1
|
Moralejo E, Giménez-Romero À, Matías MA. Linking intercontinental biogeographic events to decipher how European vineyards escaped Pierce's disease. Proc Biol Sci 2024; 291:20241130. [PMID: 39353554 PMCID: PMC11444759 DOI: 10.1098/rspb.2024.1130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/03/2024] [Accepted: 08/27/2024] [Indexed: 10/04/2024] Open
Abstract
Global change is believed to be a major driver of the emergence of invasive pathogens. Yet, there are few documented examples that illustrate the processes that hinder or trigger their geographic spread. Here, we present phylogenetic, epidemiological and historical evidence to explain how European vineyards escaped Xylella fastidiosa (Xf), the vector-borne bacterium responsible for Pierce's disease (PD). Using Bayesian temporal reconstruction, we show that the export of American grapevines to France as rootstocks to combat phylloxera (~1872-1895) preceded the spread of the Xf grapevine lineage in the USA. We found that the time of the most recent common ancestor in California dates to around 1875, which agrees with the emergence of the first PD outbreak and the expansion into the southeastern US around 1895. We also show that between 1870 and 1990, climatic conditions in continental Europe were mostly below the threshold for the development of PD epidemics. However, our model indicates an inadvertent expansion of risk in southern Europe since the 1990s, which is accelerating with global warming. Our temporal approach identifies the biogeographical conditions that have so far prevented PD in southern European wine-producing areas and predicts that disease risk will increase substantially with increasing temperatures.
Collapse
Affiliation(s)
- Eduardo Moralejo
- Tragsa, Passatge Cala Figuera, no. 6, Mallorca, Balearic Islands, Palma de Mallorca07009, Spain
| | - Àlex Giménez-Romero
- Instituto de Física Interdisciplinar y Sistemas Complejos IFISC (CSIC-UIB), Campus UIB, Palma de Mallorca07122, Spain
| | - Manuel A. Matías
- Instituto de Física Interdisciplinar y Sistemas Complejos IFISC (CSIC-UIB), Campus UIB, Palma de Mallorca07122, Spain
| |
Collapse
|
2
|
Gent DH, Adair NL, Hatlen RJ, Miles TD, Richardson BJ, Rivedal HM, Ross C, Wiseman MS. Detection of Podosphaera macularis in Air Samples by Quantitative PCR. PLANT DISEASE 2024; 108:2820-2829. [PMID: 38715156 DOI: 10.1094/pdis-04-24-0894-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Detection and quantification of pathogen propagules in the air or other environmental samples is facilitated by culture-independent assays. We developed a quantitative PCR assay for the hop powdery mildew fungus, Podosphaera macularis, for detection of the organism from air samples. The assay uses primers and a TaqMan probe designed to target species-specific sequences in the 28S large subunit of the nuclear ribosomal DNA. Analytical sensitivity was not affected by the presence of an exogenous internal control or potential PCR inhibitors associated with DNA extracted from soil. The level of quantification of the assay was between 200 and 350 conidia when DNA was extracted from a fixed number of conidia. The assay amplified all isolates of P. macularis tested and had minimal cross-reactivity with other Podosphaera species when assayed with biologically relevant quantities of DNA. Standard curves generated independently in two other laboratories indicated that assay sensitivity was qualitatively similar and reproducible. All laboratories successfully detected eight unknown isolates of P. macularis and correctly discriminated Pseudoperonospora humuli and a water control. The usefulness of the assay for air sampling for late-season inoculum of P. macularis was demonstrated in field studies in 2019 and 2020. In both years, airborne populations of P. macularis in hop yards were detected consistently and increased during bloom and cone development.
Collapse
Affiliation(s)
- David H Gent
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331
- U.S. Department of Agriculture, Agricultural Research Service, Forage Seed and Cereal Research Unit, Corvallis, OR 97331
| | - Nanci L Adair
- U.S. Department of Agriculture, Agricultural Research Service, Forage Seed and Cereal Research Unit, Corvallis, OR 97331
| | - Ross J Hatlen
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824
| | - Timothy D Miles
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824
| | - Briana J Richardson
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331
| | - Hannah M Rivedal
- U.S. Department of Agriculture, Agricultural Research Service, Forage Seed and Cereal Research Unit, Corvallis, OR 97331
| | - Cameron Ross
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331
| | - Michele S Wiseman
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331
| |
Collapse
|
3
|
Bhunjun C, Chen Y, Phukhamsakda C, Boekhout T, Groenewald J, McKenzie E, Francisco E, Frisvad J, Groenewald M, Hurdeal VG, Luangsa-ard J, Perrone G, Visagie C, Bai F, Błaszkowski J, Braun U, de Souza F, de Queiroz M, Dutta A, Gonkhom D, Goto B, Guarnaccia V, Hagen F, Houbraken J, Lachance M, Li J, Luo K, Magurno F, Mongkolsamrit S, Robert V, Roy N, Tibpromma S, Wanasinghe D, Wang D, Wei D, Zhao C, Aiphuk W, Ajayi-Oyetunde O, Arantes T, Araujo J, Begerow D, Bakhshi M, Barbosa R, Behrens F, Bensch K, Bezerra J, Bilański P, Bradley C, Bubner B, Burgess T, Buyck B, Čadež N, Cai L, Calaça F, Campbell L, Chaverri P, Chen Y, Chethana K, Coetzee B, Costa M, Chen Q, Custódio F, Dai Y, Damm U, Santiago A, De Miccolis Angelini R, Dijksterhuis J, Dissanayake A, Doilom M, Dong W, Álvarez-Duarte E, Fischer M, Gajanayake A, Gené J, Gomdola D, Gomes A, Hausner G, He M, Hou L, Iturrieta-González I, Jami F, Jankowiak R, Jayawardena R, Kandemir H, Kiss L, Kobmoo N, Kowalski T, Landi L, Lin C, Liu J, Liu X, Loizides M, Luangharn T, Maharachchikumbura S, Mkhwanazi GM, Manawasinghe I, Marin-Felix Y, McTaggart A, Moreau P, Morozova O, Mostert L, Osiewacz H, Pem D, Phookamsak R, Pollastro S, Pordel A, Poyntner C, Phillips A, Phonemany M, Promputtha I, Rathnayaka A, Rodrigues A, Romanazzi G, Rothmann L, Salgado-Salazar C, Sandoval-Denis M, Saupe S, Scholler M, Scott P, Shivas R, Silar P, Silva-Filho A, Souza-Motta C, Spies C, Stchigel A, Sterflinger K, Summerbell R, Svetasheva T, Takamatsu S, Theelen B, Theodoro R, Thines M, Thongklang N, Torres R, Turchetti B, van den Brule T, Wang X, Wartchow F, Welti S, Wijesinghe S, Wu F, Xu R, Yang Z, Yilmaz N, Yurkov A, Zhao L, Zhao R, Zhou N, Hyde K, Crous P. What are the 100 most cited fungal genera? Stud Mycol 2024; 108:1-411. [PMID: 39100921 PMCID: PMC11293126 DOI: 10.3114/sim.2024.108.01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 03/17/2024] [Indexed: 08/06/2024] Open
Abstract
The global diversity of fungi has been estimated between 2 to 11 million species, of which only about 155 000 have been named. Most fungi are invisible to the unaided eye, but they represent a major component of biodiversity on our planet, and play essential ecological roles, supporting life as we know it. Although approximately 20 000 fungal genera are presently recognised, the ecology of most remains undetermined. Despite all this diversity, the mycological community actively researches some fungal genera more commonly than others. This poses an interesting question: why have some fungal genera impacted mycology and related fields more than others? To address this issue, we conducted a bibliometric analysis to identify the top 100 most cited fungal genera. A thorough database search of the Web of Science, Google Scholar, and PubMed was performed to establish which genera are most cited. The most cited 10 genera are Saccharomyces, Candida, Aspergillus, Fusarium, Penicillium, Trichoderma, Botrytis, Pichia, Cryptococcus and Alternaria. Case studies are presented for the 100 most cited genera with general background, notes on their ecology and economic significance and important research advances. This paper provides a historic overview of scientific research of these genera and the prospect for further research. Citation: Bhunjun CS, Chen YJ, Phukhamsakda C, Boekhout T, Groenewald JZ, McKenzie EHC, Francisco EC, Frisvad JC, Groenewald M, Hurdeal VG, Luangsa-ard J, Perrone G, Visagie CM, Bai FY, Błaszkowski J, Braun U, de Souza FA, de Queiroz MB, Dutta AK, Gonkhom D, Goto BT, Guarnaccia V, Hagen F, Houbraken J, Lachance MA, Li JJ, Luo KY, Magurno F, Mongkolsamrit S, Robert V, Roy N, Tibpromma S, Wanasinghe DN, Wang DQ, Wei DP, Zhao CL, Aiphuk W, Ajayi-Oyetunde O, Arantes TD, Araujo JC, Begerow D, Bakhshi M, Barbosa RN, Behrens FH, Bensch K, Bezerra JDP, Bilański P, Bradley CA, Bubner B, Burgess TI, Buyck B, Čadež N, Cai L, Calaça FJS, Campbell LJ, Chaverri P, Chen YY, Chethana KWT, Coetzee B, Costa MM, Chen Q, Custódio FA, Dai YC, Damm U, de Azevedo Santiago ALCM, De Miccolis Angelini RM, Dijksterhuis J, Dissanayake AJ, Doilom M, Dong W, Alvarez-Duarte E, Fischer M, Gajanayake AJ, Gené J, Gomdola D, Gomes AAM, Hausner G, He MQ, Hou L, Iturrieta-González I, Jami F, Jankowiak R, Jayawardena RS, Kandemir H, Kiss L, Kobmoo N, Kowalski T, Landi L, Lin CG, Liu JK, Liu XB, Loizides M, Luangharn T, Maharachchikumbura SSN, Makhathini Mkhwanazi GJ, Manawasinghe IS, Marin-Felix Y, McTaggart AR, Moreau PA, Morozova OV, Mostert L, Osiewacz HD, Pem D, Phookamsak R, Pollastro S, Pordel A, Poyntner C, Phillips AJL, Phonemany M, Promputtha I, Rathnayaka AR, Rodrigues AM, Romanazzi G, Rothmann L, Salgado-Salazar C, Sandoval-Denis M, Saupe SJ, Scholler M, Scott P, Shivas RG, Silar P, Souza-Motta CM, Silva-Filho AGS, Spies CFJ, Stchigel AM, Sterflinger K, Summerbell RC, Svetasheva TY, Takamatsu S, Theelen B, Theodoro RC, Thines M, Thongklang N, Torres R, Turchetti B, van den Brule T, Wang XW, Wartchow F, Welti S, Wijesinghe SN, Wu F, Xu R, Yang ZL, Yilmaz N, Yurkov A, Zhao L, Zhao RL, Zhou N, Hyde KD, Crous PW (2024). What are the 100 most cited fungal genera? Studies in Mycology 108: 1-411. doi: 10.3114/sim.2024.108.01.
Collapse
Affiliation(s)
- C.S. Bhunjun
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - Y.J. Chen
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - C. Phukhamsakda
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - T. Boekhout
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- The Yeasts Foundation, Amsterdam, the Netherlands
| | - J.Z. Groenewald
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - E.H.C. McKenzie
- Landcare Research Manaaki Whenua, Private Bag 92170, Auckland, New Zealand
| | - E.C. Francisco
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- Laboratório Especial de Micologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - J.C. Frisvad
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - V. G. Hurdeal
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - J. Luangsa-ard
- BIOTEC, National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - G. Perrone
- Institute of Sciences of Food Production, National Research Council (CNR-ISPA), Via G. Amendola 122/O, 70126 Bari, Italy
| | - C.M. Visagie
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - F.Y. Bai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - J. Błaszkowski
- Laboratory of Plant Protection, Department of Shaping of Environment, West Pomeranian University of Technology in Szczecin, Słowackiego 17, PL-71434 Szczecin, Poland
| | - U. Braun
- Martin Luther University, Institute of Biology, Department of Geobotany and Botanical Garden, Neuwerk 21, 06099 Halle (Saale), Germany
| | - F.A. de Souza
- Núcleo de Biologia Aplicada, Embrapa Milho e Sorgo, Empresa Brasileira de Pesquisa Agropecuária, Rodovia MG 424 km 45, 35701–970, Sete Lagoas, MG, Brazil
| | - M.B. de Queiroz
- Programa de Pós-graduação em Sistemática e Evolução, Universidade Federal do Rio Grande do Norte, Campus Universitário, Natal-RN, 59078-970, Brazil
| | - A.K. Dutta
- Molecular & Applied Mycology Laboratory, Department of Botany, Gauhati University, Gopinath Bordoloi Nagar, Jalukbari, Guwahati - 781014, Assam, India
| | - D. Gonkhom
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - B.T. Goto
- Programa de Pós-graduação em Sistemática e Evolução, Universidade Federal do Rio Grande do Norte, Campus Universitário, Natal-RN, 59078-970, Brazil
| | - V. Guarnaccia
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Torino, Largo Braccini 2, 10095 Grugliasco, TO, Italy
| | - F. Hagen
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- Institute of Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, the Netherlands
| | - J. Houbraken
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - M.A. Lachance
- Department of Biology, University of Western Ontario London, Ontario, Canada N6A 5B7
| | - J.J. Li
- College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, P.R. China
| | - K.Y. Luo
- College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, P.R. China
| | - F. Magurno
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland
| | - S. Mongkolsamrit
- BIOTEC, National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - V. Robert
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - N. Roy
- Molecular & Applied Mycology Laboratory, Department of Botany, Gauhati University, Gopinath Bordoloi Nagar, Jalukbari, Guwahati - 781014, Assam, India
| | - S. Tibpromma
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan 655011, P.R. China
| | - D.N. Wanasinghe
- Center for Mountain Futures, Kunming Institute of Botany, Honghe 654400, Yunnan, China
| | - D.Q. Wang
- College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, P.R. China
| | - D.P. Wei
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, P.R. China
| | - C.L. Zhao
- College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, P.R. China
| | - W. Aiphuk
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - O. Ajayi-Oyetunde
- Syngenta Crop Protection, 410 S Swing Rd, Greensboro, NC. 27409, USA
| | - T.D. Arantes
- Laboratório de Micologia, Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, 74605-050, Goiânia, GO, Brazil
| | - J.C. Araujo
- Mykocosmos - Mycology and Science Communication, Rua JP 11 Qd. 18 Lote 13, Jd. Primavera 1ª etapa, Post Code 75.090-260, Anápolis, Goiás, Brazil
- Secretaria de Estado da Educação de Goiás (SEDUC/ GO), Quinta Avenida, Quadra 71, número 212, Setor Leste Vila Nova, Goiânia, Goiás, 74643-030, Brazil
| | - D. Begerow
- Organismic Botany and Mycology, Institute of Plant Sciences and Microbiology, Ohnhorststraße 18, 22609 Hamburg, Germany
| | - M. Bakhshi
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK
| | - R.N. Barbosa
- Micoteca URM-Department of Mycology Prof. Chaves Batista, Federal University of Pernambuco, Av. Prof. Moraes Rego, s/n, Center for Biosciences, University City, Recife, Pernambuco, Zip Code: 50670-901, Brazil
| | - F.H. Behrens
- Julius Kühn-Institute, Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Fruit Crops and Viticulture, Geilweilerhof, D-76833 Siebeldingen, Germany
| | - K. Bensch
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - J.D.P. Bezerra
- Laboratório de Micologia, Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, 74605-050, Goiânia, GO, Brazil
| | - P. Bilański
- Department of Forest Ecosystems Protection, Faculty of Forestry, University of Agriculture in Krakow, Al. 29 Listopada 46, 31-425 Krakow, Poland
| | - C.A. Bradley
- Department of Plant Pathology, University of Kentucky, Princeton, KY 42445, USA
| | - B. Bubner
- Johan Heinrich von Thünen-Institut, Bundesforschungsinstitut für Ländliche Räume, Wald und Fischerei, Institut für Forstgenetik, Eberswalder Chaussee 3a, 15377 Waldsieversdorf, Germany
| | - T.I. Burgess
- Harry Butler Institute, Murdoch University, Murdoch, 6150, Australia
| | - B. Buyck
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d’Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, 57 rue Cuvier, CP 39, 75231, Paris cedex 05, France
| | - N. Čadež
- University of Ljubljana, Biotechnical Faculty, Food Science and Technology Department Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - L. Cai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - F.J.S. Calaça
- Mykocosmos - Mycology and Science Communication, Rua JP 11 Qd. 18 Lote 13, Jd. Primavera 1ª etapa, Post Code 75.090-260, Anápolis, Goiás, Brazil
- Secretaria de Estado da Educação de Goiás (SEDUC/ GO), Quinta Avenida, Quadra 71, número 212, Setor Leste Vila Nova, Goiânia, Goiás, 74643-030, Brazil
- Laboratório de Pesquisa em Ensino de Ciências (LabPEC), Centro de Pesquisas e Educação Científica, Universidade Estadual de Goiás, Campus Central (CEPEC/UEG), Anápolis, GO, 75132-903, Brazil
| | - L.J. Campbell
- School of Veterinary Medicine, University of Wisconsin - Madison, Madison, Wisconsin, USA
| | - P. Chaverri
- Centro de Investigaciones en Productos Naturales (CIPRONA) and Escuela de Biología, Universidad de Costa Rica, 11501-2060, San José, Costa Rica
- Department of Natural Sciences, Bowie State University, Bowie, Maryland, U.S.A
| | - Y.Y. Chen
- Guizhou Key Laboratory of Agricultural Biotechnology, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
| | - K.W.T. Chethana
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - B. Coetzee
- Department of Plant Pathology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
- School for Data Sciences and Computational Thinking, University of Stellenbosch, South Africa
| | - M.M. Costa
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - Q. Chen
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - F.A. Custódio
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa-MG, Brazil
| | - Y.C. Dai
- State Key Laboratory of Efficient Production of Forest Resources, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - U. Damm
- Senckenberg Museum of Natural History Görlitz, PF 300 154, 02806 Görlitz, Germany
| | - A.L.C.M.A. Santiago
- Post-graduate course in the Biology of Fungi, Department of Mycology, Federal University of Pernambuco, Av. Prof. Moraes Rego, s/n, 50740-465, Recife, PE, Brazil
| | | | - J. Dijksterhuis
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - A.J. Dissanayake
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - M. Doilom
- Innovative Institute for Plant Health/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, P.R. China
| | - W. Dong
- Innovative Institute for Plant Health/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, P.R. China
| | - E. Álvarez-Duarte
- Mycology Unit, Microbiology and Mycology Program, Biomedical Sciences Institute, University of Chile, Chile
| | - M. Fischer
- Julius Kühn-Institute, Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Fruit Crops and Viticulture, Geilweilerhof, D-76833 Siebeldingen, Germany
| | - A.J. Gajanayake
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - J. Gené
- Unitat de Micologia i Microbiologia Ambiental, Facultat de Medicina i Ciències de la Salut & IURESCAT, Universitat Rovira i Virgili (URV), Reus, Catalonia Spain
| | - D. Gomdola
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - A.A.M. Gomes
- Departamento de Agronomia, Universidade Federal Rural de Pernambuco, Recife-PE, Brazil
| | - G. Hausner
- Department of Microbiology, University of Manitoba, Winnipeg, MB, R3T 5N6
| | - M.Q. He
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - L. Hou
