1
|
Kaufmann J, Haist M, Kur IM, Zimmer S, Hagemann J, Matthias C, Grabbe S, Schmidberger H, Weigert A, Mayer A. Tumor-stroma contact ratio - a novel predictive factor for tumor response to chemoradiotherapy in locally advanced oropharyngeal cancer. Transl Oncol 2024; 46:102019. [PMID: 38833784 PMCID: PMC11190748 DOI: 10.1016/j.tranon.2024.102019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/25/2024] [Accepted: 05/27/2024] [Indexed: 06/06/2024] Open
Abstract
The growth pattern of oropharyngeal squamous cell carcinomas (OPSCC) varies from compact tumor cell aggregates to diffusely infiltrating tumor cell-clusters. The influence of the growth pattern on local tumor control and survival has been studied mainly for surgically treated oral cavity carcinomas on a visual basis. In this study, we used multiplex immunofluorescence staining (mIF) to examine the antigens pan-cytokeratin, p16INK4a, Ki67, CD271, PD-L1, and CD8 in pretherapeutic biopsies from 86 OPSCC. We introduce Tumor-stroma contact ratio (TSC), a novel parameter, to quantify the relationship between tumor cells in contact with the stromal surface and the total number of epithelial tumor cells. mIF tumor cores were analyzed at the single-cell level, and tumor-stromal contact area was quantified using the R package "Spatstat". TSC was correlated with the visually assessed invasion pattern by two independent investigators. Furthermore, TSC was analyzed in relation to clinical parameters and patient survival data to evaluate its potential prognostic significance. Higher TSC correlated with poor response to (chemo-)radiotherapy (r = 0.3, p < 0.01), and shorter overall (OS) and progression-free (PFS) survival (median OS: 13 vs 136 months, p < 0.0001; median PFS: 5 vs 85 months, p < 0.0001). Visual categorization of growth pattern according to established criteria of tumor aggressiveness showed interobserver variability increasing with more nuanced categories (2 categories: k = 0.7, 95 %-CI: 0.55 - 0.85; 4 categories k = 0.48, 95 %-CI: 0.35 - 0.61). In conclusion, TSC is an objective and reproducible computer-based parameter to quantify tumor-stroma contact area. We demonstrate its relevance for the response of oropharyngeal carcinomas to primary (chemo-)radiotherapy.
Collapse
Affiliation(s)
- Justus Kaufmann
- Department of Radiation Oncology and Radiotherapy, University Medical Center of the Johannes-Gutenberg-University, Mainz 55131, Germany.
| | - Maximilian Haist
- Department of Dermatology, University Medical Center of the Johannes-Gutenberg-University, 55131 Mainz, Germany; Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ivan-Maximiliano Kur
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60596 Frankfurt, Germany
| | - Stefanie Zimmer
- Institute of Pathology, University Medical Center of the Johannes-Gutenberg-University, 55131 Mainz, Germany
| | - Jan Hagemann
- Department of Otorhinolaryngology, University Medical Center of the Johannes-Gutenberg-University, Mainz 55131, Germany
| | - Christoph Matthias
- Department of Otorhinolaryngology, University Medical Center of the Johannes-Gutenberg-University, Mainz 55131, Germany
| | - Stephan Grabbe
- Department of Dermatology, University Medical Center of the Johannes-Gutenberg-University, 55131 Mainz, Germany
| | - Heinz Schmidberger
- Department of Radiation Oncology and Radiotherapy, University Medical Center of the Johannes-Gutenberg-University, Mainz 55131, Germany
| | - Andreas Weigert
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60596 Frankfurt, Germany
| | - Arnulf Mayer
- Department of Radiation Oncology and Radiotherapy, University Medical Center of the Johannes-Gutenberg-University, Mainz 55131, Germany; Division of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia
| |
Collapse
|
2
|
Li W, You L, Lin J, Zhang J, Zhou Z, Wang T, Wu Y, Zheng C, Gao Y, Kong X, Sun X. An herbal formula Shenlian decoction upregulates M1/M2 macrophage proportion in hepatocellular carcinoma by suppressing complement cascade. Biomed Pharmacother 2024; 177:116943. [PMID: 38878636 DOI: 10.1016/j.biopha.2024.116943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 06/04/2024] [Accepted: 06/10/2024] [Indexed: 07/28/2024] Open
Abstract
The immunosuppressive microenvironment is a vital factor for the hepatocellular carcinoma (HCC) progression. However, effective treatment is lacking at current. Shenlian decoction (SLD) is a registered herbal therapy for the HCC treatment, but the underlying mechanism of SLD remains largely elusive. Here, we aimed to explore the anti-tumor effect of SLD in the treatment of HCC. SLD was intragastrically given after the tumor initiation in β-catenin/C-Met or DEN and CCl4 induced HCC mouse model. The tumor growth levels were evaluated by liver weight and histological staining. The tumor-infiltrating immune cells were detected by immunological staining and flow cytometry. The mechanism of the SLD was detected by non-targeted proteomics and verified by a cell co-culture system. The result showed that SLD significantly attenuated HCC progression. SLD promoted macrophage infiltration and increased the M1/M2 macrophage ratio within the tumor tissues. Non-targeted proteomics showed the inhibition of complement C5/C5a signaling is the key mechanism of SLD. Immunological staining showed SLD inhibited C5/C5a expression and C5aR1+ macrophage infiltration. The suggested mechanism was demonstrated by application of C5aR1 inhibitor, PMX-53 in mouse HCC model. Hepatoma cell-macrophage co-culture showed SLD targeted hepatoma cells and inhibited the supernatant-induced macrophage M2 polarization. SLD inhibited AMPK/p38 signaling which is an upstream mechanism of C5 transcription. In conclusion, we found SLD relieved immune-suppressive environment by inhibiting C5 expression. SLD could suppress the C5 secretion in hepatoma cells via inhibition of AMPK/p38 signaling. We suggested that SLD is a potential herbal therapy for the treatment of HCC by alleviating immune-suppressive status.
Collapse
Affiliation(s)
- Wenxuan Li
- Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Central Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Liping You
- Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Central Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiacheng Lin
- Central Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jinghao Zhang
- Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhijia Zhou
- Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Central Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tao Wang
- Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Central Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuelan Wu
- Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Central Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chao Zheng
- Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yueqiu Gao
- Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Central Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Xiaoni Kong
- Central Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Xuehua Sun
- Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
3
|
Chang C, Chavarro VS, Gerstl JVE, Blitz SE, Spanehl L, Dubinski D, Valdes PA, Tran LN, Gupta S, Esposito L, Mazzetti D, Gessler FA, Arnaout O, Smith TR, Friedman GK, Peruzzi P, Bernstock JD. Recurrent Glioblastoma-Molecular Underpinnings and Evolving Treatment Paradigms. Int J Mol Sci 2024; 25:6733. [PMID: 38928445 PMCID: PMC11203521 DOI: 10.3390/ijms25126733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/13/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024] Open
Abstract
Glioblastoma is the most common and lethal central nervous system malignancy with a median survival after progression of only 6-9 months. Major biochemical mechanisms implicated in glioblastoma recurrence include aberrant molecular pathways, a recurrence-inducing tumor microenvironment, and epigenetic modifications. Contemporary standard-of-care (surgery, radiation, chemotherapy, and tumor treating fields) helps to control the primary tumor but rarely prevents relapse. Cytoreductive treatment such as surgery has shown benefits in recurrent glioblastoma; however, its use remains controversial. Several innovative treatments are emerging for recurrent glioblastoma, including checkpoint inhibitors, chimeric antigen receptor T cell therapy, oncolytic virotherapy, nanoparticle delivery, laser interstitial thermal therapy, and photodynamic therapy. This review seeks to provide readers with an overview of (1) recent discoveries in the molecular basis of recurrence; (2) the role of surgery in treating recurrence; and (3) novel treatment paradigms emerging for recurrent glioblastoma.
Collapse
Affiliation(s)
- Christopher Chang
- Warren Alpert Medical School, Brown University, Providence, RI 02912, USA;
| | - Velina S. Chavarro
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA; (V.S.C.); (J.V.E.G.); (S.E.B.); (L.S.); (S.G.); (D.M.); (O.A.); (T.R.S.); (J.D.B.)
| | - Jakob V. E. Gerstl
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA; (V.S.C.); (J.V.E.G.); (S.E.B.); (L.S.); (S.G.); (D.M.); (O.A.); (T.R.S.); (J.D.B.)
| | - Sarah E. Blitz
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA; (V.S.C.); (J.V.E.G.); (S.E.B.); (L.S.); (S.G.); (D.M.); (O.A.); (T.R.S.); (J.D.B.)
- Harvard Medical School, Harvard University, Boston, MA 02115, USA
| | - Lennard Spanehl
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA; (V.S.C.); (J.V.E.G.); (S.E.B.); (L.S.); (S.G.); (D.M.); (O.A.); (T.R.S.); (J.D.B.)
- Department of Neurosurgery, University of Rostock, 18055 Rostock, Germany; (D.D.); (F.A.G.)
| | - Daniel Dubinski
- Department of Neurosurgery, University of Rostock, 18055 Rostock, Germany; (D.D.); (F.A.G.)
| | - Pablo A. Valdes
- Department of Neurosurgery, University of Texas Medical Branch, Galveston, TX 77555, USA;
| | - Lily N. Tran
- Division of Biology and Medicine, Brown University, Providence, RI 02912, USA;
| | - Saksham Gupta
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA; (V.S.C.); (J.V.E.G.); (S.E.B.); (L.S.); (S.G.); (D.M.); (O.A.); (T.R.S.); (J.D.B.)
- Harvard Medical School, Harvard University, Boston, MA 02115, USA
| | - Luisa Esposito
- Department of Medicine and Surgery, Unicamillus University, 00131 Rome, Italy;
| | - Debora Mazzetti
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA; (V.S.C.); (J.V.E.G.); (S.E.B.); (L.S.); (S.G.); (D.M.); (O.A.); (T.R.S.); (J.D.B.)
| | - Florian A. Gessler
- Department of Neurosurgery, University of Rostock, 18055 Rostock, Germany; (D.D.); (F.A.G.)
| | - Omar Arnaout
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA; (V.S.C.); (J.V.E.G.); (S.E.B.); (L.S.); (S.G.); (D.M.); (O.A.); (T.R.S.); (J.D.B.)
- Harvard Medical School, Harvard University, Boston, MA 02115, USA
| | - Timothy R. Smith
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA; (V.S.C.); (J.V.E.G.); (S.E.B.); (L.S.); (S.G.); (D.M.); (O.A.); (T.R.S.); (J.D.B.)
- Harvard Medical School, Harvard University, Boston, MA 02115, USA
| | - Gregory K. Friedman
- Division of Pediatrics, Neuro-Oncology Section, MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Pierpaolo Peruzzi
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA; (V.S.C.); (J.V.E.G.); (S.E.B.); (L.S.); (S.G.); (D.M.); (O.A.); (T.R.S.); (J.D.B.)
- Harvard Medical School, Harvard University, Boston, MA 02115, USA
| | - Joshua D. Bernstock
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA; (V.S.C.); (J.V.E.G.); (S.E.B.); (L.S.); (S.G.); (D.M.); (O.A.); (T.R.S.); (J.D.B.)
- Harvard Medical School, Harvard University, Boston, MA 02115, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
4
|
Lu S, Liu M, Liu H, Yang C, Zhu J, Ling Y, Kuang H. Gestational exposure to bisphenol AF causes endocrine disorder of corpus luteum by altering ovarian SIRT-1/Nrf2/NF-kB expressions and macrophage proangiogenic function in mice. Biochem Pharmacol 2024; 220:115954. [PMID: 38043716 DOI: 10.1016/j.bcp.2023.115954] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/05/2023]
Abstract
Bisphenol AF (BPAF) is extensively used in industrial production as an emerging substitute for the earlier-used bisphenol A (BPA). Studies have found that BPAF had stronger estrogenic activities than BPA. However, the effects of BPAF on the luteal function of pregnancy and its possible mechanisms are largely unknown. In this study, pregnant mice were orally administered 3.0 and 30 mg/kg/day of BPAF from gestational day (GD) 1 to 8, and samples were collected on GD 8 and GD 19. Results showed that maternal exposure to BPAF impaired embryo implantation and reduced ovarian weight, and interfered with steroid hormone secretion, and decreased the numbers and areas of corpus luteum. BPAF treatment significantly down-regulated expression levels of ovarian Star, Cyp11a, Hsd3b1, and Cyp19a1 mRNA and CYP19a1 and ERα proteins. BPAF also disrupted markers of redox/inflammation key, including silent information regulator of transcript-1 (SIRT-1), nuclear factor erythroid 2-related factor 2 (Nrf2), and nuclear factor kappa-B (NF-ĸB) expressions along with reduced ovarian antioxidant (CAT and SOD) capacity, enhanced oxidant (H2O2 and MDA) and inflammatory factor (Il6 and Tnfa) activities. Furthermore, BPAF exposure inhibited macrophages with a pro-angiogenic phenotype that specifically expressed TIE-2, accompanied by inhibition of angiogenic factors (HIF1a, VEGFA, and Angpt1) and promotion of anti-angiogenic factor Ang-2 to suppress luteal angiogenesis. In addition, BPAF administration also induced luteolysis and apoptosis by up-regulation of COX-2, BAX/BCL-2, and Cleaved-Caspase-3 protein. Collectively, our current data demonstrated that gestational exposure to BPAF caused luteal endocrine disorder by altering ovarian SIRT-1/Nrf2/NF-kB expressions and macrophage proangiogenic function in mice.
Collapse
Affiliation(s)
- Siying Lu
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China.
| | - Mengling Liu
- Nursing School of Jiujiang University, Jiujiang, Jiangxi 332000, PR China.
| | - Hui Liu
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China.
| | - Chuanzhen Yang
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China.
| | - Jun Zhu
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China.
| | - Yan Ling
- Department of Obstetrics and Gynecology, Jiangxi Provincial People's Hospital Affiliated Nanchang University, Nanchang, Jiangxi 330006, PR China.
| | - Haibin Kuang
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China.
| |
Collapse
|
5
|
Panebianco M, Ciccarese C, Strusi A, Beccia V, Carbone C, Agostini A, Piro G, Tortora G, Iacovelli R. The Role of the Complement in Clear Cell Renal Carcinoma (ccRCC)-What Future Prospects Are There for Its Use in Clinical Practice? Cancers (Basel) 2024; 16:490. [PMID: 38339243 PMCID: PMC10854780 DOI: 10.3390/cancers16030490] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/12/2024] [Accepted: 01/18/2024] [Indexed: 02/12/2024] Open
Abstract
In recent years, the first-line available therapeutic options for metastatic renal cell carcinoma (mRCC) have radically changed with the introduction into clinical practice of new immune checkpoint inhibitor (ICI)-based combinations. Many efforts are focusing on identifying novel prognostic and predictive markers in this setting. The complement system (CS) plays a central role in promoting the growth and progression of mRCC. In particular, mRCC has been defined as an "aggressive complement tumor", which encompasses a group of malignancies with poor prognosie and highly expressed complement components. Several preclinical and retrospective studies have demonstrated the negative prognostic role of the complement in mRCC; however, there is little evidence on its possible role as a predictor of the response to ICIs. The purpose of this review is to explore more deeply the physio-pathological role of the complement in the development of RCC and its possible future use in clinical practice as a prognostic and predictive factor.
