1
|
Xing J, Wang K, Xu YC, Pei ZJ, Yu QX, Liu XY, Dong YL, Li SF, Chen Y, Zhao YJ, Yao F, Ding J, Hu W, Zhou RP. Efferocytosis: Unveiling its potential in autoimmune disease and treatment strategies. Autoimmun Rev 2024; 23:103578. [PMID: 39004157 DOI: 10.1016/j.autrev.2024.103578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 07/06/2024] [Accepted: 07/07/2024] [Indexed: 07/16/2024]
Abstract
Efferocytosis is a crucial process whereby phagocytes engulf and eliminate apoptotic cells (ACs). This intricate process can be categorized into four steps: (1) ACs release "find me" signals to attract phagocytes, (2) phagocytosis is directed by "eat me" signals emitted by ACs, (3) phagocytes engulf and internalize ACs, and (4) degradation of ACs occurs. Maintaining immune homeostasis heavily relies on the efficient clearance of ACs, which eliminates self-antigens and facilitates the generation of anti-inflammatory and immunosuppressive signals that maintain immune tolerance. However, any disruptions occurring at any of the efferocytosis steps during apoptosis can lead to a diminished efficacy in removing apoptotic cells. Factors contributing to this inefficiency encompass dysregulation in the release and recognition of "find me" or "eat me" signals, defects in phagocyte surface receptors, bridging molecules, and other signaling pathways. The inadequate clearance of ACs can result in their rupture and subsequent release of self-antigens, thereby promoting immune responses and precipitating the onset of autoimmune diseases such as systemic lupus erythematosus, rheumatoid arthritis, type 1 diabetes, and multiple sclerosis. A comprehensive understanding of the efferocytosis process and its implications can provide valuable insights for developing novel therapeutic strategies that target this process to prevent or treat autoimmune diseases.
Collapse
Affiliation(s)
- Jing Xing
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; School of pharmacy, Anhui Medical University, Hefei 230032, China
| | - Ke Wang
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Yu-Cai Xu
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; School of pharmacy, Anhui Medical University, Hefei 230032, China
| | - Ze-Jun Pei
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; School of pharmacy, Anhui Medical University, Hefei 230032, China
| | - Qiu-Xia Yu
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; School of pharmacy, Anhui Medical University, Hefei 230032, China
| | - Xing-Yu Liu
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; School of pharmacy, Anhui Medical University, Hefei 230032, China
| | - Ya-Lu Dong
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; School of pharmacy, Anhui Medical University, Hefei 230032, China
| | - Shu-Fang Li
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Yong Chen
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Ying-Jie Zhao
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Feng Yao
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Jie Ding
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Wei Hu
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei 230032, China.
| | - Ren-Peng Zhou
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei 230032, China.
| |
Collapse
|
2
|
D’Onghia D, Colangelo D, Bellan M, Tonello S, Puricelli C, Virgilio E, Apostolo D, Minisini R, Ferreira LL, Sozzi L, Vincenzi F, Cantello R, Comi C, Pirisi M, Vecchio D, Sainaghi PP. Gas6/TAM system as potential biomarker for multiple sclerosis prognosis. Front Immunol 2024; 15:1362960. [PMID: 38745659 PMCID: PMC11091300 DOI: 10.3389/fimmu.2024.1362960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/03/2024] [Indexed: 05/16/2024] Open
Abstract
Introduction The protein growth arrest-specific 6 (Gas6) and its tyrosine kinase receptors Tyro-3, Axl, and Mer (TAM) are ubiquitous proteins involved in regulating inflammation and apoptotic body clearance. Multiple sclerosis (MS) is the most common inflammatory demyelinating disease of the central nervous system leading to progressive and irreversible disability if not diagnosed and treated promptly. Gas6 and TAM receptors have been associated with neuronal remyelination and stimulation of oligodendrocyte survival. However, few data are available regarding clinical correlation in MS patients. We aimed to evaluate soluble levels of these molecules in the cerebrospinal fluid (CSF) and serum at MS diagnosis and correlate them with short-term disease severity. Methods In a prospective cohort study, we enrolled 64 patients with a diagnosis of clinical isolated syndrome (CIS), radiological isolated syndrome (RIS) and relapsing-remitting (RR) MS according to the McDonald 2017 Criteria. Before any treatment initiation, we sampled the serum and CSF, and collected clinical data: disease course, presence of gadolinium-enhancing lesions, and expanded disability status score (EDSS). At the last clinical follow-up, we assessed EDSS and calculated MS severity score (MSSS) and age-related MS severity (ARMSS). Gas6 and TAM receptors were determined using an ELISA kit (R&D Systems) and compared to neurofilament (NFLs) levels evaluated with SimplePlex™ fluorescence-based immunoassay. Results At diagnosis, serum sAxl was higher in patients receiving none or low-efficacy disease-modifying treatments (DMTs) versus patients with high-efficacy DMTs (p = 0.04). Higher CSF Gas6 and serum sAXL were associated with an EDSS <3 at diagnosis (p = 0.04; p = 0.037). Serum Gas6 correlates to a lower MSSS (r2 = -0.32, p = 0.01). Serum and CSF NFLs were confirmed as disability biomarkers in our cohort according to EDSS (p = 0.005; p = 0.002) and MSSS (r2 = 0.27, p = 0.03; r2 = 0.39, p = 0.001). Results were corroborated using multivariate analysis. Conclusions Our data suggest a protective role of Gas6 and its receptors in patients with MS and suitable severity disease biomarkers.
Collapse
Affiliation(s)
- Davide D’Onghia
- Department of Translational Medicine, University of Piemonte Orientale (UPO), Novara, Italy
- Center for Autoimmune and Allergic Diseases (CAAD), University of Piemonte Orientale (UPO), Novara, Italy
| | - Donato Colangelo
- Department of Health Sciences, Pharmacology, University of Piemonte Orientale (UPO), Novara, Italy
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), University of Piemonte Orientale (UPO), Novara, Italy
| | - Mattia Bellan
- Department of Translational Medicine, University of Piemonte Orientale (UPO), Novara, Italy
- Center for Autoimmune and Allergic Diseases (CAAD), University of Piemonte Orientale (UPO), Novara, Italy
- Internal Medicine and Rheumatology Unit, Azienda Ospedaliera Universitaria (AOU) “Maggiore della Carita”, Novara, Italy
| | - Stelvio Tonello
- Department of Translational Medicine, University of Piemonte Orientale (UPO), Novara, Italy
- Center for Autoimmune and Allergic Diseases (CAAD), University of Piemonte Orientale (UPO), Novara, Italy
| | - Chiara Puricelli
- Department of Health Sciences, Clinical Biochemistry, University of Piemonte Orientale (UPO), Novara, Italy
| | - Eleonora Virgilio
- Department of Translational Medicine, Neurology Unit, Maggiore Della Carità Hospital, University of Piemonte Orientale, Novara, Italy
| | - Daria Apostolo
- Department of Translational Medicine, University of Piemonte Orientale (UPO), Novara, Italy
| | - Rosalba Minisini
- Department of Translational Medicine, University of Piemonte Orientale (UPO), Novara, Italy
| | - Luciana L. Ferreira
- Department of Translational Medicine, University of Piemonte Orientale (UPO), Novara, Italy
| | - Leonardo Sozzi
- Department of Translational Medicine, University of Piemonte Orientale (UPO), Novara, Italy
| | - Federica Vincenzi
- Department of Translational Medicine, University of Piemonte Orientale (UPO), Novara, Italy
| | - Roberto Cantello
- Department of Translational Medicine, Neurology Unit, Maggiore Della Carità Hospital, University of Piemonte Orientale, Novara, Italy
| | - Cristoforo Comi
- Department of Translational Medicine, Neurology Unit, S. Andrea Hospital, University of Piemonte Orientale (UPO), Vercelli, Italy
| | - Mario Pirisi
- Department of Translational Medicine, University of Piemonte Orientale (UPO), Novara, Italy
- Center for Autoimmune and Allergic Diseases (CAAD), University of Piemonte Orientale (UPO), Novara, Italy
- Internal Medicine and Rheumatology Unit, Azienda Ospedaliera Universitaria (AOU) “Maggiore della Carita”, Novara, Italy
| | - Domizia Vecchio
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), University of Piemonte Orientale (UPO), Novara, Italy
- Department of Translational Medicine, Neurology Unit, Maggiore Della Carità Hospital, University of Piemonte Orientale, Novara, Italy
| | - Pier Paolo Sainaghi
- Department of Translational Medicine, University of Piemonte Orientale (UPO), Novara, Italy
- Center for Autoimmune and Allergic Diseases (CAAD), University of Piemonte Orientale (UPO), Novara, Italy
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), University of Piemonte Orientale (UPO), Novara, Italy
- Internal Medicine and Rheumatology Unit, Azienda Ospedaliera Universitaria (AOU) “Maggiore della Carita”, Novara, Italy
| |
Collapse
|
3
|
Lahey KC, Varsanyi C, Wang Z, Aquib A, Gadiyar V, Rodrigues AA, Pulica R, Desind S, Davra V, Calianese DC, Liu D, Cho JH, Kotenko SV, De Lorenzo MS, Birge RB. Regulation of Mertk Surface Expression via ADAM17 and γ-Secretase Proteolytic Processing. Int J Mol Sci 2024; 25:4404. [PMID: 38673989 PMCID: PMC11050108 DOI: 10.3390/ijms25084404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Mertk, a type I receptor tyrosine kinase and member of the TAM family of receptors, has important functions in promoting efferocytosis and resolving inflammation under physiological conditions. In recent years, Mertk has also been linked to pathophysiological roles in cancer, whereby, in several cancer types, including solid cancers and leukemia/lymphomas. Mertk contributes to oncogenic features of proliferation and cell survival as an oncogenic tyrosine kinase. In addition, Mertk expressed on macrophages, including tumor-associated macrophages, promotes immune evasion in cancer and is suggested to act akin to a myeloid checkpoint inhibitor that skews macrophages towards inhibitory phenotypes that suppress host T-cell anti-tumor immunity. In the present study, to better understand the post-translational regulation mechanisms controlling Mertk expression in monocytes/macrophages, we used a PMA-differentiated THP-1 cell model to interrogate the regulation of Mertk expression and developed a novel Mertk reporter cell line to study the intracellular trafficking of Mertk. We show that PMA treatment potently up-regulates Mertk as well as components of the ectodomain proteolytic processing platform ADAM17, whereas PMA differentially regulates the canonical Mertk ligands Gas6 and Pros1 (Gas6 is down-regulated and Pros1 is up-regulated). Under non-stimulated homeostatic conditions, Mertk in PMA-differentiated THP1 cells shows active constitutive proteolytic cleavage by the sequential activities of ADAM17 and the Presenilin/γ-secretase complex, indicating that Mertk is cleaved homeostatically by the combined sequential action of ADAM17 and γ-secretase, after which the cleaved intracellular fragment of Mertk is degraded in a proteasome-dependent mechanism. Using chimeric Flag-Mertk-EGFP-Myc reporter receptors, we confirm that inhibitors of γ-secretase and MG132, which inhibits the 26S proteasome, stabilize the intracellular fragment of Mertk without evidence of nuclear translocation. Finally, the treatment of cells with active γ-carboxylated Gas6, but not inactive Warfarin-treated non-γ-carboxylated Gas6, regulates a distinct proteolytic itinerary-involved receptor clearance and lysosomal proteolysis. Together, these results indicate that pleotropic and complex proteolytic activities regulate Mertk ectodomain cleavage as a homeostatic negative regulatory event to safeguard against the overactivation of Mertk.