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Key Laboratory of Space Nutrition and Food Engineering, China Astronaut Research and Training Center, Beijing, 100094, China
| | - I. Iturrieta-González
- Unitat de Micologia i Microbiologia Ambiental, Facultat de Medicina i Ciències de la Salut & IURESCAT, Universitat Rovira i Virgili (URV), Reus, Catalonia Spain
- Department of Preclinic Sciences, Medicine Faculty, Laboratory of Infectology and Clinical Immunology, Center of Excellence in Translational Medicine-Scientific and Technological Nucleus (CEMT-BIOREN), Universidad de La Frontera, Temuco 4810296, Chile
| | - F. Jami
- Plant Health and Protection, Agricultural Research Council, Pretoria, South Africa
| | - R. Jankowiak
- Department of Forest Ecosystems Protection, Faculty of Forestry, University of Agriculture in Krakow, Al. 29 Listopada 46, 31-425 Krakow, Poland
| | - R.S. Jayawardena
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, South Korea
| | - H. Kandemir
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - L. Kiss
- Centre for Crop Health, Institute for Life Sciences and the Environment, University of Southern Queensland, QLD 4350 Toowoomba, Australia
- Centre for Research and Development, Eszterházy Károly Catholic University, H-3300 Eger, Hungary
| | - N. Kobmoo
- BIOTEC, National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - T. Kowalski
- Department of Forest Ecosystems Protection, Faculty of Forestry, University of Agriculture in Krakow, Al. 29 Listopada 46, 31-425 Krakow, Poland
| | - L. Landi
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - C.G. Lin
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - J.K. Liu
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - X.B. Liu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, P.R. China
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Center, Temesvári krt. 62, Szeged H-6726, Hungary
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
| | | | - T. Luangharn
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - S.S.N. Maharachchikumbura
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - G.J. Makhathini Mkhwanazi
- Department of Plant Pathology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
| | - I.S. Manawasinghe
- Innovative Institute for Plant Health/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, P.R. China
| | - Y. Marin-Felix
- Department Microbial Drugs, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124, Braunschweig, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstrasse 7, 38106, Braunschweig, Germany
| | - A.R. McTaggart
- Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Ecosciences Precinct, Dutton Park 4102, Queensland, Australia
| | - P.A. Moreau
- Univ. Lille, ULR 4515 - LGCgE, Laboratoire de Génie Civil et géo-Environnement, F-59000 Lille, France
| | - O.V. Morozova
- Komarov Botanical Institute of the Russian Academy of Sciences, 2, Prof. Popov Str., 197376 Saint Petersburg, Russia
- Tula State Lev Tolstoy Pedagogical University, 125, Lenin av., 300026 Tula, Russia
| | - L. Mostert
- Department of Plant Pathology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
| | - H.D. Osiewacz
- Faculty for Biosciences, Institute for Molecular Biosciences, Goethe University, Max-von-Laue-Str. 9, 60438, Frankfurt/Main, Germany
| | - D. Pem
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - R. Phookamsak
- Center for Mountain Futures, Kunming Institute of Botany, Honghe 654400, Yunnan, China
| | - S. Pollastro
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | - A. Pordel
- Plant Protection Research Department, Baluchestan Agricultural and Natural Resources Research and Education Center, AREEO, Iranshahr, Iran
| | - C. Poyntner
- Institute of Microbiology, University of Innsbruck, Technikerstrasse 25, 6020, Innsbruck, Austria
| | - A.J.L. Phillips
- Faculdade de Ciências, Biosystems and Integrative Sciences Institute (BioISI), Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
| | - M. Phonemany
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - I. Promputtha
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - A.R. Rathnayaka
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - A.M. Rodrigues
- Laboratory of Emerging Fungal Pathogens, Department of Microbiology, Immunology, and Parasitology, Discipline of Cellular Biology, Federal University of São Paulo (UNIFESP), São Paulo, 04023062, Brazil
| | - G. Romanazzi
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - L. Rothmann
- Plant Pathology, Department of Plant Sciences, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, 9301, South Africa
| | - C. Salgado-Salazar
- Mycology and Nematology Genetic Diversity and Biology Laboratory, U.S. Department of Agriculture, Agriculture Research Service (USDA-ARS), 10300 Baltimore Avenue, Beltsville MD, 20705, USA
| | - M. Sandoval-Denis
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - S.J. Saupe
- Institut de Biochimie et de Génétique Cellulaire, UMR 5095 CNRS Université de Bordeaux, 1 rue Camille Saint Saëns, 33077 Bordeaux cedex, France
| | - M. Scholler
- Staatliches Museum für Naturkunde Karlsruhe, Erbprinzenstraße 13, 76133 Karlsruhe, Germany
| | - P. Scott
- Harry Butler Institute, Murdoch University, Murdoch, 6150, Australia
- Sustainability and Biosecurity, Department of Primary Industries and Regional Development, Perth WA 6000, Australia
| | - R.G. Shivas
- Centre for Crop Health, Institute for Life Sciences and the Environment, University of Southern Queensland, QLD 4350 Toowoomba, Australia
| | - P. Silar
- Laboratoire Interdisciplinaire des Energies de Demain, Université de Paris Cité, 75205 Paris Cedex, France
| | - A.G.S. Silva-Filho
- IFungiLab, Departamento de Ciências e Matemática (DCM), Instituto Federal de Educação, Ciência e Tecnologia de São Paulo (IFSP), São Paulo, BraziI
| | - C.M. Souza-Motta
- Micoteca URM-Department of Mycology Prof. Chaves Batista, Federal University of Pernambuco, Av. Prof. Moraes Rego, s/n, Center for Biosciences, University City, Recife, Pernambuco, Zip Code: 50670-901, Brazil
| | - C.F.J. Spies
- Agricultural Research Council - Plant Health and Protection, Private Bag X5017, Stellenbosch, 7599, South Africa
| | - A.M. Stchigel
- Unitat de Micologia i Microbiologia Ambiental, Facultat de Medicina i Ciències de la Salut & IURESCAT, Universitat Rovira i Virgili (URV), Reus, Catalonia Spain
| | - K. Sterflinger
- Institute of Natural Sciences and Technology in the Arts (INTK), Academy of Fine Arts Vienna, Augasse 2–6, 1090, Vienna, Austria
| | - R.C. Summerbell
- Sporometrics, Toronto, ON, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - T.Y. Svetasheva
- Tula State Lev Tolstoy Pedagogical University, 125, Lenin av., 300026 Tula, Russia
| | - S. Takamatsu
- Mie University, Graduate School, Department of Bioresources, 1577 Kurima-Machiya, Tsu 514-8507, Japan
| | - B. Theelen
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - R.C. Theodoro
- Laboratório de Micologia Médica, Instituto de Medicina Tropical do RN, Universidade Federal do Rio Grande do Norte, 59078-900, Natal, RN, Brazil
| | - M. Thines
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberganlage 25, 60325 Frankfurt Am Main, Germany
| | - N. Thongklang
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - R. Torres
- IRTA, Postharvest Programme, Edifici Fruitcentre, Parc Agrobiotech de Lleida, Parc de Gardeny, 25003, Lleida, Catalonia, Spain
| | - B. Turchetti
- Department of Agricultural, Food and Environmental Sciences and DBVPG Industrial Yeasts Collection, University of Perugia, Italy
| | - T. van den Brule
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- TIFN, P.O. Box 557, 6700 AN Wageningen, the Netherlands
| | - X.W. Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - F. Wartchow
- Departamento de Sistemática e Ecologia, Universidade Federal da Paraíba, Paraiba, João Pessoa, Brazil
| | - S. Welti
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstrasse 7, 38106, Braunschweig, Germany
| | - S.N. Wijesinghe
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - F. Wu
- State Key Laboratory of Efficient Production of Forest Resources, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - R. Xu
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
- Internationally Cooperative Research Center of China for New Germplasm Breeding of Edible Mushroom, Jilin Agricultural University, Changchun 130118, China
| | - Z.L. Yang
- Syngenta Crop Protection, 410 S Swing Rd, Greensboro, NC. 27409, USA
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
| | - N. Yilmaz
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - A. Yurkov
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| | - L. Zhao
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - R.L. Zhao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - N. Zhou
- Department of Biological Sciences and Biotechnology, Botswana University of Science and Technology, Private Bag, 16, Palapye, Botswana
| | - K.D. Hyde
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Innovative Institute for Plant Health/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, P.R. China
- Key Laboratory of Economic Plants and Biotechnology and the Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - P.W. Crous
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
- Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht
| |
Collapse
|
4
|
Gambhir N, Paul A, Qiu T, Combs DB, Hosseinzadeh S, Underhill A, Jiang Y, Cadle-Davidson LE, Gold KM. Non-Destructive Monitoring of Foliar Fungicide Efficacy with Hyperspectral Sensing in Grapevine. PHYTOPATHOLOGY 2024; 114:464-473. [PMID: 37565813 DOI: 10.1094/phyto-02-23-0061-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Frequent fungicide applications are required to manage grapevine powdery mildew (Erysiphe necator). However, this practice is costly and has led to widespread fungicide resistance. A method of monitoring in-field fungicide efficacy could help growers maximize spray-interval length, thereby reducing costs and the rate of fungicide resistance emergence. The goal of this study was to evaluate if hyperspectral sensing in the visible to shortwave infrared range (400 to 2,400 nm) can quantify foliar fungicide efficacy on grape leaves. Commercial formulations of metrafenone, Bacillus mycoides isolate J (BmJ), and sulfur were applied on Chardonnay grapevines in vineyard or greenhouse settings. Foliar reflectance was measured with handheld hyperspectral spectroradiometers at multiple days post-application. Fungicide efficacy was estimated as a proxy for fungicide residue and disease control measured with the Blackbird microscopy imaging robot. Treatments could be differentiated from the untreated control with an accuracy of 73.06% for metrafenone, 67.76% for BmJ, and 94.10% for sulfur. The change in spectral reflectance was moderately correlated with the cube root of the area under the disease progress curve for metrafenone- and sulfur-treated samples (R2 = 0.38 and 0.36, respectively) and with sulfur residue (R2 = 0.42). BmJ treatment impacted foliar physiology by enhancing the leaf mass/area and reducing the nitrogen and total phenolic content as estimated from spectral reflectance. The results suggest that hyperspectral sensing can be used to monitor in-situ fungicide efficacy, and the prediction accuracy depends on the fungicide and the time point measured. The ability to monitor in-situ fungicide efficacy could facilitate more strategic fungicide applications and promote sustainable grapevine protection. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Nikita Gambhir
- School of Integrative Plant Sciences, College of Agriculture and Life Sciences, Cornell AgriTech, Cornell University, Geneva, NY 14456
| | - Angela Paul
- School of Integrative Plant Sciences, College of Agriculture and Life Sciences, Cornell AgriTech, Cornell University, Geneva, NY 14456
| | - Tian Qiu
- School of Integrative Plant Sciences, College of Agriculture and Life Sciences, Cornell AgriTech, Cornell University, Geneva, NY 14456
| | - David B Combs
- School of Integrative Plant Sciences, College of Agriculture and Life Sciences, Cornell AgriTech, Cornell University, Geneva, NY 14456
| | - Saeed Hosseinzadeh
- School of Integrative Plant Sciences, College of Agriculture and Life Sciences, Cornell AgriTech, Cornell University, Geneva, NY 14456
| | - Anna Underhill
- U.S. Department of Agriculture Grape Genetics Research Unit, Geneva, NY 14456
| | - Yu Jiang
- School of Integrative Plant Sciences, College of Agriculture and Life Sciences, Cornell AgriTech, Cornell University, Geneva, NY 14456
| | | | - Kaitlin M Gold
- School of Integrative Plant Sciences, College of Agriculture and Life Sciences, Cornell AgriTech, Cornell University, Geneva, NY 14456
| |
Collapse
|
5
|
Sharma N, Neill T, Yang HC, Oliver CL, Mahaffee WF, Naegele R, Moyer MM, Miles TD. Development of a PNA-LNA-LAMP Assay to Detect an SNP Associated with QoI Resistance in Erysiphe necator. PLANT DISEASE 2023; 107:3238-3247. [PMID: 37005502 DOI: 10.1094/pdis-09-22-2027-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The repetitive use of quinone outside inhibitor fungicides (QoIs, strobilurins; Fungicide Resistance Action Committee [FRAC] 11) to manage grape powdery mildew has led to development of resistance in Erysiphe necator. While several point mutations in the mitochondrial cytochrome b gene are associated with resistance to QoI fungicides, the substitution of glycine to alanine at codon 143 (G143A) has been the only mutation observed in QoI-resistant field populations. Allele-specific detection methods such as digital droplet PCR and TaqMan probe-based assays can be used to detect the G143A mutation. In this study, a peptide nucleic acid-locked nucleic acid mediated loop-mediated isothermal amplification (PNA-LNA-LAMP) assay consisting of an A-143 reaction and a G-143 reaction, was designed for rapidly detecting QoI resistance in E. necator. The A-143 reaction amplifies the mutant A-143 allele faster than the wild-type G-143 allele, while the G-143 reaction amplifies the G-143 allele faster than the A-143 allele. Identification of resistant or sensitive E. necator samples was determined by which reaction had the shorter time to amplification. Sixteen single-spore QoI-resistant and -sensitive E. necator isolates were tested using both assays. Assay specificity in distinguishing the single nucleotide polymorphism (SNP) approached 100% when tested using purified DNA of QoI-sensitive and -resistant E. necator isolates. This diagnostic tool was sensitive to one-conidium equivalent of extracted DNA with an R2 value of 0.82 and 0.87 for the G-143 and A-143 reactions, respectively. This diagnostic approach was also evaluated against a TaqMan probe-based assay using 92 E. necator samples collected from vineyards. The PNA-LNA-LAMP assay detected QoI resistance in ≤30 min and showed 100% agreement with the TaqMan probe-based assay (≤1.5 h) for the QoI-sensitive and -resistant isolates. There was 73.3% agreement with the TaqMan probe-based assay when samples had mixed populations with both G-143 and A-143 alleles present. Validation of the PNA-LNA-LAMP assay was conducted in three different laboratories with different equipment. The results showed 94.4% accuracy in one laboratory and 100% accuracy in two other laboratories. The PNA-LNA-LAMP diagnostic tool was faster and required less expensive equipment relative to the previously developed TaqMan probe-based assay, making it accessible to a broader range of diagnostic laboratories for detection of QoI resistance in E. necator. This research demonstrates the utility of the PNA-LANA-LAMP for discriminating SNPs from field samples and its utility for point-of-care monitoring of plant pathogen genotypes.
Collapse
Affiliation(s)
- Nancy Sharma
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI
| | - Tara Neill
- USDA-ARS Horticultural Crops Disease and Pest Management Research Unit, Corvallis, OR
| | - Hui-Ching Yang
- USDA-ARS Crop Diseases, Pests and Genetics Unit, San Joaquin Valley Agricultural Sciences Center, Parlier, CA
| | - Charlotte L Oliver
- Department of Horticulture, Irrigated Agriculture Research and Extension Center, Washington State University, Prosser, WA
| | - Walter F Mahaffee
- USDA-ARS Horticultural Crops Disease and Pest Management Research Unit, Corvallis, OR
| | - Rachel Naegele
- USDA-ARS Crop Diseases, Pests and Genetics Unit, San Joaquin Valley Agricultural Sciences Center, Parlier, CA
| | - Michelle M Moyer
- Department of Horticulture, Irrigated Agriculture Research and Extension Center, Washington State University, Prosser, WA
| | - Timothy D Miles
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI
| |
Collapse
|
6
|
Lowder SR, Neill TM, Peetz AB, Miles TD, Moyer MM, Oliver C, Stergiopoulos I, Ding S, Mahaffee WF. A Rapid Glove-Based Inoculum Sampling Technique to Monitor Erysiphe necator in Commercial Vineyards. PLANT DISEASE 2023; 107:3096-3105. [PMID: 37079020 DOI: 10.1094/pdis-02-23-0216-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Information on the presence and severity of grape powdery mildew (GPM), caused by Erysiphe necator, has long been used to guide management decisions. While recent advances in the available molecular diagnostic assays and particle samplers have made monitoring easier, there is still a need for more efficient field collection of E. necator. The use of vineyard worker gloves worn during canopy manipulation as a sampler (glove swab) of E. necator was compared with samples identified by visual assessment with subsequent molecular confirmation (leaf swabs) and airborne spore samples collected by rotating-arm impaction traps (impaction traps). Samples from United States commercial vineyards in Oregon, Washington, and California were analyzed using two TaqMan qPCR assays targeting the internal transcribed spacer regions or cytochrome b gene of E. necator. Based on qPCR assays, visual disease assessments misidentified GPM up to 59% of the time with a higher frequency of misidentification occurring earlier in the growing season. Comparison of the aggregated leaf swab results for a row (n = 915) to the row's corresponding glove swab had 60% agreement. The latent class analysis (LCA) indicated that glove swabs were more sensitive than leaf swabs in detecting E. necator presence. The impaction trap results had 77% agreement to glove swabs (n = 206) taken from the same blocks. The LCAs estimated that the glove swabs and impaction trap samplers varied each year in which was more sensitive for detection. This likely indicates that these methods have similar levels of uncertainty and provide equivalent information. Additionally, all samplers, once E. necator was detected, were similarly sensitive and specific for detection of the A-143 resistance allele. Together, these results suggest that glove swabs are an effective sampling method for monitoring the presence of E. necator and, subsequently, the G143A amino acid substitution associated with resistance to quinone outside inhibitor fungicides in vineyards. Glove swabs could reduce sampling costs due to the lack of need for specialized equipment and time required for swab collection and processing.
