1
|
Grinstein M, Tsai SL, Montoro D, Freedman BR, Dingwall HL, Villaseñor S, Zou K, Sade-Feldman M, Tanaka MJ, Mooney DJ, Capellini TD, Rajagopal J, Galloway JL. A latent Axin2 +/Scx + progenitor pool is the central organizer of tendon healing. NPJ Regen Med 2024; 9:30. [PMID: 39420021 PMCID: PMC11487078 DOI: 10.1038/s41536-024-00370-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/17/2024] [Indexed: 10/19/2024] Open
Abstract
A tendon's ordered extracellular matrix (ECM) is essential for transmitting force but is also highly prone to injury. How tendon cells embedded within and surrounding this dense ECM orchestrate healing is not well understood. Here, we identify a specialized quiescent Scx+/Axin2+ population in mouse and human tendons that initiates healing and is a major functional contributor to repair. Axin2+ cells express stem cell markers, expand in vitro, and have multilineage differentiation potential. Following tendon injury, Axin2+-descendants infiltrate the injury site, proliferate, and differentiate into tenocytes. Transplantation assays of Axin2-labeled cells into injured tendons reveal their dual capacity to significantly proliferate and differentiate yet retain their Axin2+ identity. Specific loss of Wnt secretion in Axin2+ or Scx+ cells disrupts their ability to respond to injury, severely compromising healing. Our work highlights an unusual paradigm, wherein specialized Axin2+/Scx+ cells rely on self-regulation to maintain their identity as key organizers of tissue healing.
Collapse
Affiliation(s)
- Mor Grinstein
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Orthopedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Stephanie L Tsai
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Orthopedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Daniel Montoro
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Benjamin R Freedman
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Heather L Dingwall
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Steffany Villaseñor
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Ken Zou
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Moshe Sade-Feldman
- The Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Miho J Tanaka
- Department of Orthopedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - David J Mooney
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Terence D Capellini
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Jayaraj Rajagopal
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jenna L Galloway
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Department of Orthopedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Harvard Stem Cell Institute, Cambridge, MA, USA.
| |
Collapse
|
2
|
Kobiita A, Silva PN, Schmid MW, Stoffel M. FoxM1 coordinates cell division, protein synthesis, and mitochondrial activity in a subset of β cells during acute metabolic stress. Cell Rep 2023; 42:112986. [PMID: 37590136 DOI: 10.1016/j.celrep.2023.112986] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 06/06/2023] [Accepted: 07/31/2023] [Indexed: 08/19/2023] Open
Abstract
Pancreatic β cells display functional and transcriptional heterogeneity in health and disease. The sequence of events leading to β cell heterogeneity during metabolic stress is poorly understood. Here, we characterize β cell responses to early metabolic stress in vivo by employing RNA sequencing (RNA-seq), assay for transposase-accessible chromatin with sequencing (ATAC-seq), single-cell RNA-seq (scRNA-seq), chromatin immunoprecipitation sequencing (ChIP-seq), and real-time imaging to decipher temporal events of chromatin remodeling and gene expression regulating the unfolded protein response (UPR), protein synthesis, mitochondrial function, and cell-cycle progression. We demonstrate that a subpopulation of β cells with active UPR, decreased protein synthesis, and insulin secretary capacities is more susceptible to proliferation after insulin depletion. Alleviation of endoplasmic reticulum (ER) stress precedes the progression of the cell cycle and mitosis and ensures appropriate insulin synthesis. Furthermore, metabolic stress rapidly activates key transcription factors including FoxM1, which impacts on proliferative and quiescent β cells by regulating protein synthesis, ER stress, and mitochondrial activity via direct repression of mitochondrial-encoded genes.
Collapse
Affiliation(s)
- Ahmad Kobiita
- Institute of Molecular Health Sciences, ETH Zürich, Otto-Stern-Weg 7, 8093 Zürich, Switzerland
| | - Pamuditha N Silva
- Institute of Molecular Health Sciences, ETH Zürich, Otto-Stern-Weg 7, 8093 Zürich, Switzerland
| | - Marc W Schmid
- MWSchmid GmbH, Hauptstrasse 34, 8750 Glarus, Switzerland
| | - Markus Stoffel
- Institute of Molecular Health Sciences, ETH Zürich, Otto-Stern-Weg 7, 8093 Zürich, Switzerland; Medical Faculty, Universitäts-Spital Zürich, Rämistrasse 100, 8091 Zürich, Switzerland.
| |
Collapse
|
3
|
Fu X, He Q, Tao Y, Wang M, Wang W, Wang Y, Yu QC, Zhang F, Zhang X, Chen YG, Gao D, Hu P, Hui L, Wang X, Zeng YA. Recent advances in tissue stem cells. SCIENCE CHINA. LIFE SCIENCES 2021; 64:1998-2029. [PMID: 34865207 DOI: 10.1007/s11427-021-2007-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/08/2021] [Indexed: 12/13/2022]
Abstract
Stem cells are undifferentiated cells capable of self-renewal and differentiation, giving rise to specialized functional cells. Stem cells are of pivotal importance for organ and tissue development, homeostasis, and injury and disease repair. Tissue-specific stem cells are a rare population residing in specific tissues and present powerful potential for regeneration when required. They are usually named based on the resident tissue, such as hematopoietic stem cells and germline stem cells. This review discusses the recent advances in stem cells of various tissues, including neural stem cells, muscle stem cells, liver progenitors, pancreatic islet stem/progenitor cells, intestinal stem cells, and prostate stem cells, and the future perspectives for tissue stem cell research.
Collapse
Affiliation(s)
- Xin Fu
- Xinhua Hospital affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, 200233, China
| | - Qiang He
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yu Tao
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Mengdi Wang
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Bioland Laboratory (Guangzhou), Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Wang
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Bioland Laboratory (Guangzhou), Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yalong Wang
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Qing Cissy Yu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Fang Zhang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xiaoyu Zhang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ye-Guang Chen
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- Max-Planck Center for Tissue Stem Cell Research and Regenerative Medicine, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510530, China.
| | - Dong Gao
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Ping Hu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
- Xinhua Hospital affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, 200233, China.
- Max-Planck Center for Tissue Stem Cell Research and Regenerative Medicine, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510530, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Bio-Research Innovation Center, Shanghai Institute of Biochemistry and Cell Biology, Suzhou, 215121, China.
| | - Lijian Hui
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Bio-Research Innovation Center, Shanghai Institute of Biochemistry and Cell Biology, Suzhou, 215121, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou, 310024, China.
| | - Xiaoqun Wang
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Bioland Laboratory (Guangzhou), Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Advanced Innovation Center for Human Brain Protection, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China.
| | - Yi Arial Zeng
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
- Bio-Research Innovation Center, Shanghai Institute of Biochemistry and Cell Biology, Suzhou, 215121, China.
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou, 310024, China.
| |
Collapse
|
4
|
Krentz NAJ, Shea LD, Huising MO, Shaw JAM. Restoring normal islet mass and function in type 1 diabetes through regenerative medicine and tissue engineering. Lancet Diabetes Endocrinol 2021; 9:708-724. [PMID: 34480875 PMCID: PMC10881068 DOI: 10.1016/s2213-8587(21)00170-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/17/2021] [Accepted: 06/08/2021] [Indexed: 02/09/2023]
Abstract
Type 1 diabetes is characterised by autoimmune-mediated destruction of pancreatic β-cell mass. With the advent of insulin therapy a century ago, type 1 diabetes changed from a progressive, fatal disease to one that requires lifelong complex self-management. Replacing the lost β-cell mass through transplantation has proven successful, but limited donor supply and need for lifelong immunosuppression restricts widespread use. In this Review, we highlight incremental advances over the past 20 years and remaining challenges in regenerative medicine approaches to restoring β-cell mass and function in type 1 diabetes. We begin by summarising the role of endocrine islets in glucose homoeostasis and how this is altered in disease. We then discuss the potential regenerative capacity of the remaining islet cells and the utility of stem cell-derived β-like cells to restore β-cell function. We conclude with tissue engineering approaches that might improve the engraftment, function, and survival of β-cell replacement therapies.
Collapse
Affiliation(s)
- Nicole A J Krentz
- Division of Endocrinology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Lonnie D Shea
- Departments of Biomedical Engineering, Chemical Engineering, and Surgery, College of Engineering and School of Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Mark O Huising
- Department of Neurobiology, Physiology and Behavior, College of Biological Sciences, University of California, Davis, Davis, CA, USA; Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, Davis, CA, USA
| | - James A M Shaw
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK; Institute of Transplantation, Freeman Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK.
| |
Collapse
|
5
|
Lee S, Zhang J, Saravanakumar S, Flisher MF, Grimm DR, van der Meulen T, Huising MO. Virgin β-Cells at the Neogenic Niche Proliferate Normally and Mature Slowly. Diabetes 2021; 70:1070-1083. [PMID: 33563657 PMCID: PMC8173805 DOI: 10.2337/db20-0679] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 01/25/2021] [Indexed: 01/11/2023]
Abstract
Proliferation of pancreatic β-cells has long been known to reach its peak in the neonatal stages and decline during adulthood. However, β-cell proliferation has been studied under the assumption that all β-cells constitute a single, homogenous population. It is unknown whether a subpopulation of β-cells retains the capacity to proliferate at a higher rate and thus contributes disproportionately to the maintenance of mature β-cell mass in adults. We therefore assessed the proliferative capacity and turnover potential of virgin β-cells, a novel population of immature β-cells found at the islet periphery. We demonstrate that virgin β-cells can proliferate but do so at rates similar to those of mature β-cells from the same islet under normal and challenged conditions. Virgin β-cell proliferation rates also conform to the age-dependent decline previously reported for β-cells at large. We further show that virgin β-cells represent a long-lived, stable subpopulation of β-cells with low turnover into mature β-cells under healthy conditions. Our observations indicate that virgin β-cells at the islet periphery can divide but do not contribute disproportionately to the maintenance of adult β-cell mass.
Collapse
Affiliation(s)
- Sharon Lee
- Department of Neurobiology, Physiology and Behavior, College of Biological Sciences, University of California, Davis, Davis, CA
| | - Jing Zhang
- Department of Neurobiology, Physiology and Behavior, College of Biological Sciences, University of California, Davis, Davis, CA
| | - Supraja Saravanakumar
- Department of Neurobiology, Physiology and Behavior, College of Biological Sciences, University of California, Davis, Davis, CA
| | - Marcus F Flisher
- Department of Neurobiology, Physiology and Behavior, College of Biological Sciences, University of California, Davis, Davis, CA
| | - David R Grimm
- Department of Neurobiology, Physiology and Behavior, College of Biological Sciences, University of California, Davis, Davis, CA
| | - Talitha van der Meulen
- Department of Neurobiology, Physiology and Behavior, College of Biological Sciences, University of California, Davis, Davis, CA
| | - Mark O Huising
- Department of Neurobiology, Physiology and Behavior, College of Biological Sciences, University of California, Davis, Davis, CA
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, Davis, CA
| |
Collapse
|
6
|
Petrenko V, Stolovich-Rain M, Vandereycken B, Giovannoni L, Storch KF, Dor Y, Chera S, Dibner C. The core clock transcription factor BMAL1 drives circadian β-cell proliferation during compensatory regeneration of the endocrine pancreas. Genes Dev 2020; 34:1650-1665. [PMID: 33184223 PMCID: PMC7706703 DOI: 10.1101/gad.343137.120] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 10/08/2020] [Indexed: 12/20/2022]
Abstract
Circadian clocks in pancreatic islets participate in the regulation of glucose homeostasis. Here we examined the role of these timekeepers in β-cell regeneration after the massive ablation of β cells by doxycycline-induced expression of diphtheria toxin A (DTA) in Insulin-rtTA/TET-DTA mice. Since we crossed reporter genes expressing α- and β-cell-specific fluorescent proteins into these mice, we could follow the fate of α- and β cells separately. As expected, DTA induction resulted in an acute hyperglycemia, which was accompanied by dramatic changes in gene expression in residual β cells. In contrast, only temporal alterations of gene expression were observed in α cells. Interestingly, β cells entered S phase preferentially during the nocturnal activity phase, indicating that the diurnal rhythm also plays a role in the orchestration of β-cell regeneration. Indeed, in arrhythmic Bmal1-deficient mice, which lack circadian clocks, no compensatory β-cell proliferation was observed, and the β-cell ablation led to aggravated hyperglycemia, hyperglucagonemia, and fatal diabetes.
Collapse
Affiliation(s)
- Volodymyr Petrenko
- Division of Endocrinology, Diabetes, Nutrition, and Patient Education, Department of Medicine, University of Geneva, 1211 Geneva, Switzerland
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
- Diabetes Center, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
- Institute of Genetics and Genomics in Geneva (iGE3), 1211 Geneva, Switzerland
| | - Miri Stolovich-Rain
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Bart Vandereycken
- Section of Mathematics, University of Geneva, 1211 Geneva, Switzerland
| | - Laurianne Giovannoni
- Division of Endocrinology, Diabetes, Nutrition, and Patient Education, Department of Medicine, University of Geneva, 1211 Geneva, Switzerland
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
- Diabetes Center, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
- Institute of Genetics and Genomics in Geneva (iGE3), 1211 Geneva, Switzerland
| | - Kai-Florian Storch
- Department of Psychiatry, McGill University, Montreal, Quebec H4H 1R3, Canada
- Douglas Mental Health University Institute, Montreal, Quebec H4H 1R3, Canada
| | - Yuval Dor
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Simona Chera
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway
| | - Charna Dibner
- Division of Endocrinology, Diabetes, Nutrition, and Patient Education, Department of Medicine, University of Geneva, 1211 Geneva, Switzerland
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
- Diabetes Center, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
- Institute of Genetics and Genomics in Geneva (iGE3), 1211 Geneva, Switzerland
| |
Collapse
|
7
|
Scavuzzo MA, Borowiak M. Two drugs converged in a pancreatic β cell. Sci Transl Med 2020; 12:12/530/eaba7359. [PMID: 32051228 DOI: 10.1126/scitranslmed.aba7359] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 01/24/2020] [Indexed: 12/11/2022]
Abstract
Combining a DYRK1A inhibitor and GLP-1 receptor agonist boosts human pancreatic β cell proliferation and glucose homeostasis in vivo (Ackeifi et al., this issue).