Collapse
Affiliation(s)
- Kevin C. Lahey
- Department of Microbiology, Biochemistry and Molecular Genetics, Center for Cell Signaling, Rutgers New Jersey Medical School, 205 South Orange Ave, Newark, NJ 07103, USA; (K.C.L.); (C.V.); (Z.W.); (A.A.); (A.A.R.); (R.P.); (S.D.); (V.D.); (D.C.C.); (S.V.K.)
| | - Christopher Varsanyi
- Department of Microbiology, Biochemistry and Molecular Genetics, Center for Cell Signaling, Rutgers New Jersey Medical School, 205 South Orange Ave, Newark, NJ 07103, USA; (K.C.L.); (C.V.); (Z.W.); (A.A.); (A.A.R.); (R.P.); (S.D.); (V.D.); (D.C.C.); (S.V.K.)
| | - Ziren Wang
- Department of Microbiology, Biochemistry and Molecular Genetics, Center for Cell Signaling, Rutgers New Jersey Medical School, 205 South Orange Ave, Newark, NJ 07103, USA; (K.C.L.); (C.V.); (Z.W.); (A.A.); (A.A.R.); (R.P.); (S.D.); (V.D.); (D.C.C.); (S.V.K.)
| | - Ahmed Aquib
- Department of Microbiology, Biochemistry and Molecular Genetics, Center for Cell Signaling, Rutgers New Jersey Medical School, 205 South Orange Ave, Newark, NJ 07103, USA; (K.C.L.); (C.V.); (Z.W.); (A.A.); (A.A.R.); (R.P.); (S.D.); (V.D.); (D.C.C.); (S.V.K.)
| | - Varsha Gadiyar
- Department of Microbiology, Biochemistry and Molecular Genetics, Center for Cell Signaling, Rutgers New Jersey Medical School, 205 South Orange Ave, Newark, NJ 07103, USA; (K.C.L.); (C.V.); (Z.W.); (A.A.); (A.A.R.); (R.P.); (S.D.); (V.D.); (D.C.C.); (S.V.K.)
| | - Alcina A. Rodrigues
- Department of Microbiology, Biochemistry and Molecular Genetics, Center for Cell Signaling, Rutgers New Jersey Medical School, 205 South Orange Ave, Newark, NJ 07103, USA; (K.C.L.); (C.V.); (Z.W.); (A.A.); (A.A.R.); (R.P.); (S.D.); (V.D.); (D.C.C.); (S.V.K.)
| | - Rachael Pulica
- Department of Microbiology, Biochemistry and Molecular Genetics, Center for Cell Signaling, Rutgers New Jersey Medical School, 205 South Orange Ave, Newark, NJ 07103, USA; (K.C.L.); (C.V.); (Z.W.); (A.A.); (A.A.R.); (R.P.); (S.D.); (V.D.); (D.C.C.); (S.V.K.)
| | - Samuel Desind
- Department of Microbiology, Biochemistry and Molecular Genetics, Center for Cell Signaling, Rutgers New Jersey Medical School, 205 South Orange Ave, Newark, NJ 07103, USA; (K.C.L.); (C.V.); (Z.W.); (A.A.); (A.A.R.); (R.P.); (S.D.); (V.D.); (D.C.C.); (S.V.K.)
| | - Viralkumar Davra
- Department of Microbiology, Biochemistry and Molecular Genetics, Center for Cell Signaling, Rutgers New Jersey Medical School, 205 South Orange Ave, Newark, NJ 07103, USA; (K.C.L.); (C.V.); (Z.W.); (A.A.); (A.A.R.); (R.P.); (S.D.); (V.D.); (D.C.C.); (S.V.K.)
| | - David C. Calianese
- Department of Microbiology, Biochemistry and Molecular Genetics, Center for Cell Signaling, Rutgers New Jersey Medical School, 205 South Orange Ave, Newark, NJ 07103, USA; (K.C.L.); (C.V.); (Z.W.); (A.A.); (A.A.R.); (R.P.); (S.D.); (V.D.); (D.C.C.); (S.V.K.)
| | - Dongfang Liu
- Department of Pathology, Immunology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07101, USA; (D.L.); (J.-H.C.)
| | - Jong-Hyun Cho
- Department of Pathology, Immunology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07101, USA; (D.L.); (J.-H.C.)
| | - Sergei V. Kotenko
- Department of Microbiology, Biochemistry and Molecular Genetics, Center for Cell Signaling, Rutgers New Jersey Medical School, 205 South Orange Ave, Newark, NJ 07103, USA; (K.C.L.); (C.V.); (Z.W.); (A.A.); (A.A.R.); (R.P.); (S.D.); (V.D.); (D.C.C.); (S.V.K.)
| | - Mariana S. De Lorenzo
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, 185 South Orange Ave, Newark, NJ 07103, USA;
| | - Raymond B. Birge
- Department of Microbiology, Biochemistry and Molecular Genetics, Center for Cell Signaling, Rutgers New Jersey Medical School, 205 South Orange Ave, Newark, NJ 07103, USA; (K.C.L.); (C.V.); (Z.W.); (A.A.); (A.A.R.); (R.P.); (S.D.); (V.D.); (D.C.C.); (S.V.K.)
| |
Collapse
|
4
|
Binder MD, Nwoke EC, Morwitch E, Dwyer C, Li V, Xavier A, Lea RA, Lechner-Scott J, Taylor BV, Ponsonby AL, Kilpatrick TJ. HLA-DRB1*15:01 and the MERTK Gene Interact to Selectively Influence the Profile of MERTK-Expressing Monocytes in Both Health and MS. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2024; 11:e200190. [PMID: 38150649 PMCID: PMC10752576 DOI: 10.1212/nxi.0000000000200190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/31/2023] [Indexed: 12/29/2023]
Abstract
BACKGROUND AND OBJECTIVES HLA-DRB1*15:01 (DR15) and MERTK are 2 risk genes for multiple sclerosis (MS). The variant rs7422195 is an expression quantitative trait locus for MERTK in CD14+ monocytes; cells with phagocytic and immunomodulatory potential. We aimed to understand how drivers of disease risk and pathogenesis vary with HLA and MERTK genotype and disease activity. METHODS We investigated how proportions of monocytes vary with HLA and MERTK genotype and disease activity in MS. CD14+ monocytes were isolated from patients with MS at relapse (n = 40) and 3 months later (n = 23). Healthy controls (HCs) underwent 2 blood collections 3 months apart. Immunophenotypic profiling of monocytes was performed by flow cytometry. Methylation of 35 CpG sites within and near the MERTK gene was assessed in whole blood samples of individuals experiencing their first episode of clinical CNS demyelination (n = 204) and matched HCs (n = 345) using an Illumina EPIC array. RESULTS DR15-positive patients had lower proportions of CD14+ MERTK+ monocytes than DR15-negative patients, independent of genotype at the MERTK SNP rs7422195. Proportions of CD14+ MERTK+ monocytes were further reduced during relapse in DR15-positive but not DR15-negative patients. Patients homozygous for the major G allele at rs7422195 exhibited higher proportions of CD14+ MERTK+ monocytes at both relapse and remission compared with controls. We observed that increased methylation of the MERTK gene was significantly associated with the presence of DR15. DISCUSSION DR15 and MERTK genotype independently influence proportions of CD14+ MERTK+ monocytes in MS. We confirmed previous observations that the MERTK risk SNP rs7422195 is associated with altered MERTK expression in monocytes. We identified that expression of MERTK is stratified by disease in people homozygous for the major G allele of rs7422195. The finding that the proportion of CD14+ MERTK+ monocytes is reduced in DR15-positive individuals supports prior data identifying genetic links between these 2 loci in influencing MS risk. DR15 genotype-dependent alterations in methylation of the MERTK gene provides a molecular link between these loci and identifies a potential mechanism by which MERTK expression is influenced by DR15. This links DR15 haplotype to MS susceptibility beyond direct influence on antigen presentation and suggests the need for HLA-based stratification of approaches to MERTK as a therapeutic target.