Collapse
Affiliation(s)
- Sarah R Lowder
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331
| | - Tara M Neill
- USDA-ARS Horticultural Crops Disease and Pest Management Research Unit, Corvallis, OR 97330
| | - Amy B Peetz
- Revolution Crop Consultants, LLC, Albany, OR 97321
| | - Timothy D Miles
- Department of Plant, Soil, and Microbial Science, Michigan State University, East Lansing, MI 48824
| | - Michelle M Moyer
- Department of Viticulture and Enology, Washington State University, Prosser, WA 99350
| | | | | | - Shunping Ding
- Department of Wine and Viticulture, California Polytechnic State University, San Luis Obispo, CA 93407
| | - Walter F Mahaffee
- USDA-ARS Horticultural Crops Disease and Pest Management Research Unit, Corvallis, OR 97330
| |
Collapse
|
7
|
Pintye A, Németh MZ, Molnár O, Horváth ÁN, Matolcsi F, Bókony V, Spitzmüller Z, Pálfi X, Váczy KZ, Kovács GM. Comprehensive analyses of the occurrence of a fungicide resistance marker and the genetic structure in Erysiphe necator populations. Sci Rep 2023; 13:15172. [PMID: 37704655 PMCID: PMC10499922 DOI: 10.1038/s41598-023-41454-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 08/26/2023] [Indexed: 09/15/2023] Open
Abstract
Genetically distinct groups of Erysiphe necator, the fungus causing grapevine powdery mildew infect grapevine in Europe, yet the processes sustaining stable genetic differences between those groups are less understood. Genotyping of over 2000 field samples from six wine regions in Hungary collected between 2017 and 2019 was conducted to reveal E. necator genotypes and their possible differentiation. The demethylase inhibitor (DMI) fungicide resistance marker A495T was detected in all wine regions, in 16% of the samples. Its occurrence differed significantly among wine regions and grape cultivars, and sampling years, but it did not differ between DMI-treated and untreated fields. Multilocus sequence analyses of field samples and 59 in vitro maintained isolates revealed significant genetic differences among populations from distinct wine regions. We identified 14 E. necator genotypes, of which eight were previously unknown. In contrast to the previous concept of A and B groups, European E. necator populations should be considered genetically more complex. Isolation by geographic distance, growing season, and host variety influence the genetic structuring of E. necator, which should be considered both during diagnoses and when effective treatments are planned.
Collapse
Affiliation(s)
- Alexandra Pintye
- Plant Protection Institute, HUN-REN Centre for Agricultural Research, Budapest, Hungary
| | - Márk Z Németh
- Plant Protection Institute, HUN-REN Centre for Agricultural Research, Budapest, Hungary.
| | - Orsolya Molnár
- Plant Protection Institute, HUN-REN Centre for Agricultural Research, Budapest, Hungary
| | - Áron N Horváth
- Plant Protection Institute, HUN-REN Centre for Agricultural Research, Budapest, Hungary
| | - Fruzsina Matolcsi
- Plant Protection Institute, HUN-REN Centre for Agricultural Research, Budapest, Hungary
- Department of Plant Anatomy, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
| | - Veronika Bókony
- Plant Protection Institute, HUN-REN Centre for Agricultural Research, Budapest, Hungary
| | - Zsolt Spitzmüller
- Food and Wine Research Institute, Eszterházy Károly Catholic University, Eger, Hungary
| | - Xénia Pálfi
- Food and Wine Research Institute, Eszterházy Károly Catholic University, Eger, Hungary
| | - Kálmán Z Váczy
- Food and Wine Research Institute, Eszterházy Károly Catholic University, Eger, Hungary
| | - Gábor M Kovács
- Plant Protection Institute, HUN-REN Centre for Agricultural Research, Budapest, Hungary
- Department of Plant Anatomy, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
8
|
Liu W, Yan C, Li R, Chen G, Wang X, Wen Y, Zhang C, Wang X, Xu Y, Wang Y. VqMAPK3/VqMAPK6, VqWRKY33, and VqNSTS3 constitute a regulatory node in enhancing resistance to powdery mildew in grapevine. HORTICULTURE RESEARCH 2023; 10:uhad116. [PMID: 37786728 PMCID: PMC10541564 DOI: 10.1093/hr/uhad116] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/21/2023] [Indexed: 10/04/2023]
Abstract
Grapevine powdery mildew is caused by Erysiphe necator, which seriously harms grape production in the world. Stilbene synthase makes phytoalexins that contribute to the resistance of grapevine against powdery mildew. A novel VqNSTS3 was identified and cloned from Chinese wild Vitis quinquangularis accession Danfeng-2. The novel VqNSTS3 was transferred into susceptible 'Thompson Seedless' by Agrobacterium-mediated transformation. The transgenic plants showed resistance to the disease and activated other resistance-related genes. VqNSTS3 expression in grapevine is regulated by VqWRKY33, and which binds to TTGACC in the VqNSTS3 promoter. Furthermore, VqWRKY33 was phosphorylated by VqMAPK3/VqMAPK6 and thus led to enhanced signal transduction and increased VqNSTS3 expression. ProVqNSTS3::VqNSTS3-GFP of transgenic VqNSTS3 in Arabidopsis thaliana was observed to move to and wrap the pathogen's haustoria and block invasion by Golovinomyces cichoracearum. These results demonstrate that stilbene accumulation of novel VqNSTS3 of the Chinese wild Vitis quinquangularis accession Danfeng-2 prevented pathogen invasion and enhanced resistance to powdery mildew. Therefore, VqNSTS3 can be used in generating powdery mildew-resistant grapevines.
Collapse
Affiliation(s)
- Wandi Liu
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Chaohui Yan
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Ruimin Li
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Guanyu Chen
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Xinqi Wang
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Yingqiang Wen
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Chaohong Zhang
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Xiping Wang
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Yan Xu
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Yuejin Wang
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A & F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
9
|
Sapkota S, Zou C, Ledbetter C, Underhill A, Sun Q, Gadoury D, Cadle-Davidson L. Discovery and genome-guided mapping of REN12 from Vitis amurensis, conferring strong, rapid resistance to grapevine powdery mildew. HORTICULTURE RESEARCH 2023; 10:uhad052. [PMID: 37213681 PMCID: PMC10194894 DOI: 10.1093/hr/uhad052] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 03/12/2023] [Indexed: 05/23/2023]
Abstract
Powdery mildew resistance genes restrict infection attempts at different stages of pathogenesis. Here, a strong and rapid powdery mildew resistance phenotype was discovered from Vitis amurensis 'PI 588631' that rapidly stopped over 97% of Erysiphe necator conidia, before or immediately after emergence of a secondary hypha from appressoria. This resistance was effective across multiple years of vineyard evaluation on leaves, stems, rachises, and fruit and against a diverse array of E. necator laboratory isolates. Using core genome rhAmpSeq markers, resistance mapped to a single dominant locus (here named REN12) on chromosome 13 near 22.8-27.0 Mb, irrespective of tissue type, explaining up to 86.9% of the phenotypic variation observed on leaves. Shotgun sequencing of recombinant vines using skim-seq technology enabled the locus to be further resolved to a 780 kb region, from 25.15 to 25.93 Mb. RNASeq analysis indicated the allele-specific expression of four resistance genes (NLRs) from the resistant parent. REN12 is one of the strongest powdery mildew resistance loci in grapevine yet documented, and the rhAmpSeq sequences presented here can be directly used for marker-assisted selection or converted to other genotyping platforms. While no virulent isolates were identified among the genetically diverse isolates and wild populations of E. necator tested here, NLR loci like REN12 are often race-specific. Thus, stacking of multiple resistance genes and minimal use of fungicides should enhance the durability of resistance and could enable a 90% reduction in fungicides in low-rainfall climates where few other pathogens attack the foliage or fruit.
Collapse
Affiliation(s)
- Surya Sapkota
- School of Integrative Plant Science, Cornell AgriTech, Cornell University, Geneva, NY, 14456, USA
| | - Cheng Zou
- BRC Bioinformatics Facility, Institute of Biotechnology, Cornell University, Ithaca, NY, 14853, USA
| | - Craig Ledbetter
- United States Department of Agriculture (USDA)-Agricultural Research Service (ARS), Crop Diseases, Pests and Genetics Research Unit, San Joaquin Valley Agricultural Sciences Center, Parlier, CA, 93648, USA
| | - Anna Underhill
- USDA-ARS, Grape Genetics Research Unit, Geneva, NY, 14456, USA
| | - Qi Sun
- BRC Bioinformatics Facility, Institute of Biotechnology, Cornell University, Ithaca, NY, 14853, USA
| | - David Gadoury
- School of Integrative Plant Science, Cornell AgriTech, Cornell University, Geneva, NY, 14456, USA
| | | |
Collapse
|
10
|
Assessment of Agricultural Practices for Controlling Fusarium and Mycotoxins Contamination on Maize Grains: Exploratory Study in Maize Farms. Toxins (Basel) 2023; 15:toxins15020136. [PMID: 36828450 PMCID: PMC9964085 DOI: 10.3390/toxins15020136] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/03/2023] [Accepted: 01/25/2023] [Indexed: 02/10/2023] Open
Abstract
Maize is a significant crop to the global economy and a key component of food and feed, although grains and whole plants can often be contaminated with mycotoxins resulting in a general exposure of the population and animals. To investigate strategies for mycotoxins control at the grain production level, a pilot study and exploratory research were conducted in 2019 and 2020 to compare levels of mycotoxins in grains of plants treated with two fertilizers, F-BAC and Nefusoil, under real agricultural environment. The 1650 grains selected from the 33 samples were assessed for the presence of both Fusarium species and mycotoxins. Only fumonisins and deoxynivalenol were detected. Fumonisin B1 ranged from 0 to 2808.4 µg/Kg, and fumonisin B2 from 0 to 1041.9 µg/Kg, while deoxynivalenol variated from 0 to 465.8 µg/Kg. Nefusoil showed to be promising in regard to fumonisin control. Concerning the control of fungal contamination rate and the diversity of Fusarium species, no significant differences were found between the two treatments in any of the years. However, a tendency for was observed Nefusoil of lower values, probably due to the guaranteed less stressful conditions to the Fusarium spp. present in the soil, which do not stimulate their fumonisins production.
Collapse
|
11
|
Giménez-Romero A, Galván J, Montesinos M, Bauzà J, Godefroid M, Fereres A, Ramasco JJ, Matías MA, Moralejo E. Global predictions for the risk of establishment of Pierce's disease of grapevines. Commun Biol 2022; 5:1389. [PMID: 36539523 PMCID: PMC9768138 DOI: 10.1038/s42003-022-04358-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
The vector-borne bacterium Xylella fastidiosa is responsible for Pierce's disease (PD), a lethal grapevine disease that originated in the Americas. The international plant trade is expanding the geographic range of this pathogen, posing a new threat to viticulture worldwide. To assess the potential incidence of PD, we have built a dynamic epidemiological model based on the response of 36 grapevine varieties to the pathogen in inoculation assays and on the vectors' distribution when this information is available. Key temperature-driven epidemiological processes, such as PD symptom development and recovery, are mechanistically modelled. Integrating into the model high-resolution spatiotemporal climatic data from 1981 onward and different infectivity (R0) scenarios, we show how the main wine-producing areas thrive mostly in non-risk, transient, or epidemic-risk zones with potentially low growth rates in PD incidence. Epidemic-risk zones with moderate to high growth rates are currently marginal outside the US. However, a global expansion of epidemic-risk zones coupled with small increments in the disease growth rate is projected for 2050. Our study globally downscales the risk of PD establishment while highlighting the importance of considering climate variability, vector distribution, and an invasive criterion as factors to obtain better PD risk maps.
Collapse
Affiliation(s)
- Alex Giménez-Romero
- Instituto de Física Interdisciplinar y Sistemas Complejos, (IFISC-UIB-CSIC), Campus UIB, 07122, Palma de Mallorca, Spain
| | - Javier Galván
- Instituto de Física Interdisciplinar y Sistemas Complejos, (IFISC-UIB-CSIC), Campus UIB, 07122, Palma de Mallorca, Spain
| | | | - Joan Bauzà
- Departamento de Geografía, Universidad de las Islas Baleares, Campus UIB, 07122, Palma de Mallorca, Spain
| | - Martin Godefroid
- Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas, ICA-CSIC, 28006, Madrid, Spain
| | - Alberto Fereres
- Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas, ICA-CSIC, 28006, Madrid, Spain
| | - José J Ramasco
- Instituto de Física Interdisciplinar y Sistemas Complejos, (IFISC-UIB-CSIC), Campus UIB, 07122, Palma de Mallorca, Spain
| | - Manuel A Matías
- Instituto de Física Interdisciplinar y Sistemas Complejos, (IFISC-UIB-CSIC), Campus UIB, 07122, Palma de Mallorca, Spain
| | - Eduardo Moralejo
- Tragsa, Passatge Cala Figuera 6, 07009, Palma de Mallorca, Spain.
| |
Collapse
|
12
|
Stergiopoulos I, Aoun N, van Huynh Q, Neill T, Lowder SR, Newbold C, Cooper ML, Ding S, Moyer MM, Miles TD, Oliver CL, Úrbez-Torres JR, Mahaffee WF. Identification of Putative SDHI Target Site Mutations in the SDHB, SDHC, and SDHD Subunits of the Grape Powdery Mildew Pathogen Erysiphe necator. PLANT DISEASE 2022; 106:2310-2320. [PMID: 35100029 DOI: 10.1094/pdis-09-21-1993-re] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Succinate dehydrogenase inhibitors (SDHIs) are fungicides used in control of numerous fungal plant pathogens, including Erysiphe necator, the causal agent of grapevine powdery mildew (GPM). Here, the sdhb, sdhc, and sdhd genes of E. necator were screened for mutations that may be associated with SDHI resistance. GPM samples were collected from 2017 to 2020 from the U.S. states of California, Oregon, Washington, and Michigan, and the Canadian province of British Columbia. Forty-five polymorphisms were identified in the three sdh genes, 17 of which caused missense mutations. Of these, the SDHC-p.I244V substitution was shown in this study to reduce sensitivity of E. necator to boscalid and fluopyram, whereas the SDHC-p.G25R substitution did not affect SDHI sensitivity. Of the other 15 missense mutations, the SDHC-p.H242R substitution was shown in previous studies to reduce sensitivity of E. necator toward boscalid, whereas the equivalents of the SDHB-p.H242L, SDHC-p.A83V, and SDHD-p.I71F substitutions were shown to reduce sensitivity to SDHIs in other fungi. Generally, only a single amino acid substitution was present in the SDHB, SDHC, or SDHD subunit of E. necator isolates, but missense mutations putatively associated with SDHI resistance were widely distributed in the sampled areas and increased in frequency over time. Finally, isolates that had decreased sensitivity to boscalid or fluopyram were identified but with no or only the SDHC-p.G25R amino acid substitution present in SDHB, SDHC, and SDHD subunits. This suggests that target site mutations probably are not the only mechanism conferring resistance to SDHIs in E. necator.
Collapse
Affiliation(s)
- Ioannis Stergiopoulos
- Department of Plant Pathology, University of California Davis, Davis, CA 95616-851, U.S.A
| | - Nathalie Aoun
- Department of Plant Pathology, University of California Davis, Davis, CA 95616-851, U.S.A
| | - Que van Huynh
- Department of Plant Pathology, University of California Davis, Davis, CA 95616-851, U.S.A
| | - Tara Neill
- USDA-ARS Horticulture Crops Disease and Pest Management Research Unit (HCDPMRU), Corvallis, OR 97330, U.S.A
| | - Sarah R Lowder
- Department of Botany and Plant Pathology, Oregon State University, Cordley Hall, OR 97331, U.S.A
| | - Chelsea Newbold
- Department of Botany and Plant Pathology, Oregon State University, Cordley Hall, OR 97331, U.S.A
| | - Monica L Cooper
- University of California Cooperative Extension, Napa, CA 94559, U.S.A
| | - Shunping Ding
- Wine and Viticulture Department, California Polytechnical State University, San Luis Obispo, CA 93407, U.S.A
| | - Michelle M Moyer
- Department of Horticulture, Washington State University Irrigated Agriculture Research and Extension Center, Prosser, WA 99350, U.S.A
| | - Timothy D Miles
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, U.S.A
| | - Charlotte L Oliver
- Department of Horticulture, Washington State University Irrigated Agriculture Research and Extension Center, Prosser, WA 99350, U.S.A
| | - José Ramón Úrbez-Torres
- Agriculture and Agri-Food Canada, Summerland Research and Development Centre, Summerland, British Columbia V0H 1Z0, Canada
| | - Walter F Mahaffee
- USDA-ARS Horticulture Crops Disease and Pest Management Research Unit (HCDPMRU), Corvallis, OR 97330, U.S.A
| |
Collapse
|
13
|
Possamai T, Wiedemann-Merdinoglu S. Phenotyping for QTL identification: A case study of resistance to Plasmopara viticola and Erysiphe necator in grapevine. FRONTIERS IN PLANT SCIENCE 2022; 13:930954. [PMID: 36035702 PMCID: PMC9403010 DOI: 10.3389/fpls.2022.930954] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/27/2022] [Indexed: 06/01/2023]
Abstract
Vitis vinifera is the most widely cultivated grapevine species. It is highly susceptible to Plasmopara viticola and Erysiphe necator, the causal agents of downy mildew (DM) and powdery mildew (PM), respectively. Current strategies to control DM and PM mainly rely on agrochemical applications that are potentially harmful to humans and the environment. Breeding for resistance to DM and PM in wine grape cultivars by introgressing resistance loci from wild Vitis spp. is a complementary and more sustainable solution to manage these two diseases. During the last two decades, 33 loci of resistance to P. viticola (Rpv) and 15 loci of resistance to E. necator (Ren and Run) have been identified. Phenotyping is salient for QTL characterization and understanding the genetic basis of resistant traits. However, phenotyping remains a major bottleneck for research on Rpv and Ren/Run loci and disease resistance evaluation. A thorough analysis of the literature on phenotyping methods used for DM and PM resistance evaluation highlighted phenotyping performed in the vineyard, greenhouse or laboratory with major sources of variation, such as environmental conditions, plant material (organ physiology and age), pathogen inoculum (genetic and origin), pathogen inoculation (natural or controlled), and disease assessment method (date, frequency, and method of scoring). All these factors affect resistance assessment and the quality of phenotyping data. We argue that the use of new technologies for disease symptom assessment, and the production and adoption of standardized experimental guidelines should enhance the accuracy and reliability of phenotyping data. This should contribute to a better replicability of resistance evaluation outputs, facilitate QTL identification, and contribute to streamline disease resistance breeding programs.
Collapse
Affiliation(s)
- Tyrone Possamai
- CREA—Research Centre for Viticulture and Enology, Conegliano, Italy
| | | |
Collapse
|
14
|
Sosa-Zuniga V, Vidal Valenzuela Á, Barba P, Espinoza Cancino C, Romero-Romero JL, Arce-Johnson P. Powdery Mildew Resistance Genes in Vines: An Opportunity to Achieve a More Sustainable Viticulture. Pathogens 2022; 11:703. [PMID: 35745557 PMCID: PMC9230758 DOI: 10.3390/pathogens11060703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/11/2022] [Accepted: 06/13/2022] [Indexed: 12/10/2022] Open
Abstract
Grapevine (Vitis vinifera) is one of the main fruit crops worldwide. In 2020, the total surface area planted with vines was estimated at 7.3 million hectares. Diverse pathogens affect grapevine yield, fruit, and wine quality of which powdery mildew is the most important disease prior to harvest. Its causal agent is the biotrophic fungus Erysiphe necator, which generates a decrease in cluster weight, delays fruit ripening, and reduces photosynthetic and transpiration rates. In addition, powdery mildew induces metabolic reprogramming in its host, affecting primary metabolism. Most commercial grapevine cultivars are highly susceptible to powdery mildew; consequently, large quantities of fungicide are applied during the productive season. However, pesticides are associated with health problems, negative environmental impacts, and high costs for farmers. In paralleled, consumers are demanding more sustainable practices during food production. Therefore, new grapevine cultivars with genetic resistance to powdery mildew are needed for sustainable viticulture, while maintaining yield, fruit, and wine quality. Two main gene families confer resistance to powdery mildew in the Vitaceae, Run (Resistance to Uncinula necator) and Ren (Resistance to Erysiphe necator). This article reviews the powdery mildew resistance genes and loci and their use in grapevine breeding programs.
