1
|
Nii Otinkorang Ankrah J, Gyilbagr F, Vicar EK, Antwi Boasiako Frimpong E, Alhassan RB, Sibdow Baako I, Boakye AN, Akwetey SA, Karikari AB, Sorvor FKB, Walana W. T cells exhaustion, inflammatory and cellular activity markers in PBMCs predict treatment outcome in pulmonary tuberculosis patients. Cytokine 2024; 182:156708. [PMID: 39053080 DOI: 10.1016/j.cyto.2024.156708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/19/2024] [Accepted: 07/20/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND Pulmonary tuberculosis (PTB) is a well-known disease caused by Mycobacterium tuberculosis. Its pathogenesis is premised on evasion of the immune system and dampened immune cells activity. METHODS Here, the transcription pattern of immune cells exhaustion, inflammatory, and cellular activity markers were examined in peripheral blood mononuclear cells (PBMCs) from PTB patients at various stages of treatment. PBMCs were isolated, and RNA extracted. cDNA synthesis was performed, then amplification of genes of interest. RESULTS The T cell exhaustion markers (PD-L1, CTLA4, CD244 and LAG3) showed varied levels of expressions when comparing 0 T and 1 T to the other treatment phases, suggesting their potential roles as markers for monitoring TB treatment. IL-2, IFN-g and TNF-a expression at the gene level returned to normal at completion of treatment, while granzyme B levels remained undetectable at the cured stage. At the cured stage, the cellular activity monitors Ki67, CD69, GATA-3, CD8 and CD4 expressions were comparable to the healthy controls. Correlation analysis revealed a significantly strong negative relationship with CD244 expression, particularly between 1 T and 2 T (r = -0.94; p = 0.018), and 3 T (r = -0.95; p = 0.013). Comparing 0 T and 3 T, a genitive correlation existed in PD-L1 (r = -0.74) but statistically not significant, as seen in CTLA4 and LAG-3 expressions. CONCLUSION Collectively, the findings of the study suggest that T-cells exhaustion marker particularly CD244, inflammatory markers IL-2, IFN-g and TNF-a, and cellular activity indicators such as Ki67, CD69, GATA-3, CD8 and CD4 are promising markers in monitoring the progress of PTB patients during treatment.
Collapse
Affiliation(s)
| | - Fredrick Gyilbagr
- University for Development Studies, School of Medicine, Department of Clinical Microbiology, Tamale, Ghana
| | - Ezekiel Kofi Vicar
- University for Development Studies, School of Medicine, Department of Clinical Microbiology, Tamale, Ghana.
| | | | - Rukaya Baanah Alhassan
- University for Development Studies, School of Medicine, Department of Clinical Microbiology, Tamale, Ghana
| | - Ibrahim Sibdow Baako
- University for Development Studies, School of Medicine, Department of Clinical Microbiology, Tamale, Ghana
| | - Alahaman Nana Boakye
- University for Development Studies, School of Medicine, Department of Clinical Microbiology, Tamale, Ghana.
| | - Samuel Addo Akwetey
- University for Development Studies, School of Medicine, Department of Clinical Microbiology, Tamale, Ghana.
| | - Akosua Bonsu Karikari
- University for Development Studies, School of Medicine, Department of Clinical Microbiology, Tamale, Ghana.
| | | | - Williams Walana
- University for Development Studies, School of Medicine, Department of Clinical Microbiology, Tamale, Ghana.
| |
Collapse
|
2
|
Xiao G, Huang W, Zhong Y, Ou M, Ye T, Wang Z, Zou X, Ding F, Yang Y, Zhang Z, Liu C, Liu A, Liu L, Lu S, Wu L, Zhang G. Uncovering the Bronchoalveolar Single-Cell Landscape of Patients With Pulmonary Tuberculosis With Human Immunodeficiency Virus Type 1 Coinfection. J Infect Dis 2024; 230:e524-e535. [PMID: 38412342 PMCID: PMC11420811 DOI: 10.1093/infdis/jiae042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 01/19/2024] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND Coinfection of human immunodeficiency virus type 1 (HIV-1) is the most significant risk factor for tuberculosis (TB). The immune responses of the lung are essential to restrict the growth of Mycobacterium tuberculosis and avoid the emergence of the disease. Nevertheless, there is still limited knowledge about the local immune response in people with HIV-1-TB coinfection. METHODS We employed single-cell RNA sequencing (scRNA-seq) on bronchoalveolar lavage fluid from 9 individuals with HIV-1-TB coinfection and 10 with pulmonary TB. RESULTS A total of 19 058 cells were grouped into 4 major cell types: myeloid cells, T/natural killer (NK) cells, B cells, and epithelial cells. The myeloid cells and T/NK cells were further divided into 10 and 11 subsets, respectively. The proportions of dendritic cell subsets, CD4+ T cells, and NK cells were lower in the HIV-1-TB coinfection group compared to the TB group, while the frequency of CD8+ T cells was higher. Additionally, we identified numerous differentially expressed genes between the CD4+ and CD8+ T-cell subsets between the 2 groups. CONCLUSIONS HIV-1 infection not only affects the abundance of immune cells in the lungs but also alters their functions in patients with pulmonary TB.
Collapse
Affiliation(s)
- Guohui Xiao
- National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen
| | - Waidong Huang
- BGI Research, Shenzhen
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing
| | | | - Min Ou
- National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen
| | - Taosheng Ye
- National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen
| | | | - Xuanxuan Zou
- BGI Research, Shenzhen
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing
| | - Feng Ding
- National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen
| | | | | | - Chuanyu Liu
- BGI Research, Shenzhen
- BGI Research, Hangzhou
| | - Aimei Liu
- Department of Tuberculosis, Guangxi Chest Hospital, Liuzhou
| | - Longqi Liu
- BGI Research, Shenzhen
- BGI Research, Hangzhou
| | - Shuihua Lu
- National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen
| | - Liang Wu
- BGI Research, Shenzhen
- BGI Research, Chongqing, China
| | - Guoliang Zhang
- National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen
| |
Collapse
|
3
|
Caouaille M, Hudrisier D, Neyrolles O. Mycobacterial D-serine impairs TB control. Nat Immunol 2024; 25:1129-1130. [PMID: 38872001 DOI: 10.1038/s41590-024-01873-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Affiliation(s)
- Maxime Caouaille
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Denis Hudrisier
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Olivier Neyrolles
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France.
| |
Collapse
|
4
|
Dhanyalayam D, Thangavel H, Sidrat T, Oswal N, Lizardo K, Mauro M, Zhao X, Xue HH, Desai JV, Nagajyothi JF. The Influence of Body Fat Dynamics on Pulmonary Immune Responses in Murine Tuberculosis: Unraveling Sex-Specific Insights. Int J Mol Sci 2024; 25:6823. [PMID: 38999932 PMCID: PMC11241512 DOI: 10.3390/ijms25136823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024] Open
Abstract
The World Health Organization (WHO) highlights a greater susceptibility of males to tuberculosis (TB), a vulnerability attributed to sex-specific variations in body fat and dietary factors. Our study delves into the unexplored terrain of how alterations in body fat influence Mycobacterium tuberculosis (Mtb) burden, lung pathology, immune responses, and gene expression, with a focus on sex-specific dynamics. Utilizing a low-dose Mtb-HN878 clinical strain infection model, we employ transgenic FAT-ATTAC mice with modulable body fat to explore the impact of fat loss (via fat ablation) and fat gain (via a medium-fat diet, MFD). Firstly, our investigation unveils that Mtb infection triggers severe pulmonary pathology in males, marked by shifts in metabolic signaling involving heightened lipid hydrolysis and proinflammatory signaling driven by IL-6 and localized pro-inflammatory CD8+ cells. This stands in stark contrast to females on a control regular diet (RD). Secondly, our findings indicate that both fat loss and fat gain in males lead to significantly elevated (1.6-fold (p ≤ 0.01) and 1.7-fold (p ≤ 0.001), respectively) Mtb burden in the lungs compared to females during Mtb infection (where fat loss and gain did not alter Mtb load in the lungs). This upsurge is associated with impaired lung lipid metabolism and intensified mitochondrial oxidative phosphorylation-regulated activity in lung CD8+ cells during Mtb infection. Additionally, our research brings to light that females exhibit a more robust systemic IFNγ (p ≤ 0.001) response than males during Mtb infection. This heightened response may either prevent active disease or contribute to latency in females during Mtb infection. In summary, our comprehensive analysis of the interplay between body fat changes and sex bias in Mtb infection reveals that alterations in body fat critically impact pulmonary pathology in males. Specifically, these changes significantly reduce the levels of pulmonary CD8+ T-cells and increase the Mtb burden in the lungs compared to females. The reduction in CD8+ cells in males is linked to an increase in mitochondrial oxidative phosphorylation and a decrease in TNFα, which are essential for CD8+ cell activation.
Collapse
Affiliation(s)
- Dhanya Dhanyalayam
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Hariprasad Thangavel
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Tabinda Sidrat
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Neelam Oswal
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Kezia Lizardo
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Michael Mauro
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Xin Zhao
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Hai-Hui Xue
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Jigar V Desai
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Jyothi F Nagajyothi
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| |
Collapse
|
5
|
Rendón Ramírez EJ, Rosas-Taraco AG, Soto-Monciváis B, Colunga-Pedraza PR, Salazar-Riojas R, Méndez-Ramírez N, Arce-Mendoza AY, Muñiz-Buenrostro A, Llaca-Díaz J, Gomez-Almaguer D, Rendón A. Comparison of CD4+/CD8+ Lymphocytic Subpopulations Pre- and Post-Antituberculosis Treatment in Patients with Diabetes and Tuberculosis. Pathogens 2023; 12:1181. [PMID: 37764989 PMCID: PMC10536186 DOI: 10.3390/pathogens12091181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/04/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Is there a CD4+ and CD8+ immunity alteration in patients with pulmonary tuberculosis (TB) and diabetes (DM) that does not recover after antituberculosis treatment? This prospective comparative study evaluated CD4+ and CD8+ lymphocytic subpopulations and antituberculosis antibodies in patients with diabetes and tuberculosis (TB-DM), before and after antituberculosis treatment. CD4+ T cell counts were lower in patients with TB-DM compared to those with only TB or only DM, and these levels remained low even after two months of anti-TB treatment. Regarding the CD8+ T cell analysis, we identified higher blood values in the DM-only group, which may be explained by the high prevalence of latent tuberculosis (LTBI) in patients with DM. IgM antituberculosis antibodies levels were elevated in patients with only TB at baseline, and 2 months post-anti-TB treatment, IgG did not express any relevant alterations. Our results suggest an alteration in CD4+ immunity in patients with TB-DM that did not normalize after antituberculosis treatment.
Collapse
Affiliation(s)
- Erick J. Rendón Ramírez
- Servicio de Neumología y Medicina Crítica, Hospital Universitario “Dr. José Eleuterio González”, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico
| | - Adrián G. Rosas-Taraco
- Departamento de Inmunología, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico
| | - Berenice Soto-Monciváis
- Centro de Investigación, Prevención y Tratamiento de Infecciones Respiratorias (CIPTIR), Hospital Universitario “Dr. José Eleuterio González”, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico
| | - Perla R. Colunga-Pedraza
- Servicio de Hematología, Hospital Universitario “Dr. José Eleuterio González”, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico; (P.R.C.-P.)
| | - Rosario Salazar-Riojas
- Servicio de Hematología, Hospital Universitario “Dr. José Eleuterio González”, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico; (P.R.C.-P.)
| | - Nereida Méndez-Ramírez
- Servicio de Hematología, Hospital Universitario “Dr. José Eleuterio González”, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico; (P.R.C.-P.)
| | - Alma Yolanda Arce-Mendoza
- Departamento de Inmunología, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico
| | - Antonio Muñiz-Buenrostro
- Departamento de Inmunología, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico
| | - Jorge Llaca-Díaz
- Departamento de Patología Clínica, Hospital Universitario “Dr. José Eleuterio González”, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico
| | - David Gomez-Almaguer
- Servicio de Hematología, Hospital Universitario “Dr. José Eleuterio González”, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico; (P.R.C.-P.)
| | - Adrián Rendón
- Centro de Investigación, Prevención y Tratamiento de Infecciones Respiratorias (CIPTIR), Hospital Universitario “Dr. José Eleuterio González”, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico
| |
Collapse
|
6
|
Yang Q, Qi F, Ye T, Li J, Xu G, He X, Deng G, Zhang P, Liao M, Qiao K, Zhang Z. The interaction of macrophages and CD8 T cells in bronchoalveolar lavage fluid is associated with latent tuberculosis infection. Emerg Microbes Infect 2023:2239940. [PMID: 37470432 PMCID: PMC10399483 DOI: 10.1080/22221751.2023.2239940] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Mycobacterium tuberculosis (Mtb) infection, including active tuberculosis (TB) and latent Mtb infection (LTBI), leads to diverse outcomes owing to different host immune responses. However, the immune mechanisms that govern the progression from LTBI to TB remain poorly defined in humans. Here, we profiled the lung immune cell populations within the bronchoalveolar lavage fluid (BALF) from patients with LTBI or TB using single-cell RNA sequencing (scRNA-seq). We found that Mtb infection substantially changed the immune cell compartments in the BALF, especially for the three subsets of macrophages, monocyte macrophage (MM)-CCL23, MM-FCN1, and MM-SPP1, which were found to be associated with the disease status of TB infection. Notably, MM-CCL23 cells derived from monocytes after stimulation with Mtb were characterized by high levels of chemokine (CCL23 and CXCL5) production and might serve as a marker for Mtb infection. The MM-CCL23 population mainly recruited CD8-CCR6 T cells through CCL20/CCR6, which was a prominent feature associated with protection immunity in LTBI. This study improves our understanding of the lung immune landscape during Mtb infection, which may inform future vaccine design for protective immunity.
