1
|
Su C, Huang T, Zhang M, Zhang Y, Zeng Y, Chen X. Glucocorticoid receptor signaling in the brain and its involvement in cognitive function. Neural Regen Res 2025; 20:2520-2537. [PMID: 39248182 DOI: 10.4103/nrr.nrr-d-24-00355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 07/06/2024] [Indexed: 09/10/2024] Open
Abstract
The hypothalamic-pituitary-adrenal axis regulates the secretion of glucocorticoids in response to environmental challenges. In the brain, a nuclear receptor transcription factor, the glucocorticoid receptor, is an important component of the hypothalamic-pituitary-adrenal axis's negative feedback loop and plays a key role in regulating cognitive equilibrium and neuroplasticity. The glucocorticoid receptor influences cognitive processes, including glutamate neurotransmission, calcium signaling, and the activation of brain-derived neurotrophic factor-mediated pathways, through a combination of genomic and non-genomic mechanisms. Protein interactions within the central nervous system can alter the expression and activity of the glucocorticoid receptor, thereby affecting the hypothalamic-pituitary-adrenal axis and stress-related cognitive functions. An appropriate level of glucocorticoid receptor expression can improve cognitive function, while excessive glucocorticoid receptors or long-term exposure to glucocorticoids may lead to cognitive impairment. Patients with cognitive impairment-associated diseases, such as Alzheimer's disease, aging, depression, Parkinson's disease, Huntington's disease, stroke, and addiction, often present with dysregulation of the hypothalamic-pituitary-adrenal axis and glucocorticoid receptor expression. This review provides a comprehensive overview of the functions of the glucocorticoid receptor in the hypothalamic-pituitary-adrenal axis and cognitive activities. It emphasizes that appropriate glucocorticoid receptor signaling facilitates learning and memory, while its dysregulation can lead to cognitive impairment. This provides clues about how glucocorticoid receptor signaling can be targeted to overcome cognitive disability-related disorders.
Collapse
Affiliation(s)
- Chonglin Su
- Brain Science and Advanced Technology Institute, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | | | | | | | | | | |
Collapse
|
2
|
Nikolić T, Bogosavljević MV, Stojković T, Kanazir S, Lončarević-Vasiljković N, Radonjić NV, Popić J, Petronijević N. Effects of Antipsychotics on the Hypothalamus-Pituitary-Adrenal Axis in a Phencyclidine Animal Model of Schizophrenia. Cells 2024; 13:1425. [PMID: 39272997 PMCID: PMC11394463 DOI: 10.3390/cells13171425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/16/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
Schizophrenia (SCH) is a mental disorder that requires long-term antipsychotic treatment. SCH patients are thought to have an increased sensitivity to stress. The dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis, observed in SCH, could include altered levels of glucocorticoids, glucocorticoid receptors (GRs), and associated proteins. The perinatal administration of phencyclidine (PCP) to rodents represents an animal model of SCH. This study investigated the effects of perinatal PCP exposure and subsequent haloperidol/clozapine treatment on corticosterone levels measured by ELISA and the expression of GR-related proteins (GR, pGR, HSP70, HSP90, FKBP51, and 11β-Hydroxysteroid dehydrogenase-11β-HSD) determined by Western blot, in different brain regions of adult rats. Six groups of male rats were treated on the 2nd, 6th, 9th, and 12th postnatal days (PN), with either PCP or saline. Subsequently, one saline and one PCP group received haloperidol/clozapine from PN day 35 to PN day 100. The results showed altered GR sensitivity in the rat brain after PCP exposure, which decreased after haloperidol/clozapine treatment. These findings highlight disturbances in the HPA axis in a PCP-induced model of SCH and the potential protective effects of antipsychotics. To the best of our knowledge, this is the first study to investigate the effects of antipsychotic drugs on the HPA axis in a PCP animal model of SCH.
Collapse
Affiliation(s)
- Tatjana Nikolić
- Institute of Medical and Clinical Biochemistry, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | | | - Tihomir Stojković
- Institute of Medical and Clinical Biochemistry, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Selma Kanazir
- Department of Neurobiology, Institute for Biological Research, University of Belgrade, 11000 Belgrade, Serbia
| | - Nataša Lončarević-Vasiljković
- iNOVA4Health, NOVA Medical School|Faculdade Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Campo dos Mártires da Pátria, 1169-056 Lisbon, Portugal
| | - Nevena V Radonjić
- Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Jelena Popić
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 0G4, Canada
| | - Nataša Petronijević
- Institute of Medical and Clinical Biochemistry, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| |
Collapse
|
3
|
Nakamura R, Bing R, Gartling GJ, Garabedian MJ, Branski RC. High-dose methylprednisolone mediates YAP/TAZ-TEAD in vocal fold fibroblasts with macrophages. RESEARCH SQUARE 2024:rs.3.rs-4626638. [PMID: 39070624 PMCID: PMC11276011 DOI: 10.21203/rs.3.rs-4626638/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
The pro-fibrotic effects of glucocorticoids may lead to a suboptimal therapeutic response for vocal fold (VF) pathology. Targeting macrophage-fibroblast interactions is an interesting therapeutic strategy; macrophages alter their phenotype to mediate both inflammation and fibrosis. In the current study, we investigated concentration-dependent effects of methylprednisolone on the fibrotic response, with an emphasis on YAP/TAZ-TEAD signaling, and inflammatory gene expression in VF fibroblasts in physical contact with macrophages. We sought to provide foundational data to optimize therapeutic strategies for millions of patients with voice/laryngeal disease-related disability. Following induction of inflammatory (M(IFN/LPS)) and fibrotic (M(TGF)) phenotypes, THP-1-derived macrophages were seeded onto HVOX vocal fold fibroblasts. Cells were co-cultured +/-0.3-3000nM methylprednisolone +/- 3μM verteporfin, a YAP/TAZ inhibitor. Inflammatory (CXCL10, TNF, PTGS2) and fibrotic genes (ACTA2, CCN2, COL1A1) in fibroblasts were analyzed by real-time polymerase chain reaction after cell sorting. Ser211-phosphorylated glucocorticoid receptor (S211-pGR) was assessed by Western blotting. Nuclear localization of S211-pGR and YAP/TAZ was analyzed by immunocytochemistry. Methylprednisolone decreased TNF and PTGS2 in fibroblasts co-cultured with M(IFN/LPS) macrophages and increased ACTA2 and CCN2 in fibroblasts co-cultured with M(IFN/LPS) and M(TGF). Lower concentrations were required to decrease TNF and PTGS2 expression and to increase S211-pGR than to increase ACTA2 and CCN2 expression and nuclear localization of S211-pGR. Methylprednisolone also increased YAP/TAZ nuclear localization. Verteporfin attenuated upregulation of CCN2, but not PTGS2 downregulation. High concentration methylprednisolone induced nuclear localization of S211-pGR and upregulated fibrotic genes mediated by YAP/TAZ activation.
Collapse
|
4
|
Iyer-Bierhoff A, Wieczorek M, Peter SM, Ward D, Bens M, Vettorazzi S, Guehrs KH, Tuckermann JP, Heinzel T. Acetylation-induced proteasomal degradation of the activated glucocorticoid receptor limits hormonal signaling. iScience 2024; 27:108943. [PMID: 38333702 PMCID: PMC10850750 DOI: 10.1016/j.isci.2024.108943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/30/2023] [Accepted: 01/15/2024] [Indexed: 02/10/2024] Open
Abstract
Glucocorticoid (GC) signaling is essential for mounting a stress response, however, chronic stress or prolonged GC therapy downregulates the GC receptor (GR), leading to GC resistance. Regulatory mechanisms that refine this equilibrium are not well understood. Here, we identify seven lysine acetylation sites in the amino terminal domain of GR, with lysine 154 (Lys154) in the AF-1 region being the dominant acetyl-acceptor. GR-Lys154 acetylation is mediated by p300/CBP in the nucleus in an agonist-dependent manner and correlates with transcriptional activity. Deacetylation by NAD+-dependent SIRT1 facilitates dynamic regulation of this mark. Notably, agonist-binding to both wild-type GR and an acetylation-deficient mutant elicits similar short-term target gene expression. In contrast, upon extended treatment, the polyubiquitination of the acetylation-deficient GR mutant is impaired resulting in higher protein stability, increased chromatin association and prolonged transactivation. Taken together, reversible acetylation fine-tunes duration of the GC response by regulating proteasomal degradation of activated GR.
Collapse
Affiliation(s)
- Aishwarya Iyer-Bierhoff
- Institute of Biochemistry and Biophysics, Centre for Molecular Biomedicine (CMB), Friedrich Schiller University, Hans-Knoell-Strasse 2, 07745 Jena, Germany
| | - Martin Wieczorek
- Institute of Biochemistry and Biophysics, Centre for Molecular Biomedicine (CMB), Friedrich Schiller University, Hans-Knoell-Strasse 2, 07745 Jena, Germany
| | - Sina Marielle Peter
- Institute of Biochemistry and Biophysics, Centre for Molecular Biomedicine (CMB), Friedrich Schiller University, Hans-Knoell-Strasse 2, 07745 Jena, Germany
| | - Dima Ward
- Institute of Biochemistry and Biophysics, Centre for Molecular Biomedicine (CMB), Friedrich Schiller University, Hans-Knoell-Strasse 2, 07745 Jena, Germany
| | - Martin Bens
- Core Facility Next Generation Sequencing, Leibniz Institute on Aging – Fritz Lipmann Institute (FLI), Beutenbergstrasse 11, 07745 Jena, Germany
| | - Sabine Vettorazzi
- Institute of Comparative Molecular Endocrinology (CME), Ulm University, Helmholtzstrasse 8/1, 89081 Ulm, Germany
| | - Karl-Heinz Guehrs
- Core Facility Proteomics, Leibniz Institute on Aging – Fritz Lipmann Institute (FLI), Beutenbergstrasse 11, 07745 Jena, Germany
| | - Jan P. Tuckermann
- Institute of Comparative Molecular Endocrinology (CME), Ulm University, Helmholtzstrasse 8/1, 89081 Ulm, Germany
| | - Thorsten Heinzel
- Institute of Biochemistry and Biophysics, Centre for Molecular Biomedicine (CMB), Friedrich Schiller University, Hans-Knoell-Strasse 2, 07745 Jena, Germany
| |
Collapse
|
5
|
Martinez GJ, Appleton M, Kipp ZA, Loria AS, Min B, Hinds TD. Glucocorticoids, their uses, sexual dimorphisms, and diseases: new concepts, mechanisms, and discoveries. Physiol Rev 2024; 104:473-532. [PMID: 37732829 PMCID: PMC11281820 DOI: 10.1152/physrev.00021.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/07/2023] [Accepted: 09/10/2023] [Indexed: 09/22/2023] Open
Abstract
The normal stress response in humans is governed by the hypothalamic-pituitary-adrenal (HPA) axis through heightened mechanisms during stress, raising blood levels of the glucocorticoid hormone cortisol. Glucocorticoids are quintessential compounds that balance the proper functioning of numerous systems in the mammalian body. They are also generated synthetically and are the preeminent therapy for inflammatory diseases. They act by binding to the nuclear receptor transcription factor glucocorticoid receptor (GR), which has two main isoforms (GRα and GRβ). Our classical understanding of glucocorticoid signaling is from the GRα isoform, which binds the hormone, whereas GRβ has no known ligands. With glucocorticoids being involved in many physiological and cellular processes, even small disruptions in their release via the HPA axis, or changes in GR isoform expression, can have dire ramifications on health. Long-term chronic glucocorticoid therapy can lead to a glucocorticoid-resistant state, and we deliberate how this impacts disease treatment. Chronic glucocorticoid treatment can lead to noticeable side effects such as weight gain, adiposity, diabetes, and others that we discuss in detail. There are sexually dimorphic responses to glucocorticoids, and women tend to have a more hyperresponsive HPA axis than men. This review summarizes our understanding of glucocorticoids and critically analyzes the GR isoforms and their beneficial and deleterious mechanisms and the sexual differences that cause a dichotomy in responses. We also discuss the future of glucocorticoid therapy and propose a new concept of dual GR isoform agonist and postulate why activating both isoforms may prevent glucocorticoid resistance.
Collapse
Affiliation(s)
- Genesee J Martinez
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, United States
| | - Malik Appleton
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, United States
| | - Zachary A Kipp
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, United States
| | - Analia S Loria
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, United States
- Barnstable Brown Diabetes Center, University of Kentucky College of Medicine, Lexington, Kentucky, United States
| | - Booki Min
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States
| | - Terry D Hinds
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, United States
- Barnstable Brown Diabetes Center, University of Kentucky College of Medicine, Lexington, Kentucky, United States
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky, United States
| |
Collapse
|
6
|
Zimmerman JAO, Fang M, Pufall MA. PI3Kδ Inhibition Potentiates Glucocorticoids in B-lymphoblastic Leukemia by Decreasing Receptor Phosphorylation and Enhancing Gene Regulation. Cancers (Basel) 2023; 16:143. [PMID: 38201570 PMCID: PMC10778422 DOI: 10.3390/cancers16010143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/14/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Glucocorticoids are the cornerstone of B-lymphoblastic leukemia (B-ALL) therapy. Because response to glucocorticoids alone predicts overall outcomes for B-ALL, enhancing glucocorticoid potency should improve treatment. We previously showed that inhibition of the lymphoid-restricted PI3Kδ with idelalisib enhances glucocorticoid activity in B-ALL cells. Here, we show that idelalisib enhances glucocorticoid potency in 90% of primary B-ALL specimens and is most pronounced at sub-saturating doses of glucocorticoids near the EC50. Potentiation is associated with enhanced regulation of all glucocorticoid-regulated genes, including genes that drive B-ALL cell death. Idelalisib reduces phosphorylation of the glucocorticoid receptor (GR) at PI3Kδ/MAPK1 (ERK2) targets S203 and S226. Ablation of these phospho-acceptor sites enhances sensitivity to glucocorticoids with ablation of S226 in particular reducing synergy. We also show that phosphorylation of S226 reduces the affinity of GR for DNA in vitro. We propose that PI3Kδ inhibition improves glucocorticoid efficacy in B-ALL in part by decreasing GR phosphorylation, increasing DNA binding affinity, and enhancing downstream gene regulation. This mechanism and the response of patient specimens suggest that idelalisib will benefit most patients with B-ALL, but particularly patients with less responsive, including high-risk, disease. This combination is also promising for the development of less toxic glucocorticoid-sparing therapies.