Collapse
Affiliation(s)
- Viviana Sosa-Zuniga
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Avenida Libertador Bernardo O’Higgins 340, Santiago 8331150, Chile;
- Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4560, Santiago 7820436, Chile
| | - Álvaro Vidal Valenzuela
- Foundazione Edmund Mach, Via Edmund Mach 1, San Michele all’Adige (TN), 38010 Trento, Italy;
| | - Paola Barba
- Instituto de Investigaciones Agropecuarias, Avenida Santa Rosa 11610, Santiago 8831314, Chile;
| | - Carmen Espinoza Cancino
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Avenida El Llano Subercaseaux 2801, Santiago 8900000, Chile;
| | - Jesus L. Romero-Romero
- Departamento de Biotecnología Agrícola, Instituto Politécnico Nacional, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional, Unidad Sinaloa, Bvd. Juan de Dios Bátiz Paredes 250, Culiacan Rosales 81101, Mexico;
| | - Patricio Arce-Johnson
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Avenida Libertador Bernardo O’Higgins 340, Santiago 8331150, Chile;
- Agrijohnson Ltda., Parcela 16b, Miraflores, Curacavi 9630000, Chile
| |
Collapse
|
15
|
Li Y, Jiao C, Wei Z, Chai S, Jia H, Gao M, Allison J, Li Z, Song CB, Wang X. Analysis of Grapevine's Somatic Embryogenesis Receptor Kinase (SERK) Gene Family: VqSERK3/BAK1 Overexpression Enhances Disease Resistance. PHYTOPATHOLOGY 2022; 112:1081-1092. [PMID: 34698542 DOI: 10.1094/phyto-04-21-0136-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The somatic embryogenesis receptor kinase (SERK) gene family has been intensively studied in several plant species. Here we confirmed the existence of five SERK genes in grapevine (Chinese wild grapevine Vitis quinquangularis) and named them VqSERK1, VqSERK2, VqSERK3, VqSERK4, and VqSERK5. Analysis of the predicted structures of these SERK proteins revealed they include a signal peptide domain, a leucine zipper domain, a Ser-Pro-Pro domain, a single transmembrane domain, different leucine-rich repeats, and an intracellular kinase activity domain. The SERK genes of grapevine showed different gene expression patterns when treated with powdery mildew (Erysiphe necator) and hormones (salicylic acid, jasmonic acid, abscisic acid, and ethylene). Subcellular localization assays confirmed that VqSERK family proteins localized to the cell membrane. Moreover, we cloned the SERK3/BAK1 gene from the Chinese wild grapevine V. quinquangularis clone 'Shang-24'. Heterologous VqSERK3/BAK1 expression in the Arabidopsis bak1-4 mutant lines restored control of cell death, increased resistance to powdery mildew, and strengthened stomatal immunity. Our work may provide the foundation for further studies of SERK genes for pathogen resistance and hormone treatment in grapevine.
Collapse
Affiliation(s)
- Yajuan Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Chen Jiao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Zhenjiang Wei
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Shengyue Chai
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Hui Jia
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Min Gao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Jessica Allison
- Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, MD 21250, U.S.A
| | - Zhi Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Chang-Bing Song
- College of Biological Science and Engineering, North Minzu University, Yinchuan 750021, P.R. China
| | - Xiping Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| |
Collapse
|
16
|
Fournier P, Pellan L, Barroso-Bergadà D, Bohan DA, Candresse T, Delmotte F, Dufour MC, Lauvergeat V, Le Marrec C, Marais A, Martins G, Masneuf-Pomarède I, Rey P, Sherman D, This P, Frioux C, Labarthe S, Vacher C. The functional microbiome of grapevine throughout plant evolutionary history and lifetime. ADV ECOL RES 2022. [DOI: 10.1016/bs.aecr.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
17
|
Possamai T, Wiedemann-Merdinoglu S, Merdinoglu D, Migliaro D, De Mori G, Cipriani G, Velasco R, Testolin R. Construction of a high-density genetic map and detection of a major QTL of resistance to powdery mildew (Erysiphe necator Sch.) in Caucasian grapes (Vitis vinifera L.). BMC PLANT BIOLOGY 2021; 21:528. [PMID: 34763660 PMCID: PMC8582213 DOI: 10.1186/s12870-021-03174-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/09/2021] [Indexed: 05/30/2023]
Abstract
BACKGROUND Vitis vinifera L. is the most cultivated grapevine species worldwide. Erysiphe necator Sch., the causal agent of grape powdery mildew, is one of the main pathogens affecting viticulture. V. vinifera has little or no genetic resistances against E. necator and the grape industry is highly dependent on agrochemicals. Some Caucasian V. vinifera accessions have been reported to be resistant to E. necator and to have no genetic relationships to known sources of resistance to powdery mildew. The main purpose of this work was the study and mapping of the resistance to E. necator in the Caucasian grapes 'Shavtsitska' and 'Tskhvedianis tetra'. RESULTS The Caucasian varieties 'Shavtsitska' and 'Tskhvedianis tetra' showed a strong partial resistance to E. necator which segregated in two cross populations: the resistant genotypes delayed and limited the pathogen mycelium growth, sporulation intensity and number of conidia generated. A total of 184 seedlings of 'Shavtsitska' x 'Glera' population were genotyped through the Genotyping by Sequencing (GBS) technology and two high-density linkage maps were developed for the cross parents. The QTL analysis revealed a major resistance locus, explaining up to 80.15% of the phenotypic variance, on 'Shavtsitska' linkage group 13, which was associated with a reduced pathogen infection as well as an enhanced plant necrotic response. The genotyping of 105 Caucasian accessions with SSR markers flanking the QTL revealed that the resistant haplotype of 'Shavtsitska' was shared by 'Tskhvedianis tetra' and a total of 25 Caucasian grape varieties, suggesting a widespread presence of this resistance in the surveyed germplasm. The uncovered QTL was mapped in the region where the Ren1 locus of resistance to E. necator, identified in the V. vinifera 'Kishmish vatkana' and related grapes of Central Asia, is located. The genetic analysis conducted revealed that the Caucasian grapes in this study exhibit a resistant haplotype different from that of Central Asian grape accessions. CONCLUSIONS The QTL isolated in 'Shavtsitska' and present in the Caucasian V. vinifera varieties could be a new candidate gene of resistance to E. necator to use in breeding programmes. It co-localizes with the Ren1 locus but shows a different haplotype from that of grapevines of Central Asia. We therefore consider that the Caucasian resistance locus, named Ren1.2, contains a member of a cluster of R-genes, of which the region is rich, and to be linked with, or possibly allelic, to Ren1.
Collapse
Affiliation(s)
- Tyrone Possamai
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, via delle Scienze 206, 33100, Udine, Italy.
- CREA - Research Centre for Viticulture and Enology, viale XXVIII Aprile 26, 31015, Conegliano, TV, Italy.
| | | | - Didier Merdinoglu
- INRAE, Université de Strasbourg, SVQV UMR-A 1131, 28 rue de Herrlisheim, 68000, Colmar, France
| | - Daniele Migliaro
- CREA - Research Centre for Viticulture and Enology, viale XXVIII Aprile 26, 31015, Conegliano, TV, Italy
| | - Gloria De Mori
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, via delle Scienze 206, 33100, Udine, Italy
| | - Guido Cipriani
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, via delle Scienze 206, 33100, Udine, Italy
| | - Riccardo Velasco
- CREA - Research Centre for Viticulture and Enology, viale XXVIII Aprile 26, 31015, Conegliano, TV, Italy
| | - Raffaele Testolin
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, via delle Scienze 206, 33100, Udine, Italy
- Institute of Applied Genomics, Science & Technology Park "Luigi Danieli", via Jacopo Linussio 51, 33100, Udine, Italy
| |
Collapse
|
18
|
Fayyaz L, Tenscher A, Viet Nguyen A, Qazi H, Walker MA. Vitis Species from the Southwestern United States Vary in Their Susceptibility to Powdery Mildew. PLANT DISEASE 2021; 105:2418-2425. [PMID: 34494871 DOI: 10.1094/pdis-10-20-2103-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The European grapevine (Vitis vinifera L.) has been cultivated in North America for about 500 years. One of the major limitations to its culture is the powdery mildew (PM) fungus, Erysiphe necator Schw. This study reports on the most extensive screening of Vitis species from the southwestern United States and northern Mexico for resistance to PM, testing 147 accessions of 13 Vitis species. In addition, Vitis vinifera cv. Carignane, a highly susceptible wine grape cultivar, was used as a reference to evaluate the effect of the inoculum 14 days postinoculation. Inoculation was done with a vacuum-operated settling tower using a broadly virulent isolate of E. necator, the C-strain. Resistant accessions (nine), moderately susceptible accessions (39), and highly susceptible accessions (99) were detected. The resistant accessions were then inoculated with an additional fungal isolate, e1-101, and they retained their resistance. Vitis species susceptibility was not associated with a North-South gradation, but Western species were more susceptible than Midwestern and Eastern species. All five of the V. monticola accessions were susceptible, as were the accessions of V. treleasei. The species V. acerifolia, V. candicans, V. cinerea, and V. × doaniana had significantly more resistant to moderately susceptible accessions compared with V. arizonica, V. berlandieri, V. californica, V. × champinii, V. girdiana, V. riparia, and V. rupestris, which had relatively more susceptible accessions than the other species. This research identified new sources of PM resistance in Vitis from the southwestern United States that could be incorporated into PM resistance breeding programs throughout the world.
Collapse
Affiliation(s)
- Laila Fayyaz
- Department of Viticulture and Enology, University of California, Davis, CA 95616-5270
| | - Alan Tenscher
- Department of Viticulture and Enology, University of California, Davis, CA 95616-5270
| | - Andy Viet Nguyen
- Department of Viticulture and Enology, University of California, Davis, CA 95616-5270
| | - Huma Qazi
- Department of Viticulture and Enology, University of California, Davis, CA 95616-5270
| | - M Andrew Walker
- Department of Viticulture and Enology, University of California, Davis, CA 95616-5270
| |
Collapse
|
19
|
Kunova A, Pizzatti C, Saracchi M, Pasquali M, Cortesi P. Grapevine Powdery Mildew: Fungicides for Its Management and Advances in Molecular Detection of Markers Associated with Resistance. Microorganisms 2021; 9:1541. [PMID: 34361976 PMCID: PMC8307186 DOI: 10.3390/microorganisms9071541] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/14/2021] [Accepted: 07/17/2021] [Indexed: 11/17/2022] Open
Abstract
Grapevine powdery mildew is a principal fungal disease of grapevine worldwide. Even though it usually does not cause plant death directly, heavy infections can lead to extensive yield losses, and even low levels of the disease can negatively affect the quality of the wine. Therefore, intensive spraying programs are commonly applied to control the disease, which often leads to the emergence and spread of powdery mildew strains resistant to different fungicides. In this review, we describe major fungicide classes used for grapevine powdery mildew management and the most common single nucleotide mutations in target genes known to confer resistance to different classes of fungicides. We searched the current literature to review the development of novel molecular methods for quick detection and monitoring of resistance to commonly used single-site fungicides against Erysiphe necator. We analyze and compare the developed methods. From our investigation it became evident that this research topic has been strongly neglected and we hope that effective molecular methods will be developed also for resistance monitoring in biotroph pathogens.
Collapse
Affiliation(s)
- Andrea Kunova
- Department of Food, Environmental and Nutritional Science (DeFENS), University of Milan, Via Celoria 2, 20133 Milan, Italy; (C.P.); (M.S.); (M.P.); (P.C.)
| | | | | | | | | |
Collapse
|
20
|
High Genetic Diversity in Predominantly Clonal Populations of the Powdery Mildew Fungus Podosphaera leucotricha from U.S. Apple Orchards. Appl Environ Microbiol 2021; 87:e0046921. [PMID: 34020938 DOI: 10.1128/aem.00469-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Apple powdery mildew (APM), caused by Podosphaera leucotricha, is a constant threat to apple production worldwide. Very little is known about the biology and population structure of this pathogen in the United States and other growing regions, which affects APM management. A total of 253 P. leucotricha isolates, sampled from 10 apple orchards in Washington, New York, and Virginia, were genetically characterized with novel single sequence repeat and mating type markers. Eighty-three multilocus genotypes (MLGs) were identified, most of which were unique to a given orchard. Each isolate carried either a MAT1-1 or a MAT1-2 idiomorph at the mating type locus, indicating that P. leucotricha is heterothallic. Virulence tests on detached apple leaves showed that the 10 most frequent P. leucotricha MLGs were avirulent on a line containing a major resistance gene. Analysis of molecular variance showed significant differentiation (P < 0.001) among populations, a result supported by principal coordinate analysis revealing three genetic groups, each represented by nonoverlapping MLGs from Washington, New York, and Virginia. A Bayesian cluster analysis showed genetic heterogeneity between Washington populations, and a relative migration analysis indicated substantial gene flow among neighboring orchards. Random mating tests indicated that APM epidemics during the active cycle were dominated by clonal reproduction. However, the presence of sexual structures in orchards, the likelihood that five repeated MLGs resulted from sexual reproduction, and high genotypic diversity observed in some populations suggest that sexual spores play some role in APM epidemics. IMPORTANCE Understanding the population biology and epidemiology of plant pathogens is essential to develop effective strategies for controlling plant diseases. Herein, we gathered insights into the population biology of P. leucotricha populations from conventional and organic apple orchards in the United States. We showed genetic heterogeneity between P. leucotricha populations in Washington and structure between populations from different U.S. regions, suggesting that short-distance spore dispersal plays an important role in the disease's epidemiology. We presented evidence that P. leucotricha is heterothallic and that populations likely result from a mixed (i.e., sexual and asexual) reproductive system, revealing that the sexual stage contributes to apple powdery mildew epidemics. We showed that the major resistance gene Pl-1 is valuable for apple breeding because virulent isolates have most likely not emerged yet in U.S. commercial orchards. These results will be important to achieve sustainability of disease management strategies and maintenance of plant health in apple orchards.
Collapse
|
21
|
Brás EJS, Fortes AM, Esteves T, Chu V, Fernandes P, Conde JP. Microfluidic device for multiplexed detection of fungal infection biomarkers in grape cultivars. Analyst 2021; 145:7973-7984. [PMID: 33043921 DOI: 10.1039/d0an01753a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Early diagnosis of fungal infections, which have seen an increase due to different environmental factors, is essential to an appropriate treatment of the plant by avoiding proliferation of the pathogen without excessive fungicide applications. In this work, we propose a microfluidic based approach to a multiplexed, point-of-need detection system capable of identifying infected grape cultivars. The system relies on the simultaneous detection of three plant hormones: salicylic, azelaic and jasmonic acids with a total assay time under 7 minutes, with LODs of 15 μM, 10 μM and 4.4 nM respectively. The three detection assays are based on optical transduction, with the detection of salicylic and azelaic acids using transmission measurements, while the detection of jasmonic acid is a fluorescence-based assay. The molecular recognition event for each metabolite is different: nanoparticle conjugation for salicylic acid, enzymatic reaction for azelaic acid and antibody-antigen recognition for jasmonic acid. In this work, two cultivars, Trincadeira and Carignan, presented infections with two fungal pathogens, Botrytis cinerea and Erysiphe necator. The grapes were tested using the microfluidic system alongside the benchmark techniques such as, high-performance liquid chromatography and enzyme-linked immunosorbent assay. The microfluidic system was not only capable of distinguishing infected from healthy samples, but also capable of distinguishing between different infection types.
Collapse
Affiliation(s)
- Eduardo J S Brás
- Instituto de Engenharia de Sistemas e Computadores - Microsistemas e Nanotecnologias (INESC MN), Portugal.
| | | | | | | | | | | |
Collapse
|
22
|
Block M, Knaus BJ, Wiseman MS, Grünwald NJ, Gent DH. Development of a Diagnostic Assay for Race Differentiation of Podosphaera macularis. PLANT DISEASE 2021; 105:965-971. [PMID: 32915117 DOI: 10.1094/pdis-06-20-1289-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Hop powdery mildew (caused by Podosphaera macularis) was confirmed in the Pacific Northwest in 1996. Before 2012, the most common race of P. macularis was able to infect plants that possessed powdery mildew resistance based on the R-genes Rb, R3, and R5. After 2012, two additional races of P. macularis were discovered that can overcome the resistance gene R6 and the partial resistance found in the cultivar Cascade. These three races now occur throughout the region, which can complicate management and research efforts because of uncertainty on which race(s) may be present in the region and able to infect susceptible hop genotypes. Current methods for determining the races of P. macularis are labor intensive, costly, and typically require more than 14 days to obtain results. We sought to develop a molecular assay to differentiate races of the fungus possessing virulence on plants with R6, referred to as V6-virulent, from other races. The transcriptomes of 46 isolates of P. macularis were sequenced to identify loci and variants unique to V6 isolates. Fourteen primer pairs were designed for 10 candidate loci that contained single nucleotide polymorphisms (SNP) and short insertion-deletion polymorphisms. Two differentially labeled locked nucleic acid probes were designed for a contig that contained a conserved SNP associated with V6-virulence. The resulting duplexed real-time PCR assay was validated against 46 V6 and 54 non-V6 P. macularis isolates collected from the United States and Europe. The assay had perfect discrimination of V6-virulence among isolates of P. macularis originating from the western U.S. but failed to predict V6-virulence in three isolates collected from Europe. The specificity of the assay was tested with different species of powdery mildew fungi and other microorganisms associated with hop. Weak nonspecific amplification occurred with powdery mildew fungi collected from Vitis vinifera, Fragaria sp., and Zinnia sp.; however, nonspecification amplification is not a concern when differentiating pathogen race from colonies on hop. The assay has practical applications in hop breeding, epidemiological studies, and other settings where rapid confirmation of pathogen race is needed.
