1
|
Schirinzi T, Maftei D, Maurizi R, Albanese M, Simonetta C, Bovenzi R, Bissacco J, Mascioli D, Boffa L, Di Certo MG, Gabanella F, Francavilla B, Di Girolamo S, Mercuri NB, Passali FM, Lattanzi R, Severini C. Post-COVID-19 Hyposmia Does Not Exhibit Main Neurodegeneration Markers in the Olfactory Pathway. Mol Neurobiol 2024; 61:8921-8927. [PMID: 38570429 PMCID: PMC11496343 DOI: 10.1007/s12035-024-04157-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 03/29/2024] [Indexed: 04/05/2024]
Abstract
The biological substrate of persistent post-COVID-19 hyposmia is still unclear. However, as many neurodegenerative diseases present with smell impairment at onset, it may theoretically reflect degeneration within the central olfactory circuits. However, no data still exist regarding the post-COVID-19 patients. As the olfactory neurons (ONs) mirror pathological changes in the brain, allowing for tracking the underlying molecular events, here, we performed a broad analysis of ONs from patients with persistent post-COVID-19 OD to identify traces of potential neurodegeneration. ONs were collected through the non-invasive brushing of the olfactory mucosa from ten patients with persistent post-COVID-19 hyposmia (lasting > 6 months after infection) and ten age/sex-matched controls. Immunofluorescence staining for protein quantification and RT-PCR for gene expression levels were combined to measure ONs markers of α-synuclein, amyloid-β, and tau pathology, axonal injury, and mitochondrial network. Patients and controls had similar ONs levels of oligomeric α-synuclein, amyloid-β peptide, tau protein, neurofilament light chain (NfL), cytochrome C oxidase subunit 3 (COX3), and the heat shock protein 60 (HSP60). Our findings thus did not provide evidence for synucleinopathy and amyloid-β mismetabolism or gross traces of neuronal injury and mitochondrial dysfunction within the olfactory system in the early phase of persistent post-COVID-19 hyposmia.
Collapse
Affiliation(s)
- Tommaso Schirinzi
- Unit of Neurology, Department of Systems Medicine, Tor Vergata University of Rome, Via Montpellier 1, 00133, Rome, Italy.
| | - Daniela Maftei
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, Italy
| | - Riccardo Maurizi
- Unit of ENT, Department of Clinical Sciences and Translational Medicine, Tor Vergata University of Rome, Rome, Italy
| | - Maria Albanese
- Unit of Neurology, Department of Systems Medicine, Tor Vergata University of Rome, Via Montpellier 1, 00133, Rome, Italy
| | - Clara Simonetta
- Unit of Neurology, Department of Systems Medicine, Tor Vergata University of Rome, Via Montpellier 1, 00133, Rome, Italy
| | - Roberta Bovenzi
- Unit of Neurology, Department of Systems Medicine, Tor Vergata University of Rome, Via Montpellier 1, 00133, Rome, Italy
| | - Jacopo Bissacco
- Unit of Neurology, Department of Systems Medicine, Tor Vergata University of Rome, Via Montpellier 1, 00133, Rome, Italy
| | - Davide Mascioli
- Unit of Neurology, Department of Systems Medicine, Tor Vergata University of Rome, Via Montpellier 1, 00133, Rome, Italy
| | - Laura Boffa
- Unit of Neurology, Department of Systems Medicine, Tor Vergata University of Rome, Via Montpellier 1, 00133, Rome, Italy
| | - Maria Grazia Di Certo
- Department of Biochemistry and Cell Biology, National Research Council of Italy, Rome, Italy
| | - Francesca Gabanella
- Department of Biochemistry and Cell Biology, National Research Council of Italy, Rome, Italy
| | - Beatrice Francavilla
- Unit of ENT, Department of Clinical Sciences and Translational Medicine, Tor Vergata University of Rome, Rome, Italy
| | - Stefano Di Girolamo
- Unit of ENT, Department of Clinical Sciences and Translational Medicine, Tor Vergata University of Rome, Rome, Italy
| | - Nicola Biagio Mercuri
- Unit of Neurology, Department of Systems Medicine, Tor Vergata University of Rome, Via Montpellier 1, 00133, Rome, Italy
| | - Francesco Maria Passali
- Unit of ENT, Department of Clinical Sciences and Translational Medicine, Tor Vergata University of Rome, Rome, Italy
| | - Roberta Lattanzi
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, Italy
| | - Cinzia Severini
- Department of Biochemistry and Cell Biology, National Research Council of Italy, Rome, Italy
| |
Collapse
|
2
|
Okumura M, Mukai Y, Saika R, Takahashi Y. Association of severe hyposmia and frontal lobe dysfunction in patients with Parkinson's disease. J Neurol Sci 2024; 465:123205. [PMID: 39216171 DOI: 10.1016/j.jns.2024.123205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/05/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUNDS AND OBJECTIVES Severe hyposmia (SH) is a prodromal symptom of dementia associated with Parkinson's disease (PD) caused by Lewy bodies deposited in the limbic regions that connect the frontal and temporal lobes. We aimed to clarify the association between hyposmia and frontal lobe dysfunction (FLD) among patients with PD. METHODS Patients with PD and Hoehn & Yahr stage 1-3 at on-periods without apparent dementia were screened. FLD was defined as a score of ≤14 on the Frontal Assessment Battery (FAB). SH was defined as an average recognition threshold >4 in the T&T Olfactometer. For each subscore, a recognition score of ≥4 was defined as SH. We examined whether SH and its subscores were associated with FLD and evaluated which FAB subscore might be lower in PD patients with SH using Poisson regression analysis with a robust variance estimator. RESULTS We included 189 patients (median age, 68 years; 107 [57 %] male). FLD was observed in 53 (28 %) patients. Multivariable analysis showed that SH (PR 1.789, 95 % confidence intervals (CI) 1.115-2.872, p = 0.016) was associated with FLD. Regarding odor domains, only SH for fruity smells was associated with FLD (PR 1.970, 95 % CI 1.306-2.972, p = 0.001). Patients with SH had a higher subscore only for FAB-1 (similarity [conceptualization], p = 0.030), indicating linguistically mediated executive dysfunction. CONCLUSION In patients with PD, SH is associated with FLD, especially with linguistically mediated executive dysfunction. Particularly, SH for fruity smells may be a sensitive indicator of FLD.
Collapse
Affiliation(s)
- Motohiro Okumura
- Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8551, Japan.
| | - Yohei Mukai
- Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8551, Japan
| | - Reiko Saika
- Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8551, Japan
| | - Yuji Takahashi
- Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8551, Japan
| |
Collapse
|
3
|
Kim Y, McInnes J, Kim J, Liang YHW, Veeraragavan S, Garza AR, Belfort BDW, Arenkiel B, Samaco R, Zoghbi HY. Olfactory deficit and gastrointestinal dysfunction precede motor abnormalities in alpha-Synuclein G51D knock-in mice. Proc Natl Acad Sci U S A 2024; 121:e2406479121. [PMID: 39284050 PMCID: PMC11441490 DOI: 10.1073/pnas.2406479121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 08/09/2024] [Indexed: 10/02/2024] Open
Abstract
Parkinson's disease (PD) is typically a sporadic late-onset disorder, which has made it difficult to model in mice. Several transgenic mouse models bearing mutations in SNCA, which encodes alpha-Synuclein (α-Syn), have been made, but these lines do not express SNCA in a physiologically accurate spatiotemporal pattern, which limits the ability of the mice to recapitulate the features of human PD. Here, we generated knock-in mice bearing the G51D SNCA mutation. After establishing that their motor symptoms begin at 9 mo of age, we then sought earlier pathologies. We assessed the phosphorylation at Serine 129 of α-Syn in different tissues and detected phospho-α-Syn in the olfactory bulb and enteric nervous system at 3 mo of age. Olfactory deficit and impaired gut transit followed at 6 mo, preceding motor symptoms. The SncaG51D mice thus parallel the progression of human PD and will enable us to study PD pathogenesis and test future therapies.
Collapse
Affiliation(s)
- YoungDoo Kim
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030
| | - Joseph McInnes
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030
| | - Jiyoen Kim
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030
| | - Yan Hong Wei Liang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030
| | - Surabi Veeraragavan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030
| | - Alexandra Rae Garza
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030
| | - Benjamin David Webst Belfort
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030
| | - Benjamin Arenkiel
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030
| | - Rodney Samaco
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030
| | - Huda Yahya Zoghbi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030
- Department of Neurology, Baylor College of Medicine, Houston, TX 77030
- HHMI, Baylor College of Medicine, Houston, TX 77030
| |
Collapse
|
4
|
Jameie M, Ahli B, Ghadir S, Azami M, Amanollahi M, Ebadi R, Rafati A, Naser Moghadasi A. The hidden link: How oral and respiratory microbiomes affect multiple sclerosis. Mult Scler Relat Disord 2024; 88:105742. [PMID: 38964239 DOI: 10.1016/j.msard.2024.105742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/16/2024] [Accepted: 06/20/2024] [Indexed: 07/06/2024]
Abstract
BACKGROUND Extensive research has explored the role of gut microbiota in multiple sclerosis (MS). However, the impact of microbial communities in the oral cavity and respiratory tract on MS is an emerging area of investigation. PURPOSE We aimed to review the current literature related to the nasal, oral, and lung microbiota in people with MS (PwMS). METHODS We conducted a narrative review of clinical and preclinical original studies on PubMed that explored the relationship between the bacterial or viral composition of the nasal, lung, and oral microbiota and MS. Additionally, to find relevant studies not retrieved initially, we also searched for references in related review papers, as well as the references cited within the included studies. RESULTS AND CONCLUSIONS Thirteen studies were meticulously reviewed in three sections; oral microbiota (n = 8), nasal microbiota (n = 3), and lung microbiota (n = 2), highlighting considerable alterations in the oral and respiratory microbiome of PwMS compared to healthy controls (HCs). Genera like Aggregatibacter and Streptococcus were less abundant in the oral microbiota of PwMS compared to HCs, while Staphylococcus, Leptotrichia, Fusobacterium, and Bacteroides showed increased abundance in PwMS. Additionally, the presence of specific bacteria, including Streptococcus sanguinis, within the oral microbiota was suggested to influence Epstein-Barr virus reactivation, a well-established risk factor for MS. Studies related to the nasal microbiome indicated elevated levels of specific Staphylococcus aureus toxins, as well as nasal glial cell infection with human herpes virus (HHV)-6 in PwMS. Emerging research on lung microbiome in animal models demonstrated that manipulating the lung microbiome towards lipopolysaccharide-producing bacteria might suppress MS symptoms. These findings open avenues for potential therapeutic strategies. However, further research is crucial to fully understand the complex interactions between the microbiome and MS. This will help identify the most effective timing, bacterial strains, and modulation techniques.
Collapse
Affiliation(s)
- Melika Jameie
- Neuroscience Research Center, Iran University of Medical Sciences, Tehran, Iran; Iranian Center of Neurological Research, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahareh Ahli
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sara Ghadir
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Mobin Azami
- Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Mobina Amanollahi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Ebadi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Rafati
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Abdorreza Naser Moghadasi
- Multiple Sclerosis Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Cartas‐Cejudo P, Cortés A, Lachén‐Montes M, Anaya‐Cubero E, Puerta E, Solas M, Fernández‐Irigoyen J, Santamaría E. Neuropathological stage-dependent proteome mapping of the olfactory tract in Alzheimer's disease: From early olfactory-related omics signatures to computational repurposing of drug candidates. Brain Pathol 2024; 34:e13252. [PMID: 38454090 PMCID: PMC11189775 DOI: 10.1111/bpa.13252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 02/21/2024] [Indexed: 03/09/2024] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia, characterized by an early olfactory dysfunction, progressive memory loss, and behavioral deterioration. Albeit substantial progress has been made in characterizing AD-associated molecular and cellular events, there is an unmet clinical need for new therapies. In this study, olfactory tract proteotyping performed in controls and AD subjects (n = 17/group) showed a Braak stage-dependent proteostatic impairment accompanied by the progressive modulation of amyloid precursor protein and tau functional interactomes. To implement a computational repurposing of drug candidates with the capacity to reverse early AD-related olfactory omics signatures (OMSs), we generated a consensual OMSs database compiling differential omics datasets obtained by mass-spectrometry or RNA-sequencing derived from initial AD across the olfactory axis. Using the Connectivity Map-based drug repurposing approach, PKC, EGFR, Aurora kinase, Glycogen synthase kinase, and CDK inhibitors were the top pharmacologic classes capable to restore multiple OMSs, whereas compounds with targeted activity to inhibit PI3K, Insulin-like growth factor 1 (IGF-1), microtubules, and Polo-like kinase (PLK) represented a family of drugs with detrimental potential to induce olfactory AD-associated gene expression changes. To validate the potential therapeutic effects of the proposed drugs, in vitro assays were performed. These validation experiments revealed that pretreatment of human neuron-like SH-SY5Y cells with the EGFR inhibitor AG-1478 showed a neuroprotective effect against hydrogen peroxide-induced damage while the pretreatment with the Aurora kinase inhibitor Reversine reduced amyloid-beta (Aβ)-induced neurotoxicity. Taken together, our data pointed out that OMSs may be useful as substrates for drug repurposing to propose novel neuroprotective treatments against AD.
Collapse
Affiliation(s)
- Paz Cartas‐Cejudo
- Clinical Neuroproteomics Unit, Proteomics Platform, Navarrabiomed, Hospitalario Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), IdiSNA, Navarra Institute for Health ResearchPamplonaSpain
| | - Adriana Cortés
- Clinical Neuroproteomics Unit, Proteomics Platform, Navarrabiomed, Hospitalario Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), IdiSNA, Navarra Institute for Health ResearchPamplonaSpain
| | - Mercedes Lachén‐Montes
- Clinical Neuroproteomics Unit, Proteomics Platform, Navarrabiomed, Hospitalario Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), IdiSNA, Navarra Institute for Health ResearchPamplonaSpain
| | - Elena Anaya‐Cubero
- Clinical Neuroproteomics Unit, Proteomics Platform, Navarrabiomed, Hospitalario Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), IdiSNA, Navarra Institute for Health ResearchPamplonaSpain
| | - Elena Puerta
- Department of Pharmacology and ToxicologyUniversity of Navarra, IdiSNAPamplonaSpain
| | - Maite Solas
- Department of Pharmacology and ToxicologyUniversity of Navarra, IdiSNAPamplonaSpain
| | - Joaquín Fernández‐Irigoyen
- Clinical Neuroproteomics Unit, Proteomics Platform, Navarrabiomed, Hospitalario Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), IdiSNA, Navarra Institute for Health ResearchPamplonaSpain
| | - Enrique Santamaría
- Clinical Neuroproteomics Unit, Proteomics Platform, Navarrabiomed, Hospitalario Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), IdiSNA, Navarra Institute for Health ResearchPamplonaSpain
| |
Collapse
|
6
|
Astillero‐Lopez V, Villar‐Conde S, Gonzalez‐Rodriguez M, Flores‐Cuadrado A, Ubeda‐Banon I, Saiz‐Sanchez D, Martinez‐Marcos A. Proteomic analysis identifies HSP90AA1, PTK2B, and ANXA2 in the human entorhinal cortex in Alzheimer's disease: Potential role in synaptic homeostasis and Aβ pathology through microglial and astroglial cells. Brain Pathol 2024; 34:e13235. [PMID: 38247340 PMCID: PMC11189773 DOI: 10.1111/bpa.13235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/18/2023] [Indexed: 01/23/2024] Open
Abstract
Alzheimer's disease (AD), the most prevalent neurodegenerative disorder worldwide, is clinically characterized by cognitive deficits. Neuropathologically, AD brains accumulate deposits of amyloid-β (Aβ) and tau proteins. Furthermore, these misfolded proteins can propagate from cell to cell in a prion-like manner and induce native proteins to become pathological. The entorhinal cortex (EC) is among the earliest areas affected by tau accumulation along with volume reduction and neurodegeneration. Neuron-glia interactions have recently come into focus; however, the role of microglia and astroglia in the pathogenesis of AD remains unclear. Proteomic approaches allow the determination of changes in the proteome to better understand the pathology underlying AD. Bioinformatic analysis of proteomic data was performed to compare ECs from AD and non-AD human brain tissue. To validate the proteomic results, western blot, immunofluorescence, and confocal studies were carried out. The findings revealed that the most disturbed signaling pathway was synaptogenesis. Because of their involvement in synapse function, relationship with Aβ and tau proteins and interactions in the pathway analysis, three proteins were selected for in-depth study: HSP90AA1, PTK2B, and ANXA2. All these proteins showed colocalization with neurons and/or astroglia and microglia and with pathological Aβ and tau proteins. In particular, ANXA2, which is overexpressed in AD, colocalized with amoeboid microglial cells and Aβ plaques surrounded by astrocytes. Taken together, the evidence suggests that unbalanced expression of HSP90AA1, PTK2B, and ANXA2 may play a significant role in synaptic homeostasis and Aβ pathology through microglial and astroglial cells in the human EC in AD.