Collapse
Affiliation(s)
- Marissa A Scavuzzo
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Malgorzata Borowiak
- Program in Developmental Biology, Stem Cell, and Regenerative Medicine Center, Department of Molecular and Cellular Biology, and McNair Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
8
|
Hu R, Walker E, Huang C, Xu Y, Weng C, Erickson GE, Coldren A, Yang X, Brissova M, Kaverina I, Balamurugan AN, Wright CVE, Li Y, Stein R, Gu G. Myt Transcription Factors Prevent Stress-Response Gene Overactivation to Enable Postnatal Pancreatic β Cell Proliferation, Function, and Survival. Dev Cell 2020; 53:390-405.e10. [PMID: 32359405 PMCID: PMC7278035 DOI: 10.1016/j.devcel.2020.04.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 03/06/2020] [Accepted: 04/03/2020] [Indexed: 02/06/2023]
Abstract
Although cellular stress response is important for maintaining function and survival, overactivation of late-stage stress effectors cause dysfunction and death. We show that the myelin transcription factors (TFs) Myt1 (Nzf2), Myt2 (Myt1l, Nztf1, and Png-1), and Myt3 (St18 and Nzf3) prevent such overactivation in islet β cells. Thus, we found that co-inactivating the Myt TFs in mouse pancreatic progenitors compromised postnatal β cell function, proliferation, and survival, preceded by upregulation of late-stage stress-response genes activating transcription factors (e.g., Atf4) and heat-shock proteins (Hsps). Myt1 binds putative enhancers of Atf4 and Hsps, whose overexpression largely recapitulated the Myt-mutant phenotypes. Moreover, Myt(MYT)-TF levels were upregulated in mouse and human β cells during metabolic stress-induced compensation but downregulated in dysfunctional type 2 diabetic (T2D) human β cells. Lastly, MYT knockdown caused stress-gene overactivation and death in human EndoC-βH1 cells. These findings suggest that Myt TFs are essential restrictors of stress-response overactivity.
Collapse
Affiliation(s)
- Ruiying Hu
- Vanderbilt Program in Developmental Biology, Department of Cell and Developmental Biology, and Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Emily Walker
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Chen Huang
- Vanderbilt Program in Developmental Biology, Department of Cell and Developmental Biology, and Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Yanwen Xu
- Vanderbilt Program in Developmental Biology, Department of Cell and Developmental Biology, and Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Chen Weng
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Gillian E Erickson
- Vanderbilt Program in Developmental Biology, Department of Cell and Developmental Biology, and Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Anastasia Coldren
- Department of Medicine, Vanderbilt Medical Center, Nashville, TN 27232, USA
| | - Xiaodun Yang
- Vanderbilt Program in Developmental Biology, Department of Cell and Developmental Biology, and Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Marcela Brissova
- Department of Medicine, Vanderbilt Medical Center, Nashville, TN 27232, USA
| | - Irina Kaverina
- Vanderbilt Program in Developmental Biology, Department of Cell and Developmental Biology, and Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Appakalai N Balamurugan
- Department of Surgery, Clinical Islet Transplantation Laboratory, Cardiovascular Innovation Institute, University of Louisville, Louisville, KY 40202, USA
| | - Christopher V E Wright
- Vanderbilt Program in Developmental Biology, Department of Cell and Developmental Biology, and Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Yan Li
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Roland Stein
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Guoqiang Gu
- Vanderbilt Program in Developmental Biology, Department of Cell and Developmental Biology, and Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| |
Collapse
|
9
|
Ježek P, Jabůrek M, Plecitá-Hlavatá L. Contribution of Oxidative Stress and Impaired Biogenesis of Pancreatic β-Cells to Type 2 Diabetes. Antioxid Redox Signal 2019; 31:722-751. [PMID: 30450940 PMCID: PMC6708273 DOI: 10.1089/ars.2018.7656] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 11/05/2018] [Indexed: 12/14/2022]
Abstract
Significance: Type 2 diabetes development involves multiple changes in β-cells, related to the oxidative stress and impaired redox signaling, beginning frequently by sustained overfeeding due to the resulting lipotoxicity and glucotoxicity. Uncovering relationships among the dysregulated metabolism, impaired β-cell "well-being," biogenesis, or cross talk with peripheral insulin resistance is required for elucidation of type 2 diabetes etiology. Recent Advances: It has been recognized that the oxidative stress, lipotoxicity, and glucotoxicity cannot be separated from numerous other cell pathology events, such as the attempted compensation of β-cell for the increased insulin demand and dynamics of β-cell biogenesis and its "reversal" at dedifferentiation, that is, from the concomitantly decreasing islet β-cell mass (also due to transdifferentiation) and low-grade islet or systemic inflammation. Critical Issues: At prediabetes, the compensation responses of β-cells, attempting to delay the pathology progression-when exaggerated-set a new state, in which a self-checking redox signaling related to the expression of Ins gene expression is impaired. The resulting altered redox signaling, diminished insulin secretion responses to various secretagogues including glucose, may lead to excretion of cytokines or chemokines by β-cells or excretion of endosomes. They could substantiate putative stress signals to the periphery. Subsequent changes and lasting glucolipotoxicity promote islet inflammatory responses and further pathology spiral. Future Directions: Should bring an understanding of the β-cell self-checking and related redox signaling, including the putative stress signal to periphery. Strategies to cure or prevent type 2 diabetes could be based on the substitution of the "wrong" signal by the "correct" self-checking signal.
Collapse
Affiliation(s)
- Petr Ježek
- Department of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Martin Jabůrek
- Department of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Lydie Plecitá-Hlavatá
- Department of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
10
|
Arrojo E Drigo R, Lev-Ram V, Tyagi S, Ramachandra R, Deerinck T, Bushong E, Phan S, Orphan V, Lechene C, Ellisman MH, Hetzer MW. Age Mosaicism across Multiple Scales in Adult Tissues. Cell Metab 2019; 30:343-351.e3. [PMID: 31178361 PMCID: PMC7289515 DOI: 10.1016/j.cmet.2019.05.010] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 10/18/2018] [Accepted: 05/11/2019] [Indexed: 12/22/2022]
Abstract
Most neurons are not replaced during an animal's lifetime. This nondividing state is characterized by extreme longevity and age-dependent decline of key regulatory proteins. To study the lifespans of cells and proteins in adult tissues, we combined isotope labeling of mice with a hybrid imaging method (MIMS-EM). Using 15N mapping, we show that liver and pancreas are composed of cells with vastly different ages, many as old as the animal. Strikingly, we also found that a subset of fibroblasts and endothelial cells, both known for their replicative potential, are characterized by the absence of cell division during adulthood. In addition, we show that the primary cilia of beta cells and neurons contains different structural regions with vastly different lifespans. Based on these results, we propose that age mosaicism across multiple scales is a fundamental principle of adult tissue, cell, and protein complex organization.
Collapse
Affiliation(s)
- Rafael Arrojo E Drigo
- Salk Institute for Biological Studies, Molecular and Cell Biology Laboratory (MCBL), La Jolla, CA, USA
| | - Varda Lev-Ram
- Department of Pharmacology, University of California, San Diego School of Medicine (UCSD), La Jolla, CA, USA
| | - Swati Tyagi
- Salk Institute for Biological Studies, Molecular and Cell Biology Laboratory (MCBL), La Jolla, CA, USA
| | - Ranjan Ramachandra
- National Center for Microscopy and Imaging Research (NCMIR), University of California, San Diego (UCSD), La Jolla, CA, USA
| | - Thomas Deerinck
- National Center for Microscopy and Imaging Research (NCMIR), University of California, San Diego (UCSD), La Jolla, CA, USA
| | - Eric Bushong
- National Center for Microscopy and Imaging Research (NCMIR), University of California, San Diego (UCSD), La Jolla, CA, USA
| | - Sebastien Phan
- National Center for Microscopy and Imaging Research (NCMIR), University of California, San Diego (UCSD), La Jolla, CA, USA
| | - Victoria Orphan
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA
| | - Claude Lechene
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Mark H Ellisman
- Department of Pharmacology, University of California, San Diego School of Medicine (UCSD), La Jolla, CA, USA; Department of Neurosciences, University of California, San Diego School of Medicine (UCSD), La Jolla, CA, USA
| | - Martin W Hetzer
- Salk Institute for Biological Studies, Molecular and Cell Biology Laboratory (MCBL), La Jolla, CA, USA.
| |
Collapse
|
11
|
Nakajima C, Kamimoto K, Miyajima K, Matsumoto M, Okazaki Y, Kobayashi-Hattori K, Shimizu M, Yamane T, Oishi Y, Iwatsuki K. A Method for Identifying Mouse Pancreatic Ducts. Tissue Eng Part C Methods 2019; 24:480-485. [PMID: 29993334 PMCID: PMC6088256 DOI: 10.1089/ten.tec.2018.0127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Proper identification of pancreatic ducts is a major challenge for researchers performing partial duct ligation (PDL), because pancreatic ducts, which are covered with acinar cells, are translucent and thin. Although damage to pancreatic ducts may activate quiescent ductal stem cells, which may allow further investigation into ductal stem cells for therapeutic use, there is a lack of effective techniques to visualize pancreatic ducts. In this study, we report a new method for identifying pancreatic ducts. First, we aimed to visualize pancreatic ducts using black, waterproof fountain pen ink. We injected the ink into pancreatic ducts through the bile duct. The flow of ink was observed in pancreatic ducts, revealing their precise architecture. Next, to visualize pancreatic ducts in live animals, we injected fluorescein-labeled bile acid, cholyl-lysyl-fluorescein into the mouse tail vein. The fluorescent probe clearly marked not only the bile duct but also pancreatic ducts when observed with a fluorescent microscope. To confirm whether the pancreatic duct labeling was successful, we performed PDL on Neurogenin3 (Ngn3)-GFP transgenic mice. As a result, acinar tissue is lost. PDL tail pancreas becomes translucent almost completely devoid of acinar cells. Furthermore, strong activation of Ngn3 expression was observed in the ligated part of the adult mouse pancreas at 7 days after PDL.
Collapse
Affiliation(s)
- Chiemi Nakajima
- 1 Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture , Tokyo, Japan
| | - Kenji Kamimoto
- 2 Department of Developmental Biology, Washington University School of Medicine in St. Louis , St. Louis, Missouri
| | - Katsuhiro Miyajima
- 1 Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture , Tokyo, Japan
| | - Masahito Matsumoto
- 3 Department of Advanced Diabetic Therapeutics and Metabolic Endocrinology, Juntendo University , Tokyo, Japan
| | - Yasushi Okazaki
- 3 Department of Advanced Diabetic Therapeutics and Metabolic Endocrinology, Juntendo University , Tokyo, Japan .,4 Diagnostics and Therapeutics of Intractable Diseases, Intractable Disease Center, Juntendo University , Tokyo, Japan
| | - Kazuo Kobayashi-Hattori
- 5 Department of Nutritional Science, Faculty of Applied Bioscience, Tokyo University of Agriculture , Tokyo, Japan
| | - Makoto Shimizu
- 5 Department of Nutritional Science, Faculty of Applied Bioscience, Tokyo University of Agriculture , Tokyo, Japan
| | - Takumi Yamane
- 1 Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture , Tokyo, Japan
| | - Yuichi Oishi
- 1 Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture , Tokyo, Japan
| | - Ken Iwatsuki
- 1 Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture , Tokyo, Japan
| |
Collapse
|
12
|
Aydin S, Sağraç D, Şahin F. Differentiation Potential of Mesenchymal Stem Cells into Pancreatic β-Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1247:135-156. [PMID: 32002800 DOI: 10.1007/5584_2019_476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Stem cells having the capability to differentiate into other type of cells and renewing themselves, gained so much importance in recent years. Investigations in stem cells revealed that mesenchymal stem cells can successfully differentiate into other type of cells like adipocytes, hepatocytes, osteocytes, neurocytes and chondrocytes. In addition, these cells can also differentiate into insulin-producing beta cells. Insulin is a crucial hormone for glucose balance of the body. Insufficiency or unavailability of insulin is called diabetes. External insulin intake, as well as pancreas or islet transplantation, is the most basic treatment of diabetes. In vivo and in vitro studies demonstrate that stem cell therapy is also used in the cure of diabetes. Differentiation process of stem cells into beta cells releasing insulin is quite complicated. There are many different reports for the differentiation of stem cells in the literature. The success of differentiation of stem cells into beta cells depends on several factors like the source of stem cells, chemicals added into the differentiation medium and the duration of differentiation protocol. Distinct studies for the differentiation of stem cells into insulin-secreting cells are available in the literature. Moreover, thanks to the superior differentiation capacity of stem cells, they are being preferred in clinical studies. Stem cells were clinically used to heal diabetic ulcer, to increase c-peptide level and insulin secretion in both type 1 and type 2 diabetes. Mesenchymal stem cells having high differentiation potential to insulin-secreting cells are encouraging vehicles for both in vivo and in vitro studies together with clinical trials for diabetes mellitus.