Collapse
Affiliation(s)
- Qianting Yang
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital; The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, China
- Shenzhen Clinical Research Center for Tuberculosis, Shenzhen, China
| | - Furong Qi
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital; The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Taosheng Ye
- Shenzhen Clinical Research Center for Tuberculosis, Shenzhen, China
- Department of Respiratory endoscopy, Shenzhen Third People's Hospital, Shenzhen, China
| | - Jinpei Li
- Shenzhen Clinical Research Center for Tuberculosis, Shenzhen, China
- Department of Respiratory endoscopy, Shenzhen Third People's Hospital, Shenzhen, China
| | - Gang Xu
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital; The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Xiaomeng He
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital; The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Guofang Deng
- Shenzhen Clinical Research Center for Tuberculosis, Shenzhen, China
- Department of Pulmonary Medicine & Tuberculosis, Shenzhen Third People's Hospital, Shenzhen, China
| | - Peize Zhang
- Shenzhen Clinical Research Center for Tuberculosis, Shenzhen, China
- Department of Pulmonary Medicine & Tuberculosis, Shenzhen Third People's Hospital, Shenzhen, China
| | - Mingfeng Liao
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital; The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, China
- Shenzhen Clinical Research Center for Tuberculosis, Shenzhen, China
| | - Kun Qiao
- Shenzhen Clinical Research Center for Tuberculosis, Shenzhen, China
- Department of Thoracic Surgery, Shenzhen Third People's Hospital, Shenzhen, China
| | - Zheng Zhang
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital; The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, China
- Shenzhen Clinical Research Center for Tuberculosis, Shenzhen, China
| |
Collapse
|
7
|
Lyu M, Zhou Y, Chen Y, Lai H, Wang Y, Cheng Y, Li J, Peng W, Liu T, Jiang X, Li M, Zhao Z, Ying B. Exploring the eligibility of all reported lipoarabinomannan-testing assays in different clinical situations: a systematic review and meta-analysis of 97 articles. Int J Infect Dis 2022; 125:19-34. [PMID: 36244601 DOI: 10.1016/j.ijid.2022.10.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/17/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022] Open
Abstract
OBJECTIVES How to choose proper lipoarabinomannan-testing assays for diagnosing tuberculosis (TB) in different populations baffles clinicians. This work assessed all reported lipoarabinomannan assays' performance and aimed to identify the eligibility of each assay and offer guidance for clinicians. METHODS We searched PubMed, Embase, and Web of Science until August 23, 2020. The risk of bias was evaluated by QADAS-2. Heterogeneity was evaluated by the Cochran Q test and I2. Sensitivity and specificity were pooled by a bivariate mixed model (register number: CRD42021270506). RESULTS A total of 97 articles, covering 144 trials, 16 assays, 45,679 participants, and eight sample types, were divided into five groups. Electrochemiluminescence (ECL) had a sensitivity of 65%, specificity of 92%, and an area under curve (AUC) of 0.85 in diagnosing pulmonary TB in adults. ECL showed a promising diagnostic ability (sensitivity: 78%; specificity: 88%; AUC: 0.88) in patients with HIV, especially for urine detection (sensitivity: 90%; specificity: 89%; AUC: 0.95). The enzyme-linked immune assay showed a preference for diagnosing TB in Asians and Africans, especially in Africans who were smear-positive (sensitivity: 80%; specificity: 88%; AUC: 0.91). CONCLUSION ECL was recommended for diagnosing pulmonary TB in adults, especially for TB/HIV co-infection. Taking urine as a sample further enhanced ECL's diagnostic performance. Enzyme-linked immune assay was recommended as an additional TB-related detection for smear-positive Africans.
Collapse
Affiliation(s)
- Mengyuan Lyu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610044, China; West China School of Medicine, Sichuan University, Chengdu, 610044, China
| | - Yanbing Zhou
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610044, China; West China School of Medicine, Sichuan University, Chengdu, 610044, China
| | - Yi Chen
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610044, China; West China School of Medicine, Sichuan University, Chengdu, 610044, China
| | - Hongli Lai
- West China School of Medicine, Sichuan University, Chengdu, 610044, China
| | - Yili Wang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610044, China; West China School of Medicine, Sichuan University, Chengdu, 610044, China
| | - Yuhui Cheng
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610044, China; West China School of Medicine, Sichuan University, Chengdu, 610044, China
| | - Jing Li
- Department of Laboratory Medicine, PanZhihua Central Hospital, PanZhihua, 617067, China
| | - Wu Peng
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610044, China; West China School of Medicine, Sichuan University, Chengdu, 610044, China
| | - Tangyuheng Liu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610044, China; West China School of Medicine, Sichuan University, Chengdu, 610044, China
| | - Xin Jiang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610044, China; West China School of Medicine, Sichuan University, Chengdu, 610044, China
| | - Mei Li
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610044, China; West China School of Medicine, Sichuan University, Chengdu, 610044, China
| | - Zhenzhen Zhao
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610044, China; West China School of Medicine, Sichuan University, Chengdu, 610044, China
| | - Binwu Ying
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610044, China; West China School of Medicine, Sichuan University, Chengdu, 610044, China.
| |
Collapse
|
8
|
Liebler-Tenorio EM, Heyl J, Wedlich N, Figl J, Köhler H, Krishnamoorthy G, Nieuwenhuizen NE, Grode L, Kaufmann SHE, Menge C. Vaccine-Induced Subcutaneous Granulomas in Goats Reflect Differences in Host-Mycobacterium Interactions between BCG- and Recombinant BCG-Derivative Vaccines. Int J Mol Sci 2022; 23:10992. [PMID: 36232295 PMCID: PMC9570401 DOI: 10.3390/ijms231910992] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
Tuberculous granulomas are highly dynamic structures reflecting the complex host-mycobacterium interactions. The objective of this study was to compare granuloma development at the site of vaccination with BCG and its recombinant derivatives in goats. To characterize the host response, epithelioid cells, multinucleated giant cells (MNGC), T cell subsets, B cells, plasma cells, dendritic cells and mycobacterial antigen were labelled by immunohistochemistry, and lipids and acid-fast bacteria (AFB) were labelled by specific staining. Granulomas with central caseous necrosis developed at the injection site of most goats though lesion size and extent of necrosis differed between vaccine strains. CD4+ T and B cells were more scarce and CD8+ cells were more numerous in granulomas induced by recombinant derivatives compared to their parental BCG strain. Further, the numbers of MNGCs and cells with lipid bodies were markedly lower in groups administered with recombinant BCG strains. Microscopic detection of AFB and mycobacterial antigen was rather frequent in the area of central necrosis, however, the isolation of bacteria in culture was rarely successful. In summary, BCG and its recombinant derivatives induced reproducibly subcutaneous caseous granulomas in goats that can be easily monitored and surgically removed for further studies. The granulomas reflected the genetic modifications of the recombinant BCG-derivatives and are therefore suitable models to compare reactions to different mycobacteria or TB vaccines.
Collapse
Affiliation(s)
| | - Johannes Heyl
- Institute of Molecular Pathogenesis, Friedrich-Loeffler-Institut, 07743 Jena, Germany
| | - Nadine Wedlich
- Institute of Molecular Pathogenesis, Friedrich-Loeffler-Institut, 07743 Jena, Germany
| | - Julia Figl
- Institute of Molecular Pathogenesis, Friedrich-Loeffler-Institut, 07743 Jena, Germany
| | - Heike Köhler
- Institute of Molecular Pathogenesis, Friedrich-Loeffler-Institut, 07743 Jena, Germany
| | | | | | - Leander Grode
- Vakzine Projekt Management GmbH, 30625 Hannover, Germany
| | - Stefan H. E. Kaufmann
- Department of Immunology, Max Planck Institute for Infection Biology, 10117 Berlin, Germany
- Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
- Hagler Institute for Advanced Study, Texas A&M University, College Station, TX 77843, USA
| | - Christian Menge
- Institute of Molecular Pathogenesis, Friedrich-Loeffler-Institut, 07743 Jena, Germany
| |
Collapse
|
9
|
Lv W, He P, Ma Y, Tan D, Li F, Xie T, Han J, Wang J, Mi Y, Niu H, Zhu B. Optimizing the Boosting Schedule of Subunit Vaccines Consisting of BCG and "Non-BCG" Antigens to Induce Long-Term Immune Memory. Front Immunol 2022; 13:862726. [PMID: 35493466 PMCID: PMC9039131 DOI: 10.3389/fimmu.2022.862726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/16/2022] [Indexed: 11/13/2022] Open
Abstract
Boosting Bacillus Calmette-Guérin (BCG) with subunit vaccine is expected to induce long-term protection against tuberculosis (TB). However, it is urgently needed to optimize the boosting schedule of subunit vaccines, which consists of antigens from or not from BCG, to induce long-term immune memory. To address it two subunit vaccines, Mtb10.4-HspX (MH) consisting of BCG antigens and ESAT6-CFP10 (EC) consisting of antigens from the region of difference (RD) of Mycobacterium tuberculosis (M. tuberculosis), were applied to immunize BCG-primed C57BL/6 mice twice or thrice with different intervals, respectively. The long-term antigen-specific immune responses and protective efficacy against M. tuberculosis H37Ra were determined. The results showed that following BCG priming, MH boosting twice at 12-24 weeks or EC immunizations thrice at 12-16-24 weeks enhanced the number and function of long-lived memory T cells with improved protection against H37Ra, while MH boosting thrice at 12-16-24 weeks or twice at 8-14 weeks and EC immunizations twice at 12-24 weeks or thrice at 8-10-14 weeks didn't induce long-term immunity. It suggests that following BCG priming, both BCG antigens MH boosting twice and "non-BCG" antigens EC immunizations thrice at suitable intervals induce long-lived memory T cell-mediated immunity.
Collapse
Affiliation(s)
- Wei Lv
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation and Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Pu He
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation and Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Yanlin Ma
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation and Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Daquan Tan
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation and Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Fei Li
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation and Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Tao Xie
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation and Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Jiangyuan Han
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation and Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Juan Wang
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation and Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Youjun Mi
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation and Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.,Institute of Pathophysiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Hongxia Niu
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation and Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Bingdong Zhu
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation and Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.,State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou, China
| |
Collapse
|
10
|
Gong W, Pan C, Cheng P, Wang J, Zhao G, Wu X. Peptide-Based Vaccines for Tuberculosis. Front Immunol 2022; 13:830497. [PMID: 35173740 PMCID: PMC8841753 DOI: 10.3389/fimmu.2022.830497] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/10/2022] [Indexed: 12/12/2022] Open
Abstract
Tuberculosis (TB) is an infectious disease caused by Mycobacterium tuberculosis. As a result of the coronavirus disease 2019 (COVID-19) pandemic, the global TB mortality rate in 2020 is rising, making TB prevention and control more challenging. Vaccination has been considered the best approach to reduce the TB burden. Unfortunately, BCG, the only TB vaccine currently approved for use, offers some protection against childhood TB but is less effective in adults. Therefore, it is urgent to develop new TB vaccines that are more effective than BCG. Accumulating data indicated that peptides or epitopes play essential roles in bridging innate and adaptive immunity and triggering adaptive immunity. Furthermore, innovations in bioinformatics, immunoinformatics, synthetic technologies, new materials, and transgenic animal models have put wings on the research of peptide-based vaccines for TB. Hence, this review seeks to give an overview of current tools that can be used to design a peptide-based vaccine, the research status of peptide-based vaccines for TB, protein-based bacterial vaccine delivery systems, and animal models for the peptide-based vaccines. These explorations will provide approaches and strategies for developing safer and more effective peptide-based vaccines and contribute to achieving the WHO's End TB Strategy.
Collapse
Affiliation(s)
- Wenping Gong
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
| | - Chao Pan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Peng Cheng
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
- Hebei North University, Zhangjiakou City, China
| | - Jie Wang
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
| | - Guangyu Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xueqiong Wu
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
11
|
Recombinant BCG-Prime and DNA-Boost Immunization Confers Mice with Enhanced Protection against Mycobacterium kansasii. Vaccines (Basel) 2021; 9:vaccines9111260. [PMID: 34835191 PMCID: PMC8618695 DOI: 10.3390/vaccines9111260] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 11/24/2022] Open
Abstract
The incidence of infections with nontuberculous mycobacteria (NTM) has been increasing worldwide. The emergence of multidrug-resistant NTM is a serious clinical concern, and a vaccine for NTM has not yet been developed. We previously developed a new recombinant Bacillus Calmette–Guérin (rBCG) vaccine encoding the antigen 85B (Ag85B) protein of Mycobacterium kansasii—termed rBCG-Mkan85B—which was used together with a booster immunization with plasmid DNA expressing the same M. kansasii Ag85B gene (DNA-Mkan85B). We reported that rBCG-Mkan85B/DNA-Mkan85B prime–boost immunization elicited various NTM strain-specific CD4+ and CD8+ T cells and induced Mycobacterium tuberculosis-specific immunity. In this study, to investigate the protective effect against M. kansasii infection, we challenged mice vaccinated with a rBCG-Mkan85B or rBCG-Mkan85B/DNA-Mkan85B prime–boost strategy with virulent M. kansasii. Although BCG and rBCG-Mkan85B immunization each suppressed the growth of M. kansasii in the mouse lungs, the rBCG-Mkan85B/DNA-Mkan85B prime–boost vaccination reduced the bacterial burden more significantly. Moreover, the rBCG-Mkan85B/DNA-Mkan85B prime–boost vaccination induced antigen-specific CD4+ and CD8+ T cells. Our data suggest that rBCG-Mkan85B/DNA-Mkan85B prime–boost vaccination effectively enhances antigen-specific T cells. Our novel rBCG could be a potential alternative to clinical BCG for preventing various NTM infections.