Collapse
Affiliation(s)
- Martina Panebianco
- Medical Oncology, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (M.P.); (C.C.); (C.C.); (A.A.); (G.P.); (G.T.)
| | - Chiara Ciccarese
- Medical Oncology, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (M.P.); (C.C.); (C.C.); (A.A.); (G.P.); (G.T.)
| | - Alessandro Strusi
- Medical Oncology, Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Rome, Italy; (A.S.); (V.B.)
| | - Viria Beccia
- Medical Oncology, Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Rome, Italy; (A.S.); (V.B.)
| | - Carmine Carbone
- Medical Oncology, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (M.P.); (C.C.); (C.C.); (A.A.); (G.P.); (G.T.)
| | - Antonio Agostini
- Medical Oncology, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (M.P.); (C.C.); (C.C.); (A.A.); (G.P.); (G.T.)
| | - Geny Piro
- Medical Oncology, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (M.P.); (C.C.); (C.C.); (A.A.); (G.P.); (G.T.)
| | - Giampaolo Tortora
- Medical Oncology, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (M.P.); (C.C.); (C.C.); (A.A.); (G.P.); (G.T.)
- Medical Oncology, Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Rome, Italy; (A.S.); (V.B.)
| | - Roberto Iacovelli
- Medical Oncology, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (M.P.); (C.C.); (C.C.); (A.A.); (G.P.); (G.T.)
- Medical Oncology, Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Rome, Italy; (A.S.); (V.B.)
| |
Collapse
|
6
|
Zhang RY, Cheng K, Huang ZY, Zhang XS, Li Y, Sun X, Yang XQ, Hu YG, Hou XL, Liu B, Chen W, Fan JX, Zhao YD. M1 macrophage-derived exosome for reprograming M2 macrophages and combining endogenous NO gas therapy with enhanced photodynamic synergistic therapy in colorectal cancer. J Colloid Interface Sci 2024; 654:612-625. [PMID: 37862809 DOI: 10.1016/j.jcis.2023.10.054] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/19/2023] [Accepted: 10/12/2023] [Indexed: 10/22/2023]
Abstract
Reprogramming immunosuppressive M2 macrophages into M1 macrophages in tumor site provides a new strategy for the immunotherapy of colorectal cancer. In this study, M1 macrophage-derived exosome nanoprobe (M1UC) with Ce6-loaded upconversion material is designed to enhance the photodynamic performance of Ce6 while reprogramming M2 macrophages at tumor site and producing NO gas for three-mode synergistic therapy. Under the excitation of near-infrared light at 808 nm, the probe can generate 660 nm up-conversion fluorescence, which enables the photosensitizer Ce6 to produce ROS efficiently. In addition, the probe leads the production of NO by nitric oxide synthase on exosomes. Confocal laser and flow cytometry results show that M1UC probe reprograms M2 macrophages into M1 macrophages with an efficiency of 95.12%. The cell experiments show that the apoptosis rate of the three-mode synergistic therapy group is 78.8%, and the therapeutic effect is significantly higher than those of the other single treatment groups. In vivo experiments results show that M1UC probes maximally gather at the tumor site after 12 h of intravenous injection in orthotopic colorectal cancer mice. After 808 nm laser irradiation, the survival rate of mice is 100% and the recurrence rate was 0 within 60 d, and the therapeutic effect is significantly higher than those of other single treatment groups, which is also confirmed by immunohistochemistry. This M1 macrophage-derived exosome nanoplatform which is based on the three modes of immunotherapy, gas therapy and photodynamic therapy, provides a new design idea for the diagnosis and treatment of deep tumors.
Collapse
Affiliation(s)
- Ruo-Yun Zhang
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, PR China; School of Bioengineering and Health, Wuhan Textile University, Wuhan 430200, Hubei, PR China; State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, Hubei, PR China
| | - Kai Cheng
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, PR China
| | - Zhuo-Yao Huang
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, PR China
| | - Xiao-Shuai Zhang
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, PR China; Basic Medical Laboratory, General Hospital of Central Theater Command, Wuhan 430081, Hubei, PR China
| | - Yong Li
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, PR China
| | - Xing Sun
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, PR China
| | - Xiao-Quan Yang
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, PR China
| | - Yong-Guo Hu
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, PR China
| | - Xiao-Lin Hou
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, PR China
| | - Bo Liu
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, PR China
| | - Wei Chen
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, PR China
| | - Jin-Xuan Fan
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, PR China.
| | - Yuan-Di Zhao
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, PR China.
| |
Collapse
|
7
|
Kostecki KL, Iida M, Crossman BE, Salgia R, Harari PM, Bruce JY, Wheeler DL. Immune Escape Strategies in Head and Neck Cancer: Evade, Resist, Inhibit, Recruit. Cancers (Basel) 2024; 16:312. [PMID: 38254801 PMCID: PMC10814769 DOI: 10.3390/cancers16020312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Head and neck cancers (HNCs) arise from the mucosal lining of the aerodigestive tract and are often associated with alcohol use, tobacco use, and/or human papillomavirus (HPV) infection. Over 600,000 new cases of HNC are diagnosed each year, making it the sixth most common cancer worldwide. Historically, treatments have included surgery, radiation, and chemotherapy, and while these treatments are still the backbone of current therapy, several immunotherapies have recently been approved by the Food and Drug Administration (FDA) for use in HNC. The role of the immune system in tumorigenesis and cancer progression has been explored since the early 20th century, eventually coalescing into the current three-phase model of cancer immunoediting. During each of the three phases-elimination, equilibrium, and escape-cancer cells develop and utilize multiple strategies to either reach or remain in the final phase, escape, at which point the tumor is able to grow and metastasize with little to no detrimental interference from the immune system. In this review, we summarize the many strategies used by HNC to escape the immune system, which include ways to evade immune detection, resist immune cell attacks, inhibit immune cell functions, and recruit pro-tumor immune cells.
Collapse
Affiliation(s)
- Kourtney L. Kostecki
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA; (K.L.K.); (M.I.); (B.E.C.)
| | - Mari Iida
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA; (K.L.K.); (M.I.); (B.E.C.)
| | - Bridget E. Crossman
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA; (K.L.K.); (M.I.); (B.E.C.)
| | - Ravi Salgia
- Department of Medical Oncology and Experimental Therapeutics, Comprehensive Cancer Center, City of Hope, Duarte, CA 91010, USA;
| | - Paul M. Harari
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA; (K.L.K.); (M.I.); (B.E.C.)
- University of Wisconsin Carbone Cancer Center, Madison, WI 53705, USA;
| | - Justine Y. Bruce
- University of Wisconsin Carbone Cancer Center, Madison, WI 53705, USA;
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Deric L. Wheeler
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA; (K.L.K.); (M.I.); (B.E.C.)
- University of Wisconsin Carbone Cancer Center, Madison, WI 53705, USA;
| |
Collapse
|
8
|
Marsili F, Potgieter P, Birkill CF. Adaptive Autonomic and Neuroplastic Control in Diabetic Neuropathy: A Narrative Review. Curr Diabetes Rev 2024; 20:38-54. [PMID: 38018186 DOI: 10.2174/0115733998253213231031050044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 08/31/2023] [Accepted: 09/28/2023] [Indexed: 11/30/2023]
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) is a worldwide socioeconomic burden, and is accompanied by a variety of metabolic disorders, as well as nerve dysfunction referred to as diabetic neuropathy (DN). Despite a tremendous body of research, the pathogenesis of DN remains largely elusive. Currently, two schools of thought exist regarding the pathogenesis of diabetic neuropathy: a) mitochondrial-induced toxicity, and b) microvascular damage. Both mechanisms signify DN as an intractable disease and, as a consequence, therapeutic approaches treat symptoms with limited efficacy and risk of side effects. OBJECTIVE Here, we propose that the human body exclusively employs mechanisms of adaptation to protect itself during an adverse event. For this purpose, two control systems are defined, namely the autonomic and the neural control systems. The autonomic control system responds via inflammatory and immune responses, while the neural control system regulates neural signaling, via plastic adaptation. Both systems are proposed to regulate a network of temporal and causative connections which unravel the complex nature of diabetic complications. RESULTS A significant result of this approach infers that both systems make DN reversible, thus opening the door to novel therapeutic applications.
Collapse
Affiliation(s)
| | - Paul Potgieter
- Research Department, Algiamed Technologies, Burnaby, Canada
| | | |
Collapse
|
9
|
Ma L, Jiang J, Si Q, Chen C, Duan Z. IGF2BP3 Enhances the Growth of Hepatocellular Carcinoma Tumors by Regulating the Properties of Macrophages and CD8 + T Cells in the Tumor Microenvironment. J Clin Transl Hepatol 2023; 11:1308-1320. [PMID: 37719968 PMCID: PMC10500288 DOI: 10.14218/jcth.2023.00184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/26/2023] [Accepted: 06/21/2023] [Indexed: 09/19/2023] Open
Abstract
Background and Aims Overexpression of IGF2BP3 is associated with the prognosis of hepatocellular carcinoma (HCC). However, its role in regulating tumor immune microenvironment (TME) is not well characterized. Here, we investigated the effects of IGF2BP3 on macrophages and CD8+ T cells within the TME of HCC. Methods The relationship between IGF2BP3 and immune cell infiltration was analyzed using online bioinformatics tools. Knockout of IGF2BP3 in mouse hepatoma cell line Hepa1-6 was established using CRISPR/Cas9 technology. In vitro cell coculture and subcutaneously implanted hepatoma mice model were used to explore the effects of IGF2BP3 on immune cells. Expression of CCL5 or transforming growth factor beta 1 (TGF-β1) was detected with quantitative real-time polymerase chain reaction, western blotting, and enzyme-linked immunosorbent assay. The binding of IGF2BP3 and its target RNA was verified by trimolecular fluorescence complementation system and RNA immunoprecipitation followed by quantitative or semiquantitative polymerase chain reaction. Results IGF2BP3 expression was elevated in HCC and was positively correlated with macrophage infiltration. Patients with higher IGF2BP3 expression and lower macrophage infiltration had a better survival rate. We found that IGF2BP3 could bind to the mRNA of CCL5 or TGF-β1, increasing their expression, and inducing macrophage infiltration and M2 polarization while inhibiting the activation of CD8+ T cells. Furthermore, inhibition of IGF2BP3 combined with anti-CD47 antibody treatment significantly suppressed the growth of hepatoma in Hepa1-6 xenograft tumor mice. Conclusions IGF2BP3 promoted the infiltration and M2-polarization of macrophages and suppressed CD8+ T activation by enhancing CCL5 and TGF-β1 expression, which facilitated the progression of Hepa1-6 xenograft tumor.
Collapse
Affiliation(s)
- Lingyu Ma
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Jiayu Jiang
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Qin Si
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Chong Chen
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Zhaojun Duan
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| |
Collapse
|
10
|
Chen L, Alabdullah M, Mahnke K. Adenosine, bridging chronic inflammation and tumor growth. Front Immunol 2023; 14:1258637. [PMID: 38022572 PMCID: PMC10643868 DOI: 10.3389/fimmu.2023.1258637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Adenosine (Ado) is a well-known immunosuppressive agent that may be released or generated extracellularly by cells, via degrading ATP by the sequential actions of the ectonucleotides CD39 and CD73. During inflammation Ado is produced by leukocytes and tissue cells by different means to initiate the healing phase. Ado downregulates the activation and the effector functions of different leukocyte (sub-) populations and stimulates proliferation of fibroblasts for re-establishment of intact tissues. Therefore, the anti-inflammatory actions of Ado are already intrinsically triggered during each episode of inflammation. These tissue-regenerating and inflammation-tempering purposes of Ado can become counterproductive. In chronic inflammation, it is possible that Ado-driven anti-inflammatory actions sustain the inflammation and prevent the final clearance of the tissues from possible pathogens. These chronic infections are characterized by increased tissue damage, remodeling and accumulating DNA damage, and are thus prone for tumor formation. Developing tumors may further enhance immunosuppressive actions by producing Ado by themselves, or by "hijacking" CD39+/CD73+ cells that had already developed during chronic inflammation. This review describes different and mostly convergent mechanisms of how Ado-induced immune suppression, initially induced in inflammation, can lead to tumor formation and outgrowth.
Collapse
Affiliation(s)
| | | | - Karsten Mahnke
- Department of Dermatology, University Hospital Heidelberg, Im Neuenheimer Feld, Heidelberg, Germany
| |
Collapse
|
11
|
Dai Z, Li G, Wang X, Gao B, Gao X, Strappe P, Zhou Z. Mapping the metabolic characteristics of probiotic-fermented Ganoderma lucidum and its protective mechanism against Cd-induced nephrotoxicity. Food Funct 2023; 14:8615-8630. [PMID: 37668611 DOI: 10.1039/d3fo01587d] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
An animal model of Cd-induced kidney damage was designed to investigate the nephroprotective potential of the probiotic-fermented Ganoderma lucidum (FGL) via metabonomic analysis. The results showed that FGL enhanced sugar and amino acid metabolism. The interaction of Ganoderma lucidum (GL) and probiotics efficiently elevated short-chain fatty acid production following gut microbiota fermentation. The current data revealed that the FGL intervention alleviated Cd-induced nephrotoxicity via elevating the activity of antioxidant enzymes and decreasing the levels of pro-inflammatory and apoptotic factors. Based on transcriptome analysis, FGL intervention mediated renal dysfunction via decreasing the expressions of Nos2, Tnfsf14, S100a9, Map3k6 and Hk3, which were involved in oxidative stress, inflammatory response and the apoptosis process. The current study highlights a new approach for achieving positive nephroprotection via natural product intervention.
