinois (T.R.V.F., P.K.M.); Complex In Vitro Models Group, GSK, Collegeville, Pennsylvania (T.S.P.G.); Preclinical Sciences and Translational Safety, Johnson & Johnson, Janssen Pharmaceuticals, Spring House, Pennsylvania (R.E.); UCB Pharma, Cambridge, Massachusetts (J.E.); Pharmacokinetics, Dynamics and Metabolism, Medicine Design, Pfizer, Inc., Cambridge, Massachusetts (J.R.G.); Research and Development, Bristol Myers Squibb Company, Princeton, New Jersey (S.A.C.); and Drug Safety Research & Development, Pfizer, Inc., Groton, Connecticut (A.K.K.)
| |
Collapse
|
6
|
Stokar-Regenscheit N, Bell L, Berridge B, Rudmann D, Tagle D, Hargrove-Grimes P, Schaudien D, Hahn K, Kühnlenz J, Ashton RS, Tseng M, Reichelt M, Laing ST, Kiyota T, Chamanza R, Sura R, Tomlinson L. Complex In Vitro Model Characterization for Context of Use in Toxicologic Pathology: Use Cases by Collaborative Teams of Biologists, Bioengineers, and Pathologists. Toxicol Pathol 2024; 52:123-137. [PMID: 38888280 DOI: 10.1177/01926233241253811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Complex in vitro models (CIVMs) offer the potential to increase the clinical relevance of preclinical efficacy and toxicity assessments and reduce the reliance on animals in drug development. The European Society of Toxicologic Pathology (ESTP) and Society for Toxicologic Pathology (STP) are collaborating to highlight the role of pathologists in the development and use of CIVM. Pathologists are trained in comparative animal medicine which enhances their understanding of mechanisms of human and animal diseases, thus allowing them to bridge between animal models and humans. This skill set is important for CIVM development, validation, and data interpretation. Ideally, diverse teams of scientists, including engineers, biologists, pathologists, and others, should collaboratively develop and characterize novel CIVM, and collectively assess their precise use cases (context of use). Implementing a morphological CIVM evaluation should be essential in this process. This requires robust histological technique workflows, image analysis techniques, and needs correlation with translational biomarkers. In this review, we demonstrate how such tissue technologies and analytics support the development and use of CIVM for drug efficacy and safety evaluations. We encourage the scientific community to explore similar options for their projects and to engage with health authorities on the use of CIVM in benefit-risk assessment.
Collapse
Affiliation(s)
- Nadine Stokar-Regenscheit
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Luisa Bell
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | | | | | - Danilo Tagle
- National Center for Advancing Translational Sciences/National Institutes of Health, Bethesda, Maryland, USA
| | - Passley Hargrove-Grimes
- National Center for Advancing Translational Sciences/National Institutes of Health, Bethesda, Maryland, USA
| | - Dirk Schaudien
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
| | - Kerstin Hahn
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Julia Kühnlenz
- Bayer SAS, CropScience, Pathology & Mechanistic Toxicology, Sophia Antipolis, France
| | - Randolph S Ashton
- University of Wisconsin-Madison, Madison, Wisconsin, USA
- Neurosetta LLC, Madison, Wisconsin, USA
| | - Min Tseng
- Genentech, South San Francisco, California, USA
| | | | | | | | | | | | - Lindsay Tomlinson
- Pfizer Inc., Drug Safety Research and Development, Cambridge, Massachusetts, USA
| |
Collapse
|
7
|
Padmyastuti A, Sarmiento MG, Dib M, Ehrhardt J, Schoon J, Somova M, Burchardt M, Roennau C, Pinto PC. Microfluidic-based prostate cancer model for investigating the secretion of prostate-specific antigen and microRNAs in vitro. Sci Rep 2023; 13:11623. [PMID: 37468746 DOI: 10.1038/s41598-023-38834-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/16/2023] [Indexed: 07/21/2023] Open
Abstract
The study of prostate cancer in vitro relies on established cell lines that lack important physiological characteristics, such as proper polarization and expression of relevant biomarkers. Microphysiological systems (MPS) can replicate cancer microenvironments and lead to cellular phenotypic changes that better represent organ physiology in vitro. In this study, we developed an MPS model comprising conventional prostate cancer cells to evaluate their activity under dynamic culture conditions. Androgen-sensitive (LNCaP) and androgen-insensitive (PC3) cells were grown in conventional and 3D cultures, both static and dynamic. Cell morphology, the secretion of prostate-specific antigen, and the expression of key prostate markers and microRNAs were analyzed. LNCaP formed spheroids in 3D and MPS cultures, with morphological changes supported by the upregulation of cytokeratins and adhesion proteins. LNCaP also maintained a constant prostate-specific antigen secretion in MPS. PC3 cells did not develop complex structures in 3D and MPS cultures. PSA expression at the gene level was downregulated in LNCaP-MPS and considerably upregulated in PC3-MPS. MicroRNA expression was altered by the 3D static and dynamic culture, both intra- and extracellularly. MicroRNAs associated with prostate cancer progression were mostly upregulated in LNCaP-MPS. Overall dynamic cell culture substantially altered the morphology and expression of LNCaP cells, arguably augmenting their prostate cancer phenotype. This novel approach demonstrates that microRNA expression in prostate cancer cells is sensitive to external stimuli and that MPS can effectively promote important physiological changes in conventional prostate cancer models.
Collapse
Affiliation(s)
- Adventina Padmyastuti
- Department of Urology, University Medicine Greifswald, Fleischmannstraße 8, 17475, Greifswald, Germany
| | - Marina Garcia Sarmiento
- Department of Urology, University Medicine Greifswald, Fleischmannstraße 8, 17475, Greifswald, Germany
| | - Maria Dib
- Department of Ear, Nose and Throat Surgery, University Medicine Greifswald, Fleischmannstraße 8, 17475, Greifswald, Germany
| | - Jens Ehrhardt
- Department of Obstetrics and Gynecology, University Medicine Greifswald, Fleischmannstraße 8, 17475, Greifswald, Germany
| | - Janosch Schoon
- Center for Orthopaedics, Trauma Surgery and Rehabilitation Medicine, University Medicine Greifswald, Fleichmannstraße 8, 17475, Greifswald, Germany
| | - Maryna Somova
- Department of Urology, University Medicine Greifswald, Fleischmannstraße 8, 17475, Greifswald, Germany
| | - Martin Burchardt
- Department of Urology, University Medicine Greifswald, Fleischmannstraße 8, 17475, Greifswald, Germany
| | - Cindy Roennau
- Department of Urology, University Medicine Greifswald, Fleischmannstraße 8, 17475, Greifswald, Germany
| | - Pedro Caetano Pinto
- Department of Urology, University Medicine Greifswald, Fleischmannstraße 8, 17475, Greifswald, Germany.
| |
Collapse
|
8
|
Feitor JF, Brazaca LC, Lima AM, Ferreira VG, Kassab G, Bagnato VS, Carrilho E, Cardoso DR. Organ-on-a-Chip for Drug Screening: A Bright Future for Sustainability? A Critical Review. ACS Biomater Sci Eng 2023; 9:2220-2234. [PMID: 37014814 DOI: 10.1021/acsbiomaterials.2c01454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
Globalization has raised concerns about spreading diseases and emphasized the need for quick and efficient methods for drug screening. Established drug efficacy and toxicity approaches have proven obsolete, with a high failure rate in clinical trials. Organ-on-a-chip has emerged as an essential alternative to outdated techniques, precisely simulating important characteristics of organs and predicting drug pharmacokinetics more ethically and efficiently. Although promising, most organ-on-a-chip devices are still manufactured using principles and materials from the micromachining industry. The abusive use of plastic for traditional drug screening methods and device production should be considered when substituting technologies so that the compensation for the generation of plastic waste can be projected. This critical review outlines recent advances for organ-on-a-chip in the industry and estimates the possibility of scaling up its production. Moreover, it analyzes trends in organ-on-a-chip publications and provides suggestions for a more sustainable future for organ-on-a-chip research and production.
Collapse
Affiliation(s)
- Jéssica F Feitor
- Instituto de Química de São Carlos, Universidade de São Paulo, 13566-590 São Carlos, SP, Brazil
| | - Laís C Brazaca
- Instituto de Química de São Carlos, Universidade de São Paulo, 13566-590 São Carlos, SP, Brazil
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, 02138 Massachusetts, United States
| | - Amanda M Lima
- Instituto de Química de São Carlos, Universidade de São Paulo, 13566-590 São Carlos, SP, Brazil
| | - Vinícius G Ferreira
- Instituto de Química de São Carlos, Universidade de São Paulo, 13566-590 São Carlos, SP, Brazil
| | - Giulia Kassab
- Instituto de Física de São Carlos, Universidade de São Paulo, 13566-590 São Carlos, SP, Brazil
| | - Vanderlei S Bagnato
- Instituto de Física de São Carlos, Universidade de São Paulo, 13566-590 São Carlos, SP, Brazil
| | - Emanuel Carrilho
- Instituto de Química de São Carlos, Universidade de São Paulo, 13566-590 São Carlos, SP, Brazil
- Instituto Nacional de Ciência e Tecnologia de Bioanalítica-INCTBio, 13083-970 Campinas, SP, Brazil
| | - Daniel R Cardoso
- Instituto de Química de São Carlos, Universidade de São Paulo, 13566-590 São Carlos, SP, Brazil
| |
Collapse
|
9
|
Kato Y, Lim AY, Sakolish C, Valdiviezo A, Moyer HL, Hewitt P, Bajaj P, Han G, Rusyn I. Analysis of reproducibility and robustness of OrganoPlate® 2-lane 96, a liver microphysiological system for studies of pharmacokinetics and toxicological assessment of drugs. Toxicol In Vitro 2022; 85:105464. [PMID: 36057418 PMCID: PMC10015056 DOI: 10.1016/j.tiv.2022.105464] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/26/2022] [Accepted: 08/26/2022] [Indexed: 02/06/2023]
Abstract
Establishing the functionality, reproducibility, robustness, and reliability of microphysiological systems is a critical need for adoption of these technologies. A high throughput microphysiological system for liver studies was recently proposed in which induced pluripotent stem cell-derived hepatocytes (iHeps) and non-parenchymal cells (endothelial cells and THP-1 cells differentiated with phorbol 12-myristate 13-acetate into macrophage-like cells) were co-cultured in OrganoPlate® 2-lane 96 devices. The goal of this study was to evaluate this platform using additional cell types and conditions and characterize its utility and reproducibility. Primary human hepatocytes or iHeps, with and without non-parenchymal cells, were cultured for up to 17 days. Image-based cell viability, albumin and urea secretion into culture media, CYP3A4 activity and drug metabolism were assessed. The iHeps co-cultured with non-parenchymal cells demonstrated stable cell viability and function up to 17 days; however, variability was appreciable both within and among studies. The iHeps in monoculture did not form clusters and lost viability and function over time. The primary human hepatocytes in monoculture also exhibited low cell viability and hepatic function. Metabolism of various drugs was most efficient when iHeps were co-cultured with non-parenchymal cells. Overall, we found that the OrganoPlate® 2-lane 96 device, when used with iHeps and non-parenchymal cells, is a functional liver microphysiological model; however, the high-throughput nature of this model is somewhat dampened by the need for replicates to compensate for high variability.