Collapse
|
12
|
Lee JK, Lee HW, Heo EY, Yim JJ, Kim DK. Comparison of QuantiFERON-TB Gold Plus and QuantiFERON-TB Gold In-Tube tests for patients with active and latent tuberculosis: A prospective cohort study. J Infect Chemother 2021; 27:1694-1699. [PMID: 34412980 DOI: 10.1016/j.jiac.2021.08.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/06/2021] [Accepted: 08/03/2021] [Indexed: 11/16/2022]
Abstract
INTRODUCTION We aimed to determine the diagnostic performance and clinical value of the QuantiFERON-TB Gold In-Tube (QFT-GIT) and QuantiFERON-TB Gold Plus (QFT-Plus) tests in patients with active tuberculosis (TB) or latent TB infection (LTBI). METHODS We prospectively enrolled 140 patients, including 63 with active TB and 77 with LTBI, between March 2017 and October 2018. QFT-GIT and QFT-Plus were performed simultaneously in all subjects. RESULTS QFT-Plus and QFT-GIT test results showed significant agreement, in both active TB and LTBI patients, in terms of the interferon-γ concentration and interpretation result. QFT-Plus had higher sensitivity than QFT-GIT for predicting active TB (82.5% vs. 77.8%) and showed fewer false-negative and indeterminate results in both active TB and LTBI patients due to its "TB2 tube". The QFT-Plus TB2-TB1 value was higher in the active TB group than in the LTBI group. The QFT-Plus TB1-Nil and TB2-Nil values were useful in predicting remote LTBI, rather than recent LTBI. CONCLUSIONS QFT-Plus showed good agreement with QFT-GIT in both active TB and LTBI patients, and higher sensitivity for predicting active TB than QFT-GIT. The QFT-Plus TB2 tube results, which reflect CD8+ T cell immunity, may improve predictive accuracy and detection of the immune response associated with active TB and LTBI.
Collapse
Affiliation(s)
- Jung-Kyu Lee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul, Republic of Korea
| | - Hyun Woo Lee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul, Republic of Korea
| | - Eun Young Heo
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul, Republic of Korea
| | - Jae-Joon Yim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Deog Kyeom Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul, Republic of Korea.
| |
Collapse
|
13
|
Rapaka RR, Cross AS, McArthur MA. Using Adjuvants to Drive T Cell Responses for Next-Generation Infectious Disease Vaccines. Vaccines (Basel) 2021; 9:vaccines9080820. [PMID: 34451945 PMCID: PMC8402546 DOI: 10.3390/vaccines9080820] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/16/2021] [Accepted: 07/20/2021] [Indexed: 12/12/2022] Open
Abstract
Using adjuvants to drive features of T cell responses to vaccine antigens is an important technological challenge in the design of new and improved vaccines against infections. Properties such as T helper cell function, T cell memory, and CD8+ T cell cytotoxicity may play critical roles in optimal and long-lived immunity through vaccination. Directly manipulating specific immune activation or antigen delivery pathways with adjuvants may selectively augment desired T cell responses in vaccination and may improve the effectiveness and durability of vaccine responses in humans. In this review we outline recently studied adjuvants in their potential for antigen presenting cell and T cell programming during vaccination, with an emphasis on what has been observed in studies in humans as available.
Collapse
|
14
|
Tamburini B, Badami GD, Azgomi MS, Dieli F, La Manna MP, Caccamo N. Role of hematopoietic cells in Mycobacterium tuberculosis infection. Tuberculosis (Edinb) 2021; 130:102109. [PMID: 34315045 DOI: 10.1016/j.tube.2021.102109] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 07/05/2021] [Accepted: 07/20/2021] [Indexed: 10/20/2022]
Abstract
Tuberculosis remains one of the most significant causes of mortality worldwide and the current situation shows a re-emergence of TB due to the emergence of new antibiotic-resistant strains and the widespread of disease caused by immunodeficiencies. For these reasons, a big effort is made to improve the therapeutic strategies against Mycobacterium tuberculosis and to perform new therapeutic and diagnostic strategies. This review analyzes the various hematopoietic populations, their role and the different changes they undergo during Mycobacterium tuberculosis infection or disease. We have examined the population of lymphocytes, monocytes, neutrophils, eosinophils and platelets, in orderto understand how each of them is modulated during the course of infection/disease. In this way it will be possible to highlight the correlations between these cell populations and the different stages of tubercular infection. In fact, Mycobacterium tuberculosis is able to influence both proliferation and differentiation of hematopoietic stem cells. Several studies have highlighted that Mycobacterium tuberculosis can also infect progenitor cells in the bone marrow during active disease driving towards an increase of myeloid differentiation. This review focuses how the different stages of tubercular infection could impact on the different hematopoietic populations, with the aim to correlate the changes of different populations as biomarkers useful to discriminate infection from disease and to evaluate the effectiveness of new therapies.
Collapse
Affiliation(s)
- Bartolo Tamburini
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), Italy; Department of Biomedicine, Neurosciences and Advanced Diagnostic (Bi.N.D.); University of Palermo, Palermo 90127, Italy
| | - Giusto Davide Badami
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), Italy; Department of Biomedicine, Neurosciences and Advanced Diagnostic (Bi.N.D.); University of Palermo, Palermo 90127, Italy
| | - Mojtaba Shekarkar Azgomi
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), Italy; Department of Biomedicine, Neurosciences and Advanced Diagnostic (Bi.N.D.); University of Palermo, Palermo 90127, Italy
| | - Francesco Dieli
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), Italy; Department of Biomedicine, Neurosciences and Advanced Diagnostic (Bi.N.D.); University of Palermo, Palermo 90127, Italy
| | - Marco Pio La Manna
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), Italy; Department of Biomedicine, Neurosciences and Advanced Diagnostic (Bi.N.D.); University of Palermo, Palermo 90127, Italy
| | - Nadia Caccamo
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), Italy; Department of Biomedicine, Neurosciences and Advanced Diagnostic (Bi.N.D.); University of Palermo, Palermo 90127, Italy.
| |
Collapse
|
15
|
Sivakumaran D, Blatner G, Bakken R, Hokey D, Ritz C, Jenum S, Grewal HMS. A 2-Dose AERAS-402 Regimen Boosts CD8 + Polyfunctionality in HIV-Negative, BCG-Vaccinated Recipients. Front Immunol 2021; 12:673532. [PMID: 34177914 PMCID: PMC8231292 DOI: 10.3389/fimmu.2021.673532] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 05/18/2021] [Indexed: 11/20/2022] Open
Abstract
Despite the widespread use of BCG, tuberculosis (TB) remains a global threat. Existing vaccine candidates in clinical trials are designed to replace or boost BCG which does not provide satisfying long-term protection. AERAS-402 is a replication-deficient Ad35 vaccine encoding a fusion protein of the M. tuberculosis (Mtb) antigens 85A, 85B, and TB10.4. The present phase I trial assessed the safety and immunogenicity of AERAS-402 in participants living in India – a highly TB-endemic area. Healthy male participants aged 18–45 years with a negative QuantiFERON-TB Gold in-tube test (QFT) were recruited. Enrolled participants (n=12) were randomized 2:1 to receive two intramuscular injections of either AERAS-402 (3 x 1010 viral particles [vp]); (n=8) or placebo (n=4) on study days 0 and 28. Safety and immunogenicity parameters were evaluated for up to 182 days post the second injection. Immunogenicity was assessed by a flow cytometry-based intracellular cytokine staining (ICS) assay and transcriptional profiling. The latter was examined using dual-color-Reverse-Transcriptase-Multiplex-Ligation-dependent-Probe-Amplification (dc-RT MLPA) assay. AERAS-402 was well tolerated, and no vaccine-related serious adverse events were recorded. The vaccine-induced CD8+ T-cell responses were dominated by cells co-expressing IFN-γ, TNF-α, and IL-2 (“polyfunctional” cells) and were more robust than CD4+ T-cell responses. Five genes (CXCL10, GNLY, IFI35, IL1B and PTPRCv2) were differentially expressed between the AERAS-402-group and the placebo group, suggesting vaccine-induced responses. Further, compared to pre-vaccination, three genes (CLEC7A, PTPRCv1 and TAGAP) were consistently up-regulated following two doses of vaccination in the AERAS-402-group. No safety concerns were observed for AERAS-402 in healthy Indian adult males. The vaccine-induced predominantly polyfunctional CD8+ T cells in response to Ag85B, humoral immunity, and altered gene expression profiles in peripheral blood mononuclear cells (PBMCs) indicative of activation of various immunologically relevant biological pathways.
Collapse
Affiliation(s)
- Dhanasekaran Sivakumaran
- Department of Clinical Science, Bergen Integrated Diagnostic Stewardship Cluster, Faculty of Medicine, University of Bergen, Bergen, Norway.,Department of Microbiology, Haukeland University Hospital, University of Bergen, Bergen, Norway
| | - Gretta Blatner
- Biomedical Advanced Research and Development Authority (BARDA), Department of Health and Human Services, Washington, DC, United States.,Aeras Global TB Vaccine Foundation, Rockville, MD, United States
| | - Rasmus Bakken
- Department of Clinical Science, Bergen Integrated Diagnostic Stewardship Cluster, Faculty of Medicine, University of Bergen, Bergen, Norway.,Department of Microbiology, Haukeland University Hospital, University of Bergen, Bergen, Norway
| | - David Hokey
- Aeras Global TB Vaccine Foundation, Rockville, MD, United States
| | - Christian Ritz
- Department of Clinical Science, Bergen Integrated Diagnostic Stewardship Cluster, Faculty of Medicine, University of Bergen, Bergen, Norway.,Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Synne Jenum
- Department of Infectious Diseases, Oslo University Hospital, Oslo, Norway
| | - Harleen M S Grewal
- Department of Clinical Science, Bergen Integrated Diagnostic Stewardship Cluster, Faculty of Medicine, University of Bergen, Bergen, Norway.,Department of Microbiology, Haukeland University Hospital, University of Bergen, Bergen, Norway
| |
Collapse
|
16
|
Herbath M, Fabry Z, Sandor M. Current concepts in granulomatous immune responses. Biol Futur 2021; 72:61-68. [PMID: 34095894 PMCID: PMC8174606 DOI: 10.1007/s42977-021-00077-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 02/10/2021] [Indexed: 12/16/2022]
Abstract
Persistent irritants that are resistant to innate and cognate immunity induce granulomas. These macrophage-dominated lesions that partially isolate the healthy tissue from the irritant and the irritant induced inflammation. Particles, toxins, autoantigens and infectious agents can induce granulomas. The corresponding lesions can be protective for the host but they can also cause damage and such damage has been associated with the pathology of more than a hundred human diseases. Recently, multiple molecular mechanisms underlying how normal macrophages transform into granuloma-inducing macrophages have been discovered and new information has been gathered, indicating how these lesions are initiated, spread and regulated. In this review, differences between the innate and cognate granuloma pathways are discussed by summarizing how the dendritic cell - T cell axis changes granulomatous immunity. Granuloma lesions are highly dynamic and depend on continuous cell replacement. This feature provides new therapeutic approaches to treat granulomatous diseases.
Collapse
Affiliation(s)
- Melinda Herbath
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, USA
| | - Zsuzsanna Fabry
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, USA
| | - Matyas Sandor
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, USA
| |
Collapse
|
17
|
Umthong S, Dunn JR, Cheng HH. Depletion of CD8αβ + T Cells in Chickens Demonstrates Their Involvement in Protective Immunity towards Marek's Disease with Respect to Tumor Incidence and Vaccinal Protection. Vaccines (Basel) 2020; 8:E557. [PMID: 32987648 PMCID: PMC7712963 DOI: 10.3390/vaccines8040557] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/17/2020] [Accepted: 09/20/2020] [Indexed: 01/12/2023] Open
Abstract
Marek's disease (MD) is a lymphoproliferative disease in chickens caused by Marek's disease virus (MDV), a highly oncogenic alphaherpesvirus. Since 1970, MD has been controlled through widespread vaccination of commercial flocks. However, repeated and unpredictable MD outbreaks continue to occur in vaccinated flocks, indicating the need for a better understanding of MDV pathogenesis to guide improved or alternative control measures. As MDV is an intracellular pathogen that infects and transforms CD4+ T cells, the host cell-mediated immune response is considered to be vital for controlling MDV replication and tumor formation. In this study, we addressed the role of CD8+ T cells in vaccinal protection by widely-used monovalent (SB-1 and HVT) and bivalent (SB-1+HVT) MD vaccines. We established a method to deplete CD8+ T cells in chickens and found that their depletion through injection of anti-CD8 monoclonal antibodies (mAb) increased tumor induction and MD pathology, and reduced vaccinal protection to MD, which supports the important role of CD8+ T cells for both MD and vaccinal protection.
Collapse
Affiliation(s)
- Supawadee Umthong
- Microbiology and Molecular Genetics Program, Michigan State University, East Lansing, MI 48823, USA;
- USDA, ARS, US National Poultry Research Center, Avian Disease and Oncology Laboratory, East Lansing, MI 48823, USA;
| | - John R. Dunn
- USDA, ARS, US National Poultry Research Center, Avian Disease and Oncology Laboratory, East Lansing, MI 48823, USA;
| | - Hans H. Cheng
- USDA, ARS, US National Poultry Research Center, Avian Disease and Oncology Laboratory, East Lansing, MI 48823, USA;
| |
Collapse
|
18
|
Cumming BM, Pacl HT, Steyn AJC. Relevance of the Warburg Effect in Tuberculosis for Host-Directed Therapy. Front Cell Infect Microbiol 2020; 10:576596. [PMID: 33072629 PMCID: PMC7531540 DOI: 10.3389/fcimb.2020.576596] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 08/13/2020] [Indexed: 12/12/2022] Open
Abstract
Tuberculosis (TB) was responsible for more deaths in 2019 than any other infectious agent. This epidemic is exacerbated by the ongoing development of multi-drug resistance and HIV co-infection. Recent studies have therefore focused on identifying host-directed therapies (HDTs) that can be used in combination with anti-mycobacterial drugs to shorten the duration of TB treatment and improve TB outcomes. In searching for effective HDTs for TB, studies have looked toward immunometabolism, the study of the role of metabolism in host immunity and, in particular, the Warburg effect. Across a variety of experimental paradigms ranging from in vitro systems to the clinic, studies on the role of the Warburg effect in TB have produced seemingly conflicting results and contradictory conclusions. To reconcile this literature, we take a historical approach to revisit the definition of the Warburg effect, re-examine the foundational papers on the Warburg effect in the cancer field and explore its application to immunometabolism. With a firm context established, we assess the literature investigating metabolism and immunometabolism in TB for sufficient evidence to support the role of the Warburg effect in TB immunity. The effects of the differences between animal models, species of origin of the macrophages, duration of infection and Mycobacterium tuberculosis strains used for these studies are highlighted. In addition, the shortcomings of using 2-deoxyglucose as an inhibitor of glycolysis are discussed. We conclude by proposing experimental criteria that are essential for future studies on the Warburg effect in TB to assist with the research for HDTs to combat TB.
