1
|
Dieng I, Sadio BD, Gaye A, Sagne SN, Ndione MHD, Kane M, Diallo MK, Sow B, Sankhe S, Sene O, Diallo A, Dieng M, Doukanda SFM, Mbanne M, Diop SMBS, Balde D, Ndiaye M, Sow KD, Diarra M, Sam A, Mbaye A, Diallo B, Sall Y, Faye O, Diop B, Sow A, Sall AA, Loucoubar C, Dia N, Faye O, Diallo D, Fall G, Weaver SC, Barry MA, Diallo M, Diagne MM. Genomic characterization of a reemerging Chikungunya outbreak in Kedougou, Southeastern Senegal, 2023. Emerg Microbes Infect 2024; 13:2373308. [PMID: 38934257 PMCID: PMC11268258 DOI: 10.1080/22221751.2024.2373308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 06/22/2024] [Indexed: 06/28/2024]
Abstract
Chikungunya virus has caused millions of cases worldwide over the past 20 years, with recent outbreaks in Kedougou region in the southeastern Senegal, West Africa. Genomic characterization highlights that an ongoing epidemic in Kedougou in 2023 is not due to an introduction event but caused by the re-emergence of an endemic strain evolving linearly in a sylvatic context.
Collapse
Affiliation(s)
- Idrissa Dieng
- Virology Department, Institut Pasteur de Dakar, Dakar, Senegal
| | | | - Alioune Gaye
- Zoology Medical Department, Institut Pasteur de Dakar, Dakar, Senegal
| | - Samba Niang Sagne
- Epidemiology, Clinical Research and Data Science Department, Institut Pasteur de Dakar, Dakar, Senegal
| | | | - Mouhamed Kane
- Virology Department, Institut Pasteur de Dakar, Dakar, Senegal
| | - Mamadou Korka Diallo
- Epidemiology, Clinical Research and Data Science Department, Institut Pasteur de Dakar, Dakar, Senegal
| | - Bocar Sow
- Epidemiology, Clinical Research and Data Science Department, Institut Pasteur de Dakar, Dakar, Senegal
| | - Safietou Sankhe
- Virology Department, Institut Pasteur de Dakar, Dakar, Senegal
| | - Ousseynou Sene
- Virology Department, Institut Pasteur de Dakar, Dakar, Senegal
| | - Amadou Diallo
- Epidemiology, Clinical Research and Data Science Department, Institut Pasteur de Dakar, Dakar, Senegal
| | - Madeleine Dieng
- Virology Department, Institut Pasteur de Dakar, Dakar, Senegal
| | | | - Maimouna Mbanne
- Virology Department, Institut Pasteur de Dakar, Dakar, Senegal
| | | | | | - Mignane Ndiaye
- Virology Department, Institut Pasteur de Dakar, Dakar, Senegal
| | | | - Maryam Diarra
- Epidemiology, Clinical Research and Data Science Department, Institut Pasteur de Dakar, Dakar, Senegal
| | - Abdoulaye Sam
- Prevention Department, Ministry of Health, Dakar, Senegal
| | - Ababacar Mbaye
- Kedougou Medical Region, Ministry of Health, Kedougou, Senegal
| | - Boubacar Diallo
- Public Health Direction, Institut Pasteur de Dakar, Dakar, Senegal
| | - Yoro Sall
- Prevention Department, Ministry of Health, Dakar, Senegal
| | - Ousmane Faye
- Public Health Direction, Institut Pasteur de Dakar, Dakar, Senegal
| | - Boly Diop
- Prevention Department, Ministry of Health, Dakar, Senegal
| | - Abdourahmane Sow
- Public Health Direction, Institut Pasteur de Dakar, Dakar, Senegal
- Department of Public Health and Preventive Medicine, Faculty of Medicine, Pharmacy and Odonto-stomatology, Université Cheikh Anta Diop de Dakar, Dakar, Senegal
| | | | - Cheikh Loucoubar
- Epidemiology, Clinical Research and Data Science Department, Institut Pasteur de Dakar, Dakar, Senegal
| | - Ndongo Dia
- Virology Department, Institut Pasteur de Dakar, Dakar, Senegal
| | - Oumar Faye
- Virology Department, Institut Pasteur de Dakar, Dakar, Senegal
| | - Diawo Diallo
- Zoology Medical Department, Institut Pasteur de Dakar, Dakar, Senegal
| | - Gamou Fall
- Virology Department, Institut Pasteur de Dakar, Dakar, Senegal
| | - Scott C. Weaver
- World Reference Center for Emerging Viruses and Arboviruses, Institute for Human Infections and Immunity and Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Mamadou Aliou Barry
- Epidemiology, Clinical Research and Data Science Department, Institut Pasteur de Dakar, Dakar, Senegal
| | - Mawlouth Diallo
- Zoology Medical Department, Institut Pasteur de Dakar, Dakar, Senegal
| | | |
Collapse
|
2
|
Gahn MCB, Diouf G, Cissé N, Ciss M, Bordier M, Ndiaye M, Bakhoum MT, Djiba ML, Brown C, Faburay B, Fall AG, Lo MM. Large-Scale Serological Survey of Crimean-Congo Hemorrhagic Fever Virus and Rift Valley Fever Virus in Small Ruminants in Senegal. Pathogens 2024; 13:689. [PMID: 39204289 PMCID: PMC11356896 DOI: 10.3390/pathogens13080689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 07/27/2024] [Accepted: 07/30/2024] [Indexed: 09/03/2024] Open
Abstract
Crimean-Congo hemorrhagic fever (CCHF) and Rift Valley fever (RVF) are among the list of emerging zoonotic diseases that require special attention and priority. RVF is one of the six priority diseases selected by the Senegalese government. Repeated epidemic episodes and sporadic cases of CCHF and RVF in Senegal motivated this study, involving a national cross-sectional serological survey to assess the distribution of the two diseases in this country throughout the small ruminant population. A total of 2127 sera from small ruminants (goat and sheep) were collected in all regions of Senegal. The overall seroprevalence of CCHF and RVF was 14.1% (IC 95%: 12.5-15.5) and 4.4% (95% CI: 3.5-5.3), respectively. The regions of Saint-Louis (38.4%; 95% CI: 30.4-46.2), Kolda (28.3%; 95% CI: 20.9-35.7), Tambacounda (22.2%; 95% CI: 15.8-28.6) and Kédougou (20.9%; 95% CI: 14.4-27.4) were the most affected areas. The risk factors identified during this study show that the age, species and sex of the animals are key factors in determining exposure to these two viruses. This study confirms the active circulation of CCHF in Senegal and provides important and consistent data that can be used to improve the surveillance strategy of a two-in-one health approach to zoonoses.
Collapse
Affiliation(s)
- Marie Cicille Ba Gahn
- Institut Sénégalais de Recherches Agricoles, Laboratoire National de l’Elevage et de Recherches Vétérinaires (ISRA-LNERV), Dakar-Hann BP 2057, Senegal
| | - Gorgui Diouf
- Institut Sénégalais de Recherches Agricoles, Laboratoire National de l’Elevage et de Recherches Vétérinaires (ISRA-LNERV), Dakar-Hann BP 2057, Senegal
| | - Ndjibouyé Cissé
- Institut Sénégalais de Recherches Agricoles, Laboratoire National de l’Elevage et de Recherches Vétérinaires (ISRA-LNERV), Dakar-Hann BP 2057, Senegal
| | - Mamadou Ciss
- Institut Sénégalais de Recherches Agricoles, Laboratoire National de l’Elevage et de Recherches Vétérinaires (ISRA-LNERV), Dakar-Hann BP 2057, Senegal
| | - Marion Bordier
- Institut Sénégalais de Recherches Agricoles, Laboratoire National de l’Elevage et de Recherches Vétérinaires (ISRA-LNERV), Dakar-Hann BP 2057, Senegal
- Centre de Coopération Internationale en Recherche Agronomique pour le Developpement (CIRAD), UMR ASTRE, F-34398 Montpellier, France
| | - Mbengué Ndiaye
- Institut Sénégalais de Recherches Agricoles, Laboratoire National de l’Elevage et de Recherches Vétérinaires (ISRA-LNERV), Dakar-Hann BP 2057, Senegal
| | - Mame Thierno Bakhoum
- Institut Sénégalais de Recherches Agricoles, Laboratoire National de l’Elevage et de Recherches Vétérinaires (ISRA-LNERV), Dakar-Hann BP 2057, Senegal
| | - Mamadou Lamine Djiba
- Institut Sénégalais de Recherches Agricoles, Laboratoire National de l’Elevage et de Recherches Vétérinaires (ISRA-LNERV), Dakar-Hann BP 2057, Senegal
| | - Corrie Brown
- LifeStock International, 550 Fortson Rd., Athens, GA 30606, USA
| | - Bonto Faburay
- Foreign Animal Disease Diagnostic Laboratory, National Veterinary Services Laboratories, National Bio and Agro-Defense Facility, United States Department of Agriculture, Manhattan, KS 66505, USA
| | - Assane Gueye Fall
- Institut Sénégalais de Recherches Agricoles, Laboratoire National de l’Elevage et de Recherches Vétérinaires (ISRA-LNERV), Dakar-Hann BP 2057, Senegal
| | - Modou Moustapha Lo
- Institut Sénégalais de Recherches Agricoles, Laboratoire National de l’Elevage et de Recherches Vétérinaires (ISRA-LNERV), Dakar-Hann BP 2057, Senegal
| |
Collapse
|
3
|
Ramphal Y, Tegally H, San JE, Reichmuth ML, Hofstra M, Wilkinson E, Baxter C, de Oliveira T, Moir M. Understanding the Transmission Dynamics of the Chikungunya Virus in Africa. Pathogens 2024; 13:605. [PMID: 39057831 PMCID: PMC11279734 DOI: 10.3390/pathogens13070605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/09/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
The Chikungunya virus (CHIKV) poses a significant global public health concern, especially in Africa. Since its first isolation in Tanzania in 1953, CHIKV has caused recurrent outbreaks, challenging healthcare systems in low-resource settings. Recent outbreaks in Africa highlight the dynamic nature of CHIKV transmission and the challenges of underreporting and underdiagnosis. Here, we review the literature and analyse publicly available cases, outbreaks, and genomic data, providing insights into the epidemiology, genetic diversity, and transmission dynamics of CHIKV in Africa. Our analyses reveal the circulation of geographically distinct CHIKV genotypes, with certain regions experiencing a disproportionate burden of disease. Phylogenetic analysis of sporadic outbreaks in West Africa suggests repeated emergence of the virus through enzootic spillover, which is markedly different from inferred transmission dynamics in East Africa, where the virus is often introduced from Asian outbreaks, including the recent reintroduction of the Indian Ocean lineage from the Indian subcontinent to East Africa. Furthermore, there is limited evidence of viral movement between these two regions. Understanding the history and transmission dynamics of outbreaks is crucial for effective public health planning. Despite advances in surveillance and research, diagnostic and surveillance challenges persist. This review and secondary analysis highlight the importance of ongoing surveillance, research, and collaboration to mitigate the burden of CHIKV in Africa and improve public health outcomes.
Collapse
Affiliation(s)
- Yajna Ramphal
- Centre for Epidemic Response Innovation (CERI), School for Data Science and Computational Thinking, Stellenbosch University, Stellenbosch 7600, South Africa; (Y.R.); (H.T.); (M.H.); (E.W.); (C.B.)
| | - Houriiyah Tegally
- Centre for Epidemic Response Innovation (CERI), School for Data Science and Computational Thinking, Stellenbosch University, Stellenbosch 7600, South Africa; (Y.R.); (H.T.); (M.H.); (E.W.); (C.B.)
| | | | | | - Marije Hofstra
- Centre for Epidemic Response Innovation (CERI), School for Data Science and Computational Thinking, Stellenbosch University, Stellenbosch 7600, South Africa; (Y.R.); (H.T.); (M.H.); (E.W.); (C.B.)
| | - Eduan Wilkinson
- Centre for Epidemic Response Innovation (CERI), School for Data Science and Computational Thinking, Stellenbosch University, Stellenbosch 7600, South Africa; (Y.R.); (H.T.); (M.H.); (E.W.); (C.B.)
| | - Cheryl Baxter
- Centre for Epidemic Response Innovation (CERI), School for Data Science and Computational Thinking, Stellenbosch University, Stellenbosch 7600, South Africa; (Y.R.); (H.T.); (M.H.); (E.W.); (C.B.)
| | | | - Tulio de Oliveira
- Centre for Epidemic Response Innovation (CERI), School for Data Science and Computational Thinking, Stellenbosch University, Stellenbosch 7600, South Africa; (Y.R.); (H.T.); (M.H.); (E.W.); (C.B.)
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), University of KwaZulu-Natal, Durban 4001, South Africa
| | - Monika Moir
- Centre for Epidemic Response Innovation (CERI), School for Data Science and Computational Thinking, Stellenbosch University, Stellenbosch 7600, South Africa; (Y.R.); (H.T.); (M.H.); (E.W.); (C.B.)
| |
Collapse
|
4
|
Andrianinarivomanana TM, Randrianaivo FT, Andriamiarimanana MR, Razafimamonjy MR, Velonirina HJ, Puchot N, Girod R, Bourgouin C. Colonization of Anopheles coustani, a neglected malaria vector in Madagascar. Parasite 2024; 31:31. [PMID: 38896103 PMCID: PMC11186460 DOI: 10.1051/parasite/2024032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
Anopheles coustani has long been recognized as a secondary malaria vector in Africa. It has recently been involved in the transmission of both Plasmodium falciparum and P. vivax in Madagascar. As most secondary malaria vectors, An. coustani mainly bites outdoors, which renders the control of this mosquito species difficult using classical malaria control measures, such as the use of bed nets or indoor residual spraying of insecticides. For a better understanding of the biology and vector competence of a vector species, it is useful to rear the species in the laboratory. The absence of a colony hinders the assessment of the bionomics of a species and the development of adapted control strategies. Here, we report the first successful establishment of an An. coustani colony from mosquitoes collected in Madagascar. We used a forced copulation procedure as this mosquito species will not mate in cages. We describe our mosquito colonization procedure with detailed biological features concerning larval to adult development and survival, recorded over the first six critical generations. The procedure should be easily applicable to An. coustani from different African countries, facilitating local investigation of An. coustani vector competence and insecticide resistance using the colony as a reference.
Collapse
Affiliation(s)
| | | | | | | | | | - Nicolas Puchot
- Institut Pasteur, Université de Paris Cité, Biology of Host-Parasite Interactions Paris France
| | - Romain Girod
- Institut Pasteur de Madagascar, Medical Entomology Unit Antananarivo Madagascar
| | - Catherine Bourgouin
- Institut Pasteur, Université de Paris Cité, Biology of Host-Parasite Interactions Paris France
| |
Collapse
|
5
|
Shahrtash SA, Ghnim ZS, Ghaheri M, Adabi J, Hassanzadeh MA, Yasamineh S, Afkhami H, Kheirkhah AH, Gholizadeh O, Moghadam HZ. Recent Advances in the Role of Different Nanoparticles in the Various Biosensors for the Detection of the Chikungunya Virus. Mol Biotechnol 2024:10.1007/s12033-024-01052-6. [PMID: 38393630 DOI: 10.1007/s12033-024-01052-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 12/29/2023] [Indexed: 02/25/2024]
Abstract
Humans contract the Chikungunya virus (CHIKV), an alphavirus transmitted by mosquitoes that induces acute and chronic musculoskeletal discomfort and fever. Millions of cases of the disease have been attributed to CHIKV in the Indian Ocean region since 2004, and the virus has since spread to Europe, the Middle East, and the Pacific. The exponential proliferation of CHIKV in recent times underscores the critical nature of implementing preventative measures and exploring potential control strategies. The principal laboratory test employed to diagnose infection in serum samples collected over six days after the onset of symptoms is the detection of CHIKV or viral RNA. Although two commercially available real-time reverse transcription-polymerase chain reaction products exist, data on their validity are limited. A diagnostic instrument that is rapid, sensitive, specific, and cost-effective is, therefore an absolute necessity, particularly in developing nations. Biosensors have demonstrated considerable potential in the realm of pathogen detection. The rapid and sensitive detection of viruses has been facilitated by the development of numerous types of biosensors, including affinity-based nano-biosensors, graphene affinity-based biosensors, optical nano-biosensors, surface Plasmon Resonance-based optical nano-biosensors, and electrochemical nano-biosensors. Furthermore, the utilization of nanomaterials for signal extension, including but not limited to gold and silver nanoparticles, quantum dots, and iron oxide NPs, has enhanced the precision and sensitivity of biosensors. The developed innovative diagnostic method is time-efficient, precise, and economical; it can be implemented as a point-of-care device. The technique may be implemented in diagnostic laboratories and hospitals to identify patients infected with CHIKV. Throughout this article, we have examined a multitude of CHIKV nano-biosensors and their respective properties. Following a discussion of representative nanotechnologies for biosensors, numerous NPs-assisted CHIKV nano-biosensors are summarized in this article. As a result, we anticipate that this review will furnish a significant foundation for advancing innovative CHIKV nano-biosensors.
Collapse
Affiliation(s)
| | | | - Mohammad Ghaheri
- Student Research Committee, Alborz University of Medical Sciences, Karaj, Iran
| | - Javid Adabi
- Chemical Engineering Department, Amirkabir University of Technology, Tehran, Iran
| | | | - Saman Yasamineh
- Young Researchers and Elite Club, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Hamed Afkhami
- Department of Medical Microbiology, Faculty of Medicine, Shahed University of Medical Science, Tehran, Iran
| | - Amir Hossein Kheirkhah
- Department of Tissue Engineering and Applied Cell Science, School of Medicine, Qom University of Medical Sciences, Qom, Iran
| | - Omid Gholizadeh
- Young Researchers and Elite Club, Tabriz Branch, Islamic Azad University, Tabriz, Iran.