Collapse
Affiliation(s)
- Mary Block
- Oregon State University, Department of Crop and Soil Science, Corvallis, OR 97331
| | - Brian J Knaus
- Oregon State University, Department of Horticulture, Corvallis, OR 97331
| | - Michele S Wiseman
- Oregon State University, Department of Botany and Plant Pathology, Corvallis, OR 97331
| | - Niklaus J Grünwald
- U.S. Department of Agriculture-Agricultural Research Service, Horticultural Crops Research Unit, Corvallis, OR 97330
| | - David H Gent
- Oregon State University, Department of Botany and Plant Pathology, Corvallis, OR 97331
- U.S. Department of Agriculture-Agricultural Research Service, Forage Seed and Cereal Research Unit, Corvallis, OR 97331
| |
Collapse
|
23
|
Bradshaw M, Braun U, Elliott M, Kruse J, Liu SY, Guan G, Tobin P. A global genetic analysis of herbarium specimens reveals the invasion dynamics of an introduced plant pathogen. Fungal Biol 2021; 125:585-595. [PMID: 34281652 DOI: 10.1016/j.funbio.2021.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 03/14/2021] [Accepted: 03/16/2021] [Indexed: 10/21/2022]
Abstract
The introduction, spread, and impact of fungal plant pathogens is a critical concern in ecological systems. In this study, we were motivated by the rather sudden appearance of Acermacrophyllum heavily infected with powdery mildew. We used morphological and genetic analyses to confirm the pathogen causing the epidemic was Sawadaea bicornis. In subsequent field studies, this pathogen was found in several locations in western North America, and in greenhouse studies, A. macrophyllum was found to be significantly more susceptible to S. bicornis than nine other Acer species tested. A genetic analysis of 178 specimens of powdery mildew from freshly collected and old herbarium specimens from 15 countries revealed seven different haplotypes. The high diversity of haplotypes found in Europe coupled with sequence results from a specimen from 1864 provides evidence that S. bicornis has a European origin. Furthermore, sequence data from a specimen from 1938 in Canada show that the pathogen has been present in North America for at least 82 years revealing a considerable lag time between the introduction and current epidemic. This study used old herbarium specimens to genetically hypothesize the origin, the native host, and the invasion time of a detrimental fungal plant pathogen.
Collapse
Affiliation(s)
- Michael Bradshaw
- University of Washington, School of Environmental and Forest Sciences, Seattle, WA, 98195, USA.
| | - Uwe Braun
- Martin Luther University, Institute of Biology, Geobotany Division and Botanical Garden, Herbarium, Neuwerk 21, 06099 Halle (Saale), Germany.
| | | | - Julia Kruse
- Pfalzmuseum für Naturkunde, Hermann-Schäfer-Straße 17, 67098, Bad Dürkheim, Germany.
| | - Shu-Yan Liu
- Laboratory of Plant Pathology, College of Plant Protection, Jilin Agricultural University, Changchun, 130118, Jilin Province, PR China.
| | - Guanxiu Guan
- Laboratory of Plant Pathology, College of Plant Protection, Jilin Agricultural University, Changchun, 130118, Jilin Province, PR China.
| | - Patrick Tobin
- University of Washington, School of Environmental and Forest Sciences, Seattle, WA, 98195, USA.
| |
Collapse
|
24
|
Carbas B, Simões D, Soares A, Freitas A, Ferreira B, Carvalho ARF, Silva AS, Pinto T, Diogo E, Andrade E, Brites C. Occurrence of Fusarium spp. in Maize Grain Harvested in Portugal and Accumulation of Related Mycotoxins during Storage. Foods 2021; 10:375. [PMID: 33572250 PMCID: PMC7915971 DOI: 10.3390/foods10020375] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 12/19/2022] Open
Abstract
Maize is an important worldwide commodity susceptible to fungal contamination in the field, at harvest, and during storage. This work aimed to determine the occurrence of Fusarium spp. in maize grains produced in the Tagus Valley region of Portugal and the levels of related mycotoxins in the 2018 harvest and during their storage for six months in barrels, mimicking silos conditions. Continuous monitoring of temperature, CO2, and relative humidity levels were done, as well as the concentration of mycotoxins were evaluated and correlated with the presence of Fusarium spp. F. verticillioides was identified as the predominant Fusarium species. Zearalenone, deoxynivalenol and toxin T2 were not found at harvest and after storage. Maize grains showed some variability in the levels of fumonisins (Fum B1 and Fum B2). At the harvest, fumonisin B1 ranged from 1297 to 2037 µg/kg, and fumonisin B2 ranged from 411 to 618 µg/kg. Fumonisins showed a tendency to increase (20 to 40%) during six months of storage. Although a correlation between the levels of fumonisins and the monitoring parameters was not established, CO2 levels may be used to predict fungal activity during storage. The composition of the fungal population during storage may predict the incidence of mycotoxins.
Collapse
Affiliation(s)
- Bruna Carbas
- National Institute for Agricultural and Veterinary Research (INIAV), I.P., Av. da República, Quinta do Marquês, 2780-157 Oeiras, Portugal; (B.C.); (D.S.); (A.S.); (A.F.); (A.S.S.); (E.D.); (E.A.)
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro (CITAB-UTAD), 5000-801 Vila Real, Portugal
| | - Daniela Simões
- National Institute for Agricultural and Veterinary Research (INIAV), I.P., Av. da República, Quinta do Marquês, 2780-157 Oeiras, Portugal; (B.C.); (D.S.); (A.S.); (A.F.); (A.S.S.); (E.D.); (E.A.)
| | - Andreia Soares
- National Institute for Agricultural and Veterinary Research (INIAV), I.P., Av. da República, Quinta do Marquês, 2780-157 Oeiras, Portugal; (B.C.); (D.S.); (A.S.); (A.F.); (A.S.S.); (E.D.); (E.A.)
| | - Andreia Freitas
- National Institute for Agricultural and Veterinary Research (INIAV), I.P., Av. da República, Quinta do Marquês, 2780-157 Oeiras, Portugal; (B.C.); (D.S.); (A.S.); (A.F.); (A.S.S.); (E.D.); (E.A.)
| | - Bruno Ferreira
- ISQ—Intelligent & Digital Systems, R&Di, Instituto de Soldadura e Qualidade, 4415-491 Grijó, Portugal; (B.F.); (A.R.F.C.)
- Universidade Lusíada—Norte & COMEGI, 4760-108 Vila Nova de Famalicão, Portugal
| | - Alexandre R. F. Carvalho
- ISQ—Intelligent & Digital Systems, R&Di, Instituto de Soldadura e Qualidade, 4415-491 Grijó, Portugal; (B.F.); (A.R.F.C.)
| | - Ana Sanches Silva
- National Institute for Agricultural and Veterinary Research (INIAV), I.P., Av. da República, Quinta do Marquês, 2780-157 Oeiras, Portugal; (B.C.); (D.S.); (A.S.); (A.F.); (A.S.S.); (E.D.); (E.A.)
- Centre for Animal Science Studies (CECA), ICETA, University of Porto, 4051-401 Porto, Portugal
| | - Tiago Pinto
- ANPROMIS—Associação Nacional dos Produtores de Milho e do Sorgo, Rua Mestre Lima de Freitas nº 1–5º Andar, 1549-012 Lisboa, Portugal;
| | - Eugénio Diogo
- National Institute for Agricultural and Veterinary Research (INIAV), I.P., Av. da República, Quinta do Marquês, 2780-157 Oeiras, Portugal; (B.C.); (D.S.); (A.S.); (A.F.); (A.S.S.); (E.D.); (E.A.)
- BioISI—Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016 Lisboa, Portugal
| | - Eugénia Andrade
- National Institute for Agricultural and Veterinary Research (INIAV), I.P., Av. da República, Quinta do Marquês, 2780-157 Oeiras, Portugal; (B.C.); (D.S.); (A.S.); (A.F.); (A.S.S.); (E.D.); (E.A.)
- GREEN-IT Bioresources for Sustainability, ITQB NOVA, Av. da República, 2780-157 Oeiras, Portugal
| | - Carla Brites
- National Institute for Agricultural and Veterinary Research (INIAV), I.P., Av. da República, Quinta do Marquês, 2780-157 Oeiras, Portugal; (B.C.); (D.S.); (A.S.); (A.F.); (A.S.S.); (E.D.); (E.A.)
- GREEN-IT Bioresources for Sustainability, ITQB NOVA, Av. da República, 2780-157 Oeiras, Portugal
| |
Collapse
|
25
|
McCarthy GC, Morgan SC, Martiniuk JT, Newman BL, McCann SE, Measday V, Durall DM. An indigenous Saccharomyces uvarum population with high genetic diversity dominates uninoculated Chardonnay fermentations at a Canadian winery. PLoS One 2021; 16:e0225615. [PMID: 33539404 PMCID: PMC7861373 DOI: 10.1371/journal.pone.0225615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 12/29/2020] [Indexed: 01/04/2023] Open
Abstract
Saccharomyces cerevisiae is the primary yeast species responsible for most fermentations in winemaking. However, other yeasts, including Saccharomyces uvarum, have occasionally been found conducting commercial fermentations around the world. S. uvarum is typically associated with white wine fermentations in cool-climate wine regions, and has been identified as the dominant yeast in fermentations from France, Hungary, northern Italy, and, recently, Canada. However, little is known about how the origin and genetic diversity of the Canadian S. uvarum population relates to strains from other parts of the world. In this study, a highly diverse S. uvarum population was found dominating uninoculated commercial fermentations of Chardonnay grapes sourced from two different vineyards. Most of the strains identified were found to be genetically distinct from S. uvarum strains isolated globally. Of the 106 strains of S. uvarum identified in this study, four played a dominant role in the fermentations, with some strains predominating in the fermentations from one vineyard over the other. Furthermore, two of these dominant strains were previously identified as dominant strains in uninoculated Chardonnay fermentations at the same winery two years earlier, suggesting the presence of a winery-resident population of indigenous S. uvarum. This research provides valuable insight into the diversity and persistence of non-commercial S. uvarum strains in North America, and a stepping stone for future work into the enological potential of an alternative Saccharomyces yeast species.
Collapse
Affiliation(s)
- Garrett C. McCarthy
- Department of Biology, Irfigving K. Barber School of Arts and Sciences, The University of British Columbia, Kelowna, British Columbia, Canada
| | - Sydney C. Morgan
- Department of Biology, Irfigving K. Barber School of Arts and Sciences, The University of British Columbia, Kelowna, British Columbia, Canada
| | - Jonathan T. Martiniuk
- Wine Research Centre, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Brianne L. Newman
- Department of Biology, Irfigving K. Barber School of Arts and Sciences, The University of British Columbia, Kelowna, British Columbia, Canada
| | - Stephanie E. McCann
- Department of Biology, Irfigving K. Barber School of Arts and Sciences, The University of British Columbia, Kelowna, British Columbia, Canada
| | - Vivien Measday
- Wine Research Centre, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Daniel M. Durall
- Department of Biology, Irfigving K. Barber School of Arts and Sciences, The University of British Columbia, Kelowna, British Columbia, Canada
| |
Collapse
|
26
|
Gur L, Reuveni M, Cohen Y, Cadle-Davidson L, Kisselstein B, Ovadia S, Frenkel O. Population structure of Erysiphe necator on domesticated and wild vines in the Middle East raises questions on the origin of the grapevine powdery mildew pathogen. Environ Microbiol 2021; 23:6019-6037. [PMID: 33459475 DOI: 10.1111/1462-2920.15401] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 11/28/2022]
Abstract
Plant pathogens usually originate and diversify in geographical regions where hosts and pathogens co-evolve. Erysiphe necator, the causal agent of grape powdery mildew, is a destructive pathogen of grapevines worldwide. Although Eastern US is considered the centre of origin and diversity of E. necator, previous reports on resistant native wild and domesticated Asian grapevines suggest Asia as another possible origin of the pathogen. By using multi-locus sequencing, microsatellites and a novel application of amplicon sequencing (AmpSeq), we show that the population of E. necator in Israel is composed of three genetic groups: Groups A and B that are common worldwide, and a new group IL, which is genetically differentiated from any known group in Europe and Eastern US. Group IL showed distinguished ecological characteristics: it was dominant on wild and traditional vines (95%); its abundance increased along the season; and was more aggressive than A and B isolates on both wild and domesticated vines. The low genetic diversity within group IL suggests that it has invaded Israel from another origin. Therefore, we suggest that the Israeli E. necator population was founded by at least two invasions, of which one could be from a non-East American source, possibly from Asian origin.
Collapse
Affiliation(s)
- Lior Gur
- Shamir Research Institute, University of Haifa, Katzrin, Israel.,Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel.,Department of Plant Pathology and Weed Research, Agricultural Research Organization (ARO), The Volcani Center, Rishon Lezion, Israel
| | - Moshe Reuveni
- Shamir Research Institute, University of Haifa, Katzrin, Israel
| | - Yigal Cohen
- Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Lance Cadle-Davidson
- USDA Agricultural Research Service, Geneva, NY, USA.,School of Integrative Plant Sciences, Cornell AgriTech, Geneva, NY, USA
| | - Breanne Kisselstein
- USDA Agricultural Research Service, Geneva, NY, USA.,School of Integrative Plant Sciences, Cornell AgriTech, Geneva, NY, USA
| | | | - Omer Frenkel
- Department of Plant Pathology and Weed Research, Agricultural Research Organization (ARO), The Volcani Center, Rishon Lezion, Israel
| |
Collapse
|
27
|
Miles TD, Neill TM, Colle M, Warneke B, Robinson G, Stergiopoulos I, Mahaffee WF. Allele-Specific Detection Methods for QoI Fungicide-Resistant Erysiphe necator in Vineyards. PLANT DISEASE 2021; 105:175-182. [PMID: 33186075 DOI: 10.1094/pdis-11-19-2395-re] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Grapevine powdery mildew (GPM), caused by the fungus Erysiphe necator, is a constant threat to worldwide production of grape berries, requiring repeated use of fungicides for management. The frequent fungicide applications have resulted in resistance to commonly used quinone outside inhibitor (QoI) fungicides and the resistance is associated with single-nucleotide polymorphisms (SNPs) in the mitochondrial cytochrome b gene (cytb). In this study, we attempted to detect the most common SNP causing a glycine to alanine substitution at amino acid position 143 (i.e., G143A) in the cytb protein, to track this resistance using allele-specific TaqMan probe and digital-droplet PCR-based assays. Specificity and sensitivity of these assays showed that these two assays could discriminate SNPs and were effective on mixed samples. These diagnostic assays were implemented to survey E. necator samples collected from leaf and air samples from California and Oregon grape-growing regions. Sequencing of PCR amplicons and phenotyping of isolates also revealed that these assays accurately detected each allele (100% agreement), and there was an absolute agreement between the presence or absence of the G143A mutation and resistance to QoIs in the E. necator sampled. These results indicate that the developed diagnostic tools will help growers make informed decisions about fungicide selections and applications which, in turn, will facilitate GPM disease management and improve grape production systems.
Collapse
Affiliation(s)
- Timothy D Miles
- Michigan State University, Department of Plant, Soil and Microbial Sciences, East Lansing, MI 48824
| | - Tara M Neill
- United States Department of Agriculture-Agricultural Research Service, Corvallis, OR 97330
| | - Marivi Colle
- Michigan State University, Department of Plant, Soil and Microbial Sciences, East Lansing, MI 48824
| | - Brent Warneke
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97330
| | - Guy Robinson
- Department of Plant Pathology, University of California-Davis, Davis, CA 95616
| | | | - Walter F Mahaffee
- United States Department of Agriculture-Agricultural Research Service, Corvallis, OR 97330
| |
Collapse
|
28
|
Miyamoto T, Hayashi K, Okada R, Wari D, Ogawara T. Resistance to succinate dehydrogenase inhibitors in field isolates of Podosphaera xanthii on cucumber: Monitoring, cross-resistance patterns and molecular characterization. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 169:104646. [PMID: 32828365 DOI: 10.1016/j.pestbp.2020.104646] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/22/2020] [Accepted: 06/25/2020] [Indexed: 06/11/2023]
Abstract
New succinate dehydrogenase inhibitor fungicides (SDHIs), isopyrazam, pyraziflumid and isofetamid were introduced in the Japanese market in 2017-2018 to control powdery mildew on cucumber. SDHI resistance of the disease fungus (Podosphaera xanthii) was first reported during 2008-2009 against boscalid. Then, penthiopyrad which belongs to SDHIs was introduced in 2010, but subsequent monitoring study was not performed. We investigated the sensitivity of P. xanthii field isolates from Ibaraki Prefecture, Japan, to SDHIs and SdhB, SdhC and SdhD gene mutations, using a leaf disc assay and SDH gene analysis. A total of 19 out of the 22 selected isolates showed resistance to SDHIs. The 19 isolates were phenotypically categorized into three types: Resistant I as moderately and Resistant II as highly resistant to penthiopyrad, isopyrazam and pyraziflumid but sensitive to isofetamid and Resistant III as highly resistant to isofetamid but sensitive to the other three SDHIs. SDH gene analysis revealed that Resistant I and III isolates carried a substitution in PxD-S121P and PxC-A86V, respectively. Resistant II carried three different substitutions: PxC-G151R, PxC-G172D, and PxD-H137R. Among 127 isolates sampled from 16 cucumber greenhouses, 54 exhibited Resistant I phenotype and carried only PxD-S121P. Fifty-six isolates exhibited Resistant II and carried PxC-G151R (four isolates), PxC-G172D (24), and PxD-H137R (28). Only two isolates expressed the Resistant III phenotype carrying PxC-A86V. To the best of our knowledge, this is the first report demonstrating cross-resistance patterns and the molecular characterization of SDHIs in P. xanthii.
Collapse
Affiliation(s)
- Takuya Miyamoto
- Horticultural Research Institute, Ibaraki Agricultural Centre, 3165-1 Ago, Kasama, Ibaraki 312-0292, Japan.
| | - Kanako Hayashi
- Horticultural Research Institute, Ibaraki Agricultural Centre, 3165-1 Ago, Kasama, Ibaraki 312-0292, Japan.
| | - Ryo Okada
- Horticultural Research Institute, Ibaraki Agricultural Centre, 3165-1 Ago, Kasama, Ibaraki 312-0292, Japan.
| | - David Wari
- Horticultural Research Institute, Ibaraki Agricultural Centre, 3165-1 Ago, Kasama, Ibaraki 312-0292, Japan.
| | - Takashi Ogawara
- Horticultural Research Institute, Ibaraki Agricultural Centre, 3165-1 Ago, Kasama, Ibaraki 312-0292, Japan.
| |
Collapse
|
29
|
Csikós A, Németh MZ, Frenkel O, Kiss L, Váczy KZ. A Fresh Look at Grape Powdery Mildew ( Erysiphe necator) A and B Genotypes Revealed Frequent Mixed Infections and Only B Genotypes in Flag Shoot Samples. PLANTS 2020; 9:plants9091156. [PMID: 32906683 PMCID: PMC7570353 DOI: 10.3390/plants9091156] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 11/25/2022]
Abstract
Erysiphe necator populations, causing powdery mildew of grapes, have a complex genetic structure. Two genotypes, A and B, were identified in most vineyards across the world on the basis of fixed single nucleotide polymorphisms (SNPs) in several DNA regions. It was hypothesized that A populations overwinter as mycelia in grapevine buds, giving rise to so-called flag shoots in spring, and are more sensitive to fungicides than B populations, which overwinter as ascospores and become widespread later in the season. Other studies concluded that the biological significance of these genotypes is unclear. In the spring of 2015, there was a unique opportunity to collect E. necator samples from flag shoots in Hungary. The same grapevines were sampled in summer and autumn as well. A total of 182 samples were genotyped on the basis of β-tubulin (TUB2), nuclear ribosomal DNA (nrDNA) intergenic spacer (IGS), and internal transcribed spacer (ITS) sequences. Genotypes of 56 samples collected in 2009–2011 were used for comparison. Genotype A was not detected at all in spring, and was present in only 19 samples in total, mixed with genotype B, and sometimes with another frequently found genotype, designated as B2. These results did not support the hypothesis about temporal isolation of the two genotypes and indicated that these are randomly distributed in vineyards.