Collapse
Affiliation(s)
| | - Hayden T Pacl
- Department of Microbiology, University of Alabama, Birmingham, AL, United States
| | - Adrie J C Steyn
- Africa Health Research Institute, Durban, South Africa.,Department of Microbiology, University of Alabama, Birmingham, AL, United States.,Centers for Free Radical Biology (CFRB) and AIDS Research (CFAR), University of Alabama, Birmingham, AL, United States
| |
Collapse
|
19
|
Kelly AM, McLoughlin RM. Target the Host, Kill the Bug; Targeting Host Respiratory Immunosuppressive Responses as a Novel Strategy to Improve Bacterial Clearance During Lung Infection. Front Immunol 2020; 11:767. [PMID: 32425944 PMCID: PMC7203494 DOI: 10.3389/fimmu.2020.00767] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/06/2020] [Indexed: 12/14/2022] Open
Abstract
The lung is under constant pressure to protect the body from invading bacteria. An effective inflammatory immune response must be tightly orchestrated to ensure complete clearance of any invading bacteria, while simultaneously ensuring that inflammation is kept under strict control to preserve lung viability. Chronic bacterial lung infections are seen as a major threat to human life with the treatment of these infections becoming more arduous as the prevalence of antibiotic resistance becomes increasingly commonplace. In order to survive within the lung bacteria target the host immune system to prevent eradication. Many bacteria directly target inflammatory cells and cytokines to impair inflammatory responses. However, bacteria also have the capacity to take advantage of and strongly promote anti-inflammatory immune responses in the host lung to inhibit local pro-inflammatory responses that are critical to bacterial elimination. Host cells such as T regulatory cells and myeloid-derived suppressor cells are often enhanced in number and activity during chronic pulmonary infection. By increasing suppressive cell populations and cytokines, bacteria promote a permissive environment suitable for their prolonged survival. This review will explore the anti-inflammatory aspects of the lung immune system that are targeted by bacteria and how bacterial-induced immunosuppression could be inhibited through the use of host-directed therapies to improve treatment options for chronic lung infections.
Collapse
Affiliation(s)
- Alanna M Kelly
- Host-Pathogen Interactions Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Rachel M McLoughlin
- Host-Pathogen Interactions Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
20
|
Host-Directed Therapy as a Novel Treatment Strategy to Overcome Tuberculosis: Targeting Immune Modulation. Antibiotics (Basel) 2020; 9:antibiotics9010021. [PMID: 31936156 PMCID: PMC7168302 DOI: 10.3390/antibiotics9010021] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 12/25/2019] [Accepted: 01/04/2020] [Indexed: 12/12/2022] Open
Abstract
Tuberculosis (TB) is one of the leading causes of mortality and morbidity, particularly in developing countries, presenting a major threat to the public health. The currently recommended long term treatment regimen with multiple antibiotics is associated with poor patient compliance, which in turn, may contribute to the emergence of multi-drug resistant TB (MDR-TB). The low global treatment efficacy of MDR-TB has highlighted the necessity to develop novel treatment options. Host-directed therapy (HDT) together with current standard anti-TB treatments, has gained considerable interest, as HDT targets novel host immune mechanisms. These immune mechanisms would otherwise bypass the antibiotic bactericidal targets to kill Mycobacterium tuberculosis (Mtb), which may be mutated to cause antibiotic resistance. Additionally, host-directed therapies against TB have been shown to be associated with reduced lung pathology and improved disease outcome, most likely via the modulation of host immune responses. This review will provide an update of host-directed therapies and their mechanism(s) of action against Mycobacterium tuberculosis.
Collapse
|
21
|
Correia-Neves M, Sundling C, Cooper A, Källenius G. Lipoarabinomannan in Active and Passive Protection Against Tuberculosis. Front Immunol 2019; 10:1968. [PMID: 31572351 PMCID: PMC6749014 DOI: 10.3389/fimmu.2019.01968] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 08/05/2019] [Indexed: 12/14/2022] Open
Abstract
Glycolipids of the cell wall of Mycobacterium tuberculosis (Mtb) are important immunomodulators in tuberculosis. In particular, lipoarabinomannan (LAM) has a profound effect on the innate immune response. LAM and its structural variants can be recognized by and activate human CD1b-restricted T cells, and emerging evidence indicates that B cells and antibodies against LAM can modulate the immune response to Mtb. Anti-LAM antibodies are induced during Mtb infection and after bacille Calmette-Guerin (BCG) vaccination, and monoclonal antibodies against LAM have been shown to confer protection by passive administration in mice and guinea pigs. In this review, we describe the immune response against LAM and the potential use of the mannose-capped arabinan moiety of LAM in the construction of vaccine candidates against tuberculosis.
Collapse
Affiliation(s)
- Margarida Correia-Neves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's, PT Government Associate Laboratory, Braga, Guimarães, Portugal
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Christopher Sundling
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Andrea Cooper
- Leicester Tuberculosis Research Group (LTBRG), Department of Respiratory Sciences, University of Leicester, Leicester, United Kingdom
| | - Gunilla Källenius
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
22
|
Komine-Aizawa S, Jiang J, Mizuno S, Hayakawa S, Matsuo K, Boyd LF, Margulies DH, Honda M. MHC-restricted Ag85B-specific CD8 + T cells are enhanced by recombinant BCG prime and DNA boost immunization in mice. Eur J Immunol 2019; 49:1399-1414. [PMID: 31135967 PMCID: PMC6722017 DOI: 10.1002/eji.201847988] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 05/09/2019] [Accepted: 05/23/2019] [Indexed: 12/21/2022]
Abstract
Despite efforts to develop effective treatments and vaccines, Mycobacterium tuberculosis (Mtb), particularly pulmonary Mtb, continues to provide major health challenges worldwide. To improve immunization against the persistent health challenge of Mtb infection, we have studied the CD8+ T cell response to Bacillus Calmette-Guérin (BCG) and recombinant BCG (rBCG) in mice. Here, we generated CD8+ T cells with an rBCG-based vaccine encoding the Ag85B protein of M. kansasii, termed rBCG-Mkan85B, followed by boosting with plasmid DNA expressing the Ag85B gene (DNA-Mkan85B). We identified two MHC-I (H2-Kd )-restricted epitopes that induce cross-reactive responses to Mtb and other related mycobacteria in both BALB/c (H2d ) and CB6F1 (H2b/d ) mice. The H2-Kd -restricted peptide epitopes elicited polyfunctional CD8+ T cell responses that were also highly cross-reactive with those of other proteins of the Ag85 complex. Tetramer staining indicated that the two H2-Kd -restricted epitopes elicit distinct CD8+ T cell populations, a result explained by the X-ray structure of the two peptide/H2-Kd complexes. These results suggest that rBCG-Mkan85B vector-based immunization and DNA-Mkan85B boost may enhance CD8+ T cell response to Mtb, and might help to overcome the limited effectiveness of the current BCG in eliciting tuberculosis immunity.
Collapse
Affiliation(s)
- Shihoko Komine-Aizawa
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine
| | - Jiansheng Jiang
- Molecular Biology Section, Laboratory of Immune System Biology, NIAID, National Institutes of Health
| | - Satoru Mizuno
- Japan BCG Laboratory
- The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association
| | - Satoshi Hayakawa
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine
| | - Kazuhiro Matsuo
- Japan BCG Laboratory
- The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association
| | - Lisa F. Boyd
- Molecular Biology Section, Laboratory of Immune System Biology, NIAID, National Institutes of Health
| | - David H. Margulies
- Molecular Biology Section, Laboratory of Immune System Biology, NIAID, National Institutes of Health
| | - Mitsuo Honda
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine
| |
Collapse
|
23
|
Rv2626c and Rv2032 activate TH1 response and downregulate regulatory T cells in peripheral blood mononuclear cells of tuberculosis patients. Comp Immunol Microbiol Infect Dis 2019; 62:46-53. [DOI: 10.1016/j.cimid.2018.11.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 11/24/2018] [Accepted: 11/27/2018] [Indexed: 12/19/2022]
|
24
|
Dreesman A, Dirix V, Smits K, Corbière V, Van Praet A, Debulpaep S, De Schutter I, Felderhof MK, Malfroot A, Singh M, Locht C, Mouchet F, Mascart F. Identification of Mycobacterium tuberculosis Infection in Infants and Children With Partial Discrimination Between Active Disease and Asymptomatic Infection. Front Pediatr 2019; 7:311. [PMID: 31404140 PMCID: PMC6669376 DOI: 10.3389/fped.2019.00311] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 07/09/2019] [Indexed: 01/01/2023] Open
Abstract
Background: Improved diagnostic tests are needed for the early identification of Mycobacterium tuberculosis-infected young children exposed to an active TB (aTB) index case. We aimed to compare the diagnostic accuracy of new blood-based tests to that of the tuberculin skin test (TST) for the identification of all infected children and for a potential differentiation between aTB and latent TB infection (LTBI). Methods: 144 children exposed to a patient with aTB were included, and those who met all inclusion criteria (130/144) were classified in three groups based on results from classical investigations: non-infected (NI: n = 69, 53%, median age 10 months), LTBI (n = 28, 22%, median age 96 months), aTB disease (n = 33, 25%, median age 24 months). The first whole blood assay consisted of a 7-days in vitro stimulation of blood with four different mycobacterial antigens (40 μl/condition), followed by flow cytometric measurement of the proportions of blast cells appearing among lymphocytes as a result of their specific activation. Thresholds of positivity were determined by Receiver Operating Characteristic (ROC) curve analysis (results of NI children vs. children with LTBI/aTB) in order to identify infected children in a first stage. Other cut-offs were determined to discriminate subgroups of infected children in a second step (results from children with aTB/LTBI). Analysis of blood monocytes and dendritic cell subsets was performed on 100 μl of blood for 25 of these children as a second test in a pilot study. Results: Combining the results of the blast-induced CD3+ T lymphocytes by Heparin-Binding Haemagglutinin and by Culture Filtrate Protein-10 identified all but one infected children (sensitivity 98.2% and specificity 86.9%, compared to 93.4 and 100% for the TST). Further identification among infected children of those with aTB was best achieved by the results of blast-induced CD8+ T lymphocytes by purified protein derivative (sensitivity for localized aTB: 61.9%, specificity 96.3%), whereas high proportions of blood type 2 myeloid dendritic cells (mDC) were a hallmark of LTBI. Conclusions: New blood-based tests requiring a very small volume allow the accurate identification of M. tuberculosis-infected young children among exposed children and are promising to guide the clinical classification of children with aTB or LTBI.
Collapse
Affiliation(s)
- Alexandra Dreesman
- Laboratory of Vaccinology and Mucosal Immunity, Université Libre de Bruxelles, Brussels, Belgium.,Pediatric Department, CHU Saint-Pierre, Brussels, Belgium
| | - Violette Dirix
- Laboratory of Vaccinology and Mucosal Immunity, Université Libre de Bruxelles, Brussels, Belgium
| | - Kaat Smits
- Laboratory of Vaccinology and Mucosal Immunity, Université Libre de Bruxelles, Brussels, Belgium
| | - Véronique Corbière
- Laboratory of Vaccinology and Mucosal Immunity, Université Libre de Bruxelles, Brussels, Belgium
| | - Anne Van Praet
- Laboratory of Vaccinology and Mucosal Immunity, Université Libre de Bruxelles, Brussels, Belgium
| | - Sara Debulpaep
- Pediatric Department, CHU Saint-Pierre, Brussels, Belgium
| | - Iris De Schutter
- Department of Pediatric Pulmonology, Cystic Fibrosis Clinic and Pediatric Infectious Diseases, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Mariet-Karlijn Felderhof
- Department of Pediatric Pulmonology, Cystic Fibrosis Clinic and Pediatric Infectious Diseases, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Anne Malfroot
- Department of Pediatric Pulmonology, Cystic Fibrosis Clinic and Pediatric Infectious Diseases, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Mahavir Singh
- Lionex Diagnostics and Therapeutics, Braunschweig, Germany
| | - Camille Locht
- INSERM, U1019, Lille, France.,CNRS, UMR8204, Lille, France.,Université de Lille, Lille, France.,Centre d'Infection et d'Immunité de Lille, Institut Pasteur de Lille, Lille, France
| | | | - Françoise Mascart
- Laboratory of Vaccinology and Mucosal Immunity, Université Libre de Bruxelles, Brussels, Belgium.,Immunobiology Clinic, Hôpital Erasme, U.L.B., Brussels, Belgium
| |
Collapse
|
25
|
Barreira-Silva P, Torrado E, Nebenzahl-Guimaraes H, Kallenius G, Correia-Neves M. Aetiopathogenesis, immunology and microbiology of tuberculosis. Tuberculosis (Edinb) 2018. [DOI: 10.1183/2312508x.10020917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
26
|
Rai PK, Chodisetti SB, Maurya SK, Nadeem S, Zeng W, Janmeja AK, Jackson DC, Agrewala JN. A lipidated bi-epitope vaccine comprising of MHC-I and MHC-II binder peptides elicits protective CD4 T cell and CD8 T cell immunity against Mycobacterium tuberculosis. J Transl Med 2018; 16:279. [PMID: 30305097 PMCID: PMC6180631 DOI: 10.1186/s12967-018-1653-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 10/04/2018] [Indexed: 12/24/2022] Open
Abstract
Background The clinical trials conducted at Chingleput India suggest that BCG fails to protect against tuberculosis (TB) in TB-endemic population. Recent studies advocate that non-tuberculous mycobacteria and latent Mycobacterium tuberculosis (Mtb) infection interferes in the antigen processing and presentation of BCG in inducing protective immunity against Mtb. Thereby, indicating that any vaccine that require extensive antigen processing may not be efficacious in TB-endemic zones. Recently, we have demonstrated that the vaccine candidate L91, which is composed of lipidated promiscuous MHC-II binder epitope, derived from latency associated Acr1 antigen of Mtb is immunogenic in the murine and Guinea pig models of TB and conferred better protection than BCG against Mtb. Methods In this study, we have used a multi-stage based bi-epitope vaccine, namely L4.8, comprising of MHC-I and MHC-II binding peptides of active (TB10.4) and latent (Acr1) stages of Mtb antigens, respectively. These peptides were conjugated to the TLR-2 agonist Pam2Cys. Results L4.8 significantly elicited both CD8 T cells and CD4 T cells immunity, as evidenced by increase in the enduring polyfunctional CD8 T cells and CD4 T cells. L4.8 efficiently declined Mtb-burden and protected animals better than BCG and L91, even at the late stage of Mtb infection. Conclusions The BCG-L4.8 prime boost strategy imparts a better protection against TB than the BCG alone. This study emphatically denotes that L4.8 can be a promising future vaccine candidate for controlling active and latent TB. Electronic supplementary material The online version of this article (10.1186/s12967-018-1653-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Pradeep K Rai
- CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Sathi Babu Chodisetti
- CSIR-Institute of Microbial Technology, Chandigarh, India.,Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | | | - Sajid Nadeem
- CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Weiguang Zeng
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Ashok K Janmeja
- Department of Pulmonary Medicine, Government Medical College and Hospital, Chandigarh, India
| | - David C Jackson
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Javed N Agrewala
- CSIR-Institute of Microbial Technology, Chandigarh, India. .,Indian Institute of Technology, Rupnagar, 140001, India.