- Azad Researcher, Virology and Biotechnology, Tehran, Iran.
| | - Hesam Zendehdel Moghadam
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
6
|
Dieng I, Ndiaye M, Kane M, Balde D, Mbanne M, Diop SMBS, Sankhe S, Dia M, Dieng M, Doukanda SFM, Faye O, Sall AA, Dia N, Fall G, Faye O, Diagne MM. An amplicon-based Illumina and nanopore sequencing workflow for Chikungunya virus West Africa genotype. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.12.07.23299611. [PMID: 38106224 PMCID: PMC10723560 DOI: 10.1101/2023.12.07.23299611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
The Chikungunya virus, a global arbovirus, is currently causing a major outbreak in the Western African region, with the highest cases reported in Senegal and Burkina Faso. Recent molecular evolution analyses reveal that the strain responsible for the epidemic belongs to the West African genotype, with new mutations potentially impacting viral replication, antigenicity, and host adaptation. Real-time genomic monitoring is needed to track the virus's spread in new regions. A scalable West African genotype amplicon-based Whole Genome Sequencing for multiple Next Generation Sequencing platforms has been developed to support genomic investigations and identify epidemiological links during the virus's ongoing spread. This technology will help identify potential threats and support real-time genomic investigations in the ongoing spread of the virus.
Collapse
Affiliation(s)
- Idrissa Dieng
- Virology Department, Institut Pasteur de Dakar, Dakar 220, Senegal
| | - Mignane Ndiaye
- Virology Department, Institut Pasteur de Dakar, Dakar 220, Senegal
| | - Mouhamed Kane
- Virology Department, Institut Pasteur de Dakar, Dakar 220, Senegal
| | - Diamilatou Balde
- Virology Department, Institut Pasteur de Dakar, Dakar 220, Senegal
| | - Maimouna Mbanne
- Virology Department, Institut Pasteur de Dakar, Dakar 220, Senegal
| | | | - Safietou Sankhe
- Virology Department, Institut Pasteur de Dakar, Dakar 220, Senegal
| | - Moussa Dia
- Virology Department, Institut Pasteur de Dakar, Dakar 220, Senegal
| | - Madeleine Dieng
- Virology Department, Institut Pasteur de Dakar, Dakar 220, Senegal
| | | | - Ousmane Faye
- Virology Department, Institut Pasteur de Dakar, Dakar 220, Senegal
| | | | - Ndongo Dia
- Virology Department, Institut Pasteur de Dakar, Dakar 220, Senegal
| | - Gamou Fall
- Virology Department, Institut Pasteur de Dakar, Dakar 220, Senegal
| | - Oumar Faye
- Virology Department, Institut Pasteur de Dakar, Dakar 220, Senegal
| | | |
Collapse
|
7
|
Lehmann T, Kouam C, Woo J, Diallo M, Wilkerson R, Linton YM. The African mosquito-borne diseasosome: geographical patterns, range expansion and future disease emergence. Proc Biol Sci 2023; 290:20231581. [PMID: 38018102 PMCID: PMC10685135 DOI: 10.1098/rspb.2023.1581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/25/2023] [Indexed: 11/30/2023] Open
Abstract
Mosquito-borne diseases (MBDs) threaten public health and food security globally. We provide the first biogeographic description of the African mosquito fauna (677 species) and the 151 mosquito-borne pathogens (MBPs) they transmit. While mosquito species richness agrees with expectations based on Africa's land surface, African arboviruses and mammalian plasmodia are more speciose than expected. Species assemblages of mosquitoes and MBPs similarly separate sub-Saharan Africa from North Africa, and those in West and Central Africa from eastern and southern Africa. Similarities between mosquitoes and MBPs in diversity and range size suggest that mosquitoes are key in delimiting the range of MBPs. With approximately 25% endemicity, approximately 50% occupying one to three countries and less than 5% occupying greater than 25 countries, the ranges of mosquitoes and MBPs are surprisingly small, suggesting that most MBPs are transmitted by a single mosquito species. Exceptionally widespread mosquito species feed on people and livestock, and most are high-altitude-windborne migrants. Likewise, widespread MBPs are transmitted among people or livestock by widespread mosquitoes, suggesting that adapting to people or livestock and to widespread mosquito species promote range expansion in MBPs. Range size may predict range expansion and emergence risk. We highlight key knowledge gaps that impede prediction and mitigation of future emergence of local and global MBDs.
Collapse
Affiliation(s)
- Tovi Lehmann
- Laboratory of Malaria and Vector Research, NIAID, NIH, Rockville, MD, USA
| | - Cedric Kouam
- Laboratory of Malaria and Vector Research, NIAID, NIH, Rockville, MD, USA
| | - Joshua Woo
- Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Mawlouth Diallo
- Pôle de Zoologie Médicale, Institut Pasteur de Dakar, Dakar, Senegal
| | - Richard Wilkerson
- Walter Reed Biosystematics Unit (WRBU), Smithsonian Institution Museum Support Center, Suitland, MD, USA
- Department of Entomology, Smithsonian Institution–National Museum of Natural History, Washington, DC, USA
| | - Yvonne-Marie Linton
- Walter Reed Biosystematics Unit (WRBU), Smithsonian Institution Museum Support Center, Suitland, MD, USA
- Department of Entomology, Smithsonian Institution–National Museum of Natural History, Washington, DC, USA
- One Health Branch, Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD, USA
| |
Collapse
|
8
|
Padane A, Tegally H, Ramphal Y, Seyni N, Sarr M, Diop MM, Diedhiou CK, Mboup A, Diouf ND, Souaré A, Diagne ND, Aza-Gnandji M, Dabo NA, Dia YA, Diaw NA, Leye N, Diaw PA, Ahouidi A, Cissé B, Diallo AS, Diop O, Diallo AA, Ndoye S, Sanko TJ, Baxter C, Wilkinson E, San JE, Tshabuila D, Naidoo Y, Pillay S, Lessells R, Cissé K, Leye A, Mbaye KA, Kania D, Tinto B, Traoré I, Kagone ST, Ouedraogo AS, Gifford RJ, Lourenço J, Giovanetti M, Giandhari J, de Oliveira T, Mboup S. An emerging clade of Chikungunya West African genotype discovered in real-time during 2023 outbreak in Senegal. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.11.14.23298527. [PMID: 38014099 PMCID: PMC10680901 DOI: 10.1101/2023.11.14.23298527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Chikungunya (CHIKV) is a re-emerging endemic arbovirus in West Africa. Since July 2023, Senegal and Burkina Faso have been experiencing an ongoing outbreak, with over 300 confirmed cases detected so far in the regions of Kédougou and Tambacounda in Senegal, the largest recorded outbreak yet. CHIKV is typically maintained in a sylvatic cycle in Senegal but its evolution and factors contributing to re-emergence are so far unknown in West Africa, leaving a gap in understanding and responding to recurrent epidemics. We produced, in real-time, the first locally-generated and publicly available CHIKV whole genomes in West Africa, to characterize the genetic diversity of circulating strains, along with phylodynamic analysis to estimate time of emergence and population growth dynamics. A novel strain of the West African genotype, phylogenetically distinct from strains circulating in previous outbreaks, was identified. This suggests a likely new spillover from sylvatic cycles in rural Senegal and potential of seeding larger epidemics in urban settings in Senegal and elsewhere.
Collapse
|
9
|
Kawonga F, Misinzo G, Pemba DF. Serological and molecular evidence of chikungunya virus infection among febrile outpatients seeking healthcare in Northern Malawi. Infect Ecol Epidemiol 2023; 13:2229573. [PMID: 37387776 PMCID: PMC10304438 DOI: 10.1080/20008686.2023.2229573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 06/21/2023] [Indexed: 07/01/2023] Open
Abstract
Introduction: Despite global evidence of chikungunya fever (CHIKF) in humans that is caused by chikungunya virus (CHIKV), little is known about the occurrence of CHIKF in Malawi. This study was conducted to determine the seroprevalence of CHIKF and to molecularly confirm the presence of CHIKV ribonucleic acid (RNA) among febrile outpatients seeking health care at Mzuzu Central Hospital in the Northern Region of Malawi. Methods: Enzyme-immunosorbent assay (ELISA) was used to detect the presence or absence of specific antibodies against CHIKV. Reversetranscription polymerase chain reaction (RT-PCR) was conducted on randomly selected anti-CHIKV IgM-positive samples to detect CHIKV RNA. Results: Out of 119 CHIKF suspected samples analyzed, 73 tested positive for anti-CHIKV IgM antibodies, with an overall seroprevalence of 61.3%. Most of the CHIKV infected individuals presented with joint pain, abdominal pain, vomiting and nose bleeding with seroprevalence of 45.2%, 41.1%, 16.4% and 12.3%, respectively. All the randomly selected samples that were positive for CHIKV anti-IgM by ELISAhad detectable CHIKV RNA by RT-PCR. Conclusion: The presence of anti-CHIKV IgM antibodies suggests the presence of recent CHIKV infection. We therefore recommend for the inclusion of CHIKF as the differential diagnosis in febrile ill patients in Mzuzu city, Malawi.
Collapse
Affiliation(s)
- Flywell Kawonga
- Department of Veterinary Microbiology, Parasitology and Biotechnology, College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, Morogoro, Tanzania
- SACIDS African Centre of Excellence for Infectious Diseases of Humans and Animals, Sokoine University of Agriculture, Morogoro, Tanzania
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | - Gerald Misinzo
- Department of Veterinary Microbiology, Parasitology and Biotechnology, College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, Morogoro, Tanzania
- SACIDS African Centre of Excellence for Infectious Diseases of Humans and Animals, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Dylo Foster Pemba
- Vector Borne Disease Laboratory, University of Malawi, Zomba, Malawi
| |
Collapse
|
10
|
Kigozi BK, Kharod GA, Bukenya H, Shadomy SV, Haberling DL, Stoddard RA, Galloway RL, Tushabe P, Nankya A, Nsibambi T, Mbidde EK, Lutwama JJ, Perniciaro JL, Nicholson WL, Bower WA, Bwogi J, Blaney DD. Investigating the etiology of acute febrile illness: a prospective clinic-based study in Uganda. BMC Infect Dis 2023; 23:411. [PMID: 37328808 PMCID: PMC10276394 DOI: 10.1186/s12879-023-08335-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 05/17/2023] [Indexed: 06/18/2023] Open
Abstract
BACKGROUND Historically, malaria has been the predominant cause of acute febrile illness (AFI) in sub-Saharan Africa. However, during the last two decades, malaria incidence has declined due to concerted public health control efforts, including the widespread use of rapid diagnostic tests leading to increased recognition of non-malarial AFI etiologies. Our understanding of non-malarial AFI is limited due to lack of laboratory diagnostic capacity. We aimed to determine the etiology of AFI in three distinct regions of Uganda. METHODS A prospective clinic-based study that enrolled participants from April 2011 to January 2013 using standard diagnostic tests. Participant recruitment was from St. Paul's Health Centre (HC) IV, Ndejje HC IV, and Adumi HC IV in the western, central and northern regions, which differ by climate, environment, and population density. A Pearson's chi-square test was used to evaluate categorical variables, while a two-sample t-test and Krukalis-Wallis test were used for continuous variables. RESULTS Of the 1281 participants, 450 (35.1%), 382 (29.8%), and 449 (35.1%) were recruited from the western, central, and northern regions, respectively. The median age (range) was 18 (2-93) years; 717 (56%) of the participants were female. At least one AFI pathogen was identified in 1054 (82.3%) participants; one or more non-malarial AFI pathogens were identified in 894 (69.8%) participants. The non-malarial AFI pathogens identified were chikungunya virus, 716 (55.9%); Spotted Fever Group rickettsia (SFGR), 336 (26.2%) and Typhus Group rickettsia (TGR), 97 (7.6%); typhoid fever (TF), 74 (5.8%); West Nile virus, 7 (0.5%); dengue virus, 10 (0.8%) and leptospirosis, 2 (0.2%) cases. No cases of brucellosis were identified. Malaria was diagnosed either concurrently or alone in 404 (31.5%) and 160 (12.5%) participants, respectively. In 227 (17.7%) participants, no cause of infection was identified. There were statistically significant differences in the occurrence and distribution of TF, TGR and SFGR, with TF and TGR observed more frequently in the western region (p = 0.001; p < 0.001) while SFGR in the northern region (p < 0.001). CONCLUSION Malaria, arboviral infections, and rickettsioses are major causes of AFI in Uganda. Development of a Multiplexed Point-of-Care test would help identify the etiology of non-malarial AFI in regions with high AFI rates.
Collapse
Affiliation(s)
- Brian K Kigozi
- Uganda Virus Research Institute, Entebbe, Uganda.
- College of Health Sciences, Clinical Epidemiology Unit, Makerere University, Kampala, Uganda.
| | - Grishma A Kharod
- CDC Division of High-Consequence Pathogens and Pathology, Atlanta, USA
| | | | - Sean V Shadomy
- CDC Division of High-Consequence Pathogens and Pathology, Atlanta, USA
| | - Dana L Haberling
- CDC Division of High-Consequence Pathogens and Pathology, Atlanta, USA
| | - Robyn A Stoddard
- CDC Division of High-Consequence Pathogens and Pathology, Atlanta, USA
| | - Renee L Galloway
- CDC Division of High-Consequence Pathogens and Pathology, Atlanta, USA
| | | | - Annet Nankya
- Uganda Virus Research Institute, Entebbe, Uganda
| | - Thomas Nsibambi
- Uganda Virus Research Institute, Entebbe, Uganda
- US Centers for Disease Control and Prevention, Kampala, Uganda
| | | | | | | | | | - William A Bower
- CDC Division of High-Consequence Pathogens and Pathology, Atlanta, USA
| | | | - David D Blaney
- CDC Division of High-Consequence Pathogens and Pathology, Atlanta, USA
| |
Collapse
|
11
|
De Sousa FB, de Curcio JS, do Carmo Silva L, da Silva DMF, Salem-Izacc SM, Anunciação CE, Ribeiro BM, Garcia-Zapata MTA, de Paula Silveira-Lacerda E. Report of natural Mayaro virus infection in Mansonia humeralis (Dyar & Knab, Diptera: Culicidae). Parasit Vectors 2023; 16:140. [PMID: 37095528 PMCID: PMC10124708 DOI: 10.1186/s13071-023-05707-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 02/17/2023] [Indexed: 04/26/2023] Open
Abstract
BACKGROUND Arboviruses are a group of viruses transmitted to vertebrate hosts by certain blood-feeding arthropods. Among urban vectors of arboviruses, mosquitoes of the genus Aedes are the most common. However, other mosquitoes may be susceptible to infection and involved in the transmission, such as Mansonia spp. Therefore, this study aimed to investigate whether Mansonia humeralis can be infected with the Mayaro virus (MAYV). METHODS These insects were collected from 2018 to 2020 in chicken coops of rural communities in Jaci Paraná in Porto Velho, Rondônia, Brazil, while performing blood-feeding on roosters. The mosquitoes were randomly grouped in pools from which the head and thorax were macerated and checked for the presence of MAYV by quantitative reverse transcription polymerase chain reaction (RT-qPCR). The positive pools were used to infect the C6/36 cell line, and on different days post-infection, the supernatant of the infected cells was subjected to viral detection by RT-qPCR. RESULTS A total of 183 pools of female mosquitoes were tested, of which 18% were positive for MAYV; some samples from insect pools inoculated into C6/36 cells showed in vitro multiplication capacity between 3 and 7 days post-infection. CONCLUSIONS This is the first report of Ma. humeralis mosquitoes that are naturally infected by MAYV, indicating that these vectors may be potential transmitting agents of this arbovirus.
Collapse
Affiliation(s)
- Flávia Barreto De Sousa
- Unidade Sentinela e Centro de Referência em Medicina Internacional e de Viagens (USCREMIVI)/Núcleo de Estudos e Pesquisa de Agentes (Re) Emergentes (NUPEREME), Universidade Federal de Goiás, IPTSP/ICB, Goiânia, Goiás, Brazil
| | - Juliana Santana de Curcio
- Unidade Sentinela e Centro de Referência em Medicina Internacional e de Viagens (USCREMIVI)/Núcleo de Estudos e Pesquisa de Agentes (Re) Emergentes (NUPEREME), Universidade Federal de Goiás, IPTSP/ICB, Goiânia, Goiás, Brazil
| | - Lívia do Carmo Silva
- Unidade Sentinela e Centro de Referência em Medicina Internacional e de Viagens (USCREMIVI)/Núcleo de Estudos e Pesquisa de Agentes (Re) Emergentes (NUPEREME), Universidade Federal de Goiás, IPTSP/ICB, Goiânia, Goiás, Brazil
| | - Diego Michel Fernandes da Silva
- Unidade Sentinela e Centro de Referência em Medicina Internacional e de Viagens (USCREMIVI)/Núcleo de Estudos e Pesquisa de Agentes (Re) Emergentes (NUPEREME), Universidade Federal de Goiás, IPTSP/ICB, Goiânia, Goiás, Brazil
| | - Silvia Maria Salem-Izacc
- Unidade Sentinela e Centro de Referência em Medicina Internacional e de Viagens (USCREMIVI)/Núcleo de Estudos e Pesquisa de Agentes (Re) Emergentes (NUPEREME), Universidade Federal de Goiás, IPTSP/ICB, Goiânia, Goiás, Brazil
| | - Carlos Eduardo Anunciação
- Unidade Sentinela e Centro de Referência em Medicina Internacional e de Viagens (USCREMIVI)/Núcleo de Estudos e Pesquisa de Agentes (Re) Emergentes (NUPEREME), Universidade Federal de Goiás, IPTSP/ICB, Goiânia, Goiás, Brazil
| | | | - Marco Tulio A Garcia-Zapata
- Unidade Sentinela e Centro de Referência em Medicina Internacional e de Viagens (USCREMIVI)/Núcleo de Estudos e Pesquisa de Agentes (Re) Emergentes (NUPEREME), Universidade Federal de Goiás, IPTSP/ICB, Goiânia, Goiás, Brazil
| | - Elisângela de Paula Silveira-Lacerda
- Unidade Sentinela e Centro de Referência em Medicina Internacional e de Viagens (USCREMIVI)/Núcleo de Estudos e Pesquisa de Agentes (Re) Emergentes (NUPEREME), Universidade Federal de Goiás, IPTSP/ICB, Goiânia, Goiás, Brazil.
| |
Collapse
|
12
|
Kading RC, Borland EM, Mossel EC, Nakayiki T, Nalikka B, Ledermann JP, Crabtree MB, Panella NA, Nyakarahuka L, Gilbert AT, Kerbis-Peterhans JC, Towner JS, Amman BR, Sealy TK, Miller BR, Lutwama JJ, Kityo RM, Powers AM. Exposure of Egyptian Rousette Bats ( Rousettus aegyptiacus) and a Little Free-Tailed Bat ( Chaerephon pumilus) to Alphaviruses in Uganda. Diseases 2022; 10:diseases10040121. [PMID: 36547207 PMCID: PMC9777265 DOI: 10.3390/diseases10040121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/18/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
The reservoir for zoonotic o'nyong-nyong virus (ONNV) has remained unknown since this virus was first recognized in Uganda in 1959. Building on existing evidence for mosquito blood-feeding on various frugivorous bat species in Uganda, and seroprevalence for arboviruses among bats in Uganda, we sought to assess if serum samples collected from bats in Uganda demonstrated evidence of exposure to ONNV or the closely related zoonotic chikungunya virus (CHIKV). In total, 652 serum samples collected from six bat species were tested by plaque reduction neutralization test (PRNT) for neutralizing antibodies against ONNV and CHIKV. Forty out of 303 (13.2%) Egyptian rousettes from Maramagambo Forest and 1/13 (8%) little free-tailed bats from Banga Nakiwogo, Entebbe contained neutralizing antibodies against ONNV. In addition, 2/303 (0.7%) of these Egyptian rousettes contained neutralizing antibodies to CHIKV, and 8/303 (2.6%) contained neutralizing antibodies that were nonspecifically reactive to alphaviruses. These data support the interepidemic circulation of ONNV and CHIKV in Uganda, although Egyptian rousette bats are unlikely to serve as reservoirs for these viruses given the inconsistent occurrence of antibody-positive bats.