Collapse
Affiliation(s)
- Michele D Binder
- From the Florey Institute of Neuroscience and Mental Health (M.D.B., E.C.N., E.M., C.D., V.L., A.-L.P., T.J.K.); Department of Anatomy and Physiology (M.D.B.), University of Melbourne, Parkville; Crux Biolabs (E.C.N.), Bayswater; Department of Neurology (C.D.), Royal Melbourne Hospital, Parkville; Department of Neurology (A.X., J.L.-S.), John Hunter Hospital, Newcastle; Hunter Medical Research Institute (A.X., J.L.-S.), University of Newcastle, New South Wales Genomics Research Centre (R.A.L.), Centre of Genomics and Personalised Health, Queensland University of Technology; and Menzies Institute for Medical Research (B.V.T.), University of Tasmania, Hobart, Australia
| | - Eze C Nwoke
- From the Florey Institute of Neuroscience and Mental Health (M.D.B., E.C.N., E.M., C.D., V.L., A.-L.P., T.J.K.); Department of Anatomy and Physiology (M.D.B.), University of Melbourne, Parkville; Crux Biolabs (E.C.N.), Bayswater; Department of Neurology (C.D.), Royal Melbourne Hospital, Parkville; Department of Neurology (A.X., J.L.-S.), John Hunter Hospital, Newcastle; Hunter Medical Research Institute (A.X., J.L.-S.), University of Newcastle, New South Wales Genomics Research Centre (R.A.L.), Centre of Genomics and Personalised Health, Queensland University of Technology; and Menzies Institute for Medical Research (B.V.T.), University of Tasmania, Hobart, Australia
| | - Ellen Morwitch
- From the Florey Institute of Neuroscience and Mental Health (M.D.B., E.C.N., E.M., C.D., V.L., A.-L.P., T.J.K.); Department of Anatomy and Physiology (M.D.B.), University of Melbourne, Parkville; Crux Biolabs (E.C.N.), Bayswater; Department of Neurology (C.D.), Royal Melbourne Hospital, Parkville; Department of Neurology (A.X., J.L.-S.), John Hunter Hospital, Newcastle; Hunter Medical Research Institute (A.X., J.L.-S.), University of Newcastle, New South Wales Genomics Research Centre (R.A.L.), Centre of Genomics and Personalised Health, Queensland University of Technology; and Menzies Institute for Medical Research (B.V.T.), University of Tasmania, Hobart, Australia
| | - Chris Dwyer
- From the Florey Institute of Neuroscience and Mental Health (M.D.B., E.C.N., E.M., C.D., V.L., A.-L.P., T.J.K.); Department of Anatomy and Physiology (M.D.B.), University of Melbourne, Parkville; Crux Biolabs (E.C.N.), Bayswater; Department of Neurology (C.D.), Royal Melbourne Hospital, Parkville; Department of Neurology (A.X., J.L.-S.), John Hunter Hospital, Newcastle; Hunter Medical Research Institute (A.X., J.L.-S.), University of Newcastle, New South Wales Genomics Research Centre (R.A.L.), Centre of Genomics and Personalised Health, Queensland University of Technology; and Menzies Institute for Medical Research (B.V.T.), University of Tasmania, Hobart, Australia
| | - Vivien Li
- From the Florey Institute of Neuroscience and Mental Health (M.D.B., E.C.N., E.M., C.D., V.L., A.-L.P., T.J.K.); Department of Anatomy and Physiology (M.D.B.), University of Melbourne, Parkville; Crux Biolabs (E.C.N.), Bayswater; Department of Neurology (C.D.), Royal Melbourne Hospital, Parkville; Department of Neurology (A.X., J.L.-S.), John Hunter Hospital, Newcastle; Hunter Medical Research Institute (A.X., J.L.-S.), University of Newcastle, New South Wales Genomics Research Centre (R.A.L.), Centre of Genomics and Personalised Health, Queensland University of Technology; and Menzies Institute for Medical Research (B.V.T.), University of Tasmania, Hobart, Australia
| | - Alexandre Xavier
- From the Florey Institute of Neuroscience and Mental Health (M.D.B., E.C.N., E.M., C.D., V.L., A.-L.P., T.J.K.); Department of Anatomy and Physiology (M.D.B.), University of Melbourne, Parkville; Crux Biolabs (E.C.N.), Bayswater; Department of Neurology (C.D.), Royal Melbourne Hospital, Parkville; Department of Neurology (A.X., J.L.-S.), John Hunter Hospital, Newcastle; Hunter Medical Research Institute (A.X., J.L.-S.), University of Newcastle, New South Wales Genomics Research Centre (R.A.L.), Centre of Genomics and Personalised Health, Queensland University of Technology; and Menzies Institute for Medical Research (B.V.T.), University of Tasmania, Hobart, Australia
| | - Rodney A Lea
- From the Florey Institute of Neuroscience and Mental Health (M.D.B., E.C.N., E.M., C.D., V.L., A.-L.P., T.J.K.); Department of Anatomy and Physiology (M.D.B.), University of Melbourne, Parkville; Crux Biolabs (E.C.N.), Bayswater; Department of Neurology (C.D.), Royal Melbourne Hospital, Parkville; Department of Neurology (A.X., J.L.-S.), John Hunter Hospital, Newcastle; Hunter Medical Research Institute (A.X., J.L.-S.), University of Newcastle, New South Wales Genomics Research Centre (R.A.L.), Centre of Genomics and Personalised Health, Queensland University of Technology; and Menzies Institute for Medical Research (B.V.T.), University of Tasmania, Hobart, Australia
| | - Jeannette Lechner-Scott
- From the Florey Institute of Neuroscience and Mental Health (M.D.B., E.C.N., E.M., C.D., V.L., A.-L.P., T.J.K.); Department of Anatomy and Physiology (M.D.B.), University of Melbourne, Parkville; Crux Biolabs (E.C.N.), Bayswater; Department of Neurology (C.D.), Royal Melbourne Hospital, Parkville; Department of Neurology (A.X., J.L.-S.), John Hunter Hospital, Newcastle; Hunter Medical Research Institute (A.X., J.L.-S.), University of Newcastle, New South Wales Genomics Research Centre (R.A.L.), Centre of Genomics and Personalised Health, Queensland University of Technology; and Menzies Institute for Medical Research (B.V.T.), University of Tasmania, Hobart, Australia
| | - Bruce V Taylor
- From the Florey Institute of Neuroscience and Mental Health (M.D.B., E.C.N., E.M., C.D., V.L., A.-L.P., T.J.K.); Department of Anatomy and Physiology (M.D.B.), University of Melbourne, Parkville; Crux Biolabs (E.C.N.), Bayswater; Department of Neurology (C.D.), Royal Melbourne Hospital, Parkville; Department of Neurology (A.X., J.L.-S.), John Hunter Hospital, Newcastle; Hunter Medical Research Institute (A.X., J.L.-S.), University of Newcastle, New South Wales Genomics Research Centre (R.A.L.), Centre of Genomics and Personalised Health, Queensland University of Technology; and Menzies Institute for Medical Research (B.V.T.), University of Tasmania, Hobart, Australia
| | - Anne-Louise Ponsonby
- From the Florey Institute of Neuroscience and Mental Health (M.D.B., E.C.N., E.M., C.D., V.L., A.-L.P., T.J.K.); Department of Anatomy and Physiology (M.D.B.), University of Melbourne, Parkville; Crux Biolabs (E.C.N.), Bayswater; Department of Neurology (C.D.), Royal Melbourne Hospital, Parkville; Department of Neurology (A.X., J.L.-S.), John Hunter Hospital, Newcastle; Hunter Medical Research Institute (A.X., J.L.-S.), University of Newcastle, New South Wales Genomics Research Centre (R.A.L.), Centre of Genomics and Personalised Health, Queensland University of Technology; and Menzies Institute for Medical Research (B.V.T.), University of Tasmania, Hobart, Australia
| | - Trevor J Kilpatrick
- From the Florey Institute of Neuroscience and Mental Health (M.D.B., E.C.N., E.M., C.D., V.L., A.-L.P., T.J.K.); Department of Anatomy and Physiology (M.D.B.), University of Melbourne, Parkville; Crux Biolabs (E.C.N.), Bayswater; Department of Neurology (C.D.), Royal Melbourne Hospital, Parkville; Department of Neurology (A.X., J.L.-S.), John Hunter Hospital, Newcastle; Hunter Medical Research Institute (A.X., J.L.-S.), University of Newcastle, New South Wales Genomics Research Centre (R.A.L.), Centre of Genomics and Personalised Health, Queensland University of Technology; and Menzies Institute for Medical Research (B.V.T.), University of Tasmania, Hobart, Australia
| |
Collapse
|
5
|
Apostolo D, Ferreira LL, Vincenzi F, Vercellino N, Minisini R, Latini F, Ferrari B, Burlone ME, Pirisi M, Bellan M. From MASH to HCC: the role of Gas6/TAM receptors. Front Immunol 2024; 15:1332818. [PMID: 38298195 PMCID: PMC10827955 DOI: 10.3389/fimmu.2024.1332818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/02/2024] [Indexed: 02/02/2024] Open
Abstract
Metabolic dysfunction-associated steatohepatitis (MASH) is the replacement term for what used to be called nonalcoholic steatohepatitis (NASH). It is characterized by inflammation and injury of the liver in the presence of cardiometabolic risk factors and may eventually result in the development of hepatocellular carcinoma (HCC), the most common form of primary liver cancer. Several pathogenic mechanisms are involved in the transition from MASH to HCC, encompassing metabolic injury, inflammation, immune dysregulation and fibrosis. In this context, Gas6 (Growth Arrest-Specific 6) and TAM (Tyro3, Axl, and MerTK) receptors may play important roles. The Gas6/TAM family is involved in the modulation of inflammation, lipid metabolism, fibrosis, tumor progression and metastasis, processes which play an important role in the pathophysiology of acute and chronic liver diseases. In this review, we discuss MASH-associated HCC and the potential involvement of the Gas6/TAM system in disease development and progression. In addition, since therapeutic strategies for MASH and HCC are limited, we also speculate regarding possible future treatments involving the targeting of Gas6 or TAM receptors.
Collapse
Affiliation(s)
- Daria Apostolo
- Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
| | - Luciana L. Ferreira
- Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
| | - Federica Vincenzi
- Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
| | - Nicole Vercellino
- Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
| | - Rosalba Minisini
- Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
| | - Federico Latini
- Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
| | - Barbara Ferrari
- Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
| | - Michela E. Burlone
- Department of Internal Medicine, Azienda Ospedaliero-Universitaria Maggiore Della Carità, Novara, Italy
| | - Mario Pirisi
- Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
- Department of Internal Medicine, Azienda Ospedaliero-Universitaria Maggiore Della Carità, Novara, Italy
- Center on Autoimmune and Allergic Diseases, Università del Piemonte Orientale, Novara, Italy
| | - Mattia Bellan
- Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
- Department of Internal Medicine, Azienda Ospedaliero-Universitaria Maggiore Della Carità, Novara, Italy
- Center on Autoimmune and Allergic Diseases, Università del Piemonte Orientale, Novara, Italy
| |
Collapse
|
6
|
Ellen O, Ye S, Nheu D, Dass M, Pagnin M, Ozturk E, Theotokis P, Grigoriadis N, Petratos S. The Heterogeneous Multiple Sclerosis Lesion: How Can We Assess and Modify a Degenerating Lesion? Int J Mol Sci 2023; 24:11112. [PMID: 37446290 DOI: 10.3390/ijms241311112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/21/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
Multiple sclerosis (MS) is a heterogeneous disease of the central nervous system that is governed by neural tissue loss and dystrophy during its progressive phase, with complex reactive pathological cellular changes. The immune-mediated mechanisms that promulgate the demyelinating lesions during relapses of acute episodes are not characteristic of chronic lesions during progressive MS. This has limited our capacity to target the disease effectively as it evolves within the central nervous system white and gray matter, thereby leaving neurologists without effective options to manage individuals as they transition to a secondary progressive phase. The current review highlights the molecular and cellular sequelae that have been identified as cooperating with and/or contributing to neurodegeneration that characterizes individuals with progressive forms of MS. We emphasize the need for appropriate monitoring via known and novel molecular and imaging biomarkers that can accurately detect and predict progression for the purposes of newly designed clinical trials that can demonstrate the efficacy of neuroprotection and potentially neurorepair. To achieve neurorepair, we focus on the modifications required in the reactive cellular and extracellular milieu in order to enable endogenous cell growth as well as transplanted cells that can integrate and/or renew the degenerative MS plaque.