Collapse
Affiliation(s)
- Safa Aydin
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, İstanbul, Turkey.
| | - Derya Sağraç
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, İstanbul, Turkey
| | - Fikrettin Şahin
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, İstanbul, Turkey
| |
Collapse
|
13
|
Navarro-Tableros V, Gomez Y, Brizzi MF, Camussi G. Generation of Human Stem Cell-Derived Pancreatic Organoids (POs) for Regenerative Medicine. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1212:179-220. [PMID: 31025308 DOI: 10.1007/5584_2019_340] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Insulin-dependent diabetes mellitus or type 1 diabetes mellitus (T1DM) is an auto-immune condition characterized by the loss of pancreatic β-cells. The curative approach for highly selected patients is the pancreas or the pancreatic islet transplantation. Nevertheless, these options are limited by a growing shortage of donor organs and by the requirement of immunosuppression.Xenotransplantation of porcine islets has been extensively investigated. Nevertheless, the strong xenoimmunity and the risk of transmission of porcine endogenous retroviruses, have limited their application in clinic. Generation of β-like cells from stem cells is one of the most promising strategies in regenerative medicine. Embryonic, and more recently, adult stem cells are currently the most promising cell sources exploited to generate functional β-cells in vitro. A number of studies demonstrated that stem cells could generate functional pancreatic organoids (POs), able to restore normoglycemia when implanted in different preclinical diabetic models. Nevertheless, a gradual loss of function and cell dead are commonly detected when POs are transplanted in immunocompetent animals. So far, the main issue to be solved is the post-transplanted islet loss, due to the host immune attack. To avoid this hurdle, nanotechnology has provided a number of polymers currently under investigation for islet micro and macro-encapsulation. These new approaches, besides conferring PO immune protection, are able to supply oxygen and nutrients and to preserve PO morphology and long-term viability.Herein, we summarize the current knowledge on bioengineered POs and the stem cell differentiation platforms. We also discuss the in vitro strategies used to generate functional POs, and the protocols currently used to confer immune-protection against the host immune attack (micro- and macro-encapsulation). In addition, the most relevant ongoing clinical trials, and the most relevant hurdles met to move towards clinical application are revised.
Collapse
Affiliation(s)
- Victor Navarro-Tableros
- 2i3T Società per la gestione dell'incubatore di imprese e per il trasferimento tecnologico Scarl, University of Turin, Turin, Italy
| | - Yonathan Gomez
- Department of Medical Sciences, University of Turin, Turin, Italy
| | | | - Giovanni Camussi
- Department of Medical Sciences, University of Turin, Turin, Italy.
- Fondazione per la Ricerca Biomedica-ONLUS, Turin, Italy.
| |
Collapse
|
14
|
Galis F, Metz JA, van Alphen JJ. Development and Evolutionary Constraints in Animals. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2018. [DOI: 10.1146/annurev-ecolsys-110617-062339] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We review the evolutionary importance of developmental mechanisms in constraining evolutionary changes in animals—in other words, developmental constraints. We focus on hard constraints that can act on macroevolutionary timescales. In particular, we discuss the causes and evolutionary consequences of the ancient metazoan constraint that differentiated cells cannot divide and constraints against changes of phylotypic stages in vertebrates and other higher taxa. We conclude that in all cases these constraints are caused by complex and highly controlled global interactivity of development, the disturbance of which has grave consequences. Mutations that affect such global interactivity almost unavoidably have many deleterious pleiotropic effects, which will be strongly selected against and will lead to long-term evolutionary stasis. The discussed developmental constraints have pervasive consequences for evolution and critically restrict regeneration capacity and body plan evolution.
Collapse
Affiliation(s)
- Frietson Galis
- Naturalis Biodiversity Center, 2333 CR Leiden, The Netherlands
| | - Johan A.J. Metz
- Naturalis Biodiversity Center, 2333 CR Leiden, The Netherlands
- International Institute for Applied Systems Analysis, A-2361 Laxenburg, Austria
- Mathematical Institute, University of Leiden; 2333 CA Leiden, The Netherlands
| | - Jacques J.M. van Alphen
- Naturalis Biodiversity Center, 2333 CR Leiden, The Netherlands
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, 1090 GE Amsterdam, The Netherlands
| |
Collapse
|
15
|
Huising MO, Lee S, van der Meulen T. Evidence for a Neogenic Niche at the Periphery of Pancreatic Islets. Bioessays 2018; 40:e1800119. [PMID: 30264410 PMCID: PMC6570402 DOI: 10.1002/bies.201800119] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 09/01/2018] [Indexed: 02/06/2023]
Abstract
We recently discovered a novel subset of beta cells that resemble immature beta cells during pancreas development. We named these "virgin" beta cells as they do not stem from existing mature beta cells. Virgin beta cells are found exclusively at the islet periphery in areas that we therefore designated as the "neogenic niche." As beta cells are our only source of insulin, their loss leads to diabetes. Islets also contain glucagon-producing alpha cells and somatostatin-producing delta cells, that are important for glucose homeostasis and form a mantle surrounding the beta cell core. This 3D architecture is important and determines access to blood flow and innervation. We propose that the distinctive islet architecture may also play an important, but hitherto unappreciated role in generation of new endocrine cells, including beta cells. We discuss several predictions to further test the contribution of the neogenic niche to beta cell regeneration.
Collapse
Affiliation(s)
- Mark O. Huising
- Department of Neurobiology, Physiology & Behavior, College of Biological Sciences, University of California, Davis, CA 95616, USA
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, CA 95616, USA
| | - Sharon Lee
- Department of Neurobiology, Physiology & Behavior, College of Biological Sciences, University of California, Davis, CA 95616, USA
| | - Talitha van der Meulen
- Department of Neurobiology, Physiology & Behavior, College of Biological Sciences, University of California, Davis, CA 95616, USA
| |
Collapse
|
16
|
Addison M, Xu Q, Cayuso J, Wilkinson DG. Cell Identity Switching Regulated by Retinoic Acid Signaling Maintains Homogeneous Segments in the Hindbrain. Dev Cell 2018; 45:606-620.e3. [PMID: 29731343 PMCID: PMC5988564 DOI: 10.1016/j.devcel.2018.04.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 03/16/2018] [Accepted: 04/04/2018] [Indexed: 10/25/2022]
Abstract
The patterning of tissues to form subdivisions with distinct and homogeneous regional identity is potentially disrupted by cell intermingling. Transplantation studies suggest that homogeneous segmental identity in the hindbrain is maintained by identity switching of cells that intermingle into another segment. We show that switching occurs during normal development and is mediated by feedback between segment identity and the retinoic acid degrading enzymes, cyp26b1 and cyp26c1. egr2, which specifies the segmental identity of rhombomeres r3 and r5, underlies the lower expression level of cyp26b1 and cyp26c1 in r3 and r5 compared with r2, r4, and r6. Consequently, r3 or r5 cells that intermingle into adjacent segments encounter cells with higher cyp26b1/c1 expression, which we find is required for downregulation of egr2b expression. Furthermore, egr2b expression is regulated in r2, r4, and r6 by non-autonomous mechanisms that depend upon the number of neighbors that express egr2b. These findings reveal that a community regulation of retinoid signaling maintains homogeneous segmental identity.
Collapse
Affiliation(s)
- Megan Addison
- Neural Development Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Qiling Xu
- Neural Development Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Jordi Cayuso
- Neural Development Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - David G Wilkinson
- Neural Development Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| |
Collapse
|
17
|
Abstract
INTRODUCTION The etiology of diabetes is mainly attributed to insulin deficiency due to the lack of β cells (type 1), or to insulin resistance that eventually results in β cell dysfunction (type 2). Therefore, an ultimate cure for diabetes requires the ability to replace the lost insulin-secreting β cells. Strategies for regenerating β cells are under extensive investigation. AREAS COVERED Herein, the authors first summarize the mechanisms underlying embryonic β cell development and spontaneous adult β cell regeneration, which forms the basis for developing β cell regeneration strategies. Then the rationale and progress of each β cell regeneration strategy is reviewed. Current β cell regeneration strategies can be classified into two main categories: in vitro β cell regeneration using pluripotent stem cells and in vivo reprogramming of non-β cells into β cells. Each has its own advantages and disadvantages. EXPERT OPINION Regenerating β cells has shown its potential as a cure for the treatment of insulin-deficient diabetes. Much progress has been made, and β cell regeneration therapy is getting closer to a clinical reality. Nevertheless, more hurdles need to be overcome before any of the strategies suggested can be fully translated from bench to bedside.
Collapse
Affiliation(s)
- Shengli Dong
- Department of Biochemistry & Molecular Biology, Louisiana State University Health Science Center, New Orleans, Louisiana
| | - Hongju Wu
- Department of Medicine, Tulane University Health Science Center, New Orleans, Louisiana
| |
Collapse
|
18
|
Larsen HL, Martín-Coll L, Nielsen AV, Wright CVE, Trusina A, Kim YH, Grapin-Botton A. Stochastic priming and spatial cues orchestrate heterogeneous clonal contribution to mouse pancreas organogenesis. Nat Commun 2017; 8:605. [PMID: 28928395 PMCID: PMC5605525 DOI: 10.1038/s41467-017-00258-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 06/15/2017] [Indexed: 12/16/2022] Open
Abstract
Spatiotemporal balancing of cellular proliferation and differentiation is crucial for postnatal tissue homoeostasis and organogenesis. During embryonic development, pancreatic progenitors simultaneously proliferate and differentiate into the endocrine, ductal and acinar lineages. Using in vivo clonal analysis in the founder population of the pancreas here we reveal highly heterogeneous contribution of single progenitors to organ formation. While some progenitors are bona fide multipotent and contribute progeny to all major pancreatic cell lineages, we also identify numerous unipotent endocrine and ducto-endocrine bipotent clones. Single-cell transcriptional profiling at E9.5 reveals that endocrine-committed cells are molecularly distinct, whereas multipotent and bipotent progenitors do not exhibit different expression profiles. Clone size and composition support a probabilistic model of cell fate allocation and in silico simulations predict a transient wave of acinar differentiation around E11.5, while endocrine differentiation is proportionally decreased. Increased proliferative capacity of outer progenitors is further proposed to impact clonal expansion. The pancreas arises from a small population of cells but how individual cells contribute to organ formation is unclear. Here, the authors deconstruct pancreas organogenesis into clonal units, showing that single progenitors give rise to heterogeneous multi-lineage and endocrinogenic single-lineage clones.
Collapse
Affiliation(s)
- Hjalte List Larsen
- DanStem, University of Copenhagen, 3B Blegdamsvej, DK-2200, Copenhagen N, Denmark
| | - Laura Martín-Coll
- DanStem, University of Copenhagen, 3B Blegdamsvej, DK-2200, Copenhagen N, Denmark
| | | | - Christopher V E Wright
- Department of Cell & Developmental Biology, Vanderbilt University, Nashville, TN, 37232-0494, USA
| | - Ala Trusina
- Niels Bohr Institute, University of Copenhagen, 17 Blegdamsvej, DK-2200, Copenhagen N, Denmark
| | - Yung Hae Kim
- DanStem, University of Copenhagen, 3B Blegdamsvej, DK-2200, Copenhagen N, Denmark.
| | - Anne Grapin-Botton
- DanStem, University of Copenhagen, 3B Blegdamsvej, DK-2200, Copenhagen N, Denmark.
| |
Collapse
|
19
|
Jung N, Um J, Kim DY, Dubon MJ, Byeon Y, Kim D, Son Y, Park KS. Substance P preserves pancreatic β-cells in streptozotocin-induced type 1 diabetic mice. Biochem Biophys Res Commun 2017; 491:958-965. [PMID: 28754588 DOI: 10.1016/j.bbrc.2017.07.142] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 07/24/2017] [Indexed: 01/03/2023]
Abstract
Preservation of the pancreatic β-cell population is required for the development of therapies for diabetes, which is caused by a decrease in β-cells. Here, we demonstrate the antidiabetic effects of substance P (SP) in type 1 diabetes (T1D) mice induced with streptozotocin. SP enhanced the compensatory proliferation of β-cells in order to restore β-cells in response to acute injury induced by a single high-dose of streptozotocin. However, SP affected neither the basal proliferation of β-cells nor their apoptosis. In vitro studies by using the INS-1 pancreatic β-cell line showed that SP mediated the increase in the proliferation of β-cells via the activation of Akt. Chronic systemic treatment with SP restored the mass of β-cells and inhibited insulitis in T1D mice induced with multiple low-doses of streptozotocin. Therefore, systemic treatment with SP may be a promising therapeutic strategy for treating diabetes in patients with loss of functional β-cells.