Collapse
Affiliation(s)
- Rebekah C. Kading
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
- Arbovirus Diseases Branch, Division of Vector-Borne Diseases, U.S. Centers for Disease Control and Prevention, Fort Collins, CO 80521, USA
- Correspondence: ; Tel.: +1-970-491-7833
| | - Erin M. Borland
- Arbovirus Diseases Branch, Division of Vector-Borne Diseases, U.S. Centers for Disease Control and Prevention, Fort Collins, CO 80521, USA
| | - Eric C. Mossel
- Arbovirus Diseases Branch, Division of Vector-Borne Diseases, U.S. Centers for Disease Control and Prevention, Fort Collins, CO 80521, USA
| | - Teddy Nakayiki
- Department of Arbovirology, Emerging, and Re-Emerging Infections, Uganda Virus Research Institute, Entebbe, Uganda
| | - Betty Nalikka
- Department of Zoology, Entomology, and Fisheries Science, Makerere University, Kampala, Uganda
| | - Jeremy P. Ledermann
- Arbovirus Diseases Branch, Division of Vector-Borne Diseases, U.S. Centers for Disease Control and Prevention, Fort Collins, CO 80521, USA
| | - Mary B. Crabtree
- Arbovirus Diseases Branch, Division of Vector-Borne Diseases, U.S. Centers for Disease Control and Prevention, Fort Collins, CO 80521, USA
| | - Nicholas A. Panella
- Arbovirus Diseases Branch, Division of Vector-Borne Diseases, U.S. Centers for Disease Control and Prevention, Fort Collins, CO 80521, USA
| | - Luke Nyakarahuka
- Department of Arbovirology, Emerging, and Re-Emerging Infections, Uganda Virus Research Institute, Entebbe, Uganda
| | - Amy T. Gilbert
- Animal Plant Health Inspection Service, National Wildlife Research Center, United States Department of Agriculture, Fort Collins, CO 80521, USA
- Poxvirus and Rabies Branch, Division of High-Consequence Pathogens, United States Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Julian C. Kerbis-Peterhans
- Negaunee Integrative Research Center, Field Museum of Natural History, College of Arts & Sciences, Roosevelt University, Chicago, IL 60605, USA
| | - Jonathan S. Towner
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens, United States Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Brian R. Amman
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens, United States Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Tara K. Sealy
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens, United States Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Barry R. Miller
- Arbovirus Diseases Branch, Division of Vector-Borne Diseases, U.S. Centers for Disease Control and Prevention, Fort Collins, CO 80521, USA
| | - Julius J. Lutwama
- Department of Arbovirology, Emerging, and Re-Emerging Infections, Uganda Virus Research Institute, Entebbe, Uganda
| | - Robert M. Kityo
- Department of Zoology, Entomology, and Fisheries Science, Makerere University, Kampala, Uganda
| | - Ann M. Powers
- Arbovirus Diseases Branch, Division of Vector-Borne Diseases, U.S. Centers for Disease Control and Prevention, Fort Collins, CO 80521, USA
| |
Collapse
|
13
|
Hakim MS, Annisa L, Gazali FM, Aman AT. The origin and continuing adaptive evolution of chikungunya virus. Arch Virol 2022; 167:2443-2455. [PMID: 35987965 DOI: 10.1007/s00705-022-05570-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 07/05/2022] [Indexed: 12/14/2022]
Abstract
Chikungunya virus (CHIKV) is the responsible agent of chikungunya fever, a debilitating arthritic disease in humans. CHIKV is endemic in Africa and Asia, although transmission cycles are considerably different on these continents. Before 2004, CHIKV had received little attention, since it was only known to cause localised outbreaks in a limited region with no fatalities. However, the recent global reemergence of CHIKV has caused serious global health problems and shown its potential to become a significant viral threat in the future. Unexpectedly, the reemergence is more rapid and is geographically more extensive, especially due to increased intensity of global travel systems or failure to contain mosquito populations. Another important factor is the successful adaptation of CHIKV to a new vector, the Aedes albopictus mosquito. Ae. albopictus survives in both temperate and tropical climates, thus facilitating CHIKV expansion to non-endemic regions. The continuous spread and transmission of CHIKV pose challenges for the development of effective vaccines and specific antiviral therapies. In this review, we discuss the biology and origin of CHIKV in Africa as well as its subsequent expansion to other parts of the world. We also review the transmission cycle of CHIKV and its continuing adaptation to its mosquito vectors and vertebrate hosts. More-complete understanding of the continuous evolution of CHIKV may help in predicting the emergence of CHIKV strains with possibly greater transmission efficiency in the future.
Collapse
Affiliation(s)
- Mohamad S Hakim
- Department of Microbiology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia.
| | - Luthvia Annisa
- Department of Microbiology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| | - Faris M Gazali
- Master Program in Biotechnology, Postgraduate School, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Abu T Aman
- Department of Microbiology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| |
Collapse
|
14
|
A Review on Chikungunya Virus Epidemiology, Pathogenesis and Current Vaccine Development. Viruses 2022; 14:v14050969. [PMID: 35632709 PMCID: PMC9147731 DOI: 10.3390/v14050969] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/28/2022] [Accepted: 05/03/2022] [Indexed: 12/20/2022] Open
Abstract
Chikungunya virus (CHIKV) is a mosquito-borne alphavirus that recently re-emerged in many parts of the world causing large-scale outbreaks. CHIKV infection presents as a febrile illness known as chikungunya fever (CHIKF). Infection is self-limited and characterized mainly by severe joint pain and myalgia that can last for weeks or months; however, severe disease presentation can also occur in a minor proportion of infections. Among the atypical CHIKV manifestations that have been described, severe arthralgia and neurological complications, such as encephalitis, meningitis, and Guillain–Barré Syndrome, are now reported in many outbreaks. Moreover, death cases were also reported, placing CHIKV as a relevant public health disease. Virus evolution, globalization, and climate change may have contributed to CHIKV spread. In addition to this, the lack of preventive vaccines and approved antiviral treatments is turning CHIKV into a major global health threat. In this review, we discuss the current knowledge about CHIKV pathogenesis, with a focus on atypical disease manifestations, such as persistent arthralgia and neurologic disease presentation. We also bring an up-to-date review of the current CHIKV vaccine development. Altogether, these topics highlight some of the most recent advances in our understanding of CHIKV pathogenesis and also provide important insights into the current development and clinical trials of CHIKV potential vaccine candidates.
Collapse
|
15
|
Diallo D, Diouf B, Gaye A, NDiaye EH, Sene NM, Dia I, Diallo M. Dengue vectors in Africa: A review. Heliyon 2022; 8:e09459. [PMID: 35620619 PMCID: PMC9126922 DOI: 10.1016/j.heliyon.2022.e09459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/04/2021] [Accepted: 05/12/2022] [Indexed: 11/25/2022] Open
Abstract
Dengue fever is a mosquito-borne-disease of growing public health importance in Africa. The continuous increase of number and frequency of outbreaks of dengue fever, especially in urban area in Africa underline the need to review the current data available on vectors involved in dengue virus transmission in Africa. Here, we summarized the available data on vectors involved in the transmission of dengue virus in the sylvatic and urban environments, vertical transmission, vector competence studies, and vector control strategies used in Africa. The virus was isolated mainly from Aedes furcifer, Ae. luteocephalus, and Ae. taylori in the sylvatic environment and from Ae. aegypti and Ae. albopictus in the urban areas. Prospective and urgently needed studies on vectors biology, behavior, and alternative control strategies are suggested.
Collapse
Affiliation(s)
- Diawo Diallo
- Pôle de Zoologie Médicale, Institut Pasteur de Dakar, 36 Avenue Pasteur, BP 220, Dakar, Senegal
| | - Babacar Diouf
- Pôle de Zoologie Médicale, Institut Pasteur de Dakar, 36 Avenue Pasteur, BP 220, Dakar, Senegal
| | - Alioune Gaye
- Pôle de Zoologie Médicale, Institut Pasteur de Dakar, 36 Avenue Pasteur, BP 220, Dakar, Senegal
| | - El Hadji NDiaye
- Pôle de Zoologie Médicale, Institut Pasteur de Dakar, 36 Avenue Pasteur, BP 220, Dakar, Senegal
| | - Ndeye Marie Sene
- Pôle de Zoologie Médicale, Institut Pasteur de Dakar, 36 Avenue Pasteur, BP 220, Dakar, Senegal
| | - Ibrahima Dia
- Pôle de Zoologie Médicale, Institut Pasteur de Dakar, 36 Avenue Pasteur, BP 220, Dakar, Senegal
| | - Mawlouth Diallo
- Pôle de Zoologie Médicale, Institut Pasteur de Dakar, 36 Avenue Pasteur, BP 220, Dakar, Senegal
| |
Collapse
|
16
|
Li Y. Molecular epidemiology of yellow fever virus in Africa: A perspective of the phylogeographic split between East/Central African and West African lineages. Acta Trop 2022; 225:106199. [PMID: 34740635 DOI: 10.1016/j.actatropica.2021.106199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/14/2021] [Accepted: 10/15/2021] [Indexed: 11/16/2022]
Abstract
Yellow fever (YF) is a major public-health problem in Africa. Yellow fever virus (YFV), the etiological agent responsible for the disease, exhibits clear delineation of phylogeography between East/Central Africa and West Africa. In order to decipher the genetic nature of the YFV epidemic between these areas, we performed a genome-wide study on its African isolates using the McDonald-Kreitman (MK) test in combination with the type II functional divergence analysis. The results showed that adaptive genetic diversifications have occurred on viral nonstructural protein 1 (NS1) and NS5, which are essential for viral genome replication and immune antagonism, with the East/Central African-West African epidemic split. On both proteins, a number of amino acid replacements have been favored by functional divergence. These findings could help to bridge the gap between the phylogeographic delineation and niche adaptation underlying the YFV-epidemic across Africa and shed light on viral determinants of this process.
Collapse
Affiliation(s)
- Yan Li
- College of Animal Science and Technology, Sichuan Agricultural University, Wenjiang, People's Republic of China.
| |
Collapse
|
17
|
Review of the ecology and behaviour of Aedes aegypti and Aedes albopictus in Western Africa and implications for vector control. CURRENT RESEARCH IN PARASITOLOGY & VECTOR-BORNE DISEASES 2022; 2:100074. [PMID: 35726222 PMCID: PMC7612875 DOI: 10.1016/j.crpvbd.2021.100074] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Western Africa is vulnerable to arboviral disease transmission, having recently experienced major outbreaks of chikungunya, dengue, yellow fever and Zika. However, there have been relatively few studies on the natural history of the two major human arbovirus vectors in this region, Aedes aegypti and Ae. albopictus, potentially limiting the implementation of effective vector control. We systematically searched for and reviewed relevant studies on the behaviour and ecology of Ae. aegypti and Ae. albopictus in Western Africa, published over the last 40 years. We identified 73 relevant studies, over half of which were conducted in Nigeria, Senegal, or Côte d'Ivoire. Most studies investigated the ecology of Ae. aegypti and Ae. albopictus, exploring the impact of seasonality and land cover on mosquito populations and identifying aquatic habitats. This review highlights the adaptation of Ae. albopictus to urban environments and its invasive potential, and the year-round maintenance of Ae. aegypti populations in water storage containers. However, important gaps were identified in the literature on the behaviour of both species, particularly Ae. albopictus. In Western Africa, Ae. aegypti and Ae. albopictus appear to be mainly anthropophilic and to bite predominantly during the day, but further research is needed to confirm this to inform planning of effective vector control strategies. We discuss the public health implications of these findings and comment on the suitability of existing and novel options for control in Western Africa.
Collapse
|
18
|
Diouf B, Sene NM, Ndiaye EH, Gaye A, Ngom EHM, Gueye A, Seck F, Diagne CT, Dia I, Diallo M, Diallo D. Resting Behavior of Blood-Fed Females and Host Feeding Preferences of Aedes aegypti (Diptera: Culicidae) Morphological Forms in Senegal. JOURNAL OF MEDICAL ENTOMOLOGY 2021; 58:2467-2473. [PMID: 34165556 DOI: 10.1093/jme/tjab111] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Indexed: 06/13/2023]
Abstract
Aedes aegypti (Linnaeus) is the main vector of most arboviruses in tropical and subtropical urban areas. In West Africa, particularly in Senegal, domestic and wild populations have been described. Both Ae. aegypti aegypti (Aaa) and Ae. aegypti formosus (Aaf) were found in progenies of Ae. aegypti families from several localities of Senegal. However, nothing is known about their resting and trophic behavior, which are key data for vector control. To fill this gap, blood-fed mosquitoes were collected monthly indoors and outdoors with BackPack aspirators and BG-Sentinel 2 traps between July and November 2019 from four urban sites. The enzyme-linked immunosorbent assay technique was used to analyze blood-fed Aaa and Aaf specimens. Both forms were found resting in all investigated places with the highest proportions found in scrap metals (51.7% for Aaa and 44.1% for Aaf) and used tires (19.2% for Aaa and 26.1% for Aaf). Blood-fed Aaf females showed lower occupation of the indoors environment compared to Aaa. Overall, the percentages of single bloodmeals from human were 80.5% (916/1138) for Aaa and 71.1% (263/370) for Aaf. A low frequency of other domestic hosts, including bovine, ovine, and cat were detected for both forms. This study provides the first data on resting and trophic behavior of Aaa and Aaf in Senegal. Both forms showed differences in their resting behavior but fed primarily on human and highlight the risk of arboviruses transmission in urban areas.
Collapse
Affiliation(s)
- Babacar Diouf
- Pôle de Zoologie Médicale, Institut Pasteur de Dakar, Dakar, Senegal
| | - Ndeye Marie Sene
- Pôle de Zoologie Médicale, Institut Pasteur de Dakar, Dakar, Senegal
| | - El Hadj Ndiaye
- Pôle de Zoologie Médicale, Institut Pasteur de Dakar, Dakar, Senegal
| | - Alioune Gaye
- Pôle de Zoologie Médicale, Institut Pasteur de Dakar, Dakar, Senegal
| | | | - Assiyatou Gueye
- Pôle de Zoologie Médicale, Institut Pasteur de Dakar, Dakar, Senegal
| | - Fatoumata Seck
- Pôle de Zoologie Médicale, Institut Pasteur de Dakar, Dakar, Senegal
| | | | - Ibrahima Dia
- Pôle de Zoologie Médicale, Institut Pasteur de Dakar, Dakar, Senegal
| | - Mawlouth Diallo
- Pôle de Zoologie Médicale, Institut Pasteur de Dakar, Dakar, Senegal
| | - Diawo Diallo
- Pôle de Zoologie Médicale, Institut Pasteur de Dakar, Dakar, Senegal
| |
Collapse
|
19
|
Manzoor KN, Javed F, Ejaz M, Ali M, Mujaddadi N, Khan AA, Khattak AA, Zaib A, Ahmad I, Saeed WK, Manzoor S. The global emergence of Chikungunya infection: An integrated view. Rev Med Virol 2021; 32:e2287. [PMID: 34428335 DOI: 10.1002/rmv.2287] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/08/2021] [Accepted: 08/09/2021] [Indexed: 11/08/2022]
Abstract
Chikungunya virus (CHIKV) is one of the emerging viruses around the globe. It belongs to the family Togaviridae and genus Alphavirus and is an arthropod borne virus that transmits by the bite of an infected mosquito, mainly through Aedes aegypti and Aedes albopcitus. It is a spherical, enveloped virus with positive single stranded RNA genome. It was first discovered during 1952-53 in Tanganyika, after which outbreaks were documented in many regions of the world. CHIKV has two transmission cycles; an enzootic sylvatic cycle and an urban cycle. CHIKV genome contains 11,900 nucleotides and two open reading frames and shows great sequence variability. Molecular mechanisms of virus host-cell interactions and the pathogenesis of disease are not fully understood. The disease involves three phases; acute, post-acute and chronic with symptoms including high-grade fever, arthralgia, macupapular rashes and headache. There is no licensed vaccine or specific treatment for CHIKV infection. This lack of specific interventions combined with difficulties in making a precise diagnosis together make the disease difficult to manage. In this review we aim to present the current knowledge of global epidemiology, transmission, structure, various aspects of diagnosis as well as highlight potential antiviral drugs and vaccines against CHIKV.