Collapse
Affiliation(s)
- Yuki Kato
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA; Laboratory for Drug Discovery and Development, Shionogi Pharmaceutical Research Center, Shionogi & Co., Ltd., Osaka 561-0825, Japan
| | - Alicia Y Lim
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA
| | - Courtney Sakolish
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA
| | - Alan Valdiviezo
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA
| | - Haley L Moyer
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA
| | - Philip Hewitt
- Chemical and Preclinical Safety, Merck Healthcare KGaA, 64293 Darmstadt, Germany
| | - Piyush Bajaj
- Global Investigative Toxicology, Preclinical Safety, Sanofi USA, MA 01701, USA
| | - Gang Han
- Department of Epidemiology and Biostatistics, Texas A&M University, College Station, TX 77843, USA
| | - Ivan Rusyn
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
10
|
Rusyn I, Sakolish C, Kato Y, Stephan C, Vergara L, Hewitt P, Bhaskaran V, Davis M, Hardwick RN, Ferguson SS, Stanko JP, Bajaj P, Adkins K, Sipes NS, Hunter ES, Baltazar MT, Carmichael PL, Sadh K, Becker RA. Microphysiological Systems Evaluation: Experience of TEX-VAL Tissue Chip Testing Consortium. Toxicol Sci 2022; 188:143-152. [PMID: 35689632 PMCID: PMC9333404 DOI: 10.1093/toxsci/kfac061] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Much has been written and said about the promise and excitement of microphysiological systems, miniature devices that aim to recreate aspects of human physiology on a chip. The rapid explosion of the offerings and persistent publicity placed high expectations on both product manufacturers and regulatory agencies to adopt the data. Inevitably, discussions of where this technology fits in chemical testing paradigms are ongoing. Some end-users became early adopters, whereas others have taken a more cautious approach because of the high cost and uncertainties of their utility. Here, we detail the experience of a public-private collaboration established for testing of diverse microphysiological systems. Collectively, we present a number of considerations on practical aspects of using microphysiological systems in the context of their applications in decision-making. Specifically, future end-users need to be prepared for extensive on-site optimization and have access to a wide range of imaging and other equipment. We reason that cells, related reagents, and the technical skills of the research staff, not the devices themselves, are the most critical determinants of success. Extrapolation from concentration-response effects in microphysiological systems to human blood or oral exposures, difficulties with replicating the whole organ, and long-term functionality remain as critical challenges. Overall, we conclude that it is unlikely that a rodent- or human-equivalent model is achievable through a finite number of microphysiological systems in the near future; therefore, building consensus and promoting the gradual incorporation of these models into tiered approaches for safety assessment and decision-making is the sensible path to wide adoption.
Collapse
Affiliation(s)
- Ivan Rusyn
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas 77843, USA
| | - Courtney Sakolish
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas 77843, USA
| | - Yuki Kato
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas 77843, USA
| | - Clifford Stephan
- Institute of Biosciences and Technology, Texas A&M University, Houston, Texas 77030, USA
| | - Leoncio Vergara
- Institute of Biosciences and Technology, Texas A&M University, Houston, Texas 77030, USA
| | - Philip Hewitt
- Chemical and Preclinical Safety, Merck Healthcare KGaA, Darmstadt, Germany
| | - Vasanthi Bhaskaran
- Discovery Toxicology, Bristol Myers Squibb, Princeton, New Jersey 08543, USA
| | - Myrtle Davis
- Discovery Toxicology, Bristol Myers Squibb, Princeton, New Jersey 08543, USA
| | - Rhiannon N Hardwick
- Discovery Toxicology, Bristol Myers Squibb, San Diego, California 92130, USA
| | - Stephen S Ferguson
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, USA
| | - Jason P Stanko
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, USA
| | - Piyush Bajaj
- Global Investigative Toxicology, Preclinical Safety, Sanofi, Framingham, Massachusetts 01701, USA
| | - Karissa Adkins
- Global Investigative Toxicology, Preclinical Safety, Sanofi, Framingham, Massachusetts 01701, USA
| | - Nisha S Sipes
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, 27711, USA
| | - E Sidney Hunter
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, 27711, USA
| | - Maria T Baltazar
- Unilever Safety and Environmental Assurance Centre, Bedfordshire, Sharnbrook MK44 1LQ, UK
| | - Paul L Carmichael
- Unilever Safety and Environmental Assurance Centre, Bedfordshire, Sharnbrook MK44 1LQ, UK
| | - Kritika Sadh
- Unilever Safety and Environmental Assurance Centre, Bedfordshire, Sharnbrook MK44 1LQ, UK
| | - Richard A Becker
- American Chemistry Council, Washington, District of Columbia 20002, USA
| |
Collapse
|
11
|
Campisi M, Shelton SE, Chen M, Kamm RD, Barbie DA, Knelson EH. Engineered Microphysiological Systems for Testing Effectiveness of Cell-Based Cancer Immunotherapies. Cancers (Basel) 2022; 14:3561. [PMID: 35892819 PMCID: PMC9330888 DOI: 10.3390/cancers14153561] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/15/2022] [Accepted: 07/16/2022] [Indexed: 02/06/2023] Open
Abstract
Cell therapies, including adoptive immune cell therapies and genetically engineered chimeric antigen receptor (CAR) T or NK cells, have shown promise in treating hematologic malignancies. Yet, immune cell infiltration and expansion has proven challenging in solid tumors due to immune cell exclusion and exhaustion and the presence of vascular barriers. Testing next-generation immune therapies remains challenging in animals, motivating sophisticated ex vivo models of human tumor biology and prognostic assays to predict treatment response in real-time while comprehensively recapitulating the human tumor immune microenvironment (TIME). This review examines current strategies for testing cell-based cancer immunotherapies using ex vivo microphysiological systems and microfluidic technologies. Insights into the multicellular interactions of the TIME will identify novel therapeutic strategies to help patients whose tumors are refractory or resistant to current immunotherapies. Altogether, these microphysiological systems (MPS) have the capability to predict therapeutic vulnerabilities and biological barriers while studying immune cell infiltration and killing in a more physiologically relevant context, thereby providing important insights into fundamental biologic mechanisms to expand our understanding of and treatments for currently incurable malignancies.
Collapse
Affiliation(s)
- Marco Campisi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; (M.C.); (S.E.S.); (M.C.); (D.A.B.)
| | - Sarah E. Shelton
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; (M.C.); (S.E.S.); (M.C.); (D.A.B.)
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA;
| | - Minyue Chen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; (M.C.); (S.E.S.); (M.C.); (D.A.B.)
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Roger D. Kamm
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA;
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - David A. Barbie
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; (M.C.); (S.E.S.); (M.C.); (D.A.B.)
| | - Erik H. Knelson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; (M.C.); (S.E.S.); (M.C.); (D.A.B.)
| |
Collapse
|
12
|
Ronaldson-Bouchard K, Baldassarri I, Tavakol DN, Graney PL, Samaritano M, Cimetta E, Vunjak-Novakovic G. Engineering complexity in human tissue models of cancer. Adv Drug Deliv Rev 2022; 184:114181. [PMID: 35278521 PMCID: PMC9035134 DOI: 10.1016/j.addr.2022.114181] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/15/2022] [Accepted: 03/04/2022] [Indexed: 02/06/2023]
Abstract
Major progress in the understanding and treatment of cancer have tremendously improved our knowledge of this complex disease and improved the length and quality of patients' lives. Still, major challenges remain, in particular with respect to cancer metastasis which still escapes effective treatment and remains responsible for 90% of cancer related deaths. In recent years, the advances in cancer cell biology, oncology and tissue engineering converged into the engineered human tissue models of cancer that are increasingly recapitulating many aspects of cancer progression and response to drugs, in a patient-specific context. The complexity and biological fidelity of these models, as well as the specific questions they aim to investigate, vary in a very broad range. When selecting and designing these experimental models, the fundamental question is "how simple is complex enough" to accomplish a specific goal of cancer research. Here we review the state of the art in developing and using the human tissue models in cancer research and developmental drug screening. We describe the main classes of models providing different levels of biological fidelity and complexity, discuss their advantages and limitations, and propose a framework for designing an appropriate model for a given study. We close by outlining some of the current needs, opportunities and challenges in this rapidly evolving field.
Collapse
Affiliation(s)
- Kacey Ronaldson-Bouchard
- Department of Biomedical Engineering, Columbia University, 622 West 168th Street, VC12-234, New York, NY 10032, USA
| | - Ilaria Baldassarri
- Department of Biomedical Engineering, Columbia University, 622 West 168th Street, VC12-234, New York, NY 10032, USA
| | - Daniel Naveed Tavakol
- Department of Biomedical Engineering, Columbia University, 622 West 168th Street, VC12-234, New York, NY 10032, USA
| | - Pamela L Graney
- Department of Biomedical Engineering, Columbia University, 622 West 168th Street, VC12-234, New York, NY 10032, USA
| | - Maria Samaritano
- Department of Biomedical Engineering, Columbia University, 622 West 168th Street, VC12-234, New York, NY 10032, USA
| | - Elisa Cimetta
- Department of Industrial Engineering, University of Padua, Via Marzolo 9, 35131 Padova, Italy; Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Corso Stati Uniti 4, 35127 Padova, Italy
| | - Gordana Vunjak-Novakovic
- Department of Biomedical Engineering, Columbia University, 622 West 168th Street, VC12-234, New York, NY 10032, USA; Department of Medicine, Columbia University, 622 West 168th Street, VC12-234, New York, NY 10032, USA; College of Dental Medicine, Columbia University, 622 West 168th Street, VC12-234, New York, NY 10032, USA.
| |
Collapse
|
13
|
Berridge BR. Animal Study Translation: The Other Reproducibility Challenge. ILAR J 2022. [DOI: 10.1093/ilar/ilac005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
Animal research is currently an irreplaceable contributor to our efforts to protect and improve public health. Its relevance, importance, and contributions are represented in historical precedent, regulatory expectations, evidence of our rapidly developing understanding of human health and disease, as well as success in the development of novel therapeutics that are improving quality of life and extending human and animal life expectancy. The rapid and evolving success in responding to the current COVID pandemic significantly supported by animal studies is a clear example of the importance of animal research. But there is growing interest in reducing our dependence on animals and challenges to the effective translation of current animal studies to human applications. There are several potential contributors to gaps in the translatability of animal research to humans, including our approaches to choosing or rationalizing the relevance of a particular animal model, our understanding of their biological variability and how that applies to outcomes, the data we collect from animal studies, and even how we manage the animals. These important contributors to the success of animal research are explored in this issue of the ILAR Journal.
Collapse
Affiliation(s)
- Brian R Berridge
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences in Research, Triangle Park, North Carolina, USA
| |
Collapse
|
14
|
Anklam E, Bahl MI, Ball R, Beger RD, Cohen J, Fitzpatrick S, Girard P, Halamoda-Kenzaoui B, Hinton D, Hirose A, Hoeveler A, Honma M, Hugas M, Ishida S, Kass GEN, Kojima H, Krefting I, Liachenko S, Liu Y, Masters S, Marx U, McCarthy T, Mercer T, Patri A, Pelaez C, Pirmohamed M, Platz S, Ribeiro AJS, Rodricks JV, Rusyn I, Salek RM, Schoonjans R, Silva P, Svendsen CN, Sumner S, Sung K, Tagle D, Tong L, Tong W, van den Eijnden-van-Raaij J, Vary N, Wang T, Waterton J, Wang M, Wen H, Wishart D, Yuan Y, Slikker Jr. W. Emerging technologies and their impact on regulatory science. Exp Biol Med (Maywood) 2022; 247:1-75. [PMID: 34783606 PMCID: PMC8749227 DOI: 10.1177/15353702211052280] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
There is an evolution and increasing need for the utilization of emerging cellular, molecular and in silico technologies and novel approaches for safety assessment of food, drugs, and personal care products. Convergence of these emerging technologies is also enabling rapid advances and approaches that may impact regulatory decisions and approvals. Although the development of emerging technologies may allow rapid advances in regulatory decision making, there is concern that these new technologies have not been thoroughly evaluated to determine if they are ready for regulatory application, singularly or in combinations. The magnitude of these combined technical advances may outpace the ability to assess fit for purpose and to allow routine application of these new methods for regulatory purposes. There is a need to develop strategies to evaluate the new technologies to determine which ones are ready for regulatory use. The opportunity to apply these potentially faster, more accurate, and cost-effective approaches remains an important goal to facilitate their incorporation into regulatory use. However, without a clear strategy to evaluate emerging technologies rapidly and appropriately, the value of these efforts may go unrecognized or may take longer. It is important for the regulatory science field to keep up with the research in these technically advanced areas and to understand the science behind these new approaches. The regulatory field must understand the critical quality attributes of these novel approaches and learn from each other's experience so that workforces can be trained to prepare for emerging global regulatory challenges. Moreover, it is essential that the regulatory community must work with the technology developers to harness collective capabilities towards developing a strategy for evaluation of these new and novel assessment tools.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Reza M Salek
- International Agency for Research on Cancer, France
| | | | | | | | | | | | | | - Li Tong
- Universities of Georgia Tech and Emory, USA
| | | | | | - Neil Vary
- Canadian Food Inspection Agency, Canada
| | - Tao Wang
- National Medical Products Administration, China
| | | | - May Wang
- Universities of Georgia Tech and Emory, USA
| | - Hairuo Wen
- National Institutes for Food and Drug Control, China
| | | | | | | |
Collapse
|
15
|
Hargrove-Grimes P, Low LA, Tagle DA. Microphysiological Systems: Stakeholder Challenges to Adoption in Drug Development. Cells Tissues Organs 2022; 211:269-281. [PMID: 34380142 PMCID: PMC8831652 DOI: 10.1159/000517422] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/14/2021] [Indexed: 01/03/2023] Open
Abstract
Microphysiological systems (MPS) or tissue chips/organs-on-chips are novel in vitro models that emulate human physiology at the most basic functional level. In this review, we discuss various hurdles to widespread adoption of MPS technology focusing on issues from multiple stakeholder sectors, e.g., academic MPS developers, commercial suppliers of platforms, the pharmaceutical and biotechnology industries, and regulatory organizations. Broad adoption of MPS technology has thus far been limited by a gap in translation between platform developers, end-users, regulatory agencies, and the pharmaceutical industry. In this brief review, we offer a perspective on the existing barriers and how end-users may help surmount these obstacles to achieve broader adoption of MPS technology.