Collapse
Affiliation(s)
- Zhen Dai
- Key Laboratory for Processing and Quality Safety Control of Characteristic Agricultural Products, the Ministry of Agriculture and Rural Affairs, Shihezi University, Shihezi 832003, China
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Gaoheng Li
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xixi Wang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Bo Gao
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xiuwei Gao
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Padraig Strappe
- School of Medical and Applied Sciences, Central Queensland University, Rockhampton, Qld 4700, Australia
| | - Zhongkai Zhou
- Key Laboratory for Processing and Quality Safety Control of Characteristic Agricultural Products, the Ministry of Agriculture and Rural Affairs, Shihezi University, Shihezi 832003, China
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
- Gulbali Institute-Agriculture Water Environment, Charles Sturt University, Wagga Wagga, NSW 2678, Australia.
| |
Collapse
|
12
|
Liang S, Yao J, Liu D, Rao L, Chen X, Wang Z. Harnessing Nanomaterials for Cancer Sonodynamic Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2211130. [PMID: 36881527 DOI: 10.1002/adma.202211130] [Citation(s) in RCA: 45] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/12/2023] [Indexed: 06/18/2023]
Abstract
Immunotherapy has made remarkable strides in cancer therapy over the past decade. However, such emerging therapy still suffers from the low response rates and immune-related adverse events. Various strategies have been developed to overcome these serious challenges. Therein, sonodynamic therapy (SDT), as a non-invasive treatment, has received ever-increasing attention especially in the treatment of deep-seated tumors. Significantly, SDT can effectively induce immunogenic cell death to trigger systemic anti-tumor immune response, termed sonodynamic immunotherapy. The rapid development of nanotechnology has revolutionized SDT effects with robust immune response induction. As a result, more and more innovative nanosonosensitizers and synergistic treatment modalities are established with superior efficacy and safe profile. In this review, the recent advances in cancer sonodynamic immunotherapy are summarized with a particular emphasis on how nanotechnology can be explored to harness SDT for amplifying anti-tumor immune response. Moreover, the current challenges in this field and the prospects for its clinical translation are also presented. It is anticipated that this review can provide rational guidance and facilitate the development of nanomaterials-assisted sonodynamic immunotherapy, helping to pave the way for next-generation cancer therapy and eventually achieve a durable response in patients.
Collapse
Affiliation(s)
- Shuang Liang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Jianjun Yao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- School of Life Sciences and Biopharmaceutical Science, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Dan Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Lang Rao
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| | - Zhaohui Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| |
Collapse
|
13
|
Ouban A, Raddaoui E, Bakir M. The Clinical Significance of CD163+ Tumor-Associated Macrophages (TAMs) in Laryngeal Squamous Cell Carcinoma. Cureus 2023; 15:e36339. [PMID: 37082492 PMCID: PMC10111153 DOI: 10.7759/cureus.36339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2023] [Indexed: 04/22/2023] Open
Abstract
Background and objective The tumor's microenvironment is currently considered an important indicator of the tumor's prognosis, treatment failure, and recurrence. CD163+ tumor-associated macrophages (TAMs) are a marker of poor prognosis in many types of human cancers. In the present study, the expression of CD163+ TAMs was analyzed in laryngeal squamous cell carcinomas (LSCCs) using immunohistochemistry, and this expression was correlated with the clinical and pathological characteristics of LSCC patients. Materials and methods One commercial human larynx microarray with 80 cases of LSCCs, was used for this study. For comparison with normal laryngeal mucosa, a second microarray carrying normal tissues from all human anatomical sites, including normal laryngeal tissues, was used. Immunohistochemical staining was performed, and the primary antibody was a mouse monoclonal against human CD136. The absence of the primary antibody was used as a negative control. The percentage of positive cells was categorized into five scores: 0 (0%); 1, (1%-10%); 2, (11%-50%); 3, (51%-80%); and 4, (>80%). A case was scored as positive for CD163 with a score >= 1. The χ2 test was used to assess the CD163 expression in LSCC cases (N=80). A statistically significant difference was defined as P 0.05. Results The human larynx microarray containing 80 cases of LSCCs was used for this study. The age of the cancer patients in this array was in the range of 39 to 72, with a median of 53. LSCC grades were distributed as follows: 25 patients were designated as grade I, 43 were designated as grade II, and 6 were designated as grade III. Two tumors' (2/80) cores were missing from the microarray. Six tumors on the microarray did not have a grade designation reported by the manufacturer of the array. The expression of CD163 in normal, benign, unmatched laryngeal tissue was absent. In cancer cases, on the other hand, a significant number of LSCCs had TAMs that were positive for CD163 (87% positive tumors, with an IHC score ranging from 1 to 4, χ2=30.634; p<0.001). The rest of the LSCC cases (10 in total) had negative CD163 expression (score of 0). Conclusion A significant majority of LSCCs were found to have CD163+ TAMs expression using tissue microarrays (TMAs). This expression is positively correlated with the tumor's grade, clinical manifestation, and TNM staging. Morphologic evidence shows that the majority of LSCCs express the highest range of immunohistochemistry (IHC) scores for CD163 protein in the membranes and cytoplasm of their TAMs. This study provides evidence of the clinical significance of CD163+TAMs in LSCCs and proposes further studies to pinpoint the exact role of these cells in LSCC patients.
Collapse
Affiliation(s)
- Abderrahman Ouban
- Department of Pathology, College of Medicine, Alfaisal University, Riyadh, SAU
| | - Emadeddin Raddaoui
- Department of Pathology, College of Medicine, Alfaisal University, Riyadh, SAU
| | - Mohamad Bakir
- College of Medicine, Alfaisal University, Riyadh, SAU
| |
Collapse
|
14
|
The pro-tumorigenic responses in metastatic niches: an immunological perspective. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2023; 25:333-344. [PMID: 36136272 DOI: 10.1007/s12094-022-02950-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 09/07/2022] [Indexed: 01/27/2023]
Abstract
Metastasis is the leading cause of mortality related to cancer. In the course of metastasis, cancer cells detach from the primary tumor, enter the circulation, extravasate at secondary sites, and colonize there. All of these steps are rate limiting and decrease the efficiency of metastasis. Prior to their arrival, tumor cells can modify the secondary sites. These favorable microenvironments increase the probability of successful dissemination and are referred to as pre-metastatic niches. Cancer cells use different mechanisms to induce and maintain these niches, among which immune cells play prominent roles. The immune system, including innate and adaptive, enhances recruitment, extravasation, and colonization of tumor cells at distant sites. In addition to immune cells, stromal cells can also contribute to forming pre-metastatic niches. This review summarizes the pro-metastatic responses conducted by immune cells and the assistance of stromal cells and endothelial cells in the induction of pre-metastatic niches.
Collapse
|
15
|
Xia Y, Duan S, Han C, Jing C, Xiao Z, Li C. Hypoxia-responsive nanomaterials for tumor imaging and therapy. Front Oncol 2022; 12:1089446. [PMID: 36591450 PMCID: PMC9798000 DOI: 10.3389/fonc.2022.1089446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Hypoxia is an important component of tumor microenvironment and plays a pivotal role in cancer progression. With the distinctive physiochemical properties and biological effects, various nanoparticles targeting hypoxia had raised great interest in cancer imaging, drug delivery, and gene therapy during the last decade. In the current review, we provided a comprehensive view on the latest progress of novel stimuli-responsive nanomaterials targeting hypoxia-tumor microenvironment (TME), and their applications in cancer diagnosis and therapy. Future prospect and challenges of nanomaterials are also discussed.
Collapse
Affiliation(s)
- Yifei Xia
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shao Duan
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chaozhe Han
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chengwei Jing
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zunyu Xiao
- Department of Nuclear Medicine, The Fourth Hospital of Harbin Medical University, Harbin, China,*Correspondence: Chao Li, ; Zunyu Xiao,
| | - Chao Li
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China,*Correspondence: Chao Li, ; Zunyu Xiao,
| |
Collapse
|
16
|
Dolgova EV, Kirikovich SS, Levites EV, Ruzanova VS, Proskurina AS, Ritter GS, Taranov OS, Varaksin NA, Ryabicheva TG, Leplina OY, Ostanin AA, Chernykh ER, Bogachev SS. Analysis of the Biological Properties of Blood Plasma Protein with GcMAF Functional Activity. Int J Mol Sci 2022; 23:8075. [PMID: 35897653 PMCID: PMC9330714 DOI: 10.3390/ijms23158075] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/11/2022] [Accepted: 07/20/2022] [Indexed: 02/04/2023] Open
Abstract
The main problem related to the studies focusing on group-specific component protein-derived macrophage-activating factor (GcMAF) is the lack of clarity about changes occurring in different types of macrophages and related changes in their properties under the effect of GcMAF in various clinical conditions. We analyzed the antitumor therapeutic properties of GcMAF in a Lewis carcinoma model in two clinical conditions: untreated tumor lesion and tumor resorption after exposure to Karanahan therapy. GcMAF is formed during site-specific deglycosylation of vitamin D3 binding protein (DBP). DBP was obtained from the blood of healthy donors using affinity chromatography on a column with covalently bound actin. GcMAF-related factor (GcMAF-RF) was converted in a mixture with induced lymphocytes through the cellular enzymatic pathway. The obtained GcMAF-RF activates murine peritoneal macrophages (p < 0.05), induces functional properties of dendritic cells (p < 0.05) and promotes in vitro polarization of human M0 macrophages to M1 macrophages (p < 0.01). Treatment of whole blood cells with GcMAF-RF results in active production of both pro- and anti-inflammatory cytokines. It is shown that macrophage activation by GcMAF-RF is inhibited by tumor-secreted factors. In order to identify the specific antitumor effect of GcMAF-RF-activated macrophages, an approach to primary reduction of humoral suppressor activity of the tumor using the Karanahan therapy followed by macrophage activation in the tumor-associated stroma (TAS) was proposed. A prominent additive effect of GcMAF-RF, which enhances the primary immune response activation by the Karanahan therapy, was shown in the model of murine Lewis carcinoma. Inhibition of the suppressive effect of TAS is the main condition required for the manifestation of the antitumor effect of GcMAF-RF. When properly applied in combination with any chemotherapy, significantly reducing the humoral immune response at the advanced tumor site, GcMAF-RF is a promising antitumor therapeutic agent that additively destroys the pro-tumor properties of macrophages of the tumor stroma.
Collapse
Affiliation(s)
- Evgeniya V. Dolgova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.V.D.); (S.S.K.); (E.V.L.); (V.S.R.); (A.S.P.); (G.S.R.)
| | - Svetlana S. Kirikovich
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.V.D.); (S.S.K.); (E.V.L.); (V.S.R.); (A.S.P.); (G.S.R.)
| | - Evgeniy V. Levites
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.V.D.); (S.S.K.); (E.V.L.); (V.S.R.); (A.S.P.); (G.S.R.)
| | - Vera S. Ruzanova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.V.D.); (S.S.K.); (E.V.L.); (V.S.R.); (A.S.P.); (G.S.R.)
- Department of Natural Sciences, Novosibirsk National Research State University, 630090 Novosibirsk, Russia
| | - Anastasia S. Proskurina
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.V.D.); (S.S.K.); (E.V.L.); (V.S.R.); (A.S.P.); (G.S.R.)
| | - Genrikh S. Ritter
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.V.D.); (S.S.K.); (E.V.L.); (V.S.R.); (A.S.P.); (G.S.R.)
| | - Oleg S. Taranov
- State Research Center of Virology and Biotechnology “Vector”, 630559 Koltsovo, Russia;
| | | | | | - Olga Yu. Leplina
- Research Institute of Fundamental and Clinical Immunology, 630099 Novosibirsk, Russia; (O.Y.L.); (A.A.O.); (E.R.C.)
| | - Alexandr A. Ostanin
- Research Institute of Fundamental and Clinical Immunology, 630099 Novosibirsk, Russia; (O.Y.L.); (A.A.O.); (E.R.C.)
| | - Elena R. Chernykh
- Research Institute of Fundamental and Clinical Immunology, 630099 Novosibirsk, Russia; (O.Y.L.); (A.A.O.); (E.R.C.)
| | - Sergey S. Bogachev
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.V.D.); (S.S.K.); (E.V.L.); (V.S.R.); (A.S.P.); (G.S.R.)
| |
Collapse
|
17
|
Wu Q, Tu H, Li J. Multifaceted Roles of Chemokine C-X-C Motif Ligand 7 in Inflammatory Diseases and Cancer. Front Pharmacol 2022; 13:914730. [PMID: 35837284 PMCID: PMC9273993 DOI: 10.3389/fphar.2022.914730] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/07/2022] [Indexed: 11/13/2022] Open
Abstract
Over recent years, C-X-C motif ligand 7 (CXCL7) has received widespread attention as a chemokine involved in inflammatory responses. Abnormal production of the chemokine CXCL7 has been identified in different inflammatory diseases; nevertheless, the exact role of CXCL7 in the pathogenesis of inflammatory diseases is not fully understood. Persistent infection or chronic inflammation can induce tumorigenesis and progression. Previous studies have shown that the pro-inflammatory chemokine CXCL7 is also expressed by malignant tumor cells and that binding of CXCL7 to its cognate receptors C-X-C chemokine receptor 1 (CXCR1) and C-X-C chemokine receptor 2 (CXCR2) can influence tumor biological behavior (proliferation, invasion, metastasis, and tumor angiogenesis) in an autocrine and paracrine manner. CXCL7 and its receptor CXCR1/CXCR2, which are aberrantly expressed in tumors, may represent new targets for clinical tumor immunotherapy.
Collapse
Affiliation(s)
- Qianmiao Wu
- Department of Hematology, Second Affiliated Hospital of Nanchang University, Nanchang, China.,Department of Medicine, Nanchang University, Nanchang, China
| | - Huaijun Tu
- Department of Neurology, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jian Li
- Department of Hematology, Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
18
|
Radharani NNV, Yadav AS, Nimma R, Kumar TVS, Bulbule A, Chanukuppa V, Kumar D, Patnaik S, Rapole S, Kundu GC. Tumor-associated macrophage derived IL-6 enriches cancer stem cell population and promotes breast tumor progression via Stat-3 pathway. Cancer Cell Int 2022; 22:122. [PMID: 35300689 PMCID: PMC8932105 DOI: 10.1186/s12935-022-02527-9] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 02/21/2022] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Cancer stem cells (CSCs) play crucial role in tumor progression, drug resistance and relapse in various cancers. CSC niche is comprised of various stromal cell types including Tumor-associated macrophages (TAMs). Extrinsic ques derived from these cells help in maintenance of CSC phenotype. TAMs have versatile roles in tumor progression however their function in enrichment of CSC is poorly explored. METHODS Mouse macrophages (RAW264.7) cells were activated by interaction with conditioned media (CM) of murine breast cancer cells (4T1) into TAMs and the effect of activated macrophage (TAM) derived factors was examined on enrichment of cancer stem cells (CSCs) and tumor growth using in vitro and in vivo models. RESULTS In this study, we report that macrophages upon interaction with breast cancer cells activate tumor promoting function and exhibit differential expression of various proteins as shown by secretome analysis using proteomics studies. Based on secretome data, we found that Interleukin-6 (IL-6) is one of the up-regulated genes expressed in activated macrophages. Further, we confirm that TAMs produce high levels of IL-6 and breast cancer cell derived factors induce IL-6 production in activated macrophages via p38-MAPK pathway. Furthermore, we demonstrate that tumor activated macrophages induce enrichment of CSCs and expression of CSC specific transcription factors such as Sox-2, Oct-3/4 and Nanog in breast cancer cells. We further prove that TAM derived IL-6 plays a key role in TAM mediated CSC enrichment through activation of Signal transducer and activator of transcription 3 (STAT-3) signaling. TAM derived IL-6 influences breast cancer cell migration and angiogenesis. Moreover, our in vivo findings indicated that TAM derived IL-6 induces CSC population and resulting tumor growth in breast cancer. CONCLUSION These finding provide evidence that TAM derived IL-6 plays a major role in CSC enrichment and tumor progression in breast cancer and IL-6 and its regulated signalling network may act as potential therapeutic target for management of breast cancer.