Collapse
Affiliation(s)
- Olivia Ellen
- Department of Neuroscience, Central Clinical School, Monash University, Melborune, VIC 3004, Australia
| | - Sining Ye
- Department of Neuroscience, Central Clinical School, Monash University, Melborune, VIC 3004, Australia
| | - Danica Nheu
- Department of Neuroscience, Central Clinical School, Monash University, Melborune, VIC 3004, Australia
| | - Mary Dass
- Department of Neuroscience, Central Clinical School, Monash University, Melborune, VIC 3004, Australia
| | - Maurice Pagnin
- Department of Neuroscience, Central Clinical School, Monash University, Melborune, VIC 3004, Australia
| | - Ezgi Ozturk
- Department of Neuroscience, Central Clinical School, Monash University, Melborune, VIC 3004, Australia
| | - Paschalis Theotokis
- Laboratory of Experimental Neurology and Neuroimmunology, Department of Neurology, AHEPA University Hospital, Stilponos Kiriakides Str. 1, 54636 Thessaloniki, Greece
| | - Nikolaos Grigoriadis
- Laboratory of Experimental Neurology and Neuroimmunology, Department of Neurology, AHEPA University Hospital, Stilponos Kiriakides Str. 1, 54636 Thessaloniki, Greece
| | - Steven Petratos
- Department of Neuroscience, Central Clinical School, Monash University, Melborune, VIC 3004, Australia
| |
Collapse
|
7
|
Vago JP, Valdrighi N, Blaney-Davidson EN, Hornikx DLAH, Neefjes M, Barba-Sarasua ME, Thielen NGM, van den Bosch MHJ, van der Kraan PM, Koenders MI, Amaral FA, van de Loo FAJ. Gas6/Axl Axis Activation Dampens the Inflammatory Response in Osteoarthritic Fibroblast-like Synoviocytes and Synovial Explants. Pharmaceuticals (Basel) 2023; 16:ph16050703. [PMID: 37242486 DOI: 10.3390/ph16050703] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Osteoarthritis (OA) is the most prevalent joint disease, and it is characterized by cartilage degeneration, synovitis, and bone sclerosis, resulting in swelling, stiffness, and joint pain. TAM receptors (Tyro3, Axl, and Mer) play an important role in regulating immune responses, clearing apoptotic cells, and promoting tissue repair. Here, we investigated the anti-inflammatory effects of a TAM receptor ligand, i.e., growth arrest-specific gene 6 (Gas6), in synovial fibroblasts from OA patients. TAM receptor expression was determined in synovial tissue. Soluble Axl (sAxl), a decoy receptor for the ligand Gas6, showed concentrations 4.6 times higher than Gas6 in synovial fluid of OA patients. In OA fibroblast-like synoviocytes (OAFLS) exposed to inflammatory stimuli, the levels of sAxl in the supernatants were increased, while the expression of Gas6 was downregulated. In OAFLS under TLR4 stimulation by LPS (Escherichia coli lipopolysaccharide), the addition of exogenous Gas6 by Gas6-conditioned medium (Gas6-CM) reduced pro-inflammatory markers including IL-6, TNF-α, IL-1β, CCL2, and CXCL8. Moreover, Gas6-CM downregulated IL-6, CCL2, and IL-1β in LPS-stimulated OA synovial explants. Pharmacological inhibition of TAM receptors by a pan inhibitor (RU301) or by a selective Axl inhibitor (RU428) similarly abrogated Gas6-CM anti-inflammatory effects. Mechanistically, Gas6 effects were dependent on Axl activation, determined by Axl, STAT1, and STAT3 phosphorylation, and by the downstream induction of the suppressors of the cytokine signaling family (SOCS1 and SOCS3). Taken together, our results showed that Gas6 treatment dampens inflammatory markers of OAFLS and synovial explants derived from OA patients associated with SOCS1/3 production.
Collapse
Affiliation(s)
- Juliana P Vago
- Experimental Rheumatology, Department of Rheumatology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Natália Valdrighi
- Experimental Rheumatology, Department of Rheumatology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Esmeralda N Blaney-Davidson
- Experimental Rheumatology, Department of Rheumatology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Daniel L A H Hornikx
- Experimental Rheumatology, Department of Rheumatology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Margot Neefjes
- Experimental Rheumatology, Department of Rheumatology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - María E Barba-Sarasua
- Experimental Rheumatology, Department of Rheumatology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Nathalie G M Thielen
- Experimental Rheumatology, Department of Rheumatology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Martijn H J van den Bosch
- Experimental Rheumatology, Department of Rheumatology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Peter M van der Kraan
- Experimental Rheumatology, Department of Rheumatology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Marije I Koenders
- Experimental Rheumatology, Department of Rheumatology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Flávio A Amaral
- Departament of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil
| | - Fons A J van de Loo
- Experimental Rheumatology, Department of Rheumatology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| |
Collapse
|
8
|
Yong J, Elisabeth Groeger S, Ruf S, Ruiz-Heiland G. Influence of leptin and compression in GAS-6 mediated homeostasis of periodontal ligament cell. Oral Dis 2023; 29:1172-1183. [PMID: 34861742 DOI: 10.1111/odi.14092] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 11/21/2021] [Accepted: 12/01/2021] [Indexed: 11/29/2022]
Abstract
Growth arrest-specific protein 6 (GAS-6) regulates immunomodulatory and inflammatory mechanisms in periodontium and may participate in obesity predisposition. This study aimed to determine whether GAS-6 is associated with the homeostasis of periodontal ligament (SV-PDL) cells in the presence of adipokines or compressive forces. The SV-PDL cell line was used. Western blots were employed for TAM receptors detection. Cells were stimulated using different concentrations of GAS-6. The migration, viability, and proliferation were measured by a standard scratch test, MTS assay, and immunofluorescent staining. The mRNA expression was analyzed by RT-PCR. Release of TGF-β1, GAS-6, and Axl were verified by ELISA. Western blot shows that TAM receptors are expressed in SV-PDL cells. GAS-6 has a promoting effect on cell migration and proliferation. RT-PCR analysis showed that GAS-6 induces Collagen-1, Collagen-3, Periostin, and TGF-β1 mRNA expression whereas it reduces Caspase-3, Caspase-8, Caspase-9, and IL-6 mRNA expression. Further, secreted GAS-6 in SV-PDL is reduced in response to both compressive forces and leptin and upregulated by IL-6. Additionally, ADAM-10 inhibition reduces GAS-6 and Axl release on SV-PDL cells. TAM receptors especially Axl are identified as the receptors of GAS-6. GAS-6/TAM interactions contribute to periodontal ligament cells homeostasis. Leptin inhibits the GAS-6 release independently of ADAM-10 metalloprotease.
Collapse
Affiliation(s)
- Jiawen Yong
- Department of Orthodontics, Faculty of Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - Sabine Elisabeth Groeger
- Department of Orthodontics, Faculty of Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - Sabine Ruf
- Department of Orthodontics, Faculty of Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - Gisela Ruiz-Heiland
- Department of Orthodontics, Faculty of Medicine, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
9
|
TAM receptor signaling dictates lesion location and clinical phenotype during experimental autoimmune encephalomyelitis. J Neuroimmunol 2023; 375:578016. [PMID: 36708633 DOI: 10.1016/j.jneuroim.2023.578016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/22/2022] [Accepted: 01/06/2023] [Indexed: 01/21/2023]
Abstract
Experimental autoimmune encephalomyelitis (EAE), induced by the adoptive transfer of Th17 cells, typically presents with ascending paralysis and inflammatory demyelination of the spinal cord. Brain white matter is relatively spared. Here we show that treatment of Th17 transfer recipients with a highly selective inhibitor to the TAM family of tyrosine kinase receptors results in ataxia associated with a shift of the inflammatory infiltrate to the hindbrain parenchyma. During homeostasis and preclinical EAE, hindbrain microglia express high levels of the TAM receptor Mer. Our data suggest that constitutive TAM receptor signaling in hindbrain microglia confers region-specific protection against Th17 mediated EAE.
Collapse
|
10
|
Two-Front War on Cancer-Targeting TAM Receptors in Solid Tumour Therapy. Cancers (Basel) 2022; 14:cancers14102488. [PMID: 35626092 PMCID: PMC9140196 DOI: 10.3390/cancers14102488] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/14/2022] [Accepted: 05/17/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary In recent years, many studies have shown the importance of TAM kinases in both normal and neoplastic cells. In this review, we present and discuss the role of the TAM family (AXL, MERTK, TYRO3) of receptor tyrosine kinases (RTKs) as a dual target in cancer, due to their intrinsic roles in tumour cell survival, migration, chemoresistance, and their immunosuppressive roles in the tumour microenvironment. This review presents the potential of TAMs as emerging therapeutic targets in cancer treatment, focusing on the distinct structures of TAM receptor tyrosine kinases. We analyse and compare different strategies of TAM inhibition, for a full perspective of current and future battlefields in the war with cancer. Abstract Receptor tyrosine kinases (RTKs) are transmembrane receptors that bind growth factors and cytokines and contain a regulated kinase activity within their cytoplasmic domain. RTKs play an important role in signal transduction in both normal and malignant cells, and their encoding genes belong to the most frequently affected genes in cancer cells. The TAM family proteins (TYRO3, AXL, and MERTK) are involved in diverse biological processes: immune regulation, clearance of apoptotic cells, platelet aggregation, cell proliferation, survival, and migration. Recent studies show that TAMs share overlapping functions in tumorigenesis and suppression of antitumour immunity. MERTK and AXL operate in innate immune cells to suppress inflammatory responses and promote an immunosuppressive tumour microenvironment, while AXL expression correlates with epithelial-to-mesenchymal transition, metastasis, and motility in tumours. Therefore, TAM RTKs represent a dual target in cancer due to their intrinsic roles in tumour cell survival, migration, chemoresistance, and their immunosuppressive roles in the tumour microenvironment (TME). In this review, we discuss the potential of TAMs as emerging therapeutic targets in cancer treatment. We critically assess and compare current approaches to target TAM RTKs in solid tumours and the development of new inhibitors for both extra- and intracellular domains of TAM receptor kinases.
Collapse
|
11
|
Tajbakhsh A, Gheibihayat SM, Taheri RA, Fasihi-Ramandi M, Bajestani AN, Taheri A. Potential diagnostic and prognostic of efferocytosis-related unwanted soluble receptors/ligands as new non-invasive biomarkers in disorders: a review. Mol Biol Rep 2022; 49:5133-5152. [PMID: 35419645 DOI: 10.1007/s11033-022-07224-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 02/02/2022] [Indexed: 11/25/2022]
Abstract
Efferocytosis is the process by which apoptotic cells are removed without inflammation to maintain tissue homeostasis, prevent unwanted inflammatory responses, and inhibit autoimmune responses. Coordination of efferocytosis occurs via many surfaces and chemotactic molecules and adaptors. Recently, soluble positive or negative mediators of efferocytosis, have been more noticeable as non-invasive valuable biomarkers in prognosis and targeted therapy. These soluble factors can be detected in different bodily fluids, such as serum, plasma, and urine as a non-invasive method. There are lots of studies that have tried to show the importance of receptors and ligands in disorders; while a few studies tried to indicate the importance of soluble forms of receptors/ligands and their clinical aspects as a systemic compound and shedding of targets related to efferocytosis. Some of these soluble forms also can be as sensitive as specific biomarkers for certain diseases compared with routine biomarkers, such as soluble circulatory Lectin-like oxidized low-density lipoprotein receptor-1 vs. troponin T in the acute coronary syndrome. Thus, this review tried to gain more understanding about efferocytosis-related unwanted soluble receptors/ligands, their roles, the clinical significance, and potential for diagnosis, and prognosis related to different diseases.
Collapse
Affiliation(s)
- Amir Tajbakhsh
- Molecular Biology Research Center, Systems Biology and Poisoning Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Gheibihayat
- Department of Medical Biotechnology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ramezan Ali Taheri
- Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mahdi Fasihi-Ramandi
- Molecular Biology Research Center, Systems Biology and Poisoning Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Abolfazl Nesaei Bajestani
- Department of Medical Genetics, Ayatollah Madani Hospital, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Abolfazl Taheri
- School of Medicine, New Hearing Technologies Research Center, Baghiyyatollah Al-Azam Hospital, Baqiyatallah University of Medical Sciences, Tehran, Iran.