Collapse
Affiliation(s)
- Veronica Astillero‐Lopez
- Neuroplasticity and Neurodegeneration Laboratory, CRIB, Ciudad Real Medical SchoolUniversity of Castilla‐La Mancha (UCLM)Ciudad RealSpain
- Grupo de Neuroplasticidad y Neurodegeneración, Instituto de Investigación Sanitaria de Castilla‐La Mancha (IDISCAM)Castilla‐La ManchaSpain
| | - Sandra Villar‐Conde
- Neuroplasticity and Neurodegeneration Laboratory, CRIB, Ciudad Real Medical SchoolUniversity of Castilla‐La Mancha (UCLM)Ciudad RealSpain
- Grupo de Neuroplasticidad y Neurodegeneración, Instituto de Investigación Sanitaria de Castilla‐La Mancha (IDISCAM)Castilla‐La ManchaSpain
| | - Melania Gonzalez‐Rodriguez
- Neuroplasticity and Neurodegeneration Laboratory, CRIB, Ciudad Real Medical SchoolUniversity of Castilla‐La Mancha (UCLM)Ciudad RealSpain
- Grupo de Neuroplasticidad y Neurodegeneración, Instituto de Investigación Sanitaria de Castilla‐La Mancha (IDISCAM)Castilla‐La ManchaSpain
| | - Alicia Flores‐Cuadrado
- Neuroplasticity and Neurodegeneration Laboratory, CRIB, Ciudad Real Medical SchoolUniversity of Castilla‐La Mancha (UCLM)Ciudad RealSpain
- Grupo de Neuroplasticidad y Neurodegeneración, Instituto de Investigación Sanitaria de Castilla‐La Mancha (IDISCAM)Castilla‐La ManchaSpain
| | - Isabel Ubeda‐Banon
- Neuroplasticity and Neurodegeneration Laboratory, CRIB, Ciudad Real Medical SchoolUniversity of Castilla‐La Mancha (UCLM)Ciudad RealSpain
- Grupo de Neuroplasticidad y Neurodegeneración, Instituto de Investigación Sanitaria de Castilla‐La Mancha (IDISCAM)Castilla‐La ManchaSpain
| | - Daniel Saiz‐Sanchez
- Neuroplasticity and Neurodegeneration Laboratory, CRIB, Ciudad Real Medical SchoolUniversity of Castilla‐La Mancha (UCLM)Ciudad RealSpain
- Grupo de Neuroplasticidad y Neurodegeneración, Instituto de Investigación Sanitaria de Castilla‐La Mancha (IDISCAM)Castilla‐La ManchaSpain
| | - Alino Martinez‐Marcos
- Neuroplasticity and Neurodegeneration Laboratory, CRIB, Ciudad Real Medical SchoolUniversity of Castilla‐La Mancha (UCLM)Ciudad RealSpain
- Grupo de Neuroplasticidad y Neurodegeneración, Instituto de Investigación Sanitaria de Castilla‐La Mancha (IDISCAM)Castilla‐La ManchaSpain
| |
Collapse
|
7
|
Li J, Li X, Chen F, Li W, Chen J, Zhang B. Studying the Alzheimer's disease continuum using EEG and fMRI in single-modality and multi-modality settings. Rev Neurosci 2024; 35:373-386. [PMID: 38157429 DOI: 10.1515/revneuro-2023-0098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 12/01/2023] [Indexed: 01/03/2024]
Abstract
Alzheimer's disease (AD) is a biological, clinical continuum that covers the preclinical, prodromal, and clinical phases of the disease. Early diagnosis and identification of the stages of Alzheimer's disease (AD) are crucial in clinical practice. Ideally, biomarkers should reflect the underlying process (pathological or otherwise), be reproducible and non-invasive, and allow repeated measurements over time. However, the currently known biomarkers for AD are not suitable for differentiating the stages and predicting the trajectory of disease progression. Some objective parameters extracted using electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) are widely applied to diagnose the stages of the AD continuum. While electroencephalography (EEG) has a high temporal resolution, fMRI has a high spatial resolution. Combined EEG and fMRI (EEG-fMRI) can overcome single-modality drawbacks and obtain multi-dimensional information simultaneously, and it can help explore the hemodynamic changes associated with the neural oscillations that occur during information processing. This technique has been used in the cognitive field in recent years. This review focuses on the different techniques available for studying the AD continuum, including EEG and fMRI in single-modality and multi-modality settings, and the possible future directions of AD diagnosis using EEG-fMRI.
Collapse
Affiliation(s)
- Jing Li
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210008, China
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, Jiangsu, 210008, China
- Medical Imaging Center, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Xin Li
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210008, China
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, Jiangsu, 210008, China
- Medical Imaging Center, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Futao Chen
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210008, China
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, Jiangsu, 210008, China
- Medical Imaging Center, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Weiping Li
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210008, China
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, Jiangsu, 210008, China
- Medical Imaging Center, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Jiu Chen
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210008, China
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, Jiangsu, 210008, China
- Medical Imaging Center, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Bing Zhang
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210008, China
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, Jiangsu, 210008, China
- Medical Imaging Center, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210008, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing, Jiangsu, 210008, China
- Institute of Brain Science, Nanjing University, Nanjing, Jiangsu, 210008, China
| |
Collapse
|
8
|
Diez I, Ortiz-Terán L, Ng TSC, Albers MW, Marshall G, Orwig W, Kim CM, Bueichekú E, Montal V, Olofsson J, Vannini P, El Fahkri G, Sperling R, Johnson K, Jacobs HIL, Sepulcre J. Tau propagation in the brain olfactory circuits is associated with smell perception changes in aging. Nat Commun 2024; 15:4809. [PMID: 38844444 PMCID: PMC11156945 DOI: 10.1038/s41467-024-48462-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 04/30/2024] [Indexed: 06/09/2024] Open
Abstract
The direct access of olfactory afferents to memory-related cortical systems has inspired theories about the role of the olfactory pathways in the development of cortical neurodegeneration in Alzheimer's disease (AD). In this study, we used baseline olfactory identification measures with longitudinal flortaucipir and PiB PET, diffusion MRI of 89 cognitively normal older adults (73.82 ± 8.44 years; 56% females), and a transcriptomic data atlas to investigate the spatiotemporal spreading and genetic vulnerabilities of AD-related pathology aggregates in the olfactory system. We find that odor identification deficits are predominantly associated with tau accumulation in key areas of the olfactory pathway, with a particularly strong predictive power for longitudinal tau progression. We observe that tau spreads from the medial temporal lobe structures toward the olfactory system, not the reverse. Moreover, we observed a genetic background of odor perception-related genes that might confer vulnerability to tau accumulation along the olfactory system.
Collapse
Affiliation(s)
- Ibai Diez
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Laura Ortiz-Terán
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- UMASS Memorial Medical Center, UMASS Chan Medical School, Worcester, MA, USA
| | - Thomas S C Ng
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Mark W Albers
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Gad Marshall
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - William Orwig
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Harvard University, Department of Psychology, Cambridge, MA, USA
| | - Chan-Mi Kim
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Elisenda Bueichekú
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Victor Montal
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Barcelona Supercomputing Center, Barcelona, Spain
| | - Jonas Olofsson
- Stockholm University, Department of Psychology, Stockholm, Sweden
| | - Patrizia Vannini
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Georges El Fahkri
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Reisa Sperling
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Keith Johnson
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Heidi I L Jacobs
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jorge Sepulcre
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.
| |
Collapse
|
9
|
Ma Y, Shi W, Dong Y, Sun Y, Jin Q. Spatial Multi-Omics in Alzheimer's Disease: A Multi-Dimensional Approach to Understanding Pathology and Progression. Curr Issues Mol Biol 2024; 46:4968-4990. [PMID: 38785566 PMCID: PMC11119029 DOI: 10.3390/cimb46050298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024] Open
Abstract
Alzheimer's Disease (AD) presents a complex neuropathological landscape characterized by hallmark amyloid plaques and neurofibrillary tangles, leading to progressive cognitive decline. Despite extensive research, the molecular intricacies contributing to AD pathogenesis are inadequately understood. While single-cell omics technology holds great promise for application in AD, particularly in deciphering the understanding of different cell types and analyzing rare cell types and transcriptomic expression changes, it is unable to provide spatial distribution information, which is crucial for understanding the pathological processes of AD. In contrast, spatial multi-omics research emerges as a promising and comprehensive approach to analyzing tissue cells, potentially better suited for addressing these issues in AD. This article focuses on the latest advancements in spatial multi-omics technology and compares various techniques. Additionally, we provide an overview of current spatial omics-based research results in AD. These technologies play a crucial role in facilitating new discoveries and advancing translational AD research in the future. Despite challenges such as balancing resolution, increasing throughput, and data analysis, the application of spatial multi-omics holds immense potential in revolutionizing our understanding of human disease processes and identifying new biomarkers and therapeutic targets, thereby potentially contributing to the advancement of AD research.
Collapse
Affiliation(s)
| | | | | | | | - Qiguan Jin
- College of Physical Education, Yangzhou University, Yangzhou 225127, China; (Y.M.); (W.S.); (Y.D.); (Y.S.)
| |
Collapse
|
10
|
Yu P, Chen W, Jiang L, Jia Y, Xu X, Shen W, Jin N, Du H. Olfactory dysfunction and the role of stem cells in the regeneration of olfactory neurons. Heliyon 2024; 10:e29948. [PMID: 38694081 PMCID: PMC11058886 DOI: 10.1016/j.heliyon.2024.e29948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 04/08/2024] [Accepted: 04/17/2024] [Indexed: 05/03/2024] Open
Abstract
The prevalence of COVID-19 has drawn increasing attention to olfactory dysfunction among researchers. Olfactory dysfunction manifests in various clinical types, influenced by numerous pathogenic factors. Despite this diversity, the underlying pathogenesis remains largely elusive, contributing to a lack of standardized treatment approaches. However, the potential regeneration of olfactory neurons within the nasal cavity presents a promising avenue for addressing olfactory dysfunction effectively. Our review aims to delve into the current research landscape and treatment modalities concerning olfactory dysfunction, emphasizing etiology, pathogenesis, clinical interventions, and the role of stem cells in regenerating olfactory nerves. Through this comprehensive examination, we aim to provide valuable insights into understanding the onset, progression, and treatment of olfactory dysfunction diseases.
Collapse
Affiliation(s)
- Pengju Yu
- Department of Otolaryngology, Traditional Chinese Medicine Hospital of Kunshan, Jiangsu Province, China
| | - Weiguan Chen
- Operating Room, Traditional Chinese Medicine Hospital of Kunshan, Jiangsu Province, China
| | - Ling Jiang
- Operating Room, Traditional Chinese Medicine Hospital of Kunshan, Jiangsu Province, China
| | - Yufeng Jia
- Operating Room, Traditional Chinese Medicine Hospital of Kunshan, Jiangsu Province, China
| | - Xiaoyan Xu
- Operating Room, Traditional Chinese Medicine Hospital of Kunshan, Jiangsu Province, China
| | - Weiye Shen
- Operating Room, Traditional Chinese Medicine Hospital of Kunshan, Jiangsu Province, China
| | - Ni Jin
- Operating Room, Traditional Chinese Medicine Hospital of Kunshan, Jiangsu Province, China
| | - Hongjie Du
- Department of Otolaryngology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, China
| |
Collapse
|
11
|
Kawamura LRDSM, Sarmet M, de Campos PS, Takehara S, Kumei Y, Zeredo JLL. Apnea behavior in early- and late-stage mouse models of Parkinson's disease: Cineradiographic analysis of spontaneous breathing, acute stress, and swallowing. Respir Physiol Neurobiol 2024; 323:104239. [PMID: 38395210 DOI: 10.1016/j.resp.2024.104239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 02/25/2024]
Abstract
This study aimed to evaluate the timing and frequency of spontaneous apneas during breathing and swallowing by using cineradiography on mouse models of early/initial or late/advanced Parkinson's disease (PD). C57BL/6 J mice received either 6-OHDA or vehicle injections into their right striatum, followed by respiratory movement recordings during spontaneous breathing and swallowing, and a stress challenge, two weeks later. Experimental group animals showed a significantly lower respiratory rate (158.66 ± 32.88 breaths/minute in late PD, 173.16 ± 25.19 in early PD versus 185.27 ± 25.36 in controls; p<0.001) and a significantly higher frequency of apneas (median 1 apnea/minute in both groups versus 0 in controls; p<0.001). Other changes included reduced food intake and the absence of swallow apneas in experimental mice. 6-OHDA-induced nigrostriatal degeneration in mice disrupted respiratory control, swallowing, stress responsiveness, and feeding behaviors, potentially hindering airway protection and elevating the risk of aspiration.
Collapse
Affiliation(s)
| | - Max Sarmet
- Graduate Program in Health Sciences and Technologies, University of Brasilia, Brasilia, Brazil
| | | | - Sachiko Takehara
- Division of Preventive Dentistry, Department of Oral Health Science, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Yasuhiro Kumei
- Department of Pathological Biochemistry, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Jorge Luis Lopes Zeredo
- Graduate Program in Health Sciences, University of Brasilia, Brasilia, Brazil; Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
12
|
Xie B, Yang S, Hao Y, Sun Y, Li L, Guo C, Yang Y. Impaired olfactory identification in dementia-free individuals is associated with the functional abnormality of the precuneus. Neurobiol Dis 2024; 194:106483. [PMID: 38527709 DOI: 10.1016/j.nbd.2024.106483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 03/27/2024] Open
Abstract
OBJECTIVE Olfactory dysfunction indicates a higher risk of developing dementia. However, the potential structural and functional changes are still largely unknown. METHODS A total of 236 participants were enrolled, including 45 Alzheimer's disease (AD) individuals and 191dementia-free individuals. Detailed study methods, comprising neuropsychological assessment and olfactory identification test (University of Pennsylvania smell identification test, UPSIT), as well as structural and functional magnetic resonance imaging (MRI) were applied in this research. The dementia-free individuals were divided into two sub-groups based on olfactory score: dementia-free with olfactory dysfunction (DF-OD) sub-group and dementia-free without olfactory dysfunction (DF-NOD) sub-group. The results were analyzed for subsequent intergroup comparisons and correlations. The cognitive assessment was conducted again three years later. RESULTS (i) At dementia-free stage, there was a positive correlation between olfactory score and cognitive function. (ii) In dementia-free group, the volume of crucial brain structures involved in olfactory recognition and processing (such as amygdala, entorhinal cortex and basal forebrain volumes) are positively associated with olfactory score. (iii) Compared to the DF-NOD group, the DF-OD group showed a significant reduction in olfactory network (ON) function. (iv) Compared to DF-NOD group, there were significant functional connectivity (FC) decline between PCun_L(R)_4_1 in the precuneus of posterior default mode network (pDMN) and the salience network (SN) in DF-OD group, and the FC values decreased with falling olfactory scores. Moreover, in DF-OD group, the noteworthy reduction in FC were observed between PCun_L(R)_4_1 and amygdala, which was a crucial component of ON. (v) The AD conversion rate of DF-OD was 29.41%, while the DF-NOD group was 12.50%. The structural and functional changes in the precuneus were also observed in AD and were more severe. CONCLUSIONS In addition to the olfactory circuit, the precuneus is a critical structure in the odor identification process, whose abnormal function underlies the olfactory identification impairment of dementia-free individuals.
Collapse
Affiliation(s)
- Bo Xie
- Department of Neurology, The First Hospital of Jilin University, Changchun 130021, China
| | - Simin Yang
- Department of Radiology, The First Hospital of Jilin University, Changchun 130021, China
| | - Yitong Hao
- Department of Neurology, The First Hospital of Jilin University, Changchun 130021, China
| | - Yining Sun
- Department of Neurology, The First Hospital of Jilin University, Changchun 130021, China
| | - Ludi Li
- Department of Neurology, The First Hospital of Jilin University, Changchun 130021, China
| | - Chunjie Guo
- Department of Radiology, The First Hospital of Jilin University, Changchun 130021, China
| | - Yu Yang
- Department of Neurology, The First Hospital of Jilin University, Changchun 130021, China.
| |
Collapse
|
13
|
Wang J, Li H, Wang C, Li D, Zhang Y, Shen M, Xu X, Wu T. Effect of Dl-3-n-Butylphthalide on olfaction in rotenone-induced Parkinson's rats. Front Neurol 2024; 15:1367973. [PMID: 38685946 PMCID: PMC11057415 DOI: 10.3389/fneur.2024.1367973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/18/2024] [Indexed: 05/02/2024] Open
Abstract
Background Parkinson's disease (PD) is the second most common neurodegenerative disease after Alzheimer's disease. Olfactory dysfunction (OD) is an important nonmotor feature of PD. Dl-3-n-Butylphthalide (NBP) is a synthetic compound isolated from Apium graveolens seeds. The present study was conducted to investigate the effect of NBP on olfaction in rotenone-induced Parkinson's rats to explore the mechanism and pathway of OD in PD. Methods The PD model was established using rotenone-induced SD rats, divided into blank control, model, and treatment groups. A sham group was also established, with 10 rats in each group. The treatment group was given NBP (1 mg/kg, 10 mg/kg, and 100 mg/kg, dissolved in soybean oil) intragastrically for 28 days. Meanwhile, the control group rats were given intra-gastrically soybean oil. After behavioral testing, all rats were executed, and brain tissue was obtained. Proteomics and Proteomic quantification techniques (prm) quantification were used to detect proteomic changes in rat brain tissues. Results Compared with the control group, the model group showed significant differences in behavioral tests, and this difference was reduced after treatment. Proteomics results showed that after treatment with high-dose NBP, there were 42 differentially expressed proteins compared with the model group. Additionally, the olfactory marker (P08523) showed a significant upregulation difference. We then selected 22 target proteins for PRM quantification and quantified 17 of them. Among them, the olfactory marker protein was at least twofold upregulated in the RTH group compared to the model group.