Collapse
Affiliation(s)
- Jessica A. O. Zimmerman
- Division of Pediatric Hematology/Oncology, Stead Family Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA;
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA;
| | - Mimi Fang
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA;
- Department of Biochemistry and Molecular Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Miles A. Pufall
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA;
- Department of Biochemistry and Molecular Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
7
|
Yu GR, Kim JE, Lim DW, Park WH. The combination of Ephedrae herba and coixol from Coicis semen attenuate adiposity via glucocorticoid receptor regulation. Sci Rep 2023; 13:20324. [PMID: 37990123 PMCID: PMC10663538 DOI: 10.1038/s41598-023-47553-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 11/15/2023] [Indexed: 11/23/2023] Open
Abstract
The enhanced therapeutic effects and mechanisms of certain herbal combination in various herbal prescriptions are mostly unclear. A combination of two herbs, namely Ephedrae herba (EH) and Coicis semen (CS), has been commonly prescribed for obesity. In our previous work, the combination of EH and CS was studied using network pharmacological approach to predict its pharmacological targets and in vitro experiments to evaluate its efficacy on obesity. Although we demonstrated enhanced anti-adiposity effects of the combination on matured adipocytes, the molecular mechanisms and contributing compounds underlying the effects of EH-CS combination on adiposity or adipogenesis were not fully elucidated. The current study adopted integrated bioinformatics analysis to precisely validate potential targets of EH-CS by screening differentially expressed genes (DEGs) of morbid obesity patients from NCBI gene expression omnibus (GEO). Based on the functional cluster analysis of down-regulated DEGs, the anti-adipogenesis mechanism of EH-CS combination was speculated with KEGG enrichment analysis. Furthermore, we investigated the combinational effects of EH and coixol, or stigmasterol, the two compounds in CS which were expected to have main beneficial effects in metabolic diseases. Moreover, distinct effect of the combination on transcriptional activity of glucocorticoid receptor (GR) was investigated using electrophoretic mobility shift assay (EMSA). The EH-CS combination was predicted to modulate down-regulated genes which are involved in KEGG pathways crucial to metabolic disease in morbidly obese individuals. The combination of EH with CS compounds significantly increased the phosphorylation of acetyl-coA carboxylase (ACC), AMP-activated protein kinase (AMPK), and protein kinase B (AKT) in 3T3-L1 cells and decreased intracellular lipid accumulation. The two CS compounds significantly increased the anti-adipogenesis/lipogenesis effects of EH by inhibiting the gene expression levels. Finally, the combination of EH and coixol inhibited dexamethasone-induced GR translocation to the nucleus and transcriptional binding activity in adipocytes. The combination of EH and CS could be considered a therapeutic strategy for treating metabolic diseases, including obesity.
Collapse
Affiliation(s)
- Ga-Ram Yu
- Department of Diagnostic, College of Korean Medicine, Dongguk University, Goyang, 10326, Republic of Korea
| | - Jai-Eun Kim
- Department of Pathology, College of Korean Medicine, Dongguk University, Goyang, 10326, Republic of Korea
| | - Dong-Woo Lim
- Department of Diagnostic, College of Korean Medicine, Dongguk University, Goyang, 10326, Republic of Korea.
- Institute of Korean Medicine, Dongguk University, Goyang, 10326, Republic of Korea.
| | - Won-Hwan Park
- Department of Diagnostic, College of Korean Medicine, Dongguk University, Goyang, 10326, Republic of Korea.
| |
Collapse
|
8
|
Pofi R, Caratti G, Ray DW, Tomlinson JW. Treating the Side Effects of Exogenous Glucocorticoids; Can We Separate the Good From the Bad? Endocr Rev 2023; 44:975-1011. [PMID: 37253115 PMCID: PMC10638606 DOI: 10.1210/endrev/bnad016] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/25/2023] [Accepted: 05/26/2023] [Indexed: 06/01/2023]
Abstract
It is estimated that 2% to 3% of the population are currently prescribed systemic or topical glucocorticoid treatment. The potent anti-inflammatory action of glucocorticoids to deliver therapeutic benefit is not in doubt. However, the side effects associated with their use, including central weight gain, hypertension, insulin resistance, type 2 diabetes (T2D), and osteoporosis, often collectively termed iatrogenic Cushing's syndrome, are associated with a significant health and economic burden. The precise cellular mechanisms underpinning the differential action of glucocorticoids to drive the desirable and undesirable effects are still not completely understood. Faced with the unmet clinical need to limit glucocorticoid-induced adverse effects alongside ensuring the preservation of anti-inflammatory actions, several strategies have been pursued. The coprescription of existing licensed drugs to treat incident adverse effects can be effective, but data examining the prevention of adverse effects are limited. Novel selective glucocorticoid receptor agonists and selective glucocorticoid receptor modulators have been designed that aim to specifically and selectively activate anti-inflammatory responses based upon their interaction with the glucocorticoid receptor. Several of these compounds are currently in clinical trials to evaluate their efficacy. More recently, strategies exploiting tissue-specific glucocorticoid metabolism through the isoforms of 11β-hydroxysteroid dehydrogenase has shown early potential, although data from clinical trials are limited. The aim of any treatment is to maximize benefit while minimizing risk, and within this review we define the adverse effect profile associated with glucocorticoid use and evaluate current and developing strategies that aim to limit side effects but preserve desirable therapeutic efficacy.
Collapse
Affiliation(s)
- Riccardo Pofi
- Oxford Centre for Diabetes, Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford OX3 7LE, UK
| | - Giorgio Caratti
- Oxford Centre for Diabetes, Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford OX3 7LE, UK
| | - David W Ray
- Oxford Centre for Diabetes, Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford OX3 7LE, UK
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford OX3 9DU, UK
- Oxford Kavli Centre for Nanoscience Discovery, University of Oxford, Oxford OX37LE, UK
| | - Jeremy W Tomlinson
- Oxford Centre for Diabetes, Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford OX3 7LE, UK
| |
Collapse
|
9
|
Fadel L, Dacic M, Fonda V, Sokolsky BA, Quagliarini F, Rogatsky I, Uhlenhaut NH. Modulating glucocorticoid receptor actions in physiology and pathology: Insights from coregulators. Pharmacol Ther 2023; 251:108531. [PMID: 37717739 PMCID: PMC10841922 DOI: 10.1016/j.pharmthera.2023.108531] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 09/19/2023]
Abstract
Glucocorticoids (GCs) are a class of steroid hormones that regulate key physiological processes such as metabolism, immune function, and stress responses. The effects of GCs are mediated by the glucocorticoid receptor (GR), a ligand-dependent transcription factor that activates or represses the expression of hundreds to thousands of genes in a tissue- and physiological state-specific manner. The activity of GR is modulated by numerous coregulator proteins that interact with GR in response to different stimuli assembling into a multitude of DNA-protein complexes and facilitate the integration of these signals, helping GR to communicate with basal transcriptional machinery and chromatin. Here, we provide a brief overview of the physiological and molecular functions of GR, and discuss the roles of GR coregulators in the immune system, key metabolic tissues and the central nervous system. We also present an analysis of the GR interactome in different cells and tissues, which suggests tissue-specific utilization of GR coregulators, despite widespread functions shared by some of them.
Collapse
Affiliation(s)
- Lina Fadel
- Institute for Diabetes and Endocrinology IDE, Helmholtz Munich, Ingolstaedter Landstr. 1, 857649 Neuherberg, Germany
| | - Marija Dacic
- Hospital for Special Surgery Research Institute, The David Rosenzweig Genomics Center, New York, NY, USA; Graduate Program in Physiology, Biophysics and Systems Biology, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Vlera Fonda
- Institute for Diabetes and Endocrinology IDE, Helmholtz Munich, Ingolstaedter Landstr. 1, 857649 Neuherberg, Germany
| | - Baila A Sokolsky
- Hospital for Special Surgery Research Institute, The David Rosenzweig Genomics Center, New York, NY, USA; Graduate Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Fabiana Quagliarini
- Institute for Diabetes and Endocrinology IDE, Helmholtz Munich, Ingolstaedter Landstr. 1, 857649 Neuherberg, Germany
| | - Inez Rogatsky
- Hospital for Special Surgery Research Institute, The David Rosenzweig Genomics Center, New York, NY, USA; Graduate Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA.
| | - N Henriette Uhlenhaut
- Institute for Diabetes and Endocrinology IDE, Helmholtz Munich, Ingolstaedter Landstr. 1, 857649 Neuherberg, Germany; Metabolic Programming, TUM School of Life Sciences & ZIEL Institute for Food and Health, Gregor11 Mendel-Str. 2, 85354 Freising, Germany.
| |
Collapse
|
10
|
Myung CH, Jo CS, Hwang JS. Phosphorylation of glucocorticoid receptor induced by 16-kauren-2-beta-18, 19-triol decreases expression of Melanophilin through JNK signalling. Exp Dermatol 2023; 32:1394-1401. [PMID: 37218931 DOI: 10.1111/exd.14837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/29/2023] [Accepted: 05/09/2023] [Indexed: 05/24/2023]
Abstract
16-kauren-2-beta-18, 19-triol (16-kauren) is a natural diterpenoid substance derived from Asteraceae psiadia punctulata, a small tropical shrub in Africa and Asia, and it can reduce Mlph expression without affecting the expression of Rab27a and MyoVa in melanocytes. Melanophilin (Mlph) is an important linker protein in the melanosome transport process. However, the signal transduction pathway for the regulation of Mlph expression has not been fully established. We examined the mechanism of 16-kauren on Mlph expression. Murine melan-a melanocytes were used for in vitro analysis. Western blot analysis, quantitative real-time polymerase chain reaction, and luciferase assay were performed. The inhibition of Mlph expression by 16-kauren-2β-18,19-triol (16-kauren) occurs through the JNK signal and is reversed following glucocorticoid receptor (GR) activation by dexamethasone (Dex). Especially, 16-kauren activates JNK and c-jun signalling, part of the MAPK pathway, with subsequent Mlph repression. When the JNK signal is weakened by siRNA, the inhibition of Mlph expression by 16-kauren was not seen. JNK activation by 16-kauren induces GR phosphorylation, which leads to Mlph repression. These results demonstrate that 16-kauren regulates Mlph expression through the phosphorylation of GR via the JNK signalling pathway.
Collapse
Affiliation(s)
- Cheol-Hwan Myung
- Department of Genetic & Biotechnology, Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, Korea
| | - Chan-Song Jo
- Department of Genetic & Biotechnology, Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, Korea
| | - Jae-Sung Hwang
- Department of Genetic & Biotechnology, Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, Korea
| |
Collapse
|
11
|
Zimmerman JA, Fang M, Pufall MA. PI3Kδ inhibition potentiates glucocorticoids in B-lymphoblastic leukemia by decreasing receptor phosphorylation and enhancing gene regulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.10.527869. [PMID: 36798391 PMCID: PMC9934697 DOI: 10.1101/2023.02.10.527869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/16/2023]
Abstract
Glucocorticoids, including dexamethasone and prednisone, are the cornerstone of B-lymphoblastic leukemia (B-ALL) therapy. Because response to glucocorticoids alone predicts overall outcomes for B-ALL, enhancing glucocorticoid potency is a route to improving outcomes. However, systematic toxicities prevent the use of higher dose and more potent glucocorticoids. We therefore took a functional genomic approach to identify targets to enhance glucocorticoid activity specifically in B-ALL cells. Here we show that inhibition of the lymphoid-restricted PI3Kδ, signaling through the RAS/MAPK pathway, enhances both prednisone and dexamethasone activity in almost all ex vivo B-ALL specimens tested. This potentiation is most synergistic at sub-saturating doses of glucocorticoids, approaching the EC50. Potentiation correlates with global enhancement of glucocorticoid-induced gene regulation, including regulation of effector genes that drive B-ALL cell death. Idelalisib reduces phosphorylation of the glucocorticoid receptor (GR) at MAPK1/ERK2 targets S203 and S226, and ablation of these phospho-acceptor sites enhances glucocorticoid potency. We further show that phosphorylation of S226 reduces the affinity of GR for DNA in vitro, which impairs DNA binding. We therefore propose that PI3Kδ inhibition improves glucocorticoid efficacy in B-ALL in part by decreasing GR phosphorylation, increasing DNA binding affinity, and enhancing downstream gene regulation. The overall enhancement of GR function suggests that idelalisib will provide benefit to most patients with B-ALL by improving outcomes for patients whose disease is less responsive to glucocorticoid-based therapy, including high-risk disease, and allowing less toxic glucocorticoid-sparing strategies for patients with standard-risk disease.
Collapse
Affiliation(s)
- Jessica A.O. Zimmerman
- Division of Pediatric Hematology/Oncology, Stead Family Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA
| | - Mimi Fang
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA
- Department of Biochemistry and Molecular Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Miles A. Pufall
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA
- Department of Biochemistry and Molecular Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
12
|
Borin C, Pieters T, Serafin V, Ntziachristos P. Emerging Epigenetic and Posttranslational Mechanisms Controlling Resistance to Glucocorticoids in Acute Lymphoblastic Leukemia. Hemasphere 2023; 7:e916. [PMID: 37359189 PMCID: PMC10289758 DOI: 10.1097/hs9.0000000000000916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/16/2023] [Indexed: 06/28/2023] Open
Abstract
Glucocorticoids are extensively used for the treatment of acute lymphoblastic leukemia as they pressure cancer cells to undergo apoptosis. Nevertheless, glucocorticoid partners, modifications, and mechanisms of action are hitherto poorly characterized. This hampers our understanding of therapy resistance, frequently occurring in leukemia despite the current therapeutic combinations using glucocorticoids in acute lymphoblastic leukemia. In this review, we initially cover the traditional view of glucocorticoid resistance and ways of targeting this resistance. We discuss recent progress in our understanding of chromatin and posttranslational properties of the glucocorticoid receptor that might be proven beneficial in our efforts to understand and target therapy resistance. We discuss emerging roles of pathways and proteins such as the lymphocyte-specific kinase that antagonizes glucocorticoid receptor activation and nuclear translocation. In addition, we provide an overview of ongoing therapeutic approaches that sensitize cells to glucocorticoids including small molecule inhibitors and proteolysis-targeting chimeras.