| |
Collapse
|
27
|
Bai X, Aerts SL, Verma D, Ordway DJ, Chan ED. Epidemiologic Evidence of and Potential Mechanisms by Which Second-Hand Smoke Causes Predisposition to Latent and Active Tuberculosis. Immune Netw 2018; 18:e22. [PMID: 29984040 PMCID: PMC6026693 DOI: 10.4110/in.2018.18.e22] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 06/15/2018] [Accepted: 06/16/2018] [Indexed: 12/13/2022] Open
Abstract
Many studies have linked cigarette smoke (CS) exposure and tuberculosis (TB) infection and disease although much fewer have studied second-hand smoke (SHS) exposure. Our goal is to review the epidemiologic link between SHS and TB as well as to summarize the effects SHS and direct CS on various immune cells relevant for TB. PubMed searches were performed using the key words "tuberculosis" with "cigarette," "tobacco," or "second-hand smoke." The bibliography of relevant papers were examined for additional relevant publications. Relatively few studies associate SHS exposure with TB infection and active disease. Both SHS and direct CS can alter various components of host immunity resulting in increased vulnerability to TB. While the epidemiologic link of these 2 health maladies is robust, more definitive, mechanistic studies are required to prove that SHS and direct CS actually cause increased susceptibility to TB.
Collapse
Affiliation(s)
- Xiyuan Bai
- Department of Medicine, Denver Veterans Affairs Medical Center, University of Colorado Anschutz Medical Center, Denver, CO 80045, USA
- Department of Medicine and Office of Academic Affairs, National Jewish Health, Denver, CO 80206, USA
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Denver, CO 80045, USA
| | - Shanae L. Aerts
- Department of Medicine and Office of Academic Affairs, National Jewish Health, Denver, CO 80206, USA
| | - Deepshikha Verma
- Department of Microbiology, Immunology, and Pathology, Mycobacteria Research Laboratories, Colorado State University, Fort Collins, CO 80523, USA
| | - Diane J. Ordway
- Department of Microbiology, Immunology, and Pathology, Mycobacteria Research Laboratories, Colorado State University, Fort Collins, CO 80523, USA
| | - Edward D. Chan
- Department of Medicine, Denver Veterans Affairs Medical Center, University of Colorado Anschutz Medical Center, Denver, CO 80045, USA
- Department of Medicine and Office of Academic Affairs, National Jewish Health, Denver, CO 80206, USA
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Denver, CO 80045, USA
| |
Collapse
|
28
|
A multi-antigenic MVA vaccine increases efficacy of combination chemotherapy against Mycobacterium tuberculosis. PLoS One 2018; 13:e0196815. [PMID: 29718990 PMCID: PMC5931632 DOI: 10.1371/journal.pone.0196815] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 04/22/2018] [Indexed: 12/13/2022] Open
Abstract
Despite the existence of the prophylactic Bacille Calmette-Guérin (BCG) vaccine, infection by Mycobacterium tuberculosis (Mtb) remains a major public health issue causing up to 1.8 million annual deaths worldwide. Increasing prevalence of Mtb strains resistant to antibiotics represents an urgent threat for global health that has prompted a search for alternative treatment regimens not subject to development of resistance. Immunotherapy constitutes a promising approach to improving current antibiotic treatments through engagement of the host’s immune system. We designed a multi-antigenic and multiphasic vaccine, based on the Modified Vaccinia Ankara (MVA) virus, denoted MVATG18598, which expresses ten antigens classically described as representative of each of different phases of Mtb infection. In vitro analysis coupled with multiple-passage evaluation demonstrated that this vaccine is genetically stable, i.e. fit for manufacturing. Using different mouse strains, we show that MVATG18598 vaccination results in both Th1-associated T-cell responses and cytolytic activity, targeting all 10 vaccine-expressed Mtb antigens. In chronic post-exposure mouse models, MVATG18598 vaccination in combination with an antibiotic regimen decreases the bacterial burden in the lungs of infected mice, compared with chemotherapy alone, and is associated with long-lasting antigen-specific Th1-type T cell and antibody responses. In one model, co-treatment with MVATG18598 prevented relapse of the disease after treatment completion, an important clinical goal. Overall, results demonstrate the capacity of the therapeutic MVATG18598 vaccine to improve efficacy of chemotherapy against TB. These data support further development of this novel immunotherapeutic in the treatment of Mtb infections.
Collapse
|
29
|
Piergallini TJ, Turner J. Tuberculosis in the elderly: Why inflammation matters. Exp Gerontol 2018; 105:32-39. [PMID: 29287772 PMCID: PMC5967410 DOI: 10.1016/j.exger.2017.12.021] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 12/22/2017] [Accepted: 12/22/2017] [Indexed: 12/20/2022]
Abstract
Growing old is associated with an increase in the basal inflammatory state of an individual and susceptibility to many diseases, including infectious diseases. Evidence is growing to support the concept that inflammation and disease susceptibility in the elderly is linked. Our studies focus on the infectious disease tuberculosis (TB), which is caused by Mycobacterium tuberculosis (M.tb), a pathogen that infects approximately one fourth of the world's population. Aging is a major risk factor for developing TB, and inflammation has been strongly implicated. In this review we will discuss the relationship between inflammation in the lung and susceptibility to develop and succumb to TB in old age. Further understanding of the relationship between inflammation, age, and M.tb will lead to informed decisions about TB prevention and treatment strategies that are uniquely designed for the elderly.
Collapse
Affiliation(s)
- Tucker J Piergallini
- Texas Biomedical Research Institute, San Antonio, TX 78227, United States; College of Medicine, The Ohio State University, Columbus, OH 43210, United States
| | - Joanne Turner
- Texas Biomedical Research Institute, San Antonio, TX 78227, United States.
| |
Collapse
|
30
|
Esmail H, Riou C, Bruyn ED, Lai RPJ, Harley YXR, Meintjes G, Wilkinson KA, Wilkinson RJ. The Immune Response to Mycobacterium tuberculosis in HIV-1-Coinfected Persons. Annu Rev Immunol 2018; 36:603-638. [PMID: 29490165 DOI: 10.1146/annurev-immunol-042617-053420] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Globally, about 36.7 million people were living with HIV infection at the end of 2015. The most frequent infection co-occurring with HIV-1 is Mycobacterium tuberculosis-374,000 deaths per annum are attributable to HIV-tuberculosis, 75% of those occurring in Africa. HIV-1 infection increases the risk of tuberculosis by a factor of up to 26 and alters its clinical presentation, complicates diagnosis and treatment, and worsens outcome. Although HIV-1-induced depletion of CD4+ T cells underlies all these effects, more widespread immune deficits also contribute to susceptibility and pathogenesis. These defects present a challenge to understand and ameliorate, but also an opportunity to learn and optimize mechanisms that normally protect people against tuberculosis. The most effective means to prevent and ameliorate tuberculosis in HIV-1-infected people is antiretroviral therapy, but this may be complicated by pathological immune deterioration that in turn requires more effective host-directed anti-inflammatory therapies to be derived.
Collapse
Affiliation(s)
- Hanif Esmail
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, and Department of Medicine, University of Cape Town, Cape Town 7925, Republic of South Africa; .,Department of Medicine, Imperial College London, London W2 1PG, United Kingdom.,Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Catherine Riou
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, and Department of Medicine, University of Cape Town, Cape Town 7925, Republic of South Africa;
| | - Elsa du Bruyn
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, and Department of Medicine, University of Cape Town, Cape Town 7925, Republic of South Africa;
| | | | - Yolande X R Harley
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, and Department of Medicine, University of Cape Town, Cape Town 7925, Republic of South Africa;
| | - Graeme Meintjes
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, and Department of Medicine, University of Cape Town, Cape Town 7925, Republic of South Africa;
| | - Katalin A Wilkinson
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, and Department of Medicine, University of Cape Town, Cape Town 7925, Republic of South Africa; .,The Francis Crick Institute, London NW1 2AT, United Kingdom
| | - Robert J Wilkinson
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, and Department of Medicine, University of Cape Town, Cape Town 7925, Republic of South Africa; .,Department of Medicine, Imperial College London, London W2 1PG, United Kingdom.,The Francis Crick Institute, London NW1 2AT, United Kingdom
| |
Collapse
|
31
|
Velasquez LN, Stüve P, Gentilini MV, Swallow M, Bartel J, Lycke NY, Barkan D, Martina M, Lujan HD, Kalay H, van Kooyk Y, Sparwasser TD, Berod L. Targeting Mycobacterium tuberculosis Antigens to Dendritic Cells via the DC-Specific-ICAM3-Grabbing-Nonintegrin Receptor Induces Strong T-Helper 1 Immune Responses. Front Immunol 2018; 9:471. [PMID: 29662482 PMCID: PMC5890140 DOI: 10.3389/fimmu.2018.00471] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 02/21/2018] [Indexed: 12/19/2022] Open
Abstract
Tuberculosis remains a major global health problem and efforts to develop a more effective vaccine have been unsuccessful so far. Targeting antigens (Ags) to dendritic cells (DCs) in vivo has emerged as a new promising vaccine strategy. In this approach, Ags are delivered directly to DCs via antibodies that bind to endocytic cell-surface receptors. Here, we explored DC-specific-ICAM3-grabbing-nonintegrin (DC-SIGN) targeting as a potential vaccine against tuberculosis. For this, we made use of the hSIGN mouse model that expresses human DC-SIGN under the control of the murine CD11c promoter. We show that in vitro and in vivo delivery of anti-DC-SIGN antibodies conjugated to Ag85B and peptide 25 of Ag85B in combination with anti-CD40, the fungal cell wall component zymosan, and the cholera toxin-derived fusion protein CTA1-DD induces strong Ag-specific CD4+ T-cell responses. Improved anti-mycobacterial immunity was accompanied by increased frequencies of Ag-specific IFN-γ+ IL-2+ TNF-α+ polyfunctional CD4+ T cells in vaccinated mice compared with controls. Taken together, in this study we provide the proof of concept that the human DC-SIGN receptor can be efficiently exploited for vaccine purposes to promote immunity against mycobacterial infections.
Collapse
Affiliation(s)
- Lis Noelia Velasquez
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Philipp Stüve
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Maria Virginia Gentilini
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Maxine Swallow
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Judith Bartel
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Nils Yngve Lycke
- Mucosal Immunobiology and Vaccine Center (MIVAC), Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Daniel Barkan
- Koret School of Veterinary Medicine, Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, Israel
| | - Mariana Martina
- Laboratory of Biochemistry and Molecular Biology, School of Medicine, Catholic University of Córdoba, Córdoba, Argentina
| | - Hugo D Lujan
- Laboratory of Biochemistry and Molecular Biology, School of Medicine, Catholic University of Córdoba, Córdoba, Argentina
| | - Hakan Kalay
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, Netherlands
| | - Yvette van Kooyk
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, Netherlands
| | - Tim D Sparwasser
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Luciana Berod
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| |
Collapse
|
32
|
Foreman TW, Veatch AV, LoBato DN, Didier PJ, Doyle-Meyers LA, Russell-Lodrigue KE, Lackner AA, Kousoulas KG, Khader SA, Kaushal D, Mehra S. Nonpathologic Infection of Macaques by an Attenuated Mycobacterial Vaccine Is Not Reactivated in the Setting of HIV Co-Infection. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:2811-2820. [PMID: 28935575 PMCID: PMC5718104 DOI: 10.1016/j.ajpath.2017.08.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 08/11/2017] [Accepted: 08/17/2017] [Indexed: 12/29/2022]
Abstract
Failure to replace Bacille Calmette-Guerin vaccines with efficacious anti-tuberculosis (TB) vaccines have prompted outside-the-box thinking, including pulmonary vaccination to elicit local immunity. Inhalational MtbΔsigH, a stress-response-attenuated strain, protected against lethal TB in macaques. While live mycobacterial vaccines show promising efficacy, HIV co-infection and the resulting immunodeficiency prompts safety concerns about their use. We assessed the persistence and safety of MtbΔsigH, delivered directly to the lungs, in the setting of HIV co-infection. Macaques were aerosol-vaccinated with ΔsigH and subsequently challenged with SIVmac239. Bronchoalveolar lavage and tissues were sampled for mycobacterial persistence, pathology, and immune correlates. Only 35% and 3.5% of lung samples were positive for live bacilli and granulomas, respectively. Our results therefore suggest that the nonpathologic infection of macaque lungs by ΔsigH was not reactivated by simian immunodeficiency virus, despite high viral levels and massive ablation of pulmonary CD4+ T cells. Protective pulmonary responses were retained, including vaccine-induced bronchus-associated lymphoid tissue and CD8+ effector memory T cells. Despite acute simian immunodeficiency virus infection, all animals remained asymptomatic of pulmonary TB. These findings highlight the efficacy of mucosal vaccination via this attenuated strain and will guide its further development to potentially combat TB in HIV-endemic areas. Our results also suggest that a lack of pulmonary pathology is a key correlate of the safety of live mycobacterial vaccines.