Collapse
Affiliation(s)
- Jiawei Wang
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - He Li
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
- Third Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Canran Wang
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Dayong Li
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yong Zhang
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Meichan Shen
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
- Geriatrics Department, Yuncheng County Traditional Chinese Medicine Hospital, Heze, China
| | - Xiangdong Xu
- Third Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Tong Wu
- Third Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
14
|
Iijima Y, Miki R, Takasugi N, Fujimura M, Uehara T. Characterization of pathological changes in the olfactory system of mice exposed to methylmercury. Arch Toxicol 2024; 98:1163-1175. [PMID: 38367039 PMCID: PMC10944439 DOI: 10.1007/s00204-024-03682-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/15/2024] [Indexed: 02/19/2024]
Abstract
Methylmercury (MeHg) is a well-known environmental neurotoxicant that causes severe brain disorders such as Minamata disease. Although some patients with Minamata disease develop olfactory dysfunction, the underlying pathomechanism is largely unknown. We examined the effects of MeHg on the olfactory system using a model of MeHg poisoning in which mice were administered 30 ppm MeHg in drinking water for 8 weeks. Mice exposed to MeHg displayed significant mercury accumulation in the olfactory pathway, including the nasal mucosa, olfactory bulb, and olfactory cortex. The olfactory epithelium was partially atrophied, and olfactory sensory neurons were diminished. The olfactory bulb exhibited an increase in apoptotic cells, hypertrophic astrocytes, and amoeboid microglia, mainly in the granular cell layer. Neuronal cell death was observed in the olfactory cortex, particularly in the ventral tenia tecta. Neuronal cell death was also remarkable in higher-order areas such as the orbitofrontal cortex. Correlation analysis showed that neuronal loss in the olfactory cortex was strongly correlated with the plasma mercury concentration. Our results indicate that MeHg is an olfactory toxicant that damages the central regions involved in odor perception. The model described herein is useful for analyzing the mechanisms and treatments of olfactory dysfunction in MeHg-intoxicated patients.
Collapse
Affiliation(s)
- Yuta Iijima
- Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, 700‑8530, Japan
| | - Ryohei Miki
- Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, 700‑8530, Japan
| | - Nobumasa Takasugi
- Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, 700‑8530, Japan
| | - Masatake Fujimura
- Department of Basic Medical Science, National Institute for Minamata Disease, Kumamoto, 867‑0008, Japan
| | - Takashi Uehara
- Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, 700‑8530, Japan.
| |
Collapse
|
15
|
Zhu K, Jin Y, Zhao Y, He A, Wang R, Cao C. Proteomic scrutiny of nasal microbiomes: implications for the clinic. Expert Rev Proteomics 2024; 21:169-179. [PMID: 38420723 DOI: 10.1080/14789450.2024.2323983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 02/21/2024] [Indexed: 03/02/2024]
Abstract
INTRODUCTION The nasal cavity is the initial site of the human respiratory tract and is one of the habitats where microorganisms colonize. The findings from a growing number of studies have shown that the nasal microbiome is an important factor for human disease and health. 16S rRNA sequencing and metagenomic next-generation sequencing (mNGS) are the most commonly used means of microbiome evaluation. Among them, 16S rRNA sequencing is the primary method used in previous studies of nasal microbiomes. However, neither 16S rRNA sequencing nor mNGS can be used to analyze the genes specifically expressed by nasal microorganisms and their functions. This problem can be addressed by proteomic analysis of the nasal microbiome. AREAS COVERED In this review, we summarize current advances in research on the nasal microbiome, introduce the methods for proteomic evaluation of the nasal microbiome, and focus on the important roles of proteomic evaluation of the nasal microbiome in the diagnosis and treatment of related diseases. EXPERT OPINION The detection method for microbiome-expressed proteins is known as metaproteomics. Metaproteomic analysis can help us dig deeper into the nasal microbiomes and provide new targets and ideas for clinical diagnosis and treatment of many nasal dysbiosis-related diseases.
Collapse
Affiliation(s)
- Ke Zhu
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Ningbo, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Yan Jin
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Ningbo, The First Affiliated Hospital of Ningbo University, Ningbo, China
- Department of Respiratory and Critical Care Medicine, Municipal Hospital Affiliated to Taizhou University, Taizhou, China
| | - Yun Zhao
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Ningbo, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Andong He
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Ningbo, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Ran Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Chao Cao
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Ningbo, The First Affiliated Hospital of Ningbo University, Ningbo, China
| |
Collapse
|
16
|
Xiao T, Roland A, Chen Y, Guffey S, Kash T, Kimbrough A. A role for circuitry of the cortical amygdala in excessive alcohol drinking, withdrawal, and alcohol use disorder. Alcohol 2024; 121:151-159. [PMID: 38447789 PMCID: PMC11371945 DOI: 10.1016/j.alcohol.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/30/2024] [Accepted: 02/26/2024] [Indexed: 03/08/2024]
Abstract
Alcohol use disorder (AUD) poses a significant public health challenge. Individuals with AUD engage in chronic and excessive alcohol consumption, leading to cycles of intoxication, withdrawal, and craving behaviors. This review explores the involvement of the cortical amygdala (CoA), a cortical brain region that has primarily been examined in relation to olfactory behavior, in the expression of alcohol dependence and excessive alcohol drinking. While extensive research has identified the involvement of numerous brain regions in AUD, the CoA has emerged as a relatively understudied yet promising candidate for future study. The CoA plays a vital role in rewarding and aversive signaling and olfactory-related behaviors and has recently been shown to be involved in alcohol-dependent drinking in mice. The CoA projects directly to brain regions that are critically important for AUD, such as the central amygdala, bed nucleus of the stria terminalis, and basolateral amygdala. These projections may convey key modulatory signaling that drives excessive alcohol drinking in alcohol-dependent subjects. This review summarizes existing knowledge on the structure and connectivity of the CoA and its potential involvement in AUD. Understanding the contribution of this region to excessive drinking behavior could offer novel insights into the etiology of AUD and potential therapeutic targets.
Collapse
Affiliation(s)
- Tiange Xiao
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
| | - Alison Roland
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, NC, United States; Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| | - Yueyi Chen
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
| | - Skylar Guffey
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
| | - Thomas Kash
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, NC, United States; Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| | - Adam Kimbrough
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, United States; Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States; Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, IN, United States.
| |
Collapse
|
17
|
Liu D, Lu J, Wei L, Yao M, Yang H, Lv P, Wang H, Zhu Y, Zhu Z, Zhang X, Chen J, Yang QX, Zhang B. Olfactory deficit: a potential functional marker across the Alzheimer's disease continuum. Front Neurosci 2024; 18:1309482. [PMID: 38435057 PMCID: PMC10907997 DOI: 10.3389/fnins.2024.1309482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 02/02/2024] [Indexed: 03/05/2024] Open
Abstract
Alzheimer's disease (AD) is a prevalent form of dementia that affects an estimated 32 million individuals globally. Identifying early indicators is vital for screening at-risk populations and implementing timely interventions. At present, there is an urgent need for early and sensitive biomarkers to screen individuals at risk of AD. Among all sensory biomarkers, olfaction is currently one of the most promising indicators for AD. Olfactory dysfunction signifies a decline in the ability to detect, identify, or remember odors. Within the spectrum of AD, impairment in olfactory identification precedes detectable cognitive impairments, including mild cognitive impairment (MCI) and even the stage of subjective cognitive decline (SCD), by several years. Olfactory impairment is closely linked to the clinical symptoms and neuropathological biomarkers of AD, accompanied by significant structural and functional abnormalities in the brain. Olfactory behavior examination can subjectively evaluate the abilities of olfactory identification, threshold, and discrimination. Olfactory functional magnetic resonance imaging (fMRI) can provide a relatively objective assessment of olfactory capabilities, with the potential to become a promising tool for exploring the neural mechanisms of olfactory damage in AD. Here, we provide a timely review of recent literature on the characteristics, neuropathology, and examination of olfactory dysfunction in the AD continuum. We focus on the early changes in olfactory indicators detected by behavioral and fMRI assessments and discuss the potential of these techniques in MCI and preclinical AD. Despite the challenges and limitations of existing research, olfactory dysfunction has demonstrated its value in assessing neurodegenerative diseases and may serve as an early indicator of AD in the future.
Collapse
Affiliation(s)
- Dongming Liu
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China
- Medical Imaging Center, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jiaming Lu
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China
- Medical Imaging Center, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Liangpeng Wei
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China
- Medical Imaging Center, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Mei Yao
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China
- Medical Imaging Center, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Huiquan Yang
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China
- Medical Imaging Center, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Pin Lv
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China
- Medical Imaging Center, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Haoyao Wang
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China
- Medical Imaging Center, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yajing Zhu
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Zhengyang Zhu
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xin Zhang
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China
- Medical Imaging Center, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jiu Chen
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China
- Medical Imaging Center, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Qing X. Yang
- Department of Radiology, Center for NMR Research, Penn State University College of Medicine, Hershey, PA, United States
| | - Bing Zhang
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China
- Medical Imaging Center, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing, China
- Institute of Brain Science, Nanjing University, Nanjing, China
- Jiangsu Provincial Medical Key Discipline (Laboratory), Nanjing, China
| |
Collapse
|
18
|
Watanabe H, Dijkstra JM, Nagatsu T. Parkinson's Disease: Cells Succumbing to Lifelong Dopamine-Related Oxidative Stress and Other Bioenergetic Challenges. Int J Mol Sci 2024; 25:2009. [PMID: 38396687 PMCID: PMC10888576 DOI: 10.3390/ijms25042009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
The core pathological event in Parkinson's disease (PD) is the specific dying of dopamine (DA) neurons of the substantia nigra pars compacta (SNc). The reasons why SNc DA neurons are especially vulnerable and why idiopathic PD has only been found in humans are still puzzling. The two main underlying factors of SNc DA neuron vulnerability appear related to high DA production, namely (i) the toxic effects of cytoplasmic DA metabolism and (ii) continuous cytosolic Ca2+ oscillations in the absence of the Ca2+-buffer protein calbindin. Both factors cause oxidative stress by producing highly reactive quinones and increasing intra-mitochondrial Ca2+ concentrations, respectively. High DA expression in human SNc DA neuron cell bodies is suggested by the abundant presence of the DA-derived pigment neuromelanin, which is not found in such abundance in other species and has been associated with toxicity at higher levels. The oxidative stress created by their DA production system, despite the fact that the SN does not use unusually high amounts of energy, explains why SNc DA neurons are sensitive to various genetic and environmental factors that create mitochondrial damage and thereby promote PD. Aging increases multiple risk factors for PD, and, to a large extent, PD is accelerated aging. To prevent PD neurodegeneration, possible approaches that are discussed here are (1) reducing cytoplasmic DA accumulation, (2) blocking cytoplasmic Ca2+ oscillations, and (3) providing bioenergetic support.
Collapse
Affiliation(s)
- Hirohisa Watanabe
- Department of Neurology, School of Medicine, Fujita Health University, Toyoake 470-1192, Aichi, Japan
| | - Johannes M. Dijkstra
- Center for Medical Science, Fujita Health University, Toyoake 470-1192, Aichi, Japan
| | - Toshiharu Nagatsu
- Center for Research Promotion and Support, Fujita Health University, Toyoake 470-1192, Aichi, Japan;
| |
Collapse
|
19
|
Villar-Conde S, Astillero-Lopez V, Gonzalez-Rodriguez M, Saiz-Sanchez D, Martinez-Marcos A, Ubeda-Banon I, Flores-Cuadrado A. Synaptic Involvement of the Human Amygdala in Parkinson's Disease. Mol Cell Proteomics 2023; 22:100673. [PMID: 37947401 PMCID: PMC10700869 DOI: 10.1016/j.mcpro.2023.100673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 10/18/2023] [Accepted: 10/24/2023] [Indexed: 11/12/2023] Open
Abstract
α-Synuclein, a protein mostly present in presynaptic terminals, accumulates neuropathologically in Parkinson's disease in a 6-stage sequence and propagates in the nervous system in a prion-like manner through neurons and glia. In stage 3, the substantia nigra are affected, provoking motor symptoms and the amygdaloid complex, leading to different nonmotor symptoms; from here, synucleinopathy spreads to the temporal cortex and beyond. The expected increase in Parkinson's disease incidence accelerates the need for detection biomarkers; however, the heterogeneity of this disease, including pathological aggregates and pathophysiological pathways, poses a challenge in the search for new therapeutic targets and biomarkers. Proteomic analyses are lacking, and the literature regarding synucleinopathy, neural and glial involvement, and volume of the human amygdaloid complex is controversial. Therefore, the present study combines both proteomic and stereological probes. Data-independent acquisition-parallel accumulation of serial fragmentation proteomic analysis revealed a remarkable proteomic impact, especially at the synaptic level in the human amygdaloid complex in Parkinson's disease. Among the 199 differentially expressed proteins, guanine nucleotide-binding protein G(i) subunit alpha-1 (GNAI1), elongation factor 1-alpha 1 (EEF1A1), myelin proteolipid protein (PLP1), neuroplastin (NPTN), 14-3-3 protein eta (YWHAH), gene associated with retinoic and interferon-induced mortality 19 protein (GRIM19), and orosomucoid-2 (ORM2) stand out as potential biomarkers in Parkinson's disease. Stereological analysis, however, did not reveal alterations regarding synucleinopathy, neural or glial populations, or volume changes. To our knowledge, this is the first proteomic study of the human amygdaloid complex in Parkinson's disease, and it identified possible biomarkers of the disease. Lewy pathology could not be sufficient to cause neurodegeneration or alteration of microglial and astroglial populations in the human amygdaloid complex in Parkinson's disease. Nevertheless, damage at the proteomic level is manifest, showing up significant synaptic involvement.
Collapse
Affiliation(s)
- Sandra Villar-Conde
- Grupo de Neuroplasticidad y Neurodegeneración, CRIB, Facultad de Medicina de Ciudad Real, Universidad de Castilla-La Mancha (UCLM), Spain; Grupo de Neuroplasticidad y Neurodegeneración, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), Spain
| | - Veronica Astillero-Lopez
- Grupo de Neuroplasticidad y Neurodegeneración, CRIB, Facultad de Medicina de Ciudad Real, Universidad de Castilla-La Mancha (UCLM), Spain; Grupo de Neuroplasticidad y Neurodegeneración, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), Spain
| | - Melania Gonzalez-Rodriguez
- Grupo de Neuroplasticidad y Neurodegeneración, CRIB, Facultad de Medicina de Ciudad Real, Universidad de Castilla-La Mancha (UCLM), Spain; Grupo de Neuroplasticidad y Neurodegeneración, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), Spain
| | - Daniel Saiz-Sanchez
- Grupo de Neuroplasticidad y Neurodegeneración, CRIB, Facultad de Medicina de Ciudad Real, Universidad de Castilla-La Mancha (UCLM), Spain; Grupo de Neuroplasticidad y Neurodegeneración, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), Spain
| | - Alino Martinez-Marcos
- Grupo de Neuroplasticidad y Neurodegeneración, CRIB, Facultad de Medicina de Ciudad Real, Universidad de Castilla-La Mancha (UCLM), Spain; Grupo de Neuroplasticidad y Neurodegeneración, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), Spain.
| | - Isabel Ubeda-Banon
- Grupo de Neuroplasticidad y Neurodegeneración, CRIB, Facultad de Medicina de Ciudad Real, Universidad de Castilla-La Mancha (UCLM), Spain; Grupo de Neuroplasticidad y Neurodegeneración, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), Spain.
| | - Alicia Flores-Cuadrado
- Grupo de Neuroplasticidad y Neurodegeneración, CRIB, Facultad de Medicina de Ciudad Real, Universidad de Castilla-La Mancha (UCLM), Spain; Grupo de Neuroplasticidad y Neurodegeneración, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), Spain
| |
Collapse
|
20
|
Woo KA, Kim H, Yoon EJ, Shin JH, Nam H, Jeon B, Kim YK, Lee J. Brain olfactory-related atrophy in isolated rapid eye movement sleep behavior disorder. Ann Clin Transl Neurol 2023; 10:2192-2207. [PMID: 37743764 PMCID: PMC10723229 DOI: 10.1002/acn3.51905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 08/10/2023] [Accepted: 09/09/2023] [Indexed: 09/26/2023] Open
Abstract
OBJECTIVE To investigate structural and functional connectivity changes in brain olfactory-related structures in a longitudinal prospective cohort of isolated REM sleep behavior disorder (iRBD) and their clinical correlations, longitudinal evolution, and predictive values for phenoconversion to overt synucleinopathies, especially Lewy body diseases. METHODS The cohort included polysomnography-confirmed iRBD patients and controls. Participants underwent baseline assessments including olfactory tests, neuropsychological evaluations, the Movement Disorders Society-Unified Parkinson's Disease Rating Scale, 3T brain MRI, and 18 F-FP-CIT PET scans. Voxel-based morphometry (VBM) was performed to identify regions of atrophy in iRBD, and volumes of relevant olfactory-related regions of interest (ROI) were estimated. Subgroups of patients underwent repeated volumetric MRI and resting-state functional MRI (fMRI) scans after four years. RESULTS A total of 51 iRBD patients were included, with 20 of them converting to synucleinopathy (mean time to conversion 3.08 years). Baseline VBM analysis revealed atrophy in the right olfactory cortex and gyrus rectus in iRBD. Subsequent ROI comparisons with controls showed atrophy in the amygdala. These olfactory-related atrophies tended to be associated with worse depression, anxiety, and urinary problems in iRBD. Amygdala 18 F-FP-CIT uptake tended to be reduced in iRBD patients with hyposmia (nonsignificant after multiple comparison correction) and correlated with urinary problems. Resting-state fMRI of 23 patients and 32 controls revealed multiple clusters with aberrant olfactory-related functional connectivity. Hypoconnectivity between the putamen and olfactory cortex was associated with mild parkinsonian signs in iRBD. Longitudinal analysis of volumetric volumetric MRI in 22 iRBD patients demonstrated four-year progression of olfactory-related atrophy. Cox regression analysis revealed that this atrophy significantly predicted phenoconversion. INTERPRETATION Progressive atrophy of central olfactory structures may be a potential indicator of Lewy body disease progression in iRBD.