Collapse
Affiliation(s)
| | - Farakh Javed
- Department of Biomedical Sciences, Pak-Autria Fachhochschule: Institute of Applied Sciences & Technology, Haripur, Pakistan
| | - Muhammad Ejaz
- Department of Microbiology, The University of Haripur, Haripur, Pakistan
| | - Mubashar Ali
- Department of Microbiology, The University of Haripur, Haripur, Pakistan
| | - Neelam Mujaddadi
- Department of Microbiology, The University of Haripur, Haripur, Pakistan
| | - Abid Ali Khan
- Institute of Precision Medicine, Hochschule Furtwangen University, Furtwangen im Schwarzwald, Germany
| | - Aamer Ali Khattak
- Department of Medical Lab Technology, The University of Haripur, Haripur, Pakistan
| | - Assad Zaib
- Department of Medical Lab Technology, The University of Haripur, Haripur, Pakistan
| | - Ibrar Ahmad
- Center for Human Genetics, Hazara University, Mansehra, Pakistan
| | - Waqar Khalid Saeed
- Department of Biomedical Sciences, Pak-Autria Fachhochschule: Institute of Applied Sciences & Technology, Haripur, Pakistan
| | - Sobia Manzoor
- Atta-ur-Rehman school of applied biosciences, National University of science and Technology, Islamabad, Pakistan
| |
Collapse
|
20
|
Hanafi-Bojd AA, Motazakker M, Vatandoost H, Dabiri F, Chavshin AR. Sindbis virus infection of mosquito species in the wetlands of northwestern Iran and modeling the probable ecological niches of SINV vectors in the country. Acta Trop 2021; 220:105952. [PMID: 33979644 DOI: 10.1016/j.actatropica.2021.105952] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 04/17/2021] [Accepted: 04/30/2021] [Indexed: 10/21/2022]
Abstract
Sindbis virus (SINV) and Chikungunya virus (CHIKV) are among the most widely spread mosquito-borne viruses worldwide. Due to the key role of mosquitoes in the transmission cycle of vector-borne diseases, models such as Maximum Entropy (MaxEnt) have been used in recent years to predict the environmental suitability and ecological niches of mosquito vectors. Infection of three mosquito species (Anopheles maculipennis s.l., Culex tritaeniorhynchus, and Culiseta longiareolata) with CHIKV has recently been reported in Iran. However, given the importance of vector-borne diseases in the country, there is a need for extensive studies on the infection of mosquitoes with CHIKV and SINV in different areas of the country. Accordingly, the current research was conducted to investigate the infection of mosquitoes with the two aforementioned viruses in the northwestern part of Iran and also to model the ecological niches of the vectors of these mosquito-borne viruses in the country. In the current study, 4639 mosquito specimens, consisting of 2515 adults and 2124 larvae, were collected from the wetlands of West Azerbaijan Province and identified. Ten species belonging to four genera were identified in this study. The specimens were allocated to 149 pools for the determination of infection with CHIKV and SINV. The amplification pattern of five pools comprising two mosquito species (Culex pipiens complex and Cx. Theileri) corresponded to the reference strain of SINV, and the isolates were sequenced to confirm the presence of SINV genome. No cases of CHIKV infection were found among the 149 examined mosquito pools. Data on the distribution of Cx. Pipiens complex and Cx. Theileri were mapped using ArcMap 10.5. Prediction maps of the presence probability for these species revealed that they are most likely to be found in and spread to the north, northwest, south, and southeastern areas of the country and in areas with abundant water resources. For the first time in Iran, our study investigated the presence probability of SINV vectors using ecological niche modeling. Ecological niche profiling showed that the most suitable habitats for Cx. pipiens are mainly concentrated in the north and northwestern parts of the country, whereas Cx. theileri is mostly located in the northwest and western regions. However, there were some other areas of low suitability for these two species in the country. Further studies in a broader geographical area with more species of mosquitos and the determination of infection with other mosquito-borne viruses can provide a clear understanding of the potential spread of mosquito-borne diseases in various regions of Iran.
Collapse
|
21
|
Diagne MM, Ndione MHD, Gaye A, Barry MA, Diallo D, Diallo A, Mwakibete LL, Diop M, Ndiaye EH, Ahyong V, Diouf B, Mhamadi M, Diagne CT, Danfakha F, Diop B, Faye O, Loucoubar C, Fall G, Tato CM, Sall AA, Weaver SC, Diallo M, Faye O. Yellow Fever Outbreak in Eastern Senegal, 2020-2021. Viruses 2021; 13:v13081475. [PMID: 34452343 PMCID: PMC8402698 DOI: 10.3390/v13081475] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 07/23/2021] [Accepted: 07/24/2021] [Indexed: 01/07/2023] Open
Abstract
Yellow fever virus remains a major threat in low resource countries in South America and Africa despite the existence of an effective vaccine. In Senegal and particularly in the eastern part of the country, periodic sylvatic circulation has been demonstrated with varying degrees of impact on populations in perpetual renewal. We report an outbreak that occurred from October 2020 to February 2021 in eastern Senegal, notified and managed through the synergistic effort yellow fever national surveillance implemented by the Senegalese Ministry of Health in collaboration with the World Health Organization, the countrywide 4S network set up by the Ministry of Health, the Institut Pasteur de Dakar, and the surveillance of arboviruses and hemorrhagic fever viruses in human and vector populations implemented since mid 2020 in eastern Senegal. Virological analyses highlighted the implication of sylvatic mosquito species in virus transmission. Genomic analysis showed a close relationship between the circulating strain in eastern Senegal, 2020, and another one from the West African lineage previously detected and sequenced two years ago from an unvaccinated Dutch traveler who visited the Gambia and Senegal before developing signs after returning to Europe. Moreover, genome analysis identified a 6-nucleotide deletion in the variable domain of the 3′UTR with potential impact on the biology of the viral strain that merits further investigations. Integrated surveillance of yellow fever virus but also of other arboviruses of public health interest is crucial in an ecosystem such as eastern Senegal.
Collapse
Affiliation(s)
- Moussa Moïse Diagne
- Virology Department, Institut Pasteur de Dakar, Dakar 220, Senegal; (M.H.D.N.); (M.M.); (C.T.D.); (O.F.); (G.F.); (A.A.S.); (O.F.)
- Correspondence: ; Tel.: +221-77-405-9928
| | - Marie Henriette Dior Ndione
- Virology Department, Institut Pasteur de Dakar, Dakar 220, Senegal; (M.H.D.N.); (M.M.); (C.T.D.); (O.F.); (G.F.); (A.A.S.); (O.F.)
| | - Alioune Gaye
- Zoology Medical Department, Institut Pasteur de Dakar, Dakar 220, Senegal; (A.G.); (D.D.); (E.H.N.); (B.D.); (M.D.)
| | - Mamadou Aliou Barry
- Epidemiology, Clinical Research and Data Science Department, Institut Pasteur de Dakar, Dakar 220, Senegal; (M.A.B.); (A.D.); (M.D.); (C.L.)
| | - Diawo Diallo
- Zoology Medical Department, Institut Pasteur de Dakar, Dakar 220, Senegal; (A.G.); (D.D.); (E.H.N.); (B.D.); (M.D.)
| | - Amadou Diallo
- Epidemiology, Clinical Research and Data Science Department, Institut Pasteur de Dakar, Dakar 220, Senegal; (M.A.B.); (A.D.); (M.D.); (C.L.)
| | - Lusajo L. Mwakibete
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA; (L.L.M.); (V.A.); (C.M.T.)
| | - Mamadou Diop
- Epidemiology, Clinical Research and Data Science Department, Institut Pasteur de Dakar, Dakar 220, Senegal; (M.A.B.); (A.D.); (M.D.); (C.L.)
| | - El Hadji Ndiaye
- Zoology Medical Department, Institut Pasteur de Dakar, Dakar 220, Senegal; (A.G.); (D.D.); (E.H.N.); (B.D.); (M.D.)
| | - Vida Ahyong
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA; (L.L.M.); (V.A.); (C.M.T.)
| | - Babacar Diouf
- Zoology Medical Department, Institut Pasteur de Dakar, Dakar 220, Senegal; (A.G.); (D.D.); (E.H.N.); (B.D.); (M.D.)
| | - Moufid Mhamadi
- Virology Department, Institut Pasteur de Dakar, Dakar 220, Senegal; (M.H.D.N.); (M.M.); (C.T.D.); (O.F.); (G.F.); (A.A.S.); (O.F.)
| | - Cheikh Tidiane Diagne
- Virology Department, Institut Pasteur de Dakar, Dakar 220, Senegal; (M.H.D.N.); (M.M.); (C.T.D.); (O.F.); (G.F.); (A.A.S.); (O.F.)
| | - Fodé Danfakha
- Kedougou Medical Region, Ministry of Health, Kedougou 26005, Senegal;
| | - Boly Diop
- Prevention Department, Ministry of Health, Dakar 220, Senegal;
| | - Oumar Faye
- Virology Department, Institut Pasteur de Dakar, Dakar 220, Senegal; (M.H.D.N.); (M.M.); (C.T.D.); (O.F.); (G.F.); (A.A.S.); (O.F.)
| | - Cheikh Loucoubar
- Epidemiology, Clinical Research and Data Science Department, Institut Pasteur de Dakar, Dakar 220, Senegal; (M.A.B.); (A.D.); (M.D.); (C.L.)
| | - Gamou Fall
- Virology Department, Institut Pasteur de Dakar, Dakar 220, Senegal; (M.H.D.N.); (M.M.); (C.T.D.); (O.F.); (G.F.); (A.A.S.); (O.F.)
| | - Cristina M. Tato
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA; (L.L.M.); (V.A.); (C.M.T.)
| | - Amadou Alpha Sall
- Virology Department, Institut Pasteur de Dakar, Dakar 220, Senegal; (M.H.D.N.); (M.M.); (C.T.D.); (O.F.); (G.F.); (A.A.S.); (O.F.)
| | - Scott C. Weaver
- World Reference Center for Emerging Viruses and Arboviruses, Institute for Human Infections and Immunity and Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA;
| | - Mawlouth Diallo
- Zoology Medical Department, Institut Pasteur de Dakar, Dakar 220, Senegal; (A.G.); (D.D.); (E.H.N.); (B.D.); (M.D.)
| | - Ousmane Faye
- Virology Department, Institut Pasteur de Dakar, Dakar 220, Senegal; (M.H.D.N.); (M.M.); (C.T.D.); (O.F.); (G.F.); (A.A.S.); (O.F.)
| |
Collapse
|
22
|
Galani BRT, Mapouokam DW, Simo FBN, Mohamadou H, Chuisseu PDD, Njintang NY, Moundipa PF. Investigation of dengue-malaria coinfection among febrile patients consulting at Ngaoundere Regional Hospital, Cameroon. J Med Virol 2021; 93:3350-3361. [PMID: 33325045 DOI: 10.1002/jmv.26732] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/17/2020] [Accepted: 12/13/2020] [Indexed: 01/22/2023]
Abstract
This study aimed at evaluating the seroprevalence of dengue among malarious patients consulting at the Ngaoundere Regional Hospital. During 2 months and a half, 174 participants were recruited and their blood samples were screened for Plasmodium spp and then for Dengue virus (DENV) infection using rapid diagnostic tests. Also, hematological asparameters were measured using a hematology autoanalyzer. Among patients tested, 134 (77.01%) were malaria-positive, and 12/134 (8.95%) were coinfected. In this population, 8/12 (66.67%) were only anti-DENV IgM-positive, 3/12 (25%) were both NS1 and anti-DENV IgM positive, and 1/12 (8.33%) were anti-DENV IgG-positive. Furthermore, women were more affected (58.3%) than men (41.7%). The most affected age groups were young people aged less than or equal to 15 years (33.3%) and adults aged between 30 and 45 years (33.3%). A significant association (p < .05; odds ratio [OR] = 5.16) was found between the age range (30-45) and dengue-malaria coinfection. Similarly, we noted a significant association between the coinfection, and joint pain (p < .05; OR = 6.15), fatigue (p < .01; OR = 5.74), and chills (p < .05; OR = 0). Analysis of hematologic parameters showed a significant decrease (p < .001) in platelets in coinfected patients compared with monoinfected patients. In conclusion, dengue-malaria coinfection is a reality in Ngaoundere city and associated with the appearance of clinical features which predict the disease severity.
Collapse
Affiliation(s)
- Borris R T Galani
- Department of Biological Sciences, Faculty of Science, Laboratory of Applied Biochemistry, University of Ngaoundere, Ngaoundere, Cameroon
- Department of Biochemistry, Laboratory of Pharmacology and Toxicology, Faculty of Science, University of Yaounde I, Yaounde, Cameroon
| | - Danielle W Mapouokam
- Department of Biological Sciences, Faculty of Science, Laboratory of Applied Biochemistry, University of Ngaoundere, Ngaoundere, Cameroon
| | - Fredy B N Simo
- Department of Biochemistry, Laboratory of Pharmacology and Toxicology, Faculty of Science, University of Yaounde I, Yaounde, Cameroon
| | | | - Pascal D D Chuisseu
- Department of Biochemistry, Laboratory of Pharmacology and Toxicology, Faculty of Science, University of Yaounde I, Yaounde, Cameroon
- Higher Institute of Health Sciences, Université des Montagnes, Bangangté, Cameroon
| | - Nicolas Y Njintang
- Department of Biological Sciences, Faculty of Science, Laboratory of Applied Biochemistry, University of Ngaoundere, Ngaoundere, Cameroon
| | - Paul F Moundipa
- Department of Biochemistry, Laboratory of Pharmacology and Toxicology, Faculty of Science, University of Yaounde I, Yaounde, Cameroon
| |
Collapse
|
23
|
Young KI, Buenemann M, Vasilakis N, Perera D, Hanley KA. Shifts in mosquito diversity and abundance along a gradient from oil palm plantations to conterminous forests in Borneo. Ecosphere 2021; 12. [PMID: 33996190 DOI: 10.1002/ecs2.3463] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Deforestation precipitates spillover of enzootic, vector-borne viruses into humans, but specific mechanisms for this effect have rarely been investigated. Expansion of oil palm cultivation is a major driver of deforestation. Here, we demonstrate that mosquito abundance decreased over ten stepwise distances from interior forest into conterminous palm plantations in Borneo. Diversity in interior plantation narrowed to one species, Aedes albopictus, a potential bridge vector for spillover of multiple viruses. A. albopictus was equally abundant across all distances in forests, forest-plantation edge, and plantations, while A. niveus, a known vector of sylvatic dengue virus, was found only in forests. A. albopictus collections were significantly female-biased in plantation but not in edge or forest. Our data reveal that the likelihood of encountering any mosquito is greater in interior forest and edge than plantation, while the likelihood of encountering A. albopictus is equivalent across the gradient sampled from interior plantation to interior forest.
Collapse
Affiliation(s)
- Katherine I Young
- Department of Biology, New Mexico State University, 1780 E University Ave, Las Cruces, New Mexico 88003 USA
| | - Michaela Buenemann
- Department of Geography, New Mexico State University, 1780 E University Ave, Las Cruces, New Mexico 88003 USA
| | - Nikos Vasilakis
- Department of Pathology, Center for Biodefense and Emerging Infectious Diseases, Center of Tropical Diseases, and Institute for Human Infections and Immunity, The University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas 77555 USA
| | - David Perera
- Institute of Health and Community Medicine, Universiti Malaysia Sarawak, Jalan Datuk Mohammad Musa, 94300 Kota Samarahan, Sarawak, Malaysia
| | - Kathryn A Hanley
- Department of Biology, New Mexico State University, 1780 E University Ave, Las Cruces, New Mexico 88003 USA
| |
Collapse
|
24
|
Morgan J, Strode C, Salcedo-Sora JE. Climatic and socio-economic factors supporting the co-circulation of dengue, Zika and chikungunya in three different ecosystems in Colombia. PLoS Negl Trop Dis 2021; 15:e0009259. [PMID: 33705409 PMCID: PMC7987142 DOI: 10.1371/journal.pntd.0009259] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 03/23/2021] [Accepted: 02/20/2021] [Indexed: 02/06/2023] Open
Abstract
Dengue, Zika and chikungunya are diseases of global health significance caused by arboviruses and transmitted by the mosquito Aedes aegypti, which is of worldwide circulation. The arrival of the Zika and chikungunya viruses to South America increased the complexity of transmission and morbidity caused by these viruses co-circulating in the same vector mosquito species. Here we present an integrated analysis of the reported arbovirus cases between 2007 and 2017 and local climate and socio-economic profiles of three distinct Colombian municipalities (Bello, Cúcuta and Moniquirá). These locations were confirmed as three different ecosystems given their contrasted geographic, climatic and socio-economic profiles. Correlational analyses were conducted with both generalised linear models and generalised additive models for the geographical data. Average temperature, minimum temperature and wind speed were strongly correlated with disease incidence. The transmission of Zika during the 2016 epidemic appeared to decrease circulation of dengue in Cúcuta, an area of sustained high incidence of dengue. Socio-economic factors such as barriers to health and childhood services, inadequate sanitation and poor water supply suggested an unfavourable impact on the transmission of dengue, Zika and chikungunya in all three ecosystems. Socio-demographic influencers were also discussed including the influx of people to Cúcuta, fleeing political and economic instability from neighbouring Venezuela. Aedes aegypti is expanding its range and increasing the global threat of these diseases. It is therefore vital that we learn from the epidemiology of these arboviruses and translate it into an actionable local knowledge base. This is even more acute given the recent historical high of dengue cases in the Americas in 2019, preceding the COVID-19 pandemic, which is itself hampering mosquito control efforts.