- Department of ENT, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
12
|
Up-regulated serum levels of TAM receptor tyrosine kinases in a group of Egyptian autistic children. J Neuroimmunol 2022; 364:577811. [PMID: 35033774 DOI: 10.1016/j.jneuroim.2022.577811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 11/17/2021] [Accepted: 01/06/2022] [Indexed: 11/23/2022]
Abstract
TAM receptor family belongs to receptor tyrosine kinases (TAMRTKs). It includes three receptors; Tyro-3, Axl and Mer. TAMRTKs has a great role in resolution of inflammation due to their role in clearance of apoptotic cells by macrophages. Dysregulated TAM signaling pathways are associated with many autoimmune diseases and chronic inflammatory disorders. Autism may be an autoimmune disease in some patients. This work was the first study that investigated serum levels of the soluble ectodomain shed TAMRTKs in a group of autistic children. Serum levels of TAMRTKs were measured by ELISA in 30 autistic children aged between 3.5 and 11 years and 30 age and sex-matched healthy control children. Serum levels of TAMRTKs were significantly higher in autistic children than healthy control children (P < 0.001). Patients with severe autism had significantly higher serum levels of TAMRTKs than patients with mild to moderate autism (P < 0.01). In addition, there were significant positive correlations between scores of the Childhood Autism Rating Scale (CARS) and serum levels of TAMRTKs in autistic patients, (P < 0.01). In conclusions, serum levels of TAMRTKs were up-regulated in autistic children with significant positive correlations with the degree of the disease severity. This initial report requires further studies to investigate the relationship between TAMRTKs and autism.
Collapse
|
13
|
Chen Z, Haider A, Chen J, Xiao Z, Gobbi L, Honer M, Grether U, Arnold SE, Josephson L, Liang SH. The Repertoire of Small-Molecule PET Probes for Neuroinflammation Imaging: Challenges and Opportunities beyond TSPO. J Med Chem 2021; 64:17656-17689. [PMID: 34905377 PMCID: PMC9094091 DOI: 10.1021/acs.jmedchem.1c01571] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Neuroinflammation is an adaptive response of the central nervous system to diverse potentially injurious stimuli, which is closely associated with neurodegeneration and typically characterized by activation of microglia and astrocytes. As a noninvasive and translational molecular imaging tool, positron emission tomography (PET) could provide a better understanding of neuroinflammation and its role in neurodegenerative diseases. Ligands to translator protein (TSPO), a putative marker of neuroinflammation, have been the most commonly studied in this context, but they suffer from serious limitations. Herein we present a repertoire of different structural chemotypes and novel PET ligand design for classical and emerging neuroinflammatory targets beyond TSPO. We believe that this Perspective will support multidisciplinary collaborations in academic and industrial institutions working on neuroinflammation and facilitate the progress of neuroinflammation PET probe development for clinical use.
Collapse
Affiliation(s)
- Zhen Chen
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, United States
| | - Ahmed Haider
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, United States
| | - Jiahui Chen
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, United States
| | - Zhiwei Xiao
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, United States
| | - Luca Gobbi
- Pharma Research and Early Development, F. Hoffmann-La Roche Ltd, CH-4070 Basel, Switzerland
| | - Michael Honer
- Pharma Research and Early Development, F. Hoffmann-La Roche Ltd, CH-4070 Basel, Switzerland
| | - Uwe Grether
- Pharma Research and Early Development, F. Hoffmann-La Roche Ltd, CH-4070 Basel, Switzerland
| | - Steven E. Arnold
- Department of Neurology and the Massachusetts Alzheimer’s Disease Research Center, Massachusetts General Hospital, Harvard Medical School, 114 16th Street, Charlestown, Massachusetts 02129, USA
| | - Lee Josephson
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, United States
| | - Steven H. Liang
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, United States
| |
Collapse
|
14
|
Sun H, Yang H, Wu Y, Bian H, Wang M, Huang Y, Jin J. iRhom1 rescues cognitive dysfunction in multiple sclerosis via preventing myelin injury. GENES BRAIN AND BEHAVIOR 2021; 20:e12771. [PMID: 34672089 DOI: 10.1111/gbb.12771] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 09/03/2021] [Accepted: 09/03/2021] [Indexed: 11/29/2022]
Abstract
Multiple sclerosis (MS) is characterized by myelin sheath injury. A disintegrin and metalloprotease-17 (ADAM17), a disintegrin and metalloproteinase, is essential in regulating oligodendrocyte (OL) regeneration and remyelination under demyelinating conditions. iRhom1, a highly conserved inactive protease that belongs to the rhomboid family, is one of key regulators for ADAM17 maturation. However, it is unknown whether iRhom1 also plays a role in central neuron system myelination under demyelinating conditions like MS. In this study, we investigated the function of iRhom1/ADAM17 in cognitive capability in MS by establishing the mice with iRhom1 overexpression in the hippocampus.
Collapse
Affiliation(s)
- Haolu Sun
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Hui Yang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Yiwang Wu
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Hege Bian
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Menglin Wang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Yan Huang
- School of Pharmacy, Anhui Medical University, Hefei, China
| | - Juan Jin
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| |
Collapse
|
15
|
Abstract
Tyro3, Axl and Mertk are members of the TAM family of tyrosine kinase receptors. TAMs are activated by two structurally homologous ligands GAS6 and PROS1. TAM receptors and ligands are widely distributed and often co-expressed in the same cells allowing diverse functions across many systems including the immune, reproductive, vascular, and the developing as well as adult nervous systems. This review will focus specifically on TAM signaling in the nervous system, highlighting the essential roles this pathway fulfills in maintaining cell survival and homeostasis, cellular functions such as phagocytosis, immunity and tissue repair. Dysfunctional TAM signaling can cause complications in development, disruptions in homeostasis which can rouse autoimmunity, neuroinflammation and neurodegeneration. The development of therapeutics modulating TAM activities in the nervous system has great prospects, however, foremost we need a complete understanding of TAM signaling pathways.
Collapse
Affiliation(s)
- Tal Burstyn-Cohen
- Institute for Dental Sciences, Faculty of Dental Medicine, The Hebrew University-Hadassah, Jerusalem, Israel
| | - Arielle Hochberg
- Institute for Dental Sciences, Faculty of Dental Medicine, The Hebrew University-Hadassah, Jerusalem, Israel
| |
Collapse
|
16
|
Having an Old Friend for Dinner: The Interplay between Apoptotic Cells and Efferocytes. Cells 2021; 10:cells10051265. [PMID: 34065321 PMCID: PMC8161178 DOI: 10.3390/cells10051265] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/12/2021] [Accepted: 05/17/2021] [Indexed: 02/02/2023] Open
Abstract
Apoptosis, the programmed and intentional death of senescent, damaged, or otherwise superfluous cells, is the natural end-point for most cells within multicellular organisms. Apoptotic cells are not inherently damaging, but if left unattended, they can lyse through secondary necrosis. The resulting release of intracellular contents drives inflammation in the surrounding tissue and can lead to autoimmunity. These negative consequences of secondary necrosis are avoided by efferocytosis—the phagocytic clearance of apoptotic cells. Efferocytosis is a product of both apoptotic cells and efferocyte mechanisms, which cooperate to ensure the rapid and complete removal of apoptotic cells. Herein, we review the processes used by apoptotic cells to ensure their timely removal, and the receptors, signaling, and cellular processes used by efferocytes for efferocytosis, with a focus on the receptors and signaling driving this process.
Collapse
|
17
|
Zhou L, Matsushima GK. Tyro3, Axl, Mertk receptor-mediated efferocytosis and immune regulation in the tumor environment. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 361:165-210. [PMID: 34074493 DOI: 10.1016/bs.ircmb.2021.02.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Three structurally related tyrosine receptor cell surface kinases, Tyro3, Axl, and Mertk (TAM) have been recognized to modulate immune function, tissue homeostasis, cardiovasculature, and cancer. The TAM receptor family appears to operate in adult mammals across multiple cell types, suggesting both widespread and specific regulation of cell functions and immune niches. TAM family members regulate tissue homeostasis by monitoring the presence of phosphatidylserine expressed on stressed or apoptotic cells. The detection of phosphatidylserine on apoptotic cells requires intermediary molecules that opsonize the dying cells and tether them to TAM receptors on phagocytes. This complex promotes the engulfment of apoptotic cells, also known as efferocytosis, that leads to the resolution of inflammation and tissue healing. The immune mechanisms dictating these processes appear to fall upon specific family members or may involve a complex of different receptors acting cooperatively to resolve and repair damaged tissues. Here, we focus on the role of TAM receptors in triggering efferocytosis and its consequences in the regulation of immune responses in the context of inflammation and cancer.
Collapse
Affiliation(s)
- Liwen Zhou
- UNC Neuroscience Center, University of North Carolina-CH, Chapel Hill, NC, United States
| | - Glenn K Matsushima
- UNC Neuroscience Center, University of North Carolina-CH, Chapel Hill, NC, United States; UNC Department of Microbiology & Immunology, University of North Carolina-CH, Chapel Hill, NC, United States; UNC Integrative Program for Biological & Genome Sciences, University of North Carolina-CH, Chapel Hill, NC, United States.
| |
Collapse
|
18
|
Huang H. Proteolytic Cleavage of Receptor Tyrosine Kinases. Biomolecules 2021; 11:biom11050660. [PMID: 33947097 PMCID: PMC8145142 DOI: 10.3390/biom11050660] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/15/2021] [Accepted: 04/26/2021] [Indexed: 01/18/2023] Open
Abstract
The receptor tyrosine kinases (RTKs) are a large family of cell-surface receptors, which are essential components of signal transduction pathways. There are more than fifty human RTKs that can be grouped into multiple RTK subfamilies. RTKs mediate cellular signaling transduction, and they play important roles in the regulation of numerous cellular processes. The dysregulation of RTK signaling is related to various human diseases, including cancers. The proteolytic cleavage phenomenon has frequently been found among multiple receptor tyrosine kinases. More and more information about proteolytic cleavage in RTKs has been discovered, providing rich insight. In this review, we summarize research about different aspects of RTK cleavage, including its relation to cancer, to better elucidate this phenomenon. This review also presents proteolytic cleavage in various members of the RTKs.
Collapse
Affiliation(s)
- Hao Huang
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; or
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
19
|
Xie S, Zhang H, Liang Z, Yang X, Cao R. AXL, an Important Host Factor for DENV and ZIKV Replication. Front Cell Infect Microbiol 2021; 11:575346. [PMID: 33954117 PMCID: PMC8092360 DOI: 10.3389/fcimb.2021.575346] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 02/18/2021] [Indexed: 12/13/2022] Open
Abstract
Flaviviruses, as critically important pathogens, are still major public health problems all over the world. For instance, the evolution of ZIKV led to large-scale outbreaks in the Yap island in 2007. DENV was considered by the World Health Organization (WHO) as one of the 10 threats to global health in 2019. Enveloped viruses hijack a variety of host factors to complete its replication cycle. Phosphatidylserine (PS) receptor, AXL, is considered to be a candidate receptor for flavivirus invasion. In this review, we discuss the molecular structure of ZIKV and DENV, and how they interact with AXL to successfully invade host cells. A more comprehensive understanding of the molecular mechanisms of flavivirus-AXL interaction will provide crucial insights into the virus infection process and the development of anti-flavivirus therapeutics.