Collapse
MESH Headings
- Acute Disease
- Animals
- Apoptosis/drug effects
- Cell Proliferation/drug effects
- Diabetes Mellitus, Experimental/chemically induced
- Diabetes Mellitus, Experimental/pathology
- Diabetes Mellitus, Experimental/prevention & control
- Diabetes Mellitus, Type 1/chemically induced
- Diabetes Mellitus, Type 1/pathology
- Diabetes Mellitus, Type 1/prevention & control
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Injections, Intraperitoneal
- Insulin-Secreting Cells/drug effects
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Inbred ICR
- Pancreatitis/chemically induced
- Pancreatitis/pathology
- Pancreatitis/prevention & control
- Streptozocin/administration & dosage
- Structure-Activity Relationship
- Substance P/pharmacology
Collapse
Affiliation(s)
- Nunggum Jung
- Graduate School of Biotechnology, Kyung Hee University, Yong in, 17104, South Korea
| | - Jihyun Um
- Graduate School of Biotechnology, Kyung Hee University, Yong in, 17104, South Korea
| | - Do Yeon Kim
- St. Peter's Hospital and R&D Center, Cell & Bio Inc., Seoul 06286, South Korea
| | - Maria Jose Dubon
- Graduate School of Biotechnology, Kyung Hee University, Yong in, 17104, South Korea
| | - Yeji Byeon
- Graduate School of Biotechnology, Kyung Hee University, Yong in, 17104, South Korea
| | - Dongjin Kim
- Graduate School of Biotechnology, Kyung Hee University, Yong in, 17104, South Korea
| | - Youngsook Son
- Graduate School of Biotechnology, Kyung Hee University, Yong in, 17104, South Korea.
| | - Ki-Sook Park
- East-West Medical Research Institute, Kyung Hee University, Seoul 02447, South Korea; College of Medicine, Kyung Hee University, Seoul 02447, South Korea.
| |
Collapse
|
20
|
van der Meulen T, Mawla AM, DiGruccio MR, Adams MW, Nies V, Dólleman S, Liu S, Ackermann AM, Cáceres E, Hunter AE, Kaestner KH, Donaldson CJ, Huising MO. Virgin Beta Cells Persist throughout Life at a Neogenic Niche within Pancreatic Islets. Cell Metab 2017; 25:911-926.e6. [PMID: 28380380 PMCID: PMC8586897 DOI: 10.1016/j.cmet.2017.03.017] [Citation(s) in RCA: 160] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 02/14/2017] [Accepted: 03/21/2017] [Indexed: 12/21/2022]
Abstract
Postnatal maintenance or regeneration of pancreatic beta cells is considered to occur exclusively via the replication of existing beta cells, but clinically meaningful restoration of human beta cell mass by proliferation has never been achieved. We discovered a population of immature beta cells that is present throughout life and forms from non-beta precursors at a specialized micro-environment or "neogenic niche" at the islet periphery. These cells express insulin, but lack other key beta cell markers, and are transcriptionally immature, incapable of sensing glucose, and unable to support calcium influx. They constitute an intermediate stage in the transdifferentiation of alpha cells to cells that are functionally indistinguishable from conventional beta cells. We thus identified a lifelong source of new beta cells at a specialized site within healthy islets. By comparing co-existing immature and mature beta cells within healthy islets, we stand to learn how to mature insulin-expressing cells into functional beta cells.
Collapse
Affiliation(s)
- Talitha van der Meulen
- Department of Neurobiology, Physiology, and Behavior, College of Biological Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Alex M Mawla
- Department of Neurobiology, Physiology, and Behavior, College of Biological Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Michael R DiGruccio
- Department of Neurobiology, Physiology, and Behavior, College of Biological Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Michael W Adams
- Waitt Advanced Biophotonics Center, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Vera Nies
- Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Sophie Dólleman
- Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Siming Liu
- Department of Neurobiology, Physiology, and Behavior, College of Biological Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Amanda M Ackermann
- Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Elena Cáceres
- Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Anna E Hunter
- Department of Neurobiology, Physiology, and Behavior, College of Biological Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Klaus H Kaestner
- Department of Genetics and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Cynthia J Donaldson
- Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Mark O Huising
- Department of Neurobiology, Physiology, and Behavior, College of Biological Sciences, University of California, Davis, Davis, CA 95616, USA; Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, Davis, CA 95616, USA.
| |
Collapse
|
21
|
Schmitner N, Kohno K, Meyer D. ptf1a+ , ela3l- cells are developmentally maintained progenitors for exocrine regeneration following extreme loss of acinar cells in zebrafish larvae. Dis Model Mech 2017; 10:307-321. [PMID: 28138096 PMCID: PMC5374315 DOI: 10.1242/dmm.026633] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 01/23/2017] [Indexed: 12/12/2022] Open
Abstract
The exocrine pancreas displays a significant capacity for regeneration and renewal. In humans and mammalian model systems, the partial loss of exocrine tissue, such as after acute pancreatitis or partial pancreatectomy induces rapid recovery via expansion of surviving acinar cells. In mouse it was further found that an almost complete removal of acinar cells initiates regeneration from a currently not well-defined progenitor pool. Here, we used the zebrafish as an alternative model to study cellular mechanisms of exocrine regeneration following an almost complete removal of acinar cells. We introduced and validated two novel transgenic approaches for genetically encoded conditional cell ablation in the zebrafish, either by caspase-8-induced apoptosis or by rendering cells sensitive to diphtheria toxin. By using the ela3l promoter for exocrine-specific expression, we show that both approaches allowed cell-type-specific removal of >95% of acinar tissue in larval and adult zebrafish without causing any signs of unspecific side effects. We find that zebrafish larvae are able to recover from a virtually complete acinar tissue ablation within 2 weeks. Using short-term lineage-tracing experiments and EdU incorporation assays, we exclude duct-associated Notch-responsive cells as the source of regeneration. Rather, a rare population of slowly dividing ela3l-negative cells expressing ptf1a and CPA was identified as the origin of the newly forming exocrine cells. Cells are actively maintained, as revealed by a constant number of these cells at different larval stages and after repeated cell ablation. These cells establish ela3l expression about 4-6 days after ablation without signs of increased proliferation in between. With onset of ela3l expression, cells initiate rapid proliferation, leading to fast expansion of the ela3l-positive population. Finally, we show that this proliferation is blocked by overexpression of the Wnt-signaling antagonist dkk1b In conclusion, we show a conserved requirement for Wnt signaling in exocrine tissue expansion and reveal a potential novel progenitor or stem cell population as a source for exocrine neogenesis after complete loss of acinar cells.
Collapse
Affiliation(s)
- Nicole Schmitner
- Institute for Molecular Biology, CMBI, University of Innsbruck, 6020 Innsbruck Austria
| | - Kenji Kohno
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0101, Japan
| | - Dirk Meyer
- Institute for Molecular Biology, CMBI, University of Innsbruck, 6020 Innsbruck Austria
| |
Collapse
|
22
|
Wollny D, Zhao S, Everlien I, Lun X, Brunken J, Brüne D, Ziebell F, Tabansky I, Weichert W, Marciniak-Czochra A, Martin-Villalba A. Single-Cell Analysis Uncovers Clonal Acinar Cell Heterogeneity in the Adult Pancreas. Dev Cell 2016; 39:289-301. [DOI: 10.1016/j.devcel.2016.10.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 09/30/2016] [Accepted: 10/03/2016] [Indexed: 01/09/2023]
|
23
|
Assefa Z, Akbib S, Lavens A, Stangé G, Ling Z, Hellemans KH, Pipeleers D. Direct effect of glucocorticoids on glucose-activated adult rat β-cells increases their cell number and their functional mass for transplantation. Am J Physiol Endocrinol Metab 2016; 311:E698-E705. [PMID: 27555297 DOI: 10.1152/ajpendo.00070.2016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 08/17/2016] [Indexed: 01/02/2023]
Abstract
Compounds that increase β-cell number can serve as β-cell replacement therapies in diabetes. In vitro studies have identified several agents that can activate DNA synthesis in primary β-cells but only in small percentages of cells and without demonstration of increases in cell number. We used whole well multiparameter imaging to first screen a library of 1,280 compounds for their ability to recruit adult rat β-cells into DNA synthesis and then assessed influences of stimulatory agents on the number of living cells. The four compounds with highest β-cell recruitment were glucocorticoid (GC) receptor ligands. The GC effect occurred in glucose-activated β-cells and was associated with increased glucose utilization and oxidation. Hydrocortisone and methylprednisolone almost doubled the number of β-cells in 2 wk. The expanded cell population provided an increased functional β-cell mass for transplantation in diabetic animals. These effects are age dependent; they did not occur in neonatal rat β-cells, where GC exposure suppressed basal replication and was cytotoxic. We concluded that GCs can induce the replication of adult rat β-cells through a direct action, with intercellular differences in responsiveness that have been related to differences in glucose activation and in age. These influences can explain variability in GC-induced activation of DNA synthesis in rat and human β-cells. Our study also demonstrated that β-cells can be expanded in vitro to increase the size of metabolically adequate grafts.
Collapse
Affiliation(s)
- Zerihun Assefa
- Diabetes Research Center, Brussels Free University-VUB, University Hospital Brussels, and Center for Beta Cell Therapy, Brussels, Belgium
| | - Sarah Akbib
- Diabetes Research Center, Brussels Free University-VUB, University Hospital Brussels, and Center for Beta Cell Therapy, Brussels, Belgium
| | - Astrid Lavens
- Diabetes Research Center, Brussels Free University-VUB, University Hospital Brussels, and Center for Beta Cell Therapy, Brussels, Belgium
| | - Geert Stangé
- Diabetes Research Center, Brussels Free University-VUB, University Hospital Brussels, and Center for Beta Cell Therapy, Brussels, Belgium
| | - Zhidong Ling
- Diabetes Research Center, Brussels Free University-VUB, University Hospital Brussels, and Center for Beta Cell Therapy, Brussels, Belgium
| | - Karine H Hellemans
- Diabetes Research Center, Brussels Free University-VUB, University Hospital Brussels, and Center for Beta Cell Therapy, Brussels, Belgium
| | - Daniel Pipeleers
- Diabetes Research Center, Brussels Free University-VUB, University Hospital Brussels, and Center for Beta Cell Therapy, Brussels, Belgium
| |
Collapse
|
24
|
Prasadan K, Shiota C, Xiangwei X, Ricks D, Fusco J, Gittes G. A synopsis of factors regulating beta cell development and beta cell mass. Cell Mol Life Sci 2016; 73:3623-37. [PMID: 27105622 PMCID: PMC5002366 DOI: 10.1007/s00018-016-2231-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 03/24/2016] [Accepted: 04/14/2016] [Indexed: 12/29/2022]
Abstract
The insulin-secreting beta cells in the endocrine pancreas regulate blood glucose levels, and loss of functional beta cells leads to insulin deficiency, hyperglycemia (high blood glucose) and diabetes mellitus. Current treatment strategies for type-1 (autoimmune) diabetes are islet transplantation, which has significant risks and limitations, or normalization of blood glucose with insulin injections, which is clearly not ideal. The type-1 patients can lack insulin counter-regulatory mechanism; therefore, hypoglycemia is a potential risk. Hence, a cell-based therapy offers a better alternative for the treatment of diabetes. Past research was focused on attempting to generate replacement beta cells from stem cells; however, recently there has been an increasing interest in identifying mechanisms that will lead to the conversion of pre-existing differentiated endocrine cells into beta cells. The goal of this review is to provide an overview of several of the key factors that regulate new beta cell formation (neogenesis) and beta cell proliferation.
Collapse
Affiliation(s)
- Krishna Prasadan
- Rangos Research Center, Children's Hospital of University of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA
| | - Chiyo Shiota
- Rangos Research Center, Children's Hospital of University of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA
| | - Xiao Xiangwei
- Rangos Research Center, Children's Hospital of University of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA
| | - David Ricks
- Rangos Research Center, Children's Hospital of University of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA
| | - Joseph Fusco
- Rangos Research Center, Children's Hospital of University of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA
| | - George Gittes
- Rangos Research Center, Children's Hospital of University of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA.
| |
Collapse
|
25
|
Shamblott MJ, O’Driscoll ML, Gomez DL, McGuire DL. Neurogenin 3 is regulated by neurotrophic tyrosine kinase receptor type 2 (TRKB) signaling in the adult human exocrine pancreas. Cell Commun Signal 2016; 14:23. [PMID: 27659207 PMCID: PMC5034529 DOI: 10.1186/s12964-016-0146-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 09/14/2016] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Reports of exocrine-to-endocrine reprogramming through expression or stabilization of the transcription factor neurogenin 3 (NGN3) have generated renewed interest in harnessing pancreatic plasticity for therapeutic applications. NGN3 is expressed by a population of endocrine progenitor cells that give rise exclusively to hormone-secreting cells within pancreatic islets and is necessary and sufficient for endocrine differentiation during development. In the adult human pancreas, NGN3 is expressed by dedifferentiating exocrine cells with a phenotype resembling endocrine progenitor cells and the capacity for endocrine differentiation in vitro. Neurotrophic tyrosine kinase receptor type 2 (TRKB), which regulates neuronal cell survival, differentiation and plasticity, was identified as highly overexpressed in the NGN3 positive cell transcriptome compared to NGN3 negative exocrine cells. This study was designed to determine if NGN3 is regulated by TRKB signaling in the adult human exocrine pancreas. METHODS Transcriptome analysis, quantitative reverse transcriptase polymerase chain reaction (RTPCR) and immunochemistry were used to identify TRKB isoform expression in primary cultures of human islet-depleted exocrine tissue and human cadaveric pancreas biopsies. The effects of pharmacological modulation of TRKB signaling on the expression of NGN3 were assessed by Student's t-test and ANOVA. RESULTS Approximately 30 % of cultured exocrine cells and 95 % of NGN3+ cells express TRKB on their cell surface. Transcriptome-based exon splicing analyses, isoform-specific quantitative RTPCR and immunochemical staining demonstrate that TRKB-T1, which lacks a tyrosine kinase domain, is the predominant isoform expressed in cultured exocrine tissue and is expressed in histologically normal cadaveric pancreas biopsies. Pharmacological inhibition of TRKB significantly decreased the percentage of NGN3+ cells, while a TRKB agonist significantly increased this percentage. Inhibition of protein kinase B (AKT) blocked the effect of the TRKB agonist, while inhibition of tyrosine kinase had no effect. Modulation of TRKB and AKT signaling did not significantly affect the level of NGN3 mRNA. CONCLUSIONS In the adult human exocrine pancreas, TRKB-T1 positively regulates NGN3 independent of effects on NGN3 transcription. Targeting mechanisms controlling the NGN3+ cell population size and endocrine cell fate commitment represent a potential new approach to understand pancreas pathobiology and means whereby cell populations could be expanded for therapeutic purposes.