Collapse
Affiliation(s)
- Passley Hargrove-Grimes
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Lucie A. Low
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Danilo A. Tagle
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
16
|
Ching T, Toh YC, Hashimoto M, Zhang YS. Bridging the academia-to-industry gap: organ-on-a-chip platforms for safety and toxicology assessment. Trends Pharmacol Sci 2021; 42:715-728. [PMID: 34187693 PMCID: PMC8364498 DOI: 10.1016/j.tips.2021.05.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/04/2021] [Accepted: 05/27/2021] [Indexed: 12/14/2022]
Abstract
Some organ-on-a-chip (OoC) systems for drug evaluation show better predictive capabilities than planar, static cell cultures and animal models. One of the ongoing initiatives led by OoC developers is to bridge the academia-to-industry gap in the hope of gaining wider adoption by end-users - academic biological researchers and industry. We discuss several recommendations that can help to drive the adoption of OoC systems by the market. We first review some key challenges faced by OoC developers before highlighting current advances in OoC platforms. We then offer recommendations for OoC developers to promote the uptake of OoC systems by the industry.
Collapse
Affiliation(s)
- Terry Ching
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA; Pillar of Engineering Product Development, Singapore University of Technology and Design, Singapore 487373; Digital Manufacturing and Design Centre, Singapore University of Technology and Design, Singapore 4873724; Department of Biomedical Engineering, National University of Singapore, Singapore 117583
| | - Yi-Chin Toh
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia; Centre for Biomedical Technologies, Queensland University of Technology, Kelvin Grove, QLD 4059, Australia.
| | - Michinao Hashimoto
- Pillar of Engineering Product Development, Singapore University of Technology and Design, Singapore 487373; Digital Manufacturing and Design Centre, Singapore University of Technology and Design, Singapore 4873724.
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA.
| |
Collapse
|
17
|
Ewart L, Roth A. Opportunities and challenges with microphysiological systems: a pharma end-user perspective. Nat Rev Drug Discov 2021; 20:327-328. [PMID: 33619385 DOI: 10.1038/d41573-020-00030-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
18
|
Staicu CE, Jipa F, Axente E, Radu M, Radu BM, Sima F. Lab-on-a-Chip Platforms as Tools for Drug Screening in Neuropathologies Associated with Blood-Brain Barrier Alterations. Biomolecules 2021; 11:916. [PMID: 34205550 PMCID: PMC8235582 DOI: 10.3390/biom11060916] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 12/19/2022] Open
Abstract
Lab-on-a-chip (LOC) and organ-on-a-chip (OOC) devices are highly versatile platforms that enable miniaturization and advanced controlled laboratory functions (i.e., microfluidics, advanced optical or electrical recordings, high-throughput screening). The manufacturing advancements of LOCs/OOCs for biomedical applications and their current limitations are briefly discussed. Multiple studies have exploited the advantages of mimicking organs or tissues on a chip. Among these, we focused our attention on the brain-on-a-chip, blood-brain barrier (BBB)-on-a-chip, and neurovascular unit (NVU)-on-a-chip applications. Mainly, we review the latest developments of brain-on-a-chip, BBB-on-a-chip, and NVU-on-a-chip devices and their use as testing platforms for high-throughput pharmacological screening. In particular, we analyze the most important contributions of these studies in the field of neurodegenerative diseases and their relevance in translational personalized medicine.
Collapse
Affiliation(s)
- Cristina Elena Staicu
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania;
- Center for Advanced Laser Technologies, National Institute for Laser, Plasma and Radiation Physics, 077125 Măgurele, Romania; (F.J.); (E.A.); (F.S.)
| | - Florin Jipa
- Center for Advanced Laser Technologies, National Institute for Laser, Plasma and Radiation Physics, 077125 Măgurele, Romania; (F.J.); (E.A.); (F.S.)
| | - Emanuel Axente
- Center for Advanced Laser Technologies, National Institute for Laser, Plasma and Radiation Physics, 077125 Măgurele, Romania; (F.J.); (E.A.); (F.S.)
| | - Mihai Radu
- Department of Life and Environmental Physics, ‘Horia Hulubei’ National Institute for Physics and Nuclear Engineering, 077125 Măgurele, Romania;
| | - Beatrice Mihaela Radu
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania;
| | - Felix Sima
- Center for Advanced Laser Technologies, National Institute for Laser, Plasma and Radiation Physics, 077125 Măgurele, Romania; (F.J.); (E.A.); (F.S.)
| |
Collapse
|
19
|
Sakolish C, House JS, Chramiec A, Liu Y, Chen Z, Halligan SP, Vunjak-Novakovic G, Rusyn I. Tissue-Engineered Bone Tumor as a Reproducible Human in Vitro Model for Studies of Anticancer Drugs. Toxicol Sci 2021; 173:65-76. [PMID: 31626302 DOI: 10.1093/toxsci/kfz220] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Studies of anticancer therapies in traditional cell culture models can demonstrate efficacy of direct-acting compounds but lack the 3-dimensional arrangement of the tumor cells and their tissue-specific microenvironments, both of which are important modulators of treatment effects in vivo. Bone cells reside in complex environments that regulate their fate and function. A bioengineered human bone-tumor model has been shown to provide a microphysiological niche for studies of cancer cell behavior. Here, we demonstrate successful transfer between 2 laboratories and utility of this model in efficacy studies using well-established chemotherapeutic agents. The bioengineered human bone-tumor model consisted of Ewing sarcoma (RD-ES) cancer cell aggregates infused into tissue-engineered bone that was grown from human mesenchymal stem cell-derived differentiated into osteoblasts within mineralized bone scaffolds. The tumor model was maintained in culture for over 5 weeks and subjected to clinically relevant doses of linsitinib, doxorubicin, cisplatin, methotrexate, vincristine, dexamethasone, or MAP (methotrexate, doxorubicin, and cisplatin combination). Drug administration cycles were designed to mimic clinical treatment regimens. The bioengineered tumors were evaluated days to weeks after the cessation of treatment to monitor the potential for relapse, using bioengineered bone and ES cell monolayers as controls. Drug binding to the scaffolds and media proteins and gene expression were also evaluated. We show that a bioengineered human bone tumor can be used as a microphysiological model for preclinical studies of anticancer drugs. We found that anticancer efficacy was achieved at concentrations approximating the human Cmax, in contrast to traditional ES cell monolayers. These studies show that the bone-tumor model can be successfully transferred between laboratories and has predictive power in preclinical studies. The effects of drugs on the bone tumors and healthy bone were studied in parallel, in support of the utility of this model for identification of new therapeutic targets.
Collapse
Affiliation(s)
- Courtney Sakolish
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77843
| | - John S House
- Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina 27695
| | - Alan Chramiec
- Department of Biomedical Engineering, Columbia University, New York, New York 10032
| | - Yizhong Liu
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77843
| | - Zunwei Chen
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77843
| | - Susan P Halligan
- Department of Biomedical Engineering, Columbia University, New York, New York 10032
| | | | - Ivan Rusyn
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77843
| |
Collapse
|
20
|
Hargrove-Grimes P, Low LA, Tagle DA. Microphysiological systems: What it takes for community adoption. Exp Biol Med (Maywood) 2021; 246:1435-1446. [PMID: 33899539 DOI: 10.1177/15353702211008872] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Microphysiological systems (MPS) are promising in vitro tools which could substantially improve the drug development process, particularly for underserved patient populations such as those with rare diseases, neural disorders, and diseases impacting pediatric populations. Currently, one of the major goals of the National Institutes of Health MPS program, led by the National Center for Advancing Translational Sciences (NCATS), is to demonstrate the utility of this emerging technology and help support the path to community adoption. However, community adoption of MPS technology has been hindered by a variety of factors including biological and technological challenges in device creation, issues with validation and standardization of MPS technology, and potential complications related to commercialization. In this brief Minireview, we offer an NCATS perspective on what current barriers exist to MPS adoption and provide an outlook on the future path to adoption of these in vitro tools.
Collapse
Affiliation(s)
- Passley Hargrove-Grimes
- 390834National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lucie A Low
- 390834National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Danilo A Tagle
- 390834National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
21
|
Gough A, Soto-Gutierrez A, Vernetti L, Ebrahimkhani MR, Stern AM, Taylor DL. Human biomimetic liver microphysiology systems in drug development and precision medicine. Nat Rev Gastroenterol Hepatol 2021; 18:252-268. [PMID: 33335282 PMCID: PMC9106093 DOI: 10.1038/s41575-020-00386-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/02/2020] [Indexed: 02/07/2023]
Abstract
Microphysiology systems (MPS), also called organs-on-chips and tissue chips, are miniaturized functional units of organs constructed with multiple cell types under a variety of physical and biochemical environmental cues that complement animal models as part of a new paradigm of drug discovery and development. Biomimetic human liver MPS have evolved from simpler 2D cell models, spheroids and organoids to address the increasing need to understand patient-specific mechanisms of complex and rare diseases, the response to therapeutic treatments, and the absorption, distribution, metabolism, excretion and toxicity of potential therapeutics. The parallel development and application of transdisciplinary technologies, including microfluidic devices, bioprinting, engineered matrix materials, defined physiological and pathophysiological media, patient-derived primary cells, and pluripotent stem cells as well as synthetic biology to engineer cell genes and functions, have created the potential to produce patient-specific, biomimetic MPS for detailed mechanistic studies. It is projected that success in the development and maturation of patient-derived MPS with known genotypes and fully matured adult phenotypes will lead to advanced applications in precision medicine. In this Review, we examine human biomimetic liver MPS that are designed to recapitulate the liver acinus structure and functions to enhance our knowledge of the mechanisms of disease progression and of the absorption, distribution, metabolism, excretion and toxicity of therapeutic candidates and drugs as well as to evaluate their mechanisms of action and their application in precision medicine and preclinical trials.
Collapse
Affiliation(s)
- Albert Gough
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alejandro Soto-Gutierrez
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
- McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lawrence Vernetti
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mo R Ebrahimkhani
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
- McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Andrew M Stern
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - D Lansing Taylor
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA.