Collapse
Affiliation(s)
- N N V Radharani
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Centre for Cell Science (NCCS), Pune, 411007, India.,School of Biotechnology, KIIT Deemed To Be University, Bhubaneswar, 751 024, India
| | - Amit S Yadav
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Centre for Cell Science (NCCS), Pune, 411007, India.,School of Biotechnology, KIIT Deemed To Be University, Bhubaneswar, 751 024, India
| | - Ramakrishna Nimma
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Centre for Cell Science (NCCS), Pune, 411007, India
| | - T V Santosh Kumar
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Centre for Cell Science (NCCS), Pune, 411007, India
| | - Anuradha Bulbule
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Centre for Cell Science (NCCS), Pune, 411007, India
| | - Venkatesh Chanukuppa
- Proteomics Laboratory, National Centre for Cell Science (NCCS), Pune, 411007, India
| | - Dhiraj Kumar
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77054, USA
| | - Srinivas Patnaik
- School of Biotechnology, KIIT Deemed To Be University, Bhubaneswar, 751 024, India
| | - Srikanth Rapole
- Proteomics Laboratory, National Centre for Cell Science (NCCS), Pune, 411007, India
| | - Gopal C Kundu
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Centre for Cell Science (NCCS), Pune, 411007, India. .,School of Biotechnology, KIIT Deemed To Be University, Bhubaneswar, 751 024, India. .,Kalinga Institute of Medical Sciences (KIMS), KIIT Deemed To Be University, Bhubaneswar, 751024, India.
| |
Collapse
|
19
|
Bone marrow-independent adventitial macrophage progenitor cells contribute to angiogenesis. Cell Death Dis 2022; 13:220. [PMID: 35264563 PMCID: PMC8907187 DOI: 10.1038/s41419-022-04605-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 01/11/2022] [Accepted: 02/01/2022] [Indexed: 12/21/2022]
Abstract
Pathological angiogenesis promotes tumor growth, metastasis, and atherosclerotic plaque rupture. Macrophages are key players in these processes. However, whether these macrophages differentiate from bone marrow-derived monocytes or from local vascular wall-resident stem and progenitor cells (VW-SCs) is an unresolved issue of angiogenesis. To answer this question, we analyzed vascular sprouting and alterations in aortic cell populations in mouse aortic ring assays (ARA). ARA culture leads to the generation of large numbers of macrophages, especially within the aortic adventitia. Using immunohistochemical fate-mapping and genetic in vivo-labeling approaches we show that 60% of these macrophages differentiate from bone marrow-independent Ly6c+/Sca-1+ adventitial progenitor cells. Analysis of the NCX−/− mouse model that genetically lacks embryonic circulation and yolk sac perfusion indicates that at least some of those progenitor cells arise yolk sac-independent. Macrophages represent the main source of VEGF in ARA that vice versa promotes the generation of additional macrophages thereby creating a pro-angiogenetic feedforward loop. Additionally, macrophage-derived VEGF activates CD34+ progenitor cells within the adventitial vasculogenic zone to differentiate into CD31+ endothelial cells. Consequently, depletion of macrophages and VEGFR2 antagonism drastically reduce vascular sprouting activity in ARA. In summary, we show that angiogenic activation induces differentiation of macrophages from bone marrow-derived as well as from bone marrow-independent VW-SCs. The latter ones are at least partially yolk sac-independent, too. Those VW-SC-derived macrophages critically contribute to angiogenesis, making them an attractive target to interfere with pathological angiogenesis in cancer and atherosclerosis as well as with regenerative angiogenesis in ischemic cardiovascular disorders.
Collapse
|
20
|
Habanjar O, Diab-Assaf M, Caldefie-Chezet F, Delort L. The Impact of Obesity, Adipose Tissue, and Tumor Microenvironment on Macrophage Polarization and Metastasis. BIOLOGY 2022; 11:339. [PMID: 35205204 PMCID: PMC8869089 DOI: 10.3390/biology11020339] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/19/2022] [Accepted: 02/15/2022] [Indexed: 12/11/2022]
Abstract
Tumor metastasis is a major cause of death in cancer patients. It involves not only the intrinsic alterations within tumor cells, but also crosstalk between these cells and components of the tumor microenvironment (TME). Tumorigenesis is a complex and dynamic process, involving the following three main stages: initiation, progression, and metastasis. The transition between these stages depends on the changes within the extracellular matrix (ECM), in which tumor and stromal cells reside. This matrix, under the effect of growth factors, cytokines, and adipokines, can be morphologically altered, degraded, or reorganized. Many cancers evolve to form an immunosuppressive TME locally and create a pre-metastatic niche in other tissue sites. TME and pre-metastatic niches include myofibroblasts, immuno-inflammatory cells (macrophages), adipocytes, blood, and lymphatic vascular networks. Several studies have highlighted the adipocyte-macrophage interaction as a key driver of cancer progression and dissemination. The following two main classes of macrophages are distinguished: M1 (pro-inflammatory/anti-tumor) and M2 (anti-inflammatory/pro-tumor). These cells exhibit distinct microenvironment-dependent phenotypes that can promote or inhibit metastasis. On the other hand, obesity in cancer patients has been linked to a poor prognosis. In this regard, tumor-associated adipocytes modulate TME through the secretion of inflammatory mediators, which modulate and recruit tumor-associated macrophages (TAM). Hereby, this review describes the cellular and molecular mechanisms that link inflammation, obesity, and cancer. It provides a comprehensive overview of adipocytes and macrophages in the ECM as they control cancer initiation, progression, and invasion. In addition, it addresses the mechanisms of tumor anchoring and recruitment for M1, M2, and TAM macrophages, specifically highlighting their origin, classification, polarization, and regulatory networks, as well as their roles in the regulation of angiogenesis, invasion, metastasis, and immunosuppression, specifically highlighting the role of adipocytes in this process.
Collapse
Affiliation(s)
- Ola Habanjar
- Université Clermont-Auvergne, INRAE, UNH, ECREIN, f-63000 Clermont-Ferrand, France; (O.H.); (F.C.-C.)
| | - Mona Diab-Assaf
- Equipe Tumorigénèse Pharmacologie moléculaire et anticancéreuse, Faculté des Sciences II, Université libanaise Fanar, Beyrouth 1500, Liban;
| | - Florence Caldefie-Chezet
- Université Clermont-Auvergne, INRAE, UNH, ECREIN, f-63000 Clermont-Ferrand, France; (O.H.); (F.C.-C.)
| | - Laetitia Delort
- Université Clermont-Auvergne, INRAE, UNH, ECREIN, f-63000 Clermont-Ferrand, France; (O.H.); (F.C.-C.)
| |
Collapse
|
21
|
Blitz SE, Kappel AD, Gessler FA, Klinger NV, Arnaout O, Lu Y, Peruzzi PP, Smith TR, Chiocca EA, Friedman GK, Bernstock JD. Tumor-Associated Macrophages/Microglia in Glioblastoma Oncolytic Virotherapy: A Double-Edged Sword. Int J Mol Sci 2022; 23:1808. [PMID: 35163730 PMCID: PMC8836356 DOI: 10.3390/ijms23031808] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 01/29/2022] [Accepted: 02/01/2022] [Indexed: 02/06/2023] Open
Abstract
Oncolytic virotherapy is a rapidly progressing field that uses oncolytic viruses (OVs) to selectively infect malignant cells and cause an antitumor response through direct oncolysis and stimulation of the immune system. Despite demonstrated pre-clinical efficacy of OVs in many cancer types and some favorable clinical results in glioblastoma (GBM) trials, durable increases in overall survival have remained elusive. Recent evidence has emerged that tumor-associated macrophage/microglia (TAM) involvement is likely an important factor contributing to OV treatment failure. It is prudent to note that the relationship between TAMs and OV therapy failures is complex. Canonically activated TAMs (i.e., M1) drive an antitumor response while also inhibiting OV replication and spread. Meanwhile, M2 activated TAMs facilitate an immunosuppressive microenvironment thereby indirectly promoting tumor growth. In this focused review, we discuss the complicated interplay between TAMs and OV therapies in GBM. We review past studies that aimed to maximize effectiveness through immune system modulation-both immunostimulatory and immunosuppressant-and suggest future directions to maximize OV efficacy.
Collapse
Affiliation(s)
- Sarah E. Blitz
- Harvard Medical School, Boston, MA 02115, USA; (S.E.B.); (A.D.K.); (N.V.K); (O.A.); (Y.L.); (P.P.P.); (T.R.S.); (E.A.C.)
| | - Ari D. Kappel
- Harvard Medical School, Boston, MA 02115, USA; (S.E.B.); (A.D.K.); (N.V.K); (O.A.); (Y.L.); (P.P.P.); (T.R.S.); (E.A.C.)
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Florian A. Gessler
- Department of Neurosurgery, University Medicine Rostock, 18057 Rostock, Germany;
| | - Neil V. Klinger
- Harvard Medical School, Boston, MA 02115, USA; (S.E.B.); (A.D.K.); (N.V.K); (O.A.); (Y.L.); (P.P.P.); (T.R.S.); (E.A.C.)
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Omar Arnaout
- Harvard Medical School, Boston, MA 02115, USA; (S.E.B.); (A.D.K.); (N.V.K); (O.A.); (Y.L.); (P.P.P.); (T.R.S.); (E.A.C.)
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Yi Lu
- Harvard Medical School, Boston, MA 02115, USA; (S.E.B.); (A.D.K.); (N.V.K); (O.A.); (Y.L.); (P.P.P.); (T.R.S.); (E.A.C.)
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Pier Paolo Peruzzi
- Harvard Medical School, Boston, MA 02115, USA; (S.E.B.); (A.D.K.); (N.V.K); (O.A.); (Y.L.); (P.P.P.); (T.R.S.); (E.A.C.)
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Timothy R. Smith
- Harvard Medical School, Boston, MA 02115, USA; (S.E.B.); (A.D.K.); (N.V.K); (O.A.); (Y.L.); (P.P.P.); (T.R.S.); (E.A.C.)
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Ennio A. Chiocca
- Harvard Medical School, Boston, MA 02115, USA; (S.E.B.); (A.D.K.); (N.V.K); (O.A.); (Y.L.); (P.P.P.); (T.R.S.); (E.A.C.)
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Gregory K. Friedman
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Joshua D. Bernstock
- Harvard Medical School, Boston, MA 02115, USA; (S.E.B.); (A.D.K.); (N.V.K); (O.A.); (Y.L.); (P.P.P.); (T.R.S.); (E.A.C.)
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA
| |
Collapse
|
22
|
Emami F, Banstola A, Jeong JH, Yook S. Cetuximab-anchored gold nanorod mediated photothermal ablation of breast cancer cell in spheroid model embedded with tumor associated macrophage. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2021.10.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
23
|
Li J, Liu W, Dong X, Dai Y, Chen S, Zhao E, Liu Y, Bao H. The construction and analysis of ceRNA network and patterns of immune infiltration in lung adenocarcinoma. BMC Cancer 2021; 21:1228. [PMID: 34781924 PMCID: PMC8594182 DOI: 10.1186/s12885-021-08932-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 10/25/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Competitive Endogenous RNA (ceRNA) may be closely associated with tumor progression. However, studies on ceRNAs and immune cells in LUAD are scarce. METHOD The profiles of gene expression and clinical data of LUAD patients were extracted from the TCGA database. Bioinformatics methods were used to evaluate differentially-expressed genes (DEGs) and to form a ceRNA network. Preliminary verification of clinical specimens was utilized to detect the expressions of key biomarkers at the tissues. Cox and Lasso regressions were used to identify key genes, and prognosis prediction nomograms were formed. The mRNA levels of 9 genes in the risk score model in independent clinical LUAD samples were detected by qRT-PCR. The interconnection between the risk of cancer and immune cells was evaluated using the CIBERSORT algorithm, while the conformation of notable tumor-infiltrating immune cells (TIICs) in the LUAD tissues of the high and low risk groups was assessed using the RNA transcript subgroup in order to identify tissue types. Finally, co-expression study was used to examine the interconnection between the key genes in the ceRNA networks and the immune cells. RESULT A ceRNA network of 115 RNAs was established, and nine key genes were identified to construct a Cox proportional-hazard model and create a prognostic nomogram. This risk-assessment model might serve as an independent factor to forecast the prognosis of LUAD, and it was consistent with the preliminary verification of clinical specimens. Survival analysis of clinical samples further validated the potential value of high risk groups in predicting LUAD prognosis. Five immune cells were identified with significant differences in the LUAD tissues of the high and low risk groups. Besides, two pairs of biomarkers associated with the growth of LUAD were found, i.e., E2F7 and macrophage M1 (R = 0.419, p = 1.4e- 08) and DBF4 and macrophage M1 (R = 0.282, p < 2.2 e- 16). CONCLUSION This study identified several important ceRNAs, i.e. (E2F7 and BNF4) and TIICs (macrophage M1), which might be related to the development and prognosis of LUAD. The established risk-assessment model might be a potential tool in predicting LUAD of prognosis.