Collapse
Affiliation(s)
- Anett Csikós
- Food and Wine Research Institute, Eszterházy Károly University, H-3300 Eger, Hungary;
| | - Márk Z. Németh
- Plant Protection Institute, Centre for Agricultural Research, H-1525 Budapest, Hungary; (M.Z.N.); (L.K.)
| | - Omer Frenkel
- Department of Plant Pathology and Weed Research, Institute of Plant Protection, Agricultural Research Organization (ARO), The Volcani Center, Bet Dagan 50250, Israel;
| | - Levente Kiss
- Plant Protection Institute, Centre for Agricultural Research, H-1525 Budapest, Hungary; (M.Z.N.); (L.K.)
- Centre for Crop Health, Institute for Life Sciences and the Environment, University of Southern Queensland, Toowoomba 4350, Australia
| | - Kálmán Zoltán Váczy
- Food and Wine Research Institute, Eszterházy Károly University, H-3300 Eger, Hungary;
- Correspondence:
| |
Collapse
|
30
|
Adhikari TB, Ingram T, Halterman D, Louws FJ. Gene Genealogies Reveal High Nucleotide Diversity and Admixture Haplotypes Within Three Alternaria Species Associated with Tomato and Potato. PHYTOPATHOLOGY 2020; 110:1449-1464. [PMID: 32202481 DOI: 10.1094/phyto-12-19-0487-r] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Early blight (EB) and leaf blight are two destructive diseases of tomato in North Carolina (NC), caused by Alternaria linariae and A. alternata, respectively. During the last decade, EB caused by A. solani has increased in potato-producing areas in Wisconsin (WI). We collected 152 isolates of three Alternaria spp. associated with tomato and potato in NC and WI and used the gene genealogical approach to compare the genetic relationships among them. Two nuclear genes: the glyceraldehyde-3-phosphate dehydrogenase (GPDH), RNA polymerase second largest subunit (RPB2), and the rDNA internal transcribed spacer (ITS) region of these isolates were sequenced. Besides, sequences of the GPDH locus from international isolates described in previous studies were included for comparison purposes. A set of single nucleotide polymorphisms was assembled to identify locus-specific and species-specific haplotypes. Nucleotide diversity varied among gene sequences and species analyzed. For example, the estimates of nucleotide diversity and Watterson's theta were higher in A. alternata than in A. linariae and A. solani. There was little or no polymorphisms in the ITS sequences and thus restricted haplotype placement. The RPB2 sequences were less informative to detect haplotype diversity in A. linariae and A. solani, yet six haplotypes were detected in A. alternata. The GPDH sequences enabled strongly supported phylogenetic inferences with the highest haplotype diversity and belonged to five haplotypes (AaH1 to AaH5), which consisted of only A. alternata from NC. However, 13 haplotypes were identified within and among A. linariae and A. solani sequences. Among them, six (AsAlH1 to AsAlH6) were identical to previously reported haplotypes in global samples and the remaining were new haplotypes. The most divergent haplotypes were AaH1, AsAlH2/AsAlH3, and AsAlH4 and consisted exclusively of A. alternata, A. linariae, and A. solani, respectively. Neutrality tests suggested an excess of mutations and population expansion, and selection may play an important role in nucleotide diversity of Alternaria spp.
Collapse
Affiliation(s)
- Tika B Adhikari
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695
| | - Thomas Ingram
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695
| | - Dennis Halterman
- United States Department of Agriculture-Agricultural Research Service, Vegetable Crops Research Unit, Madison, WI 53706
| | - Frank J Louws
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695
- Department of Horticultural Science, North Carolina State University, Raleigh, NC 27695
| |
Collapse
|
31
|
Kiss L, Vaghefi N, Bransgrove K, Dearnaley JDW, Takamatsu S, Tan YP, Marston C, Liu SY, Jin DN, Adorada DL, Bailey J, Cabrera de Álvarez MG, Daly A, Dirchwolf PM, Jones L, Nguyen TD, Edwards J, Ho W, Kelly L, Mintoff SJL, Morrison J, Németh MZ, Perkins S, Shivas RG, Smith R, Stuart K, Southwell R, Turaganivalu U, Váczy KZ, Blommestein AV, Wright D, Young A, Braun U. Australia: A Continent Without Native Powdery Mildews? The First Comprehensive Catalog Indicates Recent Introductions and Multiple Host Range Expansion Events, and Leads to the Re-discovery of Salmonomyces as a New Lineage of the Erysiphales. Front Microbiol 2020; 11:1571. [PMID: 32765452 PMCID: PMC7378747 DOI: 10.3389/fmicb.2020.01571] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 06/17/2020] [Indexed: 01/08/2023] Open
Abstract
In contrast to Eurasia and North America, powdery mildews (Ascomycota, Erysiphales) are understudied in Australia. There are over 900 species known globally, with fewer than currently 60 recorded from Australia. Some of the Australian records are doubtful as the identifications were presumptive, being based on host plant-pathogen lists from overseas. The goal of this study was to provide the first comprehensive catalog of all powdery mildew species present in Australia. The project resulted in (i) an up-to-date list of all the taxa that have been identified in Australia based on published DNA barcode sequences prior to this study; (ii) the precise identification of 117 specimens freshly collected from across the country; and (iii) the precise identification of 30 herbarium specimens collected between 1975 and 2013. This study confirmed 42 species representing 10 genera, including two genera and 13 species recorded for the first time in Australia. In Eurasia and North America, the number of powdery mildew species is much higher. Phylogenetic analyses of powdery mildews collected from Acalypha spp. resulted in the transfer of Erysiphe acalyphae to Salmonomyces, a resurrected genus. Salmonomyces acalyphae comb. nov. represents a newly discovered lineage of the Erysiphales. Another taxonomic change is the transfer of Oidium ixodiae to Golovinomyces. Powdery mildew infections have been confirmed on 13 native Australian plant species in the genera Acacia, Acalypha, Cephalotus, Convolvulus, Eucalyptus, Hardenbergia, Ixodia, Jagera, Senecio, and Trema. Most of the causal agents were polyphagous species that infect many other host plants both overseas and in Australia. All powdery mildews infecting native plants in Australia were phylogenetically closely related to species known overseas. The data indicate that Australia is a continent without native powdery mildews, and most, if not all, species have been introduced since the European colonization of the continent.
Collapse
Affiliation(s)
- Levente Kiss
- Centre for Crop Health, Institute for Life Sciences and the Environment, University of Southern Queensland, Toowoomba, QLD, Australia
| | - Niloofar Vaghefi
- Centre for Crop Health, Institute for Life Sciences and the Environment, University of Southern Queensland, Toowoomba, QLD, Australia
| | - Kaylene Bransgrove
- Queensland Plant Pathology Herbarium, Department of Agriculture and Fisheries, Dutton Park, QLD, Australia
| | - John D. W. Dearnaley
- Centre for Crop Health, Institute for Life Sciences and the Environment, University of Southern Queensland, Toowoomba, QLD, Australia
| | - Susumu Takamatsu
- Centre for Crop Health, Institute for Life Sciences and the Environment, University of Southern Queensland, Toowoomba, QLD, Australia
- Laboratory of Plant Pathology, Faculty of Bioresources, Mie University, Tsu, Japan
| | - Yu Pei Tan
- Queensland Plant Pathology Herbarium, Department of Agriculture and Fisheries, Dutton Park, QLD, Australia
| | - Craig Marston
- Science and Surveillance Group, Department of Agriculture, Water and the Environment, Brisbane, QLD, Australia
| | - Shu-Yan Liu
- College of Plant Protection, Jilin Agricultural University, Changchun, China
| | - Dan-Ni Jin
- College of Plant Protection, Jilin Agricultural University, Changchun, China
| | - Dante L. Adorada
- Centre for Crop Health, Institute for Life Sciences and the Environment, University of Southern Queensland, Toowoomba, QLD, Australia
| | - Jordan Bailey
- Plant Pathology & Mycology Herbarium, New South Wales Department of Primary Industries, Orange, NSW, Australia
| | | | - Andrew Daly
- Plant Health Diagnostic Service, New South Wales Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, NSW, Australia
| | - Pamela Maia Dirchwolf
- Department of Plant Protection, Faculty of Agricultural Science, National University of the Northeast, Corrientes, Argentina
| | - Lynne Jones
- Science and Surveillance Group, Department of Agriculture, Water and the Environment, Brisbane, QLD, Australia
| | | | - Jacqueline Edwards
- Agriculture Victoria Research, Agriculture Victoria, Department of Jobs, Precincts and Regions, Bundoora, VIC, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, Australia
| | - Wellcome Ho
- New Zealand Ministry for Primary Industries, Auckland, New Zealand
| | - Lisa Kelly
- Department of Agriculture and Fisheries, Queensland Government, Toowoomba, QLD, Australia
| | - Sharl J. L. Mintoff
- Department of Primary Industry and Resources, Northern Territory Government, Darwin, NT, Australia
| | - Jennifer Morrison
- Science and Surveillance Group, Department of Agriculture, Water and the Environment, Brisbane, QLD, Australia
| | - Márk Z. Németh
- Plant Protection Institute, Centre for Agricultural Research, Budapest, Hungary
| | - Sandy Perkins
- Science and Surveillance Group, Department of Agriculture, Water and the Environment, Brisbane, QLD, Australia
| | - Roger G. Shivas
- Centre for Crop Health, Institute for Life Sciences and the Environment, University of Southern Queensland, Toowoomba, QLD, Australia
- Queensland Plant Pathology Herbarium, Department of Agriculture and Fisheries, Dutton Park, QLD, Australia
| | - Reannon Smith
- Agriculture Victoria Research, Agriculture Victoria, Department of Jobs, Precincts and Regions, Bundoora, VIC, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, Australia
| | - Kara Stuart
- Ecosciences Precinct, Department of Agriculture and Fisheries, Dutton Park, QLD, Australia
| | - Ronald Southwell
- Science and Surveillance Group, Department of Agriculture, Water and the Environment, Sydney, NSW, Australia
| | | | - Kálmán Zoltán Váczy
- Food and Wine Research Institute, Eszterházy Károly University, Eger, Hungary
| | - Annie Van Blommestein
- Department of Primary Industries and Regional Development, South Perth, WA, Australia
| | - Dominie Wright
- Department of Primary Industries and Regional Development, South Perth, WA, Australia
| | - Anthony Young
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Uwe Braun
- Herbarium, Department of Geobotany and Botanical Garden, Institute for Biology, Martin Luther University, Halle (Saale), Germany
| |
Collapse
|
32
|
Bradshaw M, Tobin PC. Sequencing Herbarium Specimens of a Common Detrimental Plant Disease (Powdery Mildew). PHYTOPATHOLOGY 2020; 110:1248-1254. [PMID: 32407253 DOI: 10.1094/phyto-04-20-0139-per] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Powdery mildew (Erysiphaceae) is a detrimental plant disease that occurs on a variety of economically important crops. Powdery mildew consists of over 873 species of fungal pathogens that affect over 10,000 plant species. Genetic identification of powdery mildew is accomplished using the internal transcribed spacer (ITS) and large subunit (LSU) regions of the nuclear ribosomal RNA gene cluster. The ITS and LSU regions of powdery mildews can be useful in ecological, epidemiological, phylogenetic, and taxonomic investigations. However, sequencing these regions is not without its challenges. For example, powdery mildew sequences are often contaminated with plant and/or fungal DNA. Also, there tends to be a limited amount and older specimens' DNA can fragment over time. The success of sequencing powdery mildew often depends on the primers used for running polymerase chain reaction (PCR). The primers need to be broad enough that they match the majority of powdery mildew DNA yet specific enough that they do not align with other organisms. A review of the taxonomy and phylogeny of the powdery mildews is presented with an emphasis on sequencing the ITS + LSU genomic regions. Additionally, we introduce a new nested primer protocol for sequencing powdery mildew herbarium samples that includes six new powdery mildew-specific primers. The new sequencing protocol presented allows specimens up to 130 years old to be sequenced consistently. Sequencing herbarium specimens can be extremely useful for addressing many ecological, epidemiological, phylogenetic, and taxonomic problems in multiple plant pathogenic systems including the powdery mildews.
Collapse
Affiliation(s)
- Michael Bradshaw
- University of Washington, School of Environmental and Forest Sciences, Seattle, WA 98195
| | - Patrick C Tobin
- University of Washington, School of Environmental and Forest Sciences, Seattle, WA 98195
| |
Collapse
|
33
|
Gent DH, Claassen BJ, Gadoury DM, Grünwald NJ, Knaus BJ, Radišek S, Weldon W, Wiseman MS, Wolfenbarger SN. Population Diversity and Structure of Podosphaera macularis in the Pacific Northwestern United States and Other Populations. PHYTOPATHOLOGY 2020; 110:1105-1116. [PMID: 32091314 DOI: 10.1094/phyto-12-19-0448-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Powdery mildew, caused by Podosphaera macularis, is one of the most important diseases of hop. The disease was first reported in the Pacific Northwestern United States, the primary hop-growing region in this country, in the mid-1990s. More recently, the disease has reemerged in newly planted hopyards of the eastern United States, as hop production has expanded to meet demands of local craft brewers. The spread of strains virulent on previously resistant cultivars, the paucity of available fungicides, and the potential introduction of the MAT1-2 mating type to the western United States, all threaten sustainability of hop production. We sequenced the transcriptome of 104 isolates of P. macularis collected throughout the western United States, eastern United States, and Europe to quantify genetic diversity of pathogen populations and elucidate the possible origins of pathogen populations in the western United States. Discriminant analysis of principal components grouped isolates within three to five geographic populations, dependent on stringency of grouping criteria. Isolates from the western United States were phenotyped and categorized into one of three pathogenic races based on disease symptoms generated on differential cultivars. Western U.S. populations were clonal, irrespective of pathogenic race, and grouped with isolates originating from Europe. Isolates originating from wild hop plants in the eastern United States were genetically differentiated from all other populations, whereas isolates from cultivated hop plants in the eastern United States mostly grouped with isolates originating from the west, consistent with origins from nursery sources. Mating types of isolates originating from cultivated western and eastern U.S. hop plants were entirely MAT1-1. In contrast, a 1:1 ratio of MAT1-1 and MAT1-2 was observed with isolates sampled from wild plants or Europe. Within the western United States a set of highly differentiated loci were identified in P. macularis isolates associated with virulence to the powdery mildew R-gene R6. The weight of genetic and phenotypic evidence suggests a European origin of the P. macularis populations in the western United States, followed by spread of the pathogen from the western United States to re-emergent production regions in the eastern United States. Furthermore, R6 compatibility appears to have been selected from an extant isolate within the western United States. Greater emphasis on sanitation measures during propagation and quarantine policies should be considered to limit further spread of novel genotypes of the pathogen, both between and within production areas.
Collapse
Affiliation(s)
- David H Gent
- U.S. Department of Agriculture-Agricultural Research Service, Forage Seed and Cereal Research Unit, Corvallis, OR 97331, U.S.A
| | - Briana J Claassen
- Oregon State University, Department of Botany and Plant Pathology, Corvallis, OR 97331, U.S.A
| | - David M Gadoury
- Plant Pathology and Plant-Microbe Biology Section, Cornell University, New York State Agricultural Experiment Station, Geneva, NY 14456, U.S.A
| | - Niklaus J Grünwald
- U.S. Department of Agriculture-Agricultural Research Service, Horticultural Crops Research Unit, Corvallis, OR 97330, U.S.A
| | - Brian J Knaus
- Oregon State University, Department of Botany and Plant Pathology, Corvallis, OR 97331, U.S.A
| | | | - William Weldon
- Plant Pathology and Plant-Microbe Biology Section, Cornell University, New York State Agricultural Experiment Station, Geneva, NY 14456, U.S.A
| | - Michele S Wiseman
- Oregon State University, Department of Botany and Plant Pathology, Corvallis, OR 97331, U.S.A
| | - Sierra N Wolfenbarger
- Oregon State University, Department of Botany and Plant Pathology, Corvallis, OR 97331, U.S.A
| |
Collapse
|
34
|
Qiu PL, Liu SY, Bradshaw M, Rooney-Latham S, Takamatsu S, Bulgakov TS, Tang SR, Feng J, Jin DN, Aroge T, Li Y, Wang LL, Braun U. Multi-locus phylogeny and taxonomy of an unresolved, heterogeneous species complex within the genus Golovinomyces (Ascomycota, Erysiphales), including G. ambrosiae, G. circumfusus and G. spadiceus. BMC Microbiol 2020; 20:51. [PMID: 32138640 PMCID: PMC7059721 DOI: 10.1186/s12866-020-01731-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 02/21/2020] [Indexed: 01/26/2023] Open
Abstract
Background Previous phylogenetic analyses of species within the genus Golovinomyces (Ascomycota, Erysiphales), based on ITS and 28S rDNA sequence data, revealed a co-evolutionary relationship between powdery mildew species and hosts of certain tribes of the plant family Asteraceae. Golovinomyces growing on host plants belonging to the Heliantheae formed a single lineage, comprised of a morphologically differentiated complex of species, which included G. ambrosiae, G. circumfusus, and G. spadiceus. However, the lineage also encompassed sequences retrieved from Golovinomyces specimens on other Asteraceae tribes as well as other plant families, suggesting the involvement of a plurivorous species. A multilocus phylogenetic examination of this complex, using ITS, 28S, IGS (intergenic spacer), TUB2 (beta-tubulin), and CHS1 (chitin synthase I) sequence data was carried out to clarify the discrepancies between ITS and 28S rDNA sequence data and morphological differences. Furthermore, the circumscription of species and their host ranges were emended. Results The phylogenetic and morphological analyses conducted in this study revealed three distinct species named, viz., (1) G. ambrosiae emend. (including G. spadiceus), a plurivorous species that occurs on a multitude of hosts including, Ambrosia spp., multiple species of the Heliantheae and plant species of other tribes of Asteraceae including the Asian species of Eupatorium; (2) G. latisporus comb. nov. (≡ Oidium latisporum), the closely related, but morphologically distinct species confined to hosts of the Heliantheae genera Helianthus, Zinnia, and most likely Rudbeckia; and (3) G. circumfusus confined to Eupatorium cannabinum in Europe. Conclusions The present results provide strong evidence that the combination of multi-locus phylogeny and morphological analysis is an effective way to identify species in the genus Golovinomyces.