Collapse
Affiliation(s)
- Kyung Ah Woo
- Department of NeurologySeoul Metropolitan Government–Seoul National University Boramae Medical Center, Seoul National University College of MedicineSeoulRepublic of Korea
| | - Heejung Kim
- Department of Nuclear MedicineSeoul Metropolitan Government–Seoul National University Boramae Medical Center, Seoul National University College of MedicineSeoulRepublic of Korea
- Institute of Radiation Medicine, Medical Research CenterSeoul National UniversitySeoulRepublic of Korea
| | - Eun Jin Yoon
- Department of Nuclear MedicineSeoul Metropolitan Government–Seoul National University Boramae Medical Center, Seoul National University College of MedicineSeoulRepublic of Korea
- Memory Network Medical Research CenterSeoul National UniversitySeoulRepublic of Korea
| | - Jung Hwan Shin
- Department of NeurologySeoul National University Hospital, Seoul National University College of MedicineSeoulRepublic of Korea
| | - Hyunwoo Nam
- Department of NeurologySeoul Metropolitan Government–Seoul National University Boramae Medical Center, Seoul National University College of MedicineSeoulRepublic of Korea
| | - Beomseok Jeon
- Department of NeurologySeoul National University Hospital, Seoul National University College of MedicineSeoulRepublic of Korea
| | - Yu Kyeong Kim
- Department of Nuclear MedicineSeoul Metropolitan Government–Seoul National University Boramae Medical Center, Seoul National University College of MedicineSeoulRepublic of Korea
| | - Jee‐Young Lee
- Department of NeurologySeoul Metropolitan Government–Seoul National University Boramae Medical Center, Seoul National University College of MedicineSeoulRepublic of Korea
| |
Collapse
|
21
|
Kim S, Jeon J, Ganbat D, Kim T, Shin K, Hong S, Hong J. Alteration of Neural Network and Hippocampal Slice Activation through Exosomes Derived from 5XFAD Nasal Lavage Fluid. Int J Mol Sci 2023; 24:14064. [PMID: 37762366 PMCID: PMC10531257 DOI: 10.3390/ijms241814064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Exosomes, key mediators of intercellular transmission of pathogenic proteins, such as amyloid-beta and tau, significantly influence the progression and exacerbation of Alzheimer's disease (AD) pathology. Present in a variety of biological fluids, including cerebrospinal fluid, blood, saliva, and nasal lavage fluid (NLF), exosomes underscore their potential as integral mediators of AD pathology. By serving as vehicles for disease-specific molecules, exosomes could unveil valuable insights into disease identification and progression. This study emphasizes the imperative to investigate the impacts of exosomes on neural networks to enhance our comprehension of intracerebral neuronal communication and its implications for neurological disorders like AD. After harvesting exosomes derived from NLF of 5XFAD mice, we utilized a high-density multielectrode array (HD-MEA) system, the novel technology enabling concurrent recordings from thousands of neurons in primary cortical neuron cultures and organotypic hippocampal slices. The ensuing results revealed a surge in neuronal firing rates and disoriented neural connectivity, reflecting the effects provoked by pathological amyloid-beta oligomer treatment. The local field potentials in the exosome-treated hippocampal brain slices also exhibited aberrant rhythmicity, along with an elevated level of current source density. While this research is an initial exploration, it highlights the potential of exosomes in modulating neural networks under AD conditions and endorses the HD-MEA as an efficacious tool for exosome studies.
Collapse
Affiliation(s)
- Sangseong Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Jaekyong Jeon
- Department of Pharmacy, Hanyang University, Ansan 15588, Republic of Korea; (J.J.); (D.G.)
| | - Dulguun Ganbat
- Department of Pharmacy, Hanyang University, Ansan 15588, Republic of Korea; (J.J.); (D.G.)
| | - Taewoon Kim
- Department of Bionanotechnology, Graduate School, Hanyang University, Seoul 04763, Republic of Korea; (T.K.); (K.S.)
| | - Kyusoon Shin
- Department of Bionanotechnology, Graduate School, Hanyang University, Seoul 04763, Republic of Korea; (T.K.); (K.S.)
| | - Sungho Hong
- Computational Neuroscience Unit, Okinawa Institute of Science and Technology, Okinawa 904-0495, Japan;
| | - Jongwook Hong
- Department of Bionanotechnology, Graduate School, Hanyang University, Seoul 04763, Republic of Korea; (T.K.); (K.S.)
- Department of Medical and Digital Engineering, Graduate School, Hanyang University, Seoul 04763, Republic of Korea
- Department of Bionanoengineering, Hanyang University, Ansan 15588, Republic of Korea
| |
Collapse
|
22
|
Gonzalez‐Rodriguez M, Villar‐Conde S, Astillero‐Lopez V, Villanueva‐Anguita P, Ubeda‐Banon I, Flores‐Cuadrado A, Martinez‐Marcos A, Saiz‐Sanchez D. Human amygdala involvement in Alzheimer's disease revealed by stereological and dia-PASEF analysis. Brain Pathol 2023; 33:e13180. [PMID: 37331354 PMCID: PMC10467039 DOI: 10.1111/bpa.13180] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 06/06/2023] [Indexed: 06/20/2023] Open
Abstract
Alzheimer's disease (AD) is characterized by the accumulation of pathological amyloid-β (Aβ) and Tau proteins. According to the prion-like hypothesis, both proteins can seed and disseminate through brain regions through neural connections and glial cells. The amygdaloid complex (AC) is involved early in the disease, and its widespread connections with other brain regions indicate that it is a hub for propagating pathology. To characterize changes in the AC as well as the involvement of neuronal and glial cells in AD, a combined stereological and proteomic analysis was performed in non-Alzheimer's disease and AD human samples. The synaptic alterations identified by proteomic data analysis could be related to the volume reduction observed in AD by the Cavalieri probe without neuronal loss. The pathological markers appeared in a gradient pattern with the medial region (cortical nucleus, Co) being more affected than lateral regions, suggesting the relevance of connections in the distribution of the pathology among different brain regions. Generalized astrogliosis was observed in every AC nucleus, likely related to deposits of pathological proteins. Astrocytes might mediate phagocytic microglial activation, whereas microglia might play a dual role since protective and toxic phenotypes have been described. These results highlight the potential participation of the amygdala in the disease spreading from/to olfactory areas, the temporal lobe and beyond. Proteomic data are available via ProteomeXchange with identifier PXD038322.
Collapse
Affiliation(s)
- Melania Gonzalez‐Rodriguez
- Neuroplasticity and Neurodegeneration Laboratory, CRIB, Ciudad Real Medical SchoolUniversity of Castilla‐La ManchaCiudad RealSpain
| | - Sandra Villar‐Conde
- Neuroplasticity and Neurodegeneration Laboratory, CRIB, Ciudad Real Medical SchoolUniversity of Castilla‐La ManchaCiudad RealSpain
| | - Veronica Astillero‐Lopez
- Neuroplasticity and Neurodegeneration Laboratory, CRIB, Ciudad Real Medical SchoolUniversity of Castilla‐La ManchaCiudad RealSpain
| | - Patricia Villanueva‐Anguita
- Neuroplasticity and Neurodegeneration Laboratory, CRIB, Ciudad Real Medical SchoolUniversity of Castilla‐La ManchaCiudad RealSpain
| | - Isabel Ubeda‐Banon
- Neuroplasticity and Neurodegeneration Laboratory, CRIB, Ciudad Real Medical SchoolUniversity of Castilla‐La ManchaCiudad RealSpain
| | - Alicia Flores‐Cuadrado
- Neuroplasticity and Neurodegeneration Laboratory, CRIB, Ciudad Real Medical SchoolUniversity of Castilla‐La ManchaCiudad RealSpain
| | - Alino Martinez‐Marcos
- Neuroplasticity and Neurodegeneration Laboratory, CRIB, Ciudad Real Medical SchoolUniversity of Castilla‐La ManchaCiudad RealSpain
| | - Daniel Saiz‐Sanchez
- Neuroplasticity and Neurodegeneration Laboratory, CRIB, Ciudad Real Medical SchoolUniversity of Castilla‐La ManchaCiudad RealSpain
| |
Collapse
|
23
|
Chen PP, Wei XY, Tao L, Xin X, Xiao ST, He N. Cerebral abnormalities in HIV-infected individuals with neurocognitive impairment revealed by fMRI. Sci Rep 2023; 13:10331. [PMID: 37365237 DOI: 10.1038/s41598-023-37493-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/22/2023] [Indexed: 06/28/2023] Open
Abstract
Although the combination antiretroviral treatment (cART) has considerably lowered the risk of HIV associated dementia (HAD), the incidence of neurocognitive impairments (NCI) has not decreased likely due to the insidious and slow progressive nature of HIV infection. Recent studies showed that the resting-state functional magnetic resonance imaging (rs-fMRI) is a prominent technique in helping the non-invasive analysis of neucognitive impairment. Our study is to explore the neuroimaging characteristics among people living with HIV (PLWH) with or without NCI in terms of cerebral regional and neural network by rs-fMRI, based on the hypothesis that HIV patients with and without NCI have independent brain imaging characteristics. 33 PLWH with NCI and 33 PLWH without NCI, recruited from the Cohort of HIV-infected associated Chronic Diseases and Health Outcomes, Shanghai, China (CHCDO) which was established in 2018, were categorized into the HIV-NCI and HIV-control groups, respectively, based on Mini-Mental State Examination (MMSE) results. The two groups were matched in terms of sex, education and age. Resting-state fMRI data were collected from all participants to analyze the fraction amplitude of low-frequency fluctuation (fALFF) and functional connectivity (FC) to assess regional and neural network alterations in the brain. Correlations between fALFF/FC values in specific brain regions and clinical characteristics were also examined. The results showed increased fALFF values in the bilateral calcarine gyrus, bilateral superior occipital gyrus, left middle occipital gyrus, and left cuneus in the HIV-NCI group compared to the HIV-control group. Additionally, increased FC values were observed between the right superior occipital gyrus and right olfactory cortex, bilateral gyrus rectus, and right orbital part of the middle frontal gyrus in the HIV-NCI group. Conversely, decreased FC values were found between the left hippocampus and bilateral medial prefrontal gyrus, as well as bilateral superior frontal gyrus. The study concluded that abnormal spontaneous activity in PLWH with NCI primarily occurred in the occipital cortex, while defects in brain networks were mostly associated with the prefrontal cortex. The observed changes in fALFF and FC in specific brain regions provide visual evidence to enhance our understanding of the central mechanisms underlying the development of cognitive impairment in HIV patients.
Collapse
Affiliation(s)
- Pan-Pan Chen
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, 2000323, China
- Pudong New Area Center for Disease Control and Prevention, Shanghai, 201203, China
- Pudong Institute of Preventive Medicine, Fudan University, Shanghai, China
| | - Xiang-Yu Wei
- Institute of Acupuncture & Anesthesia, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Department of Acupuncture & Moxibustion, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Larissa Tao
- Department of Acupuncture & Moxibustion, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- International Education College, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xin Xin
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, 2000323, China
- Pudong New Area Center for Disease Control and Prevention, Shanghai, 201203, China
- Pudong Institute of Preventive Medicine, Fudan University, Shanghai, China
| | - Shao-Tan Xiao
- Pudong New Area Center for Disease Control and Prevention, Shanghai, 201203, China
- Pudong Institute of Preventive Medicine, Fudan University, Shanghai, China
| | - Na He
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, 2000323, China.
| |
Collapse
|
24
|
Brunert D, Quintela RM, Rothermel M. The anterior olfactory nucleus revisited - an emerging role for neuropathological conditions? Prog Neurobiol 2023:102486. [PMID: 37343762 DOI: 10.1016/j.pneurobio.2023.102486] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 06/23/2023]
Abstract
Olfaction is an important sensory modality for many species and greatly influences animal and human behavior. Still, much about olfactory perception remains unknown. The anterior olfactory nucleus is one of the brain's central early olfactory processing areas. Located directly posterior to the olfactory bulb in the olfactory peduncle with extensive in- and output connections and unique cellular composition, it connects olfactory processing centers of the left and right hemispheres. Almost 20 years have passed since the last comprehensive review on the anterior olfactory nucleus has been published and significant advances regarding its anatomy, function, and pathophysiology have been made in the meantime. Here we briefly summarize previous knowledge on the anterior olfactory nucleus, give detailed insights into the progress that has been made in recent years, and map out its emerging importance in translational research of neurological diseases.
Collapse
Affiliation(s)
- Daniela Brunert
- Institute of Physiology, Medical Faculty, Otto-von-Guericke-University, 39120 Magdeburg, Germany
| | | | - Markus Rothermel
- Institute of Physiology, Medical Faculty, Otto-von-Guericke-University, 39120 Magdeburg, Germany.
| |
Collapse
|
25
|
Alotaibi MM, De Marco M, Venneri A. Sex differences in olfactory cortex neuronal loss in aging. Front Hum Neurosci 2023; 17:1130200. [PMID: 37323926 PMCID: PMC10265738 DOI: 10.3389/fnhum.2023.1130200] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/28/2023] [Indexed: 06/17/2023] Open
Abstract
Introduction Aging plays a major role in neurodegenerative disorders such as Alzheimer's disease, and impacts neuronal loss. Olfactory dysfunction can be an early alteration heralding the presence of a neurodegenerative disorder in aging. Studying alterations in olfaction-related brain regions might help detection of neurodegenerative diseases at an earlier stage as well as protect individuals from any danger caused by loss of sense of smell. Objective To assess the effect of age and sex on olfactory cortex volume in cognitively healthy participants. Method Neurologically healthy participants were divided in three groups based on their age: young (20-35 years; n = 53), middle-aged (36-65 years; n = 66) and older (66-85 years; n = 95). T1-weighted MRI scans acquired at 1.5 T were processed using SPM12. Smoothed images were used to extract the volume of olfactory cortex regions. Results ANCOVA analyses showed significant differences in volume between age groups in the olfactory cortex (p ≤ 0.0001). In women, neuronal loss started earlier than in men (in the 4th decade of life), while in men more substantial neuronal loss in olfactory cortex regions was detected only later in life. Conclusion Data indicate that age-related reduction in the volume of the olfactory cortex starts earlier in women than in men. The findings suggest that volume changes in olfaction-related brain regions in the aging population deserve further attention as potential proxies of increased risk of neurodegenerative diseases.