Collapse
Affiliation(s)
- Taylor W Foreman
- Tulane National Primate Research Center, Covington, Louisiana; Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Ashley V Veatch
- Tulane National Primate Research Center, Covington, Louisiana
| | - Denae N LoBato
- Tulane National Primate Research Center, Covington, Louisiana
| | - Peter J Didier
- Tulane National Primate Research Center, Covington, Louisiana
| | | | | | - Andrew A Lackner
- Tulane National Primate Research Center, Covington, Louisiana; Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Konstantin G Kousoulas
- Center for Biomedical Research Excellence, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana; Department of Pathobiological Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana
| | - Shabaana A Khader
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri
| | - Deepak Kaushal
- Tulane National Primate Research Center, Covington, Louisiana; Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana.
| | - Smriti Mehra
- Tulane National Primate Research Center, Covington, Louisiana; Center for Biomedical Research Excellence, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana; Department of Pathobiological Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana.
| |
Collapse
|
33
|
Role of Granulocyte-Macrophage Colony-Stimulating Factor Production by T Cells during Mycobacterium tuberculosis Infection. mBio 2017; 8:mBio.01514-17. [PMID: 29066547 PMCID: PMC5654932 DOI: 10.1128/mbio.01514-17] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Mice deficient for granulocyte-macrophage colony-stimulating factor (GM-CSF−/−) are highly susceptible to infection with Mycobacterium tuberculosis, and clinical data have shown that anti-GM-CSF neutralizing antibodies can lead to increased susceptibility to tuberculosis in otherwise healthy people. GM-CSF activates human and murine macrophages to inhibit intracellular M. tuberculosis growth. We have previously shown that GM-CSF produced by iNKT cells inhibits growth of M. tuberculosis. However, the more general role of T cell-derived GM-CSF during infection has not been defined and how GM-CSF activates macrophages to inhibit bacterial growth is unknown. Here we demonstrate that, in addition to nonconventional T cells, conventional T cells also produce GM-CSF during M. tuberculosis infection. Early during infection, nonconventional iNKT cells and γδ T cells are the main source of GM-CSF, a role subsequently assumed by conventional CD4+ T cells as the infection progresses. M. tuberculosis-specific T cells producing GM-CSF are also detected in the peripheral blood of infected people. Under conditions where nonhematopoietic production of GM-CSF is deficient, T cell production of GM-CSF is protective and required for control of M. tuberculosis infection. However, GM-CSF is not required for T cell-mediated protection in settings where GM-CSF is produced by other cell types. Finally, using an in vitro macrophage infection model, we demonstrate that GM-CSF inhibition of M. tuberculosis growth requires the expression of peroxisome proliferator-activated receptor gamma (PPARγ). Thus, we identified GM-CSF production as a novel T cell effector function. These findings suggest that a strategy augmenting T cell production of GM-CSF could enhance host resistance against M. tuberculosis. Mycobacterium tuberculosis is the bacterium that causes tuberculosis, the leading cause of death by any infection worldwide. T cells are critical components of the immune response to Mycobacterium tuberculosis. While gamma interferon (IFN-γ) is a key effector function of T cells during infection, a failed phase IIb clinical trial and other studies have revealed that IFN-γ production alone is not sufficient to control M. tuberculosis. In this study, we demonstrate that CD4+, CD8+, and nonconventional T cells produce GM-CSF during Mycobacterium tuberculosis infection in mice and in the peripheral blood of infected humans. Under conditions where other sources of GM-CSF are absent, T cell production of GM-CSF is protective and is required for control of infection. GM-CSF activation of macrophages to limit bacterial growth requires host expression of the transcription factor PPARγ. The identification of GM-CSF production as a T cell effector function may inform future host-directed therapy or vaccine designs.
Collapse
|
34
|
Beigier-Bompadre M, Montagna GN, Kühl AA, Lozza L, Weiner J, Kupz A, Vogelzang A, Mollenkopf HJ, Löwe D, Bandermann S, Dorhoi A, Brinkmann V, Matuschewski K, Kaufmann SHE. Mycobacterium tuberculosis infection modulates adipose tissue biology. PLoS Pathog 2017; 13:e1006676. [PMID: 29040326 PMCID: PMC5695609 DOI: 10.1371/journal.ppat.1006676] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 11/02/2017] [Accepted: 10/03/2017] [Indexed: 12/20/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) primarily resides in the lung but can also persist in extrapulmonary sites. Macrophages are considered the prime cellular habitat in all tissues. Here we demonstrate that Mtb resides inside adipocytes of fat tissue where it expresses stress-related genes. Moreover, perigonadal fat of Mtb-infected mice disseminated the infection when transferred to uninfected animals. Adipose tissue harbors leukocytes in addition to adipocytes and other cell types and we observed that Mtb infection induces changes in adipose tissue biology depending on stage of infection. Mice infected via aerosol showed infiltration of inducible nitric oxide synthase (iNOS) or arginase 1 (Arg1)-negative F4/80+ cells, despite recruitment of CD3+, CD4+ and CD8+ T cells. Gene expression analysis of adipose tissue of aerosol Mtb-infected mice provided evidence for upregulated expression of genes associated with T cells and NK cells at 28 days post-infection. Strikingly, IFN-γ-producing NK cells and Mtb-specific CD8+ T cells were identified in perigonadal fat, specifically CD8+CD44-CD69+ and CD8+CD44-CD103+ subpopulations. Gene expression analysis of these cells revealed that they expressed IFN-γ and the lectin-like receptor Klrg1 and down-regulated CD27 and CD62L, consistent with an effector phenotype of Mtb-specific CD8+ T cells. Sorted NK cells expressed higher abundance of Klrg1 upon infection, as well. Our results reveal the ability of Mtb to persist in adipose tissue in a stressed state, and that NK cells and Mtb-specific CD8+ T cells infiltrate infected adipose tissue where they produce IFN-γ and assume an effector phenotype. We conclude that adipose tissue is a potential niche for Mtb and that due to infection CD8+ T cells and NK cells are attracted to this tissue. In 2015, tuberculosis (TB) affected 10.4 million individuals causing 1.8 million deaths per year. Yet, a much larger group– 2 billion people–harbors latent TB infection (LTBI) without clinical symptoms, but at lifelong risk of reactivation. The physiological niches of Mycobacterium tuberculosis (Mtb) persistence remain incompletely defined and both pulmonary and extrapulmonary sites have been proposed. Adipose tissue constitutes 15–25% of total body mass and is an active production site for hormones and inflammatory mediators. The increasing prevalence of obesity, has led to greater incidence of type 2 diabetes. These patients suffer from three times higher risk of developing TB, pointing to a potential link between adipose tissue and TB pathogenesis. In individuals with LTBI, Mtb survives in a stressed, non-replicating state with low metabolic activity and resting macrophages serve as preferred habitat and become effectors after appropriate stimulation. Here we demonstrate that Mtb can infect and persist within adipocytes where it upregulates stress-related genes. In vivo, relative proportions of leukocyte subsets infiltrating adipose tissue varied under different conditions of infection. During natural aerosol Mtb infection, distinct leukocyte subsets, including mononuclear phagocytes, Mtb-specific CD8+ T cells and NK cells infiltrated adipose tissue and became activated. Thus, our study shows that adipose tissue is not only a potential reservoir for this pathogen but also undergoes significant alteration during TB infection.
Collapse
Affiliation(s)
| | | | - Anja A. Kühl
- Medical Department, Division of Gastroenterology, Infectiology and Rheumatology, Charité - University Medicine, Berlin, Germany
| | - Laura Lozza
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - January Weiner
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Andreas Kupz
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Alexis Vogelzang
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| | | | - Delia Löwe
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Silke Bandermann
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Anca Dorhoi
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Volker Brinkmann
- Core Facility, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Kai Matuschewski
- Parasitology Unit, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Stefan H. E. Kaufmann
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
- * E-mail:
| |
Collapse
|
35
|
Lau A, Singh V, Soualhine H, Hmama Z. Expression of Cathepsin S in BCG converts it into a pro-apoptotic and highly immunogenic strain. Vaccine 2017; 35:2060-2068. [PMID: 28318770 DOI: 10.1016/j.vaccine.2017.02.065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 02/16/2017] [Accepted: 02/28/2017] [Indexed: 12/17/2022]
Abstract
BACKGROUND BCG vaccine, introduced almost 100years ago, is the only option to prevent TB disease. It effectively protects newborns from meningeal TB but fails to prevent adult pulmonary TB. TB kills 1.3million people annually in areas where BCG vaccination is widely practiced. Thus, more effective TB vaccines are urgently needed. Others and we have shown that BCG mimics features of virulent M. tuberculosis, in particular attenuation of essential macrophage functions such as phagosome maturation and antigen presentation. One of these studies revealed that defect in antigen presentation is largely due to down-regulation of the cysteine protease Cathepsin S (CatS), which prevents MHC II molecule maturation and proper antigen peptide loading. Recent studies also suggested a potential role for cysteine proteases in the regulation of apoptosis, a key cellular process used by the macrophage to (i) contain and process ingested bacteria and (ii) facilitate cross-talk antigen presentation between the macrophage and dendritic cells. METHOD To reverse the phenotype of vaccine-mediated macrophage attenuation, we engineered a novel BCG strain that expresses and secretes active CatS (rBCG-CatS) to examine its pro-apoptotic properties in vitro, and subsequently, immunogenicity in mice. RESULTS Transcriptomic profiling of macrophages infected with rBCG-CatS, but not BCG, revealed upregulation of key pro-apoptotic genes and downregulation of anti-apoptotic genes, which were further confirmed by RT-qPCR analyses of expression of selected genes. Macrophages infected with rBCG-CatS undergo apoptosis as indicated by increased levels of annexin V staining and intracellular caspase-3 cleavage. Consistent with these findings, mice vaccinated with rBCG-CatS showed increased antigen-specific CD4+ T-cell responses, as well as enhanced cytokine production and proliferation in CD4+ upon ex vivo re-stimulation. CONCLUSION Collectively, this study shows that a pro-apoptotic BCG strain alleviates adverse traits of the wild-type strain, resulting in a highly immunogenic TB vaccine.
Collapse
Affiliation(s)
- Alice Lau
- Division of Infectious Diseases, Department of Medicine and Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, BC V6H 3Z6, Canada
| | - Vijender Singh
- Division of Infectious Diseases, Department of Medicine and Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, BC V6H 3Z6, Canada
| | - Hafid Soualhine
- Division of Infectious Diseases, Department of Medicine and Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, BC V6H 3Z6, Canada
| | - Zakaria Hmama
- Division of Infectious Diseases, Department of Medicine and Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, BC V6H 3Z6, Canada.
| |
Collapse
|
36
|
Gilchuk P, Knight FC, Wilson JT, Joyce S. Eliciting Epitope-Specific CD8+ T Cell Response by Immunization with Microbial Protein Antigens Formulated with α-Galactosylceramide: Theory, Practice, and Protocols. Methods Mol Biol 2017; 1494:321-352. [PMID: 27718206 DOI: 10.1007/978-1-4939-6445-1_25] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
CD8+ cytotoxic T lymphocytes confer protection against infectious diseases caused by viruses, bacteria, and parasites. Hence, significant efforts have been invested into devising ways to generate CD8+ T cell-targeted vaccines. Generation of microbe-free protein subunit vaccines requires a thorough knowledge of protective target antigens. Such antigens are proteolytically processed peptides presented by MHC class I molecules. To induce a robust antigen-specific CD8+ T cell response through vaccination, it is essential to formulate the antigen with an effective adjuvant. Here, we describe a versatile method for generating high-frequency antigen-specific CD8+ T cells through immunization of mice using the invariant natural killer T cell agonist α-galactosylceramide as the adjuvant.
Collapse
Affiliation(s)
- Pavlo Gilchuk
- Veterans Administration Tennessee Valley Healthcare System, US Department of Veterans Affairs, Nashville, TN, 37332, USA.,Department of Pathology, Microbiology and Immunology, School of Medicine, Vanderbilt University, A4223 Medical Centre North, 1161 21st Avenue South, Nashville, TN, 37332, USA
| | - Frances C Knight
- Department of Biomedical Engineering, School of Engineering, Vanderbilt University, Nashville, TN, 37332, USA
| | - John T Wilson
- Department of Biomedical Engineering, School of Engineering, Vanderbilt University, Nashville, TN, 37332, USA.,Department of Chemical & Biomolecular Engineering, School of Engineering, Vanderbilt University, Nashville, TN, 37332, USA
| | - Sebastian Joyce
- Veterans Administration Tennessee Valley Healthcare System, US Department of Veterans Affairs, Nashville, TN, 37332, USA. .,Department of Pathology, Microbiology and Immunology, School of Medicine, Vanderbilt University, A4223 Medical Centre North, 1161 21st Avenue South, Nashville, TN, 37332, USA.
| |
Collapse
|
37
|
Ahmad TA, Eweida AE, El-Sayed LH. T-cell epitope mapping for the design of powerful vaccines. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.vacrep.2016.07.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
38
|
Predicting promiscuous antigenic T cell epitopes of Mycobacterium tuberculosis mymA operon proteins binding to MHC Class I and Class II molecules. INFECTION GENETICS AND EVOLUTION 2016; 44:182-189. [DOI: 10.1016/j.meegid.2016.07.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 06/24/2016] [Accepted: 07/03/2016] [Indexed: 11/21/2022]
|
39
|
Liu SD, Su J, Zhang SM, Dong HP, Wang H, Luo W, Wen Q, He JC, Yang XF, Ma L. Identification of HLA-A*11:01-restricted Mycobacterium tuberculosis CD8(+) T cell epitopes. J Cell Mol Med 2016; 20:1718-28. [PMID: 27072810 PMCID: PMC4988290 DOI: 10.1111/jcmm.12867] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 03/07/2016] [Indexed: 01/06/2023] Open
Abstract
New vaccines are needed to combat Mycobacterium tuberculosis (MTB) infections. The currently employed Bacillus Calmette‐Guérin vaccine is becoming ineffective, due in part to the emergence of multidrug‐resistant tuberculosis (MDR‐TB) strains and the reduced immune capacity in cases of HIV coinfection. CD8+ T cells play an important role in the protective immunity against MTB infections, and the identification of immunogenic CD8+ T cell epitopes specific for MTB is essential for the design of peptide‐based vaccines. To identify CD8+ T cell epitopes of MTB proteins, we screened a set of 94 MTB antigens for HLA class I A*11:01‐binding motifs. HLA‐A*11:01 is one of the most prevalent HLA molecules in Southeast Asians, and definition of T cell epitopes it can restrict would provide significant coverage for the Asian population. Peptides that bound with high affinity to purified HLA molecules were subsequently evaluated in functional assays to detect interferon‐γ release and CD8+ T cell proliferation in active pulmonary TB patients. We identified six novel epitopes, each derived from a unique MTB antigen, which were recognized by CD8+ T cells from active pulmonary TB patients. In addition, a significant level of epitope‐specific T cells could be detected ex vivo in peripheral blood mononuclear cells from active TB patients by an HLA‐A*11:01 dextramer carrying the peptide Rv3130c194‐204 (from the MTB triacylglycerol synthase Tgs1), which was the most frequently recognized epitope in our peptide library. In conclusion, this study identified six dominant CD8+ T cell epitopes that may be considered potential targets for subunit vaccines or diagnostic strategies against TB.