Collapse
Affiliation(s)
- Jasmine Morgan
- Department of Biology, Edge Hill University, Lancashire, United Kingdom
| | - Clare Strode
- Department of Biology, Edge Hill University, Lancashire, United Kingdom
- * E-mail: (CS); (JES-S)
| | - J. Enrique Salcedo-Sora
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
- * E-mail: (CS); (JES-S)
| |
Collapse
|
25
|
Probable contribution of Culex quinquefasciatus mosquitoes to the circulation of chikungunya virus during an outbreak in Mombasa County, Kenya, 2017-2018. Parasit Vectors 2021; 14:138. [PMID: 33673872 PMCID: PMC7934458 DOI: 10.1186/s13071-021-04632-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 02/06/2021] [Indexed: 11/10/2022] Open
Abstract
Background Chikungunya virus is an alphavirus, primarily transmitted by Aedes aegypti and Ae. albopictus. In late 2017–2018, an outbreak of chikungunya occurred in Mombasa county, Kenya, and investigations were conducted to establish associated entomological risk factors. Methods Homes were stratified and water-filled containers inspected for immature Ae. aegypti, and larval indices were calculated. Adult mosquitoes were collected in the same homesteads using BG-Sentinel and CDC light traps and screened for chikungunya virus. Experiments were also conducted to determine the ability of Culex quinquefasciatus to transmit chikungunya virus. Results One hundred thirty-one houses and 1637 containers were inspected; 48 and 128 of them, respectively, were positive for immature Ae. aegypti, with the house index (36.60), container index (7.82) and Breteau index (97.71) recorded. Jerry cans (n = 1232; 72.26%) and clay pots (n = 2; 0.12%) were the most and least inspected containers, respectively, while drums, the second most commonly sampled (n = 249; 15.21%), were highly positive (65.63%) and productive (60%). Tires and jerry cans demonstrated the highest and lowest breeding preference ratios, 11.36 and 0.2, respectively. Over 6900 adult mosquitoes were collected and identified into 15 species comprising Cx. quinquefasciatus (n = 4492; 65.04%), Aedes vittatus (n = 1137; 16.46%) and Ae. aegypti (n = 911; 13.19%) and 2 species groups. Simpson’s dominance and Shannon-Wiener diversity indices of 0.4388 and 1.1942 were recorded, respectively. Chikungunya virus was isolated from pools of Ae. aegypti (1) and Cx. quinquefasciatus (4), two of which were males. Minimum infection rates of 3.0 and 0.8 were observed for female Ae. aegypti and Cx. quinquefasciatus, respectively. Between 25 and 31.3% of exposed mosquitoes became infected with CHIKV 7, 14 and 21 days post-exposure. For the experimentally infected Cx. quinquefasciatus mosquitoes, between 13 and 40% had the virus disseminated, with 100% transmission being observed among those with disseminated infection. Conclusions These results demonstrated high risk of chikungunya transmission for residents in the sampled areas of Mombasa. Transmission data confirmed the probable role played by Cx. quinquefasciatus in the outbreak while the role of Ae. vittatus in the transmission of chikungunya virus remains unknown.![]()
Collapse
|
26
|
Sunny A, Domínguez-Vega H, Caballero-Viñas C, Ramírez-Corona F, Suárez-Atilano M, González-Fernández A. A Salamander tale: Relative abundance, morphometrics and microhabitat of the critically endangered Mexican salamander Pseudoeurycea robertsi (Taylor, 1939). HERPETOZOA 2021. [DOI: 10.3897/herpetozoa.34.e54926] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Roberts’ False Brook Salamander (Pseudoeurycea robertsi) is a critically endangered plethodontid salamander, endemic to the Nevado de Toluca Volcano (NTV), Mexico. Little is known about the biology and ecology of this species, including its microhabitats. Thus, this study aimed to collect basic information about P. robertsi. We sampled fourteen forested sites in the NTV; to corroborate the correct identification of the species we used genetic data, we assessed the variation in head morphometric measurements and dorsal colouration patterns amongst localities and the microhabitat features associated with P. robertsi presence. Of the four potential salamander species, P. robertsi was the most abundant (89.80%) and widely distributed (approximately within 130 km2) salamander in the NTV. We did not find significant variations in morphometry; however, we found significant differences in dorsal patterns between populations (in the number and size of segments of the dorsal stripe). The average total length for 185 adults was 89.15 mm (38.7–117.9 mm); we found seven patterns of dorsal stripe. We found 98% of P. robertsi individuals under the bark of fallen logs in Abies religiosa and A. religiosa-Pinus sp. forests, with a higher number of detected salamanders in naturally-fallen logs than in cut logs (34% vs. 10%). Thus, keeping well-preserved A. religiosa forests and retaining fallen logs is essential to P. robertsi conservation.
Collapse
|
27
|
Câmara DCP, Pinel CDS, Rocha GP, Codeço CT, Honório NA. Diversity of mosquito (Diptera: Culicidae) vectors in a heterogeneous landscape endemic for arboviruses. Acta Trop 2020; 212:105715. [PMID: 32971068 DOI: 10.1016/j.actatropica.2020.105715] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 09/04/2020] [Accepted: 09/17/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND In Brazil and several countries in the Americas, where dengue, chikungunya and Zika are cocirculating, there is a need to understand how different mosquito species relate to landscape and humans. Mosquito ecology and distribution, especially at finer spatial scales, are key factors to study since the relationship of mosquito communities to their habitats might have important consequences in the risk of disease transmission to humans. The aim of this study was to evaluate the diversity of resident culicids along heterogeneous landscapes in different endemic cities for dengue, chikungunya and Zika. METHODS Fourteen collection sites were randomly selected in six landscapes characterized as urban, periurban and rural along two endemic metropolitan cities in Rio de Janeiro, Brazil: Itaboraí and Cachoeiras de Macacu, Rio de Janeiro. In each site, adult mosquito collections were performed using different traps and backpack aspiration. Collections took place during the rainy and dry seasons of 2015 and 2016. To measure diversity in each landscape, we generated species accumulation curves and used different indexes: rarefied species richness, Chao1-bc and ACE-1. Mosquito habitat segregation along different land use types was measured with a partial canonical correspondence analysis (pCCA). Generalized linear mixed models (GLMM) were used to model the probability of occurrence of the most abundant species along an Urban-Forest gradient. RESULTS A total of 13,462 adult mosquitoes from 10 genera and 41 species were collected. The most abundant species were Culex quinquefasciatus Say, 1823, Aedes aegypti (Linnaeus, 1762) and Aedes albopictus (Skuse, 1895). There was a significant association between rarefied species richness and landscape, with higher richness in the Rural landscape. The number of observed species was matched only in the Urban landscape. Most species showed segregation along an Urban-Forest gradient, and the great majority were associated with forested habitats. We were able to fit prediction models for six mosquito species. DISCUSSION The paper discusses the impact of human activities on landscape and its effects on mosquito populations, focusing on the segregation of different known vector species and their proximity to human altered environments. Most of these species are known arbovirus vectors and knowledge of their distribution are key elements that health authorities should take into account when planning arbovirus surveillance and vector control activities.
Collapse
|
28
|
Chikungunya Virus Strains from Each Genetic Clade Bind Sulfated Glycosaminoglycans as Attachment Factors. J Virol 2020; 94:JVI.01500-20. [PMID: 32999033 PMCID: PMC7925169 DOI: 10.1128/jvi.01500-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/28/2020] [Indexed: 02/06/2023] Open
Abstract
Alphavirus infections are a global health threat, contributing to outbreaks of disease in many parts of the world. Recent epidemics caused by CHIKV, an arthritogenic alphavirus, resulted in more than 8.5 million cases as the virus has spread into new geographic regions, including the Western Hemisphere. CHIKV causes disease in the majority of people infected, leading to severe and debilitating arthritis. Despite the severity of CHIKV disease, there are no licensed therapeutics. Since attachment factors and receptors are determinants of viral tropism and pathogenesis, understanding these virus-host interactions can enhance our knowledge of CHIKV infection. We analyzed over 670 glycans and identified GAGs as the main glycan bound by CHIKV. We defined specific GAG components required for CHIKV binding and assessed strain-specific differences in GAG binding capacity. These studies provide insight about cell surface molecules that CHIKV binds, which could facilitate the development of antiviral therapeutics targeting the CHIKV attachment step. Chikungunya virus (CHIKV) is an arthritogenic alphavirus that causes debilitating musculoskeletal disease. CHIKV displays broad cell, tissue, and species tropism, which may correlate with the attachment factors and entry receptors used by the virus. Cell surface glycosaminoglycans (GAGs) have been identified as CHIKV attachment factors. However, the specific types of GAGs and potentially other glycans to which CHIKV binds and whether there are strain-specific differences in GAG binding are not fully understood. To identify the types of glycans bound by CHIKV, we conducted glycan microarray analyses and discovered that CHIKV preferentially binds GAGs. Microarray results also indicate that sulfate groups on GAGs are essential for CHIKV binding and that CHIKV binds most strongly to longer GAG chains of heparin and heparan sulfate. To determine whether GAG binding capacity varies among CHIKV strains, a representative strain from each genetic clade was tested. While all strains directly bound to heparin and chondroitin sulfate in enzyme-linked immunosorbent assays (ELISAs) and depended on heparan sulfate for efficient cell binding and infection, we observed some variation by strain. Enzymatic removal of cell surface GAGs and genetic ablation that diminishes GAG expression reduced CHIKV binding and infectivity of all strains. Collectively, these data demonstrate that GAGs are the preferred glycan bound by CHIKV, enhance our understanding of the specific GAG moieties required for CHIKV binding, define strain differences in GAG engagement, and provide further evidence for a critical function of GAGs in CHIKV cell attachment and infection. IMPORTANCE Alphavirus infections are a global health threat, contributing to outbreaks of disease in many parts of the world. Recent epidemics caused by CHIKV, an arthritogenic alphavirus, resulted in more than 8.5 million cases as the virus has spread into new geographic regions, including the Western Hemisphere. CHIKV causes disease in the majority of people infected, leading to severe and debilitating arthritis. Despite the severity of CHIKV disease, there are no licensed therapeutics. Since attachment factors and receptors are determinants of viral tropism and pathogenesis, understanding these virus-host interactions can enhance our knowledge of CHIKV infection. We analyzed over 670 glycans and identified GAGs as the main glycan bound by CHIKV. We defined specific GAG components required for CHIKV binding and assessed strain-specific differences in GAG binding capacity. These studies provide insight about cell surface molecules that CHIKV binds, which could facilitate the development of antiviral therapeutics targeting the CHIKV attachment step.
Collapse
|
29
|
Valentine MJ, Ciraola B, Aliota MT, Vandenplas M, Marchi S, Tenebray B, Leparc-Goffart I, Gallagher CA, Beierschmitt A, Corey T, Dore KM, de Lamballerie X, Wang C, Murdock CC, Kelly PJ. No evidence for sylvatic cycles of chikungunya, dengue and Zika viruses in African green monkeys (Chlorocebus aethiops sabaeus) on St. Kitts, West Indies. Parasit Vectors 2020; 13:540. [PMID: 33126907 PMCID: PMC7598228 DOI: 10.1186/s13071-020-04419-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 10/21/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Dengue, chikungunya and Zika viruses (DENV, CHIKV and ZIKV) are transmitted in sylvatic transmission cycles between non-human primates and forest (sylvan) mosquitoes in Africa and Asia. It remains unclear if sylvatic cycles exist or could establish themselves elsewhere and contribute to the epidemiology of these diseases. The Caribbean island of St. Kitts has a large African green monkey (AGM) (Chlorocebus aethiops sabaeus) population and is therefore ideally suited to investigate sylvatic cycles. METHODS We tested 858 AGM sera by ELISA and PRNT for virus-specific antibodies and collected and identified 9704 potential arbovirus vector mosquitoes. Mosquitoes were homogenized in 513 pools for testing by viral isolation in cell culture and by multiplex RT-qPCR after RNA extraction to detect the presence of DENV, CHIKV and ZIKVs. DNA was extracted from 122 visibly blood-fed individual mosquitoes and a polymorphic region of the hydroxymethylbilane synthase gene (HMBS) was amplified by PCR to determine if mosquitoes had fed on AGMs or humans. RESULTS All of the AGMs were negative for DENV, CHIKV or ZIKV antibodies. However, one AGM did have evidence of an undifferentiated Flavivirus infection. Similarly, DENV, CHIKV and ZIKV were not detected in any of the mosquito pools by PCR or culture. AGMs were not the source of any of the mosquito blood meals. CONCLUSION Sylvatic cycles involving AGMs and DENV, CHIKV and ZIKV do not currently exist on St. Kitts.
Collapse
Affiliation(s)
- Matthew John Valentine
- One Health Centre for Zoonoses and Tropical Veterinary Medicine, Ross University School of Veterinary Medicine, West Farm, Basseterre, St. Kitts and Nevis
| | - Brenda Ciraola
- One Health Centre for Zoonoses and Tropical Veterinary Medicine, Ross University School of Veterinary Medicine, West Farm, Basseterre, St. Kitts and Nevis
| | | | - Michel Vandenplas
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine, West Farm, Basseterre, St. Kitts and Nevis
| | - Silvia Marchi
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine, West Farm, Basseterre, St. Kitts and Nevis
| | - Bernard Tenebray
- National Reference Laboratory for Arboviruses, Institut de Recherche Biomédicale des Armées, Marseille, France
- Unité des Virus Emergents (UVE), Aix Marseille Université, IRD 190, INSERM 1207, IHU Méditerranée Infection, Marseille, France
| | - Isabelle Leparc-Goffart
- National Reference Laboratory for Arboviruses, Institut de Recherche Biomédicale des Armées, Marseille, France
- Unité des Virus Emergents (UVE), Aix Marseille Université, IRD 190, INSERM 1207, IHU Méditerranée Infection, Marseille, France
| | - Christa Ann Gallagher
- Center for Conservation Medicine and Ecosystem Health, Ross University School of Veterinary Medicine, West Farm, Basseterre, St. Kitts and Nevis
| | - Amy Beierschmitt
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine, West Farm, Basseterre, St. Kitts and Nevis
- Behavioral Science Foundation, Estridge Estate, Basseterre, St. Kitts and Nevis
| | - Tatiana Corey
- St. Kitts Biomedical Research Foundation, Bourryeau Estate, Christ Church Nichola Town, St. Kitts and Nevis
- Virscio, Inc, New Haven, CT USA
| | | | - Xavier de Lamballerie
- Unité des Virus Emergents (UVE), Aix Marseille Université, IRD 190, INSERM 1207, IHU Méditerranée Infection, Marseille, France
| | - Chengming Wang
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL USA
| | - Courtney Cuin Murdock
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA USA
- Odum School of Ecology, University of Georgia, Athens, GA USA
- Department of Entomology, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY USA
- Center for Tropical Emerging and Global Diseases, University of Georgia, Athens, GA USA
- Center for Ecology of Infectious Diseases, Odum School of Ecology, University of Georgia, Athens, GA USA
- Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, GA USA
| | - Patrick John Kelly
- Department of Clinical Sciences, Ross University School of Veterinary Medicine, West Farm, Basseterre, St. Kitts and Nevis
| |
Collapse
|
30
|
Sudeep AB, Mohandas S, Bhanarkar SR, Ghodke YS, Sonawane PA. Vector competence of Aedes vittatus (Bigot) mosquitoes from India for Japanese encephalitis, West Nile, Chandipura and Chittoor viruses. J Vector Borne Dis 2020; 57:234-239. [PMID: 34472507 DOI: 10.4103/0972-9062.311776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND & OBJECTIVES Aedes vittatus (Bigot), an anthropophilic mosquito, plays an important role in the maintenance and transmission of yellow fever (YF), dengue (DEN), chikungunya (CHIKV) and Zika (ZIK) viruses in Africa. In India, though natural isolation of none of these viruses was reported from the mosquito, experimental studies have shown vector competence to DEN and CHIK viruses. Despite wide prevalence in India, their potential in transmitting viruses of public health importance viz., Japanese encephalitis (JEV), West Nile (WNV), Chandipura (CHPV), Chittoor (CHITV) etc., has never been investigated. The objective of the present study is to determine the vector potential of the mosquito to these viruses. METHODS Mosquitoes were infected by intra-thoracic inoculation as well as by oral feeding, and growth kinetics was determined. Virus dissemination to organs was investigated by determining virus in the harvested organs on specified days' post infection (PI). Vector competence was determined by detecting the virus in saliva. RESULTS Intra thoracic inoculation has shown vector competence of the mosquito to JEV, WNV, CHIV and CHPV. However, using the oral route of infection, replication was observed with only WNV, JEV and CHITV. High degree of WNV replication (6.7log TCID50/ml) with rapid dissemination to wings, legs and salivary glands was seen from 5th day PI onwards. WNV was detected in saliva with a titer of 0.7log10 TCID50/ml on 5th day PI. JEV and CHITV replicated in the mosquito yielding 3log and 4log10 TCID50/ml on 5th and 10th day PI respectively, but virus was not detected in saliva till 15th day PI. INTERPRETATION & CONCLUSION From the results it is difficult to indict the mosquito as a vector of the viruses studied. However, presence of WNV in saliva of the mosquito shows its potential as a bridge vector and poses a concern especially when virulent WNV strains are circulating in the country.
Collapse
Affiliation(s)
- A B Sudeep
- ICMR-National Institute of Virology, Microbial Containment Complex, 130/1, Sus Road, Pashan, Pune 411021, India
| | - Sreelekshmy Mohandas
- ICMR-National Institute of Virology, Microbial Containment Complex, 130/1, Sus Road, Pashan, Pune 411021, India
| | - S R Bhanarkar
- ICMR-National Institute of Virology, Microbial Containment Complex, 130/1, Sus Road, Pashan, Pune 411021, India
| | - Y S Ghodke
- ICMR-National Institute of Virology, Microbial Containment Complex, 130/1, Sus Road, Pashan, Pune 411021, India
| | - P A Sonawane
- ICMR-National Institute of Virology, Microbial Containment Complex, 130/1, Sus Road, Pashan, Pune 411021, India
| |
Collapse
|
31
|
Diallo D, Fall G, Diagne CT, Gaye A, Ba Y, Dia I, Faye O, Diallo M. Concurrent amplification of Zika, chikungunya, and yellow fever virus in a sylvatic focus of arboviruses in Southeastern Senegal, 2015. BMC Microbiol 2020; 20:181. [PMID: 32590939 PMCID: PMC7318437 DOI: 10.1186/s12866-020-01866-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 06/18/2020] [Indexed: 12/27/2022] Open
Abstract
Background Chikungunya (CHIKV), yellow fever (YFV) and Zika (ZIKV) viruses circulate in sylvatic transmission cycles in southeastern Senegal, where they share common hosts and vectors. All three viruses undergo periodic amplifications, during which they are detected in mosquitoes and sometimes in hosts. However, little is known about their spatio-temporal patterns in years in which they undergo concurrent amplification. The aim of this study was to describe the co-amplification of ZIKV, CHIKV, and YFV, and the daily dynamics of these arboviruses and theirs vectors within villages in southeastern Senegal. Results Mosquitoes were collected monthly from July to December 2015. Each evening, from 6 to 9 PM, landing collections were performed by teams of 3 persons working simultaneously in 70 sites situated in forest (canopy and ground), savannah, agriculture, barren, and village (indoor and outdoor) land covers. Collections within villages were continued until 6 AM. Mosquitoes were tested for virus infection by virus isolation and RT-PCR. Seventy-five mosquito pools comprising 10 mosquito species contained at least one virus. Ae. furcifer and Ae. luteocephalus were infected by all three viruses, Ae. taylori by YFV and ZIKV, and remaining seven species by only, only YFV or only ZIKV. No single mosquito pool contained more than one virus. CHIKV was the only virus detected in all land cover classes and was found in the greatest number of sampling sites (32.9%, n = 70). The proportion of sites in which more than one virus was detected was less than 6%. Ae. aegypti formosus, Ae. furcifer, Ae. luteocephalus, Ae. minutus, Ae. vittatus, and An. gambiae were found within villages. These vectors were mainly active around dusk but Ae. furcifer was collected until dawn. All viruses save ZIKV were detected indoors and outdoors, mainly around dusk. Virus positive pools were detected over 2, 3 and 4 months for YFV, CHIKV and ZIKV, respectively. Conclusion Our data indicate that the distribution of different vector species and different arboviruses vary substantially between sites, suggesting that CHIKV, YFV, and ZIKV may have different transmission cycles in Southeastern Senegal.