Collapse
Affiliation(s)
- Majed M. Alotaibi
- Sheffield Institute for Translational Neuroscience, The University of Sheffield, Sheffield, United Kingdom
- Department of Medical Genomics Research, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Matteo De Marco
- Department of Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Annalena Venneri
- Department of Life Sciences, Brunel University London, Uxbridge, United Kingdom
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| |
Collapse
|
26
|
Audronyte E, Pakulaite-Kazliene G, Sutnikiene V, Kaubrys G. Properties of odor identification testing in screening for early-stage Alzheimer's disease. Sci Rep 2023; 13:6075. [PMID: 37055436 PMCID: PMC10102162 DOI: 10.1038/s41598-023-32878-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 04/04/2023] [Indexed: 04/15/2023] Open
Abstract
Odor identification (OI) is impaired in the early stages of Alzheimer's disease (AD). However, data regarding the diagnostic properties of OI tests are lacking, preventing their clinical use. We aimed to explore OI and determine the accuracy of OI testing in screening for patients with early AD. In total, 30 participants with mild cognitive impairment due to AD (MCI-AD), 30 with mild dementia due to AD (MD-AD), and 30 cognitively normal elderly participants (CN) were enrolled, and cognitive examination (CDR, MMSE, ADAS-Cog 13, and verbal fluency tests) and assessment of OI (Burghart Sniffin' Sticks odor identification test) were performed. MCI-AD patients scored significantly worse in OI than CN participants, and MD-AD patients had worse OI scores than MCI-AD patients. The ratio of OI to ADAS-Cog 13 score had good diagnostic accuracy in differentiating AD patients from CN participants and in differentiating MCI-AD patients from CN participants. Substitution of ADAS-Cog 13 score with the ratio of OI to ADAS-Cog 13 score in a multinomial regression model improved the classification accuracy, especially of MCI-AD cases. Our results confirmed that OI is impaired during the prodromal stage of AD. OI testing has a good diagnostic quality and can improve the accuracy of screening for early-stage AD.
Collapse
Affiliation(s)
- Egle Audronyte
- Clinic of Neurology and Neurosurgery, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania.
| | - Gyte Pakulaite-Kazliene
- Clinic of Neurology and Neurosurgery, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Vaiva Sutnikiene
- Clinic of Neurology and Neurosurgery, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Gintaras Kaubrys
- Clinic of Neurology and Neurosurgery, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
27
|
Clinical features of olfactory dysfunction in elderly patients. Auris Nasus Larynx 2023; 50:241-246. [PMID: 35728996 DOI: 10.1016/j.anl.2022.06.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 05/09/2022] [Accepted: 06/06/2022] [Indexed: 11/20/2022]
Abstract
OBJECTIVE This study aimed to investigate the causes of olfactory dysfunction (OD) and to discuss the benefits of understanding the characteristics of OD in elderly patients. METHODS A total of 4300 patients with OD who were treated at our hospital between January 1996 and December 2020 were retrospectively analyzed. There were 1833 men and 2467 women, with ages ranging from 4 to 95 years. The patients were divided into two groups: younger (less than 65 years old, n = 2947) and elderly (65 years old or more, n = 1353) groups. Causative diseases were chronic rhinosinusitis (CRS), post-viral (PV), post-traumatic (PT), central nervous system dysfunction (CNS), peripheral nervous system dysfunction (PNS), congenital, psychogenic, and unknown. Visual analogue scale (VAS) and olfactory detection and recognition thresholds using the T&T olfaction test were used to evaluate olfaction. The mean detection and recognition thresholds, as well as the deviation difference (the difference between the mean detection and recognition thresholds) were compared by causative disease. RESULTS The causative diseases in elderly group were CRS (32%), PV (28%), PT (3%), CNS (2%), and PNS (4%). OD of unknown cause was significantly more in elderly (30%) than in younger patients (12%). Olfactory detection and recognition thresholds in elderly group were significantly worse than in younger group (p < 0.05). The olfactory detection and recognition thresholds were not any significant differences between patients with OD of unknown cause and those with CNS. CONCLUSION OD of unknown cause was predominantly observed in elderly group. The olfactory acuity of OD of unknown cause was similar to CNS OD. These findings suggest the importance of continuous follow-up due to the potential of neurodegenerative diseases in elderly OD patients.
Collapse
|
28
|
Quincozes-Santos A, Bobermin LD, Costa NLF, Thomaz NK, Almeida RRDS, Beys-da-Silva WO, Santi L, Rosa RL, Capra D, Coelho-Aguiar JM, DosSantos MF, Heringer M, Cirne-Lima EO, Guimarães JA, Schuler-Faccini L, Gonçalves CA, Moura-Neto V, Souza DO. The role of glial cells in Zika virus-induced neurodegeneration. Glia 2023. [PMID: 36866453 DOI: 10.1002/glia.24353] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
Zika virus (ZIKV) is a strongly neurotropic flavivirus whose infection has been associated with microcephaly in neonates. However, clinical and experimental evidence indicate that ZIKV also affects the adult nervous system. In this regard, in vitro and in vivo studies have shown the ability of ZIKV to infect glial cells. In the central nervous system (CNS), glial cells are represented by astrocytes, microglia, and oligodendrocytes. In contrast, the peripheral nervous system (PNS) constitutes a highly heterogeneous group of cells (Schwann cells, satellite glial cells, and enteric glial cells) spread through the body. These cells are critical in both physiological and pathological conditions; as such, ZIKV-induced glial dysfunctions can be associated with the development and progression of neurological complications, including those related to the adult and aging brain. This review will address the effects of ZIKV infection on CNS and PNS glial cells, focusing on cellular and molecular mechanisms, including changes in the inflammatory response, oxidative stress, mitochondrial dysfunction, Ca2+ and glutamate homeostasis, neural metabolism, and neuron-glia communication. Of note, preventive and therapeutic strategies that focus on glial cells may emerge to delay and/or prevent the development of ZIKV-induced neurodegeneration and its consequences.
Collapse
Affiliation(s)
- André Quincozes-Santos
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Larissa Daniele Bobermin
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Naithan Ludian Fernandes Costa
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Natalie K Thomaz
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Rômulo Rodrigo de Souza Almeida
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | - Lucélia Santi
- Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Rafael L Rosa
- Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Daniela Capra
- Instituto Estadual do Cérebro Paulo Niemeyer, Secretaria Estadual de Saúde do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Juliana M Coelho-Aguiar
- Laboratório de Morfogênese Celular, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Marcos Fabio DosSantos
- Laboratório de Propriedades Mecânicas e Biologia Celular, Faculdade de Odontologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Manoela Heringer
- Instituto Estadual do Cérebro Paulo Niemeyer, Secretaria Estadual de Saúde do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | | | | | - Carlos-Alberto Gonçalves
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Vivaldo Moura-Neto
- Instituto Estadual do Cérebro Paulo Niemeyer, Secretaria Estadual de Saúde do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.,Laboratório de Morfogênese Celular, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Diogo Onofre Souza
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
29
|
Cartas-Cejudo P, Lachén-Montes M, Ferrer I, Fernández-Irigoyen J, Santamaría E. Sex-divergent effects on the NAD+-dependent deacetylase sirtuin signaling across the olfactory-entorhinal-amygdaloid axis in Alzheimer's and Parkinson's diseases. Biol Sex Differ 2023; 14:5. [PMID: 36755296 PMCID: PMC9906849 DOI: 10.1186/s13293-023-00487-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 01/16/2023] [Indexed: 02/10/2023] Open
Abstract
BACKGROUND Smell impairment is one of the earliest features in Alzheimer's (AD) and Parkinson's diseases (PD). Due to sex differences exist in terms of smell and olfactory structures as well as in the prevalence and manifestation of both neurological syndromes, we have applied olfactory proteomics to favor the discovery of novel sex-biased physio-pathological mechanisms and potential therapeutic targets associated with olfactory dysfunction. METHODS SWATH-MS (sequential window acquisition of all theoretical fragment ion spectra mass spectrometry) and bioinformatic workflows were applied in 57 post-mortem olfactory tracts (OT) derived from controls with no known neurological history (n = 6F/11M), AD (n = 4F/13M) and PD (n = 7F/16M) subjects. Complementary molecular analyses by Western-blotting were performed in the olfactory bulb (OB), entorhinal cortex (EC) and amygdala areas. RESULTS 327 and 151 OT differentially expressed proteins (DEPs) were observed in AD women and AD men, respectively (35 DEPs in common). With respect to PD, 198 DEPs were identified in PD women, whereas 95 DEPs were detected in PD men (20 DEPs in common). This proteome dyshomeostasis induced a disruption in OT protein interaction networks and widespread sex-dependent pathway perturbations in a disease-specific manner, among them Sirtuin (SIRT) signaling. SIRT1, SIRT2, SIRT3 and SIRT5 protein levels unveiled a tangled expression profile across the olfactory-entorhinal-amygdaloid axis, evidencing disease-, sex- and brain structure-dependent changes in olfactory protein acetylation. CONCLUSIONS Alteration in the OT proteostasis was more severe in AD than in PD. Moreover, protein expression changes were more abundant in women than men independent of the neurological syndrome. Mechanistically, the tangled SIRT profile observed across the olfactory pathway-associated brain regions in AD and PD indicates differential NAD (+)-dependent deacetylase mechanisms between women and men. All these data shed new light on differential olfactory mechanisms across AD and PD, pointing out that the evaluation of the feasibility of emerging sirtuin-based therapies against neurodegenerative diseases should be considered with caution, including further sex dimension analyses in vivo and in clinical studies.
Collapse
Affiliation(s)
- Paz Cartas-Cejudo
- grid.410476.00000 0001 2174 6440Clinical Neuroproteomics Unit, Proteomics Platform, Navarrabiomed, Hospitalario Universitario de Navarra (HUN), IdiSNA, Navarra Institute for Health Research, Universidad Pública de Navarra (UPNA), Irunlarrea 3, 31008 Pamplona, Spain
| | - Mercedes Lachén-Montes
- grid.410476.00000 0001 2174 6440Clinical Neuroproteomics Unit, Proteomics Platform, Navarrabiomed, Hospitalario Universitario de Navarra (HUN), IdiSNA, Navarra Institute for Health Research, Universidad Pública de Navarra (UPNA), Irunlarrea 3, 31008 Pamplona, Spain
| | - Isidro Ferrer
- grid.5841.80000 0004 1937 0247Department of Pathology and Experimental Therapeutics, CIBERNED (Network Centre of Biomedical Research of Neurodegenerative Diseases), Bellvitge University Hospital/Bellvitge Biomedical Research Institute (IDIBELL), Institute of Health Carlos III, University of Barcelona, Hospitalet de Llobregat, Barcelona, Spain
| | - Joaquín Fernández-Irigoyen
- grid.410476.00000 0001 2174 6440Clinical Neuroproteomics Unit, Proteomics Platform, Navarrabiomed, Hospitalario Universitario de Navarra (HUN), IdiSNA, Navarra Institute for Health Research, Universidad Pública de Navarra (UPNA), Irunlarrea 3, 31008 Pamplona, Spain
| | - Enrique Santamaría
- Clinical Neuroproteomics Unit, Proteomics Platform, Navarrabiomed, Hospitalario Universitario de Navarra (HUN), IdiSNA, Navarra Institute for Health Research, Universidad Pública de Navarra (UPNA), Irunlarrea 3, 31008, Pamplona, Spain.
| |
Collapse
|
30
|
Dong Y, Li Y, Liu K, Han X, Liu R, Ren Y, Cong L, Zhang Q, Hou T, Song L, Tang S, Shi L, Luo Y, Kalpouzos G, Laukka EJ, Winblad B, Wang Y, Du Y, Qiu C. Anosmia, mild cognitive impairment, and biomarkers of brain aging in older adults. Alzheimers Dement 2023; 19:589-601. [PMID: 36341691 DOI: 10.1002/alz.12777] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 06/14/2022] [Accepted: 07/21/2022] [Indexed: 11/10/2022]
Abstract
Olfactory impairment is a potential marker for prodromal dementia, but the underlying mechanisms are poorly understood. This population-based study included 4214 dementia-free participants (age ≥65 years). Olfaction was assessed using the 16-item Sniffin' Sticks identification test. In the subsamples, we measured plasma amyloid beta (Aβ)40, Aβ42, total tau, and neurofilament light chain (NfL; n = 1054); and quantified hippocampal, entorhinal cortex, and white matter hyperintensity (WMH) volumes, and Alzheimer's disease (AD)-signature cortical thickness (n = 917). Data were analyzed with logistic and linear regression models. In the total sample, mild cognitive impairment (MCI) was diagnosed in 1102 persons (26.2%; amnestic MCI, n = 931; non-amnestic MCI, n = 171). Olfactory impairment was significantly associated with increased likelihoods of MCI, amnestic MCI, and non-amnestic MCI. In the subsamples, anosmia was significantly associated with higher plasma total tau and NfL concentrations, smaller hippocampal and entorhinal cortex volumes, and greater WMH volume, and marginally with lower AD-signature cortical thickness. These results suggest that cerebral neurodegenerative and microvascular lesions are common neuropathologies linking anosmia with MCI in older adults.
Collapse
Affiliation(s)
- Yi Dong
- Department of Neurology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, China.,Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Yuanjing Li
- Aging Research Center and Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet-Stockholm University, Stockholm, Sweden
| | - Keke Liu
- Department of Neurology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, China.,Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Xiaolei Han
- Department of Neurology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, China.,Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Rui Liu
- Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Yifei Ren
- Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Lin Cong
- Department of Neurology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, China.,Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Qinghua Zhang
- Department of Neurology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, China.,Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Tingting Hou
- Department of Neurology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, China.,Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Lin Song
- Department of Neurology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, China.,Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Shi Tang
- Department of Neurology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, China.,Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Lin Shi
- BrainNow Research Institute, Shenzhen, China.,Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yishan Luo
- BrainNow Research Institute, Shenzhen, China
| | - Grégoria Kalpouzos
- Aging Research Center and Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet-Stockholm University, Stockholm, Sweden
| | - Erika J Laukka
- Aging Research Center and Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet-Stockholm University, Stockholm, Sweden
| | - Bengt Winblad
- Aging Research Center and Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet-Stockholm University, Stockholm, Sweden
| | - Yongxiang Wang
- Department of Neurology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, China.,Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Yifeng Du
- Department of Neurology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, China.,Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Chengxuan Qiu
- Department of Neurology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, China.,Aging Research Center and Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet-Stockholm University, Stockholm, Sweden
| |
Collapse
|
31
|
Neurons, Nose, and Neurodegenerative Diseases: Olfactory Function and Cognitive Impairment. Int J Mol Sci 2023; 24:ijms24032117. [PMID: 36768440 PMCID: PMC9916823 DOI: 10.3390/ijms24032117] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/24/2023] Open
Abstract
Olfactory capacity declines with aging, but increasing evidence shows that smell dysfunction is one of the early signs of prodromal neurodegenerative diseases such as Alzheimer's and Parkinson's disease. The study of olfactory ability and its role in neurodegenerative diseases arouses much interest in the scientific community. In neurology, olfactory impairment is a potential early marker for the onset of neurodegenerative diseases, but the underlying mechanism is poorly understood. The loss of smell is considered a clinical sign of early-stage disease and a marker of the disease's progression and cognitive impairment. Highlighting the importance of biological bases of smell and molecular pathways could be fundamental to improve neuroprotective and therapeutic strategies. We focused on the review articles and meta-analyses on olfactory and cognitive impairment. We depicted the neurobiology of olfaction and the most common olfactory tests in neurodegenerative diseases. In addition, we underlined the close relationship between the olfactory and cognitive deficit due to nasal neuroepithelium, which is a direct extension of the CNS in communication with the external environment. Neurons, Nose, and Neurodegenerative diseases highlights the role of olfactory dysfunction as a clinical marker for early stages of neurodegenerative diseases when it is associated with molecular, clinical, and neuropathological correlations.
Collapse
|
32
|
Emery DC, Davies M, Cerajewska TL, Taylor J, Hazell M, Paterson A, Allen-Birt SJ, West NX. High resolution 16S rRNA gene Next Generation Sequencing study of brain areas associated with Alzheimer's and Parkinson's disease. Front Aging Neurosci 2022; 14:1026260. [PMID: 36570533 PMCID: PMC9780557 DOI: 10.3389/fnagi.2022.1026260] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/02/2022] [Indexed: 12/13/2022] Open
Abstract
Introduction Alzheimer's (AD) and Parkinson's disease (PD) are neurodegenerative conditions characterized by incremental deposition of β-amyloid (Aβ) and α-synuclein in AD and PD brain, respectively, in relatively conserved patterns. Both are associated with neuroinflammation, with a proposed microbial component for disease initiation and/or progression. Notably, Aβ and α-synuclein have been shown to possess antimicrobial properties. There is evidence for bacterial presence within the brain, including the oral pathobiont Porphyromonas gingivalis, with cognitive impairment and brain pathology being linked to periodontal (gum) disease and gut dysbiosis. Methods Here, we use high resolution 16S rRNA PCR-based Next Generation Sequencing (16SNGS) to characterize bacterial composition in brain areas associated with the early, intermediate and late-stage of the diseases. Results and discussion This study reveals the widespread presence of bacteria in areas of the brain associated with AD and PD pathology, with distinctly different bacterial profiles in blood and brain. Brain area profiles were overall somewhat similar, predominantly oral, with some bacteria subgingival and oronasal in origin, and relatively comparable profiles in AD and PD brain. However, brain areas associated with early disease development, such as the locus coeruleus, were substantially different in bacterial DNA content compared to areas affected later in disease etiology.