Collapse
Affiliation(s)
- Su-Dong Liu
- Institute of Molecular Immunology, School of Biotechnology, Southern Medical University, Guangzhou, China
| | - Jin Su
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shi-Meng Zhang
- Institute of Molecular Immunology, School of Biotechnology, Southern Medical University, Guangzhou, China
| | - Hai-Ping Dong
- Department of Severe Tuberculosis Medicine, Guangzhou Chest Hospital, Guangzhou, China
| | - Hui Wang
- Institute of Molecular Immunology, School of Biotechnology, Southern Medical University, Guangzhou, China
| | - Wei Luo
- Institute of Molecular Immunology, School of Biotechnology, Southern Medical University, Guangzhou, China
| | - Qian Wen
- Institute of Molecular Immunology, School of Biotechnology, Southern Medical University, Guangzhou, China
| | - Jian-Chun He
- Institute of Molecular Immunology, School of Biotechnology, Southern Medical University, Guangzhou, China
| | - Xiao-Fan Yang
- Institute of Molecular Immunology, School of Biotechnology, Southern Medical University, Guangzhou, China
| | - Li Ma
- Institute of Molecular Immunology, School of Biotechnology, Southern Medical University, Guangzhou, China
| |
Collapse
|
40
|
Thompson EA, Beura LK, Nelson CE, Anderson KG, Vezys V. Shortened Intervals during Heterologous Boosting Preserve Memory CD8 T Cell Function but Compromise Longevity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2016; 196:3054-63. [PMID: 26903479 PMCID: PMC4799748 DOI: 10.4049/jimmunol.1501797] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 01/27/2016] [Indexed: 01/01/2023]
Abstract
Developing vaccine strategies to generate high numbers of Ag-specific CD8 T cells may be necessary for protection against recalcitrant pathogens. Heterologous prime-boost-boost immunization has been shown to result in large quantities of functional memory CD8 T cells with protective capacities and long-term stability. Completing the serial immunization steps for heterologous prime-boost-boost can be lengthy, leaving the host vulnerable for an extensive period of time during the vaccination process. We show in this study that shortening the intervals between boosting events to 2 wk results in high numbers of functional and protective Ag-specific CD8 T cells. This protection is comparable to that achieved with long-term boosting intervals. Short-boosted Ag-specific CD8 T cells display a canonical memory T cell signature associated with long-lived memory and have identical proliferative potential to long-boosted T cells Both populations robustly respond to antigenic re-exposure. Despite this, short-boosted Ag-specific CD8 T cells continue to contract gradually over time, which correlates to metabolic differences between short- and long-boosted CD8 T cells at early memory time points. Our studies indicate that shortening the interval between boosts can yield abundant, functional Ag-specific CD8 T cells that are poised for immediate protection; however, this is at the expense of forming stable long-term memory.
Collapse
Affiliation(s)
- Emily A Thompson
- Department of Microbiology and Immunology, Center for Immunology, University of Minnesota, Minneapolis, MN 55455
| | - Lalit K Beura
- Department of Microbiology and Immunology, Center for Immunology, University of Minnesota, Minneapolis, MN 55455
| | - Christine E Nelson
- Department of Microbiology and Immunology, Center for Immunology, University of Minnesota, Minneapolis, MN 55455
| | - Kristin G Anderson
- Department of Microbiology and Immunology, Center for Immunology, University of Minnesota, Minneapolis, MN 55455; Division of Oncology, Department of Medicine, University of Washington, Seattle, WA 98109; and Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Vaiva Vezys
- Department of Microbiology and Immunology, Center for Immunology, University of Minnesota, Minneapolis, MN 55455;
| |
Collapse
|
41
|
Teng X, Tian M, Li J, Tan S, Yuan X, Yu Q, Jing Y, Zhang Z, Yue T, Zhou L, Fan X. Immunogenicity and protective efficacy of DMT liposome-adjuvanted tuberculosis subunit CTT3H vaccine. Hum Vaccin Immunother 2016; 11:1456-64. [PMID: 25905680 DOI: 10.1080/21645515.2015.1037057] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Different strategies have been proposed for the development of protein subunit vaccine candidates for tuberculosis (TB), which shows better safety than other types of candidates and the currently used Bacillus Calmette-Guérin (BCG) vaccine. In order to develop more effective protein subunits depending on the mechanism of cell-mediated immunity against TB, a polyprotein CTT3H, based on 5 immunodominant antigens (CFP10, TB10.4, TB8.4, Rv3615c, and HBHA) with CD8(+) epitopes of Mycobacterium tuberculosis, was constructed in this study. We vaccinated C57BL/6 mice with a TB subunit CTT3H protein in an adjuvant of dimethyldioctadecylammonium/monophosphoryl lipid A/trehalose 6,6'-dibehenate (DDA/MPL/TDB, DMT) liposome to investigate the immunogenicity and protective efficacy of this novel vaccine. Our results demonstrated that DMT liposome-adjuvanted CTT3H vaccine not only induced an antigen-specific CD4(+) Th1 response, but also raised the number of PPD- and CTT3H-specific IFN-γ(+) CD8(+) T cells and elicited strong CTL responses against TB10.4, which provided more effective protection against a 60 CFU M. tuberculosis aerosol challenge than PBS control and DMT adjuvant alone. Our findings indicate that DMT-liposome is an effective adjuvant to stimulate CD8(+) T cell responses and the DMT-adjuvanted subunit CTT3H vaccine is a promising candidate for the next generation of TB vaccine.
Collapse
Affiliation(s)
- Xindong Teng
- a Department of Pathogen Biology; School of Basic Medicine; Huazhong University of Science & Technology ; Wuhan , PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Booty MG, Nunes-Alves C, Carpenter SM, Jayaraman P, Behar SM. Multiple Inflammatory Cytokines Converge To Regulate CD8+ T Cell Expansion and Function during Tuberculosis. THE JOURNAL OF IMMUNOLOGY 2016; 196:1822-31. [PMID: 26755819 DOI: 10.4049/jimmunol.1502206] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 12/10/2015] [Indexed: 11/19/2022]
Abstract
The differentiation of effector CD8(+) T cells is a dynamically regulated process that varies during different infections and is influenced by the inflammatory milieu of the host. In this study, we define three signals regulating CD8(+) T cell responses during tuberculosis by focusing on cytokines known to affect disease outcome: IL-12, type I IFN, and IL-27. Using mixed bone marrow chimeras, we compared wild-type and cytokine receptor knockout CD8(+) T cells within the same mouse following aerosol infection with Mycobacterium tuberculosis. Four weeks postinfection, IL-12, type 1 IFN, and IL-27 were all required for efficient CD8(+) T cell expansion in the lungs. We next determined if these cytokines directly promote CD8(+) T cell priming or are required only for expansion in the lungs. Using retrogenic CD8(+) T cells specific for the M. tuberculosis Ag TB10.4 (EsxH), we observed that IL-12 is the dominant cytokine driving both CD8(+) T cell priming in the lymph node and expansion in the lungs; however, type I IFN and IL-27 have nonredundant roles supporting pulmonary CD8(+) T cell expansion. Thus, IL-12 is a major signal promoting priming in the lymph node, but a multitude of inflammatory signals converge in the lung to promote continued expansion. Furthermore, these cytokines regulate the differentiation and function of CD8(+) T cells during tuberculosis. These data demonstrate distinct and overlapping roles for each of the cytokines examined and underscore the complexity of CD8(+) T cell regulation during tuberculosis.
Collapse
Affiliation(s)
- Matthew G Booty
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01655; and Program in Immunology, Division of Medical Sciences, Harvard Medical School, Boston, MA 02115
| | - Cláudio Nunes-Alves
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01655; and
| | - Stephen M Carpenter
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01655; and
| | - Pushpa Jayaraman
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01655; and
| | - Samuel M Behar
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01655; and
| |
Collapse
|
43
|
Zhao J, Siddiqui S, Shang S, Bian Y, Bagchi S, He Y, Wang CR. Mycolic acid-specific T cells protect against Mycobacterium tuberculosis infection in a humanized transgenic mouse model. eLife 2015; 4. [PMID: 26652001 PMCID: PMC4718816 DOI: 10.7554/elife.08525] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 11/01/2015] [Indexed: 11/25/2022] Open
Abstract
Group 1 CD1 molecules, CD1a, CD1b and CD1c, present lipid antigens from Mycobacterium tuberculosis (Mtb) to T cells. Mtb lipid-specific group 1 CD1-restricted T cells have been detected in Mtb-infected individuals. However, their role in protective immunity against Mtb remains unclear due to the absence of group 1 CD1 expression in mice. To overcome the challenge, we generated mice that expressed human group 1 CD1 molecules (hCD1Tg) and a CD1b-restricted, mycolic-acid specific TCR (DN1Tg). Using DN1Tg/hCD1Tg mice, we found that activation of DN1 T cells was initiated in the mediastinal lymph nodes and showed faster kinetics compared to Mtb Ag85B-specific CD4+ T cells after aerosol infection with Mtb. Additionally, activated DN1 T cells exhibited polyfunctional characteristics, accumulated in lung granulomas, and protected against Mtb infection. Therefore, our findings highlight the vaccination potential of targeting group 1 CD1-restricted lipid-specific T cells against Mtb infection. DOI:http://dx.doi.org/10.7554/eLife.08525.001 Most cases of tuberculosis are caused by a bacterium called Mycobacterium tuberculosis, which is believed to have infected one third of the world’s population. Most of these infections are dormant and don’t cause any symptoms. However, active infections can be deadly if left untreated and often require six months of treatment with multiple antibiotics. One reason why these infections are so difficult to treat is because the M. tuberculosis cell walls contain fatty molecules known as mycolic acids, which make the bacteria less susceptible to antibiotics. These molecules also help the bacteria to subvert and then hide from the immune system. The prevalence of the disease and the increasing problem of antibiotic resistance have spurred the search for an effective vaccine against tuberculosis. While most efforts have focused on using protein fragments in tuberculosis vaccines, some evidence suggests that human immune cells can recognize fatty molecules such as mycolic acids and that these cells could help manage and control M. tuberculosis infections. However, it has been difficult to determine whether these immune cells genuinely play a protective role against the disease because most vaccine research uses mouse models and mice do not have an equivalent of these immune cells. Now, Zhao et al. have engineered a “humanized” mouse model that produces the fatty molecule-specific immune cells, and show that these mice do respond to the presence of mycolic acids. Infecting the genetically engineered mice with M. tuberculosis revealed that the fatty molecule-specific immune cells were quickly activated within lymph nodes at the center of the chest. These cells later accumulated at sites in the lung where the bacteria reside, and ultimately protected against M. tuberculosis infection. The results show that these specific immune cells can counteract M. tuberculosis, and highlight the potential of using mycolic acids to generate an effective vaccine that provides protection against tuberculosis. DOI:http://dx.doi.org/10.7554/eLife.08525.002
Collapse
Affiliation(s)
- Jie Zhao
- Department of Microbiology and Immunology, Northwestern University, Chicago, United States
| | - Sarah Siddiqui
- Department of Microbiology and Immunology, Northwestern University, Chicago, United States
| | - Shaobin Shang
- Department of Microbiology and Immunology, Northwestern University, Chicago, United States
| | - Yao Bian
- Department of Microbiology and Immunology, Northwestern University, Chicago, United States
| | - Sreya Bagchi
- Department of Microbiology and Immunology, Northwestern University, Chicago, United States
| | - Ying He
- Department of Microbiology and Immunology, Northwestern University, Chicago, United States
| | - Chyung-Ru Wang
- Department of Microbiology and Immunology, Northwestern University, Chicago, United States
| |
Collapse
|
44
|
A Novel MVA-Based Multiphasic Vaccine for Prevention or Treatment of Tuberculosis Induces Broad and Multifunctional Cell-Mediated Immunity in Mice and Primates. PLoS One 2015; 10:e0143552. [PMID: 26599077 PMCID: PMC4658014 DOI: 10.1371/journal.pone.0143552] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 11/05/2015] [Indexed: 02/06/2023] Open
Abstract
Bacille Calmette-Guérin (BCG) vaccination of new born babies can protect children against tuberculosis (TB), but fails to protect adults consistently against pulmonary TB underlying the urgent need to develop novel TB vaccines. Majority of first generation TB vaccine candidates have relied on a very limited number of antigens typically belonging to the active phase of infection. We have designed a multi-antigenic and multiphasic vaccine, based on the Modified Vaccinia Ankara virus (MVA). Up to fourteen antigens representative of the three phases of TB infection (active, latent and resuscitation) were inserted into MVA. Using three different strains of mouse (BALB/c, C57BL/6 and C3H/HeN), we show that a single vaccination results in induction of both CD4 and CD8 T cells, displaying capacity to produce multiple cytokines together with cytolytic activity targeting a large array of epitopes. As expected, dominance of responses was linked to the mouse haplotype although for a given haplotype, responses specific of at least one antigen per phase could always be detected. Vaccination of non-human primates with the 14 antigens MVA-TB candidate resulted in broad and potent cellular-based immunogenicity. The remarkable plasticity of MVA opens the road to development of a novel class of highly complex recombinant TB vaccines to be evaluated in both prophylactic and therapeutic settings.