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
22
|
Donowitz M, Turner JR, Verkman AS, Zachos NC. Current and potential future applications of human stem cell models in drug development. J Clin Invest 2021; 130:3342-3344. [PMID: 32452833 PMCID: PMC7324189 DOI: 10.1172/jci138645] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Mark Donowitz
- Division of Gastroenterology, Department of Medicine, and.,Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jerrold R Turner
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Alan S Verkman
- Departments of Medicine and Physiology, UCSF, San Francisco, California, USA
| | | |
Collapse
|
23
|
Rusyn I, Roth A. Editorial overview of the special issue on application of tissue chips in toxicology. Toxicology 2021; 450:152687. [PMID: 33484733 DOI: 10.1016/j.tox.2021.152687] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 11/29/2022]
Affiliation(s)
- Ivan Rusyn
- Department of Veterinary Integrative Biosciences, College of veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA.
| | - Adrian Roth
- Product Development Safety, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| |
Collapse
|
24
|
Analysis of reproducibility and robustness of a human microfluidic four-cell liver acinus microphysiology system (LAMPS). Toxicology 2020; 448:152651. [PMID: 33307106 DOI: 10.1016/j.tox.2020.152651] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/06/2020] [Accepted: 11/27/2020] [Indexed: 02/07/2023]
Abstract
A human microfluidic four-cell liver acinus microphysiology system (LAMPS), was evaluated for reproducibility and robustness as a model for drug pharmacokinetics and toxicology. The model was constructed using primary human hepatocytes or human induced pluripotent stem cell (iPSC)-derived hepatocytes and 3 human cell lines for the endothelial, Kupffer and stellate cells. The model was tested in two laboratories and demonstrated to be reproducible in terms of basal function of hepatocytes, Terfenadine metabolism, and effects of Tolcapone (88 μM), Troglitazone (150 μM), and caffeine (600 μM) over 9 days in culture. Additional experiments compared basal outputs of albumin, urea, lactate dehydrogenase (LDH) and tumor necrosis factor (TNF)α, as well as drug metabolism and toxicity in the LAMPS model, and in 2D cultures seeded with either primary hepatocytes or iPSC-hepatocytes. Further experiments to study the effects of Terfenadine (10 μM), Tolcapone (88 μM), Trovafloxacin (150 μM with or without 1 μg/mL lipopolysaccharide), Troglitazone (28 μM), Rosiglitazone (0.8 μM), Pioglitazone (3 μM), and caffeine (600 μM) were carried out over 10 days. We found that both primary human hepatocytes and iPSC-derived hepatocytes in 3D culture maintained excellent basal liver function and Terfenadine metabolism over 10 days compared the same cells in 2D cultures. In 2D, non-overlay monolayer cultures, both cell types lost hepatocyte phenotypes after 48 h. With respect to drug effects, both cell types demonstrated comparable and more human-relevant effects in LAMPS, as compared to 2D cultures. Overall, these studies show that LAMPS is a robust and reproducible in vitro liver model, comparable in performance when seeded with either primary human hepatocytes or iPSC-derived hepatocytes, and more physiologically and clinically relevant than 2D monolayer cultures.
Collapse
|
25
|
Liu Y, Sakolish C, Chen Z, Phan DTT, Bender RHF, Hughes CCW, Rusyn I. Human in vitro vascularized micro-organ and micro-tumor models are reproducible organ-on-a-chip platforms for studies of anticancer drugs. Toxicology 2020; 445:152601. [PMID: 32980478 PMCID: PMC7606810 DOI: 10.1016/j.tox.2020.152601] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/30/2020] [Accepted: 09/22/2020] [Indexed: 12/16/2022]
Abstract
Angiogenesis is a complex process that is required for development and tissue regeneration and it may be affected by many pathological conditions. Chemicals and drugs can impact formation and maintenance of the vascular networks; these effects may be both desirable (e.g., anti-cancer drugs) or unwanted (e.g., side effects of drugs). A number of in vivo and in vitro models exist for studies of angiogenesis and endothelial cell function, including organ-on-a-chip microphysiological systems. An arrayed organ-on-a-chip platform on a 96-well plate footprint that incorporates perfused microvessels, with and without tumors, was recently developed and it was shown that survival of the surrounding tissue was dependent on delivery of nutrients through the vessels. Here we describe a technology transfer of this complex microphysiological model between laboratories and demonstrate that reproducibility and robustness of these tissue chip-enabled experiments depend primarily on the source of the endothelial cells. The model was highly reproducible between laboratories and was used to demonstrate the advantages of the perfusable vascular networks for drug safety evaluation. As a proof-of-concept, we tested Fluorouracil (1-1,000 μM), Vincristine (1-1,000 nM), and Sorafenib (0.1-100 μM), in the perfusable and non-perfusable micro-organs, and in a colon cancer-containing micro-tumor model. Tissue chip experiments were compared to the traditional monolayer cultures of endothelial or tumor cells. These studies showed that human in vitro vascularized micro-organ and micro-tumor models are reproducible organ-on-a-chip platforms for studies of anticancer drugs. The data from the 3D models confirmed advantages of the physiological environment as compared to 2D cell cultures. We demonstrated how these models can be translated into practice by verifying that the endothelial cell source and passage are critical elements for establishing a perfusable model.
Collapse
Affiliation(s)
- Yizhong Liu
- Interdisciplinary Faculty of Toxicology, College Station, TX, 77843, United States; Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, 77843, USA
| | - Courtney Sakolish
- Interdisciplinary Faculty of Toxicology, College Station, TX, 77843, United States; Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, 77843, USA
| | - Zunwei Chen
- Interdisciplinary Faculty of Toxicology, College Station, TX, 77843, United States; Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, 77843, USA
| | - Duc T T Phan
- Departments of Molecular Biology and Biochemistry, USA
| | | | - Christopher C W Hughes
- Departments of Molecular Biology and Biochemistry, USA; Biomedical Engineering, University of California, Irvine, Irvine, CA, 92697, USA
| | - Ivan Rusyn
- Interdisciplinary Faculty of Toxicology, College Station, TX, 77843, United States; Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
26
|
Kochanek PM, Jackson TC, Jha RM, Clark RS, Okonkwo DO, Bayır H, Poloyac SM, Wagner AK, Empey PE, Conley YP, Bell MJ, Kline AE, Bondi CO, Simon DW, Carlson SW, Puccio AM, Horvat CM, Au AK, Elmer J, Treble-Barna A, Ikonomovic MD, Shutter LA, Taylor DL, Stern AM, Graham SH, Kagan VE, Jackson EK, Wisniewski SR, Dixon CE. Paths to Successful Translation of New Therapies for Severe Traumatic Brain Injury in the Golden Age of Traumatic Brain Injury Research: A Pittsburgh Vision. J Neurotrauma 2020; 37:2353-2371. [PMID: 30520681 PMCID: PMC7698994 DOI: 10.1089/neu.2018.6203] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
New neuroprotective therapies for severe traumatic brain injury (TBI) have not translated from pre-clinical to clinical success. Numerous explanations have been suggested in both the pre-clinical and clinical arenas. Coverage of TBI in the lay press has reinvigorated interest, creating a golden age of TBI research with innovative strategies to circumvent roadblocks. We discuss the need for more robust therapies. We present concepts for traditional and novel approaches to defining therapeutic targets. We review lessons learned from the ongoing work of the pre-clinical drug and biomarker screening consortium Operation Brain Trauma Therapy and suggest ways to further enhance pre-clinical consortia. Biomarkers have emerged that empower choice and assessment of target engagement by candidate therapies. Drug combinations may be needed, and it may require moving beyond conventional drug therapies. Precision medicine may also link the right therapy to the right patient, including new approaches to TBI classification beyond the Glasgow Coma Scale or anatomical phenotyping-incorporating new genetic and physiologic approaches. Therapeutic breakthroughs may also come from alternative approaches in clinical investigation (comparative effectiveness, adaptive trial design, use of the electronic medical record, and big data). The full continuum of care must also be represented in translational studies, given the important clinical role of pre-hospital events, extracerebral insults in the intensive care unit, and rehabilitation. TBI research from concussion to coma can cross-pollinate and further advancement of new therapies. Misconceptions can stifle/misdirect TBI research and deserve special attention. Finally, we synthesize an approach to deliver therapeutic breakthroughs in this golden age of TBI research.
Collapse
Affiliation(s)
- Patrick M. Kochanek
- Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Travis C. Jackson
- Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Ruchira M. Jha
- Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Robert S.B. Clark
- Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - David O. Okonkwo
- Department of Neurological Surgery, UPMC Presbyterian Hospital, Pittsburgh, Pennsylvania, USA
| | - Hülya Bayır
- Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Environmental and Occupational Health, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Samuel M. Poloyac
- Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- University of Pittsburgh School of Pharmacy, Pittsburgh, Pennsylvania, USA
| | - Amy K. Wagner
- Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Philip E. Empey
- Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Pharmacy and Therapeutics, University of Pittsburgh School of Pharmacy, Pittsburgh, Pennsylvania, USA
| | - Yvette P. Conley
- Health Promotion and Development, University of Pittsburgh School of Nursing, Pittsburgh, Pennsylvania, USA
| | - Michael J. Bell
- Department of Critical Care Medicine, Children's National Medical Center, Washington, DC, USA
| | - Anthony E. Kline
- Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Corina O. Bondi
- Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Dennis W. Simon
- Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Shaun W. Carlson
- Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Ava M. Puccio
- Department of Neurological Surgery, UPMC Presbyterian Hospital, Pittsburgh, Pennsylvania, USA
| | - Christopher M. Horvat
- Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Alicia K. Au
- Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Jonathan Elmer
- Departments of Emergency Medicine and Critical Care Medicine, University of Pittsburgh School of Medicine, UPMC Presbyterian Hospital, Pittsburgh, Pennsylvania, USA
| | - Amery Treble-Barna
- Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Milos D. Ikonomovic
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Lori A. Shutter
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - D. Lansing Taylor
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Andrew M. Stern
- Drug Discovery Institute, Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Steven H. Graham
- Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, USA
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Valerian E. Kagan
- Department of Environmental and Occupational Health, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Edwin K. Jackson
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Stephen R. Wisniewski
- University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania, USA
| | - C. Edward Dixon
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
27
|
Khalil AS, Jaenisch R, Mooney DJ. Engineered tissues and strategies to overcome challenges in drug development. Adv Drug Deliv Rev 2020; 158:116-139. [PMID: 32987094 PMCID: PMC7518978 DOI: 10.1016/j.addr.2020.09.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/29/2020] [Accepted: 09/23/2020] [Indexed: 12/16/2022]
Abstract
Current preclinical studies in drug development utilize high-throughput in vitro screens to identify drug leads, followed by both in vitro and in vivo models to predict lead candidates' pharmacokinetic and pharmacodynamic properties. The goal of these studies is to reduce the number of lead drug candidates down to the most likely to succeed in later human clinical trials. However, only 1 in 10 drug candidates that emerge from preclinical studies will succeed and become an approved therapeutic. Lack of efficacy or undetected toxicity represents roughly 75% of the causes for these failures, despite these parameters being the primary exclusion criteria in preclinical studies. Recently, advances in both biology and engineering have created new tools for constructing new preclinical models. These models can complement those used in current preclinical studies by helping to create more realistic representations of human tissues in vitro and in vivo. In this review, we describe current preclinical models to identify their value and limitations and then discuss select areas of research where improvements in preclinical models are particularly needed to advance drug development. Following this, we discuss design considerations for constructing preclinical models and then highlight recent advances in these efforts. Taken together, we aim to review the advances as of 2020 surrounding the prospect of biological and engineering tools for adding enhanced biological relevance to preclinical studies to aid in the challenges of failed drug candidates and the burden this poses on the drug development enterprise and thus healthcare.
Collapse
Affiliation(s)
- Andrew S Khalil
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02115, USA; Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Rudolf Jaenisch
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
| | - David J Mooney
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02115, USA.
| |
Collapse
|
28
|
Dame K, Ribeiro AJ. Microengineered systems with iPSC-derived cardiac and hepatic cells to evaluate drug adverse effects. Exp Biol Med (Maywood) 2020; 246:317-331. [PMID: 32938227 PMCID: PMC7859673 DOI: 10.1177/1535370220959598] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Hepatic and cardiac drug adverse effects are among the leading causes of attrition in drug development programs, in part due to predictive failures of current animal or in vitro models. Hepatocytes and cardiomyocytes differentiated from human induced pluripotent stem cells (iPSCs) hold promise for predicting clinical drug effects, given their human-specific properties and their ability to harbor genetically determined characteristics that underlie inter-individual variations in drug response. Currently, the fetal-like properties and heterogeneity of hepatocytes and cardiomyocytes differentiated from iPSCs make them physiologically different from their counterparts isolated from primary tissues and limit their use for predicting clinical drug effects. To address this hurdle, there have been ongoing advances in differentiation and maturation protocols to improve the quality and use of iPSC-differentiated lineages. Among these are in vitro hepatic and cardiac cellular microsystems that can further enhance the physiology of cultured cells, can be used to better predict drug adverse effects, and investigate drug metabolism, pharmacokinetics, and pharmacodynamics to facilitate successful drug development. In this article, we discuss how cellular microsystems can establish microenvironments for these applications and propose how they could be used for potentially controlling the differentiation of hepatocytes or cardiomyocytes. The physiological relevance of cells is enhanced in cellular microsystems by simulating properties of tissue microenvironments, such as structural dimensionality, media flow, microfluidic control of media composition, and co-cultures with interacting cell types. Recent studies demonstrated that these properties also affect iPSC differentiations and we further elaborate on how they could control differentiation efficiency in microengineered devices. In summary, we describe recent advances in the field of cellular microsystems that can control the differentiation and maturation of hepatocytes and cardiomyocytes for drug evaluation. We also propose how future research with iPSCs within engineered microenvironments could enable their differentiation for scalable evaluations of drug effects.