Collapse
Affiliation(s)
| | | | | | | | - Mae Hazell
- Translational Health Sciences, Learning and Research, Bristol Medical School, Southmead Hospital, Bristol, United Kingdom
| | - Alex Paterson
- School of Biological Sciences, University of Bristol Genomics Facility, Bristol, United Kingdom
| | - Shelley J. Allen-Birt
- Translational Health Sciences, Learning and Research, Bristol Medical School, Southmead Hospital, Bristol, United Kingdom
| | - Nicola X. West
- Bristol Dental School, Bristol, United Kingdom,*Correspondence: Nicola X. West,
| |
Collapse
|
33
|
Pirola F, Giombi F, Ferreli F, Costantino A, Mercante G, Paoletti G, Heffler E, Canonica GW, Settimi S, De Corso E, Spriano G, Malvezzi L. Cross-Cultural Validation of the Short Version of the Questionnaire of Olfactory Disorders-Negative Statements into Italian: Towards Personalized Patient Care. J Pers Med 2022; 12:jpm12122010. [PMID: 36556231 PMCID: PMC9782898 DOI: 10.3390/jpm12122010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/21/2022] [Accepted: 12/02/2022] [Indexed: 12/07/2022] Open
Abstract
Given the high burden of olfactory dysfunction worldwide, recently increased due to the COVID-19 pandemic, it is mandatory to adopt a specific questionnaire to assess the impact of olfactory impairment on quality of life, to be used in clinical practice. The aim of this study is to adapt and validate the short version of the Questionnaire of Olfactory Disorders-Negative Statements (svQOD-NS) for Italian. In the pilot phase, the Italian version of the questionnaire (ITA-svQOD-NS) was produced following recommended guidelines. It was then given to 50 healthy subjects and 50 patients (affected by either nasal polyposis or septal deviation), and results were compared to those of other widely used questionnaires. Test-retest reliability was assessed on a sample of 25 patients. All 50 patients repeated the questionnaires at one and nine months after surgery. The internal consistency of ITA-svQOD-NS measured with Cronbach α was excellent (α = 0.92). The intraclass correlation coefficient for test-retest reliability was also optimal (0.93; 95%CI: 0.90-0.96). Concurrent validity tested with the Pearson coefficient was significant with all other tests administered; also, concerning responsiveness, statistically significant differences were obtained between pre- and post-operative conditions. ITA-svQOD-NS showed high internal consistency, test-retest reliability, and significant correlation with all most-used clinical questionnaires; thus, it can be efficiently applied to assess olfaction-related QoL in the Italian population.
Collapse
Affiliation(s)
- Francesca Pirola
- Otorhinolaryngology Head & Neck Surgery Unit, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089 Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20090 Milan, Italy
| | - Francesco Giombi
- Otorhinolaryngology Head & Neck Surgery Unit, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089 Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20090 Milan, Italy
| | - Fabio Ferreli
- Otorhinolaryngology Head & Neck Surgery Unit, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089 Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20090 Milan, Italy
| | - Andrea Costantino
- Otorhinolaryngology Head & Neck Surgery Unit, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089 Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20090 Milan, Italy
| | - Giuseppe Mercante
- Otorhinolaryngology Head & Neck Surgery Unit, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089 Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20090 Milan, Italy
| | - Giovanni Paoletti
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20090 Milan, Italy
- Personalized Medicine, Asthma and Allergy, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089 Milan, Italy
| | - Enrico Heffler
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20090 Milan, Italy
- Personalized Medicine, Asthma and Allergy, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089 Milan, Italy
| | - Giorgio Walter Canonica
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20090 Milan, Italy
- Personalized Medicine, Asthma and Allergy, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089 Milan, Italy
| | - Stefano Settimi
- Department of Head and Neck and Sensory Organs, Catholic University of the Sacred Hearth, 00168 Rome, Italy
| | - Eugenio De Corso
- Unit of Otorhinolaryngology-Head and Neck Surgery, A. Gemelli Hospital Foundation IRCCS, 00168 Rome, Italy
| | - Giuseppe Spriano
- Otorhinolaryngology Head & Neck Surgery Unit, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089 Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20090 Milan, Italy
| | - Luca Malvezzi
- Otorhinolaryngology Head & Neck Surgery Unit, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089 Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20090 Milan, Italy
| |
Collapse
|
34
|
Astillero-Lopez V, Gonzalez-Rodriguez M, Villar-Conde S, Flores-Cuadrado A, Martinez-Marcos A, Ubeda-Banon I, Saiz-Sanchez D. Neurodegeneration and astrogliosis in the entorhinal cortex in Alzheimer's disease: Stereological layer-specific assessment and proteomic analysis. Alzheimers Dement 2022; 18:2468-2480. [PMID: 35142030 DOI: 10.1002/alz.12580] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/30/2021] [Accepted: 12/12/2021] [Indexed: 01/31/2023]
Abstract
INTRODUCTION The entorhinal cortex is among the earliest areas involved in Alzheimer's disease. Volume reduction and neural loss in this area have been widely reported. Human entorhinal cortex atrophy is, in part, due to neural loss, but microglial and/or astroglial involvement in the different layers remains unclear. Additionally, -omic approaches in the human entorhinal cortex are scarce. METHODS Herein, stereological layer-specific and proteomic analyses were carried out in the human brain. RESULTS Neurodegeneration, microglial reduction, and astrogliosis have been demonstrated, and proteomic data have revealed relationships with up- (S100A6, PPP1R1B, BAG3, and PRDX6) and downregulated (GSK3B, SYN1, DLG4, and RAB3A) proteins. Namely, clusters of these proteins were related to synaptic, neuroinflammatory, and oxidative stress processes. DISCUSSION Differential layer involvement among neural and glial populations determined by proteinopathies and identified proteins related to neurodegeneration and astrogliosis could explain how the cortical circuitry facilitates pathological spreading within the medial temporal lobe.
Collapse
Affiliation(s)
- Veronica Astillero-Lopez
- Neuroplasticity and Neurodegeneration Laboratory, CRIB, Ciudad Real Medical School, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Melania Gonzalez-Rodriguez
- Neuroplasticity and Neurodegeneration Laboratory, CRIB, Ciudad Real Medical School, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Sandra Villar-Conde
- Neuroplasticity and Neurodegeneration Laboratory, CRIB, Ciudad Real Medical School, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Alicia Flores-Cuadrado
- Neuroplasticity and Neurodegeneration Laboratory, CRIB, Ciudad Real Medical School, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Alino Martinez-Marcos
- Neuroplasticity and Neurodegeneration Laboratory, CRIB, Ciudad Real Medical School, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Isabel Ubeda-Banon
- Neuroplasticity and Neurodegeneration Laboratory, CRIB, Ciudad Real Medical School, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Daniel Saiz-Sanchez
- Neuroplasticity and Neurodegeneration Laboratory, CRIB, Ciudad Real Medical School, University of Castilla-La Mancha, Ciudad Real, Spain
| |
Collapse
|
35
|
Besson P, Rogalski E, Gill NP, Zhang H, Martersteck A, Bandt SK. Geometric deep learning reveals a structuro-temporal understanding of healthy and pathologic brain aging. Front Aging Neurosci 2022; 14:895535. [PMID: 36081894 PMCID: PMC9445244 DOI: 10.3389/fnagi.2022.895535] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 07/27/2022] [Indexed: 11/13/2022] Open
Abstract
Background Brain age has historically been investigated primarily at the whole brain level. The ability to deconstruct the brain into its composite parts and explore brain age at the sub-structure level offers unique advantages. These include the exploration of dynamic and interconnected relationships between different brain structures in healthy and pathologic aging. To achieve this, individual brain structures can be rendered as surface representations on which morphologic analysis is carried out. Combining the advantages of deep learning with the strengths of surface analysis, we investigate the aging process at the individual structure level with the hypothesis being that pathologic aging does not uniformly affect the aging process of individual structures. Methods MRI data, age at scan time and diagnosis of dementia were collected from seven publicly available data repositories. The data from 17,440 unique subjects were collected, representing a total of 26,276 T1-weighted MRI accounting for longitudinal acquisitions. Surfaces were extracted for the cortex and seven subcortical structures. Deep learning networks were trained to estimate a subject's age either using several structures together or a single structure. We conducted a cross-sectional analysis to assess the difference between the predicted and actual ages for all structures between healthy subjects, individuals with mild cognitive impairment (MCI) or Alzheimer's disease dementia (ADD). We then performed a longitudinal analysis to assess the difference in the aging pace for each structure between stable healthy controls and healthy controls converting to either MCI or ADD. Findings Using an independent cohort of healthy subjects, age was well estimated for all structures. Cross-sectional analysis identified significantly larger predicted age for all structures in patients with either MCI and ADD compared to healthy subjects. Longitudinal analysis revealed varying degrees of involvement of individual subcortical structures for both age difference across groups and aging pace across time. These findings were most notable in the whole brain, cortex, hippocampus and amygdala. Conclusion Although similar patterns of abnormal aging were found related to MCI and ADD, the involvement of individual subcortical structures varied greatly and was consistently more pronounced in ADD patients compared to MCI patients.
Collapse
Affiliation(s)
- Pierre Besson
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Advanced Neuroimaging and Surgical Epilepsy (ANISE) Lab, Northwestern University, Chicago, IL, United States
| | - Emily Rogalski
- Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Department of Psychiatry and Behavioral Science, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Nathan P. Gill
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Hui Zhang
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Adam Martersteck
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, United States
| | - S. Kathleen Bandt
- Advanced Neuroimaging and Surgical Epilepsy (ANISE) Lab, Northwestern University, Chicago, IL, United States
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
36
|
Villar-Conde S, Astillero-Lopez V, Gonzalez-Rodriguez M, Saiz-Sanchez D, Ubeda-Banon I, Flores-Cuadrado A, Martinez-Marcos A. Neuronal and glial characterization in the rostrocaudal axis of the human anterior olfactory nucleus: Involvement in Parkinson’s disease. Front Neuroanat 2022; 16:907373. [PMID: 35923614 PMCID: PMC9339613 DOI: 10.3389/fnana.2022.907373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/27/2022] [Indexed: 12/02/2022] Open
Abstract
Hyposmia is one of the prodromal symptoms of Parkinson’s disease (PD) and a red flag in clinical diagnosis. Neuropathologically, this sign correlates with α-synuclein involvement in the anterior olfactory nucleus (AON). Neurodegeneration, microgliosis, and astrogliosis in AON are poorly studied, and bulbar AON is the focus of these studies with contradictory results. Additionally, male sex is a risk marker for developing PD, but sexual dimorphism of neural and glial populations in the AON has rarely been considered. The aim of this study was to analyze the density of NeuN, Iba-1, GFAP, and Lewy bodies (LBs), as well as the relationship of these cell type markers with pathology along the rostrocaudal axis of the AON (bulbar, retrobulbar, cortical anterior, and posterior divisions). Cavalieri, optical fractionator, and area fraction fractionator stereological approaches were used for the volume, cell populations and LBs densities, area fraction, and percentage of overlap. Iba-1 and α-syn intensities were measured using ImageJ. In non-PD (NPD) cases, the volume was lower in the AON at the extremes of the rostrocaudal axis than in the intermediate divisions. Cortical anterior AON volume decreased in PD compared with NPD cases. NeuN density decreased rostrocaudally in AON portions in NPD and PD cases. This occurred similarly in Iba-1 but only in PD samples. Iba-1 intensity significantly increased in bulbar AON between PD and NPD. No changes were found in astrocytes. Eight percent of NeuN, 0.1% of Iba-1, and 0.1% of GFAP areas overlapped with LBs area along the AON portions. The data indicate that bulbar AON, which is the most rostral portion in this axis, could play a major role in the pathology. This could be related to the larger area occupied by LBs in these divisions.
Collapse
|
37
|
Li D, Hong X, Chen T. Association Between Rheumatoid Arthritis and Risk of Parkinson's Disease: A Meta-Analysis and Systematic Review. Front Neurol 2022; 13:885179. [PMID: 35645965 PMCID: PMC9130734 DOI: 10.3389/fneur.2022.885179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/11/2022] [Indexed: 12/24/2022] Open
Abstract
Background Rheumatoid arthritis (RA) and Parkinson's disease (PD) are two common chronic diseases worldwide, and any potential link between the two would significantly impact public health practice. Considering the current inconsistent evidence, we conducted a meta-analysis and systematic review to examine the risk of PD in patients with RA. Methods Two investigators (DL and XH) conducted a comprehensive search of PubMed, Embase, and Web of Science using medical subject headings terms combined with free words to identify relevant papers published from inception through December 31, 2021. All studies that explored the relationship between RA and PD were included for quantitative analysis and qualitative review. Random- and fixed-effects models were used to pool the risk ratios (RRs) of PD in patients with RA. The Newcastle-Ottawa scale was used to assess the quality of included studies. This study followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA 2020) guideline. Results Four population-based studies involving 353,246 patients and one Mendelian randomized study were included in our study. The pooled result showed a significantly reduced risk of PD in patients with RA than in the general population (RR = 0.74, 95% CI: 0.56-0.98, P = 0.034). No apparent effects of gender, age, region, follow-up time, or study design on PD risk were observed. Sensitivity analysis showed that pooled results were relatively stable, and no publication bias was detected. The Mendelian randomization study indicated a significant inverse association between RA and PD (genetic correlation: −0.10, P = 0.0033) and that each one standard deviation increase in the risk of RA was significantly associated with a lower risk of PD. Of note, the current study is limited by the relatively small number of included studies and unmeasured confounding factors, especially for RA-related anti-inflammatory agents. Conclusions This study supports that people with RA had a lower PD risk than those without RA. Further studies are needed to explore the underlying molecular mechanisms of the interaction between the two diseases.
Collapse
|
38
|
Salimi M, Tabasi F, Abdolsamadi M, Dehghan S, Dehdar K, Nazari M, Javan M, Mirnajafi-Zadeh J, Raoufy MR. Disrupted connectivity in the olfactory bulb-entorhinal cortex-dorsal hippocampus circuit is associated with recognition memory deficit in Alzheimer's disease model. Sci Rep 2022; 12:4394. [PMID: 35292712 PMCID: PMC8924156 DOI: 10.1038/s41598-022-08528-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 03/02/2022] [Indexed: 12/18/2022] Open
Abstract
Neural synchrony in brain circuits is the mainstay of cognition, including memory processes. Alzheimer's disease (AD) is a progressive neurodegenerative disorder that disrupts neural synchrony in specific circuits, associated with memory dysfunction before a substantial neural loss. Recognition memory impairment is a prominent cognitive symptom in the early stages of AD. The entorhinal-hippocampal circuit is critically engaged in recognition memory and is known as one of the earliest circuits involved due to AD pathology. Notably, the olfactory bulb is closely connected with the entorhinal-hippocampal circuit and is suggested as one of the earliest regions affected by AD. Therefore, we recorded simultaneous local field potential from the olfactory bulb (OB), entorhinal cortex (EC), and dorsal hippocampus (dHPC) to explore the functional connectivity in the OB-EC-dHPC circuit during novel object recognition (NOR) task performance in a rat model of AD. Animals that received amyloid-beta (Aβ) showed a significant impairment in task performance and a marked reduction in OB survived cells. We revealed that Aβ reduced coherence and synchrony in the OB-EC-dHPC circuit at theta and gamma bands during NOR performance. Importantly, our results exhibit that disrupted functional connectivity in the OB-EC-dHPC circuit was correlated with impaired recognition memory induced by Aβ. These findings can elucidate dynamic changes in neural activities underlying AD, helping to find novel diagnostic and therapeutic targets.
Collapse
Affiliation(s)
- Morteza Salimi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, 1411713116, Iran
| | - Farhad Tabasi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, 1411713116, Iran
- Faculty of Medical Sciences, Institute for Brain Sciences and Cognition, Tarbiat Modares University, Tehran, Iran
| | - Maryam Abdolsamadi
- Department of Mathematics, Faculty of Science, Islamic Azad University, North Tehran Branch, Tehran, Iran
| | - Samaneh Dehghan
- Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
- Eye Research Center, The Five Senses Institute, Rassoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Kolsoum Dehdar
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, 1411713116, Iran
- Faculty of Medical Sciences, Institute for Brain Sciences and Cognition, Tarbiat Modares University, Tehran, Iran
| | - Milad Nazari
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
- DANDRITE, The Danish Research Institute of Translational Neuroscience, Aarhus University, Aarhus, Denmark
| | - Mohammad Javan
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, 1411713116, Iran
- Faculty of Medical Sciences, Institute for Brain Sciences and Cognition, Tarbiat Modares University, Tehran, Iran
| | - Javad Mirnajafi-Zadeh
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, 1411713116, Iran
- Faculty of Medical Sciences, Institute for Brain Sciences and Cognition, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Reza Raoufy
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, 1411713116, Iran.