Collapse
Affiliation(s)
- Peng-Lei Qiu
- College of Plant Protection, Jilin Agricultural University, Changchun, 130118, Jilin Province, People's Republic of China
| | - Shu-Yan Liu
- College of Plant Protection, Jilin Agricultural University, Changchun, 130118, Jilin Province, People's Republic of China.
| | - Michael Bradshaw
- School of Environmental and Forest Sciences, University of Washington, Seattle, Washington, 98195, USA
| | - Suzanne Rooney-Latham
- California Department of Food & Agriculture, Plany Pest Diagnostic Branch, 3294 Meadowview Road, Sacramento, CA, 95832-1448, USA
| | - Susumu Takamatsu
- Faculty of Bioresources, Mie University, Tsu, 514-8507, Japan.,Centre for Crop Health, University of Southern Queensland, Toowoomba, QLD, 4350, Australia
| | - Timur S Bulgakov
- Russian Research Institute of Floriculture and Subtropical Crops, 2/28 Yana Fabritsiusa Street, Sochi, 354002, Krasnodar Region, Russia
| | - Shu-Rong Tang
- College of Plant Protection, Jilin Agricultural University, Changchun, 130118, Jilin Province, People's Republic of China
| | - Jing Feng
- College of Plant Protection, Jilin Agricultural University, Changchun, 130118, Jilin Province, People's Republic of China
| | - Dan-Ni Jin
- College of Plant Protection, Jilin Agricultural University, Changchun, 130118, Jilin Province, People's Republic of China
| | - Temitope Aroge
- College of Plant Protection, Jilin Agricultural University, Changchun, 130118, Jilin Province, People's Republic of China
| | - Yu Li
- College of Plant Protection, Jilin Agricultural University, Changchun, 130118, Jilin Province, People's Republic of China
| | - Li-Lan Wang
- College of Plant Protection, Jilin Agricultural University, Changchun, 130118, Jilin Province, People's Republic of China
| | - Uwe Braun
- Martin Luther University, Institute of Biology, Geobotany and Botanical Garden, Herbarium, Neuwerk 21, 06099, Halle (Saale), Germany
| |
Collapse
|
35
|
Wyman CR, Hadziabdic D, Boggess SL, Rinehart TA, Windham AS, Wadl PA, Trigiano RN. Low Genetic Diversity Suggests the Recent Introduction of Dogwood Powdery Mildew to North America. PLANT DISEASE 2019; 103:2903-2912. [PMID: 31449437 DOI: 10.1094/pdis-01-19-0051-re] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Cornus florida (flowering dogwood) is a popular understory tree endemic to the eastern hardwood forests of the United States. In 1996, dogwood powdery mildew caused by Erysiphe pulchra, an obligate biotrophic fungus of large bracted dogwoods, reached epidemic levels throughout the C. florida growing region. In the late 1990s, both sexual and asexual stages of E. pulchra were regularly observed; thereafter, the sexual stage was found less frequently. We examined the genetic diversity and population structure of 167 E. pulchra samples on C. florida leaves using 15 microsatellite loci. Samples were organized into two separate collection zone data sets, separated as eight zones and two zones, for the subsequent analysis of microsatellite allele length data. Clone correction analysis reduced the sample size to 90 multilocus haplotypes. Our study indicated low genetic diversity, a lack of definitive population structure, low genetic distance among multilocus haplotypes, and significant linkage disequilibrium among zones. Evidence of a population bottleneck was also detected. The results of our study indicated a high probability that E. pulchra reproduces predominately via asexual conidia and lend support to the hypothesis that E. pulchra is an exotic pathogen to North America.[Formula: see text] Copyright © 2019 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Christopher R Wyman
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996
| | - Denita Hadziabdic
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996
| | - Sarah L Boggess
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996
| | - Timothy A Rinehart
- United States Department of Agriculture, Agriculture Research Service, Crop Production and Protection, Beltsville, MD 20705
| | - Alan S Windham
- Department of Entomology and Plant Pathology, University of Tennessee, Soil, Plant, and Pest Center, 5201 Marchant Drive, Nashville, TN 37211
| | - Phillip A Wadl
- United States Department of Agriculture, Agriculture Research Service, U.S. Vegetable Research, Charleston, SC 29414
| | - Robert N Trigiano
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996
| |
Collapse
|
36
|
Hu Y, Gao YR, Yang LS, Wang W, Wang YJ, Wen YQ. The cytological basis of powdery mildew resistance in wild Chinese Vitis species. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 144:244-253. [PMID: 31593897 DOI: 10.1016/j.plaphy.2019.09.049] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/27/2019] [Accepted: 09/30/2019] [Indexed: 06/10/2023]
Abstract
The wild Chinese grapevines (Vitis spp.) show varying levels of resistance to powdery mildew caused by Erysiphe necator that is an economically important disease of cultivated grapevines (Vitis vinifera). However, little information is available regarding the cytological mechanisms of powdery mildew resistance in these wild relatives. Here, we studied the cytological responses of three wild Chinese grapevine accessions after they were infected with E. necator (En) NAFU1 in comparison to the susceptible V. vinifera cv. 'Thompson Seedless' grape. The hyphal growth and sporulation of En NAFU1 were significantly restricted in wild species compared to 'Thompson Seedless', which appears to be associated with early cell wall deposition at the attempt sites, encasement of haustoria, and hypersensitive response-like cell death of penetrated epidermal cells. Moreover, endogenous free salicylic acid (SA) was more abundant in wild Chinese Vitis species than in 'Thompson Seedless' under pathogen-free condition. During En NAFU1 colonization, SA conjugates accumulated higher in wild grapevines than in 'Thompson Seedless'. In addition, the species-specific expression patterns of defense-associated genes during En NAFU1 colonization indicated that mechanisms underlying powdery mildew resistance are divergent among different wild Chinese Vitis species. These results contribute to understanding of mechanisms underlying defense responses of wild Chinese Vitis species against powdery mildew.
Collapse
Affiliation(s)
- Yang Hu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling, 712100, Shaanxi, China
| | - Yu-Rong Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling, 712100, Shaanxi, China
| | - Lu-Shan Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling, 712100, Shaanxi, China
| | - Wei Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling, 712100, Shaanxi, China
| | - Yue-Jin Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling, 712100, Shaanxi, China
| | - Ying-Qiang Wen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
37
|
Midot F, Lau SYL, Wong WC, Tung HJ, Yap ML, Lo ML, Jee MS, Dom SP, Melling L. Genetic Diversity and Demographic History of Ganoderma boninense in Oil Palm Plantations of Sarawak, Malaysia Inferred from ITS Regions. Microorganisms 2019; 7:E464. [PMID: 31623251 PMCID: PMC6843275 DOI: 10.3390/microorganisms7100464] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/07/2019] [Accepted: 10/14/2019] [Indexed: 12/13/2022] Open
Abstract
Ganoderma boninense causes basal stem rot (BSR) and is responsible for substantial economic losses to Southeast Asia's palm oil industry. Sarawak, a major producer in Malaysia, is also affected by this disease. Emergence of BSR in oil palm planted on peat throughout Sarawak is alarming as the soil type was previously regarded as non-conducive. Phylogenetic analysis indicated a single species, G. boninense as the cause of BSR in Sarawak. Information on evolutionary and demographic history for G. boninense in Sarawak inferred through informative genes is lacking. Hence, a haplotype study on single nucleotide polymorphisms in internal transcribed spacers (SNPs-ITS) of G. boninense was carried out. Sequence variations were analysed for population structure, phylogenetic and phylogeographic relationships. The internal transcribed spacers (ITS) region of 117 isolates from four populations in eight locations across Sarawak coastal areas revealed seven haplotypes. A major haplotype, designated GbHap1 (81.2%), was found throughout all sampling locations. Single nucleotide polymorphisms were observed mainly in the ITS1 region. The genetic structure was not detected, and genetic distance did not correlate with geographical distance. Haplotype network analysis suggested evidence of recent demographic expansion. Low genetic differences among populations also suggested that these isolates belong to a single G. boninense founder population adapting to oil palm as the host.
Collapse
Affiliation(s)
- Frazer Midot
- Sarawak Tropical Peat Research Institute, Lot 6035, Kuching-Kota Samarahan Expressway, 94300 Kota Samarahan, Sarawak, Malaysia.
| | - Sharon Yu Ling Lau
- Sarawak Tropical Peat Research Institute, Lot 6035, Kuching-Kota Samarahan Expressway, 94300 Kota Samarahan, Sarawak, Malaysia.
| | - Wei Chee Wong
- Applied Agricultural Resources Sdn. Bhd. (AAR) - University of Nottingham Malaysia Campus (UNMC) Biotechnology Research Centre, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia.
| | - Hun Jiat Tung
- Applied Agricultural Resources Sdn. Bhd. (AAR) - University of Nottingham Malaysia Campus (UNMC) Biotechnology Research Centre, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia.
| | - Mui Lan Yap
- Sarawak Tropical Peat Research Institute, Lot 6035, Kuching-Kota Samarahan Expressway, 94300 Kota Samarahan, Sarawak, Malaysia.
| | - Mei Lieng Lo
- Sarawak Tropical Peat Research Institute, Lot 6035, Kuching-Kota Samarahan Expressway, 94300 Kota Samarahan, Sarawak, Malaysia.
| | - Mui Sie Jee
- Sarawak Tropical Peat Research Institute, Lot 6035, Kuching-Kota Samarahan Expressway, 94300 Kota Samarahan, Sarawak, Malaysia.
| | - Simon Peter Dom
- Sarawak Tropical Peat Research Institute, Lot 6035, Kuching-Kota Samarahan Expressway, 94300 Kota Samarahan, Sarawak, Malaysia.
| | - Lulie Melling
- Applied Agricultural Resources Sdn. Bhd. (AAR) - University of Nottingham Malaysia Campus (UNMC) Biotechnology Research Centre, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
38
|
Ellingham O, David J, Culham A. Enhancing identification accuracy for powdery mildews using previously underexploited DNA loci. Mycologia 2019; 111:798-812. [DOI: 10.1080/00275514.2019.1643644] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Oliver Ellingham
- School of Biological Sciences, University of Reading, Whiteknights, Reading, RG6 6AS, UK
- Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AB, UK
| | - John David
- Royal Horticultural Society Garden Wisley, Woking, Surrey, GU23 6QB, UK
| | - Alastair Culham
- School of Biological Sciences, University of Reading, Whiteknights, Reading, RG6 6AS, UK
| |
Collapse
|
39
|
Thiessen LD, Neill TM, Mahaffee WF. Formation of Erysiphe necator Chasmothecia in the Pacific Northwest United States. PLANT DISEASE 2019; 103:890-896. [PMID: 30807245 DOI: 10.1094/pdis-06-18-1012-re] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In the Pacific Northwest, chasmothecia formation is not observed in vineyards until the beginning of véraison despite heavy infestations whereby 100% of leaf tissue is covered by Erysiphe necator. Mating type proximity and distribution were sampled from individual lesions (∼71 mm2) on leaf tissue in a stratified sampling from three canopy heights at three times during the 2013, 2014, and 2015 growing seasons. Both mating types were observed at every sampling point and within the same lesions at all sampling dates and canopy heights. Effect of temperature and day length were examined by inoculating seedlings with known mating type 1 and 2 isolates and placed in incubators at different temperatures (5, 10, 15, 20, 25, and 30°C) or different day length changes (long day to long day, long day to short day, short day to short day, and short day to long day). Chasmothecia were produced at all temperatures that E. necator was able to colonize tissue, and the greatest number of chasmothecia were produced at 15 and 20°C (P ≤ 0.02). Day length shifts from short day (8 h) to long day (16 h) resulted in a significant increase in chasmothecia production (P < 0.001). End of season plant stress observed in the Pacific Northwest, such as water stress or host senescence, was assessed under naturally infested field conditions by either girdling canes or applying 150 mg·liter-1 abscisic acid solution to vines, respectively, and quantifying chasmothecia production. No differences were observed in chasmothecia production in the plant stress assessment, likely due to the high vigor and ability for plants to overcome stress treatments.
Collapse
Affiliation(s)
- L D Thiessen
- 1 Oregon State University, Department of Botany and Plant Pathology, Corvallis, OR 97331; and
| | - T M Neill
- 2 U.S. Department of Agriculture-Agricultural Research Service, Horticultural Crops Research Laboratory, Corvallis, OR 97330
| | - W F Mahaffee
- 2 U.S. Department of Agriculture-Agricultural Research Service, Horticultural Crops Research Laboratory, Corvallis, OR 97330
| |
Collapse
|
40
|
Huzar-Novakowiski J, Dorrance AE. Genetic Diversity and Population Structure of Pythium irregulare from Soybean and Corn Production Fields in Ohio. PLANT DISEASE 2018; 102:1989-2000. [PMID: 30124360 DOI: 10.1094/pdis-11-17-1725-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
High levels of genetic diversity have been described within the Pythium irregulare complex from several host plants; however, little is known about the population structure in fields used for grain production. Therefore, the objective of this study was to evaluate the genetic diversity and population structure of 53 isolates baited from 28 soybean and corn production fields from 25 counties in Ohio. Genetic diversity was characterized based on sequence analysis of the internal transcribed spacer (ITS1-5.8S-ITS2) region and with 21 simple sequence repeat (SSR) markers. In addition, aggressiveness on soybean, optimum growth temperature, and sensitivity to metalaxyl fungicide were determined. ITS sequence analysis indicated that four isolates clustered with P. cryptoirregulare, whereas the remaining isolates clustered with P. irregulare that was subdivided into two groups (1 and 2). Cluster analysis of SSR data revealed a similar subdivision, which was also supported by structure analysis. The isolates from group 2 grew at a slower rate, but both groups of P. irregulare and P. cryptoirregulare recovered in this study had the same optimum growth at 27°C. Variability of aggressiveness and sensitivity toward metalaxyl fungicide was also observed among isolates within each group. The results from this study will help in the selection of isolates to be used in screening for resistance, assessment of fungicide efficacy, and disease management recommendations.
Collapse
Affiliation(s)
- J Huzar-Novakowiski
- Department of Plant Pathology, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster, OH 44691
| | - A E Dorrance
- Department of Plant Pathology, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster, OH 44691
| |
Collapse
|
41
|
Thiessen LD, Neill TM, Mahaffee WF. Assessment of Erysiphe necator Ascospore Release Models for Use in the Mediterranean Climate of Western Oregon. PLANT DISEASE 2018; 102:1500-1508. [PMID: 30673425 DOI: 10.1094/pdis-10-17-1686-re] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Predictive models have been developed in several major grape-growing regions to correlate environmental conditions to Erysiphe necator ascospore release; however, these models may not be broadly applicable in regions with different climatic conditions. To assess ascospore release in near-coastal regions of western Oregon, chasmothecia (syn. cleistothecia) were collected prior to leaf drop and placed onto natural and artificial grape trunk segments and overwintered outside. Ascospore release was monitored for three overwintering seasons using custom impaction spore traps from leaf drop (Biologische Bundesanstalt, Bundessortenamt und Chemische Industrie [BBCH] 97) until the onset of the disease epidemic in the following growing season. Airborne inoculum was concurrently monitored in a naturally infested research vineyard. Weather and ascospore release data were used to assess previously developed models and correlate environmental conditions to ascospore release. Ascospore release was predicted by all models prior to bud break (BBCH 08), and was observed from the first rain event following the start of inoculum monitoring until monitoring ceased. Previously developed models overpredicted ascospore release in the Willamette Valley and predicted exhaustion of inoculum prior to bud break. The magnitude of ascospore release could not be correlated to environmental conditions; thus, a binary ascospore release model was developed where release is a function of the collective occurrence of the following factors within a 24-h period: >6 h of cumulative leaf wetness during temperatures >4°C, precipitation >2.5 mm, and relative humidity >80%. The Oregon model was validated using field-collected ascospore datasets, and predicted ascospore release with 66% accuracy (P = 0.02). Extant methods for estimating ascospore release may not be sufficiently accurate to use as predictive models in wet, temperate climatic regions.
Collapse
Affiliation(s)
- L D Thiessen
- Department of Botany and Plant Pathology, Oregon State University, Corvallis 97331
| | - T M Neill
- United States Department of Agriculture-Agricultural Research Service, Horticultural Crops Research Laboratory, Corvallis, OR 97331
| | - W F Mahaffee
- United States Department of Agriculture-Agricultural Research Service, Horticultural Crops Research Laboratory, Corvallis, OR 97331
| |
Collapse
|
42
|
Ma H, Xiang G, Li Z, Wang Y, Dou M, Su L, Yin X, Liu R, Wang Y, Xu Y. Grapevine VpPR10.1 functions in resistance to Plasmopara viticola through triggering a cell death-like defence response by interacting with VpVDAC3. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:1488-1501. [PMID: 29377445 PMCID: PMC6041444 DOI: 10.1111/pbi.12891] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 01/10/2018] [Accepted: 01/22/2018] [Indexed: 05/04/2023]
Abstract
As one of the most serious diseases in grape, downy mildew caused by Plasmopara viticola is a worldwide grape disease. Much effort has been focused on improving susceptible grapevine resistance, and wild resistant grapevine species are important for germplasm improvement of commercial cultivars. Using yeast two-hybrid screen followed by a series of immunoprecipitation experiments, we identified voltage-dependent anion channel 3 (VDAC3) protein from Vitis piasezkii 'Liuba-8' as an interacting partner of VpPR10.1 cloned from Vitis pseudoreticulata 'Baihe-35-1', which is an important germplasm for its resistance to a range of pathogens. Co-expression of VpPR10.1/VpVDAC3 induced cell death in Nicotiana benthamiana, which accompanied by ROS accumulation. VpPR10.1 transgenic grapevine line showed resistance to P. viticola. We conclude that the VpPR10.1/VpVDAC3 complex is responsible for cell death-mediated defence response to P. viticola in grapevine.