Collapse
Affiliation(s)
- Keri Dame
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translation Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Alexandre Js Ribeiro
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translation Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD 20993, USA
| |
Collapse
|
29
|
Ramadan Q, Zourob M. Organ-on-a-chip engineering: Toward bridging the gap between lab and industry. BIOMICROFLUIDICS 2020; 14:041501. [PMID: 32699563 PMCID: PMC7367691 DOI: 10.1063/5.0011583] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/22/2020] [Indexed: 05/03/2023]
Abstract
Organ-on-a-chip (OOC) is a very ambitious emerging technology with a high potential to revolutionize many medical and industrial sectors, particularly in preclinical-to-clinical translation in the pharmaceutical arena. In vivo, the function of the organ(s) is orchestrated by a complex cellular structure and physiochemical factors within the extracellular matrix and secreted by various types of cells. The trend in in vitro modeling is to simplify the complex anatomy of the human organ(s) to the minimal essential cellular structure "micro-anatomy" instead of recapitulating the full cellular milieu that enables studying the absorption, metabolism, as well as the mechanistic investigation of drug compounds in a "systemic manner." However, in order to reflect the human physiology in vitro and hence to be able to bridge the gap between the in vivo and in vitro data, simplification should not compromise the physiological relevance. Engineering principles have long been applied to solve medical challenges, and at this stage of organ-on-a-chip technology development, the work of biomedical engineers, focusing on device engineering, is more important than ever to accelerate the technology transfer from the academic lab bench to specialized product development institutions and to the increasingly demanding market. In this paper, instead of presenting a narrative review of the literature, we systemically present a synthesis of the best available organ-on-a-chip technology from what is found, what has been achieved, and what yet needs to be done. We emphasized mainly on the requirements of a "good in vitro model that meets the industrial need" in terms of the structure (micro-anatomy), functions (micro-physiology), and characteristics of the device that hosts the biological model. Finally, we discuss the biological model-device integration supported by an example and the major challenges that delay the OOC technology transfer to the industry and recommended possible options to realize a functional organ-on-a-chip system.
Collapse
Affiliation(s)
- Qasem Ramadan
- Alfaisal University, Al Zahrawi Street, Riyadh 11533, Kingdom of Saudi Arabia
| | - Mohammed Zourob
- Alfaisal University, Al Zahrawi Street, Riyadh 11533, Kingdom of Saudi Arabia
| |
Collapse
|
30
|
Ekert JE, Deakyne J, Pribul-Allen P, Terry R, Schofield C, Jeong CG, Storey J, Mohamet L, Francis J, Naidoo A, Amador A, Klein JL, Rowan W. Recommended Guidelines for Developing, Qualifying, and Implementing Complex In Vitro Models (CIVMs) for Drug Discovery. SLAS DISCOVERY 2020; 25:1174-1190. [PMID: 32495689 DOI: 10.1177/2472555220923332] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The pharmaceutical industry is continuing to face high research and development (R&D) costs and low overall success rates of clinical compounds during drug development. There is an increasing demand for development and validation of healthy or disease-relevant and physiological human cellular models that can be implemented in early-stage discovery, thereby shifting attrition of future therapeutics to a point in discovery at which the costs are significantly lower. There needs to be a paradigm shift in the early drug discovery phase (which is lengthy and costly), away from simplistic cellular models that show an inability to effectively and efficiently reproduce healthy or human disease-relevant states to steer target and compound selection for safety, pharmacology, and efficacy questions. This perspective article covers the various stages of early drug discovery from target identification (ID) and validation to the hit/lead discovery phase, lead optimization, and preclinical safety. We outline key aspects that should be considered when developing, qualifying, and implementing complex in vitro models (CIVMs) during these phases, because criteria such as cell types (e.g., cell lines, primary cells, stem cells, and tissue), platform (e.g., spheroids, scaffolds or hydrogels, organoids, microphysiological systems, and bioprinting), throughput, automation, and single and multiplexing endpoints will vary. The article emphasizes the need to adequately qualify these CIVMs such that they are suitable for various applications (e.g., context of use) of drug discovery and translational research. The article ends looking to the future, in which there is an increase in combining computational modeling, artificial intelligence and machine learning (AI/ML), and CIVMs.
Collapse
Affiliation(s)
- Jason E Ekert
- In Vitro In Vivo Translation, Research, Pharmaceutical R&D, GlaxoSmithKline, Collegeville, PA, USA
| | - Julianna Deakyne
- In Vitro In Vivo Translation, Research, Pharmaceutical R&D, GlaxoSmithKline, Collegeville, PA, USA
| | - Philippa Pribul-Allen
- In Vitro In Vivo Translation, Research, Pharmaceutical R&D, GlaxoSmithKline, Ware, UK
| | - Rebecca Terry
- In Vitro In Vivo Translation, Research, Pharmaceutical R&D, GlaxoSmithKline, Ware, UK
| | - Christopher Schofield
- Functional Genomics, Medicinal Science and Technology, Pharmaceutical R&D, GlaxoSmithKline, Stevenage, UK
| | | | - Joanne Storey
- Research Office of Animal Welfare, Ethics and Strategy, Research, Pharmaceutical R&D, GlaxoSmithKline, Stevenage, UK
| | - Lisa Mohamet
- Functional Genomics, Medicinal Science and Technology, Pharmaceutical R&D, GlaxoSmithKline, Stevenage, UK
| | - Jo Francis
- Screening Profiling and Mechanistic Biology, Medicinal Science and Technology, Pharmaceutical R&D, GlaxoSmithKline, Stevenage, UK
| | - Anita Naidoo
- In Vitro In Vivo Translation, Research, Pharmaceutical R&D, GlaxoSmithKline, Ware, UK
| | - Alejandro Amador
- Functional Genomics, Medicinal Science and Technology, Pharmaceutical R&D, GlaxoSmithKline, Collegeville, PA, USA
| | - Jean-Louis Klein
- Novel Human Genetics, Research, Pharmaceutical R&D, GlaxoSmithKline, Collegeville, PA, USA
| | - Wendy Rowan
- Novel Human Genetics, Research, Pharmaceutical R&D, GlaxoSmithKline, Stevenage, UK
| |
Collapse
|
31
|
Walker PA, Ryder S, Lavado A, Dilworth C, Riley RJ. The evolution of strategies to minimise the risk of human drug-induced liver injury (DILI) in drug discovery and development. Arch Toxicol 2020; 94:2559-2585. [PMID: 32372214 PMCID: PMC7395068 DOI: 10.1007/s00204-020-02763-w] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 04/22/2020] [Indexed: 12/15/2022]
Abstract
Early identification of toxicity associated with new chemical entities (NCEs) is critical in preventing late-stage drug development attrition. Liver injury remains a leading cause of drug failures in clinical trials and post-approval withdrawals reflecting the poor translation between traditional preclinical animal models and human clinical outcomes. For this reason, preclinical strategies have evolved over recent years to incorporate more sophisticated human in vitro cell-based models with multi-parametric endpoints. This review aims to highlight the evolution of the strategies adopted to improve human hepatotoxicity prediction in drug discovery and compares/contrasts these with recent activities in our lab. The key role of human exposure and hepatic drug uptake transporters (e.g. OATPs, OAT2) is also elaborated.
Collapse
Affiliation(s)
- Paul A Walker
- Cyprotex Discovery Ltd., No.24 Mereside, Alderley Park, Macclesfield, Cheshire, SK10 4TG, UK.
| | - Stephanie Ryder
- Cyprotex Discovery Ltd., No.24 Mereside, Alderley Park, Macclesfield, Cheshire, SK10 4TG, UK
| | - Andrea Lavado
- Cyprotex Discovery Ltd., No.24 Mereside, Alderley Park, Macclesfield, Cheshire, SK10 4TG, UK
| | - Clive Dilworth
- Cyprotex Discovery Ltd., No.24 Mereside, Alderley Park, Macclesfield, Cheshire, SK10 4TG, UK.,Alderley Park Accelerator, Alderley Park, Macclesfield, Cheshire, SK10 4TG, UK
| | - Robert J Riley
- Cyprotex Discovery Ltd., No.24 Mereside, Alderley Park, Macclesfield, Cheshire, SK10 4TG, UK
| |
Collapse
|
32
|
Schurdak M, Vernetti L, Bergenthal L, Wolter QK, Shun TY, Karcher S, Taylor DL, Gough A. Applications of the microphysiology systems database for experimental ADME-Tox and disease models. LAB ON A CHIP 2020; 20:1472-1492. [PMID: 32211684 PMCID: PMC7497411 DOI: 10.1039/c9lc01047e] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 01/07/2020] [Indexed: 05/04/2023]
Abstract
To accelerate the development and application of Microphysiological Systems (MPS) in biomedical research and drug discovery/development, a centralized resource is required to provide the detailed design, application, and performance data that enables industry and research scientists to select, optimize, and/or develop new MPS solutions, as well as to harness data from MPS models. We have previously implemented an open source Microphysiology Systems Database (MPS-Db), with a simple icon driven interface, as a resource for MPS researchers and drug discovery/development scientists (https://mps.csb.pitt.edu). The MPS-Db captures and aggregates data from MPS, ranging from static microplate models to integrated, multi-organ microfluidic models, and associates those data with reference data from chemical, biochemical, pre-clinical, clinical and post-marketing sources to support the design, development, validation, application and interpretation of the models. The MPS-Db enables users to manage their multifactor, multichip studies, then upload, analyze, review, computationally model and share data. Here we discuss how the sharing of MPS study data in the MS-Db is under user control and can be kept private to the individual user, shared with a select group of collaborators, or be made accessible to the general scientific community. We also present a test case using our liver acinus MPS model (LAMPS) as an example and discuss the use of the MPS-Db in managing, designing, and analyzing MPS study data, assessing the reproducibility of MPS models, and evaluating the concordance of MPS model results with clinical findings. We introduce the Disease Portal module with links to resources for the design of MPS disease models and studies and discuss the integration of computational models for the prediction of PK/PD and disease pathways using data generated from MPS models.
Collapse
Affiliation(s)
- Mark Schurdak
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA. and Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Lawrence Vernetti
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA. and Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Luke Bergenthal
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| | - Quinn K Wolter
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| | - Tong Ying Shun
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| | - Sandra Karcher
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| | - D Lansing Taylor
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA. and Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Albert Gough
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA. and Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
33
|
Alluri RV, Li R, Varma MVS. Transporter–enzyme interplay and the hepatic drug clearance: what have we learned so far? Expert Opin Drug Metab Toxicol 2020; 16:387-401. [DOI: 10.1080/17425255.2020.1749595] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ravindra V. Alluri
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Rui Li
- Modeling and Simulations, Medicine Design, Worldwide Research and Development, Pfizer Inc., Cambridge, MA, USA
| | - Manthena V. S. Varma
- ADME Sciences, Medicine Design, Worldwide Research and Development, Pfizer Inc., Groton, CT, USA
| |
Collapse
|
34
|
Abstract
High-throughput in vitro models lack human-relevant complexity, which undermines their ability to accurately mimic in vivo biologic and pathologic responses. The emergence of microphysiological systems (MPS) presents an opportunity to revolutionize in vitro modeling for both basic biomedical research and applied drug discovery. The MPS platform has been an area of interdisciplinary collaboration to develop new, predictive, and reliable in vitro methods for regulatory acceptance. The current MPS models have been developed to recapitulate an organ or tissue on a smaller scale. However, the complexity of these models (ie, including all cell types present in the in vivo tissue) with appropriate structural, functional, and biochemical attributes are often not fully characterized. Here, we provide an overview of the capabilities and limitations of the microfluidic MPS model (aka organs-on-chips) within the scope of drug development. We recommend the engagement of pathologists early in the MPS design, characterization, and validation phases, because this will enable development of more robust and comprehensive MPS models that can accurately replicate normal biology and pathophysiology and hence be more predictive of human responses.