Collapse
Affiliation(s)
- Michael J. Shamblott
- Department of Pediatrics, Children’s Research Institute, University of South Florida Morsani College of Medicine, 601 4th St. South, CRI 3005, St. Petersburg, FL 33701 USA
- Morphogenesis, Inc, 4613 N. Clark Ave, Tampa, FL 33614 USA
| | - Marci L. O’Driscoll
- Department of Pediatrics, Children’s Research Institute, University of South Florida Morsani College of Medicine, 601 4th St. South, CRI 3005, St. Petersburg, FL 33701 USA
| | - Danielle L. Gomez
- Department of Pediatrics, Children’s Research Institute, University of South Florida Morsani College of Medicine, 601 4th St. South, CRI 3005, St. Petersburg, FL 33701 USA
| | - Dustin L. McGuire
- Department of Pediatrics, Children’s Research Institute, University of South Florida Morsani College of Medicine, 601 4th St. South, CRI 3005, St. Petersburg, FL 33701 USA
| |
Collapse
|
26
|
Cigliola V, Thorel F, Chera S, Herrera PL. Stress-induced adaptive islet cell identity changes. Diabetes Obes Metab 2016; 18 Suppl 1:87-96. [PMID: 27615136 PMCID: PMC5021189 DOI: 10.1111/dom.12726] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 04/22/2016] [Indexed: 12/12/2022]
Abstract
The different forms of diabetes mellitus differ in their pathogenesis but, ultimately, they are all characterized by progressive islet β-cell loss. Restoring the β-cell mass is therefore a major goal for future therapeutic approaches. The number of β-cells found at birth is determined by proliferation and differentiation of pancreatic progenitor cells, and it has been considered to remain mostly unchanged throughout adult life. Recent studies in mice have revealed an unexpected plasticity in islet endocrine cells in response to stress; under certain conditions, islet non-β-cells have the potential to reprogram into insulin producers, thus contributing to restore the β-cell mass. Here, we discuss the latest findings on pancreas and islet cell plasticity upon physiological, pathological and experimental conditions of stress. Understanding the mechanisms involved in cell reprogramming in these models will allow the development of new strategies for the treatment of diabetes, by exploiting the intrinsic regeneration capacity of the pancreas.
Collapse
Affiliation(s)
- V Cigliola
- Department of Genetic Medicine and Development, Faculty of Medicine, Institute of Genetics and Genomics in Geneva (iGE3), and Centre facultaire du diabète, University of Geneva, Geneva, Switzerland
| | - F Thorel
- Department of Genetic Medicine and Development, Faculty of Medicine, Institute of Genetics and Genomics in Geneva (iGE3), and Centre facultaire du diabète, University of Geneva, Geneva, Switzerland
| | - S Chera
- Department of Clinical Science, Faculty of Medicine and Dentistry, University of Bergen, Bergen, Norway
| | - P L Herrera
- Department of Genetic Medicine and Development, Faculty of Medicine, Institute of Genetics and Genomics in Geneva (iGE3), and Centre facultaire du diabète, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
27
|
Klochendler A, Caspi I, Corem N, Moran M, Friedlich O, Elgavish S, Nevo Y, Helman A, Glaser B, Eden A, Itzkovitz S, Dor Y. The Genetic Program of Pancreatic β-Cell Replication In Vivo. Diabetes 2016; 65:2081-93. [PMID: 26993067 PMCID: PMC4915587 DOI: 10.2337/db16-0003] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 03/08/2016] [Indexed: 01/01/2023]
Abstract
The molecular program underlying infrequent replication of pancreatic β-cells remains largely inaccessible. Using transgenic mice expressing green fluorescent protein in cycling cells, we sorted live, replicating β-cells and determined their transcriptome. Replicating β-cells upregulate hundreds of proliferation-related genes, along with many novel putative cell cycle components. Strikingly, genes involved in β-cell functions, namely, glucose sensing and insulin secretion, were repressed. Further studies using single-molecule RNA in situ hybridization revealed that in fact, replicating β-cells double the amount of RNA for most genes, but this upregulation excludes genes involved in β-cell function. These data suggest that the quiescence-proliferation transition involves global amplification of gene expression, except for a subset of tissue-specific genes, which are "left behind" and whose relative mRNA amount decreases. Our work provides a unique resource for the study of replicating β-cells in vivo.
Collapse
Affiliation(s)
- Agnes Klochendler
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Inbal Caspi
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Noa Corem
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Maya Moran
- Department of Cell and Developmental Biology, Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Oriel Friedlich
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Sharona Elgavish
- Info-CORE, Bioinformatics Unit of the I-CORE Computation Center, and Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Yuval Nevo
- Info-CORE, Bioinformatics Unit of the I-CORE Computation Center, and Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Aharon Helman
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Benjamin Glaser
- Endocrinology and Metabolism Service, Department of Internal Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Amir Eden
- Department of Cell and Developmental Biology, Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shalev Itzkovitz
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Yuval Dor
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| |
Collapse
|
28
|
STAT3 modulates β-cell cycling in injured mouse pancreas and protects against DNA damage. Cell Death Dis 2016; 7:e2272. [PMID: 27336716 PMCID: PMC5143397 DOI: 10.1038/cddis.2016.171] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 05/02/2016] [Accepted: 05/03/2016] [Indexed: 12/22/2022]
Abstract
Partial pancreatic duct ligation (PDL) of mouse pancreas induces a doubling of the β-cell mass mainly through proliferation of pre-existing and newly formed β-cells. The molecular mechanism governing this process is still largely unknown. Given the inflammatory nature of PDL and inflammation-induced signaling via the signal transducer and activator of transcription 3 (STAT3), the activation and the role of STAT3 in PDL-induced β-cell proliferation were investigated. Duct ligation stimulates the expression of several cytokines that can act as ligands inducing STAT3 signaling and phosphorylation in β-cells. β-Cell cycling increased by conditional β-cell-specific Stat3 knockout and decreased by STAT3 activation through administration of interleukin-6. In addition, the level of DNA damage in β-cells of PDL pancreas increased after deletion of Stat3. These data indicate a role for STAT3 in maintaining a steady state in the β-cell, by modulating its cell cycle and protection from DNA damage.
Collapse
|
29
|
Cox AR, Lam CJ, Rankin MM, King KA, Chen P, Martinez R, Li C, Kushner JA. Extreme obesity induces massive beta cell expansion in mice through self-renewal and does not alter the beta cell lineage. Diabetologia 2016; 59:1231-41. [PMID: 27003683 PMCID: PMC4869735 DOI: 10.1007/s00125-016-3922-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 02/22/2016] [Indexed: 12/11/2022]
Abstract
AIMS/HYPOTHESIS Understanding the developmental biology of beta cell regeneration is critical for developing new diabetes therapies. Obesity is a potent but poorly understood stimulus for beta cell expansion. Current models of obesity are complicated by developmental compensation or concurrent diabetes, limiting their usefulness for identifying the lineage mechanism(s) of beta cell expansion. We aimed to determine whether acute inducible obesity stimulates beta cell expansion and to determine the lineage mechanism of beta cell growth in obesity. METHODS We created whole-body tamoxifen-inducible leptin receptor (LepR)-deficient mice (Ubc-Cre (ERT2) LepR (loxP/loxP) ) as a novel model of acute obesity. Beta cell mass and proliferation were quantified after short-term LepR deletion. Clonal analysis of beta cell expansion using the Brainbow2.1 reporter was performed 6 months post tamoxifen initiation. RESULTS LepR deficiency induced a doubling of body mass within 3 weeks, with moderate glucose intolerance (unlike typical LepR mutant mice [db/db], which have frank diabetes). Beta cell mass expanded threefold through increased beta cell proliferation, without evidence for contribution from specialised progenitors or stem cells (via sequential thymidine labelling and Brainbow2.1 reporter). Thus, self-renewal is the primary lineage mechanism in obesity-induced beta cell expansion. However, even the rapid beta cell proliferation could not exceed the restrictions of the replication refractory period. CONCLUSIONS/INTERPRETATION In summary, we created a novel model of inducible obesity demonstrating that even extreme metabolic demand does not alter beta cell lineage.
Collapse
Affiliation(s)
- Aaron R Cox
- Section of Pediatric Diabetes and Endocrinology, McNair Medical Institute, Baylor College of Medicine, Houston, TX, 77030, USA
- Diabetes and Endocrinology, Feigin Center, Texas Children's Hospital, Houston, TX, USA
| | - Carol J Lam
- Section of Pediatric Diabetes and Endocrinology, McNair Medical Institute, Baylor College of Medicine, Houston, TX, 77030, USA
- Diabetes and Endocrinology, Feigin Center, Texas Children's Hospital, Houston, TX, USA
| | - Matthew M Rankin
- Division of Endocrinology and Diabetes, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kourtney A King
- Division of Endocrinology and Diabetes, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Pan Chen
- Division of Endocrinology and Diabetes, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ramon Martinez
- Section of Pediatric Diabetes and Endocrinology, McNair Medical Institute, Baylor College of Medicine, Houston, TX, 77030, USA
- Diabetes and Endocrinology, Feigin Center, Texas Children's Hospital, Houston, TX, USA
| | - Changhong Li
- Division of Endocrinology and Diabetes, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jake A Kushner
- Section of Pediatric Diabetes and Endocrinology, McNair Medical Institute, Baylor College of Medicine, Houston, TX, 77030, USA.
- Diabetes and Endocrinology, Feigin Center, Texas Children's Hospital, Houston, TX, USA.
- Diabetes and Endocrinology Service, Texas Children's Hospital, Houston, TX, USA.
| |
Collapse
|
30
|
A Subpopulation of Label-Retaining Cells of the Kidney Papilla Regenerates Injured Kidney Medullary Tubules. Stem Cell Reports 2016; 6:757-771. [PMID: 27117784 PMCID: PMC4939828 DOI: 10.1016/j.stemcr.2016.03.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 03/22/2016] [Accepted: 03/23/2016] [Indexed: 12/17/2022] Open
Abstract
To determine whether adult kidney papillary label-retaining cells (pLRCs) are specialized precursors, we analyzed their transcription profile. Among genes overexpressed in pLRCs, we selected candidate genes to perform qPCR and immunodetection of their encoded proteins. We found that Zfyve27, which encodes protrudin, identified a subpopulation of pLRCs. With Zfyve27-CreERT2 transgenic and reporter mice we generated bitransgenic animals and performed cell-lineage analysis. Post tamoxifen, Zfyve27-CreERT2 marked cells preferentially located in the upper part of the papilla. These cells were low cycling and did not generate progeny even after long-term observation, thus they did not appear to contribute to kidney homeostasis. However, after kidney injury, but only if severe, they activated a program of proliferation, migration, and morphogenesis generating multiple and long tubular segments. Remarkably these regenerated tubules were located preferentially in the kidney medulla, indicating that repair of injury in the kidney is regionally specified. These results suggest that different parts of the kidney have different progenitor cell pools.
Collapse
|
31
|
Jiang FX, Morahan G. Multipotent pancreas progenitors: Inconclusive but pivotal topic. World J Stem Cells 2015; 7:1251-1261. [PMID: 26730269 PMCID: PMC4691693 DOI: 10.4252/wjsc.v7.i11.1251] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 08/20/2015] [Accepted: 11/11/2015] [Indexed: 02/07/2023] Open
Abstract
The establishment of multipotent pancreas progenitors (MPP) should have a significant impact not only on the ontology of the pancreas, but also for the translational research of glucose-responding endocrine β-cells. Deficiency of the latter may lead to the pandemic type 1 or type 2 diabetes mellitus, a metabolic disorder. An ideal treatment of which would potentially be the replacement of destroyed or failed β-cells, by restoring function of endogenous pancreatic endocrine cells or by transplantation of donor islets or in vitro generated insulin-secreting cells. Thus, considerable research efforts have been devoted to identify MPP candidates in the pre- and post-natal pancreas for the endogenous neogenesis or regeneration of endocrine insulin-secreting cells. In order to advance this inconclusive but critical field, we here review the emerging concepts, recent literature and newest developments of potential MPP and propose measures that would assist its forward progression.