Collapse
Affiliation(s)
- Diawo Diallo
- Pôle de Zoologie Médicale, Institut Pasteur de Dakar, 36 Avenue Pasteur, BP 220, Dakar, Senegal.
| | - Gamou Fall
- Pôle de Virologie, Institut Pasteur de Dakar, 36 Avenue Pasteur, BP 220, Dakar, Senegal
| | - Cheikh Tidiane Diagne
- Pôle de Zoologie Médicale, Institut Pasteur de Dakar, 36 Avenue Pasteur, BP 220, Dakar, Senegal
| | - Alioune Gaye
- Pôle de Zoologie Médicale, Institut Pasteur de Dakar, 36 Avenue Pasteur, BP 220, Dakar, Senegal
| | - Yamar Ba
- Pôle de Zoologie Médicale, Institut Pasteur de Dakar, 36 Avenue Pasteur, BP 220, Dakar, Senegal
| | - Ibrahima Dia
- Pôle de Zoologie Médicale, Institut Pasteur de Dakar, 36 Avenue Pasteur, BP 220, Dakar, Senegal
| | - Ousmane Faye
- Pôle de Virologie, Institut Pasteur de Dakar, 36 Avenue Pasteur, BP 220, Dakar, Senegal
| | - Mawlouth Diallo
- Pôle de Zoologie Médicale, Institut Pasteur de Dakar, 36 Avenue Pasteur, BP 220, Dakar, Senegal
| |
Collapse
|
32
|
Diouf B, Gaye A, Diagne CT, Diallo M, Diallo D. Zika virus in southeastern Senegal: survival of the vectors and the virus during the dry season. BMC Infect Dis 2020; 20:371. [PMID: 32448116 PMCID: PMC7247193 DOI: 10.1186/s12879-020-05093-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 05/14/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Zika virus (ZIKV, genus Flavivirus, family Flaviviridae) is transmitted mainly by Aedes mosquitoes. This virus has become an emerging concern of global public health with recent epidemics associated to neurological complications in the pacific and America. ZIKV is the most frequently amplified arbovirus in southeastern Senegal. However, this virus and its adult vectors are undetectable during the dry season. The aim of this study was to investigate how ZIKV and its vectors are maintained locally during the dry season. METHODS Soil, sand, and detritus contained in 1339 potential breeding sites (tree holes, rock holes, fruit husks, discarded containers, used tires) were collected in forest, savannah, barren and village land covers and flooded for eggs hatching. The emerging larvae were reared to adult, identified, and blood fed for F1 production. The F0 and F1 adults were identified and tested for ZIKV by Reverse Transcriptase-Real time Polymerase Chain Reaction. RESULTS A total of 1016 specimens, including 13 Aedes species, emerged in samples collected in the land covers and breeding sites investigated. Ae. aegypti was the dominant species representing 56.6% of this fauna with a high plasticity. Ae. furcifer and Ae. luteocephalus were found in forest tree holes, Ae. taylori in forest and village tree holes, Ae. vittatus in rock holes. ZIKV was detected from 4 out of the 82 mosquito pools tested. Positive pools included Ae. bromeliae (2 pools), Ae. unilineatus (1 pool), and Ae. vittatus (1 pool), indicating that the virus is maintained in these Aedes eggs during the dry season. CONCLUSION Our investigation identified breeding sites types and land cover classes where several ZIKV vectors are maintained, and their maintenance rates during the dry season in southeastern Senegal. The maintenance of the virus in these vectors in nature could explain its early amplification at the start of the rainy season in this area.
Collapse
Affiliation(s)
- Babacar Diouf
- Pôle de Zoologie Médicale, Institut Pasteur de Dakar, 36 Avenue Pasteur, BP 220, Dakar, Senegal.
| | - Alioune Gaye
- Pôle de Zoologie Médicale, Institut Pasteur de Dakar, 36 Avenue Pasteur, BP 220, Dakar, Senegal
| | - Cheikh Tidiane Diagne
- Pôle de Zoologie Médicale, Institut Pasteur de Dakar, 36 Avenue Pasteur, BP 220, Dakar, Senegal
| | - Mawlouth Diallo
- Pôle de Zoologie Médicale, Institut Pasteur de Dakar, 36 Avenue Pasteur, BP 220, Dakar, Senegal
| | - Diawo Diallo
- Pôle de Zoologie Médicale, Institut Pasteur de Dakar, 36 Avenue Pasteur, BP 220, Dakar, Senegal.
| |
Collapse
|
33
|
Kumar R, Shrivastava T, Samal S, Ahmed S, Parray HA. Antibody-based therapeutic interventions: possible strategy to counter chikungunya viral infection. Appl Microbiol Biotechnol 2020; 104:3209-3228. [PMID: 32076776 PMCID: PMC7223553 DOI: 10.1007/s00253-020-10437-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 01/29/2020] [Accepted: 02/05/2020] [Indexed: 12/13/2022]
Abstract
Chikungunya virus (CHIKV), a mosquito-transmitted disease that belongs to the genus Alphaviruses, has been emerged as an epidemic threat over the last two decades, and the recent co-emergence of this virus along with other circulating arboviruses and comorbidities has influenced atypical mortality rate up to 10%. Genetic variation in the virus has resulted in its adaptability towards the new vector Aedes albopictus other than Aedes aegypti, which has widen the horizon of distribution towards non-tropical and non-endemic areas. As of now, no licensed vaccines or therapies are available against CHIKV; the treatment regimens for CHIKV are mostly symptomatic, based on the clinical manifestations. Development of small molecule drugs and neutralizing antibodies are potential alternatives of worth investigating until an efficient or safe vaccine is approved. Neutralizing antibodies play an important role in antiviral immunity, and their presence is a hallmark of viral infection. In this review, we describe prospects for effective vaccines and highlight importance of neutralizing antibody-based therapeutic and prophylactic applications to combat CHIKV infections. We further discuss about the progress made towards CHIKV therapeutic interventions as well as challenges and limitation associated with the vaccine development. Furthermore this review describes the lesson learned from chikungunya natural infection, which could help in better understanding for future development of antibody-based therapeutic measures.
Collapse
Affiliation(s)
- Rajesh Kumar
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, 121001, India.
| | - Tripti Shrivastava
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, 121001, India
| | - Sweety Samal
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, 121001, India
| | - Shubbir Ahmed
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, 121001, India
| | - Hilal Ahmad Parray
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, 121001, India
| |
Collapse
|
34
|
Vairo F, Haider N, Kock R, Ntoumi F, Ippolito G, Zumla A. Chikungunya: Epidemiology, Pathogenesis, Clinical Features, Management, and Prevention. Infect Dis Clin North Am 2020; 33:1003-1025. [PMID: 31668189 DOI: 10.1016/j.idc.2019.08.006] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Chikungunya, a zoonotic disease caused by the Chikungunya virus (CHIKV), is transmitted by infected Aedes spp mosquitoes. CHIKV has now spread to more than 100 countries and is listed on the WHO Blueprint priority pathogens. After an incubation period of 1 to 12 days, symptoms similar to other febrile infections appear, with a sudden onset of high fever, nausea, polyarthralgia, myalgia, widespread skin rash, and conjunctivitis. Serious complications include myocarditis, uveitis, retinitis, hepatitis, acute renal disease, severe bullous lesions, meningoencephalitis, Guillain-Barré syndrome, myelitis, and cranial nerve palsies. Treatment is supportive; there is no specific antiviral treatment and no effective vaccine.
Collapse
Affiliation(s)
- Francesco Vairo
- National Institute for Infectious Diseases, "Lazzaro Spallanzani"Istituto di ricovero e cura a carattere scientifico - IRCCS, Via Portuense 292, 00149, Rome, Italy.
| | - Najmul Haider
- The Royal Veterinary College, University of London, Hawkshead Lane, North Mymms, Hatfield, Hertfordshire AL9 7TA, UK
| | - Richard Kock
- The Royal Veterinary College, University of London, Hawkshead Lane, North Mymms, Hatfield, Hertfordshire AL9 7TA, UK
| | - Francine Ntoumi
- Fondation Congolaise pour la Recherche Médicale (FCRM), Brazzaville, Congo; Faculty of Sciences and Techniques, University Marien Ngouabi, PO Box 69, Brazzaville, Congo; Institute for Tropical Medicine, University of Tübingen, Wilhelmstraße 27 72074, Tübingen, Germany
| | - Giuseppe Ippolito
- National Institute for Infectious Diseases, "Lazzaro Spallanzani"Istituto di ricovero e cura a carattere scientifico - IRCCS, Via Portuense 292, 00149, Rome, Italy
| | - Alimuddin Zumla
- Center for Clinical Microbiology, University College London, Royal Free Campus 2nd Floor, Rowland Hill Street, London NW3 2PF, United Kingdom
| |
Collapse
|
35
|
Changes in the Transmission Dynamic of Chikungunya Virus in Southeastern Senegal. Viruses 2020; 12:v12020196. [PMID: 32050663 PMCID: PMC7077306 DOI: 10.3390/v12020196] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/02/2020] [Accepted: 01/24/2020] [Indexed: 01/08/2023] Open
Abstract
In Senegal, chikungunya virus (CHIKV) is maintained in a sylvatic cycle and causes sporadic cases or small outbreaks in rural areas. However, little is known about the influence of the environment on its transmission. To address the question, 120 villages were randomly selected in the Kedougou region of southeastern Senegal. In each selected village, 10 persons by randomly selected household were sampled and tested for specific anti-CHIKV IgG antibodies by ELISA. We investigated the association of CHIKV seroprevalence with environmental variables using logistic regression analysis and the spatial correlation of village seroprevalence based on semivariogram analysis. Fifty-four percent (51%-57%) of individuals sampled during the survey tested positive for CHIKV-specific IgG. CHIKV seroprevalence was significantly higher in populations living close to forested areas (Normalized Difference Vegetation Index (NDVI), Odds Ratio (OR) = 1.90 (1.42-2.57)), and was negatively associated with population density (OR = 0.76 (0.69-0.84)). In contrast, in gold mining sites where population density was >400 people per km2, seroprevalence peaked significantly among adults (46% (27%-67%)) compared to all other individuals (20% (12%-31%)). However, traditional gold mining activities significantly modify the transmission dynamic of CHIKV, leading to a potential increase of the risk of human exposition in the region.
Collapse
|
36
|
Guo X, Li C, Deng Y, Jiang Y, Sun A, Liu Q, Dong Y, Xing D, Cao W, Qin C, Zhao T. Vector Competence and Vertical Transmission of Zika Virus in Aedes albopictus (Diptera: Culicidae). Vector Borne Zoonotic Dis 2020; 20:374-379. [PMID: 31934825 DOI: 10.1089/vbz.2019.2492] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Zika virus (ZIKV) is an emerging mosquito-borne pathogen belonging to the genus Flavivirus of the family Flaviviridae. Aedes albopictus is widely distributed in China. However, little is known about the vector competence of Ae. albopictus in China. The present study presents the oral susceptibility and vector competence of Ae. albopictus Guangzhou strain to ZIKV. Additionally, vertical transmission of ZIKV is described. The results demonstrated the susceptibility of local Ae. albopictus mosquitoes to ZIKV with an extrinsic incubation period of 6 days. Disseminated infection was observed in Ae. albopictus starting on day 2 postinfection (PI). Starting on day 6 PI, the saliva of Ae. albopictus exhibited ZIKV infection, and the transmission rate was 36.4%. Vertical transmission was observed during the first gonotrophic cycle. The minimum infection rate was observed in third-to-fourth instar larvae.
Collapse
Affiliation(s)
- Xiaoxia Guo
- Department of Vector Biology and Control, State Key Laboratory of Pathogen and Biosecurity, Beijing Key Laboratory of Vector Borne and Natural Focus Infectious Diseases, Institute of Microbiology and Epidemiology, Beijing, China
| | - Chunxiao Li
- Department of Vector Biology and Control, State Key Laboratory of Pathogen and Biosecurity, Beijing Key Laboratory of Vector Borne and Natural Focus Infectious Diseases, Institute of Microbiology and Epidemiology, Beijing, China
| | - Yongqiang Deng
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Beijing, China
| | - Yuting Jiang
- Department of Vector Biology and Control, State Key Laboratory of Pathogen and Biosecurity, Beijing Key Laboratory of Vector Borne and Natural Focus Infectious Diseases, Institute of Microbiology and Epidemiology, Beijing, China
| | - Aijuan Sun
- Department of Vector Biology and Control, State Key Laboratory of Pathogen and Biosecurity, Beijing Key Laboratory of Vector Borne and Natural Focus Infectious Diseases, Institute of Microbiology and Epidemiology, Beijing, China
| | - Qinmei Liu
- Department of Vector Biology and Control, State Key Laboratory of Pathogen and Biosecurity, Beijing Key Laboratory of Vector Borne and Natural Focus Infectious Diseases, Institute of Microbiology and Epidemiology, Beijing, China
| | - Yande Dong
- Department of Vector Biology and Control, State Key Laboratory of Pathogen and Biosecurity, Beijing Key Laboratory of Vector Borne and Natural Focus Infectious Diseases, Institute of Microbiology and Epidemiology, Beijing, China
| | - Dan Xing
- Department of Vector Biology and Control, State Key Laboratory of Pathogen and Biosecurity, Beijing Key Laboratory of Vector Borne and Natural Focus Infectious Diseases, Institute of Microbiology and Epidemiology, Beijing, China
| | - Wuchun Cao
- Department of Epidemiology, State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Beijing, China
| | - Chengfeng Qin
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Beijing, China
| | - Tongyan Zhao
- Department of Vector Biology and Control, State Key Laboratory of Pathogen and Biosecurity, Beijing Key Laboratory of Vector Borne and Natural Focus Infectious Diseases, Institute of Microbiology and Epidemiology, Beijing, China
| |
Collapse
|
37
|
Weaver SC, Chen R, Diallo M. Chikungunya Virus: Role of Vectors in Emergence from Enzootic Cycles. ANNUAL REVIEW OF ENTOMOLOGY 2020; 65:313-332. [PMID: 31594410 DOI: 10.1146/annurev-ento-011019-025207] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Chikungunya virus (CHIKV), a re-emerging mosquito-borne arbovirus, has caused millions of cases of severe, often chronic arthralgia during recent outbreaks. In Africa, circulation in sylvatic, enzootic cycles involves several species of arboreal mosquito vectors that transmit among diverse nonhuman primates and possibly other amplifying hosts. Most disease occurs when CHIKV emerges into a human-amplified cycle involving Aedes aegypti and sometimes Aedes albopictus transmission and extensive spread via travelers. Epidemiologic studies suggest that the transition from enzootic to epidemic cycles begins when people are infected via spillover in forests. However, efficient human amplification likely only ensues far from enzootic habitats where peridomestic vector and human densities are adequate. Recent outbreaks have been enhanced by mutations that adapt CHIKV for more efficient infection of Ae. albopictus, allowing for geographic expansion. However, epistatic interactions, sometimes resulting from founder effects following point-source human introductions, have profound effects on transmission efficiency, making CHIKV emergence somewhat unpredictable.
Collapse
Affiliation(s)
- Scott C Weaver
- Institute for Human Infections and Immunity, World Reference Center for Emerging Viruses and Arboviruses, and Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas 77555-0610, USA;
| | - Rubing Chen
- Institute for Human Infections and Immunity, World Reference Center for Emerging Viruses and Arboviruses, and Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas 77555-0610, USA;
| | - Mawlouth Diallo
- Medical Entomology Unit, Institut Pasteur Dakar, B.P. 220 Dakar, Senegal
| |
Collapse
|
38
|
Diagne MM, Gaye A, Ndione MHD, Faye M, Fall G, Dieng I, Widen SG, Wood TG, Popov V, Guzman H, Bâ Y, Weaver SC, Diallo M, Tesh R, Faye O, Vasilakis N, Sall AA. Dianke virus: A new mesonivirus species isolated from mosquitoes in Eastern Senegal. Virus Res 2020; 275:197802. [PMID: 31697989 PMCID: PMC7075714 DOI: 10.1016/j.virusres.2019.197802] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 10/30/2019] [Accepted: 10/30/2019] [Indexed: 12/23/2022]
Abstract
An increasing number of insect-specific viruses are found around the world. Very recently, a new group of insect-specific viruses, the Mesoniviridae family, was discovered in Africa, Asia, North America and Australia. Here we report the first detection and isolation of a new virus belonging to Mesonivirus genus in Senegal, West Africa. The so-called Dianke virus was detected in 21 species of arthropods trapped in the eastern part of the country. Male individuals were also infected, supporting vertical transmission assertion of insect specific viruses. As described for other mesoniviruses, no viral replication was observed after inoculation of mammalian cells. Viral replication in mosquito cells was blocked at a temperature of 37 °C, highlighting the importance of thermal conditions in Mesonivirus host restriction. Similar to our study, where a diverse range of arthropod vectors were found infected by the new virus, several studies have detected mesonivirus infection in mosquitoes with concerns for human health. It has been shown that dual infections in mosquito can alter viral infectivity. Due to their extensive geographic distribution and host range, as well as their use as potential disease control agents in vector populations, more studies should be done for a better knowledge of arthropod-restricted viruses prevalence and diversity.