Collapse
Affiliation(s)
- Cristina Borin
- Department of Biomolecular Medicine, Ghent University, Belgium
- Center for Medical Genetics, Ghent University and University Hospital, Belgium
- Cancer Research Institute Ghent (CRIG), Belgium
| | - Tim Pieters
- Department of Biomolecular Medicine, Ghent University, Belgium
- Center for Medical Genetics, Ghent University and University Hospital, Belgium
- Cancer Research Institute Ghent (CRIG), Belgium
| | - Valentina Serafin
- Department of Surgery Oncology and Gastroenterology, Oncology and Immunology Section, University of Padova, Italy
| | - Panagiotis Ntziachristos
- Department of Biomolecular Medicine, Ghent University, Belgium
- Center for Medical Genetics, Ghent University and University Hospital, Belgium
- Cancer Research Institute Ghent (CRIG), Belgium
| |
Collapse
|
13
|
Deploey N, Van Moortel L, Rogatsky I, Peelman F, De Bosscher K. The Biologist's Guide to the Glucocorticoid Receptor's Structure. Cells 2023; 12:1636. [PMID: 37371105 PMCID: PMC10297449 DOI: 10.3390/cells12121636] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
The glucocorticoid receptor α (GRα) is a member of the nuclear receptor superfamily and functions as a glucocorticoid (GC)-responsive transcription factor. GR can halt inflammation and kill off cancer cells, thus explaining the widespread use of glucocorticoids in the clinic. However, side effects and therapy resistance limit GR's therapeutic potential, emphasizing the importance of resolving all of GR's context-specific action mechanisms. Fortunately, the understanding of GR structure, conformation, and stoichiometry in the different GR-controlled biological pathways is now gradually increasing. This information will be crucial to close knowledge gaps on GR function. In this review, we focus on the various domains and mechanisms of action of GR, all from a structural perspective.
Collapse
Affiliation(s)
- Nick Deploey
- VIB Center for Medical Biotechnology, VIB, 9052 Ghent, Belgium; (N.D.); (L.V.M.); (F.P.)
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Translational Nuclear Receptor Research (TNRR) Laboratory, VIB, 9052 Ghent, Belgium
| | - Laura Van Moortel
- VIB Center for Medical Biotechnology, VIB, 9052 Ghent, Belgium; (N.D.); (L.V.M.); (F.P.)
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Translational Nuclear Receptor Research (TNRR) Laboratory, VIB, 9052 Ghent, Belgium
| | - Inez Rogatsky
- Hospital for Special Surgery Research Institute, The David Z. Rosensweig Genomics Center, New York, NY 10021, USA;
- Graduate Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
| | - Frank Peelman
- VIB Center for Medical Biotechnology, VIB, 9052 Ghent, Belgium; (N.D.); (L.V.M.); (F.P.)
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| | - Karolien De Bosscher
- VIB Center for Medical Biotechnology, VIB, 9052 Ghent, Belgium; (N.D.); (L.V.M.); (F.P.)
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Translational Nuclear Receptor Research (TNRR) Laboratory, VIB, 9052 Ghent, Belgium
| |
Collapse
|
14
|
Glucocorticoid Insensitivity in Asthma: The Unique Role for Airway Smooth Muscle Cells. Int J Mol Sci 2022; 23:ijms23168966. [PMID: 36012240 PMCID: PMC9408965 DOI: 10.3390/ijms23168966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/03/2022] [Accepted: 08/09/2022] [Indexed: 11/17/2022] Open
Abstract
Although most patients with asthma symptoms are well controlled by inhaled glucocorticoids (GCs), a subgroup of patients suffering from severe asthma respond poorly to GC therapy. Such GC insensitivity (GCI) represents a profound challenge in managing patients with asthma. Even though GCI in patients with severe asthma has been investigated by several groups using immune cells (peripheral blood mononuclear cells and alveolar macrophages), uncertainty exists regarding the underlying molecular mechanisms in non-immune cells, such as airway smooth cells (ASM) cells. In asthma, ASM cells are among the targets of GC therapy and have emerged as key contributors not only to bronchoconstriction but also to airway inflammation and remodeling, as implied by experimental and clinical evidence. We here summarize the current understanding of the actions/signaling of GCs in asthma, and specifically, GC receptor (GR) “site-specific phosphorylation” and its role in regulating GC actions. We also review some common pitfalls associated with studies investigating GCI and the inflammatory mediators linked to asthma severity. Finally, we discuss and contrast potential molecular mechanisms underlying the impairment of GC actions in immune cells versus non-immune cells such as ASM cells.
Collapse
|
15
|
Van Moortel L, Thommis J, Maertens B, Staes A, Clarisse D, De Sutter D, Libert C, Meijer OC, Eyckerman S, Gevaert K, De Bosscher K. Novel assays monitoring direct glucocorticoid receptor protein activity exhibit high predictive power for ligand activity on endogenous gene targets. Biomed Pharmacother 2022; 152:113218. [PMID: 35709653 DOI: 10.1016/j.biopha.2022.113218] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 11/25/2022] Open
Abstract
Exogenous glucocorticoids are widely used in the clinic for the treatment of inflammatory disorders and auto-immune diseases. Unfortunately, their use is hampered by many side effects and therapy resistance. Efforts to find more selective glucocorticoid receptor (GR) agonists and modulators (called SEGRAMs) that are able to separate anti-inflammatory effects via gene repression from metabolic effects via gene activation, have been unsuccessful so far. In this study, we characterized a set of functionally diverse GR ligands in A549 cells, first using a panel of luciferase-based reporter gene assays evaluating GR-driven gene activation and gene repression. We expanded this minimal assay set with novel luciferase-based read-outs monitoring GR protein levels, GR dimerization and GR Serine 211 (Ser211) phosphorylation status and compared their outcomes with compound effects on the mRNA levels of known GR target genes in A549 cells and primary hepatocytes. We found that luciferase reporters evaluating GR-driven gene activation and gene repression were not always reliable predictors for effects on endogenous target genes. Remarkably, our novel assay monitoring GR Ser211 phosphorylation levels proved to be the most reliable predictor for compound effects on almost all tested endogenous GR targets, both driven by gene activation and repression. The integration of this novel assay in existing screening platforms running both in academia and industry may therefore boost chances to find novel GR ligands with an actual improved therapeutic benefit.
Collapse
Affiliation(s)
- Laura Van Moortel
- VIB Center for Medical Biotechnology (CMB), Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium.
| | - Jonathan Thommis
- VIB Center for Medical Biotechnology (CMB), Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium.
| | - Brecht Maertens
- VIB Center for Medical Biotechnology (CMB), Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium.
| | - An Staes
- VIB Center for Medical Biotechnology (CMB), Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium.
| | - Dorien Clarisse
- VIB Center for Medical Biotechnology (CMB), Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium.
| | - Delphine De Sutter
- VIB Center for Medical Biotechnology (CMB), Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium.
| | - Claude Libert
- VIB Center for Inflammation Research (IRC), Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium.
| | - Onno C Meijer
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Albinusdreef 2, 2333ZA Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Postbus 9600, 2300 RC Leiden, the Netherlands.
| | - Sven Eyckerman
- VIB Center for Medical Biotechnology (CMB), Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium.
| | - Kris Gevaert
- VIB Center for Medical Biotechnology (CMB), Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium.
| | - Karolien De Bosscher
- VIB Center for Medical Biotechnology (CMB), Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium.
| |
Collapse
|
16
|
Fuertes M, Elguero B, Gonilski-Pacin D, Herbstein F, Rosmino J, Ciancio del Giudice N, Fiz M, Falcucci L, Arzt E. Impact of RSUME Actions on Biomolecular Modifications in Physio-Pathological Processes. Front Endocrinol (Lausanne) 2022; 13:864780. [PMID: 35528020 PMCID: PMC9068994 DOI: 10.3389/fendo.2022.864780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/11/2022] [Indexed: 12/03/2022] Open
Abstract
The small RWD domain-containing protein called RSUME or RWDD3 was cloned from pituitary tumor cells with increasing tumorigenic and angiogenic proficiency. RSUME expression is induced under hypoxia or heat shock and is upregulated, at several pathophysiological stages, in tissues like pituitary, kidney, heart, pancreas, or adrenal gland. To date, several factors with essential roles in endocrine-related cancer appear to be modulated by RWDD3. RSUME regulates, through its post-translational (PTM) modification, pituitary tumor transforming gene (PTTG) protein stability in pituitary tumors. Interestingly, in these tumors, another PTM, the regulation of EGFR levels by USP8, plays a pathogenic role. Furthermore, RSUME suppresses ubiquitin conjugation to hypoxia-inducible factor (HIF) by blocking VHL E3-ubiquitin ligase activity, contributing to the development of von Hippel-Lindau disease. RSUME enhances protein SUMOylation of specific targets involved in inflammation such as IkB and the glucocorticoid receptor. For many of its actions, RSUME associates with regulatory proteins of ubiquitin and SUMO cascades, such as the E2-SUMO conjugase Ubc9 or the E3 ubiquitin ligase VHL. New evidence about RSUME involvement in inflammatory and hypoxic conditions, such as cardiac tissue response to ischemia and neuropathic pain, and its role in several developmental processes, is discussed as well. Given the modulation of PTMs by RSUME in neuroendocrine tumors, we focus on its interactors and its mode of action. Insights into functional implications and molecular mechanisms of RSUME action on biomolecular modifications of key factors of pituitary adenomas and renal cell carcinoma provide renewed information about new targets to treat these pathologies.
Collapse
Affiliation(s)
- Mariana Fuertes
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Belén Elguero
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - David Gonilski-Pacin
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Florencia Herbstein
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Josefina Rosmino
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Nicolas Ciancio del Giudice
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Manuel Fiz
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Lara Falcucci
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Eduardo Arzt
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Partner Institute of the Max Planck Society, Buenos Aires, Argentina
- Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
17
|
Wang B, Yang X, Lu J, Ntim M, Xia M, Kundu S, Jiang R, Chen D, Wang Y, Yang JY, Li S. Two-hour acute restraint stress facilitates escape behavior and learning outcomes through the activation of the Cdk5/GR P S211 pathway in male mice. Exp Neurol 2022; 354:114023. [PMID: 35218707 DOI: 10.1016/j.expneurol.2022.114023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 01/03/2022] [Accepted: 02/20/2022] [Indexed: 11/18/2022]
Abstract
Acute stress exerts pleiotropic actions on learning behaviors. The induced negative effects are sometimes adopted to measure the efficacy of particular drugs. Until now, there are no detailed experimental data on the time-gradient effects of acute stress. Here, we developed the time gradient acute restraint stress (ARS) model to precisely assess the roles of different restrain times on inducing acute stress. Time gradient ARS facilitates escape behaviors and learning outcomes, peaking at 2 h-ARS and then declining to baseline at 3.5 h-ARS as confirmed by time gradient post-stress data. Furthermore, time gradient ARS activates glucocorticoid receptor (GR) phosphorylation site at Serine211 (P S221) as an inverted V-shaped pattern peaking at 2 h-ARS, whereas that of the GR phosphorylation site at Serine226 (P S226) from 2 h-ARS to 3.5 h-ARS. The 2 h-ARS but not 3.5 h-ARS enhances synaptic plasticity and genes transcription associated with learning and memory in the hippocampus of male mice. The Cdk5 inhibitor, roscovitine, blocks this facilitation effect by intervening in GR phosphorylation at Serine211 in the 2 h-ARS mice. Altogether, these findings show that the time gradient ARS selectively activates GR phospho-isoforms and differentially influences the behaviors along with maintaining a relationship between 2 h-ARS and Cdk5/GR P S211-mediated transcriptional activity.
Collapse
Affiliation(s)
- Bin Wang
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, Liaoning, China
| | - Xuewei Yang
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, Liaoning, China
| | - Jincheng Lu
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, Liaoning, China
| | - Michael Ntim
- Department of Physiology, School of Medicine and Dentistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Min Xia
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, Liaoning, China
| | - Supratik Kundu
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, Liaoning, China
| | - Rong Jiang
- Department of Physiology, Binzhou Medical University, Yantai Campus, 346 Guanhai Road, Laishan District, Yantai, Shandong, China
| | - Defang Chen
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, Liaoning, China
| | - Ying Wang
- Department of Cardiology, Institute of Heart and Vessel Diseases of Dalian Medical University, the Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Jin-Yi Yang
- Department of Urology, Affiliated Dalian Friendship Hospital of Dalian Medical University, Dalian, China.
| | - Shao Li
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, Liaoning, China.
| |
Collapse
|
18
|
Butz H, Patócs A. Mechanisms behind context-dependent role of glucocorticoids in breast cancer progression. Cancer Metastasis Rev 2022; 41:803-832. [PMID: 35761157 PMCID: PMC9758252 DOI: 10.1007/s10555-022-10047-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/09/2022] [Indexed: 02/08/2023]
Abstract
Glucocorticoids (GCs), mostly dexamethasone (dex), are routinely administered as adjuvant therapy to manage side effects in breast cancer. However, recently, it has been revealed that dex triggers different effects and correlates with opposite outcomes depending on the breast cancer molecular subtype. This has raised new concerns regarding the generalized use of GC and suggested that the context-dependent effects of GCs can be taken into potential consideration during treatment design. Based on this, attention has recently been drawn to the role of the glucocorticoid receptor (GR) in development and progression of breast cancer. Therefore, in this comprehensive review, we aimed to summarize the different mechanisms behind different context-dependent GC actions in breast cancer by applying a multilevel examination, starting from the association of variants of the GR-encoding gene to expression at the mRNA and protein level of the receptor, and its interactions with other factors influencing GC action in breast cancer. The role of GCs in chemosensitivity and chemoresistance observed during breast cancer therapy is discussed. In addition, experiences using GC targeting therapeutic options (already used and investigated in preclinical and clinical trials), such as classic GC dexamethasone, selective glucocorticoid receptor agonists and modulators, the GC antagonist mifepristone, and GR coregulators, are also summarized. Evidence presented can aid a better understanding of the biology of context-dependent GC action that can lead to further advances in the personalized therapy of breast cancer by the evaluation of GR along with the conventional estrogen receptor (ER) and progesterone receptor (PR) in the routine diagnostic procedure.
Collapse
Affiliation(s)
- Henriett Butz
- Department of Molecular Genetics and the National Tumor Biology Laboratory, National Institute of Oncology, Budapest, Hungary.
- Hereditary Tumours Research Group, Hungarian Academy of Sciences-Semmelweis University, Budapest, Hungary.