Collapse
Affiliation(s)
- Shengda Xie
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Huiru Zhang
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Zhenjie Liang
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xingmiao Yang
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Ruibing Cao
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
20
|
Zhou Y, Wang Y, Chen H, Xu Y, Luo Y, Deng Y, Zhang J, Shao A. Immuno-oncology: are TAM receptors in glioblastoma friends or foes? Cell Commun Signal 2021; 19:11. [PMID: 33509214 PMCID: PMC7841914 DOI: 10.1186/s12964-020-00694-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 12/01/2020] [Indexed: 12/21/2022] Open
Abstract
Tyro3, Axl, and Mertk (TAM) receptors are a subfamily of receptor tyrosine kinases. TAM receptors have been implicated in mediating efferocytosis, regulation of immune cells, secretion of inflammatory factors, and epithelial-to-mesenchymal transition in the tumor microenvironment, thereby serving as a critical player in tumor development and progression. The pro-carcinogenic role of TAM receptors has been widely confirmed, overexpression of TAM receptors is tied to tumor cells growth, metastasis, invasion and treatment resistance. Nonetheless, it is surprising to detect that inhibiting TAM signaling is not all beneficial in the tumor immune microenvironment. The absence of TAM receptors also affects anti-tumor immunity under certain conditions by modulating different immune cells, as the functional diversification of TAM signaling is closely related to tumor immunotherapy. Glioblastoma is the most prevalent and lethal primary brain tumor in adults. Although research regarding the crosstalk between TAM receptors and glioblastoma remains scarce, it appears likely that TAM receptors possess potential anti-tumor effects rather than portraying a total cancer-driving role in the context of glioblastoma. Accordingly, we doubt whether TAM receptors play a double-sided role in glioblastoma, and propose the Janus-faced TAM Hypothesis as a conceptual framework for comprehending the precise underlying mechanisms of TAMs. In this study, we aim to cast a spotlight on the potential multidirectional effects of TAM receptors in glioblastoma and provide a better understanding for TAM receptor-related targeted intervention. Video Abstract
Collapse
Affiliation(s)
- Yunxiang Zhou
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Yali Wang
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Hailong Chen
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Yanyan Xu
- School of Pharmacy, Nanjing Medical University, Nanjing, 211126, Jiangsu, China
| | - Yi Luo
- The Second Affiliated Hospital of Zhejiang University School of Medicine (Changxing Branch), Changxing, Huzhou, 313100, Zhejiang, China
| | - Yongchuan Deng
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China.
| | - Jianmin Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China.
| |
Collapse
|
21
|
Ortiz Wilczyñski JM, Olexen CM, Errasti AE, Schattner M, Rothlin CV, Correale J, Carrera Silva EA. GAS6 signaling tempers Th17 development in patients with multiple sclerosis and helminth infection. PLoS Pathog 2020; 16:e1009176. [PMID: 33347509 PMCID: PMC7785232 DOI: 10.1371/journal.ppat.1009176] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 01/05/2021] [Accepted: 11/19/2020] [Indexed: 12/19/2022] Open
Abstract
Multiple sclerosis (MS) is a highly disabling neurodegenerative autoimmune condition in which an unbalanced immune response plays a critical role. Although the mechanisms remain poorly defined, helminth infections are known to modulate the severity and progression of chronic inflammatory diseases. The tyrosine kinase receptors TYRO3, AXL, and MERTK (TAM) have been described as inhibitors of the immune response in various inflammatory settings. We show here that patients with concurrent natural helminth infections and MS condition (HIMS) had an increased expression of the negative regulatory TAM receptors in antigen-presenting cells and their agonist GAS6 in circulating CD11bhigh and CD4+ T cells compared to patients with only MS. The Th17 subset was reduced in patients with HIMS with a subsequent downregulation of its pathogenic genetic program. Moreover, these CD4+ T cells promoted lower levels of the co-stimulatory molecules CD80, CD86, and CD40 on dendritic cells compared with CD4+ T cells from patients with MS, an effect that was GAS6-dependent. IL-10+ cells from patients with HIMS showed higher GAS6 expression levels than Th17 cells, and inhibition of phosphatidylserine/GAS6 binding led to an expansion of Th17 effector genes. The addition of GAS6 on activated CD4+ T cells from patients with MS restrains the Th17 gene expression signature. This cohort of patients with HIMS unravels a promising regulatory mechanism to dampen the Th17 inflammatory response in autoimmunity. Helminths have co-evolved with human civilization, and the rapid exclusion from their environment, in the last few decades, has tremendously affected the immune development and regulation. Moreover, several epidemiological studies have shown an inverse correlation between the exposure of these organisms and the development of autoimmunity in industrialized countries. In this sense, helminth therapy appears to be a promising concept to oppose chronic inflammatory and autoimmune diseases because they are master manipulators of host immunity, albeit the mechanisms remain poorly defined. For this reason, it is essential to decipher the main regulatory pathways to hijack the immune response in the absence of parasite infection. Our research described how helminth infection promotes regulatory mechanisms based on the tyrosine kinase TYRO3, AXL, MERTK (TAM) receptors, and their ligand GAS6 to dampen Th17 development and the inflammatory response in patients with multiple sclerosis (MS), a neurodegenerative autoimmune disorder. We show here that GAS6 plays a critical role in the regulation of pro-inflammatory cytokines, transcriptional programs, and plasticity of IL-17 subset. Our work substantiates the hypothesis that enhancing the TAM axis in a manner similar to helminth infection could be a promising alternative for autoimmune diseases.
Collapse
Affiliation(s)
- Juan M. Ortiz Wilczyñski
- Institute of Experimental Medicine, CONICET-National Academy of Medicine, Buenos Aires, Argentina
| | - Cinthia M. Olexen
- Institute of Experimental Medicine, CONICET-National Academy of Medicine, Buenos Aires, Argentina
| | - Andrea E. Errasti
- Institute of Pharmacology, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - Mirta Schattner
- Institute of Experimental Medicine, CONICET-National Academy of Medicine, Buenos Aires, Argentina
| | - Carla V. Rothlin
- Department of Immunobiology and Pharmacology, Yale University, Connecticut, United States of America
| | | | - Eugenio A. Carrera Silva
- Institute of Experimental Medicine, CONICET-National Academy of Medicine, Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
22
|
DuBois JC, Ray AK, Davies P, Shafit-Zagardo B. Anti-Axl antibody treatment reduces the severity of experimental autoimmune encephalomyelitis. J Neuroinflammation 2020; 17:324. [PMID: 33121494 PMCID: PMC7599105 DOI: 10.1186/s12974-020-01982-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 10/05/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Multiple sclerosis is an immune-mediated disease of the central nervous system (CNS) characterized by inflammation, oligodendrocytes loss, demyelination, and damaged axons. Tyro3, Axl, and MerTK belong to a family of receptor tyrosine kinases that regulate innate immune responses and CNS homeostasis. During experimental autoimmune encephalomyelitis (EAE), the mRNA expression of MerTK, Gas6, and Axl significantly increase, whereas Tyro3 and ProS1 remain unchanged. We have shown that Gas6 is neuroprotective during EAE, and since Gas6 activation of Axl may be necessary for conferring neuroprotection, we sought to determine whether α-Axl or α-MerTK antibodies, shown by others to activate their respective receptors in vivo, could effectively reduce inflammation and neurodegeneration. METHODS Mice received either α-Axl, α-MerTK, IgG isotype control, or PBS before the onset of EAE symptoms. EAE clinical course, axonal damage, demyelination, cytokine production, and immune cell activation in the CNS were used to determine the severity of EAE. RESULTS α-Axl antibody treatment significantly decreased the EAE clinical indices of female mice during chronic EAE and of male mice during both acute and chronic phases. The number of days mice were severely paralyzed also significantly decreased with α-Axl treatment. Inflammatory macrophages/microglia and the extent of demyelination significantly decreased in the spinal cords of α-Axl-treated mice during chronic EAE, with no differences in the production of pro-inflammatory cytokines. α-MerTK antibody did not influence EAE induction or progression. CONCLUSION Our data suggests that the beneficial effect of Gas6/Axl signaling observed in mice administered with Gas6 can be partially preserved by administering an activating α-Axl antibody, but not α-MerTK.
Collapse
Affiliation(s)
- Juwen C. DuBois
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461 USA
| | - Alex K. Ray
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY USA
| | - Peter Davies
- North Shore-LIJ Health System, Feinstein Institute for Medical Research, Manhasset, NY USA
| | - Bridget Shafit-Zagardo
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461 USA
| |
Collapse
|
23
|
Jacobs BM, Taylor T, Awad A, Baker D, Giovanonni G, Noyce AJ, Dobson R. Summary-data-based Mendelian randomization prioritizes potential druggable targets for multiple sclerosis. Brain Commun 2020; 2:fcaa119. [PMID: 33005893 PMCID: PMC7519728 DOI: 10.1093/braincomms/fcaa119] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 05/15/2020] [Accepted: 05/22/2020] [Indexed: 12/14/2022] Open
Abstract
Multiple sclerosis is a complex autoimmune disease caused by a combination of genetic and environmental factors. Translation of Genome-Wide Association Study findings into therapeutics and effective preventive strategies has been limited to date. We used summary-data-based Mendelian randomization to synthesize findings from public expression quantitative trait locus, methylation quantitative trait locus and Multiple Sclerosis Genome-Wide Association Study datasets. By correlating the effects of methylation on multiple sclerosis, methylation on expression and expression on multiple sclerosis susceptibility, we prioritize genetic loci with evidence of influencing multiple sclerosis susceptibility. We overlay these findings onto a list of 'druggable' genes, i.e. genes which are currently, or could theoretically, be targeted by therapeutic compounds. We use GeNets and search tool for the retrieval of interacting genes/proteins to identify protein-protein interactions and druggable pathways enriched in our results. We extend these findings to a model of Epstein-Barr virus-infected B cells, lymphoblastoid cell lines. We conducted a systematic review of prioritized genes using the Open Targets platform to identify completed and planned trials targeting prioritized genes in multiple sclerosis and related disease areas. Expression of 45 genes in peripheral blood was strongly associated with multiple sclerosis susceptibility (False discovery rate 0.05). Of these 45 genes, 20 encode a protein which is currently targeted by an existing therapeutic compound. These genes were enriched for Gene Ontology terms pertaining to immune system function and leucocyte signalling. We refined this prioritized gene list by restricting to loci where CpG site methylation was associated with multiple sclerosis susceptibility, with gene expression and where expression was associated with multiple sclerosis susceptibility. This approach yielded a list of 15 prioritized druggable target genes for which there was evidence of a pathway linking methylation, expression and multiple sclerosis. Five of these 15 genes are targeted by existing drugs and three were replicated in a smaller expression Quantitative Trait Loci dataset (CD40, MERTK and PARP1). In lymphoblastoid cell lines, this approach prioritized 7 druggable gene targets, of which only one was prioritized by the multi-omic approach in peripheral blood (FCRL3). Systematic review of Open Targets revealed multiple early-phase trials targeting 13/20 prioritized genes in disorders related to multiple sclerosis. We use public datasets and summary-data-based Mendelian randomization to identify a list of prioritized druggable genetic targets in multiple sclerosis. We hope our findings could be translated into a platform for developing targeted preventive therapies.