Collapse
Affiliation(s)
- Moussa M Diagne
- Virology Department, Arbovirus and Hemorrhagic Fever Viruses Unit, Institut Pasteur de Dakar, Dakar, Senegal.
| | - Alioune Gaye
- Medical Entology Unit, Institut Pasteur de Dakar, Dakar, Senegal
| | - Marie Henriette Dior Ndione
- Virology Department, Arbovirus and Hemorrhagic Fever Viruses Unit, Institut Pasteur de Dakar, Dakar, Senegal; Cheikh Anta Diop de Dakar University, Dakar, Senegal
| | - Martin Faye
- Virology Department, Arbovirus and Hemorrhagic Fever Viruses Unit, Institut Pasteur de Dakar, Dakar, Senegal
| | - Gamou Fall
- Virology Department, Arbovirus and Hemorrhagic Fever Viruses Unit, Institut Pasteur de Dakar, Dakar, Senegal
| | - Idrissa Dieng
- Virology Department, Arbovirus and Hemorrhagic Fever Viruses Unit, Institut Pasteur de Dakar, Dakar, Senegal; Cheikh Anta Diop de Dakar University, Dakar, Senegal
| | - Steven G Widen
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555-1079, USA
| | - Thomas G Wood
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555-1079, USA
| | - Vsevolod Popov
- Department of Pathology and Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX 77555-0609, USA; Center for Tropical Diseases, University of Texas Medical Branch, Galveston, TX 77555-0609, USA; Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX 77555-0610, USA
| | - Hilda Guzman
- Department of Pathology and Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX 77555-0609, USA; Center for Tropical Diseases, University of Texas Medical Branch, Galveston, TX 77555-0609, USA; Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX 77555-0610, USA
| | - Yamar Bâ
- Medical Entology Unit, Institut Pasteur de Dakar, Dakar, Senegal
| | - Scott C Weaver
- Department of Pathology and Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX 77555-0609, USA; Center for Tropical Diseases, University of Texas Medical Branch, Galveston, TX 77555-0609, USA; Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX 77555-0610, USA; Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
| | - Mawlouth Diallo
- Medical Entology Unit, Institut Pasteur de Dakar, Dakar, Senegal
| | - Robert Tesh
- Department of Pathology and Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX 77555-0609, USA; Center for Tropical Diseases, University of Texas Medical Branch, Galveston, TX 77555-0609, USA; Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX 77555-0610, USA
| | - Ousmane Faye
- Virology Department, Arbovirus and Hemorrhagic Fever Viruses Unit, Institut Pasteur de Dakar, Dakar, Senegal
| | - Nikos Vasilakis
- Department of Pathology and Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX 77555-0609, USA; Center for Tropical Diseases, University of Texas Medical Branch, Galveston, TX 77555-0609, USA; Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX 77555-0610, USA
| | - Amadou A Sall
- Virology Department, Arbovirus and Hemorrhagic Fever Viruses Unit, Institut Pasteur de Dakar, Dakar, Senegal
| |
Collapse
|
39
|
Pezzi L, Diallo M, Rosa-Freitas MG, Vega-Rua A, Ng LFP, Boyer S, Drexler JF, Vasilakis N, Lourenco-de-Oliveira R, Weaver SC, Kohl A, de Lamballerie X, Failloux AB. GloPID-R report on chikungunya, o'nyong-nyong and Mayaro virus, part 5: Entomological aspects. Antiviral Res 2019; 174:104670. [PMID: 31812638 DOI: 10.1016/j.antiviral.2019.104670] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 11/28/2019] [Indexed: 10/25/2022]
Abstract
The GloPID-R (Global Research Collaboration for Infectious Disease Preparedness) chikungunya (CHIKV), o'nyong-nyong (ONNV) and Mayaro virus (MAYV) Working Group has been established to investigate natural history, epidemiology and clinical aspects of infection by these viruses. Here, we present a report dedicated to entomological aspects of CHIKV, ONNV and MAYV. Recent global expansion of chikungunya virus has been possible because CHIKV established a transmission cycle in urban settings using anthropophilic vectors such as Aedes albopictus and Aedes aegypti. MAYV and ONNV have a more limited geographic distribution, being confined to Africa (ONNV) and central-southern America (MAYV). ONNV is probably maintained through an enzootic cycle that has not been characterized yet, with Anopheles species as main vectors and humans as amplification hosts during epidemics. MAYV is transmitted by Haemagogus species in an enzootic cycle using non-human primates as the main amplification and maintenance hosts, and humans becoming sporadically infected when venturing in or nearby forest habitats. Here, we focused on the transmission cycle and natural vectors that sustain circulation of these viruses in their respective locations. The knowledge of the natural ecology of transmission and the capacity of different vectors to transmit these viruses is crucial to understand CHIKV emergence, and to assess the risk that MAYV and ONNV will expand on wide scale using anthropophilic mosquito species not normally considered primary vectors. Finally, the experts identified knowledge gaps and provided adapted recommendations, in order to address future entomological investigations in the right direction.
Collapse
Affiliation(s)
- L Pezzi
- Unité des Virus Émergents (UVE: Aix-Marseille Univ-IRD 190-Inserm 1207-IHU Méditerranée Infection), Marseille, France; EA7310, Laboratoire de Virologie, Université de Corse-Inserm, Corte, France.
| | - M Diallo
- Unité d'Entomologie Médicale, Institut Pasteur de Dakar, Dakar, Senegal
| | - M G Rosa-Freitas
- Instituto Oswaldo Cruz-Fiocruz, Laboratório de Mosquitos Transmissores de Hematozoários, Rio de Janeiro, Brazil
| | - A Vega-Rua
- Laboratory of Vector Control Research, Environment and Health Unit, Institut Pasteur de la Guadeloupe, Guadeloupe
| | - L F P Ng
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore
| | - S Boyer
- Medical Entomology Platform, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - J F Drexler
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, 10117, Berlin, Germany; German Centre for Infection Research (DZIF), Germany
| | - N Vasilakis
- Department of Pathology, Institute of Human Infection and Immunity, University of Texas Medical Branch, Galveston, USA
| | - R Lourenco-de-Oliveira
- Instituto Oswaldo Cruz-Fiocruz, Laboratório de Mosquitos Transmissores de Hematozoários, Rio de Janeiro, Brazil
| | - S C Weaver
- Institute for Human Infections and Immunity and Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, USA
| | - A Kohl
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - X de Lamballerie
- Unité des Virus Émergents (UVE: Aix-Marseille Univ-IRD 190-Inserm 1207-IHU Méditerranée Infection), Marseille, France
| | - A-B Failloux
- Department of Virology, Institut Pasteur, Arboviruses and Insect Vectors Unit, Paris, France
| | | |
Collapse
|
40
|
Mayi MPA, Foncha DF, Kowo C, Tchuinkam T, Brisco K, Anong DN, Ravinder S, Cornel AJ. Impact of deforestation on the abundance, diversity, and richness of Culex mosquitoes in a southwest Cameroon tropical rainforest. JOURNAL OF VECTOR ECOLOGY : JOURNAL OF THE SOCIETY FOR VECTOR ECOLOGY 2019; 44:271-281. [PMID: 31729796 DOI: 10.1111/jvec.12359] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 10/01/2019] [Indexed: 06/10/2023]
Abstract
Deforestation is a major threat to biodiversity but little data exist on how deforestation in real-time affects the overall mosquito species community despite its known role in the transmission of diseases. We compared the abundance and diversity of Culex mosquitoes before and after deforestation along a gradient of three different anthropogenic disturbance levels in a tropical rainforest in southwestern Cameroon. The collections were conducted in unlogged forest (January, 2016), selectively logged forest (January, 2017), and within a young palm plantation (October, 2017) using net traps, sweep nets, resting traps, and dipping for immature stages in water bodies. Mosquitoes were morphologically identified to subspecies, groups, and species. A total of 2,556 mosquitoes was collected of which 1,663 (65.06%) belong to the genus Culex, (n=427 (25.68%) in the unlogged forest; n=900 (54.12%) in the selectively logged forest; and n=336 (20.2%) in the young palm plantation) with a significant difference among the habitats. Diversity and richness of mosquitoes varied significantly among habitats with the highest values found in the selectively logged forest (H=2.4; DS=0.87; S=33) and the lowest value in the unlogged forest (H=1.37; DS=0.68; S=13). The results of this study showed that deforestation affects the abundance and diversity of Culex mosquitoes and favors the invasion of anthropophilic mosquitoes. Higher mosquito abundance and diversity in the selectively logged forest than in the pristine forest is notable and some explanations for these differences are discussed.
Collapse
Affiliation(s)
- Marie Paul Audrey Mayi
- Department of Animal Biology, Vector Borne Diseases Laboratory of the Applied Biology and Ecology Research Unit (VBID-URBEA), University of Dschang, Dschang, Cameroon
| | | | - Cyril Kowo
- Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
| | - Timoleon Tchuinkam
- Department of Animal Biology, Vector Borne Diseases Laboratory of the Applied Biology and Ecology Research Unit (VBID-URBEA), University of Dschang, Dschang, Cameroon
| | - Katherine Brisco
- Department of Entomology and Nematology, Mosquito Control Research Laboratory, University of California, Parlier, CA 93648, U.S.A
| | - Damian Nota Anong
- Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
| | - Sehgal Ravinder
- Department of Biology, San Francisco State University, San Francisco, CA 94132, U.S.A
| | - Anthony John Cornel
- Department of Entomology and Nematology, Mosquito Control Research Laboratory, University of California, Parlier, CA 93648, U.S.A
| |
Collapse
|
41
|
Torres-Ruesta A, Teo TH, Chan YH, Rénia L, Ng LFP. Pathogenic Th1 responses in CHIKV-induced inflammation and their modulation upon Plasmodium parasites co-infection. Immunol Rev 2019; 294:80-91. [PMID: 31773780 PMCID: PMC7064921 DOI: 10.1111/imr.12825] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 11/07/2019] [Indexed: 12/16/2022]
Abstract
The induction of polyarthritis and polyarthralgia is a hallmark of arthritogenic alphavirus infections, with an exceptionally higher morbidity observed with chikungunya virus (CHIKV). While the mechanisms underlying these incapacitating acute symptoms remain partially understood, the progression to chronic conditions in some cases remains unanswered. The highly pro‐inflammatory nature of alphavirus disease has suggested the involvement of virus‐specific, joint‐infiltrating Th1 cells as one of the main pathogenic mediators of CHIKV‐induced joint pathologies. This review summarizes the role of cell‐mediated immune responses in CHIKV pathogenesis, with a specific focus on pro‐inflammatory Th1 responses in the development of CHIKV joint inflammation. Furthermore, due to the explosive nature of arthritogenic alphavirus outbreaks and their recent expansion across the world, co‐infections with other highly prevalent pathogens such as malaria are likely to occur but the pathological outcomes of such interactions in humans are unknown. This review will also discuss the potential impact of malaria co‐infections on CHIKV pathogenesis and their relevance in alphavirus control programs in endemic areas.
Collapse
Affiliation(s)
- Anthony Torres-Ruesta
- Singapore Immunology Network, Agency for Science, Technology and Research, Biopolis, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Teck-Hui Teo
- Singapore Immunology Network, Agency for Science, Technology and Research, Biopolis, Singapore.,Department of Cell Biology and Infection, Molecular Microbial Pathogenesis Unit, Institute Pasteur, Paris, France
| | - Yi-Hao Chan
- Singapore Immunology Network, Agency for Science, Technology and Research, Biopolis, Singapore
| | - Laurent Rénia
- Singapore Immunology Network, Agency for Science, Technology and Research, Biopolis, Singapore
| | - Lisa F P Ng
- Singapore Immunology Network, Agency for Science, Technology and Research, Biopolis, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
42
|
Karuitha M, Bargul J, Lutomiah J, Muriu S, Nzovu J, Sang R, Mwangangi J, Mbogo C. Larval habitat diversity and mosquito species distribution along the coast of Kenya. Wellcome Open Res 2019; 4:175. [PMID: 32509966 PMCID: PMC7241275 DOI: 10.12688/wellcomeopenres.15550.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2019] [Indexed: 11/20/2022] Open
Abstract
Background: Management of arboviruses relies heavily on vector control. Implementation and sustenance of effective control measures requires regular surveillance of mosquito occurrences, species abundance and distribution. The current study evaluated larval habitat diversity and productivity, mosquito species diversity and distribution in selected sites along the coast of Kenya. Methods: A cross-sectional survey of mosquito breeding habitats, species diversity and distribution was conducted in urban, peri-urban and forested ecological zones in Mombasa and Kilifi counties. Results: A total of 13,009 immature mosquitoes were collected from 17 diverse aquatic habitats along the coast of Kenya. Larval productivity differed significantly (F (16, 243) = 3.21, P < 0.0001) among the aquatic habitats, with tyre habitats recording the highest larval population. Culex pipiens (50.17%) and Aedes aegypti (38.73%) were the dominant mosquito species in urban areas, while Ae. vittatus (89%) was the dominant species in forested areas. In total, 4,735 adult mosquitoes belonging to 19 species were collected in Haller Park, Bamburi, Gede and Arabuko Sokoke forest. Urban areas supported higher densities of Ae. aegypti compared to peri-urban and forest areas, which, on the other hand, supported greater mosquito species diversity. Conclusions: High Ae. aegypti production in urban and peri-urban areas present a greater risk of arbovirus outbreaks. Targeting productive habitats of Aedes aegypti, such as discarded tyres, containers and poorly maintained drainage systems in urban areas and preventing human-vector contact in peri-urban and forested areas could have a significant impact on the prevalence of arboviruses along the coast of Kenya, forestalling the periodic outbreaks experienced in the region.
Collapse
Affiliation(s)
- Miriam Karuitha
- Vector Biology Unit, Kenya Medical Research Institute (KEMRI), Center for Geographic Medicine Research Coast, Kilifi, P.O. Box 230-80100, Kenya
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Juja, Kenya
| | - Joel Bargul
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Juja, Kenya
- The Animal Health Department, International Centre of Insect Physiology and Ecology, Nairobi, P.O. Box 30772-00100, Kenya
| | - Joel Lutomiah
- Hemorrhagic Fever Unit, Kenya Medical Research Institute (KEMRI), Center for Virus Research, Nairobi, P.O. Box 62000-00200, Kenya
| | - Simon Muriu
- Department of Biological Sciences, Pwani University Bioscience Centre (PUBREC), Kilifi, P.O Box 230-80100, Kenya
| | - Joseph Nzovu
- Vector Biology Unit, Kenya Medical Research Institute (KEMRI), Center for Geographic Medicine Research Coast, Kilifi, P.O. Box 230-80100, Kenya
| | - Rosemary Sang
- Hemorrhagic Fever Unit, Kenya Medical Research Institute (KEMRI), Center for Virus Research, Nairobi, P.O. Box 62000-00200, Kenya
| | - Joseph Mwangangi
- Vector Biology Unit, Kenya Medical Research Institute (KEMRI), Center for Geographic Medicine Research Coast, Kilifi, P.O. Box 230-80100, Kenya
- Kenya Medical Research Institute (KEMRI), Center for Vector Disease Control, Kwale, Kenya
| | - Charles Mbogo
- Vector Biology Unit, Kenya Medical Research Institute (KEMRI), Center for Geographic Medicine Research Coast, Kilifi, P.O. Box 230-80100, Kenya
- KEMRI-Wellcome Trust Research Programme, Nairobi, P.O. Box 43640-00100, Kenya
| |
Collapse
|
43
|
Abstract
Arboviruses infecting people primarily exist in urban transmission cycles involving urban mosquitoes in densely populated tropical regions. For dengue, chikungunya, Zika and yellow fever viruses, sylvatic (forest) transmission cycles also exist in some regions and involve non-human primates and forest-dwelling mosquitoes. Here we review the investigation methods and available data on sylvatic cycles involving non-human primates and dengue, chikungunya, Zika and yellow fever viruses in Africa, dengue viruses in Asia and yellow fever virus in the Americas. We also present current putative data that Mayaro, o'nyong'nyong, Oropouche, Spondweni and Lumbo viruses exist in sylvatic cycles.
Collapse
|
44
|
Seck MC, Badiane AS, Thwing J, Moss D, Fall FB, Gomis JF, Deme AB, Diongue K, Sy M, Mbaye A, Ndiaye T, Gaye A, Ndiaye YD, Diallo MA, Ndiaye D, Rogier E. Serological Data Shows Low Levels of Chikungunya Exposure in Senegalese Nomadic Pastoralists. Pathogens 2019; 8:pathogens8030113. [PMID: 31357631 PMCID: PMC6789836 DOI: 10.3390/pathogens8030113] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/18/2019] [Accepted: 07/21/2019] [Indexed: 12/28/2022] Open
Abstract
The chikungunya virus (CHIKV) is spread by Aedes aegypti and Ae. albopictus mosquitos worldwide; infection can lead to disease including joint pain, fever, and rash, with some convalescent persons experiencing chronic symptoms. Historically, CHIKV transmission has occurred in Africa and Asia, but recent outbreaks have taken place in Europe, Indonesia, and the Americas. From September to October 2014, a survey was undertaken with nomadic pastoralists residing in the northeast departments of Senegal. Blood dried on filter paper (dried blood spots; DBS) were collected from 1465 participants of all ages, and assayed for Immunoglobulin G (IgG) antibodies against CHIKV E1 antigen by a bead-based multiplex assay. The overall seroprevalence of all participants to CHIKV E1 was 2.7%, with no persons under 10 years of age found to be antibody positive. Above 10 years of age, clear increases of seroprevalence and IgG levels were observed with increasing age; 7.6% of participants older than 50 years were found to be positive for anti-CHIKV IgG. Reported net ownership, net usage, and gender were all non-significant explanatory variables of seropositivity. These data show a low-level historical exposure of this pastoralist population to CHIKV, with no evidence of recent CHIKV transmission in the past decade.