Collapse
Affiliation(s)
- Jinglong Li
- Department of Thoracic Surgery, The Second Affiliated Hospital of Qiqihar Medical College, No.37, West Zhonghua Road, Jianhua District, Qiqihar, 161000, Heilongjiang Province, China
| | - Wenyao Liu
- Department of Thoracic Surgery, The Second Affiliated Hospital of Qiqihar Medical College, No.37, West Zhonghua Road, Jianhua District, Qiqihar, 161000, Heilongjiang Province, China
| | - Xiaocheng Dong
- Department of Thoracic Surgery, The Second Affiliated Hospital of Qiqihar Medical College, No.37, West Zhonghua Road, Jianhua District, Qiqihar, 161000, Heilongjiang Province, China
| | - Yunfeng Dai
- Laboratory Department of the Second Affiliated Hospital of Qiqihar Medical College, Qiqihar, Heilongjiang Province, China
| | - Shaosen Chen
- Department of Thoracic Surgery, The Second Affiliated Hospital of Qiqihar Medical College, No.37, West Zhonghua Road, Jianhua District, Qiqihar, 161000, Heilongjiang Province, China
| | - Enliang Zhao
- Department of Thoracic Surgery, The Second Affiliated Hospital of Qiqihar Medical College, No.37, West Zhonghua Road, Jianhua District, Qiqihar, 161000, Heilongjiang Province, China
| | - Yunlong Liu
- Department of Thoracic Surgery, The Second Affiliated Hospital of Qiqihar Medical College, No.37, West Zhonghua Road, Jianhua District, Qiqihar, 161000, Heilongjiang Province, China
| | - Hongguang Bao
- Department of Thoracic Surgery, The Second Affiliated Hospital of Qiqihar Medical College, No.37, West Zhonghua Road, Jianhua District, Qiqihar, 161000, Heilongjiang Province, China.
| |
Collapse
|
24
|
The Dog as a Model to Study the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1329:123-152. [PMID: 34664237 DOI: 10.1007/978-3-030-73119-9_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Cancer is a complex and dynamic disease with an outcome that depends on a strict crosstalk between tumor cells and other components in tumor microenvironment, namely, tumor-infiltrating immune cells, fibroblasts, cancer stem cells, adipocytes, and endothelial cells. Within the tumor microenvironment, macrophages and T-lymphocytes appear to be key effectors during the several steps of tumor initiation and progression. Tumor cells, through the release of a plethora of signaling molecules, can induce immune tolerance, by avoiding immune surveillance, and inhibit immune cells cytotoxic functions. Furthermore, as the tumor grows, tumor microenvironment reveals a series of dysfunctional conditions that potentiate a polarization of harmful humoral Th2 and Th17, an upregulation of Treg cells, and a differentiation of macrophages into the M2 subtype, which contribute to the activation of several signaling pathways involving important tissue biomarkers (COX-2, EGFR, VEGF) implicated in cancer aggressiveness and poor clinical outcomes. In order to maintain the tumor growth, cancer cells acquire several adaptations such as neovascularization and metabolic reprogramming. An extensive intracellular production of lactate and protons is observed in tumor cells as a result of their high glycolytic metabolism. This contributes not only for the microenvironment pH alteration but also to shape the immune response that ultimately impairs immune cells capabilities and effector functions.In this chapter, the complexity of tumor microenvironment, with special focus on macrophages, T-lymphocytes, and the impact of lactate efflux, was reviewed, always trying to demonstrate the strong similarities between data from studies of humans and dogs, a widely proposed model for comparative oncology studies.
Collapse
|
25
|
Tzeng HE, Tang CH, Tsai CH, Chiu CH, Wu MH, Yen Y. ET-1 Promotes Epithelial-Mesenchymal Transition in Oral Squamous Cell Carcinoma Cells via the microRNA-489-3p /TWIST Axis. Onco Targets Ther 2021; 14:5005-5018. [PMID: 34675545 PMCID: PMC8502871 DOI: 10.2147/ott.s294312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 08/23/2021] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE Oral squamous cell carcinoma (OSCC) constitutes almost 90% of head and neck malignancies and has a poor prognosis. To improve the efficacy of OSCC therapy, it is of great significance to explore other therapy for OSCC. Endothelin-1 (ET-1), a potent vasoconstrictor peptide, is implicated in cancer pathogenesis. Moreover, ET-1 promotes epithelial-mesenchymal transition (EMT) during the development of human cancers. We further to found that ET-1 exposure induced EMT in human squamous cell carcinoma cell lines SCC4 and SAS, by enhancing the expression of EMT biomarkers N-cadherin and vimentin and reducing E-cadherin expression via upregulation of the transcription factor TWIST. MATERIALS AND METHODS Cell motility was examined by migration, invasion and wound-healing assays. Quantitative real time polymerase chain reaction (q-PCR), and promoter assays confirmed the inhibitory effects of ET-1 on miRNAs expression in oral cancer cells. We demonstrate an intravenous injection model of lung metastasis followed by an advanced method for quantifying metastatic tumor using image analysis software. RESULTS In addition, ET-1/ETAR reduced levels of microRNA-489-3p (miR-489-3p), a transcriptional repressor of TWIST. We have identified a novel bypass mechanism through which ET-1/ETAR are involved in TWIST signaling and downregulate miR-489-3p expression, enabling OSCC cells to acquire the EMT phenotype. Notably, ET-1 knockdown dramatically decreased levels of EMT markers and cell migration potential. CONCLUSION The role of ET-1 in OSCC progression is supported by our findings from an in vivo murine model of OSCC. ET-1 may therefore represent a novel molecular therapeutic target in OSCC metastasis.
Collapse
Affiliation(s)
- Huey-En Tzeng
- Taipei Cancer Center, Taipei Medical University, Taipei, Taiwan
- PhD Program & Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Division of Hematology/Oncology, Department of Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| | - Chih-Hsin Tang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- School of Medicine, China Medical University, Taichung, Taiwan
- Chinese Medicine Research Center, China Medical University, Taichung, Taiwan
- Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan
| | - Chun-Hao Tsai
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Chih-Hui Chiu
- Graduate Program in Department of Exercise Health Science, National Taiwan University of Sport, Taichung, Taiwan
| | - Min-Huan Wu
- Sports Recreation and Health Management Continuing Studies, Tunghai University, Taichung, Taiwan
- Bachelor of Science in Senior Wellness and Sport Science, Tunghai University, Taichung, Taiwan
| | - Yun Yen
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Medical Informatics, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
26
|
Jones JO, Moody WM, Shields JD. Microenvironmental modulation of the developing tumour: an immune-stromal dialogue. Mol Oncol 2021; 15:2600-2633. [PMID: 32741067 PMCID: PMC8486574 DOI: 10.1002/1878-0261.12773] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/03/2020] [Accepted: 07/27/2020] [Indexed: 12/17/2022] Open
Abstract
Successful establishment of a tumour relies on a cascade of interactions between cancer cells and stromal cells within an evolving microenvironment. Both immune and nonimmune cellular components are key factors in this process, and the individual players may change their role from tumour elimination to tumour promotion as the microenvironment develops. While the tumour-stroma crosstalk present in an established tumour is well-studied, aspects in the early tumour or premalignant microenvironment have received less attention. This is in part due to the challenges in studying this process in the clinic or in mouse models. Here, we review the key anti- and pro-tumour factors in the early microenvironment and discuss how understanding this process may be exploited in the clinic.
Collapse
Affiliation(s)
- James O. Jones
- MRC Cancer UnitHutchison/MRC Research CentreUniversity of CambridgeCambridgeUK
- Department of OncologyCambridge University Hospitals NHS Foundation TrustCambridgeUK
| | - William M. Moody
- MRC Cancer UnitHutchison/MRC Research CentreUniversity of CambridgeCambridgeUK
| | | |
Collapse
|
27
|
Crosstalk between Macrophages and Myxoid Liposarcoma Cells Increases Spreading and Invasiveness of Tumor Cells. Cancers (Basel) 2021; 13:cancers13133298. [PMID: 34209309 PMCID: PMC8268435 DOI: 10.3390/cancers13133298] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 06/24/2021] [Accepted: 06/26/2021] [Indexed: 12/28/2022] Open
Abstract
Myxoid liposarcoma (MLPS) is the second most common subtype of liposarcoma and has tendency to metastasize to soft tissues. To date, the mechanisms of invasion and metastasis of MLPS remain unclear, and new therapeutic strategies that improve patients' outcomes are expected. In this study, we analyzed by immunohistochemistry the immune cellular components and microvessel density in tumor tissues from patients affected by MLPS. In order to evaluate the effects of primary human MLPS cells on macrophage polarization and, in turn, the ability of macrophages to influence invasiveness of MLPS cells, non-contact and 3D organotypic co-cultures were set up. High grade MLPS tissues were found heavily vascularized, exhibited a CD3, CD4, and CD8 positive T lymphocyte-poor phenotype and were massively infiltrated by CD163 positive M2-like macrophages. Conversely, low grade MLPS tissues were infiltrated by a discrete amount of CD3, CD4, and CD8 positive T lymphocytes and a scarce amount of CD163 positive macrophages. Kaplan-Meier analysis revealed a shorter Progression Free Survival in MLPS patients whose tumor tissues were highly vascularized and heavily infiltrated by CD163 positive macrophages, indicating a clear-cut link between M2-like macrophage abundance and poor prognosis in patients. Moreover, we documented that, in co-culture, soluble factors produced by primary human MLPS cells induce macrophage polarization toward an M2-like phenotype which, in turn, increases MLPS cell capability to spread into extracellular matrix and to cross endothelial monolayers. The identification of M2-like polarization factors secreted by MLPS cells may allow to develop novel targeted therapies counteracting MLPS progression.
Collapse
|
28
|
Li X, Guo X, Ling J, Tang Z, Huang G, He L, Chen T. Nanomedicine-based cancer immunotherapies developed by reprogramming tumor-associated macrophages. NANOSCALE 2021; 13:4705-4727. [PMID: 33625411 DOI: 10.1039/d0nr08050k] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Tumor microenvironment is a complex ecosystem composed of tumor extracellular matrix, fibroblasts, blood vessels, and immune cells, promoting tumor development by secreting various growth factors, hydrolase, and inflammatory factors. Tumor-associated macrophages (TAMs) constitute the largest number of immune cells in the TME, and they have a "double-edged sword" effect on tumor growth, invasion, metastasis, angiogenesis, and immunosuppression. Under the regulation of different cytokines in the TME, the bidirectional TAMs can switch their phenotypes between tumoricidal M1-like and pro-tumorigenic M2-like macrophages. TAM polarization suggests that scientists can use this property to design drugs targeting this regulation as a promising immunotherapy strategy to enhance tumor therapy efficiency. In this review, we summarize a brief introduction of TAMs and their implications for tumorigenesis. Next, we review recent advances in designing various functionalized nanomedicines and their applications in nanomedicine-based cancer therapies that target TAMs by killing them, inhibiting macrophage recruitment, and repolarizing them from pro-tumorigenic M2-like to tumoricidal M1-like macrophages. Simultaneously, the regulation of nanomedicines on the signaling pathways accounting for these effects is also summarized. This review will not only provide background scientific information for the understanding of TAMs and their roles in cancer treatment but also help scientists design nanomedicines based on tumor TAMs, which can help achieve better clinical treatment outcomes for tumors.
Collapse
Affiliation(s)
- Xiaoying Li
- Department of Neurology and Stroke Center, The First Affiliated Hospital, and Department of Chemistry, Jinan University, Guangzhou 510632, China.
| | - Xiaoming Guo
- Department of Neurology and Stroke Center, The First Affiliated Hospital, and Department of Chemistry, Jinan University, Guangzhou 510632, China.
| | - Jiabao Ling
- Department of Neurology and Stroke Center, The First Affiliated Hospital, and Department of Chemistry, Jinan University, Guangzhou 510632, China.
| | - Zheng Tang
- Department of Neurology and Stroke Center, The First Affiliated Hospital, and Department of Chemistry, Jinan University, Guangzhou 510632, China.
| | - Guanning Huang
- Department of Neurology and Stroke Center, The First Affiliated Hospital, and Department of Chemistry, Jinan University, Guangzhou 510632, China.
| | - Lizhen He
- Department of Neurology and Stroke Center, The First Affiliated Hospital, and Department of Chemistry, Jinan University, Guangzhou 510632, China.
| | - Tianfeng Chen
- Department of Neurology and Stroke Center, The First Affiliated Hospital, and Department of Chemistry, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
29
|
Kannan S, Lee M, Muthusamy S, Blasiak A, Sriram G, Cao T. Peripheral sensory neurons promote angiogenesis in neurovascular models derived from hESCs. Stem Cell Res 2021; 52:102231. [PMID: 33601097 DOI: 10.1016/j.scr.2021.102231] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/10/2021] [Accepted: 02/03/2021] [Indexed: 01/06/2023] Open
Abstract
In the adult tissues, blood vessels traverse the body with neurons side by side; and share common signaling molecules. Developmental studies on animal models have shown that peripheral sensory neurons (PSNs) secrete angiogenic factors and endothelial cells (ECs) secrete neurotrophic factors which contribute to their coexistence, thereby forming the peripheral neurovascular (PNV) unit. Despite the large number of studies showing that innervation and vascularization complement each other, the interaction between human PSNs and ECs is still largely unknown. To study this interaction and to evaluate if PSNs affect angiogenesis, we derived both PSNs and ECs from human embryonic stem cells (hESCs) and developed a co-culture system. Seeding the two cell types together showed that PSNs induced endothelial morphogenesis with formation of vessel-like structures (VLSs). The PSN precursors, neural crest stem cells also induced VLS formation in the co-culture system; however, to a lesser extent. This sheds new light on the in vitro angiogenic potential of these cell types. PSNs derived from hESCs are powerful tools for studying development and disease as human PSNs are inaccessible for in vitro assays. Our novel approach, with optimized media condition allowed for integrating hESC-derived PSNs with hESC-derived ECs in three-dimensional (3D) collagen gel for creating a completely humanised PNV model. This preliminary model showed that innervation improves the development of vascularized channels in vitro, and provides insight to the development of innervated 3D models in future.
Collapse
Affiliation(s)
- Sathya Kannan
- Faculty of Dentistry, National University of Singapore, Singapore
| | - Marcus Lee
- Faculty of Dentistry, National University of Singapore, Singapore
| | | | - Agata Blasiak
- The N.1 Institute for Health, National University of Singapore, Singapore
| | - Gopu Sriram
- Faculty of Dentistry, National University of Singapore, Singapore; NUS Centre for Additive Manufacturing (AM.NUS), National University of Singapore, Singapore.
| | - Tong Cao
- Faculty of Dentistry, National University of Singapore, Singapore.
| |
Collapse
|
30
|
Liang W, Chen X, Zhang S, Fang J, Chen M, Xu Y, Chen X. Mesenchymal stem cells as a double-edged sword in tumor growth: focusing on MSC-derived cytokines. Cell Mol Biol Lett 2021; 26:3. [PMID: 33472580 PMCID: PMC7818947 DOI: 10.1186/s11658-020-00246-5] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 12/27/2020] [Indexed: 12/11/2022] Open
Abstract
Mesenchymal stem cells (MSCs) show homing capacity towards tumor sites. Numerous reports indicate that they are involved in multiple tumor-promoting processes through several mechanisms, including immunosuppression; stimulation of angiogenesis; transition to cancer-associated fibroblasts; inhibition of cancer cell apoptosis; induction of epithelial-mesenchymal transition (EMT); and increase metastasis and chemoresistance. However, other studies have shown that MSCs suppress tumor growth by suppressing angiogenesis, incrementing inflammatory infiltration, apoptosis and cell cycle arrest, and inhibiting the AKT and Wnt signaling pathways. In this review, we discuss the supportive and suppressive impacts of MSCs on tumor progression and metastasis. We also discuss MSC-based therapeutic strategies for cancer based on their potential for homing to tumor sites.