- Faculty of Medical Sciences, Institute for Brain Sciences and Cognition, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
39
|
Xie J, Tian S, Liu J, Cao R, Yue P, Cai X, Shang Q, Yang M, Han L, Zhang DK. Dual role of the nasal microbiota in neurological diseases—An unignorable risk factor or a potential therapy carrier. Pharmacol Res 2022; 179:106189. [DOI: 10.1016/j.phrs.2022.106189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/06/2022] [Accepted: 03/17/2022] [Indexed: 12/11/2022]
|
40
|
Murray HC, Johnson K, Sedlock A, Highet B, Dieriks BV, Anekal PV, Faull RLM, Curtis MA, Koretsky A, Maric D. Lamina-specific immunohistochemical signatures in the olfactory bulb of healthy, Alzheimer's and Parkinson's disease patients. Commun Biol 2022; 5:88. [PMID: 35075270 PMCID: PMC8786934 DOI: 10.1038/s42003-022-03032-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 12/27/2021] [Indexed: 12/17/2022] Open
Abstract
Traditional neuroanatomy immunohistology studies involve low-content analyses of a few antibodies of interest, typically applied and compared across sequential tissue sections. The efficiency, consistency, and ultimate insights of these studies can be substantially improved using high-plex immunofluorescence labelling on a single tissue section to allow direct comparison of many markers. Here we present an expanded and efficient multiplexed fluorescence-based immunohistochemistry (MP-IHC) approach that improves throughput with sequential labelling of up to 10 antibodies per cycle, with no limitation on the number of cycles, and maintains versatility and accessibility by using readily available commercial reagents and standard epifluorescence microscopy imaging. We demonstrate this approach by cumulatively screening up to 100 markers on formalin-fixed paraffin-embedded sections of human olfactory bulb sourced from neurologically normal (no significant pathology), Alzheimer's (AD), and Parkinson's disease (PD) patients. This brain region is involved early in the symptomology and pathophysiology of AD and PD. We also developed a spatial pixel bin analysis approach for unsupervised analysis of the high-content anatomical information from large tissue sections. Here, we present a comprehensive immunohistological characterisation of human olfactory bulb anatomy and a summary of differentially expressed biomarkers in AD and PD using the MP-IHC labelling and spatial protein analysis pipeline.
Collapse
Affiliation(s)
- Helen C Murray
- Department of Anatomy and Medical Imaging and Centre for Brain Research, Faculty of Medical and Health Science, University of Auckland, Private Bag, Auckland, 92019, New Zealand.
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Kory Johnson
- Bioinformatics Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Andrea Sedlock
- Flow and Imaging Cytometry Core Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Blake Highet
- Department of Anatomy and Medical Imaging and Centre for Brain Research, Faculty of Medical and Health Science, University of Auckland, Private Bag, Auckland, 92019, New Zealand
| | - Birger Victor Dieriks
- Department of Anatomy and Medical Imaging and Centre for Brain Research, Faculty of Medical and Health Science, University of Auckland, Private Bag, Auckland, 92019, New Zealand
| | - Praju Vikas Anekal
- Department of Anatomy and Medical Imaging and Centre for Brain Research, Faculty of Medical and Health Science, University of Auckland, Private Bag, Auckland, 92019, New Zealand
- Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA
| | - Richard L M Faull
- Department of Anatomy and Medical Imaging and Centre for Brain Research, Faculty of Medical and Health Science, University of Auckland, Private Bag, Auckland, 92019, New Zealand
| | - Maurice A Curtis
- Department of Anatomy and Medical Imaging and Centre for Brain Research, Faculty of Medical and Health Science, University of Auckland, Private Bag, Auckland, 92019, New Zealand
| | - Alan Koretsky
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Dragan Maric
- Flow and Imaging Cytometry Core Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
41
|
Giudici KV, Guyonnet S, Morley JE, Nguyen AD, Aggarwal G, Parini A, Li Y, Bateman RJ, Vellas B, de Souto Barreto P. Interactions Between Weight Loss and Plasma Neurodegenerative Markers for Determining Cognitive Decline Among Community-Dwelling Older Adults. J Gerontol A Biol Sci Med Sci 2022; 77:1159-1168. [PMID: 35034116 PMCID: PMC9159663 DOI: 10.1093/gerona/glac015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Indexed: 01/18/2023] Open
Abstract
This study aimed to investigate the interaction between weight loss (WL) and plasma amyloid-β 42/40 (Aβ 42/40), neurofilament light chain (NfL), progranulin, and their association with cognitive decline over time among older adults. This 5-year observational approach included 470 participants from the Multidomain Alzheimer Preventive Trial, mean age 76.8 years (SD = 4.5), 59.4% women. WL was defined as ≥5% decrease over the first year. Biomarkers were measured at 12 months. Cognitive function was assessed yearly from 12 months onward by Mini-Mental State Examination (MMSE); Clinical Dementia Rating sum of boxes (CDR-SB); a composite score based on Category Naming Test; Digit Symbol Substitution Test; 10 MMSE orientation items (MMSEO) and free and total recall of the Free and Cued Selective Reminding test; and these tests individually. Twenty-seven participants (5.7%) presented WL. In adjusted analyses, combined WL + lower Aβ 42/40 (≤0.103, lowest quartile) was related with more pronounced 4-year cognitive decline according to CDR-SB (p < .0001) and MMSEO (p = .021), compared with non-WL + higher Aβ 42/40. WL + higher NfL (>94.55 pg/mL, highest quartile) or progranulin (>38.4 ng/mL, 3 higher quartiles) were related with higher cognitive decline according to CDR-SB, MMSE, MMSEO, and composite score (all p < .03), compared with non-WL + lower NfL or higher progranulin. Regrouping progranulin quartiles (Q1-Q3 vs Q4) revealed higher cognitive decline among the WL + lower progranulin group compared with non-WL + lower progranulin. In conclusion, 1-year WL was associated with subsequent higher 4-year cognitive decline among older adults presenting low Aβ 42/40 or high NfL. Future studies combining plasma biomarker assessments and body weight surveillance may be useful for identifying people at risk of cognitive impairment. Clinical trial number: NCT00672685.
Collapse
Affiliation(s)
- Kelly Virecoulon Giudici
- Address correspondence to: Kelly Virecoulon Giudici, PhD, Gérontopôle of Toulouse, Institute of Aging, Toulouse University Hospital, Université Toulouse III Paul Sabatier, 37 Allée Jules Guesde, 31000 Toulouse, France. E-mail:
| | - Sophie Guyonnet
- Gerontopole of Toulouse, Institute of Ageing, Toulouse University Hospital (CHU Toulouse), Toulouse, France,CERPOP UMR1295, University of Toulouse III, INSERM, UPS, Toulouse, France
| | - John E Morley
- Division of Geriatric Medicine, School of Medicine, Saint Louis University, St. Louis, Missouri, USA
| | - Andrew D Nguyen
- Division of Geriatric Medicine, School of Medicine, Saint Louis University, St. Louis, Missouri, USA
| | - Geetika Aggarwal
- Division of Geriatric Medicine, School of Medicine, Saint Louis University, St. Louis, Missouri, USA
| | - Angelo Parini
- Institute of Metabolic and Cardiovascular Diseases (I2MC), INSERM UMR 1048, University of Toulouse III Paul Sabatier, Toulouse, France
| | - Yan Li
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA,Division of Biostatistics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Randall J Bateman
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Bruno Vellas
- Gerontopole of Toulouse, Institute of Ageing, Toulouse University Hospital (CHU Toulouse), Toulouse, France,CERPOP UMR1295, University of Toulouse III, INSERM, UPS, Toulouse, France
| | - Philipe de Souto Barreto
- Gerontopole of Toulouse, Institute of Ageing, Toulouse University Hospital (CHU Toulouse), Toulouse, France,CERPOP UMR1295, University of Toulouse III, INSERM, UPS, Toulouse, France
| | | |
Collapse
|
42
|
Gonzalez-Rodriguez M, Villar-Conde S, Astillero-Lopez V, Villanueva-Anguita P, Ubeda-Banon I, Flores-Cuadrado A, Martinez-Marcos A, Saiz-Sanchez D. Neurodegeneration and Astrogliosis in the Human CA1 Hippocampal Subfield Are Related to hsp90ab1 and bag3 in Alzheimer's Disease. Int J Mol Sci 2021; 23:165. [PMID: 35008592 PMCID: PMC8745315 DOI: 10.3390/ijms23010165] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 02/06/2023] Open
Abstract
Alzheimer's disease (AD), the most prevalent neurodegenerative disorder, is characterized by executive dysfunction and memory impairment mediated by the accumulation of extracellular amyloid-β peptide (Aβ) and intracellular hyperphosphorylated tau protein. The hippocampus (HIPP) is essential for memory formation and is involved in early stages of disease. In fact, hippocampal atrophy is used as an early biomarker of neuronal injury and to evaluate disease progression. It is not yet well-understood whether changes in hippocampal volume are due to neuronal or glial loss. The aim of the study was to assess hippocampal atrophy and/or gliosis using unbiased stereological quantification and to obtain hippocampal proteomic profiles related to neurodegeneration and gliosis. Hippocampal volume measurement, stereological quantification of NeuN-, Iba-1- and GFAP-positive cells, and sequential window acquisition of all theoretical mass spectrometry (SWATH-MS) analysis were performed in AD and non-AD cases. Reduced hippocampal volume was identified using the Cavalieri probe, particularly in the CA1 region, where it correlated with neuronal loss and astrogliosis. A total of 102 downregulated and 47 upregulated proteins were identified in the SWATH-MS analysis after restrictive filtering based on an FC > 1.5 and p value < 0.01. The Hsp90 family of chaperones, particularly BAG3 and HSP90AB1, are closely related to astrocytes, indicating a possible role in degrading Aβ and tau through chaperone-mediated autophagy.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Alino Martinez-Marcos
- CRIB, Neuroplasticity and Neurodegeneration Laboratory, Ciudad Real Medical School, University of Castilla-La Mancha, 13071 Ciudad Real, Spain; (M.G.-R.); (S.V.-C.); (V.A.-L.); (P.V.-A.); (I.U.-B.); (A.F.-C.)
| | - Daniel Saiz-Sanchez
- CRIB, Neuroplasticity and Neurodegeneration Laboratory, Ciudad Real Medical School, University of Castilla-La Mancha, 13071 Ciudad Real, Spain; (M.G.-R.); (S.V.-C.); (V.A.-L.); (P.V.-A.); (I.U.-B.); (A.F.-C.)
| |
Collapse
|
43
|
Chen B, Wang Q, Zhong X, Mai N, Zhang M, Zhou H, Haehner A, Chen X, Wu Z, Auber LA, Rao D, Liu W, Zheng J, Lin L, Li N, Chen S, Chen B, Hummel T, Ning Y. Structural and Functional Abnormalities of Olfactory-Related Regions in Subjective Cognitive Decline, Mild Cognitive Impairment, and Alzheimer's Disease. Int J Neuropsychopharmacol 2021; 25:361-374. [PMID: 34893841 PMCID: PMC9154279 DOI: 10.1093/ijnp/pyab091] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 11/11/2021] [Accepted: 12/09/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Odor identification (OI) dysfunction is an early marker of Alzheimer's disease (AD), but it remains unclear how olfactory-related regions change from stages of subjective cognitive decline (SCD) and mild cognitive impairment (MCI) to AD dementia. METHODS Two hundred and sixty-nine individuals were recruited in the present study. The olfactory-related regions were defined as the regions of interest, and the grey matter volume (GMV), low-frequency fluctuation, regional homogeneity (ReHo), and functional connectivity (FC) were compared for exploring the changing pattern of structural and functional abnormalities across AD, MCI, SCD, and normal controls. RESULTS From the SCD, MCI to AD groups, the reduced GMV, increased low-frequency fluctuation, increased ReHo, and reduced FC of olfactory-related regions became increasingly severe, and only the degree of reduced GMV of hippocampus and caudate nucleus clearly distinguished the 3 groups. SCD participants exhibited reduced GMV (hippocampus, etc.), increased ReHo (caudate nucleus), and reduced FC (hippocampus-hippocampus and hippocampus-parahippocampus) in olfactory-related regions compared with normal controls. Additionally, reduced GMV of the bilateral hippocampus and increased ReHo of the right caudate nucleus were associated with OI dysfunction and global cognitive impairment, and they exhibited partially mediated effects on the relationships between OI and global cognition across all participants. CONCLUSION Structural and functional abnormalities of olfactory-related regions present early with SCD and deepen with disease severity in the AD spectrum. The hippocampus and caudate nucleus may be the hub joining OI and cognitive function in the AD spectrum.
Collapse
Affiliation(s)
| | | | | | - Naikeng Mai
- Memory Clinic, Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, Guangdong Province, China
| | - Min Zhang
- Memory Clinic, Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, Guangdong Province, China
| | - Huarong Zhou
- Memory Clinic, Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, Guangdong Province, China
| | - Antje Haehner
- Smell and Taste Clinic, Department of Otorhinolaryngology, Technische Universität Dresden, Dresden, Germany
| | - Xinru Chen
- Memory Clinic, Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, Guangdong Province, China
| | - Zhangying Wu
- Memory Clinic, Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, Guangdong Province, China
| | - Lavinia Alberi Auber
- Department of Medicine, University of Fribourg, Fribourg, Switzerland,Swiss Integrative Center of Human Health, Fribourg, Switzerland
| | - Dongping Rao
- Memory Clinic, Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, Guangdong Province, China
| | - Wentao Liu
- Memory Clinic, Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, Guangdong Province, China
| | - Jinhong Zheng
- Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Lijing Lin
- Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Nanxi Li
- Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Sihao Chen
- Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Bingxin Chen
- Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Thomas Hummel
- Smell and Taste Clinic, Department of Otorhinolaryngology, Technische Universität Dresden, Dresden, Germany
| | - Yuping Ning
- Correspondence: Yuping Ning, PhD, No. 13, Mingxin Road, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, Guangdong Province, China ()
| |
Collapse
|
44
|
Shao Y, Wang Z, Ji B, Qi H, Hao S, Li G, Zhang Y, Xi Q. Diffusion Tensor Imaging Study of Olfactory Identification Deficit in Patients With Mild Cognitive Impairment. Front Aging Neurosci 2021; 13:765432. [PMID: 34887745 PMCID: PMC8649768 DOI: 10.3389/fnagi.2021.765432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 11/01/2021] [Indexed: 11/13/2022] Open
Abstract
Objective: To explore the relationship between white matter changes and olfactory ability among patients with mild cognitive impairment (MCI) and to develop a tool to predict the development of Alzheimer's disease among patients with MCI. Methods: The Montreal Cognitive Assessment (MoCA) was used for cognitive assessments, and the 70% isopropanol test paper was used to evaluate olfactory function. Tract-based spatial statistics, based on the diffusion tensor imaging technology, were used to obtain relevant parameters, and behavioral and imaging results were compared between patients with MCI (n = 36) and healthy older adults (n = 32). Results: The olfactory ability of MCI patients was lower overall, which was positively correlated with the MoCA score. Fractional anisotropy (FA) changes significantly of all parameters. Lower FA regions were mainly located in the corpus callosum, the orbitofrontal gyrus, and the left occipital lobe. The olfactory score was significantly correlated with the FA value of the orbitofrontal gyrus. Fibrous connections in several brain regions, such as the entorhinal cortex, were stronger in patients with MCI. Conclusion: The olfactory ability of MCI patients in our group was positively correlated with the neuropsychological scale results. Impairment in olfactory function was superior to memory deficits for predicting cognitive decline among cognitively intact participants. The fibrous connections in several brain regions, such as the entorhinal cortex, were higher in patients with MCI, which suggested that there may be a compensatory mechanism in the olfactory pathway in MCI patients. The decline in olfactory function may be a significant and useful indicator of neuropathological changes in MCI patients and an effective marker for the development of cognitive decline and dementia.
Collapse
Affiliation(s)
- Yongjia Shao
- Department of Radiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zijian Wang
- School of Computer Science and Technology, Donghua University, Shanghai, China
| | - Bin Ji
- Department of Radiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hang Qi
- Department of Radiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shangci Hao
- Department of Radiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Gang Li
- Department of Neurology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yue Zhang
- Department of Neurology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qian Xi
- Department of Radiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
45
|
Yagita K, Honda H, Ohara T, Hamasaki H, Koyama S, Noguchi H, Mihara A, Nakazawa T, Hata J, Ninomiya T, Iwaki T. A Comparative Study of Site-Specific Distribution of Aging-Related Tau Astrogliopathy and Its Risk Factors Between Alzheimer Disease and Cognitive Healthy Brains: The Hisayama Study. J Neuropathol Exp Neurol 2021; 81:106-116. [PMID: 34875089 DOI: 10.1093/jnen/nlab126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Knowledge of aging-related tau astrogliopathy (ARTAG) in healthy elderly individuals remains incomplete and studies to date have not focused on the olfactory nerve, which is a vulnerable site of various neurodegenerative disease pathologies. We performed a semiquantitative evaluation of ARTAG in 110 autopsies in the Japanese general population (Hisayama study). Our analysis focused on Alzheimer disease (AD) and cognitive healthy cases (HC), including primary age-related tauopathy. Among the various diseased and nondiseased brains, ARTAG was frequently observed in the amygdala. The ARTAG of HC was exclusively limited to the amygdala whereas gray matter ARTAG in AD cases was prominent in the putamen and middle frontal gyrus following the amygdala. ARTAG of the olfactory nerve mainly consists of subpial pathology that was milder in the amygdala. A logistic regression analysis revealed that age at death and neurofibrillary tangle Braak stage significantly affected the ARTAG of HC. In AD, age at death and male gender had significant effects on ARTAG. In addition, the Thal phase significantly affected the presence of white matter ARTAG. In conclusion, our research revealed differences in the distribution of ARTAG and affected variables across AD and HC individuals.