- Department of Laboratory Medicine, Semmelweis University, Budapest, Hungary.
| | - Attila Patócs
- Department of Molecular Genetics and the National Tumor Biology Laboratory, National Institute of Oncology, Budapest, Hungary
- Hereditary Tumours Research Group, Hungarian Academy of Sciences-Semmelweis University, Budapest, Hungary
- Department of Laboratory Medicine, Semmelweis University, Budapest, Hungary
| |
Collapse
|
19
|
Ghiciuc CM, Vicovan AG, Stafie CS, Antoniu SA, Postolache P. Marine-Derived Compounds for the Potential Treatment of Glucocorticoid Resistance in Severe Asthma. Mar Drugs 2021; 19:md19110586. [PMID: 34822457 PMCID: PMC8620935 DOI: 10.3390/md19110586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 02/07/2023] Open
Abstract
One of the challenges to the management of severe asthma is the poor therapeutic response to treatment with glucocorticosteroids. Compounds derived from marine sources have received increasing interest in recent years due to their prominent biologically active properties for biomedical applications, as well as their sustainability and safety for drug development. Based on the pathobiological features associated with glucocorticoid resistance in severe asthma, many studies have already described many glucocorticoid resistance mechanisms as potential therapeutic targets. On the other hand, in the last decade, many studies described the potentially anti-inflammatory effects of marine-derived biologically active compounds. Analyzing the underlying anti-inflammatory mechanisms of action for these marine-derived biologically active compounds, we observed some of the targeted pathogenic molecular mechanisms similar to those described in glucocorticoid (GC) resistant asthma. This article gathers the marine-derived compounds targeting pathogenic molecular mechanism involved in GC resistant asthma and provides a basis for the development of effective marine-derived drugs.
Collapse
Affiliation(s)
- Cristina Mihaela Ghiciuc
- Department of Morpho-Functional Sciences II—Pharmacology and Clinical Pharmacology, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iași, 16 Universitatii Street, 700115 Iasi, Romania
- Correspondence: (C.M.G.); (A.G.V.)
| | - Andrei Gheorghe Vicovan
- Department of Morpho-Functional Sciences II—Pharmacology and Clinical Pharmacology, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iași, 16 Universitatii Street, 700115 Iasi, Romania
- Correspondence: (C.M.G.); (A.G.V.)
| | - Celina Silvia Stafie
- Department of Preventive Medicine and Interdisciplinarity—Family Medicine Discipline, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 16 Universitatii Street, 700115 Iasi, Romania;
| | - Sabina Antonela Antoniu
- Department of Medicine II—Palliative Care Nursing, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 16 Universitatii Street, 700115 Iasi, Romania;
| | - Paraschiva Postolache
- Department of Medicine I—Pulmonary Rehabilitation Clinic, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 16 Universitatii Street, 700115 Iasi, Romania;
| |
Collapse
|
20
|
Sevilla LM, Jiménez-Panizo A, Alegre-Martí A, Estébanez-Perpiñá E, Caelles C, Pérez P. Glucocorticoid Resistance: Interference between the Glucocorticoid Receptor and the MAPK Signalling Pathways. Int J Mol Sci 2021; 22:10049. [PMID: 34576214 PMCID: PMC8465023 DOI: 10.3390/ijms221810049] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/07/2021] [Accepted: 09/15/2021] [Indexed: 12/21/2022] Open
Abstract
Endogenous glucocorticoids (GCs) are steroid hormones that signal in virtually all cell types to modulate tissue homeostasis throughout life. Also, synthetic GC derivatives (pharmacological GCs) constitute the first-line treatment in many chronic inflammatory conditions with unquestionable therapeutic benefits despite the associated adverse effects. GC actions are principally mediated through the GC receptor (GR), a ligand-dependent transcription factor. Despite the ubiquitous expression of GR, imbalances in GC signalling affect tissues differently, and with variable degrees of severity through mechanisms that are not completely deciphered. Congenital or acquired GC hypersensitivity or resistance syndromes can impact responsiveness to endogenous or pharmacological GCs, causing disease or inadequate therapeutic outcomes, respectively. Acquired GC resistance is defined as loss of efficacy or desensitization over time, and arises as a consequence of chronic inflammation, affecting around 30% of GC-treated patients. It represents an important limitation in the management of chronic inflammatory diseases and cancer, and can be due to impairment of multiple mechanisms along the GC signalling pathway. Among them, activation of the mitogen-activated protein kinases (MAPKs) and/or alterations in expression of their regulators, the dual-specific phosphatases (DUSPs), have been identified as common mechanisms of GC resistance. While many of the anti-inflammatory actions of GCs rely on GR-mediated inhibition of MAPKs and/or induction of DUSPs, the GC anti-inflammatory capacity is decreased or lost in conditions of excessive MAPK activation, contributing to disease susceptibility in tissue- and disease- specific manners. Here, we discuss potential strategies to modulate GC responsiveness, with the dual goal of overcoming GC resistance and minimizing the onset and severity of unwanted adverse effects while maintaining therapeutic potential.
Collapse
Affiliation(s)
- Lisa M. Sevilla
- Instituto de Biomedicina de Valencia (IBV)-CSIC, 46010 Valencia, Spain;
| | - Alba Jiménez-Panizo
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona (UB), 08028 Barcelona, Spain; (A.J.-P.); (A.A.-M.); (E.E.-P.)
- Institute of Biomedicine, University of Barcelona (IBUB), 08028 Barcelona, Spain;
| | - Andrea Alegre-Martí
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona (UB), 08028 Barcelona, Spain; (A.J.-P.); (A.A.-M.); (E.E.-P.)
- Institute of Biomedicine, University of Barcelona (IBUB), 08028 Barcelona, Spain;
| | - Eva Estébanez-Perpiñá
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona (UB), 08028 Barcelona, Spain; (A.J.-P.); (A.A.-M.); (E.E.-P.)
- Institute of Biomedicine, University of Barcelona (IBUB), 08028 Barcelona, Spain;
| | - Carme Caelles
- Institute of Biomedicine, University of Barcelona (IBUB), 08028 Barcelona, Spain;
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, University of Barcelona (UB), 08028 Barcelona, Spain
| | - Paloma Pérez
- Instituto de Biomedicina de Valencia (IBV)-CSIC, 46010 Valencia, Spain;
| |
Collapse
|
21
|
Martins CS, de Castro M. Generalized and tissue specific glucocorticoid resistance. Mol Cell Endocrinol 2021; 530:111277. [PMID: 33864884 DOI: 10.1016/j.mce.2021.111277] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 12/20/2022]
Abstract
Glucocorticoids (GCs) are steroid hormones that influence several physiologic functions and are among the most frequently prescribed drugs worldwide. Resistance to GCs has been observed in the context of the familial generalized GC resistance (Chrousos' syndrome) or tissue specific GC resistance in chronic inflammatory states. In this review, we have summarized the major factors that influence individual glucocorticoid sensitivity/resistance. The fine-tuning of GC action is determined in a tissue-specific fashion that includes the combination of different GC receptor promoters, translation initiation sites, splice isoforms, interacting proteins, post-translational modifications, and alternative mechanisms of signal transduction.
Collapse
Affiliation(s)
- Clarissa Silva Martins
- Department of Internal Medicine - Ribeirao Preto Medical School - University of Sao Paulo, Ribeirao Preto, SP, Brazil; School of Medicine, Federal University of Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Margaret de Castro
- Department of Internal Medicine - Ribeirao Preto Medical School - University of Sao Paulo, Ribeirao Preto, SP, Brazil.
| |
Collapse
|
22
|
Neumann J, Boknik P, Kirchhefer U, Gergs U. The role of PP5 and PP2C in cardiac health and disease. Cell Signal 2021; 85:110035. [PMID: 33964402 DOI: 10.1016/j.cellsig.2021.110035] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/16/2021] [Accepted: 05/03/2021] [Indexed: 02/08/2023]
Abstract
Protein phosphatases are important, for example, as functional antagonists of β-adrenergic stimulation of the mammalian heart. While β-adrenergic stimulations increase the phosphorylation state of regulatory proteins and therefore force of contraction in the heart, these phosphorylations are reversed and thus force is reduced by the activity of protein phosphatases. In this context the role of PP5 and PP2C is starting to unravel. They do not belong to the same family of phosphatases with regard to sequence homology, many similarities with regard to location, activation by lipids and putative substrates have been worked out over the years. We also suggest which pathways for regulation of PP5 and/or PP2C described in other tissues and not yet in the heart might be useful to look for in cardiac tissue. Both phosphatases might play a role in signal transduction of sarcolemmal receptors in the heart. Expression of PP5 and PP2C can be increased by extracellular stimuli in the heart. Because PP5 is overexpressed in failing animal and human hearts, and because overexpression of PP5 or PP2C leads to cardiac hypertrophy and KO of PP5 leads to cardiac hypotrophy, one might argue for a role of PP5 and PP2C in heart failure. Because PP5 and PP2C can reduce, at least in vitro, the phosphorylation state of proteins thought to be relevant for cardiac arrhythmias, a role of these phosphatases for cardiac arrhythmias is also probable. Thus, PP5 and PP2C might be druggable targets to treat important cardiac diseases like heart failure, cardiac hypertrophy and cardiac arrhythmias.
Collapse
Affiliation(s)
- Joachim Neumann
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Magdeburger Str. 4, D-06097 Halle, Germany.
| | - Peter Boknik
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Westfälische Wilhelms-Universität, Domagkstraße 12, D-48149 Münster, Germany.
| | - Uwe Kirchhefer
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Westfälische Wilhelms-Universität, Domagkstraße 12, D-48149 Münster, Germany.
| | - Ulrich Gergs
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Magdeburger Str. 4, D-06097 Halle, Germany.
| |
Collapse
|
23
|
Vojnović Milutinović D, Teofilović A, Veličković N, Brkljačić J, Jelača S, Djordjevic A, Macut D. Glucocorticoid signaling and lipid metabolism disturbances in the liver of rats treated with 5α-dihydrotestosterone in an animal model of polycystic ovary syndrome. Endocrine 2021; 72:562-572. [PMID: 33449293 DOI: 10.1007/s12020-020-02600-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 12/24/2020] [Indexed: 10/24/2022]
Abstract
PURPOSE Polycystic ovary syndrome (PCOS) is a complex reproductive disorder often associated with obesity, insulin resistance, and dyslipidemia. Hormonal changes in PCOS may also include altered glucocorticoid signaling. Our aim was to examine whether alterations in hepatic glucocorticoid signaling are associated with disturbances of glucose and lipid metabolism in animal model of PCOS. METHODS Female rats, 3 weeks old, were subcutaneously implanted with 5α-dihydrotestosterone (DHT) or placebo pellets for 90 days to induce PCOS. Expression of 11β-hydroxysteroid dehydrogenase 1 (11βHSD1) and A-ring reductases (5α and 5β), as well as intracellular distribution of glucocorticoid receptor (GR) and expression of its regulated genes were examined in the liver. Proteins of hepatic lipid and carbohydrate metabolism and markers of inflammation were also assessed. RESULTS DHT treatment induced increase in body and liver mass, as well as in triglycerides and free fatty acids levels in plasma. Elevation of 11βHSD1 and reduction of 5α-reductase expression was observed together with increased hepatic corticosterone concentration and nuclear GR activation. Induced expression of Krüppel-like factor 15 and decreased expression of genes for proinflammatory cytokines and de novo lipogenesis (DNL) were detected in the liver of DHT-treated rats, while DNL regulators and proinflammatory markers were not changed. However, increased mRNA levels of stearoyl-CoA desaturase and apolipoprotein B were observed in DHT animals. CONCLUSIONS DHT treatment stimulated hepatic glucocorticoid prereceptor metabolism through increased corticosterone availability which is associated with enhanced GR activation. This does not affect gluconeogenesis and DNL, but could be linked to stimulated triglyceride synthesis and hypertriglyceridemia.
Collapse
Affiliation(s)
- Danijela Vojnović Milutinović
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, 142 Despot Stefan Blvd., 11000, Belgrade, Serbia
| | - Ana Teofilović
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, 142 Despot Stefan Blvd., 11000, Belgrade, Serbia
| | - Nataša Veličković
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, 142 Despot Stefan Blvd., 11000, Belgrade, Serbia
| | - Jelena Brkljačić
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, 142 Despot Stefan Blvd., 11000, Belgrade, Serbia
| | - Sanja Jelača
- Department of Immunology, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, 142 Despot Stefan Blvd., 11000, Belgrade, Serbia
| | - Ana Djordjevic
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, 142 Despot Stefan Blvd., 11000, Belgrade, Serbia
| | - Djuro Macut
- Clinic of Endocrinology, Diabetes and Metabolic Diseases, Clinical Center of Serbia, Faculty of Medicine, University of Belgrade, Dr Subotića 13, 11000, Belgrade, Serbia.
| |
Collapse
|
24
|
Choi D, Kang W, Park S, Son B, Park T. β-Ionone Attenuates Dexamethasone-Induced Suppression of Collagen and Hyaluronic Acid Synthesis in Human Dermal Fibroblasts. Biomolecules 2021; 11:619. [PMID: 33919331 PMCID: PMC8143342 DOI: 10.3390/biom11050619] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/02/2021] [Accepted: 04/19/2021] [Indexed: 12/17/2022] Open
Abstract
Stress is a major contributing factor of skin aging, which is clinically characterized by wrinkles, loss of elasticity, and dryness. In particular, glucocorticoids are generally considered key hormones for promoting stress-induced skin aging through binding to glucocorticoid receptors (GRs). In this work, we aimed to investigate whether β-ionone (a compound occurring in various foods such as carrots and almonds) attenuates dexamethasone-induced suppression of collagen and hyaluronic acid synthesis in human dermal fibroblasts, and to explore the mechanisms involved. We found that β-ionone promoted collagen production dose-dependently and increased mRNA expression levels, including collagen type I α 1 chain (COL1A1) and COL1A2 in dexamethasone-treated human dermal fibroblasts. It also raised hyaluronic acid synthase mRNA expression and hyaluronic acid levels. Notably, β-ionone inhibited cortisol binding to GR, subsequent dexamethasone-induced GR signaling, and the expression of several GR target genes. Our results reveal the strong potential of β-ionone for preventing stress-induced skin aging and suggest that its effects are related to the inhibition of GR signaling in human dermal fibroblasts.
Collapse
Affiliation(s)
| | | | | | | | - Taesun Park
- Department of Food and Nutrition, BK21 FOUR, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, Korea; (D.C.); (W.K.); (S.P.); (B.S.)
| |
Collapse
|
25
|
HUZARD D, RAPPENEAU V, MEIJER OC, TOUMA C, ARANGO-LIEVANO M, GARABEDIAN MJ, JEANNETEAU F. Experience and activity-dependent control of glucocorticoid receptors during the stress response in large-scale brain networks. Stress 2021; 24:130-153. [PMID: 32755268 PMCID: PMC7907260 DOI: 10.1080/10253890.2020.1806226] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The diversity of actions of the glucocorticoid stress hormones among individuals and within organs, tissues and cells is shaped by age, gender, genetics, metabolism, and the quantity of exposure. However, such factors cannot explain the heterogeneity of responses in the brain within cells of the same lineage, or similar tissue environment, or in the same individual. Here, we argue that the stress response is continuously updated by synchronized neural activity on large-scale brain networks. This occurs at the molecular, cellular and behavioral levels by crosstalk communication between activity-dependent and glucocorticoid signaling pathways, which updates the diversity of responses based on prior experience. Such a Bayesian process determines adaptation to the demands of the body and external world. We propose a framework for understanding how the diversity of glucocorticoid actions throughout brain networks is essential for supporting optimal health, while its disruption may contribute to the pathophysiology of stress-related disorders, such as major depression, and resistance to therapeutic treatments.