Collapse
|
32
|
Sharma RB, O'Donnell AC, Stamateris RE, Ha B, McCloskey KM, Reynolds PR, Arvan P, Alonso LC. Insulin demand regulates β cell number via the unfolded protein response. J Clin Invest 2015; 125:3831-46. [PMID: 26389675 DOI: 10.1172/jci79264] [Citation(s) in RCA: 163] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 08/13/2015] [Indexed: 12/11/2022] Open
Abstract
Although stem cell populations mediate regeneration of rapid turnover tissues, such as skin, blood, and gut, a stem cell reservoir has not been identified for some slower turnover tissues, such as the pancreatic islet. Despite lacking identifiable stem cells, murine pancreatic β cell number expands in response to an increase in insulin demand. Lineage tracing shows that new β cells are generated from proliferation of mature, differentiated β cells; however, the mechanism by which these mature cells sense systemic insulin demand and initiate a proliferative response remains unknown. Here, we identified the β cell unfolded protein response (UPR), which senses insulin production, as a regulator of β cell proliferation. Using genetic and physiologic models, we determined that among the population of β cells, those with an active UPR are more likely to proliferate. Moreover, subthreshold endoplasmic reticulum stress (ER stress) drove insulin demand-induced β cell proliferation, through activation of ATF6. We also confirmed that the UPR regulates proliferation of human β cells, suggesting that therapeutic UPR modulation has potential to expand β cell mass in people at risk for diabetes. Together, this work defines a stem cell-independent model of tissue homeostasis, in which differentiated secretory cells use the UPR sensor to adapt organ size to meet demand.
Collapse
|
33
|
Gomez DL, O’Driscoll M, Sheets TP, Hruban RH, Oberholzer J, McGarrigle JJ, Shamblott MJ. Neurogenin 3 Expressing Cells in the Human Exocrine Pancreas Have the Capacity for Endocrine Cell Fate. PLoS One 2015; 10:e0133862. [PMID: 26288179 PMCID: PMC4545947 DOI: 10.1371/journal.pone.0133862] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 07/02/2015] [Indexed: 01/01/2023] Open
Abstract
Neurogenin 3 (NGN3) is necessary and sufficient for endocrine differentiation during pancreatic development and is expressed by a population of progenitor cells that give rise exclusively to hormone-secreting cells within islets. NGN3 protein can be detected in the adult rodent pancreas only following certain types of injury, when it is transiently expressed by exocrine cells undergoing reprogramming to an endocrine cell fate. Here, NGN3 protein can be detected in 2% of acinar and duct cells in living biopsies of histologically normal adult human pancreata and 10% in cadaveric biopsies of organ donor pancreata. The percentage and total number of NGN3+ cells increase during culture without evidence of proliferation or selective cell death. Isolation of highly purified and viable NGN3+ cell populations can be achieved based on coexpression of the cell surface glycoprotein CD133. Transcriptome and targeted expression analyses of isolated CD133+ / NGN3+ cells indicate that they are distinct from surrounding exocrine tissue with respect to expression phenotype and Notch signaling activity, but retain high level mRNA expression of genes indicative of acinar and duct cell function. NGN3+ cells have an mRNA expression profile that resembles that of mouse early endocrine progenitor cells. During in vitro differentiation, NGN3+ cells express genes in a pattern characteristic of endocrine development and result in cells that resemble beta cells on the basis of coexpression of insulin C-peptide, chromogranin A and pancreatic and duodenal homeobox 1. NGN3 expression in the adult human exocrine pancreas marks a dedifferentiating cell population with the capacity to take on an endocrine cell fate. These cells represent a potential source for the treatment of diabetes either through ex vivo manipulation, or in vivo by targeting mechanisms controlling their population size and endocrine cell fate commitment.
Collapse
Affiliation(s)
- Danielle L. Gomez
- Children’s Research Institute, Department of Pediatrics, University of South Florida Morsani College of Medicine, St. Petersburg, FL, United States of America
| | - Marci O’Driscoll
- Children’s Research Institute, Department of Pediatrics, University of South Florida Morsani College of Medicine, St. Petersburg, FL, United States of America
| | - Timothy P. Sheets
- Department of Gynecology and Obstetrics, John Hopkins University, Baltimore, MD, United States of America
| | - Ralph H. Hruban
- Departments of Pathology and Oncology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Jose Oberholzer
- Department of Surgery, University of Illinois at Chicago, Chicago, IL, United States of America
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, United States of America
| | - James J. McGarrigle
- Department of Surgery, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Michael J. Shamblott
- Children’s Research Institute, Department of Pediatrics, University of South Florida Morsani College of Medicine, St. Petersburg, FL, United States of America
- Department of Gynecology and Obstetrics, John Hopkins University, Baltimore, MD, United States of America
- * E-mail:
| |
Collapse
|
34
|
Abstract
Understanding the intrinsic potential for renewal and regeneration within a tissue is critical for the rational design of reparative strategies. Maintenance of the salivary glands is widely thought to depend on the differentiation of stem cells. However, there is also new evidence that homeostasis of the salivary glands, like that of the liver and pancreas, relies on self-renewal of differentiated cells rather than a stem cell pool. Here, we review the evidence for both modes of turnover and consider the implications for the process of regeneration. We propose that the view of salivary glands as postmitotic and dependent on stem cells for renewal be revised to reflect the proliferative activity of acinar cells and their role in salivary gland homeostasis.
Collapse
Affiliation(s)
- M H Aure
- Center for Oral Biology, Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - S Arany
- Center for Oral Biology, Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - C E Ovitt
- Center for Oral Biology, Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| |
Collapse
|
35
|
De Groef S, Leuckx G, Van Gassen N, Staels W, Cai Y, Yuchi Y, Coppens V, De Leu N, Heremans Y, Baeyens L, Van de Casteele M, Heimberg H. Surgical Injury to the Mouse Pancreas through Ligation of the Pancreatic Duct as a Model for Endocrine and Exocrine Reprogramming and Proliferation. J Vis Exp 2015:e52765. [PMID: 26273954 DOI: 10.3791/52765] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Expansion of pancreatic beta cells in vivo or ex vivo, or generation of beta cells by differentiation from an embryonic or adult stem cell, can provide new expandable sources of beta cells to alleviate the donor scarcity in human islet transplantation as therapy for diabetes. Although recent advances have been made towards this aim, mechanisms that regulate beta cell expansion and differentiation from a stem/progenitor cell remain to be characterized. Here, we describe a protocol for an injury model in the adult mouse pancreas that can function as a tool to study mechanisms of tissue remodeling and beta cell proliferation and differentiation. Partial duct ligation (PDL) is an experimentally induced injury of the rodent pancreas involving surgical ligation of the main pancreatic duct resulting in an obstruction of drainage of exocrine products out of the tail region of the pancreas. The inflicted damage induces acinar atrophy, immune cell infiltration and severe tissue remodeling. We have previously reported the activation of Neurogenin (Ngn) 3 expressing endogenous progenitor-like cells and an increase in beta cell proliferation after PDL. Therefore, PDL provides a basis to study signals involved in beta cell dynamics and the properties of an endocrine progenitor in adult pancreas. Since, it still remains largely unclear, which factors and pathways contribute to beta cell neogenesis and proliferation in PDL, a standardized protocol for PDL will allow for comparison across laboratories.
Collapse
Affiliation(s)
| | - Gunter Leuckx
- Diabetes Research Center, Vrije Universiteit Brussel
| | | | - Willem Staels
- Diabetes Research Center, Vrije Universiteit Brussel
| | - Ying Cai
- Diabetes Research Center, Vrije Universiteit Brussel
| | - Yixing Yuchi
- Diabetes Research Center, Vrije Universiteit Brussel
| | | | - Nico De Leu
- Diabetes Research Center, Vrije Universiteit Brussel
| | - Yves Heremans
- Diabetes Research Center, Vrije Universiteit Brussel
| | - Luc Baeyens
- Diabetes Research Center, Vrije Universiteit Brussel
| | | | | |
Collapse
|
36
|
Comparisons of Differentiation Potential in Human Mesenchymal Stem Cells from Wharton's Jelly, Bone Marrow, and Pancreatic Tissues. Stem Cells Int 2015; 2015:306158. [PMID: 26294917 PMCID: PMC4532960 DOI: 10.1155/2015/306158] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 01/25/2015] [Accepted: 03/23/2015] [Indexed: 01/08/2023] Open
Abstract
Background. Type 1 diabetes mellitus results from autoimmune destruction of β-cells. Insulin-producing cells (IPCs) differentiated from mesenchymal stem cells (MSCs) in human tissues decrease blood glucose levels and improve survival in diabetic rats. We compared the differential ability and the curative effect of IPCs from three types of human tissue to determine the ideal source of cell therapy for diabetes. Methods. We induced MSCs from Wharton's jelly (WJ), bone marrow (BM), and surgically resected pancreatic tissue to differentiate into IPCs. The in vitro differential function of these IPCs was compared by insulin-to-DNA ratios and C-peptide levels after glucose challenge. In vivo curative effects of IPCs transplanted into diabetic rats were monitored by weekly blood glucose measurement. Results. WJ-MSCs showed better proliferation and differentiation potential than pancreatic MSCs and BM-MSCs. In vivo, WJ-IPCs significantly reduced blood glucose levels at first week after transplantation and maintained significant decrease till week 8. BM-IPCs reduced blood glucose levels at first week but gradually increased since week 3. In resected pancreas-IPCs group, blood glucose levels were significantly reduced till two weeks after transplantation and gradually increased since week 4. Conclusion. WJ-MSCs are the most promising stem cell source for β-cell regeneration in diabetes treatment.
Collapse
|
37
|
Márquez-Aguirre AL, Canales-Aguirre AA, Padilla-Camberos E, Esquivel-Solis H, Díaz-Martínez NE. Development of the endocrine pancreas and novel strategies for β-cell mass restoration and diabetes therapy. ACTA ACUST UNITED AC 2015; 48:765-76. [PMID: 26176316 PMCID: PMC4568803 DOI: 10.1590/1414-431x20154363] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Accepted: 03/22/2015] [Indexed: 12/14/2022]
Abstract
Diabetes mellitus represents a serious public health problem owing to its global
prevalence in the last decade. The causes of this metabolic disease include
dysfunction and/or insufficient number of β cells. Existing diabetes mellitus
treatments do not reverse or control the disease. Therefore, β-cell mass restoration
might be a promising treatment. Several restoration approaches have been developed:
inducing the proliferation of remaining insulin-producing cells, de
novo islet formation from pancreatic progenitor cells (neogenesis), and
converting non-β cells within the pancreas to β cells (transdifferentiation) are the
most direct, simple, and least invasive ways to increase β-cell mass. However, their
clinical significance is yet to be determined. Hypothetically, β cells or islet
transplantation methods might be curative strategies for diabetes mellitus; however,
the scarcity of donors limits the clinical application of these approaches. Thus,
alternative cell sources for β-cell replacement could include embryonic stem cells,
induced pluripotent stem cells, and mesenchymal stem cells. However, most
differentiated cells obtained using these techniques are functionally immature and
show poor glucose-stimulated insulin secretion compared with native β cells.
Currently, their clinical use is still hampered by ethical issues and the risk of
tumor development post transplantation. In this review, we briefly summarize the
current knowledge of mouse pancreas organogenesis, morphogenesis, and maturation,
including the molecular mechanisms involved. We then discuss two possible approaches
of β-cell mass restoration for diabetes mellitus therapy: β-cell regeneration and
β-cell replacement. We critically analyze each strategy with respect to the
accessibility of the cells, potential risk to patients, and possible clinical
outcomes.
Collapse
Affiliation(s)
- A L Márquez-Aguirre
- Medical and Pharmaceutical Biotechnology, Center for Research and Assistance in Technology and Design of the State of Jalisco, A.C., Guadalajara, Jalisco, MX
| | - A A Canales-Aguirre
- Medical and Pharmaceutical Biotechnology, Center for Research and Assistance in Technology and Design of the State of Jalisco, A.C., Guadalajara, Jalisco, MX
| | - E Padilla-Camberos
- Medical and Pharmaceutical Biotechnology, Center for Research and Assistance in Technology and Design of the State of Jalisco, A.C., Guadalajara, Jalisco, MX
| | - H Esquivel-Solis
- Medical and Pharmaceutical Biotechnology, Center for Research and Assistance in Technology and Design of the State of Jalisco, A.C., Guadalajara, Jalisco, MX
| | - N E Díaz-Martínez
- Medical and Pharmaceutical Biotechnology, Center for Research and Assistance in Technology and Design of the State of Jalisco, A.C., Guadalajara, Jalisco, MX
| |
Collapse
|
38
|
Soria B, Gauthier BR, Martín F, Tejedo JR, Bedoya FJ, Rojas A, Hmadcha A. Using stem cells to produce insulin. Expert Opin Biol Ther 2015; 15:1469-89. [PMID: 26156425 DOI: 10.1517/14712598.2015.1066330] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Tremendous progress has been made in generating insulin-producing cells from pluripotent stem cells. The best outcome of the refined protocols became apparent in the first clinical trial announced by ViaCyte, based on the implantation of pancreatic progenitors that would further mature into functional insulin-producing cells inside the patient's body. AREAS COVERED Several groups, including ours, have contributed to improve strategies to generate insulin-producing cells. Of note, the latest results have gained a substantial amount of interest as a method to create a potentially functional and limitless supply of β-cell to revert diabetes mellitus. This review analyzes the accomplishments that have taken place over the last few decades, summarizes the state-of-art methods for β-cell replacement therapies based on the differentiation of embryonic stem cells into glucose-responsive and insulin-producing cells in a dish and discusses alternative approaches to obtain new sources of insulin-producing cells. EXPERT OPINION Undoubtedly, recent events preface the beginning of a new era in diabetes therapy. However, in our opinion, a number of significant hurdles still stand in the way of clinical application. We believe that the combination of the private and public sectors will accelerate the process of obtaining the desired safe and functional β-cell surrogates.