Collapse
Affiliation(s)
- Benjamin M Jacobs
- Preventive Neurology Unit, Wolfson Institute of Preventive Medicine, Queen Mary University of London, UK.,Royal London Hospital, Barts Health NHS Trust, UK
| | - Thomas Taylor
- Preventive Neurology Unit, Wolfson Institute of Preventive Medicine, Queen Mary University of London, UK.,Royal London Hospital, Barts Health NHS Trust, UK
| | - Amine Awad
- Preventive Neurology Unit, Wolfson Institute of Preventive Medicine, Queen Mary University of London, UK.,Royal London Hospital, Barts Health NHS Trust, UK
| | - David Baker
- BartsMS, Blizard Institute, Barts and the London School of Medicine and Dentistry, UK
| | - Gavin Giovanonni
- Preventive Neurology Unit, Wolfson Institute of Preventive Medicine, Queen Mary University of London, UK.,Royal London Hospital, Barts Health NHS Trust, UK.,BartsMS, Blizard Institute, Barts and the London School of Medicine and Dentistry, UK
| | - Alastair J Noyce
- Preventive Neurology Unit, Wolfson Institute of Preventive Medicine, Queen Mary University of London, UK.,Royal London Hospital, Barts Health NHS Trust, UK
| | - Ruth Dobson
- Preventive Neurology Unit, Wolfson Institute of Preventive Medicine, Queen Mary University of London, UK.,Royal London Hospital, Barts Health NHS Trust, UK
| |
Collapse
|
24
|
Di Stasi R, De Rosa L, D'Andrea LD. Therapeutic aspects of the Axl/Gas6 molecular system. Drug Discov Today 2020; 25:2130-2148. [PMID: 33002607 DOI: 10.1016/j.drudis.2020.09.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/14/2020] [Accepted: 09/21/2020] [Indexed: 12/17/2022]
Abstract
Axl receptor tyrosine kinase (RTK) and its ligand, growth arrest-specific protein 6 (Gas6), are involved in several biological functions and participate in the development and progression of a range of malignancies and autoimmune disorders. In this review, we present this molecular system from a drug discovery perspective, highlighting its therapeutic implications and challenges that need to be addressed. We provide an update on Axl/Gas6 axis biology, exploring its role in fields ranging from angiogenesis, cancer development and metastasis, immune response and inflammation to viral infection. Finally, we summarize the molecules that have been developed to date to target the Axl/Gas6 molecular system for therapeutic and diagnostic applications.
Collapse
Affiliation(s)
- Rossella Di Stasi
- Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, 80134 Napoli, Italy
| | - Lucia De Rosa
- Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, 80134 Napoli, Italy
| | - Luca D D'Andrea
- Istituto di Biostrutture e Bioimmagini, CNR, Via Nizza 52, 10126 Torino, Italy.
| |
Collapse
|
25
|
Clarke J, Yaqubi M, Futhey NC, Sedaghat S, Baufeld C, Blain M, Baranzini S, Butovsky O, Antel J, White JH, Healy LM. Vitamin D Regulates MerTK-Dependent Phagocytosis in Human Myeloid Cells. THE JOURNAL OF IMMUNOLOGY 2020; 205:398-406. [PMID: 32540991 DOI: 10.4049/jimmunol.2000129] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 05/17/2020] [Indexed: 01/08/2023]
Abstract
Vitamin D deficiency is a major environmental risk factor for the development of multiple sclerosis. The major circulating metabolite of vitamin D (25-hydroxyvitamin D) is converted to the active form (calcitriol) by the hydroxylase enzyme CYP27B1 In multiple sclerosis lesions, the tyrosine kinase MerTK expressed by myeloid cells regulates phagocytosis of myelin debris and apoptotic cells that can accumulate and inhibit tissue repair and remyelination. In this study, we explored the effect of calcitriol on homeostatic (M-CSF, TGF-β-treated) and proinflammatory (GM-CSF-treated) human monocyte-derived macrophages and microglia using RNA sequencing. Transcriptomic analysis revealed significant calcitriol-mediated effects on both Ag presentation and phagocytosis pathways. Calcitriol downregulated MerTK mRNA and protein expression in both myeloid populations, resulting in reduced capacity of these cells to phagocytose myelin and apoptotic T cells. Proinflammatory myeloid cells expressed high levels of CYP27B1 compared with homeostatic myeloid cells. Only proinflammatory cells in the presence of TNF-α generated calcitriol from 25-hydroxyvitamin D, resulting in repression of MerTK expression and function. This selective production of calcitriol in proinflammatory myeloid cells has the potential to reduce the risk for autoantigen presentation while retaining the phagocytic ability of homeostatic myeloid cells.
Collapse
Affiliation(s)
- Jelani Clarke
- Neuroimmunology Unit, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 0G4, Canada
| | - Moein Yaqubi
- Neuroimmunology Unit, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 0G4, Canada
| | - Naomi C Futhey
- Neuroimmunology Unit, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 0G4, Canada
| | - Sara Sedaghat
- Neuroimmunology Unit, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 0G4, Canada
| | - Caroline Baufeld
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | - Manon Blain
- Neuroimmunology Unit, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 0G4, Canada
| | - Sergio Baranzini
- Department of Neurology, Weill Institute for Neurosciences, University of California-San Francisco, San Francisco, CA 94115
| | - Oleg Butovsky
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | - Jack Antel
- Neuroimmunology Unit, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 0G4, Canada
| | - John H White
- Departments of Physiology and Medicine, McGill University, Montreal, Quebec H3A 0G4, Canada; and.,Evergrande Center for Immunologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | - Luke M Healy
- Neuroimmunology Unit, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 0G4, Canada;
| |
Collapse
|
26
|
Makinde HM, Winter DR, Procissi D, Mike EV, Stock AD, Kando MJ, Gadhvi GT, Droho S, Bloomfield CL, Dominguez ST, Mayr MG, Lavine JA, Putterman C, Cuda CM. A Novel Microglia-Specific Transcriptional Signature Correlates With Behavioral Deficits in Neuropsychiatric Lupus. Front Immunol 2020; 11:230. [PMID: 32174913 PMCID: PMC7055359 DOI: 10.3389/fimmu.2020.00230] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 01/28/2020] [Indexed: 12/14/2022] Open
Abstract
Neuropsychiatric symptoms of systemic lupus erythematosus (NP-SLE) affect over one-half of SLE patients, yet underlying mechanisms remain largely unknown. We demonstrate that SLE-prone mice (CReCOM) develop NP-SLE, including behavioral deficits prior to systemic autoimmunity, reduced brain volumes, decreased vascular integrity, and brain-infiltrating leukocytes. NP-SLE microglia exhibit numerical expansion, increased synaptic uptake, and a more metabolically active phenotype. Microglia from multiple SLE-prone models express a "NP-SLE signature" unrelated to type I interferon. Rather, the signature is associated with lipid metabolism, scavenger receptor activity and downregulation of inflammatory and chemotaxis processes, suggesting a more regulatory, anti-inflammatory profile. NP-SLE microglia also express genes associated with disease-associated microglia (DAM), a subset of microglia thought to be instrumental in neurodegenerative diseases. Further, expression of "NP-SLE" and "DAM" signatures correlate with the severity of behavioral deficits in young SLE-prone mice prior to overt systemic disease. Our data are the first to demonstrate the predictive value of our newly identified microglia-specific "NP-SLE" and "DAM" signatures as a surrogate for NP-SLE clinical outcomes and suggests that microglia-intrinsic defects precede contributions from systemic SLE for neuropsychiatric manifestations.
Collapse
Affiliation(s)
- Hadijat M Makinde
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Deborah R Winter
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Daniele Procissi
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Elise V Mike
- Division of Rheumatology, Department of Medicine, Albert Einstein College of Medicine, The Bronx, NY, United States
| | - Ariel D Stock
- Division of Rheumatology, Department of Medicine, Albert Einstein College of Medicine, The Bronx, NY, United States
| | - Mary J Kando
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Gaurav T Gadhvi
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Steven Droho
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Christina L Bloomfield
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Salina T Dominguez
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Maximilian G Mayr
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Jeremy A Lavine
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Chaim Putterman
- Division of Rheumatology, Department of Medicine, Albert Einstein College of Medicine, The Bronx, NY, United States.,Research Division, Azrieli Faculty of Medicine and Galilee Medical Center, Nahariya, Israel
| | - Carla M Cuda
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
27
|
Zhang Y, Wang Y, Zhou D, Zhang LS, Deng FX, Shu S, Wang LJ, Wu Y, Guo N, Zhou J, Yuan ZY. Angiotensin II deteriorates advanced atherosclerosis by promoting MerTK cleavage and impairing efferocytosis through the AT1R/ROS/p38 MAPK/ADAM17 pathway. Am J Physiol Cell Physiol 2019; 317:C776-C787. [PMID: 31390228 DOI: 10.1152/ajpcell.00145.2019] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Vulnerable plaques in advanced atherosclerosis have defective efferocytosis. The role of ANG II in the progression of atherosclerosis is not fully understood. Herein, we investigated the effects and the underlying mechanisms of ANG II on macrophage efferocytosis in advanced atherosclerosis. ANG II decreased the surface expression of Mer tyrosine kinase (MerTK) in macrophages through a disintegrin and metalloproteinase17 (ADAM17)-mediated shedding of the soluble form of MerTK (sMer) in the medium, which led to efferocytosis suppression. ANG II-activated ADAM17 required reactive oxygen species (ROS) and p38 MAPK phosphorylation. Selective angiotensin II type 1 receptor (AT1R) blocker losartan suppressed ROS production, and ROS scavenger N-acetyl-l-cysteine (NAC) prevented p38 MAPK phosphorylation. In addition, mutant MERTKΔ483-488was resistant to ANG II-induced MerTK shedding and efferocytosis suppression. The advanced atherosclerosis model that is characterized by larger necrotic cores, and less collagen content was established by feeding apolipoprotein E knockout (ApoE−/−) mice with a high-fat diet for 16 wk. NAC and losartan oral administration prevented atherosclerotic lesion progression. Meanwhile, the inefficient efferocytosis represented by decreased macrophage-associated apoptotic cells and decreased MerTK+CD68+double-positive macrophages in advanced atherosclerosis were prevented by losartan and NAC. Additionally, the serum levels of sMer were increased and positively correlated with the upregulated levels of ANG II in acute coronary syndrome (ACS) patients. In conclusion, ANG II promotes MerTK shedding via AT1R/ROS/p38 MAPK/ADAM17 pathway in macrophages, which led to defective efferocytosis and atherosclerosis progression. Defining the molecular mechanisms of defective efferocytosis may provide a promising prognosis and therapy for ACS patients.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Cardiovascular Medicine, First Affiliated Hospital of Medical School, Xi’an Jiaotong University, Xi’an, China
| | - Ying Wang
- Department of Critical Care Medicine, Xi’an No. 4 Hospital, Xi’an, China
| | - Dong Zhou
- Department of Cardiovascular Medicine, Hanzhong 3201 Hospital, Hanzhong, China
| | - Li-Sha Zhang
- Department of Cardiovascular Medicine, First Affiliated Hospital of Medical School, Xi’an Jiaotong University, Xi’an, China
| | - Fu-Xue Deng
- Department of Cardiovascular Medicine, First Affiliated Hospital of Medical School, Xi’an Jiaotong University, Xi’an, China
| | - Shan Shu
- Department of Cardiovascular Medicine, First Affiliated Hospital of Medical School, Xi’an Jiaotong University, Xi’an, China
| | - Li-Jun Wang
- Department of Cardiovascular Medicine, First Affiliated Hospital of Medical School, Xi’an Jiaotong University, Xi’an, China
| | - Yue Wu
- Department of Cardiovascular Medicine, First Affiliated Hospital of Medical School, Xi’an Jiaotong University, Xi’an, China
| | - Ning Guo
- Department of Cardiovascular Medicine, First Affiliated Hospital of Medical School, Xi’an Jiaotong University, Xi’an, China
| | - Juan Zhou
- Department of Cardiovascular Medicine, First Affiliated Hospital of Medical School, Xi’an Jiaotong University, Xi’an, China
- Key Laboratory of Molecular Cardiology of Shannxi Province, Xi’an, China
| | - Zu-Yi Yuan
- Department of Cardiovascular Medicine, First Affiliated Hospital of Medical School, Xi’an Jiaotong University, Xi’an, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi’an Jiaotong University), Ministry of Education, Xi’an, China
- Key Laboratory of Molecular Cardiology of Shannxi Province, Xi’an, China
| |
Collapse
|
28
|
TAM Receptor Pathways at the Crossroads of Neuroinflammation and Neurodegeneration. DISEASE MARKERS 2019; 2019:2387614. [PMID: 31636733 PMCID: PMC6766163 DOI: 10.1155/2019/2387614] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 06/04/2019] [Accepted: 08/12/2019] [Indexed: 02/07/2023]
Abstract
Increasing evidence suggests that pathogenic mechanisms underlying neurodegeneration are strongly linked with neuroinflammatory responses. Tyro3, Axl, and Mertk (TAM receptors) constitute a subgroup of the receptor tyrosine kinase family, cell surface receptors which transmit signals from the extracellular space to the cytoplasm and nucleus. TAM receptors and the corresponding ligands, Growth Arrest Specific 6 and Protein S, are expressed in different tissues, including the nervous system, playing complex roles in tissue repair, inflammation and cell survival, proliferation, and migration. In the nervous system, TAM receptor signalling modulates neurogenesis and neuronal migration, synaptic plasticity, microglial activation, phagocytosis, myelination, and peripheral nerve repair, resulting in potential interest in neuroinflammatory and neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and Multiple Sclerosis. In Alzheimer and Parkinson diseases, a role of TAM receptors in neuronal survival and pathological protein aggregate clearance has been suggested, while in Multiple Sclerosis TAM receptors are involved in myelination and demyelination processes. To better clarify roles and pathways involving TAM receptors may have important therapeutic implications, given the fine modulation of multiple molecular processes which could be reached. In this review, we summarise the roles of TAM receptors in the central nervous system, focusing on the regulation of immune responses and microglial activities and analysing in vitro and in vivo studies regarding TAM signalling involvement in neurodegeneration.