Collapse
Affiliation(s)
- Mame Cheikh Seck
- Department of Parasitology, Faculty of Medicine and Pharmacy, Cheikh Anta Diop University, Dakar 12500, Senegal.
| | - Aida Sadikh Badiane
- Department of Parasitology, Faculty of Medicine and Pharmacy, Cheikh Anta Diop University, Dakar 12500, Senegal
| | - Julie Thwing
- Malaria Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
- President's Malaria Initiative, Atlanta, GA 30303, USA
| | - Delynn Moss
- Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Fatou Ba Fall
- Senegal National Malaria Control Program, Dakar 999066, Senegal
| | - Jules Francois Gomis
- Department of Parasitology, Faculty of Medicine and Pharmacy, Cheikh Anta Diop University, Dakar 12500, Senegal
| | - Awa Bineta Deme
- Department of Parasitology, Faculty of Medicine and Pharmacy, Cheikh Anta Diop University, Dakar 12500, Senegal
| | - Khadim Diongue
- Department of Parasitology, Faculty of Medicine and Pharmacy, Cheikh Anta Diop University, Dakar 12500, Senegal
| | - Mohamed Sy
- Department of Parasitology, Faculty of Medicine and Pharmacy, Cheikh Anta Diop University, Dakar 12500, Senegal
| | - Aminata Mbaye
- Department of Parasitology, Faculty of Medicine and Pharmacy, Cheikh Anta Diop University, Dakar 12500, Senegal
| | - Tolla Ndiaye
- Department of Parasitology, Faculty of Medicine and Pharmacy, Cheikh Anta Diop University, Dakar 12500, Senegal
| | - Aminata Gaye
- Department of Parasitology, Faculty of Medicine and Pharmacy, Cheikh Anta Diop University, Dakar 12500, Senegal
| | - Yaye Die Ndiaye
- Department of Parasitology, Faculty of Medicine and Pharmacy, Cheikh Anta Diop University, Dakar 12500, Senegal
| | - Mamadou Alpha Diallo
- Department of Parasitology, Faculty of Medicine and Pharmacy, Cheikh Anta Diop University, Dakar 12500, Senegal
| | - Daouda Ndiaye
- Department of Parasitology, Faculty of Medicine and Pharmacy, Cheikh Anta Diop University, Dakar 12500, Senegal
| | - Eric Rogier
- Malaria Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA.
| |
Collapse
|
45
|
Diallo D, Diagne CT, Buenemann M, Ba Y, Dia I, Faye O, Sall AA, Faye O, Watts DM, Weaver SC, Hanley KA, Diallo M. Biodiversity Pattern of Mosquitoes in Southeastern Senegal, Epidemiological Implication in Arbovirus and Malaria Transmission. JOURNAL OF MEDICAL ENTOMOLOGY 2019; 56:453-463. [PMID: 30428055 PMCID: PMC6941392 DOI: 10.1093/jme/tjy204] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Indexed: 06/01/2023]
Abstract
The composition, density, diversity, and temporal distribution of mosquito species and the influence of temperature, relative humidity, and rainfall on these data were investigated in 50 sites across five land cover classes (forest, savannah, barren, village, and agriculture) in southeastern Senegal. Mosquitoes were collected monthly in each site between June 2009 and March 2011, with three people collecting mosquitoes landing on their legs for one to four consecutive days. In total, 81,219 specimens, belonging to 60 species and 7 genera, were collected. The most abundant species were Aedes furcifer (Edwards) (Diptera: Culicidae) (20.7%), Ae. vittatus (Bigot) (19.5%), Ae. dalzieli (Theobald) (14.7%), and Ae. luteocephalus (Newstead) (13.7%). Ae. dalzieli, Ae. furcifer, Ae. vittatus, Ae. luteocephalus, Ae. taylori Edwards, Ae. africanus (Theobald), Ae. minutus (Theobald), Anopheles coustani Laveran, Culex quinquefasciatus Say, and Mansonia uniformis (Theobald) comprised ≥10% of the total collection, in at least one land cover. The lowest species richness and Brillouin diversity index (HB = 1.55) were observed in the forest-canopy. The urban-indoor fauna showed the highest dissimilarity with other land covers and was most similar to the urban-outdoor fauna following Jaccard and Morisita index. Mosquito abundance peaked in June and October 2009 and July and October 2010. The highest species density was recorded in October. The maximum temperature was correlated positively with mean temperature and negatively with rainfall and relative humidity. Rainfall showed a positive correlation with mosquito abundance and species density. These data will be useful for understanding the transmission of arboviruses and human malaria in the region.
Collapse
Affiliation(s)
- Diawo Diallo
- Unité d’entomologie médicale, Institut Pasteur de Dakar, Dakar, Sénégal
| | - Cheikh T Diagne
- Unité d’entomologie médicale, Institut Pasteur de Dakar, Dakar, Sénégal
| | | | - Yamar Ba
- Unité d’entomologie médicale, Institut Pasteur de Dakar, Dakar, Sénégal
| | - Ibrahima Dia
- Unité d’entomologie médicale, Institut Pasteur de Dakar, Dakar, Sénégal
| | - Oumar Faye
- Pole virologie, Institut Pasteur de Dakar, Sénégal
| | | | - Ousmane Faye
- Pole virologie, Institut Pasteur de Dakar, Sénégal
| | - Douglas M Watts
- Office of Research and Sponsored Projects, University of Texas at El Paso, El Paso, TX
| | - Scott C Weaver
- Institute for Human Infections and Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX
| | - Kathryn A Hanley
- Department of Biology, New Mexico State University, Las Cruces, NM
| | - Mawlouth Diallo
- Unité d’entomologie médicale, Institut Pasteur de Dakar, Dakar, Sénégal
| |
Collapse
|
46
|
Diallo D, Ndiaye EH, Fall G, Ba Y, Faye O, Dia I, Diallo M. Evaluation of the Performance of Different Traps for Sampling Usutu and West Nile Viruses and Mosquito (Diptera: Culicidae) Vectors in Senegal. JOURNAL OF MEDICAL ENTOMOLOGY 2019; 56:149-155. [PMID: 30124969 DOI: 10.1093/jme/tjy145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Indexed: 06/08/2023]
Abstract
An efficient trapping tool is one of the most important factors in surveillance and research on arboviruses and their vectors. In the current study, we tested the efficiency of several traps for sampling West Nile (WNV) and Usutu (USUV) viruses and their vectors in Senegal during 2013. A total of 15,527 mosquitoes (Diptera: Culicidae), 94.3% females, were collected. Among the known arbovirus vectors, Mansonia uniformis (Theobald) (Diptera: Culicidae) was the most abundant (46.5%), followed by Culex poicilipes Theobald (Diptera: Culicidae) (19.5%), Culex tritaeniorhynchus Giles (Diptera: Culicidae) (8.0%), and Culex neavei Theobald (Diptera: Culicidae) (6.1%). The geometric means of these vectors varied by trap, location, and height. WNV was isolated from Cx. neavei and Cx. tritaeniorhynchus collected by pigeon-baited traps within the canopy, CO2-CDC traps within the canopy and at the ground. USUV was isolated only from Cx. neavei collected by pigeon-baited traps and CO2-CDC traps within the canopy. Therefore, for each study, the trap to be chosen will depend on the mosquito species and virus targeted.
Collapse
Affiliation(s)
- Diawo Diallo
- Unité d'Entomologie Médicale, Institut Pasteur de Dakar, BP, Dakar, Senegal
| | - El Hadji Ndiaye
- Unité d'Entomologie Médicale, Institut Pasteur de Dakar, BP, Dakar, Senegal
| | - Gamou Fall
- Unité des Arbovirus et Virus de Fièvres Hémorragiques, Institut Pasteur de Dakar, BP, Dakar, Senegal
| | - Yamar Ba
- Unité d'Entomologie Médicale, Institut Pasteur de Dakar, BP, Dakar, Senegal
| | - Ousmane Faye
- Unité des Arbovirus et Virus de Fièvres Hémorragiques, Institut Pasteur de Dakar, BP, Dakar, Senegal
| | - Ibrahima Dia
- Unité d'Entomologie Médicale, Institut Pasteur de Dakar, BP, Dakar, Senegal
| | - Mawlouth Diallo
- Unité d'Entomologie Médicale, Institut Pasteur de Dakar, BP, Dakar, Senegal
| |
Collapse
|
47
|
Abstract
Chikungunya is a clinically and economically important arbovirus that has spread globally in the twenty-first century. While uncommonly fatal, infection with the virus can lead to incapacitating arthralgia that can persist for months to years. The adverse impacts of viral spread are most severe in developing low- and middle-income countries in which medical infrastructure is insufficient and manual labor is an economic driver. Unfortunately, no prophylactic or therapeutic treatments are approved for human use to combat the virus. Historically, vaccination has proven to be the most efficient and successful strategy for protecting populations and eradicating infectious disease. A large and diverse range of promising vaccination approaches for use against Chikungunya has emerged in recent years and been shown to safely elicit protective immune responses in animal models and humans. Importantly, many of these are based on technologies that have been clinically approved for use against other pathogens. Furthermore, clinical trials are currently ongoing for a subset of these. The purpose of this review is to provide a description of the relevant immunobiology of Chikungunya infection, to present immune-stimulating technologies that have been successfully employed to protect against infection, and discuss priorities and challenges regarding the future development of a vaccine for clinical use.
Collapse
|
48
|
Vector competence of Aedes bromeliae and Aedes vitattus mosquito populations from Kenya for chikungunya virus. PLoS Negl Trop Dis 2018; 12:e0006746. [PMID: 30321181 PMCID: PMC6207330 DOI: 10.1371/journal.pntd.0006746] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 10/30/2018] [Accepted: 08/10/2018] [Indexed: 11/19/2022] Open
Abstract
Background Kenya has experienced outbreaks of chikungunya in the past years with the most recent outbreak occurring in Mandera in the northern region in May 2016 and in Mombasa in the coastal region from November 2017 to February 2018. Despite the outbreaks in Kenya, studies on vector competence have only been conducted on Aedes aegypti. However, the role played by other mosquito species in transmission and maintenance of the virus in endemic areas remains unclear. This study sought to determine the possible role of rural Aedes bromeliae and Aedes vittatus in the transmission of chikungunya virus, focusing on Kilifi and West Pokot regions of Kenya. Methods Four day old female mosquitoes were orally fed on chikungunya virus-infected blood at a dilution of 1:1 of the viral isolate and blood (106.4 plaque-forming units [PFU]/ml) using artificial membrane feeder (Hemotek system) for 45 minutes. The engorged mosquitoes were picked and incubated at 29–30°C ambient temperature and 70–80% humidity in the insectary. At days 5, 7 and 10 post-infection, the mosquitoes were carefully dissected to separate the legs and wings from the body and their proboscis individually inserted in the capillary tube containing minimum essential media (MEM) to collect salivary expectorate. The resultant homogenates and the salivary expectorates were tested by plaque assay to determine virus infection, dissemination and transmission potential of the mosquitoes. Results A total of 515 female mosquitoes (311 Ae. bromeliae and 204 Ae. vittatus) were exposed to the East/Central/South Africa (ECSA) lineage of chikungunya virus. Aedes vittatus showed high susceptibility to the virus ranging between 75–90% and moderate dissemination and transmission rates ranging from 35–50%. Aedes bromeliae had moderate susceptibility ranging between 26–40% with moderate dissemination and transmission rates ranging from 27–55%. Conclusion This study demonstrates that both Ae. vittatus and Ae. bromeliae populations from West Pokot and Kilifi counties in Kenya are competent vectors of chikungunya virus. Based on these results, the two areas are at risk of virus transmission in the event of an outbreak. This study underscores the need to institute vector competence studies for populations of potential vector species as a means of evaluating risk of transmission of the emerging and re-emerging arboviruses in diverse regions of Kenya. Kenya experienced its first chikungunya outbreak in 2004/2005 along the coastal area, followed by sporadic outbreaks in Mandera in 2016, and subsequently in Mombasa city in late 2017 and early 2018. Despite the rising risk of transmission of the virus in the country based on evidence of outbreaks in Kenya, vector competence studies have only been limited to Ae. aegypti, while the role played by other Aedes species largely remain unknown. This study demonstrated the ability of Ae. bromeliae and Ae. vittatus to transmit chikungunya virus under controlled laboratory conditions. Vector competence remains the most important approach in disease risk assessment that provides knowledge to the public health sector in developing vector control guideline.
Collapse
|
49
|
Tanabe ISB, Tanabe ELL, Santos EC, Martins WV, Araújo IMTC, Cavalcante MCA, Lima ARV, Câmara NOS, Anderson L, Yunusov D, Bassi ÊJ. Cellular and Molecular Immune Response to Chikungunya Virus Infection. Front Cell Infect Microbiol 2018; 8:345. [PMID: 30364124 PMCID: PMC6191487 DOI: 10.3389/fcimb.2018.00345] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 09/11/2018] [Indexed: 11/13/2022] Open
Abstract
Chikungunya virus (CHIKV) is a re-emergent arthropod-borne virus (arbovirus) that causes a disease characterized primarily by fever, rash and severe persistent polyarthralgia. In the last decade, CHIKV has become a serious public health problem causing several outbreaks around the world. Despite the fact that CHIKV has been around since 1952, our knowledge about immunopathology, innate and adaptive immune response involved in this infectious disease is incomplete. In this review, we provide an updated summary of the current knowledge about immune response to CHIKV and about soluble immunological markers associated with the morbidity, prognosis and chronicity of this arbovirus disease. In addition, we discuss the progress in the research of new vaccines for preventing CHIKV infection and the use of monoclonal antibodies as a promising therapeutic strategy.
Collapse
Affiliation(s)
- Ithallo S B Tanabe
- IMUNOREG-Grupo de Pesquisa em Regulação da Resposta Imune, Laboratório de Pesquisas em Virologia e Imunologia, Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Alagoas, Maceió, Brazil
| | - Eloiza L L Tanabe
- IMUNOREG-Grupo de Pesquisa em Regulação da Resposta Imune, Laboratório de Pesquisas em Virologia e Imunologia, Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Alagoas, Maceió, Brazil
| | - Elane C Santos
- IMUNOREG-Grupo de Pesquisa em Regulação da Resposta Imune, Laboratório de Pesquisas em Virologia e Imunologia, Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Alagoas, Maceió, Brazil
| | - Wanessa V Martins
- IMUNOREG-Grupo de Pesquisa em Regulação da Resposta Imune, Laboratório de Pesquisas em Virologia e Imunologia, Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Alagoas, Maceió, Brazil
| | - Isadora M T C Araújo
- IMUNOREG-Grupo de Pesquisa em Regulação da Resposta Imune, Laboratório de Pesquisas em Virologia e Imunologia, Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Alagoas, Maceió, Brazil
| | - Maria C A Cavalcante
- IMUNOREG-Grupo de Pesquisa em Regulação da Resposta Imune, Laboratório de Pesquisas em Virologia e Imunologia, Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Alagoas, Maceió, Brazil
| | - Ana R V Lima
- IMUNOREG-Grupo de Pesquisa em Regulação da Resposta Imune, Laboratório de Pesquisas em Virologia e Imunologia, Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Alagoas, Maceió, Brazil
| | - Niels O S Câmara
- Laboratório de Imunobiologia dos Transplantes, Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Leticia Anderson
- IMUNOREG-Grupo de Pesquisa em Regulação da Resposta Imune, Laboratório de Pesquisas em Virologia e Imunologia, Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Alagoas, Maceió, Brazil.,Centro Universitário CESMAC, Maceió, Brazil
| | - Dinar Yunusov
- Cold Spring Harbor Laboratory, Genome Research Center, Woodbury, NY, United States
| | - Ênio J Bassi
- IMUNOREG-Grupo de Pesquisa em Regulação da Resposta Imune, Laboratório de Pesquisas em Virologia e Imunologia, Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Alagoas, Maceió, Brazil
| |
Collapse
|
50
|
Chepkorir E, Venter M, Lutomiah J, Mulwa F, Arum S, Tchouassi DP, Sang R. The occurrence, diversity and blood feeding patterns of potential vectors of dengue and yellow fever in Kacheliba, West Pokot County, Kenya. Acta Trop 2018; 186:50-57. [PMID: 30006028 PMCID: PMC11311114 DOI: 10.1016/j.actatropica.2018.07.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 06/11/2018] [Accepted: 07/09/2018] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Yellow fever (YF) and dengue (DEN) viruses are important re-emerging mosquito-borne viruses sharing similar vectors and reservoirs. The last documented YF outbreak in Kenya occurred in 1992-95. However, YF virus is re-emerging in bordering countries including Uganda, Ethiopia and South Sudan with the potential for spread to the neighboring regions in Kenya. Dengue is endemic in Kenya with outbreaks being detected in various towns in the north and the coast. This study reports on the Aedes (Stegomyia) mosquito species occurrence, diversity, and blood feeding patterns, as means of measuring the risk of transmission of YF and DEN in Kacheliba sub-county, West Pokot County, which borders previous YF outbreak areas in eastern Uganda. METHODOLOGY Adult mosquitoes were collected using CO2-baited BG Sentinel traps at three time points during the rainy season. Mosquitoes were identified to the species level. Species abundance during the three sampling periods were compared, with emphasis on Aedes aegypti and other Stegomyia species, using generalized linear models that included mosquito diversity. Individually blood-fed mosquitoes were analyzed by DNA amplification of the 12S rRNA gene followed by sequencing to determine the source of blood meal. RESULTS Overall, 8605 mosquitoes comprising 22 species in 5 genera were collected. Sampled Stegomyia species included Ae. aegypti (77.3%), Ae. vittatus (11.4%), Ae. metallicus (10.2%) and Ae. unilineatus (1.1%). Ae. aegypti dominated the blood-fed specimens (77%, n = 68) and were found to have fed mostly on rock hyraxes (79%), followed by goats (9%), humans and cattle (each 4%), with a minor proportion on hippopotamus and rock monitor lizards (each comprising 1%). CONCLUSION Our findings reveal the presence of important Stegomyia species, which are known potential vectors of YF and DEN viruses. In addition, evidence of more host feeding on wild and domestic animals (hyrax and goat) than humans was observed. How the low feeding on humans translates to risk of transmission of these viruses, remains unclear, but calls for further research including vector competence studies of the mosquito populations for these viruses. This forms part of a comprehensive risk assessment package to guide decisions on implementation of affordable and sustainable vaccination (YF) and vector control plans in West Pokot County, Kenya.
Collapse
Affiliation(s)
- E Chepkorir
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya; Center for Viral Zoonoses, Department of Medical Virology, University of Pretoria, South Africa.
| | - M Venter
- Center for Viral Zoonoses, Department of Medical Virology, University of Pretoria, South Africa
| | - J Lutomiah
- Kenya Medical Research Institute, Nairobi, Kenya
| | - F Mulwa
- Kenya Medical Research Institute, Nairobi, Kenya
| | - S Arum
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya
| | - D P Tchouassi
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya
| | - R Sang
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya; Kenya Medical Research Institute, Nairobi, Kenya
| |
Collapse
|