Collapse
Affiliation(s)
- Bernat Soria
- a 1 CABIMER, Andalusian Center for Molecular Biology and Regenerative Medicine , Avda. Americo Vespucio s/n, 41092 Seville, Spain ; .,b 2 CIBERDEM, Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders , 08036 Barcelona, Spain
| | - Benoit R Gauthier
- a 1 CABIMER, Andalusian Center for Molecular Biology and Regenerative Medicine , Avda. Americo Vespucio s/n, 41092 Seville, Spain ;
| | - Franz Martín
- a 1 CABIMER, Andalusian Center for Molecular Biology and Regenerative Medicine , Avda. Americo Vespucio s/n, 41092 Seville, Spain ; .,b 2 CIBERDEM, Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders , 08036 Barcelona, Spain
| | - Juan R Tejedo
- a 1 CABIMER, Andalusian Center for Molecular Biology and Regenerative Medicine , Avda. Americo Vespucio s/n, 41092 Seville, Spain ; .,b 2 CIBERDEM, Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders , 08036 Barcelona, Spain
| | - Francisco J Bedoya
- a 1 CABIMER, Andalusian Center for Molecular Biology and Regenerative Medicine , Avda. Americo Vespucio s/n, 41092 Seville, Spain ; .,b 2 CIBERDEM, Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders , 08036 Barcelona, Spain
| | - Anabel Rojas
- a 1 CABIMER, Andalusian Center for Molecular Biology and Regenerative Medicine , Avda. Americo Vespucio s/n, 41092 Seville, Spain ; .,b 2 CIBERDEM, Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders , 08036 Barcelona, Spain
| | - Abdelkrim Hmadcha
- a 1 CABIMER, Andalusian Center for Molecular Biology and Regenerative Medicine , Avda. Americo Vespucio s/n, 41092 Seville, Spain ; .,b 2 CIBERDEM, Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders , 08036 Barcelona, Spain
| |
Collapse
|
39
|
Razavi R, Najafabadi HS, Abdullah S, Smukler S, Arntfield M, van der Kooy D. Diabetes enhances the proliferation of adult pancreatic multipotent progenitor cells and biases their differentiation to more β-cell production. Diabetes 2015; 64:1311-23. [PMID: 25392245 DOI: 10.2337/db14-0070] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Endogenous pancreatic multipotent progenitors (PMPs) are ideal candidates for regenerative approaches to compensate for β-cell loss since their β-cell-producing capacities as well as strategic location would eliminate unnecessary invasive manipulations. However, little is known about the status and potentials of PMPs under diabetic conditions. Here we show that β-cell metabolic stress and hyperglycemia enhance the proliferation capacities of adult PMP cells and bias their production of progeny toward β-cells in mouse and human. These effects are dynamic and correlate with functional β-cell regeneration when conditions allow.
Collapse
Affiliation(s)
- Rozita Razavi
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Hamed S Najafabadi
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Sarah Abdullah
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Simon Smukler
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Margot Arntfield
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Derek van der Kooy
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
40
|
Qi Nan W, Ling Z, Bing C. The influence of the telomere-telomerase system on diabetes mellitus and its vascular complications. Expert Opin Ther Targets 2015; 19:849-64. [PMID: 25677239 DOI: 10.1517/14728222.2015.1016500] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION The telomere-telomerase system plays an important role in the pathogenesis and disease progression of diabetes mellitus as well as in its vascular complications. Recent studies suggest that telomere shortening and abnormal telomerase activity occur in patients with diabetes mellitus, and targeting the telomere-telomerase system has become a prospective treatment for diabetes mellitus and its vascular complications. This review highlights the significance of the telomere-telomerase system and supports its role as a possible therapeutic target for patients with diabetes mellitus and its vascular complications Areas covered: This review covers the advances in understanding the telomere-telomerase system over the last 30 years and its significance in diabetes mellitus. In addition, it provides knowledge regarding the significance of the telomere-telomerase system in diabetes mellitus and its vascular complications as well as its role and mechanisms in oxidative stress, cell therapy and antioxidant activity Expert opinion: The telomere-telomerase system may be a potential therapeutic target that can protect against DNA damage and apoptosis in patients with diabetes mellitus and its vascular complications. DNA damage and apoptosis are associated with oxidative stress and are involved in the dysfunction of pancreatic β cells, insulin resistance, and its vascular complications. Abnormalities in the telomere-telomerase system may be associated with diabetes mellitus and its vascular complications. Therapies targeting telomere-telomerase system, telomerase reverse transcriptase transfection and alterative telomere lengthening must be identified before gene therapy can commence.
Collapse
Affiliation(s)
- Wu Qi Nan
- The First Affiliated Hospital of the Third Military Medical University, Endocrine Department , Chongqing, Post number: 400038 , China
| | | | | |
Collapse
|
41
|
Li Q, Yang H, Zhong TP. Regeneration across metazoan phylogeny: lessons from model organisms. J Genet Genomics 2015; 42:57-70. [PMID: 25697100 DOI: 10.1016/j.jgg.2014.12.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 12/18/2014] [Accepted: 12/21/2014] [Indexed: 01/09/2023]
Abstract
Comprehending the diversity of the regenerative potential across metazoan phylogeny represents a fundamental challenge in biology. Invertebrates like Hydra and planarians exhibit amazing feats of regeneration, in which an entire organism can be restored from minute body segments. Vertebrates like teleost fish and amphibians can also regrow large sections of the body. While this regenerative capacity is greatly attenuated in mammals, there are portions of major organs that remain regenerative. Regardless of the extent, there are common basic strategies to regeneration, including activation of adult stem cells and proliferation of differentiated cells. Here, we discuss the cellular features and molecular mechanisms that are involved in regeneration in different model organisms, including Hydra, planarians, zebrafish and newts as well as in several mammalian organs.
Collapse
Affiliation(s)
- Qiao Li
- State Key Laboratory of Genetic Engineering, Department of Genetics, Fudan University School of Life Science, Shanghai 200433, China
| | - Hao Yang
- State Key Laboratory of Genetic Engineering, Department of Genetics, Fudan University School of Life Science, Shanghai 200433, China
| | - Tao P Zhong
- State Key Laboratory of Genetic Engineering, Department of Genetics, Fudan University School of Life Science, Shanghai 200433, China; Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| |
Collapse
|
42
|
Wu J, Yang X, Chen B, Xu X. Pancreas β cell regeneration and type 1 diabetes (Review). Exp Ther Med 2014; 9:653-657. [PMID: 25667609 PMCID: PMC4316911 DOI: 10.3892/etm.2014.2163] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 11/24/2014] [Indexed: 12/18/2022] Open
Abstract
Diabetes mellitus, which may cause hyperglycemia and a number of complications, mostly results from a deficiency of β cell mass (type 1 diabetes) or a limitation of β cell function (type 2 diabetes). Currently, enhancing β cell regeneration and increasing cell proliferation have not only been described in experimental diabetes models, but have also been proven to improve outcomes for patients with diabetes. Therefore, understanding the mechanisms controlling the development and regeneration of β cells in the human pancreas may be helpful for the treatment of β cell-deficient disease. In this review, we first introduce the various cell types in the adult pancreas and thereby clarify their functions and origins. Then, the known mechanisms of β cell development and expansion in the normal human pancreas are described. The potential mechanisms of β cell regeneration, including β cell self-replication, neogenesis from non-β cell precursors and transdifferentiation from α cells, are discussed in the next part. Finally, the ability of the pancreas to regenerate mature β cells is explored in pathological conditions, including type 1 diabetes, chronic pancreatitis and persistent hyperinsulinemic hypoglycemia of infancy.
Collapse
Affiliation(s)
- Jinxiao Wu
- Department of Endocrinology, Beijing Army General Hospital, Beijing 100700, P.R. China
| | - Xiyan Yang
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, P.R. China
| | - Bin Chen
- Department of Endocrinology, Beijing Army General Hospital, Beijing 100700, P.R. China
| | - Xiuping Xu
- Department of Endocrinology, Beijing Army General Hospital, Beijing 100700, P.R. China
| |
Collapse
|
43
|
Teitelman G, Kedees M. Mouse insulin cells expressing an inducible RIPCre transgene are functionally impaired. J Biol Chem 2014; 290:3647-53. [PMID: 25533471 DOI: 10.1074/jbc.m114.615484] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
We used cre-lox technology to test whether the inducible expression of Cre minimize the deleterious effect of the enzyme on beta cell function. We studied mice in which Cre is linked to a modified estrogen receptor (ER), and its expression is controlled by the rat insulin promoter (RIP). Following the injection of tamoxifen (TM), CreER- migrates to the nucleus and promotes the appearance of a reporter protein, enhanced yellow fluorescent protein (EYFP), in cells. Immunocytochemical analysis indicated that 46.6 ± 2.1% insulin cells of adult RIPCreER- EYFP expressed EYFP. RIPCreER-EYFP (+TM) mice were normoglycemic throughout the study, and their glucose tolerance test results were similar to control CD-1 mice. However, an extended exposure to reagents that stimulate insulin synthesis was detrimental to the survival of IN+EYFP+cells. The administration of an inhibitor of the enzyme dipeptidyl-peptidase (DPP4i), which prevents the cleavage of glucagon-like peptide (GLP-1), to adult RIPCreER-EYFP mice lead to a decrease in the percentage of IN+EYFP+ to 17.5 ± 1.73 and a significant increase in apoptotic cells in islets. Similarly, a 2-week administration of the GLP-1 analog exendin 4 (ex-4) induced an almost complete ablation of IN+ expressing a different reporter protein and a significant decrease in the beta cell mass and rate of beta cell proliferation. Since normal beta cells do not die when induced to increase insulin synthesis, our observations indicate that insulin cells expressing an inducible RIPCre transgene are functionally deficient. Studies employing these mice should carefully consider the pitfalls of the Cre-Lox technique.
Collapse
Affiliation(s)
- Gladys Teitelman
- From the Department of Cell Biology, SUNY-Downstate Medical Center, Brooklyn, New York 11203
| | - Mamdouh Kedees
- From the Department of Cell Biology, SUNY-Downstate Medical Center, Brooklyn, New York 11203
| |
Collapse
|
44
|
Cao M, Chan RWS, Yeung WSB. Label-retaining stromal cells in mouse endometrium awaken for expansion and repair after parturition. Stem Cells Dev 2014; 24:768-80. [PMID: 25386902 DOI: 10.1089/scd.2014.0225] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Human and mouse endometrium undergo dramatic cellular reorganization during pregnancy and postpartum. Somatic stem cells maintain homeostasis of the tissue by providing a cell reservoir for regeneration. We hypothesized that endometrial cells with quiescent properties (stem/progenitor cells) were involved in the regeneration of the endometrial tissue. Given that stem cells divide infrequently, they can retain the DNA synthesis label [bromodeoxyuridine (BrdU)] after a prolonged chase period. In this study, prepubertal mice were pulsed with BrdU and after a 6-week chase a small population of label-retaining stromal cells (LRSC) was located primarily beneath the luminal epithelium, adjacent to blood vessels, and near the endometrial-myometrial junction. Marker analyses suggested that they were of mesenchymal origin expressing CD44(+), CD90(+), CD140b(+), CD146(+), and Sca-1(+). During pregnancy, nonproliferating LRSC predominately resided at the interimplantation/placental loci of the gestational endometrium. Immediately after parturition, a significant portion of the LRSC underwent proliferation (BrdU(+)/Ki-67(+)) and expressed total and active β-catenin. The β-catenin expression in the LRSC was transiently elevated at postpartum day (PPD) 1. The proliferation of LRSC resulted in a significant decline in the proportion of LRSC in the postpartum uterus. The LRSC returned to dormancy at PPD7, and the percentage of LRSC remained stable thereafter until 11 weeks. This study demonstrated that LRSC can respond efficiently to physiological stimuli upon initiation of uterine involution and return to its quiescent state after postpartum repair.
Collapse
Affiliation(s)
- Mingzhu Cao
- 1 Department of Obstetrics and Gynaecology, University of Hong Kong , Pokfulam, Hong Kong, SAR, China
| | | | | |
Collapse
|
45
|
Tan G, Elefanty AG, Stanley EG. β-cell regeneration and differentiation: how close are we to the 'holy grail'? J Mol Endocrinol 2014; 53:R119-29. [PMID: 25385843 DOI: 10.1530/jme-14-0188] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Diabetes can be managed by careful monitoring of blood glucose and timely delivery of exogenous insulin. However, even with fastidious compliance, people with diabetes can suffer from numerous complications including atherosclerosis, retinopathy, neuropathy, and kidney disease. This is because delivery of exogenous insulin coupled with glucose monitoring cannot provide the fine level of glucose control normally provided by endogenous β-cells in the context of intact islets. Moreover, a subset of people with diabetes lack awareness of hypoglycemic events; a status that can have grave consequences. Therefore, much effort has been focused on replacing lost or dysfunctional β-cells with cells derived from other sources. The advent of stem cell biology and cellular reprogramming strategies have provided impetus to this work and raised hopes that a β-cell replacement therapy is on the horizon. In this review, we look at two components that will be required for successful β-cell replacement therapy: a reliable and safe source of β-cells and a mechanism by which such cells can be delivered and protected from host immune destruction. Particular attention is paid to insulin-producing cells derived from pluripotent stem cells because this platform addresses the issue of scale, one of the more significant hurdles associated with potential cell-based therapies. We also review methods for encapsulating transplanted cells, a technique that allows grafts to evade immune attack and survive for a long term in the absence of ongoing immunosuppression. In surveying the literature, we conclude that there are still several substantial hurdles that need to be cleared before a stem cell-based β-cell replacement therapy for diabetes becomes a reality.