Collapse
Affiliation(s)
| | - Terry Van Vleet
- Global Preclinical Safety, AbbVie Inc, North Chicago, IL, USA
| | - Brian R Berridge
- National Toxicology Program, The National Institute of Environmental Health Sciences, Durham, NC, USA
| |
Collapse
|
35
|
Fabre K, Berridge B, Proctor WR, Ralston S, Will Y, Baran SW, Yoder G, Van Vleet TR. Introduction to a manuscript series on the characterization and use of microphysiological systems (MPS) in pharmaceutical safety and ADME applications. LAB ON A CHIP 2020; 20:1049-1057. [PMID: 32073020 DOI: 10.1039/c9lc01168d] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Safety related drug failures continue to be a challenge for pharmaceutical companies despite the numerous complex and lengthy in vitro assays and in vivo studies that make up the typical safety screening funnel. A lack of complete translation of animal data to humans can explain some of those shortcomings. Differences in sensitivity and drug disposition between animals and humans may also play a role. Many gaps exist for potential target tissues of drugs that cannot be adequately modeled in vitro. Microphysiological systems (MPS) may help to better model these target tissues and provide an opportunity to better assess some aspects of human safety prior to clinical studies. There is hope that these systems can supplement current preclinical drug safety and disposition evaluations, filling gaps and enhancing our ability to predict and understand human relevant toxicities. The International Consortium for Innovation and Quality in Pharmaceutical Development (IQ) MPS Affiliate is a group of pharmaceutical industry scientists who seek to expedite appropriate characterization and incorporation of MPS to potentially improve drug safety assessment and provide safer and more effective medicines to patients. In keeping with this mission, the IQ MPS Affiliate scientists have prepared a series of organotypic manuscripts for several key drug safety and disposition target tissues (lung, liver, kidney, skin, gastrointestinal, cardiovascular, and blood brain barrier/central nervous system). The goal of these manuscripts is to provide key information related to likely initial contexts of use (CoU) and key characterization data needed for incorporation of MPS in pharmaceutical safety screening including a list of characteristic functions, cell types, toxicities, and test agents (representing major mechanisms of toxicity) that can be used by MPS developers. Additional manuscripts focusing on testing biologically based therapeutics and ADME considerations have been prepared as part of this effort. These manuscripts focus on general needs for assessing biologics and ADME endpoints and include similar information to the tissue specific manuscripts where appropriate. The current manuscript is an introduction to several general concepts related to pharmaceutical industry needs with regard to MPS application and other MPS concepts that apply across the organ specific manuscripts.
Collapse
Affiliation(s)
- Kristin Fabre
- Translational Research Institute for Space Health, Baylor College of Medicine, Houston, TX, USA and MPS Center of Excellence, Drug Safety & Metabolism, IMED Biotech Unit, AstraZeneca, Waltham, MA, USA
| | - Brian Berridge
- National Toxicology Program, The National Institute of Environmental Health Sciences, 530 Davis Dr., Keystone Building, Durham, North Carolina, USA
| | - William R Proctor
- Investigative Toxicology, Safety Assessment, Genentech, Inc., South San Francisco, CA, USA
| | - Sherry Ralston
- Department of Preclinical Safety, AbbVie, N Chicago, IL, USA.
| | - Yvonne Will
- Discovery, Product Development & Supply, Janssen Pharmaceutical Companies of Johnson & Johnson, San Diego, CA, USA
| | - Szczepan W Baran
- Emerging Technologies, LAS, Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Gorm Yoder
- Analytical Development - Small Molecule Pharmaceutical Development, Janssen Research & Development, LLC, USA
| | | |
Collapse
|
36
|
Marx U, Akabane T, Andersson TB, Baker E, Beilmann M, Beken S, Brendler-Schwaab S, Cirit M, David R, Dehne EM, Durieux I, Ewart L, Fitzpatrick SC, Frey O, Fuchs F, Griffith LG, Hamilton GA, Hartung T, Hoeng J, Hogberg H, Hughes DJ, Ingber DE, Iskandar A, Kanamori T, Kojima H, Kuehnl J, Leist M, Li B, Loskill P, Mendrick DL, Neumann T, Pallocca G, Rusyn I, Smirnova L, Steger-Hartmann T, Tagle DA, Tonevitsky A, Tsyb S, Trapecar M, Van de Water B, Van den Eijnden-van Raaij J, Vulto P, Watanabe K, Wolf A, Zhou X, Roth A. Biology-inspired microphysiological systems to advance patient benefit and animal welfare in drug development. ALTEX-ALTERNATIVES TO ANIMAL EXPERIMENTATION 2020; 37:365-394. [PMID: 32113184 PMCID: PMC7863570 DOI: 10.14573/altex.2001241] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 02/27/2020] [Indexed: 12/24/2022]
Abstract
The first microfluidic microphysiological systems (MPS) entered the academic scene more than 15 years ago and were considered an enabling technology to human (patho)biology in vitro and, therefore, provide alternative approaches to laboratory animals in pharmaceutical drug development and academic research. Nowadays, the field generates more than a thousand scientific publications per year. Despite the MPS hype in academia and by platform providers, which says this technology is about to reshape the entire in vitro culture landscape in basic and applied research, MPS approaches have neither been widely adopted by the pharmaceutical industry yet nor reached regulated drug authorization processes at all. Here, 46 leading experts from all stakeholders - academia, MPS supplier industry, pharmaceutical and consumer products industries, and leading regulatory agencies - worldwide have analyzed existing challenges and hurdles along the MPS-based assay life cycle in a second workshop of this kind in June 2019. They identified that the level of qualification of MPS-based assays for a given context of use and a communication gap between stakeholders are the major challenges for industrial adoption by end-users. Finally, a regulatory acceptance dilemma exists against that background. This t4 report elaborates on these findings in detail and summarizes solutions how to overcome the roadblocks. It provides recommendations and a roadmap towards regulatory accepted MPS-based models and assays for patients' benefit and further laboratory animal reduction in drug development. Finally, experts highlighted the potential of MPS-based human disease models to feedback into laboratory animal replacement in basic life science research.
Collapse
Affiliation(s)
- Uwe Marx
- TissUse GmbH, Berlin, Germany.,Technische Universitaet Berlin, Germany
| | - Takafumi Akabane
- Stem Cell Evaluation Technology Research Association, Tokyo, Japan
| | - Tommy B Andersson
- DMPK, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Elizabeth Baker
- Physicians Committee for Responsible Medicine, Washington DC, USA
| | - Mario Beilmann
- Boehringer Ingelheim Pharma GmbH & Co. KG, Non-clinical Drug Safety, Biberach, Germany
| | - Sonja Beken
- Federal Agency for Medicines and Health Products, Brussels, Belgium
| | | | | | - Rhiannon David
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| | | | | | - Lorna Ewart
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Suzanne C Fitzpatrick
- US Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, MD, USA
| | | | - Florian Fuchs
- Novartis Institutes for BioMedical Research Chemical Biology & Therapeutics, Basel, Switzerland
| | | | | | - Thomas Hartung
- Center for Alternatives to Animal Testing, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.,Center for Alternatives to Animal Testing-Europe, University of Konstanz, Konstanz, Germany.,AxoSim, Inc., New Orleans, LA, USA
| | - Julia Hoeng
- Philip Morris International R&D, Neuchâtel, Switzerland
| | - Helena Hogberg
- Center for Alternatives to Animal Testing, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | | | - Donald E Ingber
- Wyss Institute for Biology Inspired Engineering, Harvard University, Boston, USA
| | | | - Toshiyuki Kanamori
- National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
| | - Hajime Kojima
- Japanese Center for Validation of Animal Methods, Tokyo, Japan
| | | | - Marcel Leist
- Center for Alternatives to Animal Testing-Europe, University of Konstanz, Konstanz, Germany
| | - Bo Li
- National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, Beijing, P.R. China
| | - Peter Loskill
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart, Germany.,Faculty of Medicine, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Donna L Mendrick
- National Center for Toxicological Research, FDA, Silver Spring, MD, USA
| | | | - Giorgia Pallocca
- Center for Alternatives to Animal Testing-Europe, University of Konstanz, Konstanz, Germany
| | - Ivan Rusyn
- Texas A&M University, College Station, TX, USA
| | - Lena Smirnova
- Center for Alternatives to Animal Testing, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | | | - Danilo A Tagle
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Alexander Tonevitsky
- M.M. Shemyakin & Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Russia.,National Research University Higher School of Economics, Russia
| | - Sergej Tsyb
- Russian Ministry of Production and Trade, Moscow, Russia
| | | | | | | | | | | | | | - Xiaobing Zhou
- National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, Beijing, P.R. China
| | - Adrian Roth
- F. Hoffmann-La Roche Ltd, Roche Innovation Center Basel, Switzerland
| |
Collapse
|
37
|
Novak R, Ingram M, Marquez S, Das D, Delahanty A, Herland A, Maoz BM, Jeanty SSF, Somayaji MR, Burt M, Calamari E, Chalkiadaki A, Cho A, Choe Y, Chou DB, Cronce M, Dauth S, Divic T, Fernandez-Alcon J, Ferrante T, Ferrier J, FitzGerald EA, Fleming R, Jalili-Firoozinezhad S, Grevesse T, Goss JA, Hamkins-Indik T, Henry O, Hinojosa C, Huffstater T, Jang KJ, Kujala V, Leng L, Mannix R, Milton Y, Nawroth J, Nestor BA, Ng CF, O'Connor B, Park TE, Sanchez H, Sliz J, Sontheimer-Phelps A, Swenor B, Thompson G, Touloumes GJ, Tranchemontagne Z, Wen N, Yadid M, Bahinski A, Hamilton GA, Levner D, Levy O, Przekwas A, Prantil-Baun R, Parker KK, Ingber DE. Robotic fluidic coupling and interrogation of multiple vascularized organ chips. Nat Biomed Eng 2020; 4:407-420. [PMID: 31988458 DOI: 10.1038/s41551-019-0497-x] [Citation(s) in RCA: 241] [Impact Index Per Article: 60.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 11/25/2019] [Indexed: 02/08/2023]
Abstract
Organ chips can recapitulate organ-level (patho)physiology, yet pharmacokinetic and pharmacodynamic analyses require multi-organ systems linked by vascular perfusion. Here, we describe an 'interrogator' that employs liquid-handling robotics, custom software and an integrated mobile microscope for the automated culture, perfusion, medium addition, fluidic linking, sample collection and in situ microscopy imaging of up to ten organ chips inside a standard tissue-culture incubator. The robotic interrogator maintained the viability and organ-specific functions of eight vascularized, two-channel organ chips (intestine, liver, kidney, heart, lung, skin, blood-brain barrier and brain) for 3 weeks in culture when intermittently fluidically coupled via a common blood substitute through their reservoirs of medium and endothelium-lined vascular channels. We used the robotic interrogator and a physiological multicompartmental reduced-order model of the experimental system to quantitatively predict the distribution of an inulin tracer perfused through the multi-organ human-body-on-chips. The automated culture system enables the imaging of cells in the organ chips and the repeated sampling of both the vascular and interstitial compartments without compromising fluidic coupling.