Collapse
Affiliation(s)
- Wenqing Liang
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, 355 Xinqiao Road, Dinghai District, Zhoushan, 316000, Zhejiang, People's Republic of China.
| | - Xiaozhen Chen
- College of Medicine, Shaoxing University, Shaoxing, 312000, Zhejiang, People's Republic of China
| | - Songou Zhang
- College of Medicine, Shaoxing University, Shaoxing, 312000, Zhejiang, People's Republic of China
| | - Jian Fang
- College of Medicine, Shaoxing University, Shaoxing, 312000, Zhejiang, People's Republic of China
| | - Meikai Chen
- Department of Orthopaedics, Shaoxing People's Hospital, The First Affiliated Hospital of Shaoxing University, Shaoxing, 312000, Zhejiang, People's Republic of China
| | - Yifan Xu
- Department of Orthopaedics, Shaoxing People's Hospital, The First Affiliated Hospital of Shaoxing University, Shaoxing, 312000, Zhejiang, People's Republic of China
| | - Xuerong Chen
- Department of Orthopaedics, Shaoxing People's Hospital, The First Affiliated Hospital of Shaoxing University, Shaoxing, 312000, Zhejiang, People's Republic of China
| |
Collapse
|
31
|
Xu J, Liu Z, He K, Xiang G. T-bet transduction enhances anti-tumor efficacy of IFN-producing dendritic cell (IKDC) against hepatocellular carcinoma via apoptosis induction. Biochem Biophys Res Commun 2021; 535:80-86. [PMID: 33348079 DOI: 10.1016/j.bbrc.2020.11.118] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 11/29/2020] [Indexed: 12/24/2022]
Abstract
Hepatocellular carcinoma (HCC) remains a public health challenge that requires dedication to develop new treatment options due to its high recurrence rate and poor prognosis. Interferon-producing killer dendritic cell (IKDC) is a subset of INF-γ secreting immune cells that modulates acquired immunity and possesses cytolytic ability. We modified IKDC isolated from the murine spleen with T-bet lentiviral transduction to enhance its cytotoxicity against HCC, and acquired IKDC overexpressing T-bet (T-bet-IKDC) for the first time. T-bet-IKDC has increased INF-γ secretion and surface expression of NKG2D and TRAIL. In vitro study by MTS assay and flow cytometry showed enhanced anti-tumor effect against H22 cells via apoptosis induction in a dose- and time-dependent manner. In vivo study on H22-bearing mice confirmed increased INF-γ secretion, reduced tumor size, increased caspase 3 cleavage, and up-regulation of cytotoxic molecules after T-bet-IKDC administration. The study suggested prospective application of T-bet-IKDC in future immunotherapy for HCC treatment.
Collapse
Affiliation(s)
- Jianguo Xu
- Department of General Surgery, Guangdong Second Provincial General Hospital, Guangzhou 510317, China; Department of General Surgery, Heyuan People's Hospital, Heyuan 517001, China
| | - Zumei Liu
- Department of General Surgery, Guangdong Second Provincial General Hospital, Guangzhou 510317, China; Department of Central Laboratory, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong 510317, PR China
| | - Ke He
- Department of General Surgery, Guangdong Second Provincial General Hospital, Guangzhou 510317, China; Department of General Surgery, Guangdong Second Provincial General Hospital, Southern Medical University, Guangzhou 510317, China.
| | - Guoan Xiang
- Department of General Surgery, Guangdong Second Provincial General Hospital, Guangzhou 510317, China; Department of General Surgery, Guangdong Second Provincial General Hospital, Southern Medical University, Guangzhou 510317, China.
| |
Collapse
|
32
|
Serrero G. Progranulin/GP88, A Complex and Multifaceted Player of Tumor Growth by Direct Action and via the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1329:475-498. [PMID: 34664252 DOI: 10.1007/978-3-030-73119-9_22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Investigation of the role of progranulin/GP88 on the proliferation and survival of a wide variety of cells has been steadily increasing. Several human diseases stem from progranulin dysregulation either through its overexpression in cancer or its absence as in the case of null mutations in some form of frontotemporal dementia. The present review focuses on the role of progranulin/GP88 in cancer development, progression, and drug resistance. Various aspects of progranulin identification, biology, and signaling pathways will be described. Information will be provided about its direct role as an autocrine growth and survival factor and its paracrine effect as a systemic factor as well as via interaction with extracellular matrix proteins and with components of the tumor microenvironment to influence drug resistance, migration, angiogenesis, inflammation, and immune modulation. This chapter will also describe studies examining progranulin/GP88 tumor tissue expression as well as circulating level as a prognostic factor for several cancers. Due to the wealth of publications in progranulin, this review does not attempt to be exhaustive but rather provide a thread to lead the readers toward more in-depth exploration of this fascinating and unique protein.
Collapse
|
33
|
Abstract
Microglial cells are important resident innate immune components in the central nervous system that are often activated during neuroinflammation. Activated microglia can display one of two phenotypes, M1 or M2, which each play distinct roles in neuroinflammation. Rutin, a dietary flavonoid, exhibits protective effects against neuroinflammation. However, whether rutin is able to influence the M1/M2 polarization of microglia remains unclear. In this study, in vitro BV-2 cell models of neuroinflammation were established using 100 ng/mL lipopolysaccharide to investigate the effects of 1-hour rutin pretreatment on microglial polarization. The results revealed that rutin pretreatment reduced the expression of the proinflammatory cytokines tumor necrosis factor-α, interleukin-1β, and interleukin-6 and increased the secretion of interleukin-10. Rutin pretreatment also downregulated the expression of the M1 microglial markers CD86 and inducible nitric oxide synthase and upregulated the expression of the M2 microglial markers arginase 1 and CD206. Rutin pretreatment inhibited the expression of Toll-like receptor 4 and myeloid differentiation factor 88 and blocked the phosphorylation of I kappa B kinase and nuclear factor-kappa B. These results showed that rutin pretreatment may promote the phenotypic switch of microglia M1 to M2 by inhibiting the Toll-like receptor 4/nuclear factor-kappa B signaling pathway to alleviate lipopolysaccharide-induced neuroinflammation.
Collapse
Affiliation(s)
- Guang-Ping Lang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Can Li
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Ying-Ying Han
- Special Key Laboratory of Oral Diseases Research, Higher Education Institutions of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou Province, China
| |
Collapse
|
34
|
Zhang Y, Wang Q, Ma T, Zhu D, Liu T, Lv F. Tumor targeted combination therapy mediated by functional macrophages under fluorescence imaging guidance. J Control Release 2020; 328:127-140. [DOI: 10.1016/j.jconrel.2020.08.052] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/20/2020] [Accepted: 08/25/2020] [Indexed: 11/27/2022]
|
35
|
Zhu T, Bao X, Chen M, Lin R, Zhuyan J, Zhen T, Xing K, Zhou W, Zhu S. Mechanisms and Future of Non-Small Cell Lung Cancer Metastasis. Front Oncol 2020; 10:585284. [PMID: 33262947 PMCID: PMC7686569 DOI: 10.3389/fonc.2020.585284] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/14/2020] [Indexed: 12/12/2022] Open
Abstract
Lung cancer, renowned for its fast progression and metastatic potency, is rising to become a leading cause of death globally. It has been long observed that lung cancer is particularly ept in spawning distant metastasis at its early stages, and it can readily colonize virtually any human organ. In recent years, cancer research has shed light on why lung cancer is endowed with its exceptional ability to metastasize. In this review, we will take a comprehensive look at the current research on lung cancer metastasis, including molecular pathways, anatomical features and genetic traits that make lung cancer intrinsically metastatic, as we go from lung cancer’s general metastatic potential to the particular metastasis mechanisms in multiple organs. We highly concerned about the advanced discovery and development of lung cancer metastasis, indicating the importance of lung cancer specific gene mutations, heterogeneity or biomarker discovery, and discussing potential opportunities and challenges. We will also introduce some current treatments that targets certain metastatic strategies of non-small cell lung cancer (NSCLC). Advances made in these regards could be critical to our current knowledge base of lung cancer metastasis.
Collapse
Affiliation(s)
- Tianhao Zhu
- School of Life Sciences, Fudan University, Shanghai, China.,Shanghai Starriver Bilingual School, Shanghai, China
| | | | - Mingyu Chen
- Department of Neurosurgery, Huashan Hospital, Shanghai, China
| | - Rui Lin
- Department of General Surgery, Tongji Hospital, School of Medicine, Tongji University Medical School, Shanghai, China
| | - Jianan Zhuyan
- Shanghai Starriver Bilingual School, Shanghai, China
| | | | | | - Wei Zhou
- Department of Emergency, Souths Campus, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Sibo Zhu
- School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
36
|
Kateh Shamshiri M, Jaafari MR, Badiee A. Preparation of liposomes containing IFN-gamma and their potentials in cancer immunotherapy: In vitro and in vivo studies in a colon cancer mouse model. Life Sci 2020; 264:118605. [PMID: 33096119 DOI: 10.1016/j.lfs.2020.118605] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/05/2020] [Accepted: 10/12/2020] [Indexed: 12/11/2022]
Abstract
The purpose of this study was to prepare non-PEGylated (HSPC/DSPG/Chol, LIPF1) and PEGylated (HSPC/DSPG/Chol/mPEG2000-DSPE, LIPF2) liposomal formulations containing Interferon-gamma (IFN-γ) and evaluation their effects on macrophages and their antitumor properties. The results showed that the size of liposomal formulations LIP-F1 and LIP-F2 was 120 and 135 nm, respectively. The encapsulation efficiencies of LIP-F1 and LIP-F2 were 52.79% and 49.2%, respectively. Nitric Oxide Synthase (INOS) and arginase assays showed an increase in nitric oxide (NO) level and a reduction in arginase level after the treatment of M2 phenotype macrophage cell line with IFN-γ liposomes. The biodistribution study illustrated the amplitude of iodinated-IFN-γ liposomal formulations in the tumor site, the circulation time and tumor accumulation of LIP-F2 was significantly more than LIPF1. As a result, PEGylated liposomes containing IFN-γ induced significant antitumor responses due to the increased delivery of the cargo to the immune cells and induction of antitumor immune responses.
Collapse
Affiliation(s)
- Maryam Kateh Shamshiri
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mahmoud Reza Jaafari
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Ali Badiee
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
37
|
Shin SS, Yoon M. Regulation of Obesity by Antiangiogenic Herbal Medicines. Molecules 2020; 25:molecules25194549. [PMID: 33020443 PMCID: PMC7582783 DOI: 10.3390/molecules25194549] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 09/30/2020] [Accepted: 10/02/2020] [Indexed: 12/11/2022] Open
Abstract
Obesity is the result of an energy imbalance caused by an increased ratio of caloric intake to energy expenditure. In conjunction with obesity, related metabolic disorders, such as dyslipidemia, atherosclerosis, and type 2 diabetes, have become global health problems. Obesity progression is thought to be associated with angiogenesis and extracellular matrix (ECM) remodeling. Angiogenesis occurs in growing adult adipose tissues, which are similar to neoplastic tissues. Adipose tissue is highly vascularized, and each adipocyte is nourished by an extensive capillary network. Adipocytes produce proangiogenic factors, such as vascular endothelial growth factor A and fibroblast growth factor 2, which promote neovascularization within the adipose tissue. Furthermore, matrix metalloproteinases (MMPs), including MMP-2 and MMP-9, play important roles in adipose tissue development and microvessel maturation by modifying the ECM. Thus, modulation of angiogenesis and MMP activity provides a promising therapeutic approach for controlling human obesity and its related disorders. Over the past decade, there has been a great increase in the use of alternative treatments, such as herbal remedies, for these diseases. This review will focus on the role of angiogenesis in adipose tissue growth and the regulation of obesity by antiangiogenic herbal medicines.
Collapse
Affiliation(s)
- Soon Shik Shin
- Department of Formula Sciences, College of Oriental Medicine, Dongeui University, Busan 47340, Korea;
| | - Michung Yoon
- Department of Biomedical Engineering, Mokwon University, Daejeon 35349, Korea;
- Correspondence: ; Tel.: +8242-829-7581; Fax: 8242-829-7580
| |
Collapse
|
38
|
Emami F, Pathak S, Nguyen TT, Shrestha P, Maharjan S, Kim JO, Jeong JH, Yook S. Photoimmunotherapy with cetuximab-conjugated gold nanorods reduces drug resistance in triple negative breast cancer spheroids with enhanced infiltration of tumor-associated macrophages. J Control Release 2020; 329:645-664. [PMID: 33022330 DOI: 10.1016/j.jconrel.2020.10.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 09/29/2020] [Accepted: 10/01/2020] [Indexed: 12/12/2022]
Abstract
Tumor-associated macrophages (TAM) constitute up to 50-80% of stromal cells in breast cancer (BC), and are correlated with poor prognosis. As epidermal growth factor receptor (EGFR) is overexpressed in 60-80% of patients with triple negative breast cancer (TNBC), photoimmunotherapy (PIT) with cetuximab-targeted gold nanorods (CTX-AuNR) is an attractive therapeutic strategy for TNBC. The 3D cell culture model can mimic drug resistance conferred by the tumor microenvironment and its 3D organization; therefore, TAM and non-TAM embedded TNBC spheroids were constructed to evaluate the therapeutic efficacy of CTX-AuNR plus near infrared (NIR) irradiation. Cytotoxicity, reactive oxygen species (ROS) generation, and protein expression were compared in TNBC (± TAM) spheroids. The IC50 values of doxorubicin (DOX) in TAM-embedded TNBC spheroids were significantly higher than those in TNBC spheroids, demonstrating drug resistance, which could be explained by activation of IL-10/IL-10 receptor/STAT3/Bcl-2 signaling. However, 3D in vitro and in vivo results demonstrated that the efficacy of CTX-AuNR plus NIR irradiation was not significantly different in (± TAM) embedded TNBC cells. By enhancing ROS generation, CTX-AuNR plus NIR irradiation reprogrammed TAM polarization to the M1 anti-tumor phenotype, as indicated by macrophage mannose receptor (MMR) downregulation. Thus, CTX-AuNR plus NIR can serve as a potent PIT strategy for treating EGFR-overexpressing TNBC cells.