Collapse
Affiliation(s)
- Damien HUZARD
- Department of Neuroscience and Physiology, University of Montpellier, CNRS, INSERM, Institut de Génomique Fonctionnelle, Montpellier, France
| | - Virginie RAPPENEAU
- Department of Behavioural Biology, University of Osnabrück, Osnabrück, Germany
| | - Onno C. MEIJER
- Division of Endocrinology, Department of Internal Medicine, Leiden University Medical Center, Leiden University, Leiden, the Netherlands
| | - Chadi TOUMA
- Department of Behavioural Biology, University of Osnabrück, Osnabrück, Germany
| | - Margarita ARANGO-LIEVANO
- Department of Neuroscience and Physiology, University of Montpellier, CNRS, INSERM, Institut de Génomique Fonctionnelle, Montpellier, France
| | | | - Freddy JEANNETEAU
- Department of Neuroscience and Physiology, University of Montpellier, CNRS, INSERM, Institut de Génomique Fonctionnelle, Montpellier, France
- Corresponding author:
| |
Collapse
|
26
|
Patt M, Gysi J, Faresse N, Cidlowski JA, Odermatt A. Protein phosphatase 1 alpha enhances glucocorticoid receptor activity by a mechanism involving phosphorylation of serine-211. Mol Cell Endocrinol 2020; 518:110873. [PMID: 32585168 PMCID: PMC7606615 DOI: 10.1016/j.mce.2020.110873] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 04/17/2020] [Accepted: 05/18/2020] [Indexed: 10/24/2022]
Abstract
By acting as a ligand-dependent transcription factor the glucocorticoid receptor (GR) mediates the actions of glucocorticoids and regulates many physiological processes. An impaired regulation of glucocorticoid action has been associated with numerous disorders. Thus, the elucidation of underlying signaling pathways is essential to understand mechanisms of disrupted glucocorticoid function and contribution to diseases. This study found increased GR transcriptional activity upon overexpression of protein phosphatase 1 alpha (PP1α) in HEK-293 cells and decreased expression levels of GR-responsive genes following PP1α knockdown in the endogenous A549 cell model. Mechanistic investigations revealed reduced phosphorylation of GR-Ser211 following PP1α silencing and provided a first indication for an involvement of glycogen synthase kinase 3 (GSK-3). Thus, the present study identified PP1α as a novel post-translational activator of GR signaling, suggesting that disruption of PP1α function could lead to impaired glucocorticoid action and thereby contribute to diseases.
Collapse
Affiliation(s)
- Melanie Patt
- Swiss Centre for Applied Human Toxicology (SCAHT), University of Basel, Missionsstrasse 64, 4055, Basel, Switzerland; Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland.
| | - Joël Gysi
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland.
| | | | - John A Cidlowski
- Signal Transduction Laboratory, NIEHS, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, 27709, USA.
| | - Alex Odermatt
- Swiss Centre for Applied Human Toxicology (SCAHT), University of Basel, Missionsstrasse 64, 4055, Basel, Switzerland; Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland.
| |
Collapse
|
27
|
Baranova KA. Preconditioning by Moderate Hypoxia Increases the Amount of Corticosteroid Receptors in the Rat Brain in a Model of Depression. NEUROCHEM J+ 2020. [DOI: 10.1134/s1819712420030022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
28
|
Lesovaya EA, Savinkova AV, Morozova OV, Lylova ES, Zhidkova EM, Kulikov EP, Kirsanov KI, Klopot A, Baida G, Yakubovskaya MG, Gordon LI, Readhead B, Dudley JT, Budunova I. A Novel Approach to Safer Glucocorticoid Receptor-Targeted Anti-lymphoma Therapy via REDD1 (Regulated in Development and DNA Damage 1) Inhibition. Mol Cancer Ther 2020; 19:1898-1908. [PMID: 32546661 PMCID: PMC7875139 DOI: 10.1158/1535-7163.mct-19-1111] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/31/2020] [Accepted: 06/09/2020] [Indexed: 11/16/2022]
Abstract
Glucocorticoids are widely used for therapy of hematologic malignancies. Unfortunately, chronic treatment with glucocorticoids commonly leads to adverse effects including skin and muscle atrophy and osteoporosis. We found recently that REDD1 (regulated in development and DNA damage 1) plays central role in steroid atrophy. Here, we tested whether REDD1 suppression makes glucocorticoid-based therapy of blood cancer safer. Unexpectedly, approximately 50% of top putative REDD1 inhibitors selected by bioinformatics screening of Library of Integrated Network-Based Cellular Signatures database (LINCS) were PI3K/Akt/mTOR inhibitors. We selected Wortmannin, LY294002, and AZD8055 for our studies and showed that they blocked basal and glucocorticoid-induced REDD1 expression. Moreover, all PI3K/mTOR/Akt inhibitors modified glucocorticoid receptor function shifting it toward therapeutically important transrepression. PI3K/Akt/mTOR inhibitors enhanced anti-lymphoma effects of Dexamethasone in vitro and in vivo, in lymphoma xenograft model. The therapeutic effects of PI3K inhibitor+Dexamethasone combinations ranged from cooperative to synergistic, especially in case of LY294002 and Rapamycin, used as a previously characterized reference REDD1 inhibitor. We found that coadministration of LY294002 or Rapamycin with Dexamethasone protected skin against Dexamethasone-induced atrophy, and normalized RANKL/OPG ratio indicating a reduction of Dexamethasone-induced osteoporosis. Together, our results provide foundation for further development of safer and more effective glucocorticoid-based combination therapy of hematologic malignancies using PI3K/Akt/mTOR inhibitors.
Collapse
Affiliation(s)
- Ekaterina A Lesovaya
- N.N. Blokhin NMRCO, Moscow, Russia
- I.P. Pavlov Ryazan State Medical University, Ryazan, Russia
| | | | | | | | | | | | | | - Anna Klopot
- Department of Dermatology, Northwestern University, Chicago, Illinois
| | - Gleb Baida
- Department of Dermatology, Northwestern University, Chicago, Illinois
| | | | - Leo I Gordon
- Division of Hematology Oncology; Northwestern University; Chicago, Illinois
| | - Ben Readhead
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
- Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Joel T Dudley
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
- Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Irina Budunova
- Department of Dermatology, Northwestern University, Chicago, Illinois.
| |
Collapse
|
29
|
Dwyer AR, Truong TH, Ostrander JH, Lange CA. 90 YEARS OF PROGESTERONE: Steroid receptors as MAPK signaling sensors in breast cancer: let the fates decide. J Mol Endocrinol 2020; 65:T35-T48. [PMID: 32209723 PMCID: PMC7329584 DOI: 10.1530/jme-19-0274] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 03/25/2020] [Indexed: 12/12/2022]
Abstract
Steroid hormone receptors (SRs) are classically defined as ligand-activated transcription factors that function as master regulators of gene programs important for a wide range of processes governing adult physiology, development, and cell or tissue homeostasis. A second function of SRs includes the ability to activate cytoplasmic signaling pathways. Estrogen (ER), androgen (AR), and progesterone (PR) receptors bind directly to membrane-associated signaling molecules including mitogenic protein kinases (i.e. c-SRC and AKT), G-proteins, and ion channels to mediate context-dependent actions via rapid activation of downstream signaling pathways. In addition to making direct contact with diverse signaling molecules, SRs are further fully integrated with signaling pathways by virtue of their N-terminal phosphorylation sites that act as regulatory hot-spots capable of sensing the signaling milieu. In particular, ER, AR, PR, and closely related glucocorticoid receptors (GR) share the property of accepting (i.e. sensing) ligand-independent phosphorylation events by proline-directed kinases in the MAPK and CDK families. These signaling inputs act as a 'second ligand' that dramatically impacts cell fate. In the face of drugs that reliably target SR ligand-binding domains to block uncontrolled cancer growth, ligand-independent post-translational modifications guide changes in cell fate that confer increased survival, EMT, migration/invasion, stemness properties, and therapy resistance of non-proliferating SR+ cancer cell subpopulations. The focus of this review is on MAPK pathways in the regulation of SR+ cancer cell fate. MAPK-dependent phosphorylation of PR (Ser294) and GR (Ser134) will primarily be discussed in light of the need to target changes in breast cancer cell fate as part of modernized combination therapies.
Collapse
Affiliation(s)
- Amy R. Dwyer
- Masonic Cancer Center, University of Minnesota, Minneapolis MN 55455
| | - Thu H. Truong
- Masonic Cancer Center, University of Minnesota, Minneapolis MN 55455
| | - Julie H. Ostrander
- Masonic Cancer Center, University of Minnesota, Minneapolis MN 55455
- Department of Medicine (Division of Hematology, Oncology, and Transplantation), University of Minnesota, Minneapolis MN 55455
| | - Carol A. Lange
- Masonic Cancer Center, University of Minnesota, Minneapolis MN 55455
- Department of Medicine (Division of Hematology, Oncology, and Transplantation), University of Minnesota, Minneapolis MN 55455
- Department of Pharmacology, University of Minnesota, Minneapolis MN 55455
- Corresponding author: Carol A Lange, Professor, ; 612-626-0621 (phone), University of Minnesota Masonic Cancer Center, Delivery Code 2812, Cancer and Cardiovascular Research Building, 2231 6th St SE, Minneapolis, MN 55455, USA
| |
Collapse
|
30
|
Wu D, Gu B, Qian Y, Sun Y, Chen Y, Mao ZD, Shi YJ, Zhang Q. Long non-coding RNA growth arrest specific-5: a potential biomarker for early diagnosis of severe asthma. J Thorac Dis 2020; 12:1960-1971. [PMID: 32642099 PMCID: PMC7330345 DOI: 10.21037/jtd-20-213] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background The diagnosis of severe asthma (SA) is difficult due to a necessary long-term treatment history currently, while there are few studies on biomarkers in the diagnosis of SA. Long non-coding RNA (lncRNA) growth arrest specific-5 (GAS5) has the potential of playing this role because its binding with glucocorticoid receptor (GR). The purpose of this article is to explore the possibility of lncRNA GAS5 acting as a biomarker for early diagnosis of severe asthma (SA). Methods Peripheral blood was obtained from healthy volunteers, patients with non-severe asthma (nSA) and SA, and peripheral blood mononuclear cells (PBMCs) were separated. Twenty-four female BALB/c mice (aged 6 weeks) were randomly and averagely divided into 3 groups, i.e., control group, asthma group and dexamethasone group. The mice were sensitized and challenged with ovalbumin (OVA) and lipopolysaccharide (LPS) to establish a murine model of steroid-insensitive asthma. Human bronchial epithelial cells (HBECs) were cultured, transfected with miR-9 mimics, JNK1 inhibitor and treated with interleukin (IL)-2 + IL-4 and dexamethasone. Western blot was used to detect glucocorticoid receptor phosphorylation at serine 226 (GRser226), and quantitative real-time PCR was used to detect GAS5 level. Results The level of GAS5 in PBMCs from nSA group elevated 20-fold higher after dexamethasone treatment in vitro, while it reduced 15-fold lower in SA group (P<0.001). The expression of GRser226 in PBMCs from SA group was significantly higher than that from control group and nSA group after dexamethasone treatment (P<0.001). In the lung tissue of mice, the GAS5 level of dexamethasone group was lower than that of asthma group (P<0.001) and control group (P<0.05). Both treatment with IL-2 + IL-4 and transfection of miR-9 mimics could increase the expression of GRser226 in HBECs (P<0.001). The GAS5 level in HBECs after IL-2 + IL-4 + Dexamethasone treatment was lower than that in HBECs only treated with IL-2 + IL-4 (P<0.001). Similarly, dexamethasone treatment also decreased the level of GAS5 in HBECs transfected with miR-9 mimics (P<0.05). Moreover, transfecting with JNK1 inhibitor could reverse the expression of GAS5 in HBECs transfected with miR-9 mimics and treated with dexamethasone. However, the level of GAS5 in HBECs interfered with IL-2 + IL-4 + Dexamethasone was not affected by JNK1 inhibitor. Conclusions The expression of GAS5 is different in PBMCs between nSA and SA, and is affected by glucocorticoids treatment, which is due to GRser226 phosphorylation. GAS5 can be used as a potential biomarker for diagnosis of severe asthma by comparing GAS5 level in PBMCs from patients before and after glucocorticoids treatment in vitro.
Collapse
Affiliation(s)
- Di Wu
- Department of Respiratory and Critical Care Medicine, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213003, China
| | - Bin Gu
- Department of Respiratory and Critical Care Medicine, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213003, China
| | - Yan Qian
- Department of Respiratory and Critical Care Medicine, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213003, China
| | - Yun Sun
- Department of Respiratory and Critical Care Medicine, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213003, China
| | - Yi Chen
- Department of Respiratory and Critical Care Medicine, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213003, China
| | - Zheng-Dao Mao
- Department of Respiratory and Critical Care Medicine, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213003, China
| | - Yu-Jia Shi
- Department of Respiratory and Critical Care Medicine, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213003, China
| | - Qian Zhang
- Department of Respiratory and Critical Care Medicine, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213003, China
| |
Collapse
|
31
|
Palumbo ML, Prochnik A, Wald MR, Genaro AM. Chronic Stress and Glucocorticoid Receptor Resistance in Asthma. Clin Ther 2020; 42:993-1006. [PMID: 32224031 DOI: 10.1016/j.clinthera.2020.03.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/04/2020] [Accepted: 03/04/2020] [Indexed: 12/14/2022]
Abstract
PURPOSE Chronic and persistent exposure to negative stress can lead to adverse consequences on health. Particularly, psychosocial factors were found to increase the risk and outcome of respiratory diseases like asthma. Glucocorticoids (GCs) are the most efficient anti-inflammatory therapy for asthma. However, a significant proportion of patients don't respond adequately to GC administration. GC sensitivity is modulated by genetic and acquired disease-related factors. Additionally, it was proposed that endogenous corticosteroids may limit certain actions of synthetic GCs, contributing to insensitivity. Psychological and physiological stresses activate the hypothalamic-pituitary-adrenal axis, increasing cortisol levels. Here, we review the mechanism involved in altered GC sensitivity in asthmatic patients under stressful situations. Strategies for modulation GC sensitivity and improving GC therapy are discussed. METHODS PubMed was searched for publications on psychological chronic stress and asthma, GC resistance in asthma, biological mechanisms for GC resistance, and drugs for steroid-resistant asthma, including highly potent GCs. FINDINGS GC resistance in patients with severe disease remains a major clinical problem. In asthma, experimental and clinical evidence suggests that chronic stress induces inflammatory changes, contributing to a worse GC response. GC resistant patients can be treated with other broad-spectrum anti-inflammatory drugs, but these generally have major side effects. Different mechanisms of GC resistance have been described and might be useful for developing new therapeutic strategies against it. Novel drugs, such as highly potent GCs, phosphoinositide 3-kinase-delta inhibitors that reestablish histone deacetylase-2 function, decrease of GC receptor phosphorylation by p38 mitogen-activated protein kinase inhibitors, or phosphatase activators, are currently in clinical development and might be combined with GC therapy in the future. Furthermore, microRNAs (small noncoding RNA molecules) operate as posttranscriptional regulators, providing another level of control of GC receptor levels. Empirical results allow postulating that the detection and study of microRNAs might be a promising approach to better characterize and treat asthmatic patients. IMPLICATIONS Many molecular and cellular pathobiological mechanisms are responsible of GC resistance. Therefore detecting specific biomarkers to help identify patients who would benefit from new therapies is crucial. Stress consitutes a negative aspect of current lifestyles that increase asthma morbidity and mortality. Adequate stress management could be an important and positive intervention.