Collapse
Affiliation(s)
- Hui Ma
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingShaanxiChina
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest ChinaMinistry of AgricultureNorthwest A&F UniversityYanglingShaanxiChina
| | - Gaoqing Xiang
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingShaanxiChina
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest ChinaMinistry of AgricultureNorthwest A&F UniversityYanglingShaanxiChina
| | - Zhiqian Li
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingShaanxiChina
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest ChinaMinistry of AgricultureNorthwest A&F UniversityYanglingShaanxiChina
| | - Yuting Wang
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingShaanxiChina
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest ChinaMinistry of AgricultureNorthwest A&F UniversityYanglingShaanxiChina
| | - Mengru Dou
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingShaanxiChina
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest ChinaMinistry of AgricultureNorthwest A&F UniversityYanglingShaanxiChina
| | - Li Su
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingShaanxiChina
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest ChinaMinistry of AgricultureNorthwest A&F UniversityYanglingShaanxiChina
| | - Xiao Yin
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingShaanxiChina
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest ChinaMinistry of AgricultureNorthwest A&F UniversityYanglingShaanxiChina
| | - Ruiqi Liu
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingShaanxiChina
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest ChinaMinistry of AgricultureNorthwest A&F UniversityYanglingShaanxiChina
| | - Yuejin Wang
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingShaanxiChina
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest ChinaMinistry of AgricultureNorthwest A&F UniversityYanglingShaanxiChina
| | - Yan Xu
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingShaanxiChina
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest ChinaMinistry of AgricultureNorthwest A&F UniversityYanglingShaanxiChina
| |
Collapse
|
43
|
Zhang W, Manawasinghe IS, Zhao W, Xu J, Brooks S, Zhao X, Hyde KD, Chethana KWT, Liu J, Li X, Yan J. Multiple gene genealogy reveals high genetic diversity and evidence for multiple origins of Chinese Plasmopara viticola population. Sci Rep 2017; 7:17304. [PMID: 29230063 PMCID: PMC5725484 DOI: 10.1038/s41598-017-17569-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 11/28/2017] [Indexed: 11/14/2022] Open
Abstract
Downy mildew caused by Plasmopara viticola is one of the most devastating diseases of grapevines worldwide. So far, the genetic diversity and origin of the Chinese P. viticola population are unclear. In the present study, 103 P. viticola isolates were sequenced at four gene regions: internal transcribed spacer one (ITS), large subunit of ribosomal RNA (LSU), actin gene (ACT) and beta-tubulin (TUB). The sequences were analyzed to obtain polymorphism and diversity information of the Chinese population as well as to infer the relationships between Chinese and American isolates. High genetic diversity was observed for the Chinese population, with evidence of sub-structuring based on climate. Phylogenetic analysis and haplotype networks showed evidence of close relationships between some American and Chinese isolates, consistent with recent introduction from America to China via planting materials. However, there is also evidence for endemic Chinese P. viticola isolates. Our results suggest that the current Chinese Plasmopara viticola population is an admixture of endemic and introduced isolates.
Collapse
Affiliation(s)
- Wei Zhang
- Beijing Municipal Key Laboratory for Environmental Friendly Management on Pests of North China Fruits, Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, People's Republic of China.,College of Plant Protection, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Ishara S Manawasinghe
- Beijing Municipal Key Laboratory for Environmental Friendly Management on Pests of North China Fruits, Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, People's Republic of China.,Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - Wensheng Zhao
- College of Plant Protection, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Jianping Xu
- Department of Biology, McMaster University, Hamilton, Ontario, L8S 4K1, Canada
| | - Siraprapa Brooks
- School of Science, Mae Fah Luang University, Chiang, Rai, 57100, Thailand
| | - Xueyan Zhao
- Beijing Municipal Key Laboratory for Environmental Friendly Management on Pests of North China Fruits, Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, People's Republic of China
| | - Kevin D Hyde
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - K W Thilini Chethana
- Beijing Municipal Key Laboratory for Environmental Friendly Management on Pests of North China Fruits, Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, People's Republic of China.,Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - Jianhua Liu
- Beijing Municipal Key Laboratory for Environmental Friendly Management on Pests of North China Fruits, Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, People's Republic of China
| | - Xinghong Li
- Beijing Municipal Key Laboratory for Environmental Friendly Management on Pests of North China Fruits, Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, People's Republic of China.
| | - Jiye Yan
- Beijing Municipal Key Laboratory for Environmental Friendly Management on Pests of North China Fruits, Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, People's Republic of China.
| |
Collapse
|
44
|
Wang L, Xie X, Yao W, Wang J, Ma F, Wang C, Yang Y, Tong W, Zhang J, Xu Y, Wang X, Zhang C, Wang Y. RING-H2-type E3 gene VpRH2 from Vitis pseudoreticulata improves resistance to powdery mildew by interacting with VpGRP2A. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:1669-1687. [PMID: 28369599 DOI: 10.1093/jxb/erx033] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Grapevine is one of the world's most important fruit crops. European cultivated grape species have the best fruit quality but show almost no resistance to powdery mildew (PM). PM caused by Uncinula necator is a harmful disease that has a significant impact on the economic value of the grape crop. In this study, we examined a RING-H2-type ubiquitin ligase gene VpRH2 that is associated with significant PM-resistance of Chinese wild-growing grape Vitis pseudoreticulata accession Baihe-35-1. The expression of VpRH2 was clearly induced by U. necator inoculation compared with its homologous gene VvRH2 in a PM-susceptible grapevine V. vinifera cv. Thompson Seedless. Using a yeast two-hybrid assay we confirmed that VpRH2 interacted with VpGRP2A, a glycine-rich RNA-binding protein. The degradation of VpGRP2A was inhibited by treatment with the proteasome inhibitor MG132 while VpRH2 did not promote the degradation of VpGRP2A. Instead, the transcripts of VpRH2 were increased by over-expressing VpGRP2A while VpRH2 suppressed the expression of VpGRP2A. Furthermore, VpGRP2A was down-regulated in both Baihe-35-1 and Thompson Seedless after U. necator inoculation. Specifically, we generated VpRH2 overexpression transgenic lines in Thompson Seedless and found that the transgenic plants showed enhanced resistance to powdery mildew compared with the wild-type. In summary, our results indicate that VpRH2 interacts with VpGRP2A and plays a positive role in resistance to powdery mildew.
Collapse
Affiliation(s)
- Lei Wang
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi, 712100, the People's Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, the People's Republic of China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A & F University, Yangling, Shaanxi, 712100, the People's Republic of China
| | - Xiaoqing Xie
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi, 712100, the People's Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, the People's Republic of China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A & F University, Yangling, Shaanxi, 712100, the People's Republic of China
| | - Wenkong Yao
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi, 712100, the People's Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, the People's Republic of China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A & F University, Yangling, Shaanxi, 712100, the People's Republic of China
| | - Jie Wang
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi, 712100, the People's Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, the People's Republic of China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A & F University, Yangling, Shaanxi, 712100, the People's Republic of China
| | - Fuli Ma
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi, 712100, the People's Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, the People's Republic of China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A & F University, Yangling, Shaanxi, 712100, the People's Republic of China
| | - Chen Wang
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi, 712100, the People's Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, the People's Republic of China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A & F University, Yangling, Shaanxi, 712100, the People's Republic of China
| | - Yazhou Yang
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi, 712100, the People's Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, the People's Republic of China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A & F University, Yangling, Shaanxi, 712100, the People's Republic of China
| | - Weihuo Tong
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi, 712100, the People's Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, the People's Republic of China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A & F University, Yangling, Shaanxi, 712100, the People's Republic of China
| | - Jianxia Zhang
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi, 712100, the People's Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, the People's Republic of China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A & F University, Yangling, Shaanxi, 712100, the People's Republic of China
| | - Yan Xu
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi, 712100, the People's Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, the People's Republic of China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A & F University, Yangling, Shaanxi, 712100, the People's Republic of China
| | - Xiping Wang
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi, 712100, the People's Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, the People's Republic of China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A & F University, Yangling, Shaanxi, 712100, the People's Republic of China
| | - Chaohong Zhang
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi, 712100, the People's Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, the People's Republic of China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A & F University, Yangling, Shaanxi, 712100, the People's Republic of China
| | - Yuejin Wang
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi, 712100, the People's Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, the People's Republic of China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A & F University, Yangling, Shaanxi, 712100, the People's Republic of China
| |
Collapse
|
45
|
Wang J, Fernández‐Pavía SP, Larsen MM, Garay‐Serrano E, Gregorio‐Cipriano R, Rodríguez‐Alvarado G, Grünwald NJ, Goss EM. High levels of diversity and population structure in the potato late blight pathogen at the Mexico centre of origin. Mol Ecol 2017; 26:1091-1107. [DOI: 10.1111/mec.14000] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 12/11/2016] [Accepted: 12/21/2016] [Indexed: 01/15/2023]
Affiliation(s)
- Jianan Wang
- Department of Plant Pathology and Emerging Pathogens Institute University of Florida Gainesville FL 32611 USA
| | - Sylvia P. Fernández‐Pavía
- Laboratorio de Patología Vegetal Universidad Michoacana de San Nicolás de Hidalgo IIAF Tarímbaro Michoacán 58880 México
| | | | - Edith Garay‐Serrano
- Laboratorio de Patología Vegetal Universidad Michoacana de San Nicolás de Hidalgo IIAF Tarímbaro Michoacán 58880 México
| | - Rosario Gregorio‐Cipriano
- Laboratorio de Patología Vegetal Universidad Michoacana de San Nicolás de Hidalgo IIAF Tarímbaro Michoacán 58880 México
| | - Gerardo Rodríguez‐Alvarado
- Laboratorio de Patología Vegetal Universidad Michoacana de San Nicolás de Hidalgo IIAF Tarímbaro Michoacán 58880 México
| | | | - Erica M. Goss
- Department of Plant Pathology and Emerging Pathogens Institute University of Florida Gainesville FL 32611 USA
| |
Collapse
|
46
|
Chakdar H, Singha A, Satya P. New Generation Markers for Fingerprinting and Structural Analysis of Fungal Community. Fungal Biol 2017. [DOI: 10.1007/978-3-319-34106-4_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
47
|
Pap D, Riaz S, Dry IB, Jermakow A, Tenscher AC, Cantu D, Oláh R, Walker MA. Identification of two novel powdery mildew resistance loci, Ren6 and Ren7, from the wild Chinese grape species Vitis piasezkii. BMC PLANT BIOLOGY 2016; 16:170. [PMID: 27473850 PMCID: PMC4966781 DOI: 10.1186/s12870-016-0855-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 07/14/2016] [Indexed: 05/20/2023]
Abstract
BACKGROUND Grapevine powdery mildew Erysiphe necator is a major fungal disease in all grape growing countries worldwide. Breeding for resistance to this disease is crucial to avoid extensive fungicide applications that are costly, labor intensive and may have detrimental effects on the environment. In the past decade, Chinese Vitis species have attracted attention from grape breeders because of their strong resistance to powdery mildew and their lack of negative fruit quality attributes that are often present in resistant North American species. In this study, we investigated powdery mildew resistance in multiple accessions of the Chinese species Vitis piasezkii that were collected during the 1980 Sino-American botanical expedition to the western Hubei province of China. RESULTS A framework genetic map was developed using simple sequence repeat markers in 277 seedlings of an F1 mapping population arising from a cross of the powdery mildew susceptible Vitis vinifera selection F2-35 and a resistant accession of V. piasezkii DVIT2027. Quantitative trait locus analyses identified two major powdery mildew resistance loci on chromosome 9 (Ren6) and chromosome 19 (Ren7) explaining 74.8 % of the cumulative phenotypic variation. The quantitative trait locus analysis for each locus, in the absence of the other, explained 95.4 % phenotypic variation for Ren6, while Ren7 accounted for 71.9 % of the phenotypic variation. Screening of an additional 259 seedlings of the F1 population and 910 seedlings from four pseudo-backcross populations with SSR markers defined regions of 22 kb and 330 kb for Ren6 and Ren7 in the V. vinifera PN40024 (12X) genome sequence, respectively. Both R loci operate post-penetration through the induction of programmed cell death, but vary significantly in the speed of response and degree of resistance; Ren6 confers complete resistance whereas Ren7 confers partial resistance to the disease with reduced colony size. A comparison of the kinetics of induction of powdery mildew resistance mediated by Ren6, Ren7 and the Run1 locus from Muscadinia rotundifolia, indicated that the speed and strength of resistance conferred by Ren6 is greater than that of Run1 which, in turn, is superior to that conferred by Ren7. CONCLUSIONS This is the first report of mapping powdery mildew resistance in the Chinese species V. piasezkii. Two distinct powdery mildew R loci designated Ren6 and Ren7 were found in multiple accessions of this Chinese grape species. Their location on different chromosomes to previously reported powdery mildew resistance R loci offers the potential for grape breeders to combine these R genes with existing powdery mildew R loci to produce grape germplasm with more durable resistance against this rapidly evolving fungal pathogen.
Collapse
Affiliation(s)
- Dániel Pap
- Department of Viticulture and Enology, University of California, Davis, CA 95616 USA
- Department of Genetics and Plant Breeding, Corvinus University of Budapest, Villányi út 29-34, 1118 Budapest, Hungary
| | - Summaira Riaz
- Department of Viticulture and Enology, University of California, Davis, CA 95616 USA
| | - Ian B. Dry
- CSIRO Agriculture, Glen Osmond, SA Australia
| | | | - Alan C. Tenscher
- Department of Viticulture and Enology, University of California, Davis, CA 95616 USA
| | - Dario Cantu
- Department of Viticulture and Enology, University of California, Davis, CA 95616 USA
| | - Róbert Oláh
- Department of Genetics and Plant Breeding, Corvinus University of Budapest, Villányi út 29-34, 1118 Budapest, Hungary
| | - M. Andrew Walker
- Department of Viticulture and Enology, University of California, Davis, CA 95616 USA
| |
Collapse
|
48
|
Rallos LEE, Baudoin AB. Co-Occurrence of Two Allelic Variants of CYP51 in Erysiphe necator and Their Correlation with Over-Expression for DMI Resistance. PLoS One 2016; 11:e0148025. [PMID: 26839970 PMCID: PMC4740414 DOI: 10.1371/journal.pone.0148025] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 01/12/2016] [Indexed: 01/15/2023] Open
Abstract
Demethylation inhibitors (DMIs) have been an important tool in the management of grapevine powdery mildew caused by Erysiphe necator. Long-term, intensive use of DMIs has resulted in reduced sensitivity in field populations. To further characterize DMI resistance and understand resistance mechanisms in this pathogen, we investigated the cyp51 sequence of 24 single-spored isolates from Virginia and surrounding states and analyzed gene expression in isolates representing a wide range of sensitivity. Two cyp51 alleles were found with respect to the 136th codon of the predicted EnCYP51 sequence: the wild-type (TAT) and the mutant (TTT), which results in the known Y136F amino acid change. Some isolates possessed both alleles, demonstrating gene duplication or increased gene copy number and possibly a requirement for at least one mutant copy of CYP51 for resistance. Cyp51 was over-expressed 1.4- to 19-fold in Y136F-mutant isolates. However, the Y136F mutation was absent in one isolate with moderate to high resistance factor. Two additional synonymous mutations were detected as well, one of which, A1119C was present only in isolates with high cyp51 expression. Overall, our results indicate that at least two mechanisms, cyp51 over-expression and the known target-site mutation in CYP51, contribute to resistance in E. necator, and may be working in conjunction with each other.
Collapse
Affiliation(s)
- Lynn Esther E. Rallos
- Department of Plant Pathology, Physiology and Weed Science, College of Agriculture and Life Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Anton B. Baudoin
- Department of Plant Pathology, Physiology and Weed Science, College of Agriculture and Life Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
| |
Collapse
|
49
|
Rallos LEE, Baudoin AB. Co-Occurrence of Two Allelic Variants of CYP51 in Erysiphe necator and Their Correlation with Over-Expression for DMI Resistance. PLoS One 2016; 11:e0148025. [PMID: 26839970 DOI: 10.1371/journal.pone.014802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 01/12/2016] [Indexed: 05/26/2023] Open
Abstract
Demethylation inhibitors (DMIs) have been an important tool in the management of grapevine powdery mildew caused by Erysiphe necator. Long-term, intensive use of DMIs has resulted in reduced sensitivity in field populations. To further characterize DMI resistance and understand resistance mechanisms in this pathogen, we investigated the cyp51 sequence of 24 single-spored isolates from Virginia and surrounding states and analyzed gene expression in isolates representing a wide range of sensitivity. Two cyp51 alleles were found with respect to the 136th codon of the predicted EnCYP51 sequence: the wild-type (TAT) and the mutant (TTT), which results in the known Y136F amino acid change. Some isolates possessed both alleles, demonstrating gene duplication or increased gene copy number and possibly a requirement for at least one mutant copy of CYP51 for resistance. Cyp51 was over-expressed 1.4- to 19-fold in Y136F-mutant isolates. However, the Y136F mutation was absent in one isolate with moderate to high resistance factor. Two additional synonymous mutations were detected as well, one of which, A1119C was present only in isolates with high cyp51 expression. Overall, our results indicate that at least two mechanisms, cyp51 over-expression and the known target-site mutation in CYP51, contribute to resistance in E. necator, and may be working in conjunction with each other.
Collapse
Affiliation(s)
- Lynn Esther E Rallos
- Department of Plant Pathology, Physiology and Weed Science, College of Agriculture and Life Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Anton B Baudoin
- Department of Plant Pathology, Physiology and Weed Science, College of Agriculture and Life Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
| |
Collapse
|
50
|
Gao YR, Han YT, Zhao FL, Li YJ, Cheng Y, Ding Q, Wang YJ, Wen YQ. Identification and utilization of a new Erysiphe necator isolate NAFU1 to quickly evaluate powdery mildew resistance in wild Chinese grapevine species using detached leaves. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 98:12-24. [PMID: 26590705 DOI: 10.1016/j.plaphy.2015.11.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 11/03/2015] [Accepted: 11/03/2015] [Indexed: 05/01/2023]
Abstract
The most economically important disease of cultivated grapevines worldwide is powdery mildew caused by the biotrophic fungal pathogen Erysiphe necator. To integrate effective genetic resistance into cultivated grapevines, numerous disease resistance screens of diverse Vitis germplasm, including wild species, have been conducted to identify powdery mildew resistance, but the results have been inconsistent. Here, a new powdery mildew isolate that is infectious on grapevines, designated Erysiphe necator NAFU1 (En. NAFU1), was identified and characterized by phylogeny inferred from the internal transcribed spacer (ITS) of pathogen ribosomal DNA sequences. Three classical methods were compared for the maintenance of En. NAFU1, and the most convenient method was maintenance on detached leaves and propagation by contact with infected leaves. Furthermore, controlled inoculations of En. NAFU1 were performed using detached leaves from 57 wild Chinese grapevine accessions to quickly evaluate powdery mildew resistance based on trypan blue staining of leaf sections. The results were compared with previous natural epidemics in the field. Among the screened accessions inoculated with En. NAFU1, 22.8% were resistant, 33.3% were moderately resistant, and 43.9% were susceptible. None of the accessions assessed herein were immune from infection. These results support previous findings documenting the presence of race-specific resistance to E. necator in wild Chinese grapevine. The resistance of wild Chinese grapevine to En. NAFU1 could be due to programmed cell death. The present results suggest that En. NAFU1 isolate could be used for future large-scale screens of resistance to powdery mildew in diverse Vitis germplasms and investigations of the interaction between grapevines and pathogens.
Collapse
Affiliation(s)
- Yu-Rong Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling 712100, China
| | - Yong-Tao Han
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling 712100, China
| | - Feng-Li Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling 712100, China
| | - Ya-Juan Li
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling 712100, China
| | - Yuan Cheng
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling 712100, China
| | - Qin Ding
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling 712100, China
| | - Yue-Jin Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling 712100, China
| | - Ying-Qiang Wen
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling 712100, China.
| |
Collapse
|