Collapse
Affiliation(s)
- Fakhrossadat Emami
- College of Pharmacy, Keimyung University, Daegu 42601, Republic of Korea
| | - Shiva Pathak
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Tiep Tien Nguyen
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Prakash Shrestha
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Srijan Maharjan
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Jong Oh Kim
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Jee-Heon Jeong
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea.
| | - Simmyung Yook
- College of Pharmacy, Keimyung University, Daegu 42601, Republic of Korea.
| |
Collapse
|
39
|
Prognostic Value of Complement Component 2 and Its Correlation with Immune Infiltrates in Hepatocellular Carcinoma. BIOMED RESEARCH INTERNATIONAL 2020; 2020:3765937. [PMID: 32626741 PMCID: PMC7312969 DOI: 10.1155/2020/3765937] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 05/20/2020] [Accepted: 05/25/2020] [Indexed: 12/18/2022]
Abstract
Background Single nucleotide polymorphism (SNP) of complement component 2 (C2) has been found to be significantly associated with hepatocellular carcinoma (HCC). However, little is known about the role and mechanism of C2 in HCC. In the present study, we aimed to explore the prognostic value of C2 and its correlation with tumor-infiltrating immune cells in HCC. Materials and Methods mRNA expression was downloaded from TCGA (365 HCC patients and 50 healthy controls), GSE14520 (220 HCC patients and 220 adjacent normal tissues), and ICGC HCC (232 HCC patients) cohorts. Unpaired Student's t-tests or ANOVA tests were used to evaluate differences of C2 expression. Univariate and multivariate analyses were used to analyze the prognostic value of C2. CIBERSORT was used to calculate the proportion of 22 kinds of tumor-infiltrating immune cells. Results Significantly lower C2 expression was found at HCC compared to healthy controls, and C2 was associated with TNM stages. Higher C2 expression was significantly associated with better prognosis, and multivariate analysis showed that C2 was also an independent factor for the prognosis of HCC. Moreover, elevated CD4 T cells were found at HCC patients with higher C2 expression while the higher proportion of macrophage M0 cells was found in HCC patients with lower C2 expression. KEGG analysis showed that “cell cycle,” “AMPK signaling pathway,” and “PPAR signaling pathway” were enriched in HCC patients with higher C2 expression. Conclusion C2 is a prognostic factor for HCC and may be used as a therapeutic target for future treatment of HCC.
Collapse
|
40
|
Sakamaki Y, Ozdemir J, Perez AD, Heidrick Z, Watson O, Tsuji M, Salmon C, Batta-Mpouma J, Azzun A, Lomonte V, Du Y, Stenken J, Woo-Kim J, Beyzavi MH. Maltotriose Conjugated Metal-Organic Frameworks for Selective Targeting and Photodynamic Therapy of Triple Negative Breast Cancer Cells and Tumor Associated Macrophages. ADVANCED THERAPEUTICS 2020; 3. [PMID: 33072859 DOI: 10.1002/adtp.202000029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Herein, we report a nano-MOF conjugated to maltotriose as a new DDS. MA-PCN-224-0.1Mn/0.9Zn showed its ability to target cancer and TAM. This novel MOF is an effective PDT agent and shows little dark toxicity, MA-PCN-224-0.1Mn/0.9Zn uptakes selectively into cancer cells. A well-suited size control methodology was used so that the nano-scaled MOFs may take advantage of the EPR effect. This development of a nano-scale MOF for PDT that is conjugated to a cancer targeting ligand represents a meaningful development for the use of MOFs as drug delivery systems.
Collapse
Affiliation(s)
- Yoshie Sakamaki
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - John Ozdemir
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Alda Diaz Perez
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Zachary Heidrick
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Olivia Watson
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Miu Tsuji
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Chirstopher Salmon
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Joseph Batta-Mpouma
- Department of Biological and Agricultural Engineering, Institute for Nanoscience and Engineering, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Anthony Azzun
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Valerie Lomonte
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Yuchun Du
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Julie Stenken
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Jin Woo-Kim
- Department of Biological and Agricultural Engineering, Institute for Nanoscience and Engineering, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - M Hassan Beyzavi
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| |
Collapse
|
41
|
Nath N, Kashfi K. Tumor associated macrophages and 'NO'. Biochem Pharmacol 2020; 176:113899. [PMID: 32145264 DOI: 10.1016/j.bcp.2020.113899] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 03/02/2020] [Indexed: 12/14/2022]
Abstract
Nitric oxide (NO) and its pro and anti-tumor activities are dual roles that continue to be debated in cancer biology. The cell situations in the tumor and within the tumor microenvironment also have roles involving NO. In early tumorigenic events, macrophages in the tumor microenvironment promote tumor cell death, and later are reprogramed to support the growth of tumor, through regulatory events involving NO and several stimulatory signals. These two opposing and active phenotypes of tumor associated macrophages known as the M1 or anti-tumorigenic state and M2 or pro-tumorigenic state show differences in metabolic pathways such as glycolysis and arginine utilization, signaling pathways and cytokine induction including iNOS expression, therefore contributing to their function. Polarization of M2 to M1 macrophages, inhibition of M2 state, or reprogramming via NO in combination with other signals may determine or alter tumor kinetics. These strategies and an overview are presented.
Collapse
Affiliation(s)
- Niharika Nath
- Department of Biological and Chemical Sciences, New York Institute of Technology, New York, NY, United States.
| | - Khosrow Kashfi
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY, United States; Graduate Program in Biology, City University of New York Graduate Center, New York, NY, United States.
| |
Collapse
|
42
|
Levites EV, Kirikovich SS, Dolgova EV, Proskurina AS, Ritter GS, Ostanin АA, Chernykh ER, Bogachev SS. <i>In vitro</i> assay of biological activity of a national preparation of macrophage activating factor (GcMAF-RF). Vavilovskii Zhurnal Genet Selektsii 2020; 24:284-291. [PMID: 33659810 PMCID: PMC7905294 DOI: 10.18699/vj20.621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
В статье сообщается о разработанном оригинальном способе получения витамин D3-связывающего
белка (DBP) и его конвертации в макрофаг-активирующий фактор GcMAF-RF. Согласно разработанному
регламенту, DBP получали из плазмы крови человека, применяя аффинную колоночную хроматографию, очи-
щали и модифицировали до GcMAF-RF с использованием цитоиммобилизованных гликозидаз (бета-галакто-
зидаза и нейраминидаза). Принадлежность полученного полипептида к Gc-группе глобулинов плазмы крови
подтверждали вестерн-блотом с использованием специфических антител. Полученный полипептид по своим
молекулярным свойствам соответствует описанному в литературе белку GсMAF, находящемуся на стадии кли-
нических испытаний в США, Британии, Израиле и Японии (Saisei Mirai, Reno Integrative Medical Center, Immuno
Biotech Ltd, Efranat, Catalytic Longevity). Биологическую активность препарата GcMAF-RF определяли по индук-
ции у перитонеальных макрофагов мыши фагоцитарной активности и способности продуцировать моноок-
сид азота (NO) in vitro. Фагоцитарную активность макрофагов оценивали по эффективности захвата магнитных
шариков. Степень активации макрофагов рассчитывали по отношению числа захваченных шариков к общему
числу макрофагов. Уровень продукции NO оценивали по накоплению монооксида азота в культуральных су-
пернатантах перитонеальных макрофагов колориметрическим методом с использованием реактива Грисса.
Показано, что GcMAF-RF кратно увеличивает фагоцитарную активность макрофагов и достоверно увеличивает
продукцию ими монооксида азота. Выделенный оригинальным способом активатор макрофагов GcMAF-RF по
своим характеристикам (согласно материалам, опубликованным в печати) соответствует препаратам GcMAF,
представляемым на рынке зарубежными компаниями, и может рассматриваться как новый отечественный био-
логически активный препарат с широким спектром действия. Наибольший интерес вызывает его способность
через активацию макрофагов усиливать адаптивный иммунитет организма. В этой связи предполагаются два
направления терапевтического применения препарата GcMAF-RF. Препарат может быть востребован в области
лечения онкологических заболеваний и, кроме того, может быть использован при лечении ряда нейродегене-
ративных патологий и иммунодефицитных состояний.
Collapse
Affiliation(s)
- E. V. Levites
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences
| | - S. S. Kirikovich
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences
| | - E. V. Dolgova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences
| | - A. S. Proskurina
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences
| | - G. S. Ritter
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University
| | | | | | - S. S. Bogachev
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences
| |
Collapse
|
43
|
Raggi F, Bosco MC. Targeting Mononuclear Phagocyte Receptors in Cancer Immunotherapy: New Perspectives of the Triggering Receptor Expressed on Myeloid Cells (TREM-1). Cancers (Basel) 2020; 12:cancers12051337. [PMID: 32456204 PMCID: PMC7281211 DOI: 10.3390/cancers12051337] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/18/2020] [Accepted: 05/22/2020] [Indexed: 12/14/2022] Open
Abstract
Inflammatory cells are major players in the onset of cancer. The degree of inflammation and type of inflammatory cells in the tumor microenvironment (TME) are responsible for tilting the balance between tumor progression and regression. Cancer-related inflammation has also been shown to influence the efficacy of conventional therapy. Mononuclear phagocytes (MPs) represent a major component of the inflammatory circuit that promotes tumor progression. Despite their potential to activate immunosurveillance and exert anti-tumor responses, MPs are subverted by the tumor to support its growth, immune evasion, and spread. MP responses in the TME are dictated by a network of stimuli integrated through the cross-talk between activatory and inhibitory receptors. Alterations in receptor expression/signaling can create excessive inflammation and, when chronic, promote tumorigenesis. Research advances have led to the development of new therapeutic strategies aimed at receptor targeting to induce a tumor-infiltrating MP switch from a cancer-supportive toward an anti-tumor phenotype, demonstrating efficacy in different human cancers. This review provides an overview of the role of MP receptors in inflammation-mediated carcinogenesis and discusses the most recent updates regarding their targeting for immunotherapeutic purposes. We focus in particular on the TREM-1 receptor, a major amplifier of MP inflammatory responses, highlighting its relevance in the development and progression of several types of inflammation-associated malignancies and the promises of its inhibition for cancer immunotherapy.
Collapse
|
44
|
Lechien JR, Descamps G, Seminerio I, Furgiuele S, Dequanter D, Mouawad F, Badoual C, Journe F, Saussez S. HPV Involvement in the Tumor Microenvironment and Immune Treatment in Head and Neck Squamous Cell Carcinomas. Cancers (Basel) 2020; 12:cancers12051060. [PMID: 32344813 PMCID: PMC7281394 DOI: 10.3390/cancers12051060] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/20/2020] [Accepted: 04/23/2020] [Indexed: 12/13/2022] Open
Abstract
Head and neck squamous cell carcinomas (HNSCC) are one of the most prevalent cancers worldwide. Active human papillomavirus (HPV) infection has been identified as an important additional risk factor and seems to be associated with a better prognosis in non-drinker and non-smoker young patients with oropharyngeal SCC. The better response of the immune system against the HPV-induced HNSCC is suspected as a potential explanation for the better prognosis of young patients. To further assess this hypothesis, our review aims to shed light the current knowledge about the impact of HPV infection on the immune response in the context of HNSCC, focusing on the innate immune system, particularly highlighting the role of macrophages, Langerhans and myeloid cells, and on the adaptative immune system, pointing out the involvement of T regulatory, T CD8 and T CD4 lymphocytes. In addition, we also review the preventive (HPV vaccines) and therapeutic (checkpoint inhibitors) strategies against HPV-related HNSCC, stressing the use of anti-CTLA4, PD-L1, PD-L2 antibodies alone and in combination with other agents able to modulate immune responses.
Collapse
Affiliation(s)
- Jérôme R. Lechien
- Department of Otolaryngology and Head and Neck Surgery, CHU Saint-Pierre, 1000 Brussels, Belgium; (J.R.L.); (D.D.)
- Department of Otolaryngology and Head and Neck Surgery, CHU of Lille, University Lille 2, 59000 Lille, France;
- Department of Human Anatomy and Experimental Oncology, Faculty of Medicine, Research Institute for Health Sciences and Technology, University of Mons (UMONS), Avenue du Champ de Mars, 8, B7000 Mons, Belgium; (G.D.); (I.S.); (S.F.); (F.J.)
| | - Géraldine Descamps
- Department of Human Anatomy and Experimental Oncology, Faculty of Medicine, Research Institute for Health Sciences and Technology, University of Mons (UMONS), Avenue du Champ de Mars, 8, B7000 Mons, Belgium; (G.D.); (I.S.); (S.F.); (F.J.)
| | - Imelda Seminerio
- Department of Human Anatomy and Experimental Oncology, Faculty of Medicine, Research Institute for Health Sciences and Technology, University of Mons (UMONS), Avenue du Champ de Mars, 8, B7000 Mons, Belgium; (G.D.); (I.S.); (S.F.); (F.J.)
| | - Sonia Furgiuele
- Department of Human Anatomy and Experimental Oncology, Faculty of Medicine, Research Institute for Health Sciences and Technology, University of Mons (UMONS), Avenue du Champ de Mars, 8, B7000 Mons, Belgium; (G.D.); (I.S.); (S.F.); (F.J.)
| | - Didier Dequanter
- Department of Otolaryngology and Head and Neck Surgery, CHU Saint-Pierre, 1000 Brussels, Belgium; (J.R.L.); (D.D.)
| | - Francois Mouawad
- Department of Otolaryngology and Head and Neck Surgery, CHU of Lille, University Lille 2, 59000 Lille, France;
| | - Cécile Badoual
- Department of anatomo-pathology, G Pompidou European Hospital, AP-HP, University of Paris, 75015 Paris, France;
| | - Fabrice Journe
- Department of Human Anatomy and Experimental Oncology, Faculty of Medicine, Research Institute for Health Sciences and Technology, University of Mons (UMONS), Avenue du Champ de Mars, 8, B7000 Mons, Belgium; (G.D.); (I.S.); (S.F.); (F.J.)
- Laboratory of Oncology and Experimental Surgery, Institute Jules Bordet, Free University of Brussels, Rue Heger-Bordet, 1, B1000 Brussels, Belgium
| | - Sven Saussez
- Department of Otolaryngology and Head and Neck Surgery, CHU Saint-Pierre, 1000 Brussels, Belgium; (J.R.L.); (D.D.)
- Department of Human Anatomy and Experimental Oncology, Faculty of Medicine, Research Institute for Health Sciences and Technology, University of Mons (UMONS), Avenue du Champ de Mars, 8, B7000 Mons, Belgium; (G.D.); (I.S.); (S.F.); (F.J.)