Collapse
Affiliation(s)
- Richard Novak
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
| | - Miles Ingram
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
| | - Susan Marquez
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
| | - Debarun Das
- CFD Research Corporation, Huntsville, AL, USA
| | - Aaron Delahanty
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
| | - Anna Herland
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA.,Division of Micro and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Ben M Maoz
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA.,Disease Biophysics Group, Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.,Department of Biomedical Engineering and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Sauveur S F Jeanty
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA.,Emulate, Inc., Boston, MA, USA
| | | | - Morgan Burt
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
| | - Elizabeth Calamari
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
| | - Angeliki Chalkiadaki
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
| | | | - Youngjae Choe
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
| | - David Benson Chou
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA.,Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Michael Cronce
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
| | - Stephanie Dauth
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA.,Disease Biophysics Group, Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Toni Divic
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
| | - Jose Fernandez-Alcon
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA.,Emulate, Inc., Boston, MA, USA
| | - Thomas Ferrante
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
| | - John Ferrier
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA.,Disease Biophysics Group, Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Edward A FitzGerald
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
| | - Rachel Fleming
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
| | - Sasan Jalili-Firoozinezhad
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA.,Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Thomas Grevesse
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA.,Disease Biophysics Group, Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Josue A Goss
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA.,Disease Biophysics Group, Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Tiama Hamkins-Indik
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
| | - Olivier Henry
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
| | - Chris Hinojosa
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA.,Emulate, Inc., Boston, MA, USA
| | - Tessa Huffstater
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
| | - Kyung-Jin Jang
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA.,Emulate, Inc., Boston, MA, USA
| | - Ville Kujala
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA.,Disease Biophysics Group, Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.,Emulate, Inc., Boston, MA, USA
| | - Lian Leng
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA.,Emulate, Inc., Boston, MA, USA
| | - Robert Mannix
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA.,Vascular Biology Program and Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Yuka Milton
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
| | - Janna Nawroth
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA.,Disease Biophysics Group, Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.,Emulate, Inc., Boston, MA, USA
| | - Bret A Nestor
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
| | - Carlos F Ng
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
| | - Blakely O'Connor
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA.,Disease Biophysics Group, Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Tae-Eun Park
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
| | - Henry Sanchez
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
| | - Josiah Sliz
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA.,Emulate, Inc., Boston, MA, USA
| | - Alexandra Sontheimer-Phelps
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA.,Department of Biology, University of Freiburg, Freiburg, Germany
| | - Ben Swenor
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
| | - Guy Thompson
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA.,Emulate, Inc., Boston, MA, USA
| | - George J Touloumes
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA.,Disease Biophysics Group, Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | | | - Norman Wen
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA.,Emulate, Inc., Boston, MA, USA
| | - Moran Yadid
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA.,Disease Biophysics Group, Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Anthony Bahinski
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA.,GlaxoSmithKline, Collegeville, PA, USA
| | - Geraldine A Hamilton
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA.,Emulate, Inc., Boston, MA, USA
| | - Daniel Levner
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA.,Emulate, Inc., Boston, MA, USA
| | - Oren Levy
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
| | | | - Rachelle Prantil-Baun
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
| | - Kevin K Parker
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA.,Disease Biophysics Group, Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Donald E Ingber
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA. .,Vascular Biology Program and Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA. .,Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
38
|
Sorkin BC, Kuszak AJ, Bloss G, Fukagawa NK, Hoffman FA, Jafari M, Barrett B, Brown PN, Bushman FD, Casper S, Chilton FH, Coffey CS, Ferruzzi MG, Hopp DC, Kiely M, Lakens D, MacMillan JB, Meltzer DO, Pahor M, Paul J, Pritchett-Corning K, Quinney SK, Rehermann B, Setchell KD, Sipes NS, Stephens JM, Taylor DL, Tiriac H, Walters MA, Xi D, Zappalá G, Pauli GF. Improving natural product research translation: From source to clinical trial. FASEB J 2020; 34:41-65. [PMID: 31914647 PMCID: PMC7470648 DOI: 10.1096/fj.201902143r] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/12/2019] [Accepted: 10/21/2019] [Indexed: 12/28/2022]
Abstract
While great interest in health effects of natural product (NP) including dietary supplements and foods persists, promising preclinical NP research is not consistently translating into actionable clinical trial (CT) outcomes. Generally considered the gold standard for assessing safety and efficacy, CTs, especially phase III CTs, are costly and require rigorous planning to optimize the value of the information obtained. More effective bridging from NP research to CT was the goal of a September, 2018 transdisciplinary workshop. Participants emphasized that replicability and likelihood of successful translation depend on rigor in experimental design, interpretation, and reporting across the continuum of NP research. Discussions spanned good practices for NP characterization and quality control; use and interpretation of models (computational through in vivo) with strong clinical predictive validity; controls for experimental artefacts, especially for in vitro interrogation of bioactivity and mechanisms of action; rigorous assessment and interpretation of prior research; transparency in all reporting; and prioritization of research questions. Natural product clinical trials prioritized based on rigorous, convergent supporting data and current public health needs are most likely to be informative and ultimately affect public health. Thoughtful, coordinated implementation of these practices should enhance the knowledge gained from future NP research.
Collapse
Affiliation(s)
- Barbara C. Sorkin
- Office of Dietary Supplements, National Institutes of Health (NIH), Bethesda, MD, US
| | - Adam J. Kuszak
- Office of Dietary Supplements, National Institutes of Health (NIH), Bethesda, MD, US
| | - Gregory Bloss
- National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, US
| | | | | | | | | | - Paula N. Brown
- British Columbia Institute of Technology, Burnaby, British Columbia, Canada
| | | | - Steven Casper
- Office of Dietary Supplement Programs, Center for Food Safety and Applied Nutrition, Food and Drug Administration (FDA), Hyattsville, MD, US
| | - Floyd H. Chilton
- Department of Nutritional Sciences and the BIO5 Institute, University of Arizona, Tucson, AZ, US
| | | | - Mario G. Ferruzzi
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, US
| | - D. Craig Hopp
- National Center for Complementary and Integrative Health, NIH, Bethesda, MD, US
| | - Mairead Kiely
- Cork Centre for Vitamin D and Nutrition Research, School of Food and Nutritional Sciences, University College Cork, Ireland
| | - Daniel Lakens
- Eindhoven University of Technology, Eindhoven, Netherlands
| | | | | | | | - Jeffrey Paul
- Drexel Graduate College of Biomedical Sciences, College of Medicine, Evanston, IL, US
| | | | | | - Barbara Rehermann
- National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, US
| | | | - Nisha S. Sipes
- National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, US
| | | | | | - Hervé Tiriac
- University of California, San Diego, La Jolla, CA, US]
| | - Michael A. Walters
- Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, MN, US
| | - Dan Xi
- Office of Cancer Complementary and Alternative Medicine, National Cancer Institute, NIH, Shady Grove, MD, US
| | | | - Guido F. Pauli
- CENAPT and PCRPS, University of Illinois at Chicago College of Pharmacy, Chicago, IL, US
| |
Collapse
|
39
|
Parrish J, Lim K, Zhang B, Radisic M, Woodfield TBF. New Frontiers for Biofabrication and Bioreactor Design in Microphysiological System Development. Trends Biotechnol 2019; 37:1327-1343. [PMID: 31202544 PMCID: PMC6874730 DOI: 10.1016/j.tibtech.2019.04.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/16/2019] [Accepted: 04/17/2019] [Indexed: 01/05/2023]
Abstract
Microphysiological systems (MPSs) have been proposed as an improved tool to recreate the complex biological features of the native niche with the goal of improving in vitro-in vivo extrapolation. In just over a decade, MPS technologies have progressed from single-tissue chips to multitissue plates with integrated pumps for perfusion. Concurrently, techniques for biofabrication of complex 3D constructs for regenerative medicine and 3D in vitro models have evolved into a diverse toolbox for micrometer-scale deposition of cells and cell-laden bioinks. However, as the complexity of biological models increases, experimental throughput is often compromised. This review discusses the existing disparity between MPS complexity and throughput, then examines an MPS-terminated biofabrication line to identify the hurdles and potential approaches to overcoming this disparity.
Collapse
Affiliation(s)
- Jonathon Parrish
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago Christchurch, Christchurch, New Zealand; New Zealand Medical Technologies Centre of Research Excellence (MedTech CoRE), Auckland, New Zealand
| | - Khoon Lim
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago Christchurch, Christchurch, New Zealand; New Zealand Medical Technologies Centre of Research Excellence (MedTech CoRE), Auckland, New Zealand
| | - Boyang Zhang
- Department of Chemical Engineering, McMaster University, Hamilton, ON, Canada
| | - Milica Radisic
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada; Institute for Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada; Toronto General Research Institute, University Health Network, Toronto, ON, Canada; The Heart and Stroke/Richard Lewar Centre of Excellence, Toronto, ON, Canada
| | - Tim B F Woodfield
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago Christchurch, Christchurch, New Zealand; New Zealand Medical Technologies Centre of Research Excellence (MedTech CoRE), Auckland, New Zealand.
| |
Collapse
|
40
|
Managing the challenge of drug-induced liver injury: a roadmap for the development and deployment of preclinical predictive models. Nat Rev Drug Discov 2019; 19:131-148. [DOI: 10.1038/s41573-019-0048-x] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2019] [Indexed: 12/13/2022]
|
41
|
Tagle DA. The NIH microphysiological systems program: developing in vitro tools for safety and efficacy in drug development. Curr Opin Pharmacol 2019; 48:146-154. [PMID: 31622895 DOI: 10.1016/j.coph.2019.09.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/09/2019] [Accepted: 09/20/2019] [Indexed: 12/22/2022]
Abstract
Approximately 30% of drugs have failed in human clinical trials due to adverse reactions despite promising pre-clinical studies, and another 60% fail due to lack of efficacy. One of the major causes in the high attrition rate is the poor predictive value of current preclinical models used in drug development despite promising pre-clinical studies in 2-D cell culture and animal models. Microphysiological Systems or Tissue Chips are bioengineered microfluidic cell culture systems seeded with primary or stem cells that mimic the histoarchitecture, mechanics and physiological response of functional units of organs and organ systems. These platforms are useful tools for predictive toxicology and efficacy assessments of candidate therapeutics. Implementation of tissue chips in drug development requires effective partnerships with stakeholders, such as regulatory agencies, pharmaceutical companies, patient groups, and other government agencies. Tissue chips are also finding utility in studies in precision medicine, environmental exposures, reproduction and development, infectious diseases, microbiome and countermeasures agents.
Collapse
Affiliation(s)
- Danilo A Tagle
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
42
|
Organs-on-Chips: a new paradigm for safety assessment of drug-induced thrombosis. CURRENT OPINION IN TOXICOLOGY 2019. [DOI: 10.1016/j.cotox.2019.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
43
|
Ainslie GR, Davis M, Ewart L, Lieberman LA, Rowlands DJ, Thorley AJ, Yoder G, Ryan AM. Microphysiological lung models to evaluate the safety of new pharmaceutical modalities: a biopharmaceutical perspective. LAB ON A CHIP 2019; 19:3152-3161. [PMID: 31469131 DOI: 10.1039/c9lc00492k] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The lung is a complex organ; it is both the initial barrier for inhaled agents and the site of metabolism and therapeutic effect for a subset of systemically administered drugs. Comprised of more than 40 cell types that are responsible for various important functions, the lung's complexity contributes to the subsequent challenges in developing complex in vitro co-culture models (also called microphysiological systems (MPS), complex in vitro models or organs-on-a-chip). Although there are multiple considerations and limitations in the development and qualification of such in vitro systems, MPS exhibit great promise in the fields of pharmacology and toxicology. Successful development and implementation of MPS models may enable mechanistic bridging between non-clinical species and humans, and increase clinical relevance of safety endpoints, while decreasing overall animal use. This article summarizes, from a biopharmaceutical industry perspective, essential elements for the development and qualification of lung MPS models. Its purpose is to guide MPS developers and manufacturers to expedite MPS utilization for safety assessment in the biopharmaceutical industry.
Collapse
Affiliation(s)
- Garrett R Ainslie
- Drug Metabolism and Pharmacokinetics, Theravance Biopharma US, Inc, South San Francisco, CA, USA.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
McAleer CW, Pointon A, Long CJ, Brighton RL, Wilkin BD, Bridges LR, Narasimhan Sriram N, Fabre K, McDougall R, Muse VP, Mettetal JT, Srivastava A, Williams D, Schnepper MT, Roles JL, Shuler ML, Hickman JJ, Ewart L. On the potential of in vitro organ-chip models to define temporal pharmacokinetic-pharmacodynamic relationships. Sci Rep 2019; 9:9619. [PMID: 31270362 PMCID: PMC6610665 DOI: 10.1038/s41598-019-45656-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 06/07/2019] [Indexed: 12/20/2022] Open
Abstract
Functional human-on-a-chip systems hold great promise to enable quantitative translation to in vivo outcomes. Here, we explored this concept using a pumpless heart only and heart:liver system to evaluate the temporal pharmacokinetic/pharmacodynamic (PKPD) relationship for terfenadine. There was a time dependent drug-induced increase in field potential duration in the cardiac compartment in response to terfenadine and that response was modulated using a metabolically competent liver module that converted terfenadine to fexofenadine. Using this data, a mathematical model was developed to predict the effect of terfenadine in preclinical species. Developing confidence that microphysiological models could have a transformative effect on drug discovery, we also tested a previously discovered proprietary AstraZeneca small molecule and correctly determined the cardiotoxic response to its metabolite in the heart:liver system. Overall our findings serve as a guiding principle to future investigations of temporal concentration response relationships in these innovative in vitro models, especially, if validated across multiple time frames, with additional pharmacological mechanisms and molecules representing a broad chemical diversity.