Collapse
Affiliation(s)
- María Laura Palumbo
- Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires (UNNOBA-UNSADA-CONICET), Junín, Argentina
| | - Andrés Prochnik
- Instituto de Investigaciones Biomédicas (UCA-CONICET), Buenos Aires, Argentina
| | - Miriam Ruth Wald
- Instituto de Investigaciones Biomédicas (UCA-CONICET), Buenos Aires, Argentina
| | - Ana María Genaro
- Instituto de Investigaciones Biomédicas (UCA-CONICET), Buenos Aires, Argentina; Departamento de Farmacología, Facultad de Medicina, UBA Paraguay, Buenos Aires, Argentina.
| |
Collapse
|
32
|
Vassiliou AG, Stamogiannos G, Jahaj E, Botoula E, Floros G, Vassiliadi DA, Ilias I, Tsagarakis S, Tzanela M, Orfanos SE, Kotanidou A, Dimopoulou I. Longitudinal evaluation of glucocorticoid receptor alpha/beta expression and signalling, adrenocortical function and cytokines in critically ill steroid-free patients. Mol Cell Endocrinol 2020; 501:110656. [PMID: 31756425 DOI: 10.1016/j.mce.2019.110656] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 10/10/2019] [Accepted: 11/16/2019] [Indexed: 01/23/2023]
Abstract
PURPOSE Glucocorticoid actions are mediated by the glucocorticoid receptor (GCR) whose dysfunction leads to glucocorticoid tissue resistance. Our objective was to evaluate GCR-α and GCR-β expression and key steps in the GCR signalling cascade in critical illness. METHODS Expression of GCR and major GCR-target genes, cortisol, adrenocorticotropin (ACTH) and cytokines was measured in 42 patients on ICU admission and on days 4, 8, and 13. Twenty-five age- and sex-matched subjects were used as controls. RESULTS Acutely, mRNA expression of GCR-α was 10-fold and of GCR-β 3-fold the expression of controls, while during the sub-acute phase expression of both isoforms was lower compared to controls. Expression of FKBP5 and GILZ decreased significantly. Cortisol levels remained elevated and ACTH increased during the 13-day period. CONCLUSIONS GCR expression and hypothalamic-pituitary-adrenal axis function undergo a biphasic response during critical illness. The dissociation between low GCR expression and high cortisol implies an abnormal stress response.
Collapse
Affiliation(s)
- Alice G Vassiliou
- 1st Department of Critical Care Medicine & Pulmonary Services, GP Livanos and M Simou Laboratories, Evangelismos Hospital, Athens Medical School, National & Kapodistrian University of Athens, Athens, Greece
| | - Georgios Stamogiannos
- 1st Department of Critical Care Medicine & Pulmonary Services, Evangelismos Hospital, Athens Medical School, National & Kapodistrian University of Athens, Athens, Greece
| | - Edison Jahaj
- 1st Department of Critical Care Medicine & Pulmonary Services, Evangelismos Hospital, Athens Medical School, National & Kapodistrian University of Athens, Athens, Greece
| | - Efi Botoula
- Department of Endocrinology, Diabetes and Metabolism, Evangelismos Hospital, Athens, Greece
| | - Georgios Floros
- 1st Department of Critical Care Medicine & Pulmonary Services, Evangelismos Hospital, Athens Medical School, National & Kapodistrian University of Athens, Athens, Greece
| | - Dimitra A Vassiliadi
- Department of Endocrinology, Diabetes and Metabolism, Evangelismos Hospital, Athens, Greece
| | - Ioannis Ilias
- Endocrine Unit, Elena Venizelou Hospital, Athens, Greece
| | - Stylianos Tsagarakis
- Department of Endocrinology, Diabetes and Metabolism, Evangelismos Hospital, Athens, Greece
| | - Marinella Tzanela
- Department of Endocrinology, Diabetes and Metabolism, Evangelismos Hospital, Athens, Greece
| | - Stylianos E Orfanos
- 1st Department of Critical Care Medicine & Pulmonary Services, GP Livanos and M Simou Laboratories, Evangelismos Hospital, Athens Medical School, National & Kapodistrian University of Athens, Athens, Greece; 1st Department of Critical Care Medicine & Pulmonary Services, Evangelismos Hospital, Athens Medical School, National & Kapodistrian University of Athens, Athens, Greece
| | - Anastasia Kotanidou
- 1st Department of Critical Care Medicine & Pulmonary Services, GP Livanos and M Simou Laboratories, Evangelismos Hospital, Athens Medical School, National & Kapodistrian University of Athens, Athens, Greece; 1st Department of Critical Care Medicine & Pulmonary Services, Evangelismos Hospital, Athens Medical School, National & Kapodistrian University of Athens, Athens, Greece
| | - Ioanna Dimopoulou
- 1st Department of Critical Care Medicine & Pulmonary Services, Evangelismos Hospital, Athens Medical School, National & Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
33
|
Keppner A, Maric D, Sergi C, Ansermet C, De Bellis D, Kratschmar DV, Canonica J, Klusonova P, Fenton RA, Odermatt A, Crambert G, Hoogewijs D, Hummler E. Deletion of the serine protease CAP2/Tmprss4 leads to dysregulated renal water handling upon dietary potassium depletion. Sci Rep 2019; 9:19540. [PMID: 31863073 PMCID: PMC6925205 DOI: 10.1038/s41598-019-55995-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 12/04/2019] [Indexed: 01/09/2023] Open
Abstract
The kidney needs to adapt daily to variable dietary K+ contents via various mechanisms including diuretic, acid-base and hormonal changes that are still not fully understood. In this study, we demonstrate that following a K+-deficient diet in wildtype mice, the serine protease CAP2/Tmprss4 is upregulated in connecting tubule and cortical collecting duct and also localizes to the medulla and transitional epithelium of the papilla and minor calyx. Male CAP2/Tmprss4 knockout mice display altered water handling and urine osmolality, enhanced vasopressin response leading to upregulated adenylate cyclase 6 expression and cAMP overproduction, and subsequently greater aquaporin 2 (AQP2) and Na+-K+-2Cl− cotransporter 2 (NKCC2) expression following K+-deficient diet. Urinary acidification coincides with significantly increased H+,K+-ATPase type 2 (HKA2) mRNA and protein expression, and decreased calcium and phosphate excretion. This is accompanied by increased glucocorticoid receptor (GR) protein levels and reduced 11β-hydroxysteroid dehydrogenase 2 activity in knockout mice. Strikingly, genetic nephron-specific deletion of GR leads to the mirrored phenotype of CAP2/Tmprss4 knockouts, including increased water intake and urine output, urinary alkalinisation, downregulation of HKA2, AQP2 and NKCC2. Collectively, our data unveil a novel role of the serine protease CAP2/Tmprss4 and GR on renal water handling upon dietary K+ depletion.
Collapse
Affiliation(s)
- Anna Keppner
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland.,Department of Medicine/Physiology, University of Fribourg, Fribourg, Switzerland.,National Center of Competence in Research Kidney Control of Homeostasis (NCCR Kidney.CH), University of Lausanne, Lausanne, Switzerland
| | - Darko Maric
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland.,Department of Medicine/Physiology, University of Fribourg, Fribourg, Switzerland.,National Center of Competence in Research Kidney Control of Homeostasis (NCCR Kidney.CH), University of Lausanne, Lausanne, Switzerland
| | - Chloé Sergi
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
| | - Camille Ansermet
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
| | - Damien De Bellis
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland.,Electron Microscopy Facility, University of Lausanne, Lausanne, Switzerland.,Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| | - Denise V Kratschmar
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland.,National Center of Competence in Research Kidney Control of Homeostasis (NCCR Kidney.CH), University of Lausanne, Lausanne, Switzerland
| | - Jérémie Canonica
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland.,National Center of Competence in Research Kidney Control of Homeostasis (NCCR Kidney.CH), University of Lausanne, Lausanne, Switzerland.,Ophthalmic Hospital Jules Gonin, University of Lausanne, Lausanne, Switzerland
| | - Petra Klusonova
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland.,National Center of Competence in Research Kidney Control of Homeostasis (NCCR Kidney.CH), University of Lausanne, Lausanne, Switzerland
| | - Robert A Fenton
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Alex Odermatt
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland.,National Center of Competence in Research Kidney Control of Homeostasis (NCCR Kidney.CH), University of Lausanne, Lausanne, Switzerland
| | | | - David Hoogewijs
- Department of Medicine/Physiology, University of Fribourg, Fribourg, Switzerland.,National Center of Competence in Research Kidney Control of Homeostasis (NCCR Kidney.CH), University of Lausanne, Lausanne, Switzerland
| | - Edith Hummler
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland. .,National Center of Competence in Research Kidney Control of Homeostasis (NCCR Kidney.CH), University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
34
|
Mitani Y, Lin SH, Pytynia KB, Ferrarotto R, El-Naggar AK. Reciprocal and Autonomous Glucocorticoid and Androgen Receptor Activation in Salivary Duct Carcinoma. Clin Cancer Res 2019; 26:1175-1184. [PMID: 31772120 DOI: 10.1158/1078-0432.ccr-19-1603] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 10/01/2019] [Accepted: 11/22/2019] [Indexed: 01/28/2023]
Abstract
PURPOSE To determine the expression of glucocorticoid receptor (GR) and androgen receptor (AR) in salivary duct carcinoma (SDC) and to analyze the role of these proteins in the development and management of this disease entity. EXPERIMENTAL DESIGN We performed a phenotypic assessment of GR and AR localization and expression, and determined their association with clinicopathologic factors in 67 primary SDCs. In vitro functional and response analysis of SDC cell lines was also performed. RESULTS Of the 67 primary tumors, 12 (18%) overexpressed GR protein, 30 (45%) had constitutive expression, and 25 (37%) had complete loss of expression. Reciprocal GR and AR expression was found in 32 (48%) tumors, concurrent constitutive GR and AR expression in 23 (34%), and simultaneous loss of both receptors and high GR with AR expressions were found in 12 (18%). GR overexpression was significantly associated with worse clinical outcomes. In vitro ligand-independent AR activation was observed in both male- and female-derived cell lines. GR antagonist treatment resulted in decreased cell proliferation and survival in GR-overexpressing cells, irrespective of AR status. Reciprocal GR- and AR-knockdown experiments revealed an independent interaction. CONCLUSIONS Our study, for the first time, demonstrates differential GR and AR expressions, autonomous GR and AR activation, and ligand-independent AR expression and activation in SDC cells. The findings provide critical information on the roles of GR and AR steroid receptors in SDC tumorigenesis and development of biomarkers to guide targeted steroid receptor therapy trials in patients with these tumors.
Collapse
Affiliation(s)
- Yoshitsugu Mitani
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sue-Hwa Lin
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kristen B Pytynia
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Renata Ferrarotto
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Adel K El-Naggar
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
35
|
Singh RR, Rajnarayanan R, Aga DS. Binding of iodinated contrast media (ICM) and their transformation products with hormone receptors: Are ICM the new EDCs? THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 692:32-36. [PMID: 31336298 DOI: 10.1016/j.scitotenv.2019.07.159] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 06/20/2019] [Accepted: 07/11/2019] [Indexed: 06/10/2023]
Abstract
Iodinated contrast media (ICM) have been detected at high concentrations (as high as about 3 μg/L) in surface water systems, and recently in fish brains and gonad. The mismatch between the polarity of ICM and the high lipid content of brain raises questions on whether their bioaccumulation is receptor-mediated. Furthermore, the structural similarity of ICM to the natural thyroid hormones thyroxine and triiodothyronine suggest potential binding of ICM to nuclear receptors in the endocrine system. Therefore, an in silico approach based on Surflex-Dock module of SYBYL was used to investigate the molecular docking of selected ICM (diatrizoic acid, iohexol, iopamidol, and iopromide). These ICM showed interaction with nuclear receptors that play key roles in endocrine regulation, including the androgen and estrogen receptors. Furthermore, the results indicate peroxisome proliferator-activated receptor gamma (PPARg) as one of the viable targets in the endocrine disrupting potential of ICM with higher Cscores for the ICM and iopromide transformation products than the reference ligand for the receptor. The data obtained from in silico calculations showed stronger binding of iohexol to the transthyretin-binding pocket compared to the natural hormones, thyroxine and triiodothyronine, suggesting the potential of ICM to act as endocrine disrupting chemicals (EDCs) in the environment.