- Correspondence: ; Tel.: +32-65-37-35-84
| |
Collapse
|
45
|
Minopoli M, Sarno S, Di Carluccio G, Azzaro R, Costantini S, Fazioli F, Gallo M, Apice G, Cannella L, Rea D, Stoppelli MP, Boraschi D, Budillon A, Scotlandi K, De Chiara A, Carriero MV. Inhibiting Monocyte Recruitment to Prevent the Pro-Tumoral Activity of Tumor-Associated Macrophages in Chondrosarcoma. Cells 2020; 9:E1062. [PMID: 32344648 PMCID: PMC7226304 DOI: 10.3390/cells9041062] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/21/2020] [Accepted: 04/23/2020] [Indexed: 12/27/2022] Open
Abstract
Chondrosarcomas (CHS) are malignant cartilaginous neoplasms with diverse morphological features, characterized by resistance to chemo- and radiation therapies. In this study, we investigated the role of tumor-associated macrophages (TAM)s in tumor tissues from CHS patients by immunohistochemistry. Three-dimensional organotypic co-cultures were set up in order to evaluate the contribution of primary human CHS cells in driving an M2-like phenotype in monocyte-derived primary macrophages, and the capability of macrophages to promote growth and/or invasiveness of CHS cells. Finally, with an in vivo model of primary CHS cells engrafted in nude mice, we tested the ability of a potent peptide inhibitor of cell migration (Ac-d-Tyr-d-Arg-Aib-d-Arg-NH2, denoted RI-3) to reduce recruitment and infiltration of monocytes into CHS neoplastic lesions. We found a significant correlation between alternatively activated M2 macrophages and intratumor microvessel density in both conventional and dedifferentiated CHS human tissues, suggesting a link between TAM abundance and vascularization in CHS. In 3D and non-contact cu-culture models, soluble factors produced by CHS induced a M2-like phenotype in macrophages that, in turn, increased motility, invasion and matrix spreading of CHS cells. Finally, we present evidence that RI-3 successfully prevent both recruitment and infiltration of monocytes into CHS tissues, in nude mice.
Collapse
Affiliation(s)
- Michele Minopoli
- Neoplastic Progression Unit, Istituto Nazionale Tumori IRCCS ‘Fondazione G. Pascale’, Naples 80131, Italy; (M.M.); (G.D.C.)
| | - Sabrina Sarno
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Gioconda Di Carluccio
- Neoplastic Progression Unit, Istituto Nazionale Tumori IRCCS ‘Fondazione G. Pascale’, Naples 80131, Italy; (M.M.); (G.D.C.)
| | - Rosa Azzaro
- Transfusion Medicine Unit, Istituto Nazionale Tumori IRCCS ‘Fondazione G. Pascale’, 80131 Naples, Italy;
| | - Susan Costantini
- Experimental Pharmacology Unit, Istituto Nazionale Tumori IRCCS ‘Fondazione G. Pascale’, 80131 Naples, Italy; (S.C.); (A.B.)
| | - Flavio Fazioli
- Division of Musculoskeletal Surgery, Istituto Nazionale Tumori IRCCS ‘Fondazione G. Pascale’, 80131 Naples, Italy; (F.F.); (M.G.)
| | - Michele Gallo
- Division of Musculoskeletal Surgery, Istituto Nazionale Tumori IRCCS ‘Fondazione G. Pascale’, 80131 Naples, Italy; (F.F.); (M.G.)
| | - Gaetano Apice
- Division of Medical Oncology, Istituto Nazionale Tumori IRCCS ‘Fondazione G. Pascale’, 80131 Naples, Italy; (G.A.); (L.C.)
| | - Lucia Cannella
- Division of Medical Oncology, Istituto Nazionale Tumori IRCCS ‘Fondazione G. Pascale’, 80131 Naples, Italy; (G.A.); (L.C.)
| | - Domenica Rea
- Animal Facility, Istituto Nazionale Tumori IRCCS ‘Fondazione G. Pascale’, 80131 Naples, Italy;
| | | | - Diana Boraschi
- Institute of Biochemistry and Cell Biology, National Research Council, 80131 Naples, Italy;
| | - Alfredo Budillon
- Experimental Pharmacology Unit, Istituto Nazionale Tumori IRCCS ‘Fondazione G. Pascale’, 80131 Naples, Italy; (S.C.); (A.B.)
| | - Katia Scotlandi
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy;
| | - Annarosaria De Chiara
- Pathology Unit, Istituto Nazionale Tumori IRCCS ‘Fondazione G. Pascale’, 80131 Naples, Italy;
| | - Maria Vincenza Carriero
- Neoplastic Progression Unit, Istituto Nazionale Tumori IRCCS ‘Fondazione G. Pascale’, Naples 80131, Italy; (M.M.); (G.D.C.)
| |
Collapse
|
46
|
Involvement of lncRNAs and Macrophages: Potential Regulatory Link to Angiogenesis. J Immunol Res 2020; 2020:1704631. [PMID: 32190702 PMCID: PMC7066414 DOI: 10.1155/2020/1704631] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/29/2020] [Accepted: 02/04/2020] [Indexed: 12/12/2022] Open
Abstract
Macrophages are involved in angiogenesis, an essential process for organ growth and tissue repair, and could contribute to the pathogenesis of angiogenesis-related diseases such as malignant tumors and diabetic retinopathy. Recently, long noncoding RNAs (lncRNAs) have been proved to be important in cell differentiation, organismal development, and various diseases of pathological angiogenesis. Moreover, it has been indicated that numerous lncRNAs exhibit different functions in macrophage infiltration and polarization and regulate the secretion of inflammatory cytokines released by macrophages. Therefore, the focus of macrophage-related lncRNAs could be considered to be a potential method in therapeutic targeting angiogenesis-related diseases. This review mainly summarizes the roles played by lncRNAs which associated with macrophages in angiogenesis. The possible mechanisms of the regulatory link between lncRNAs and macrophages in various angiogenesis-related diseases were also discussed.
Collapse
|
47
|
Yu Y, Ke L, Xia WX, Xiang Y, Lv X, Bu J. Elevated Levels of TNF-α and Decreased Levels of CD68-Positive Macrophages in Primary Tumor Tissues Are Unfavorable for the Survival of Patients With Nasopharyngeal Carcinoma. Technol Cancer Res Treat 2020; 18:1533033819874807. [PMID: 31522611 PMCID: PMC6747870 DOI: 10.1177/1533033819874807] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Due to the critical role of inflammation in nasopharyngeal carcinoma, we aim to investigate the correlation between nasopharyngeal carcinoma prognosis and the levels of tumor necrosis factor α and macrophages for the development of new prognostic models. The levels of tumor necrosis factor-α and CD68-positive macrophages were measured in 111 primary nasopharyngeal carcinoma specimens by immunohistochemistry. Kaplan-Meier analysis showed that, compared with nonelevated tumor necrosis factor-α levels, elevated tumor necrosis factor α levels were correlated with poorer 10-year distant metastasis-free survival (24.5% vs 5.2%, P = .004) and bone metastasis-free survival (17.0% vs 0.0%, P = .001). Multivariate analysis revealed that tumor necrosis factor α level was an independent prognostic factor for distant metastasis-free survival (hazard ratio = 16.765, P = .001), while the level of CD68-positive macrophages was a favorable independent prognostic factor for cancer-specific survival (hazard ratio = 0.481, P = .023) and disease-free survival (hazard ratio = 0.403, P = .010). Additionally, several prognostic models that considered tumor-node-metastasis stage alone or in combination with tumor necrosis factor α and/or CD68-positive macrophage levels were compared by receiver operating characteristic curve analysis. Interestingly, the T_score model, which considered the tumor necrosis factor α level alone, could better predict the distant metastasis-free survival and bone metastasis-free survival, whereas the MT model, which considered the combination of T stage and CD68-positive macrophage level, could better predict the cancer-specific survival and disease-free survival of patients with nasopharyngeal carcinoma. Elevated tumor necrosis factor-α levels and decreased CD68-positive macrophage levels in primary nasopharyngeal carcinoma tissues are unfavorable prognostic indicators in nasopharyngeal carcinoma. The T_score model or the MT model could be better prognostic models than those currently available for nasopharyngeal carcinoma and could be used to select high-risk patients and aid in the design of individualized immunotherapy.
Collapse
Affiliation(s)
- Yahui Yu
- Department of Radiation Oncology, Oncology Center, Zhujiang Hospital, Southern Medical University, Zhujiang Hospital, Guangzhou, China.,Yahui Yu, Liangru Ke, Weixiong Xia contributed equally to this work
| | - Liangru Ke
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China.,Yahui Yu, Liangru Ke, Weixiong Xia contributed equally to this work
| | - Wei-Xiong Xia
- Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China.,Yahui Yu, Liangru Ke, Weixiong Xia contributed equally to this work
| | - Yanqun Xiang
- Department of Diagnostic Radiology, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Xing Lv
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Junguo Bu
- Department of Radiation Oncology, Oncology Center, Zhujiang Hospital, Southern Medical University, Zhujiang Hospital, Guangzhou, China
| |
Collapse
|
48
|
Pharmacological Inhibition of Caspase-8 Suppresses Inflammation-Induced Angiogenesis in the Cornea. Biomolecules 2020; 10:biom10020210. [PMID: 32023953 PMCID: PMC7072631 DOI: 10.3390/biom10020210] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 01/24/2020] [Accepted: 01/26/2020] [Indexed: 12/24/2022] Open
Abstract
Inflammation-induced angiogenesis is closely related to many diseases and has been regarded as a therapeutic target. Caspase-8 has attracted increasing attention for its immune properties and therapeutic potential in inflammatory disorders. The aim of our study is to investigate the clinical application of pharmacological inhibition of caspase-8 and the underlying molecular mechanisms in inflammation-induced angiogenesis in the cornea. A model of alkali burn (AB)-induced corneal neovascularization (CNV) in C57BL/6 wild-type (WT) mice and toll-like receptor 4 knockout (Tlr4-/-) mice was used. We found that AB increased caspase-8 activity and the pharmacological inhibition of caspase-8 exerted substantial inhibitory effects on CNV, with consistent decreases in caspase-8 activity, inflammatory cell infiltration, macrophage recruitment and activation, VEGF-A, TNF-α, IL-1β, MIP-1, and MCP-1 expression in the cornea. In vitro, caspase-8 mediated TLR4–dependent chemokines and VEGF-A production by macrophages. The TLR4 knockout significantly alleviated CNV, suppressed caspase-8 activity and downregulated expression of inflammatory cytokines and chemokines after AB. Taken together, these findings provide the first demonstration that the pharmacological inhibition of caspase-8 suppresses inflammation-induced angiogenesis and support the use of a pharmacological caspase-8 inhibitor as a novel clinical treatment for CNV and other angiogenic disorders.
Collapse
|
49
|
Gouveia-Fernandes S. Monocytes and Macrophages in Cancer: Unsuspected Roles. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1219:161-185. [PMID: 32130699 DOI: 10.1007/978-3-030-34025-4_9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The behavior of cancer is undoubtedly affected by stroma. Macrophages belong to this microenvironment and their presence correlates with reduced survival in most cancers. After a tumor-induced "immunoediting", these monocytes/macrophages, originally the first line of defense against tumor cells, undergo a phenotypic switch and become tumor-supportive and immunosuppressive.The influence of these tumor-associated macrophages (TAMs) on cancer is present in all traits of carcinogenesis. These cells participate in tumor initiation and growth, migration, vascularization, invasion and metastasis. Although metastasis is extremely clinically relevant, this step is always reliant on the angiogenic ability of tumors. Therefore, the formation of new blood vessels in tumors assumes particular importance as a limiting step for disease progression.Herein, the once unsuspected roles of macrophages in cancer will be discussed and their importance as a promising strategy to treat this group of diseases will be reminded.
Collapse
Affiliation(s)
- Sofia Gouveia-Fernandes
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School | Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
| |
Collapse
|
50
|
Wu SY, Chiang CS. Distinct Role of CD11b +Ly6G -Ly6C - Myeloid-Derived Cells on the Progression of the Primary Tumor and Therapy-Associated Recurrent Brain Tumor. Cells 2019; 9:cells9010051. [PMID: 31878276 PMCID: PMC7016541 DOI: 10.3390/cells9010051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/18/2019] [Accepted: 12/20/2019] [Indexed: 02/07/2023] Open
Abstract
Myeloid-derived cells have been implicated as playing essential roles in cancer therapy, particularly in cancer immunotherapy. Most studies have focused on either CD11b+Ly6G+Ly6C+ granulocytic or polymorphonuclear myeloid-derived suppressor cells (G-MDSCs or PMN-MDSCs) or CD11b+Ly6G−Ly6C+ monocytic MDSCs (M-MDSCs), for which clear roles have been established. On the other hand, CD11b+Ly6G−Ly6C− myeloid-derived cells (MDCs) have been less well studied. Here, the CD11b-diphtheria toxin receptor (CD11b-DTR) transgenic mouse model was used to evaluate the role of CD11b+ myeloid-derived cells in chemotherapy for an orthotopic murine astrocytoma, ALTS1C1. Using this transgenic mouse model, two injections of diphtheria toxin (DT) could effectively deplete CD11b+Ly6G−Ly6C− MDCs while leaving CD11b+Ly6G+Ly6C+ PMN-MDSCs and CD11b+Ly6G−Ly6C+ M-MDSCs intact. Depletion of CD11b+Ly6G−Ly6C− MDCs in mice bearing ALTS1C1-tk tumors and receiving ganciclovir (GCV) prolonged the mean survival time for mice from 30.7 to 37.8 days, but not the controls, while the effectiveness of temozolomide was enhanced. Mechanistically, depletion of CD11b+Ly6G−Ly6C− MDCs blunted therapy-induced increases in tumor-associated macrophages (TAMs) and compromised therapy-elicited angiogenesis. Collectively, our findings suggest that CD11b+Ly6G−Ly6C− MDCs could be manipulated to enhance the efficacy of chemotherapy for brain tumors. However, our study also cautions that the timing of any MDC manipulation may be critical to achieve the best therapeutic result.
Collapse
Affiliation(s)
- Sheng-Yan Wu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 101 Sec. 2, Kuang-Fu Road, Hsinchu 30013, Taiwan;
| | - Chi-Shiun Chiang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 101 Sec. 2, Kuang-Fu Road, Hsinchu 30013, Taiwan;
- Institute of Nuclear Engineering and Science, National Tsing Hua University, Hsinchu 30013, Taiwan
- Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan
- Correspondence: ; Tel.: +886-3-573-3168
| |
Collapse
|