Collapse
Affiliation(s)
- Gemma Tan
- Department of Anatomy and Developmental BiologyMonash University, Building 73, Clayton, Victoria 3800, AustraliaMurdoch Childrens Research InstituteThe Royal Children's Hospital, Flemington Road, Parkville, Victoria 3052, AustraliaDepartment of PaediatricsThe Royal Children's Hospital, University of Melbourne, Flemington Road, Parkville, Victoria 3052, Australia Department of Anatomy and Developmental BiologyMonash University, Building 73, Clayton, Victoria 3800, AustraliaMurdoch Childrens Research InstituteThe Royal Children's Hospital, Flemington Road, Parkville, Victoria 3052, AustraliaDepartment of PaediatricsThe Royal Children's Hospital, University of Melbourne, Flemington Road, Parkville, Victoria 3052, Australia
| | - Andrew G Elefanty
- Department of Anatomy and Developmental BiologyMonash University, Building 73, Clayton, Victoria 3800, AustraliaMurdoch Childrens Research InstituteThe Royal Children's Hospital, Flemington Road, Parkville, Victoria 3052, AustraliaDepartment of PaediatricsThe Royal Children's Hospital, University of Melbourne, Flemington Road, Parkville, Victoria 3052, Australia Department of Anatomy and Developmental BiologyMonash University, Building 73, Clayton, Victoria 3800, AustraliaMurdoch Childrens Research InstituteThe Royal Children's Hospital, Flemington Road, Parkville, Victoria 3052, AustraliaDepartment of PaediatricsThe Royal Children's Hospital, University of Melbourne, Flemington Road, Parkville, Victoria 3052, Australia Department of Anatomy and Developmental BiologyMonash University, Building 73, Clayton, Victoria 3800, AustraliaMurdoch Childrens Research InstituteThe Royal Children's Hospital, Flemington Road, Parkville, Victoria 3052, AustraliaDepartment of PaediatricsThe Royal Children's Hospital, University of Melbourne, Flemington Road, Parkville, Victoria 3052, Australia
| | - Edouard G Stanley
- Department of Anatomy and Developmental BiologyMonash University, Building 73, Clayton, Victoria 3800, AustraliaMurdoch Childrens Research InstituteThe Royal Children's Hospital, Flemington Road, Parkville, Victoria 3052, AustraliaDepartment of PaediatricsThe Royal Children's Hospital, University of Melbourne, Flemington Road, Parkville, Victoria 3052, Australia Department of Anatomy and Developmental BiologyMonash University, Building 73, Clayton, Victoria 3800, AustraliaMurdoch Childrens Research InstituteThe Royal Children's Hospital, Flemington Road, Parkville, Victoria 3052, AustraliaDepartment of PaediatricsThe Royal Children's Hospital, University of Melbourne, Flemington Road, Parkville, Victoria 3052, Australia Department of Anatomy and Developmental BiologyMonash University, Building 73, Clayton, Victoria 3800, AustraliaMurdoch Childrens Research InstituteThe Royal Children's Hospital, Flemington Road, Parkville, Victoria 3052, AustraliaDepartment of PaediatricsThe Royal Children's Hospital, University of Melbourne, Flemington Road, Parkville, Victoria 3052, Australia
| |
Collapse
|
46
|
Fu W, Farache J, Clardy SM, Hattori K, Mander P, Lee K, Rioja I, Weissleder R, Prinjha RK, Benoist C, Mathis D. Epigenetic modulation of type-1 diabetes via a dual effect on pancreatic macrophages and β cells. eLife 2014; 3:e04631. [PMID: 25407682 PMCID: PMC4270084 DOI: 10.7554/elife.04631] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 11/19/2014] [Indexed: 12/13/2022] Open
Abstract
Epigenetic modifiers are an emerging class of anti-tumor drugs, potent in multiple cancer contexts. Their effect on spontaneously developing autoimmune diseases has been little explored. We report that a short treatment with I-BET151, a small-molecule inhibitor of a family of bromodomain-containing transcriptional regulators, irreversibly suppressed development of type-1 diabetes in NOD mice. The inhibitor could prevent or clear insulitis, but had minimal influence on the transcriptomes of infiltrating and circulating T cells. Rather, it induced pancreatic macrophages to adopt an anti-inflammatory phenotype, impacting the NF-κB pathway in particular. I-BET151 also elicited regeneration of islet β-cells, inducing proliferation and expression of genes encoding transcription factors key to β-cell differentiation/function. The effect on β cells did not require T cell infiltration of the islets. Thus, treatment with I-BET151 achieves a 'combination therapy' currently advocated by many diabetes investigators, operating by a novel mechanism that coincidentally dampens islet inflammation and enhances β-cell regeneration.
Collapse
Affiliation(s)
- Wenxian Fu
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, United States
| | - Julia Farache
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, United States
| | - Susan M Clardy
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, United States
| | - Kimie Hattori
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, United States
| | - Palwinder Mander
- Epinova DPU, Immuno-Inflammation Therapy Area, Medicines Research Centre, GlaxoSmithKline, Stevenage, United Kingdom
| | - Kevin Lee
- Epinova DPU, Immuno-Inflammation Therapy Area, Medicines Research Centre, GlaxoSmithKline, Stevenage, United Kingdom
| | - Inmaculada Rioja
- Epinova DPU, Immuno-Inflammation Therapy Area, Medicines Research Centre, GlaxoSmithKline, Stevenage, United Kingdom
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, United States
| | - Rab K Prinjha
- Epinova DPU, Immuno-Inflammation Therapy Area, Medicines Research Centre, GlaxoSmithKline, Stevenage, United Kingdom
| | - Christophe Benoist
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, United States
| | - Diane Mathis
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, United States
| |
Collapse
|
47
|
Li W, Cavelti-Weder C, Zhang Y, Zhang Y, Clement K, Donovan S, Gonzalez G, Zhu J, Stemann M, Xu K, Hashimoto T, Yamada T, Nakanishi M, Zhang Y, Zeng S, Gifford D, Meissner A, Weir G, Zhou Q. Long-term persistence and development of induced pancreatic beta cells generated by lineage conversion of acinar cells. Nat Biotechnol 2014; 32:1223-30. [PMID: 25402613 DOI: 10.1038/nbt.3082] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 10/23/2014] [Indexed: 01/17/2023]
Abstract
Direct lineage conversion is a promising approach to generate therapeutically important cell types for disease modeling and tissue repair. However, the survival and function of lineage-reprogrammed cells in vivo over the long term has not been examined. Here, using an improved method for in vivo conversion of adult mouse pancreatic acinar cells toward beta cells, we show that induced beta cells persist for up to 13 months (the length of the experiment), form pancreatic islet-like structures and support normoglycemia in diabetic mice. Detailed molecular analyses of induced beta cells over 7 months reveal that global DNA methylation changes occur within 10 d, whereas the transcriptional network evolves over 2 months to resemble that of endogenous beta cells and remains stable thereafter. Progressive gain of beta-cell function occurs over 7 months, as measured by glucose-regulated insulin release and suppression of hyperglycemia. These studies demonstrate that lineage-reprogrammed cells persist for >1 year and undergo epigenetic, transcriptional, anatomical and functional development toward a beta-cell phenotype.
Collapse
Affiliation(s)
- Weida Li
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Claudia Cavelti-Weder
- Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, Massachusetts, USA
| | | | - Yinying Zhang
- 1] Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA. [2] Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Kendell Clement
- 1] Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA. [2] Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA. [3] Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Scott Donovan
- 1] Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA. [2] Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | | | - Jiang Zhu
- 1] Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA. [2] Center for System Biology and Center for Cancer Research, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Marianne Stemann
- Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, Massachusetts, USA
| | - Ke Xu
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Tatsu Hashimoto
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Takatsugu Yamada
- Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, Massachusetts, USA
| | - Mio Nakanishi
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Yuemei Zhang
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Samuel Zeng
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA
| | - David Gifford
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Alexander Meissner
- 1] Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA. [2] Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Gordon Weir
- Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, Massachusetts, USA
| | - Qiao Zhou
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
48
|
Kwak M, Ghazizadeh S. Analysis of histone H2BGFP retention in mouse submandibular gland reveals actively dividing stem cell populations. Stem Cells Dev 2014; 24:565-74. [PMID: 25244667 DOI: 10.1089/scd.2014.0355] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The purpose of this study was to use histone 2B-green fluorescent protein (H2BGFP) pulse-chase experiments to provide a broad view of population dynamics in salivary gland and to identify the quiescent stem cells that had previously been suggested to reside in the gland. Two transgenic mouse models in which inducible H2BGFP expression was regulated either by keratin (K)14 promoter or by a ubiquitous promoter were generated. The level of fluorescent label in the submandibular gland induced by a pulse of H2BGFP expression was monitored over a period of 18 weeks of chase. Efficient targeting of H2BGFP label to the relatively undifferentiated ductal cells by K14 promoter did not identify a quiescent population of stem cells. Ubiquitous targeting of all ductal cells identified label-retaining cells but these cells were mapped to the more differentiating ductal compartments. Furthermore, they did not display the major characteristics of quiescent stem cells including the undifferentiated phenotype, mobilization in response to injury, and the clonogenicity in culture. Quantitative assessment of H2BGFP loss in various ductal compartments and short-term lineage tracing of K14(+) ductal cells were consistent with the presence of actively dividing pools of stem/progenitor cells in the intercalated ducts and the basal layer of excretory ducts functioning independently during homeostasis.
Collapse
Affiliation(s)
- Mingyu Kwak
- Department of Oral Biology and Pathology, Stony Brook University , Stony Brook, New York
| | | |
Collapse
|
49
|
Abstract
Diabetes mellitus is caused by absolute (type 1) or relative (type 2) deficiency of insulin-secreting islet β cells. An ideal treatment of diabetes would, therefore, be to replace the lost or deficient β cells, by transplantation of donated islets or differentiated endocrine cells or by regeneration of endogenous islet cells. Due to their ability of unlimited proliferation and differentiation into all functional lineages in our body, including β cells, embryonic stem cells and induced pluripotent stem cells are ideally placed as cell sources for a diabetic transplantation therapy. Unfortunately, the inability to generate functional differentiated islet cells from pluripotent stem cells and the poor availability of donor islets have severely restricted the broad clinical use of the replacement therapy. Therefore, endogenous sources that can be directed to becoming insulin-secreting cells are actively sought after. In particular, any cell types in the developing or adult pancreas that may act as pancreatic stem cells (PSC) would provide an alternative renewable source for endogenous regeneration. In this review, we will summarize the latest progress and knowledge of such PSC, and discuss ways that facilitate the future development of this often controversial, but crucial research.
Collapse
Affiliation(s)
- Fang-Xu Jiang
- 1 Islet Cell Development Program, Harry Perkins Institute of Medical Research, and Centre for Medical Research, The University of Western Australia , Perth, Australia
| | | |
Collapse
|
50
|
Minami K, Seino S. Current status of regeneration of pancreatic β-cells. J Diabetes Investig 2014; 4:131-41. [PMID: 24843642 PMCID: PMC4019265 DOI: 10.1111/jdi.12062] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 01/21/2013] [Indexed: 12/13/2022] Open
Abstract
Newly generated insulin‐secreting cells for use in cell therapy for insulin‐deficient diabetes mellitus require properties similar to those of native pancreatic β‐cells. Pancreatic β‐cells are highly specialized cells that produce a large amount of insulin, and secrete insulin in a regulated manner in response to glucose and other stimuli. It is not yet explained how the β‐cells acquire this complex function during normal differentiation. So far, in vitro generation of insulin‐secreting cells from embryonic stem cells, induced‐pluripotent stem cells and adult stem/progenitor‐like cells has been reported. However, most of these cells are functionally immature and show poor glucose‐responsive insulin secretion compared to that of native pancreatic β‐cells (or islets). Strategies to generate functional β‐cells or a whole organ in vivo have also recently been proposed. Establishing a protocol to generate fully functional insulin‐secreting cells that closely resemble native β‐cells is a critical matter in regenerative medicine for diabetes. Understanding the physiological processes of differentiation, proliferation and regeneration of pancreatic β‐cells might open the path to cell therapy to cure patients with absolute insulin deficiency.
Collapse
Affiliation(s)
- Kohtaro Minami
- Division of Cellular and Molecular Medicine Department of Physiology and Cell Biology Kobe University Graduate School of Medicine Kobe Japan
| | - Susumu Seino
- Division of Cellular and Molecular Medicine Department of Physiology and Cell Biology Kobe University Graduate School of Medicine Kobe Japan ; Division of Diabetes and Endocrinology Department of Internal Medicine Kobe University Graduate School of Medicine Kobe Japan ; Core Research for Evolutional Science and Technology (CREST) Japan Science and Technology Corp. Kawaguchi Saitama Japan
| |
Collapse
|