Collapse
Affiliation(s)
- Randolph R Singh
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY 14260, United States
| | - Rajendram Rajnarayanan
- Department of Basic Sciences, New York Institute of Technology, Jonesboro, AR 72467, United States
| | - Diana S Aga
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY 14260, United States.
| |
Collapse
|
36
|
Strehl C, Ehlers L, Gaber T, Buttgereit F. Glucocorticoids-All-Rounders Tackling the Versatile Players of the Immune System. Front Immunol 2019; 10:1744. [PMID: 31396235 PMCID: PMC6667663 DOI: 10.3389/fimmu.2019.01744] [Citation(s) in RCA: 158] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 07/10/2019] [Indexed: 12/13/2022] Open
Abstract
Glucocorticoids regulate fundamental processes of the human body and control cellular functions such as cell metabolism, growth, differentiation, and apoptosis. Moreover, endogenous glucocorticoids link the endocrine and immune system and ensure the correct function of inflammatory events during tissue repair, regeneration, and pathogen elimination via genomic and rapid non-genomic pathways. Due to their strong immunosuppressive, anti-inflammatory and anti-allergic effects on immune cells, tissues and organs, glucocorticoids significantly improve the quality of life of many patients suffering from diseases caused by a dysregulated immune system. Despite the multitude and seriousness of glucocorticoid-related adverse events including diabetes mellitus, osteoporosis and infections, these agents remain indispensable, representing the most powerful, and cost-effective drugs in the treatment of a wide range of rheumatic diseases. These include rheumatoid arthritis, vasculitis, and connective tissue diseases, as well as many other pathological conditions of the immune system. Depending on the therapeutically affected cell type, glucocorticoid actions strongly vary among different diseases. While immune responses always represent complex reactions involving different cells and cellular processes, specific immune cell populations with key responsibilities driving the pathological mechanisms can be identified for certain autoimmune diseases. In this review, we will focus on the mechanisms of action of glucocorticoids on various leukocyte populations, exemplarily portraying different autoimmune diseases as heterogeneous targets of glucocorticoid actions: (i) Abnormalities in the innate immune response play a crucial role in the initiation and perpetuation of giant cell arteritis (GCA). (ii) Specific types of CD4+ T helper (Th) lymphocytes, namely Th1 and Th17 cells, represent important players in the establishment and course of rheumatoid arthritis (RA), whereas (iii) B cells have emerged as central players in systemic lupus erythematosus (SLE). (iv) Allergic reactions are mainly triggered by several different cytokines released by activated Th2 lymphocytes. Using these examples, we aim to illustrate the versatile modulating effects of glucocorticoids on the immune system. In contrast, in the treatment of lymphoproliferative disorders the pro-apoptotic action of glucocorticoids prevails, but their mechanisms differ depending on the type of cancer. Therefore, we will also give a brief insight into the current knowledge of the mode of glucocorticoid action in oncological treatment focusing on leukemia.
Collapse
Affiliation(s)
- Cindy Strehl
- Department of Rheumatology and Clinical Immunology, Charité—Universitätsmedizin Berlin, Berlin, Germany
- German Rheumatism Research Centre (DRFZ) Berlin, Berlin, Germany
| | - Lisa Ehlers
- Department of Rheumatology and Clinical Immunology, Charité—Universitätsmedizin Berlin, Berlin, Germany
- German Rheumatism Research Centre (DRFZ) Berlin, Berlin, Germany
| | - Timo Gaber
- Department of Rheumatology and Clinical Immunology, Charité—Universitätsmedizin Berlin, Berlin, Germany
- German Rheumatism Research Centre (DRFZ) Berlin, Berlin, Germany
| | - Frank Buttgereit
- Department of Rheumatology and Clinical Immunology, Charité—Universitätsmedizin Berlin, Berlin, Germany
- German Rheumatism Research Centre (DRFZ) Berlin, Berlin, Germany
| |
Collapse
|
37
|
Timmermans S, Souffriau J, Libert C. A General Introduction to Glucocorticoid Biology. Front Immunol 2019; 10:1545. [PMID: 31333672 PMCID: PMC6621919 DOI: 10.3389/fimmu.2019.01545] [Citation(s) in RCA: 302] [Impact Index Per Article: 60.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Accepted: 06/20/2019] [Indexed: 12/13/2022] Open
Abstract
Glucocorticoids (GCs) are steroid hormones widely used for the treatment of inflammation, autoimmune diseases, and cancer. To exert their broad physiological and therapeutic effects, GCs bind to the GC receptor (GR) which belongs to the nuclear receptor superfamily of transcription factors. Despite their success, GCs are hindered by the occurrence of side effects and glucocorticoid resistance (GCR). Increased knowledge on GC and GR biology together with a better understanding of the molecular mechanisms underlying the GC side effects and GCR are necessary for improved GC therapy development. We here provide a general overview on the current insights in GC biology with a focus on GC synthesis, regulation and physiology, role in inflammation inhibition, and on GR function and plasticity. Furthermore, novel and selective therapeutic strategies are proposed based on recently recognized distinct molecular mechanisms of the GR. We will explain the SEDIGRAM concept, which was launched based on our research results.
Collapse
Affiliation(s)
- Steven Timmermans
- Center for Inflammation Research, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Jolien Souffriau
- Center for Inflammation Research, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Claude Libert
- Center for Inflammation Research, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| |
Collapse
|
38
|
Glucocorticoid receptor dysfunction orchestrates inflammasome effects on chronic obstructive pulmonary disease-induced depression: A potential mechanism underlying the cross talk between lung and brain. Brain Behav Immun 2019; 79:195-206. [PMID: 30738183 DOI: 10.1016/j.bbi.2019.02.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 12/21/2018] [Accepted: 02/05/2019] [Indexed: 01/01/2023] Open
Abstract
Depression is highly prevalent among patients with chronic obstructive pulmonary disease (COPD). However, depression with COPD comorbidity is often underdiagnosed and undertreated, and pathogenic research is also insufficient. In the present study, we characterised pulmonary and hippocampal dysfunction by researching the interaction between inflammasome-regulated cytokines and glucocorticoid receptor (GR) signalling by investigating the role of fluoxetine (FLU), one of the most widely used antidepressants in clinical practice. Mice were exposed to cigarette smoke (CS) to induce the model of COPD with comorbid depression, and pathological alterations in serum, hippocampus, lung, and bronchoalveolar lavage fluid were determined. Our results showed that the CS procedure induced the accumulation of inflammatory cells (macrophages, neutrophils, and lymphocytes), the production of cytokines, the activation of inflammasome components (NLRP3, ASC, caspase-1), depression-related behaviours, and the stimulation of GR signalling. Intriguingly, glucocorticoid resistance occurred in CS-exposed mice, with elevated serum corticosterone and suppressed hippocampal GR levels, which suggested a novel potential regulatory mechanism underlying COPD-induced depression comorbidity. Furthermore, chronic CS exposure decreased the pGR-S211/pGR-S226 ratio, increased the active nuclear GR, and impaired cytosolic GR binding capacity and GR transcriptional activity, which might be responsible for the activation of the inflammasome-induced inflammatory cascade. These alterations were reversed by chronic FLU treatment, indicating that FLU-mediated GR signalling was involved in the COPD induced inflammasome activation. Our research explored the underlying molecular mechanism of comorbid COPD/depression and provided in vivo evidence that glucocorticoid resistance occurred during CS-induced central nervous system inflammation, a potential mechanism underlying the cross talk between the lung and brain.
Collapse
|
39
|
Mitochondrial signaling in inflammation-induced depressive behavior in female and male rats: The role of glucocorticoid receptor. Brain Res Bull 2019; 150:317-327. [PMID: 31251961 DOI: 10.1016/j.brainresbull.2019.06.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 06/19/2019] [Accepted: 06/20/2019] [Indexed: 12/15/2022]
Abstract
Mitochondrial dysfunction can result from the interplay between elevated inflammatory markers and alterations in hypothalamic-pituitary-adrenal (HPA) axis, and can contribute to pathogenesis of major depression. Therefore, in this study we investigated whether the effects of lipopolysaccharide (LPS) on glucocorticoid receptor (GR) could be associated with alterations in mitochondrial apoptotic signaling in the prefrontal cortex of male and female Wistar rats with depressive-like behavior. To that end, we measured LPS-induced alterations in the extrinsic and intrinsic apoptotic pathways in mitochondria and cytosol of PFC of female and male rats, as well as the levels of cleaved cytosolic PARP-1. We also measured the mitochondrial levels of GR and its phosphoisoforms pGR232 and pGR246, as well as the mRNA levels of two GR-regulated mitochondrial genes, COX-1 and COX-3. We discovered that although seven-day LPS treatment evoked depressive-like behavior and induced apoptosis in the PFC of both sexes, it affected apoptotic cascades in both sexes differently. In females the treatment initiated both intrinsic and extrinsic apoptotic cascade, while in males only intrinsic cascade was engaged. Alterations in intrinsic apoptotic pathway were more associated with GR alterations in males, where LPS treatment decreased levels of mitochondrial GR and increased pGR232/pGR246 ratio. Alterations in mitochondrial GR could be associated with changes in expression of genes involved in oxidative metabolism in the PFC of this sex, and could, in combination with elevated levels of BCL-2 and decreased levels of BAX detected in this cell fraction, mitigate the detrimental effect of LPS on mitochondria in male PFC.
Collapse
|
40
|
Petrillo MG, Oakley RH, Cidlowski JA. β-Arrestin-1 inhibits glucocorticoid receptor turnover and alters glucocorticoid signaling. J Biol Chem 2019; 294:11225-11239. [PMID: 31167788 DOI: 10.1074/jbc.ra118.007150] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 05/30/2019] [Indexed: 01/14/2023] Open
Abstract
Glucocorticoids are among the most widely used drugs to treat many autoimmune and inflammatory diseases. Although much research has been focused on investigating glucocorticoid activity, it remains unclear how glucocorticoids regulate distinct processes in different cells. Glucocorticoids exert their effects through the glucocorticoid receptor (GR), which, upon glucocorticoid binding, interacts with regulatory proteins, affecting its activity and function. These protein-protein interactions are necessary for the resolution of glucocorticoid-dependent physiological and pharmacological processes. In this study, we discovered a novel protein interaction between the glucocorticoid receptor and β-arrestin-1, a scaffold protein with a well-established role in G protein-coupled receptor signaling. Using co-immunoprecipitation and in situ proximity ligation assays in A549 cells, we observed that β-arrestin-1 and unliganded GR interact in the cytoplasm and that, following glucocorticoid binding, the protein complex is found in the nucleus. We show that siRNA-mediated β-arrestin-1 knockdown alters GR protein turnover by up-regulating the E3 ubiquitin ligase Pellino-1, which catalyzes GR ubiquitination and thereby marks the receptor for proteasomal degradation. The enhanced GR turnover observed in β-arrestin-1-deficient cells limits the duration of the glucocorticoid response on GR target genes. These results demonstrate that β-arrestin-1 is a crucial player for the stability of the glucocorticoid receptor. The GR/β-arrestin-1 interaction uncovered here may help unravel mechanisms that contribute to the cell type-specific activities of glucocorticoids.
Collapse
Affiliation(s)
- Maria G Petrillo
- Signal Transduction Laboratory, NIEHS, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina 27709
| | - Robert H Oakley
- Signal Transduction Laboratory, NIEHS, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina 27709
| | - John A Cidlowski
- Signal Transduction Laboratory, NIEHS, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina 27709
| |
Collapse
|
41
|
Role of Phosphorylation in the Modulation of the Glucocorticoid Receptor's Intrinsically Disordered Domain. Biomolecules 2019; 9:biom9030095. [PMID: 30862072 PMCID: PMC6468654 DOI: 10.3390/biom9030095] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 02/18/2019] [Accepted: 02/21/2019] [Indexed: 11/25/2022] Open
Abstract
Protein phosphorylation often switches cellular activity from one state to another, and this post-translational modification plays an important role in gene regulation by the nuclear hormone receptor superfamily, including the glucocorticoid receptor (GR). Cell signaling pathways that regulate phosphorylation of the GR are important determinants of GR actions, including lymphoid cell apoptosis, DNA binding, and interaction with coregulatory proteins. All major functionally important phosphorylation sites in the human GR are located in its N-terminal domain (NTD), which possesses a powerful transactivation domain, AF1. The GR NTD exists as an intrinsically disordered protein (IDP) and undergoes disorder-order transition for AF1’s efficient interaction with several coregulatory proteins and subsequent AF1-mediated GR activity. It has been reported that GR’s NTD/AF1 undergoes such disorder-order transition following site-specific phosphorylation. This review provides currently available information regarding the role of GR phosphorylation in its action and highlights the possible underlying mechanisms of action.
Collapse
|
42
|
Goleva E, Babineau DC, Gill MA, Jackson LP, Shao B, Hu Z, Liu AH, Visness CM, Sorkness CA, Leung DYM, Togias A, Busse WW. Expression of corticosteroid-regulated genes by PBMCs in children with asthma. J Allergy Clin Immunol 2019; 143:940-947.e6. [PMID: 30059697 PMCID: PMC8210855 DOI: 10.1016/j.jaci.2018.06.043] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 04/23/2018] [Accepted: 06/11/2018] [Indexed: 11/28/2022]
Abstract
BACKGROUND Variability in response to inhaled corticosteroids (ICSs) can result in less than optimal asthma control. Development of biomarkers assessing the therapeutic efficacy of corticosteroids is important. OBJECTIVE We sought to examine whether in vitro PBMC responses to corticosteroids relate to the clinical ICS response. METHODS PBMCs were collected from 125 children with asthma (6-17 years) at enrollment (visit 0 [V0]) and after 1 year of bimonthly guidelines-based management visits (visit 6 [V6]). Difficult-to-control and easy-to-control asthma were defined as requiring daily therapy with 500 μg or more of fluticasone propionate (FLU) with or without a long-acting β-agonist versus 100 μg or less of FLU in at least 4 visits. mRNA levels of glucocorticoid receptor α and corticosteroid transactivation (FK506-binding protein 5) and transrepression markers (IL-8 and TNF-α) were measured by using RT-PCR in freshly isolated cells and in response to 10-8 mol/L FLU. RESULTS Compared with PBMCs from patients with easy-to-control asthma, PBMCs from those with difficult-to-control asthma had significantly lower glucocorticoid receptor α levels at V0 (P = .05). A 30% increase in IL-8 suppression by FLU (P = .04) and a trend for increased TNF-α suppression by FLU between V0 and V6 (P = .07) were observed in patients with easy-to-control asthma. In contrast, no changes between V0 and V6 in IL-8 and TNF-α suppression by FLU were observed in patients with difficult-to-control asthma. Corticosteroid-mediated transactivation (FK506-binding protein 5 induction by FLU) increased in the PBMCs of patients with difficult-to-control and easy-to-control asthma between V0 and V6 (P = .05 and P = .03, respectively). CONCLUSIONS PBMCs of children with difficult-to-control asthma treated with guidelines-based therapy and requiring high-dose ICSs had reduced in vitro responsiveness to corticosteroids.