Collapse
Affiliation(s)
- Kaoru Yagita
- From the Department of Neuropathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan (KY, HHo, HHa, SK, HN, TI); Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan (TO, AM, TNa); Department of Epidemiology and Public Health, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan (TO, AM, TNa, JH, TNi); Department of Center for Cohort Studies, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan (JH, TNi); and Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan (JH)
| | - Hiroyuki Honda
- From the Department of Neuropathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan (KY, HHo, HHa, SK, HN, TI); Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan (TO, AM, TNa); Department of Epidemiology and Public Health, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan (TO, AM, TNa, JH, TNi); Department of Center for Cohort Studies, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan (JH, TNi); and Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan (JH)
| | - Tomoyuki Ohara
- From the Department of Neuropathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan (KY, HHo, HHa, SK, HN, TI); Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan (TO, AM, TNa); Department of Epidemiology and Public Health, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan (TO, AM, TNa, JH, TNi); Department of Center for Cohort Studies, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan (JH, TNi); and Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan (JH)
| | - Hideomi Hamasaki
- From the Department of Neuropathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan (KY, HHo, HHa, SK, HN, TI); Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan (TO, AM, TNa); Department of Epidemiology and Public Health, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan (TO, AM, TNa, JH, TNi); Department of Center for Cohort Studies, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan (JH, TNi); and Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan (JH)
| | - Sachiko Koyama
- From the Department of Neuropathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan (KY, HHo, HHa, SK, HN, TI); Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan (TO, AM, TNa); Department of Epidemiology and Public Health, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan (TO, AM, TNa, JH, TNi); Department of Center for Cohort Studies, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan (JH, TNi); and Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan (JH)
| | - Hideko Noguchi
- From the Department of Neuropathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan (KY, HHo, HHa, SK, HN, TI); Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan (TO, AM, TNa); Department of Epidemiology and Public Health, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan (TO, AM, TNa, JH, TNi); Department of Center for Cohort Studies, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan (JH, TNi); and Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan (JH)
| | - Akane Mihara
- From the Department of Neuropathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan (KY, HHo, HHa, SK, HN, TI); Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan (TO, AM, TNa); Department of Epidemiology and Public Health, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan (TO, AM, TNa, JH, TNi); Department of Center for Cohort Studies, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan (JH, TNi); and Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan (JH)
| | - Taro Nakazawa
- From the Department of Neuropathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan (KY, HHo, HHa, SK, HN, TI); Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan (TO, AM, TNa); Department of Epidemiology and Public Health, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan (TO, AM, TNa, JH, TNi); Department of Center for Cohort Studies, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan (JH, TNi); and Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan (JH)
| | - Jun Hata
- From the Department of Neuropathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan (KY, HHo, HHa, SK, HN, TI); Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan (TO, AM, TNa); Department of Epidemiology and Public Health, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan (TO, AM, TNa, JH, TNi); Department of Center for Cohort Studies, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan (JH, TNi); and Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan (JH)
| | - Toshiharu Ninomiya
- From the Department of Neuropathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan (KY, HHo, HHa, SK, HN, TI); Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan (TO, AM, TNa); Department of Epidemiology and Public Health, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan (TO, AM, TNa, JH, TNi); Department of Center for Cohort Studies, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan (JH, TNi); and Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan (JH)
| | - Toru Iwaki
- From the Department of Neuropathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan (KY, HHo, HHa, SK, HN, TI); Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan (TO, AM, TNa); Department of Epidemiology and Public Health, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan (TO, AM, TNa, JH, TNi); Department of Center for Cohort Studies, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan (JH, TNi); and Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan (JH)
| |
Collapse
|
46
|
Son G, Steinbusch HWM, López-Iglesias C, Moon C, Jahanshahi A. Severe histomorphological alterations in post-mortem olfactory glomeruli in Alzheimer's disease. Brain Pathol 2021; 32:e13033. [PMID: 34704631 PMCID: PMC8877757 DOI: 10.1111/bpa.13033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 12/28/2022] Open
Abstract
Alzheimer's disease (AD) is the most prevalent form of dementia. Key AD symptoms include memory and cognitive decline; however, comorbid symptoms such as depression and sensory‐perceptual dysfunction are often reported. Among these, a deterioration of olfactory sensation is observed in approximately 90% of AD patients. However, the precise pathophysiological basis underlying olfactory deficits because of AD remains elusive. The olfactory glomeruli in the olfactory bulb (OB) receive sensory information in the olfactory processing pathway. Maintaining the structural and functional integrity of the olfactory glomerulus is critical to olfactory signalling. Herein, we conducted an in‐depth histopathological assessment to reveal detailed structural alterations in the olfactory glomeruli in AD patients. Fresh frozen post‐mortem OB specimens obtained from six AD patients and seven healthy age‐matched individuals were examined. We used combined immunohistochemistry and stereology to assess the gross morphology and histological alterations, such as those in the expression of Aβ protein, microglia, and neurotransmitters in the OB. Electron microscopy was employed to study the ultrastructural features in the glomeruli. Significant accumulation of Aβ, morphologic damage, altered neurotransmitter levels, and microgliosis in the olfactory glomeruli of AD patients suggests that glomerular damage could affect olfactory function. Moreover, greater neurodegeneration was observed in the ventral olfactory glomeruli of AD patients. The synaptic ultrastructure revealed distorted postsynaptic densities and a decline in presynaptic vesicles in AD specimens. These findings show that the primary olfactory pathway is affected by the pathogenesis of AD, and may provide clues to identifying the mechanism involved in olfactory dysfunction in AD.
Collapse
Affiliation(s)
- Gowoon Son
- Department of Brain & Cognitive Sciences, Graduate School, Daegu Gyeungbuk Institute of Science and Technology, Daegu, Republic of Korea.,Department of Neurosurgery, Maastricht University Medical Center+, Maastricht, The Netherlands.,School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Harry W M Steinbusch
- Department of Brain & Cognitive Sciences, Graduate School, Daegu Gyeungbuk Institute of Science and Technology, Daegu, Republic of Korea.,School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Carmen López-Iglesias
- Microscopy CORE Lab, Maastricht Multimodal Molecular Imaging Institute, FHML, Maastricht University, Maastricht, The Netherlands
| | - Cheil Moon
- Department of Brain & Cognitive Sciences, Graduate School, Daegu Gyeungbuk Institute of Science and Technology, Daegu, Republic of Korea.,Convergence Research Advanced Centre for Olfaction, Daegu Gyeungbuk Institute of Science and Technology, Daegu, Republic of Korea.,Korea Brain Research Institute, Daegu, Republic of Korea
| | - Ali Jahanshahi
- Department of Neurosurgery, Maastricht University Medical Center+, Maastricht, The Netherlands.,School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
47
|
Cartas-Cejudo P, Lachén-Montes M, Fernández-Irigoyen J, Santamaría E. Tackling the Biological Meaning of the Human Olfactory Bulb Dyshomeostatic Proteome across Neurological Disorders: An Integrative Bioinformatic Approach. Int J Mol Sci 2021; 22:ijms222111340. [PMID: 34768771 PMCID: PMC8583219 DOI: 10.3390/ijms222111340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/14/2021] [Accepted: 10/18/2021] [Indexed: 12/16/2022] Open
Abstract
Olfactory dysfunction is considered an early prodromal marker of many neurodegenerative diseases. Neuropathological changes and aberrant protein aggregates occur in the olfactory bulb (OB), triggering a tangled cascade of molecular events that is not completely understood across neurological disorders. This study aims to analyze commonalities and differences in the olfactory protein homeostasis across neurological backgrounds with different spectrums of smell dysfunction. For that, an integrative analysis was performed using OB proteomics datasets derived from subjects with Alzheimer's disease (AD), Parkinson's disease (PD), mixed dementia (mixD), dementia with Lewy bodies (DLB), frontotemporal lobar degeneration (FTLD-TDP43), progressive supranuclear palsy (PSP) and amyotrophic lateral sclerosis (ALS) with respect to OB proteome data from neurologically intact controls. A total of 80% of the differential expressed protein products were potentially disease-specific whereas the remaining 20% were commonly altered across two, three or four neurological phenotypes. A multi-level bioinformatic characterization revealed a subset of potential disease-specific transcription factors responsible for the downstream effects detected at the proteome level as well as specific densely connected protein complexes targeted by several neurological phenotypes. Interestingly, common or unique pathways and biofunctions were also identified, providing novel mechanistic clues about each neurological disease at olfactory level. The analysis of olfactory epithelium, olfactory tract and primary olfactory cortical proteotypes in a multi-disease format will functionally complement the OB dyshomeostasis, increasing our knowledge about the neurodegenerative process across the olfactory axis.
Collapse
|
48
|
Lu R, Aziz NA, Reuter M, Stöcker T, Breteler MMB. Evaluation of the Neuroanatomical Basis of Olfactory Dysfunction in the General Population. JAMA Otolaryngol Head Neck Surg 2021; 147:855-863. [PMID: 34436517 DOI: 10.1001/jamaoto.2021.2026] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Importance Olfactory dysfunction is a prodromal manifestation of many neurodegenerative disorders, including Alzheimer and Parkinson disease. However, its neuroanatomical basis is largely unknown. Objective To assess the association between olfactory brain structures and olfactory function in adults 30 years or older and to examine the extent to which olfactory bulb volume (OBV) mediates the association between central olfactory structures and olfactory function. Design, Setting, and Participants This cross-sectional study analyzed baseline data from the first 639 participants with brain magnetic resonance imaging (MRI) in the Rhineland Study, an ongoing population-based cohort study in Bonn, Germany. Participants were enrolled between March 7, 2016, and October 31, 2017, and underwent brain MRI and olfactory assessment. Data were analyzed from March 1, 2018, to June 30, 2021. Exposure Volumetric measures were derived from 3-T MRI T1-weighted brain scans, and OBV was manually segmented on T2-weighted images. The mean volumetric brain measures from the right and left sides were calculated, adjusted by head size, and normalized to all participants. Main Outcomes and Measures Performance on the 12-item smell identification test (SIT-12) was used as a proxy for olfactory function. Results A total of 541 participants with complete data on MRI-derived measures and SIT-12 scores were included. This population had a mean (SD) age of 53.6 (13.1) years and comprised 306 women (56.6%). Increasing age (difference in SIT-12 score, -0.04; 95% CI, -0.05 to -0.03), male sex (-0.26; 95% CI, -0.54 to 0.02), and nasal congestion (-0.28; 95% CI, -0.66 to 0.09) were associated with worse olfactory function (SIT-12 scores). Conversely, larger OBV was associated with better olfactory function (difference in SIT-12 score, 0.46; 95% CI, 0.29-0.64). Larger volumes of amygdala (difference in OBV, 0.12; 95% CI, 0.01-0.24), hippocampus (0.16; 95% CI, 0.04-0.28), insular cortex (0.12; 95% CI, 0.01-0.24), and medial orbitofrontal cortex (0.10; 95% CI, 0.00-0.20) were associated with larger OBV. Larger volumes of amygdala (volume × age interaction effect, 0.17; 95% CI, 0.03-0.30), parahippocampal cortex (0.17; 95% CI, 0.03-0.31), and hippocampus (0.21; 95% CI, 0.08-0.35) were associated with better olfactory function only in older age groups. The age-modified association between volumes of central olfactory structures and olfactory function was largely mediated through OBV. Conclusions and Relevance This cross-sectional study found that olfactory bulb volume was independently associated with odor identification function and was a robust mediator of the age-dependent association between volumes of central olfactory structures and olfactory function. Thus, neurodegeneration-associated olfactory dysfunction may primarily originate from the pathology of peripheral olfactory structures, suggesting that OBV may serve as a preclinical marker for the identification of individuals who are at an increased risk of neurodegenerative diseases.
Collapse
Affiliation(s)
- Ran Lu
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - N Ahmad Aziz
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Department of Neurology, Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Martin Reuter
- Image Analysis, DZNE, Bonn, Germany.,A.A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston.,Department of Radiology, Harvard Medical School, Boston, Massachusetts
| | - Tony Stöcker
- MR Physics, DZNE, Bonn, Germany.,Department of Physics and Astronomy, University of Bonn, Bonn, Germany
| | - Monique M B Breteler
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Institute for Medical Biometry, Informatics and Epidemiology, Faculty of Medicine, University of Bonn, Bonn, Germany
| |
Collapse
|
49
|
Berry JK, Cox D. Increased oscillatory power in a computational model of the olfactory bulb due to synaptic degeneration. Phys Rev E 2021; 104:024405. [PMID: 34525666 DOI: 10.1103/physreve.104.024405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 06/30/2021] [Indexed: 11/07/2022]
Abstract
Several neurodegenerative diseases impact the olfactory system, and in particular the olfactory bulb, early in disease progression. One mechanism by which damage occurs is via synaptic dysfunction. Here, we implement a computational model of the olfactory bulb and investigate the effect of weakened connection weights on network oscillatory behavior. Olfactory bulb network activity can be modeled by a system of equations that describes a set of coupled nonlinear oscillators. In this modeling framework, we propagate damage to synaptic weights using several strategies, varying from localized to global. Damage propagated in a dispersed or spreading manner leads to greater oscillatory power at moderate levels of damage. This increase arises from a higher average level of mitral cell activity due to a shift in the balance between excitation and inhibition. That this shift leads to greater oscillations depends critically on the nonlinearity of the activation function. Linearized analysis of the network dynamics predicts when this shift leads to loss of oscillatory activity. We thus demonstrate one potential mechanism involved in the increased gamma oscillations seen in some animal models of Alzheimer's disease, and we highlight the potential that pathological olfactory bulb behavior presents as an early biomarker of disease.
Collapse
Affiliation(s)
- J Kendall Berry
- University of California, Davis, Davis, California 95616, USA
| | - Daniel Cox
- University of California, Davis, Davis, California 95616, USA
| |
Collapse
|
50
|
Adamson SXF, Zheng W, Agim ZS, Du S, Fleming S, Shannahan J, Cannon J. Systemic Copper Disorders Influence the Olfactory Function in Adult Rats: Roles of Altered Adult Neurogenesis and Neurochemical Imbalance. Biomolecules 2021; 11:1315. [PMID: 34572528 PMCID: PMC8471899 DOI: 10.3390/biom11091315] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 12/18/2022] Open
Abstract
Disrupted systemic copper (Cu) homeostasis underlies neurodegenerative diseases with early symptoms including olfactory dysfunction. This study investigated the impact of Cu dyshomeostasis on olfactory function, adult neurogenesis, and neurochemical balance. Models of Cu deficiency (CuD) and Cu overload (CuO) were established by feeding adult rats with Cu-restricted diets plus ip. injection of a Cu chelator (ammonium tetrathiomolybdate) and excess Cu, respectively. CuD reduced Cu levels in the olfactory bulb (OB), subventricular zone (SVZ), rostral migratory stream (RMS), and striatum, while CuO increased Cu levels in these areas. The buried pellet test revealed both CuD and CuO prolonged the latency to uncover food. CuD increased neural proliferation and stem cells in the SVZ and newly differentiated neurons in the OB, whereas CuO caused opposite alterations, suggesting a "switch"-type function of Cu in regulating adult neurogenesis. CuO increased GABA in the OB, while both CuD and CuO reduced DOPAC, HVA, 5-HT and the DA turnover rate in olfactory-associated brain regions. Altered mRNA expression of Cu transport and storage proteins in tested brain areas were observed under both conditions. Together, results support an association between systemic Cu dyshomeostasis and olfactory dysfunction. Specifically, altered adult neurogenesis along the SVZ-RMS-OB pathway and neurochemical imbalance could be the factors that may contribute to olfactory dysfunction.
Collapse
Affiliation(s)
- Sherleen Xue-Fu Adamson
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA; (S.X.-F.A.); (Z.S.A.); (S.D.); (J.S.)
| | - Wei Zheng
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA; (S.X.-F.A.); (Z.S.A.); (S.D.); (J.S.)
- Purdue Institute for Integrative Neurosciences, Purdue University, West Lafayette, IN 47907, USA
| | - Zeynep Sena Agim
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA; (S.X.-F.A.); (Z.S.A.); (S.D.); (J.S.)
| | - Sarah Du
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA; (S.X.-F.A.); (Z.S.A.); (S.D.); (J.S.)
| | - Sheila Fleming
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA;
| | - Jonathan Shannahan
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA; (S.X.-F.A.); (Z.S.A.); (S.D.); (J.S.)
| | - Jason Cannon
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA; (S.X.-F.A.); (Z.S.A.); (S.D.); (J.S.)
- Purdue Institute for Integrative Neurosciences, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|