Collapse
Affiliation(s)
| | - Amy Pointon
- Drug Safety and Metabolism, IMED Biotech Unit, AstraZeneca, Cambridge, UK
| | - Christopher J Long
- Hesperos, Inc., 3259 Progress Dr., Room 158, Orlando, FL, 32826-3230, USA
| | - Rocky L Brighton
- Hesperos, Inc., 3259 Progress Dr., Room 158, Orlando, FL, 32826-3230, USA
| | - Benjamin D Wilkin
- Hesperos, Inc., 3259 Progress Dr., Room 158, Orlando, FL, 32826-3230, USA
| | - L Richard Bridges
- Hesperos, Inc., 3259 Progress Dr., Room 158, Orlando, FL, 32826-3230, USA
| | | | - Kristin Fabre
- Drug Safety and Metabolism, IMED Biotech Unit, AstraZeneca, Waltham, USA
| | - Robin McDougall
- Drug Safety and Metabolism, IMED Biotech Unit, AstraZeneca, Waltham, USA
| | - Victorine P Muse
- Drug Safety and Metabolism, IMED Biotech Unit, AstraZeneca, Waltham, USA
| | - Jerome T Mettetal
- Drug Safety and Metabolism, IMED Biotech Unit, AstraZeneca, Waltham, USA
| | | | - Dominic Williams
- Drug Safety and Metabolism, IMED Biotech Unit, AstraZeneca, Cambridge, UK
| | - Mark T Schnepper
- NanoScience Technology Center, 12424 Research Parkway, Suite 400, Orlando, FL, 32826, USA
| | - Jeff L Roles
- Hesperos, Inc., 3259 Progress Dr., Room 158, Orlando, FL, 32826-3230, USA
| | - Michael L Shuler
- Hesperos, Inc., 3259 Progress Dr., Room 158, Orlando, FL, 32826-3230, USA
| | - James J Hickman
- Hesperos, Inc., 3259 Progress Dr., Room 158, Orlando, FL, 32826-3230, USA.
- NanoScience Technology Center, 12424 Research Parkway, Suite 400, Orlando, FL, 32826, USA.
| | - Lorna Ewart
- Drug Safety and Metabolism, IMED Biotech Unit, AstraZeneca, Cambridge, UK.
| |
Collapse
|
45
|
Cavero I, Guillon JM, Holzgrefe HH. Human organotypic bioconstructs from organ-on-chip devices for human-predictive biological insights on drug candidates. Expert Opin Drug Saf 2019; 18:651-677. [DOI: 10.1080/14740338.2019.1634689] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Icilio Cavero
- Independent Consultant in Safety Pharmacology, Paris, France
| | | | | |
Collapse
|
46
|
Wright CB, Becker SM, Low LA, Tagle DA, Sieving PA. Improved Ocular Tissue Models and Eye-On-A-Chip Technologies Will Facilitate Ophthalmic Drug Development. J Ocul Pharmacol Ther 2019; 36:25-29. [PMID: 31166829 PMCID: PMC6985761 DOI: 10.1089/jop.2018.0139] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 03/20/2019] [Indexed: 12/13/2022] Open
Abstract
In this study, we describe efforts by the National Eye Institute (NEI) and National Center for Advancing Translational Science (NCATS) to catalyze advances in 3-dimensional (3-D) ocular organoid and microphysiological systems (MPS). We reviewed the recent literature regarding ocular organoids and tissue chips. Animal models, 2-dimensional cell culture models, and postmortem human tissue samples provide the vision research community with insights critical to understanding pathophysiology and therapeutic development. The advent of induced pluripotent stem cell technologies provide researchers with enticing new approaches and tools that augment study in more traditional models to provide the scientific community with insights that have previously been impossible to obtain. Efforts by the National Institutes of Health (NIH) have already accelerated the pace of scientific discovery, and recent advances in ocular organoid and MPS modeling approaches have opened new avenues of investigation. In addition to more closely recapitulating the morphologies and physiological responses of in vivo human tissue, key breakthroughs have been made in the past year to resolve long-standing scientific questions regarding tissue development, molecular signaling, and pathophysiological mechanisms that promise to provide advances critical to therapeutic development and patient care. 3-D tissue culture modeling and MPS offer platforms for future high-throughput testing of therapeutic candidates and studies of gene interactions to improve models of complex genetic diseases with no well-defined etiology, such as age-related macular degeneration and Fuchs' dystrophy.
Collapse
Affiliation(s)
- Charles B. Wright
- National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Steven M. Becker
- National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Lucie A. Low
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland
| | - Danilo A. Tagle
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland
| | - Paul A. Sieving
- National Eye Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
47
|
Taylor DL, Gough A, Schurdak ME, Vernetti L, Chennubhotla CS, Lefever D, Pei F, Faeder JR, Lezon TR, Stern AM, Bahar I. Harnessing Human Microphysiology Systems as Key Experimental Models for Quantitative Systems Pharmacology. Handb Exp Pharmacol 2019; 260:327-367. [PMID: 31201557 PMCID: PMC6911651 DOI: 10.1007/164_2019_239] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Two technologies that have emerged in the last decade offer a new paradigm for modern pharmacology, as well as drug discovery and development. Quantitative systems pharmacology (QSP) is a complementary approach to traditional, target-centric pharmacology and drug discovery and is based on an iterative application of computational and systems biology methods with multiscale experimental methods, both of which include models of ADME-Tox and disease. QSP has emerged as a new approach due to the low efficiency of success in developing therapeutics based on the existing target-centric paradigm. Likewise, human microphysiology systems (MPS) are experimental models complementary to existing animal models and are based on the use of human primary cells, adult stem cells, and/or induced pluripotent stem cells (iPSCs) to mimic human tissues and organ functions/structures involved in disease and ADME-Tox. Human MPS experimental models have been developed to address the relatively low concordance of human disease and ADME-Tox with engineered, experimental animal models of disease. The integration of the QSP paradigm with the use of human MPS has the potential to enhance the process of drug discovery and development.
Collapse
Affiliation(s)
- D Lansing Taylor
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, PA, USA.
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Albert Gough
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, PA, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mark E Schurdak
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, PA, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lawrence Vernetti
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, PA, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Chakra S Chennubhotla
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, PA, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Daniel Lefever
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, PA, USA
| | - Fen Pei
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, PA, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - James R Faeder
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, PA, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Timothy R Lezon
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, PA, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Andrew M Stern
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, PA, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ivet Bahar
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, PA, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
48
|
Rudmann DG. The Emergence of Microphysiological Systems (Organs-on-chips) as Paradigm-changing Tools for Toxicologic Pathology. Toxicol Pathol 2018; 47:4-10. [PMID: 30407146 DOI: 10.1177/0192623318809065] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Microphysiological systems (MPS), commonly known as organs-on-chips, are a rapidly advancing technology that promises to impact many areas of medical and toxicological pathology. In this minireview, the history of MPS and its potential utility in safety assessment are described with the toxicologic pathologist in mind. Several MPS development focus areas are defined, and recent progress in the area is highlighted. MPS will likely become an important tool for the toxicologic pathologist as part of our role in the safety assessment process within the pharmaceutical, biotechnology, medical device, and cosmetic and agrichemical industries.
Collapse
|
49
|
Hübner J, Raschke M, Rütschle I, Gräßle S, Hasenberg T, Schirrmann K, Lorenz A, Schnurre S, Lauster R, Maschmeyer I, Steger-Hartmann T, Marx U. Simultaneous evaluation of anti-EGFR-induced tumour and adverse skin effects in a microfluidic human 3D co-culture model. Sci Rep 2018; 8:15010. [PMID: 30301942 PMCID: PMC6177413 DOI: 10.1038/s41598-018-33462-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 09/28/2018] [Indexed: 12/19/2022] Open
Abstract
Antibody therapies targeting the epithelial growth factor receptor (EGFR) are being increasingly applied in cancer therapy. However, increased tumour containment correlates proportionally with the severity of well-known adverse events in skin. The prediction of the latter is not currently possible in conventional in vitro systems and limited in existing laboratory animal models. Here we established a repeated dose “safficacy” test assay for the simultaneous generation of safety and efficacy data. Therefore, a commercially available multi-organ chip platform connecting two organ culture compartments was adapted for the microfluidic co-culture of human H292 lung cancer microtissues and human full-thickness skin equivalents. Repeated dose treatment of the anti-EGFR-antibody cetuximab showed an increased pro-apoptotic related gene expression in the tumour microtissues. Simultaneously, proliferative keratinocytes in the basal layer of the skin microtissues were eliminated, demonstrating crucial inhibitory effects on the physiological skin cell turnover. Furthermore, antibody exposure modulated the release of CXCL8 and CXCL10, reflecting the pattern changes seen in antibody-treated patients. The combination of a metastatic tumour environment with a miniaturized healthy organotypic human skin equivalent make this “safficacy” assay an ideal tool for evaluation of the therapeutic index of EGFR inhibitors and other promising oncology candidates.
Collapse
Affiliation(s)
- Juliane Hübner
- Technische Universität Berlin, Institute of Biotechnology, Department Medical Biotechnology, Gustav-Meyer-Allee 25, 13355, Berlin, Germany. .,TissUse GmbH, Oudenarder Str. 16, 13347, Berlin, Germany.
| | - Marian Raschke
- Bayer AG, Investigational Toxicology, 13353, Berlin, Germany
| | | | - Sarah Gräßle
- Technische Universität Berlin, Institute of Biotechnology, Department Medical Biotechnology, Gustav-Meyer-Allee 25, 13355, Berlin, Germany.,TissUse GmbH, Oudenarder Str. 16, 13347, Berlin, Germany
| | | | - Kerstin Schirrmann
- The University of Manchester, Manchester Centre for Nonlinear Dynamics, Oxford Rd, Manchester, M13 9PL, UK
| | | | | | - Roland Lauster
- Technische Universität Berlin, Institute of Biotechnology, Department Medical Biotechnology, Gustav-Meyer-Allee 25, 13355, Berlin, Germany
| | | | | | - Uwe Marx
- TissUse GmbH, Oudenarder Str. 16, 13347, Berlin, Germany
| |
Collapse
|
50
|
Lohasz C, Rousset N, Renggli K, Hierlemann A, Frey O. Scalable Microfluidic Platform for Flexible Configuration of and Experiments with Microtissue Multiorgan Models. SLAS Technol 2018; 24:79-95. [PMID: 30289726 DOI: 10.1177/2472630318802582] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Microphysiological systems hold the promise to increase the predictive and translational power of in vitro substance testing owing to their faithful recapitulation of human physiology. However, the implementation of academic developments in industrial settings remains challenging. We present an injection-molded microfluidic microtissue (MT) culture chip that features two channels with 10 MT compartments each and that was designed in compliance with microtiter plate standard formats. Polystyrene as a chip material enables reliable, large-scale production and precise control over experimental conditions due to low adsorption or absorption of small, hydrophobic molecules at or into the plastic material in comparison with predecessor chips made of polydimethylsiloxane. The chip is operated by tilting, which actuates gravity-driven flow between reservoirs at both ends of every channel, so that the system does not require external tubing or pumps. The flow rate can be modulated by adjusting the tilting angle on demand. The top-open design of the MT compartment enables efficient MT loading using standard or advanced pipetting equipment, ensures oxygen availability in the chip, and allows for high-resolution imaging. Every channel can be loaded with up to 10 identical or different MTs, as demonstrated by culturing liver and tumor MTs in the same medium channel on the chip.
Collapse
Affiliation(s)
- Christian Lohasz
- 1 Eidgenössische Technische Hochschule Zürich, Department of Biosystems Science and Engineering, Bio Engineering Laboratory, Basel, Switzerland
| | - Nassim Rousset
- 1 Eidgenössische Technische Hochschule Zürich, Department of Biosystems Science and Engineering, Bio Engineering Laboratory, Basel, Switzerland
| | - Kasper Renggli
- 1 Eidgenössische Technische Hochschule Zürich, Department of Biosystems Science and Engineering, Bio Engineering Laboratory, Basel, Switzerland
| | - Andreas Hierlemann
- 1 Eidgenössische Technische Hochschule Zürich, Department of Biosystems Science and Engineering, Bio Engineering Laboratory, Basel, Switzerland
| | - Olivier Frey
- 1 Eidgenössische Technische Hochschule Zürich, Department of Biosystems Science and Engineering, Bio Engineering Laboratory, Basel, Switzerland.,2 InSphero AG, Schlieren, Switzerland
| |
Collapse
|