Collapse
Affiliation(s)
- Elena Goleva
- Department of Pediatrics, National Jewish Health, Denver, Colo.
| | | | - Michelle A Gill
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Tex
| | - Leisa P Jackson
- Department of Pediatrics, National Jewish Health, Denver, Colo
| | - Baomei Shao
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Tex
| | - Zheng Hu
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Tex
| | - Andrew H Liu
- Department of Pediatrics, National Jewish Health, Denver, Colo
| | | | - Christine A Sorkness
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wis
| | | | - Alkis Togias
- National Institute of Allergy and Infectious Diseases, Bethesda, Md
| | - William W Busse
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wis
| |
Collapse
|
43
|
Lee MJ, Pickering RT, Shibad V, Wu Y, Karastergiou K, Jager M, Layne MD, Fried SK. Impaired Glucocorticoid Suppression of TGFβ Signaling in Human Omental Adipose Tissues Limits Adipogenesis and May Promote Fibrosis. Diabetes 2019; 68:587-597. [PMID: 30530781 PMCID: PMC6385749 DOI: 10.2337/db18-0955] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 11/26/2018] [Indexed: 12/18/2022]
Abstract
Visceral obesity is associated with insulin resistance and higher risk of type 2 diabetes and metabolic diseases. A limited ability of adipose tissues to remodel through the recruitment and differentiation of adipose stem cells (ASCs) is associated with adipose tissue inflammation and fibrosis and the metabolic syndrome. We show that the lower adipogenesis of omental (Om) compared with abdominal subcutaneous (Abdsc) ASCs was associated with greater secretion of TGFβ ligands that acted in an autocrine/paracrine loop to activate SMAD2 and suppress adipogenesis. Inhibition of TGFβ signaling rescued Om ASC differentiation. In Abdsc ASCs, low concentrations of dexamethasone suppressed TGFβ signaling and enhanced adipogenesis, at least in part by increasing TGFBR3 protein that can sequester TGFβ ligands. Om ASCs were resistant to these dexamethasone effects; recombinant TGFBR3 increased their differentiation. Pericellular fibrosis, a hallmark of dysfunctional adipose tissue, was greater in Om and correlated with higher level of tissue TGFβ signaling activity and lower ASC differentiation. We conclude that glucocorticoids restrain cell-autonomous TGFβ signaling in ASCs to facilitate adipogenesis and healthy remodeling in Abdsc and these processes are impaired in Om. Therapies directed at overcoming glucocorticoid resistance in visceral adipose tissue may improve remodeling and help prevent metabolic complications of visceral obesity.
Collapse
Affiliation(s)
- Mi-Jeong Lee
- Diabetes Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY
- Obesity Research Center, Boston University School of Medicine, Boston, MA
| | - R Taylor Pickering
- Diabetes Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY
- Obesity Research Center, Boston University School of Medicine, Boston, MA
| | - Varuna Shibad
- Obesity Research Center, Boston University School of Medicine, Boston, MA
| | - Yuanyuan Wu
- Obesity Research Center, Boston University School of Medicine, Boston, MA
| | - Kalypso Karastergiou
- Diabetes Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY
- Obesity Research Center, Boston University School of Medicine, Boston, MA
| | - Mike Jager
- Department of Biochemistry, Boston University School of Medicine, Boston, MA
| | - Matthew D Layne
- Department of Biochemistry, Boston University School of Medicine, Boston, MA
| | - Susan K Fried
- Diabetes Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY
- Obesity Research Center, Boston University School of Medicine, Boston, MA
| |
Collapse
|
44
|
PI3K inhibitors protect against glucocorticoid-induced skin atrophy. EBioMedicine 2019; 41:526-537. [PMID: 30737086 PMCID: PMC6441871 DOI: 10.1016/j.ebiom.2019.01.055] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 01/16/2019] [Accepted: 01/17/2019] [Indexed: 12/20/2022] Open
Abstract
Background Skin atrophy is a major adverse effect of topical glucocorticoids. We recently reported that REDD1 (regulated in development and DNA damage 1) and FKBP51 (FK506 binding protein 5), negative regulators of mTOR/Akt signaling, are induced by glucocorticoids in mouse and human skin and are central drivers of steroid skin atrophy. Thus, we hypothesized that REDD1/FKBP51 inhibitors could protect skin against catabolic effects of glucocorticoids. Methods Using drug repurposing approach, we screened LINCS library (http://lincsproject.org/LINCS/) to identify repressors of REDD1/FKBP51 expression. Candidate compounds were tested for their ability to inhibit glucocorticoid-induced REDD1/FKBP51 expression in human primary/immortalized keratinocytes and in mouse skin. Reporter gene expression, microarray, and chromatin immunoprecipitation were employed to evaluate effect of these inhibitors on the glucocorticoid receptor (GR) signaling. Findings Bioinformatics analysis unexpectedly identified phosphoinositide-3-kinase (PI3K)/mTOR/Akt inhibitors as a pharmacological class of REDD1/FKBP51 repressors. Selected PI3K/mTOR/Akt inhibitors-Wortmannin (WM), LY294002, AZD8055, and two others indeed blocked REDD1/FKBP51expression in human keratinocytes. PI3K/mTOR/Akt inhibitors also modified global effect of glucocorticoids on trascriptome, shifting it towards therapeutically important transrepression; negatively impacted GR phosphorylation; nuclear translocation; and GR loading on REDD1/FKBP51 gene promoters. Further, topical application of LY294002 together with glucocorticoid fluocinolone acetonide (FA) protected mice against FA-induced proliferative block and skin atrophy but did not alter the anti-inflammatory activity of FA in ear edema test. Interpretation Our results built a strong foundation for development of safer GR-targeted therapies for inflammatory skin diseases using combination of glucocorticoids with PI3K/mTOR/Akt inhibitors. Fund Work is supported by NIH grants R01GM112945, R01AI125366, and HESI-THRIVE foundation.
Collapse
|
45
|
Moulton E, Chamness M, Knox D. Characterizing changes in glucocorticoid receptor internalization in the fear circuit in an animal model of post traumatic stress disorder. PLoS One 2018; 13:e0205144. [PMID: 30532228 PMCID: PMC6286002 DOI: 10.1371/journal.pone.0205144] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 11/20/2018] [Indexed: 12/20/2022] Open
Abstract
Glucocorticoid receptors (GRs) shuttle from the cytoplasm (cy) to the nucleus (nu) when bound with glucocorticoids (i.e. GR internalization) and alter transcriptional activity. GR activation within the fear circuit has been implicated in fear memory and post traumatic stress disorder (PTSD). However, no study to date has characterized GR internalization within the fear circuit during fear memory formation or examined how traumatic stress impacts this process. To address this, we assayed cy and nu GR levels at baseline and after auditory fear conditioning (FC) in the single prolonged stress (SPS) model of PTSD. Cy and nu GRs within the medial prefrontal cortex (mPFC), dorsal hippocampus (dHipp), ventral hippocampus (vHipp), and amygdala (AMY) were assayed using western blot. The distribution of GR in the cy and nu (at baseline and after FC) was varied across individual nodes of the fear circuit. At baseline, SPS enhanced cyGRs in the dHipp, but decreased cyGRs in the AMY. FC only enhanced GR internalization in the AMY and this effect was attenuated by SPS exposure. SPS also decreased cyGRs in the dHipp after FC. The results of this study suggests that GR internalization is varied across the fear circuit, which in turn suggests GR activation is selectively regulated within individual nodes of the fear circuit. The findings also suggest that changes in GR dynamics in the dHipp and AMY modulate the enhancing effect SPS has on fear memory persistence.
Collapse
Affiliation(s)
- Emily Moulton
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, United States of America
| | - Marisa Chamness
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, United States of America
| | - Dayan Knox
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, United States of America
| |
Collapse
|
46
|
Barfield ET, Gourley SL. Prefrontal cortical trkB, glucocorticoids, and their interactions in stress and developmental contexts. Neurosci Biobehav Rev 2018; 95:535-558. [PMID: 30477984 PMCID: PMC6392187 DOI: 10.1016/j.neubiorev.2018.10.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 09/14/2018] [Accepted: 10/23/2018] [Indexed: 02/07/2023]
Abstract
The tropomyosin/tyrosine receptor kinase B (trkB) and glucocorticoid receptor (GR) regulate neuron structure and function and the hormonal stress response. Meanwhile, disruption of trkB and GR activity (e.g., by chronic stress) can perturb neuronal morphology in cortico-limbic regions implicated in stressor-related illnesses like depression. Further, several of the short- and long-term neurobehavioral consequences of stress depend on the developmental timing and context of stressor exposure. We review how the levels and activities of trkB and GR in the prefrontal cortex (PFC) change during development, interact, are modulated by stress, and are implicated in depression. We review evidence that trkB- and GR-mediated signaling events impact the density and morphology of dendritic spines, the primary sites of excitatory synapses in the brain, highlighting effects in adolescents when possible. Finally, we review the role of neurotrophin and glucocorticoid systems in stress-related metaplasticity. We argue that better understanding the long-term effects of developmental stressors on PFC trkB, GR, and related factors may yield insights into risk for chronic, remitting depression and related neuropsychiatric illnesses.
Collapse
Affiliation(s)
- Elizabeth T Barfield
- Department of Pediatrics, Emory University, 954 Gatewood Rd. NE, Atlanta, GA, 30329, USA; Graduate Program in Neuroscience, Emory University, 954 Gatewood Rd. NE, Atlanta, GA, 30329, USA; Yerkes National Primate Research Center, Emory University, 954 Gatewood Rd. NE, Atlanta, GA, 30329, USA; Department of Psychiatry and Behavioral Sciences, Emory University, 954 Gatewood Rd. NE, Atlanta, GA, 30329, USA.
| | - Shannon L Gourley
- Department of Pediatrics, Emory University, 954 Gatewood Rd. NE, Atlanta, GA, 30329, USA; Graduate Program in Neuroscience, Emory University, 954 Gatewood Rd. NE, Atlanta, GA, 30329, USA; Yerkes National Primate Research Center, Emory University, 954 Gatewood Rd. NE, Atlanta, GA, 30329, USA; Department of Psychiatry and Behavioral Sciences, Emory University, 954 Gatewood Rd. NE, Atlanta, GA, 30329, USA; Molecular and Systems Pharmacology Program, Emory University, 954 Gatewood Rd. NE, Atlanta, GA, 30329, USA.
| |
Collapse
|
47
|
Affiliation(s)
- Donald B DeFranco
- Associate Dean for Medical Student Research Professor and Vice Chair of Education, Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
48
|
Panda L, Mabalirajan U. Recent Updates on Corticosteroid Resistance in Asthma. EUROPEAN MEDICAL JOURNAL 2018. [DOI: 10.33590/emj/10311987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Corticosteroids are one of the most effective medications available for a wide variety of inflammatory diseases, including rheumatoid arthritis, inflammatory bowel disease, autoimmune diseases, and chronic lung diseases such as asthma; however, 5–10% of asthma patients respond poorly to corticosteroids and require high doses, secondary immunosuppressants, such as calcineurin inhibitors and methotrexate, or disease-modifying biologics that can be toxic and/or expensive. Though steroid-resistant asthma affects a small percentage of patients, it consumes significant health resources and contributes to substantial morbidity and mortality. In addition, the side effects caused by excessive use of steroids dramatically impact patients’ quality of life. Recognition of patients who respond poorly to steroid therapy is important due to the persistent and considerable problems they face in managing their conditions, which bears a significant socioeconomic burden. Along with the recognition of such patients, elucidation of the molecular mechanisms of steroid resistance is equally important, so that administration of a high dosage of steroids, and the consequent adverse effects, can be avoided. This review provides an update on the mechanisms of steroid function and the possible new therapeutic modalities to treat steroid-resistant asthma.
Collapse
Affiliation(s)
- Lipsa Panda
- Molecular Pathobiology of Respiratory Diseases, Council of Scientific & Industrial Research (CSIR), Institute of Genomics and Integrative Biology, Delhi, India
| | - Ulaganathan Mabalirajan
- Molecular Pathobiology of Respiratory Diseases, Council of Scientific & Industrial Research (CSIR), Institute of Genomics and Integrative Biology, Delhi, India
| |
Collapse
|
49
|
Dai TT, Wang B, Xiao ZY, You Y, Tian SW. Apelin-13 Upregulates BDNF Against Chronic Stress-induced Depression-like Phenotypes by Ameliorating HPA Axis and Hippocampal Glucocorticoid Receptor Dysfunctions. Neuroscience 2018; 390:151-159. [PMID: 30170158 DOI: 10.1016/j.neuroscience.2018.08.018] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 08/10/2018] [Accepted: 08/20/2018] [Indexed: 01/08/2023]
Abstract
Localization of apelin and its receptor APJ in limbic structures such as the hippocampus suggests potential involvement of apelin/APJ signaling in stress-related emotional responses. We have recently reported that apelin-13 exerts antidepressant-like actions in acute stressed rats, and that the hippocampus is a critical brain region mediating its actions. However, the neural mechanism underling antidepressant-like actions of apelin-13 is still largely unknown. The aim of the present study is to determine whether apelin-13 ameliorates chronic water-immersion restraint stress (CWIRS)-induced depression-like phenotypes and its neural mechanism in rats. Here, we report that CWIRS exposure leaded to upregulation of apelin/APJ signaling in the hippocampus. Apelin-13 ameliorated CWIRS-induced depression-like phenotypes including hedonic-like deficit and behavioral despairs. Moreover, apelin-13 ameliorated hypothalamic-pituitary-adrenal (HPA) axis hyperactivity, and hippocampal BDNF expression deficit and glucocorticoid receptor (GR) nucleus translocation hypoactivity in chronic stressed rats. Finally, apelin-13-mediated effects were blocked by the selective TrkB receptor antagonist ANA-12. These results suggest that apelin-13 upregulates BDNF against chronic stress-induced depression-like phenotypes by ameliorating HPA axis and hippocampal GR dysfunctions.
Collapse
Affiliation(s)
- Ting-Ting Dai
- Department of Physiology, College of Medicine, University of South China, Hengyang, Hunan 421001, PR China
| | - Bo Wang
- Department of Anesthesiology, The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, PR China
| | - Zhi-Yong Xiao
- Department of Anesthesiology, The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, PR China
| | - Yong You
- Department of Neurology, The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, PR China
| | - Shao-Wen Tian
- Department of Physiology, College of Medicine, University of South China, Hengyang, Hunan 421001, PR China.
| |
Collapse
|
50
|
From feedback loop transitions to biomarkers in the psycho-immune-neuroendocrine network: Detecting the critical transition from health to major depression. Neurosci Biobehav Rev 2018. [DOI: 10.1016/j.neubiorev.2018.03.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|