Collapse
|
45
|
Cha SB, Kim WS, Kim JS, Kim H, Kwon KW, Han SJ, Eum SY, Cho SN, Shin SJ. Repeated Aerosolized-Boosting with Gamma-Irradiated Mycobacterium bovis BCG Confers Improved Pulmonary Protection against the Hypervirulent Mycobacterium tuberculosis Strain HN878 in Mice. PLoS One 2015; 10:e0141577. [PMID: 26509812 PMCID: PMC4624807 DOI: 10.1371/journal.pone.0141577] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 10/09/2015] [Indexed: 12/19/2022] Open
Abstract
Mycobacterium bovis bacillus Calmette-Guerin (BCG), the only licensed vaccine, shows limited protection efficacy against pulmonary tuberculosis (TB), particularly hypervirulent Mycobacterium tuberculosis (Mtb) strains, suggesting that a logistical and practical vaccination strategy is urgently required. Boosting the BCG-induced immunity may offer a potentially advantageous strategy for advancing TB vaccine development, instead of replacing BCG completely. Despite the improved protection of the airway immunization by using live BCG, the use of live BCG as an airway boosting agent may evoke safety concerns. Here, we analyzed the protective efficacy of γ-irradiated BCG as a BCG-prime boosting agent for airway immunization against a hypervirulent clinical strain challenge with Mycobacterium tuberculosis HN878 in a mouse TB model. After the aerosol challenge with the HN878 strain, the mice vaccinated with BCG via the parenteral route exhibited only mild and transient protection, whereas BCG vaccination followed by multiple aerosolized boosting with γ-irradiated BCG efficiently maintained long-lasting control of Mtb in terms of bacterial reduction and pathological findings. Further immunological investigation revealed that this approach resulted in a significant increase in the cellular responses in terms of a robust expansion of antigen (PPD and Ag85A)-specific CD4+ T cells concomitantly producing IFN-γ, TNF-α, and IL-2, as well as a high level of IFN-γ-producing recall response via both the local and systemic immune systems upon further boosting. Collectively, aerosolized boosting of γ-irradiated BCG is able to elicit strong Th1-biased immune responses and confer enhanced protection against a hypervirulent Mycobacterium tuberculosis HN878 infection in a boosting number-dependent manner.
Collapse
Affiliation(s)
- Seung Bin Cha
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, South Korea
| | - Woo Sik Kim
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, South Korea
| | - Jong-Seok Kim
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, South Korea
| | - Hongmin Kim
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, South Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Kee Woong Kwon
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, South Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Seung Jung Han
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, South Korea
| | - Seok-Yong Eum
- Division of Immunopathology and Cellular Immunology, International Tuberculosis Research Center, Changwon, South Korea
| | - Sang-Nae Cho
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, South Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Sung Jae Shin
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, South Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
- * E-mail:
| |
Collapse
|
46
|
Marwoto, Lismana UHV, Prasetyo AA, Suradi, Reviono, Harsini. Correlation of Single Nucleotide Polymorphism 35-Kb Upstream of HLA-C and Clinical Profile of Multidrug-Resistant Tuberculosis. J Clin Diagn Res 2015; 9:DC10-3. [PMID: 26500904 DOI: 10.7860/jcdr/2015/14439.6451] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Accepted: 07/27/2015] [Indexed: 11/24/2022]
Abstract
INTRODUCTION The SNP HLA-C-35 kb (rs9264942) may contribute to the host immune defense mechanism by affecting the cell surface expression pattern of HLA-C and antigen presentation to CD8+ cytotoxic cells. Thus, this SNP may contribute to intracellular multidrug-resistant (MDR)-tuberculosis (TB) infection. AIM To examine the association between the SNP HLA-C-35 kb (rs9264942) and the clinical profile of MDR-TB infection. SETTINGS AND DESIGN MDR-TB-positive patients were followed from May 2012 to December 2013 to observe the progression of MDR-TB infection. Non-TB individuals and non-MDR-TB individuals were also recruited as controls. MATERIALS AND METHODS The patients' HLA-C-35 kb (rs9264942) status was determined by PCR. RESULTS The C allele was slightly more frequent in the MDR-TB patients than in the non-MDR TB patients (OR= 1.28; 95% CI: 0.701 - 2.328). The C allele was found to be more frequent in the MDR-TB patients exhibiting pulmonary fibrosis (OR= 2.13; 95% CI: 0.606 - 7.480) or pulmonary infiltrates (OR= 3.17; 95% CI: 0.690 - 14.598) and among the MDR-TB patients who were classified as underweight (OR= 8.00; 95% CI: 1.261 - 50.770). The CC genotype was associated with the treatment after failure of category II group (OR= 4.17; 95% CI: 1.301 - 13.346). CONCLUSION The C allele SNP HLA-C-35 kb (rs9264942) may contribute to the clinical profile in MDR-TB infection.
Collapse
Affiliation(s)
- Marwoto
- A-Infection Genomic Immunology Cancer (A-IGIC) Research Group, Sebelas Maret University , Jl. Ir. Sutami 36A, Surakarta, Indonesia; Department of Microbiology Faculty of Medicine, Sebelas Maret University, Jl. Ir. Sutami 36A, Surakarta, Indonesia
| | - Umi Hani' Vismayanti Lismana
- A-Infection Genomic Immunology Cancer (A-IGIC) Research Group, Sebelas Maret University , Jl. Ir. Sutami 36A, Surakarta, Indonesia
| | - Afiono Agung Prasetyo
- A-Infection Genomic Immunology Cancer (A-IGIC) Research Group, Sebelas Maret University , Jl. Ir. Sutami 36A, Surakarta, Indonesia; Department of Microbiology Faculty of Medicine, Sebelas Maret University, Jl. Ir. Sutami 36A, Surakarta, Indonesia; Center of Biotechnology and Biodiversity Research and Development, Sebelas Maret University, Jl. Ir. Sutami 36A, Surakarta, Indonesia
| | - Suradi
- Department of Pulmonology Faculty of Medicine, Sebelas Maret University , Jl. Ir. Sutami 36A, Surakarta, Indonesia
| | - Reviono
- A-Infection Genomic Immunology Cancer (A-IGIC) Research Group, Sebelas Maret University , Jl. Ir. Sutami 36A, Surakarta, Indonesia; Department of Pulmonology Faculty of Medicine, Sebelas Maret University, Jl. Ir. Sutami 36A, Surakarta, Indonesia
| | - Harsini
- A-Infection Genomic Immunology Cancer (A-IGIC) Research Group, Sebelas Maret University , Jl. Ir. Sutami 36A, Surakarta, Indonesia; Department of Pulmonology, Dr. Moewardi General Hospital, Jl. Kolonel Sutarto 132, Surakarta, Indonesia; Doctoral Program of Medical Sciences Faculty of Medicine, Sebelas Maret University, Jl. Ir. Sutami 36A, Surakarta, Indonesia
| |
Collapse
|
47
|
Yuan X, Teng X, Jing Y, Ma J, Tian M, Yu Q, Zhou L, Wang R, Wang W, Li L, Fan X. A live attenuated BCG vaccine overexpressing multistage antigens Ag85B and HspX provides superior protection against Mycobacterium tuberculosis infection. Appl Microbiol Biotechnol 2015; 99:10587-95. [PMID: 26363555 DOI: 10.1007/s00253-015-6962-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 08/13/2015] [Accepted: 08/23/2015] [Indexed: 11/29/2022]
Abstract
Tuberculosis (TB) remains one of the most menacing infectious diseases, although attenuated Mycobacterium bovis Bacillus Calmette-Guerin (BCG) vaccine has been widely used to protect children against primary TB. There are increasing evidences that rapid growing and dormant Mycobacterium tuberculosis (M. tuberculosis) coexist in vivo after infection. However, BCG vaccine only elicits cell-mediated immune responses to secretory antigens expressed by rapid growing pathogen. BCG vaccine is thus unable to thwart the reactivation of latent tuberculosis infection (LTBI), and its protection wanes over age after neonatal immunization. In order to extend its ability for a durable protection, a novel recombinant BCG (rBCG) strain, named rBCG::XB, was constructed by overexpressing immunodominant multistage antigens of Ag85B and HspX, which are expressed by both rapid replicating and dormant M. tuberculosis. Long-term protective effect and immunogenicity of rBCG::XB were compared with the parental BCG in vaccinated C57BL/6 mice. Our results demonstrated that rBCG::XB provided the stronger and long-lasting protection against M. tuberculosis H37Rv intranasal infection than BCG. The rBCG::XB not only elicited the more durable multistage antigen-specific CD4(+)Th1-biased immune responses and specific polyfunctional CD4(+)T cells but also augmented the CD8(+) CTL effects against Ag85B in vivo. In particular, higher levels of CD4(+) TEM and CD8(+) TCM cells, dominated by IL2(+) CD4(+) and CD8(+) TCM cells, were obtained in the spleen of rBCG::XB vaccinated mice. Therefore, our findings indicate that rBCG::XB is a promising candidate to improve the efficacy of BCG.
Collapse
Affiliation(s)
- Xuefeng Yuan
- Department of Pathogen Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Xindong Teng
- Department of Pathogen Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Yukai Jing
- Department of Pathogen Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Jilei Ma
- Department of Pathogen Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Maopeng Tian
- Department of Pathogen Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Qi Yu
- Department of Pathogen Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Lei Zhou
- Beijing Pushikang Pharmaceutical Co., Ltd., Beijing, 100020, People's Republic of China
| | - Ruibo Wang
- Beijing Pushikang Pharmaceutical Co., Ltd., Beijing, 100020, People's Republic of China
| | - Weihua Wang
- Wuhan Pulmonary Hospital, Wuhan Institute for Tuberculosis Control, Wuhan, 430030, People's Republic of China
| | - Li Li
- Wuhan Pulmonary Hospital, Wuhan Institute for Tuberculosis Control, Wuhan, 430030, People's Republic of China
| | - Xionglin Fan
- Department of Pathogen Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| |
Collapse
|
48
|
Travar M, Petkovic M, Verhaz A. Type I, II, and III Interferons: Regulating Immunity to Mycobacterium tuberculosis Infection. Arch Immunol Ther Exp (Warsz) 2015; 64:19-31. [PMID: 26362801 DOI: 10.1007/s00005-015-0365-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 07/22/2015] [Indexed: 01/18/2023]
Abstract
Interferons (IFNs) are cytokines released by host cells in response to the presence of pathogens or tumor cells. The aim of this review was to present the previously known and new findings about the role of interferons type I and II, and recently discovered type III in Mycobacterium tuberculosis (M. tuberculosis) infection control. Infection of various cell types with M. tuberculosis induce both IFN-α and IFN-β synthesis. The majority of the studies support the findings that IFN type I actually promotes infection with M. tuberculosis. It has been well establish that IFN-γ has protective function against M. tuberculosis and the other mycobacteria and that the primary source of this cytokine are CD4(+) and CD8(+) T cells. Recently, it has been shown that also the innate lymphocytes, γδ T cells, natural killer (NK) T cells, and NK cells can also be the source of IFN-γ in response to mycobacterial infection. Several studies have shown that CD4(+) T cells protect mice against M. tuberculosis independently of IFN-γ. The balance between IFN-γ and different cytokines such as IL-10 and other Th2 cell cytokines is likely to influence disease outcome. Type I IFN appears to be detrimental through at least three separate, but overlapping, type I IFN-mediated mechanisms: induction of excessive apoptosis, specific suppression of Th1 and IFN-γ responses, and dampening of the immune response by strong IL-10 induction. Recently it has been found that M. tuberculosis infection in A549 lung epithelial cells stimulate up-regulation of IFN-λ genes in vitro. IFN-λs also have a role in modulation of Th1/Th2 response. IFN-λs are not essential for M. tuberculosis infection control, but can give some contribution in immune response to this pathogen.
Collapse
Affiliation(s)
- Maja Travar
- Department of Microbiology, University Hospital Clinical Centre Banja Luka, Banja Luka, Republic of Srpska, Bosnia and Herzegovina. .,Department of Microbiology and Immunology, Faculty of Medicine, Banja Luka University, Banja Luka, Republic of Srpska, Bosnia and Herzegovina.
| | - Miroslav Petkovic
- Department of Microbiology and Immunology, Faculty of Medicine, Banja Luka University, Banja Luka, Republic of Srpska, Bosnia and Herzegovina
| | - Antonija Verhaz
- Clinic for Infectious Diseases, University Hospital Clinical Centre Banja Luka, Banja Luka, Republic of Srpska, Bosnia and Herzegovina
| |
Collapse
|
49
|
Liang J, Teng X, Yuan X, Zhang Y, Shi C, Yue T, Zhou L, Li J, Fan X. Enhanced and durable protective immune responses induced by a cocktail of recombinant BCG strains expressing antigens of multistage of Mycobacterium tuberculosis. Mol Immunol 2015; 66:392-401. [DOI: 10.1016/j.molimm.2015.04.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 04/23/2015] [Accepted: 04/23/2015] [Indexed: 01/09/2023]
|
50
|
Delogu G, Provvedi R, Sali M, Manganelli R. Mycobacterium tuberculosis virulence: insights and impact on vaccine development. Future Microbiol 2015; 10:1177-94. [PMID: 26119086 DOI: 10.2217/fmb.15.26] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The existing TB vaccine, the attenuated Mycobacterium bovis strain BCG, is effective in protecting infants from severe forms of the disease, while its efficacy in protecting adults from pulmonary TB is poor. In the last two decades, a renewed interest in TB resulted in the development of several candidate vaccines that are now entering clinical trials. However, most of these vaccines are based on a common rationale and aim to induce a strong T-cell response against Mycobacterium tuberculosis. Recent advancements in the understanding of M. tuberculosis virulence determinants and associated pathogenic strategies are opening a new and broader view of the complex interaction between this remarkable pathogen and the human host, providing insights at molecular level that could lead to a new rationale for the design of novel antitubercular vaccines. A vaccination strategy that simultaneously targets different steps in TB pathogenesis may result in improved protection and reduced TB transmission.
Collapse
Affiliation(s)
- Giovanni Delogu
- Institute of Microbiology, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168, Rome, Italy
| | - Roberta Provvedi
- Department of Molecular Medicine, University of Padova, Via Aristide Gabelli 63, 35121, Padova, Italy
| | - Michela Sali
- Institute of Microbiology, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168, Rome, Italy
| | - Riccardo Manganelli
- Department of Molecular Medicine, University of Padova, Via Aristide Gabelli 63, 35121, Padova, Italy
| |
Collapse
|