Collapse
|
29
|
Gas6/TAM Signaling Components as Novel Biomarkers of Liver Fibrosis. DISEASE MARKERS 2019; 2019:2304931. [PMID: 31583026 PMCID: PMC6754881 DOI: 10.1155/2019/2304931] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 06/20/2019] [Accepted: 08/12/2019] [Indexed: 12/14/2022]
Abstract
Liver fibrosis consists in the accumulation of extracellular matrix components mainly derived from activated hepatic stellate cells. This is commonly the result of chronic liver injury repair and represents an important health concern. As liver biopsy is burdened with many drawbacks, not surprisingly there is great interest to find new reliable noninvasive methods. Among the many are new potential fibrosis biomarkers under study, some of the most promising represented by the growth arrest-specific gene 6 (Gas6) serum protein and its family of tyrosine kinase receptors, namely, Tyro3, Axl, and MERTK (TAM). Gas6/TAM system (mainly, Axl and MERTK) has in fact recently emerged as an important player in the progression of liver fibrosis. This review is aimed at giving an overall perspective of the roles played by these molecules in major chronic liver diseases. The most promising findings up to date acknowledge that both Gas6 and its receptor serum levels (such as sAxl and, probably, sMERTK) have been shown to potentially allow for easy and accurate measurement of hepatic fibrosis progression, also providing indicative parameters of hepatic dysfunction. Although most of the current scientific evidence is still preliminary and there are no in vivo validation studies on large patient series, it still looks very promising to imagine a possible future prognostic role for these biomarkers in the multidimensional assessment of a liver patient. One may also speculate on a potential role for this system targeting (e.g., with small molecule inhibitors against Axl) as a therapeutic strategy for liver fibrosis management, always bearing in mind that any such therapeutic approach might face toxicity.
Collapse
|
30
|
Nonagase Y, Takeda M, Azuma K, Hayashi H, Haratani K, Tanaka K, Yonesaka K, Ishii H, Hoshino T, Nakagawa K. Tumor tissue and plasma levels of AXL and GAS6 before and after tyrosine kinase inhibitor treatment in EGFR-mutated non-small cell lung cancer. Thorac Cancer 2019; 10:1928-1935. [PMID: 31419057 PMCID: PMC6775020 DOI: 10.1111/1759-7714.13166] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 07/27/2019] [Accepted: 07/28/2019] [Indexed: 12/01/2022] Open
Abstract
Background Non‐small cell lung cancer (NSCLC) positive for activating mutations of the epidermal growth factor receptor (EGFR) gene is initially sensitive to EGFR‐tyrosine kinase inhibitors (TKIs) but eventually develops resistance to these drugs. Upregulation of the receptor tyrosine kinase AXL in tumor tissue has been detected in about one‐fifth of NSCLC patients with acquired resistance to EGFR‐TKIs. However, the clinical relevance of the levels of AXL and its ligand GAS6 in plasma remains unknown. Methods Tumor tissue and plasma specimens were collected from 25 EGFR‐mutated NSCLC patients before EGFR‐TKI treatment or after treatment failure. The levels of AXL and of GAS6 mRNA in tumor tissue were evaluated by immunohistochemistry and chromogenic in situ hybridization, respectively. The plasma concentrations of AXL and GAS6 were measured with enzyme‐linked immunosorbent assays. Results AXL expression was detected in three of 12 (25%) and nine of 19 (47%) tumor specimens obtained before and after EGFR‐TKI treatment, respectively. All tumor specimens assayed were positive for GAS6 mRNA. The median values for the plasma AXL concentration before and after EGFR TKI treatment were 1 635 and 1 460 pg/mL, respectively, and those for the plasma GAS6 concentration were 4 615 and 6 390 pg./mL, respectively. There was no significant correlation between the plasma levels of AXL or GAS6 and the corresponding expression levels in tumor tissue. Conclusion Plasma concentrations of AXL and GAS6 do not reflect tumor expression levels, and their measurement is thus not a viable alternative to direct analysis of tumor tissue in EGFR‐mutated NSCLC.
Collapse
Affiliation(s)
- Yoshikane Nonagase
- Department of Medical Oncology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Masayuki Takeda
- Department of Medical Oncology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Koichi Azuma
- Division of Respirology, Neurology, and Rheumatology, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Hidetoshi Hayashi
- Department of Medical Oncology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Koji Haratani
- Department of Medical Oncology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Kaoru Tanaka
- Department of Medical Oncology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Kimio Yonesaka
- Department of Medical Oncology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Hidenobu Ishii
- Division of Respirology, Neurology, and Rheumatology, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Tomoaki Hoshino
- Division of Respirology, Neurology, and Rheumatology, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Kazuhiko Nakagawa
- Department of Medical Oncology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| |
Collapse
|
31
|
Gas6/TAM Axis in Sepsis: Time to Consider Its Potential Role as a Therapeutic Target. DISEASE MARKERS 2019; 2019:6156493. [PMID: 31485279 PMCID: PMC6710761 DOI: 10.1155/2019/6156493] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 07/30/2019] [Indexed: 12/17/2022]
Abstract
Tyrosine kinase receptors are transmembrane proteins involved in cell signaling and interaction. Among them, the TAM family (composed by Tyro 3, Axl, and Mer) represents a peculiar subgroup with an important role in many physiological and pathological conditions. Despite different mechanisms of activation (e.g., protein S and Galactin-3), TAM action is tightly related to their common ligand, a protein named growth arrest-specific 6 (Gas6). Since the expression of both TAM and Gas6 is widely distributed among tissues, any alteration of one of these components can lead to different pathological conditions. Moreover, as they are indispensable for homeostasis maintenance, in recent years a growing interest has emerged regarding their role in the regulation of the inflammatory process. Due to this involvement, many authors have demonstrated the pivotal role of the Gas6/TAM axis in both sepsis and the sepsis-related inflammatory responses. In this narrative review, we highlight the current knowledge as well as the last discoveries on TAM and Gas6 implication in different clinical conditions, notably in sepsis and septic shock. Lastly, we underline not only the feasible use of Gas6 as a diagnostic and prognostic biomarker in certain systemic acute conditions but also its potential therapeutic role in these life-threatening diseases.
Collapse
|
32
|
Park C, Ponath G, Levine-Ritterman M, Bull E, Swanson EC, De Jager PL, Segal BM, Pitt D. The landscape of myeloid and astrocyte phenotypes in acute multiple sclerosis lesions. Acta Neuropathol Commun 2019; 7:130. [PMID: 31405387 PMCID: PMC6689891 DOI: 10.1186/s40478-019-0779-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 07/23/2019] [Indexed: 02/06/2023] Open
Abstract
Activated myeloid cells and astrocytes are the predominant cell types in active multiple sclerosis (MS) lesions. Both cell types can adopt diverse functional states that play critical roles in lesion formation and resolution. In order to identify phenotypic subsets of myeloid cells and astrocytes, we profiled two active MS lesions with thirteen glial activation markers using imaging mass cytometry (IMC), a method for multiplexed labeling of histological sections. In the acutely demyelinating lesion, we found multiple distinct myeloid and astrocyte phenotypes that populated separate lesion zones. In the post-demyelinating lesion, phenotypes were less distinct and more uniformly distributed. In both lesions cell-to-cell interactions were not random, but occurred between specific glial subpopulations and lymphocytes. Finally, we demonstrated that myeloid, but not astrocyte phenotypes were activated along a lesion rim-to-center gradient, and that marker expression in glial cells at the lesion rim was driven more by cell-extrinsic factors than in cells at the center. This proof-of-concept study demonstrates that highly multiplexed tissue imaging, combined with the appropriate computational tools, is a powerful approach to study heterogeneity, spatial distribution and cellular interactions in the context of MS lesions. Identifying glial phenotypes and their interactions at different lesion stages may provide novel therapeutic targets for inhibiting acute demyelination and low-grade, chronic inflammation.
Collapse
Affiliation(s)
- Calvin Park
- Department of Neurology, Yale School of Medicine, 300 George Street, Suite 353I, New Haven, CT 06511 USA
| | - Gerald Ponath
- Department of Neurology, Yale School of Medicine, 300 George Street, Suite 353I, New Haven, CT 06511 USA
| | - Maya Levine-Ritterman
- Department of Neurology, Yale School of Medicine, 300 George Street, Suite 353I, New Haven, CT 06511 USA
| | - Edward Bull
- Department of Neurology, Yale School of Medicine, 300 George Street, Suite 353I, New Haven, CT 06511 USA
| | | | - Philip L. De Jager
- Department of Neurology, Columbia University Medical Center, New York, NY USA
| | | | - David Pitt
- Department of Neurology, Yale School of Medicine, 300 George Street, Suite 353I, New Haven, CT 06511 USA
| |
Collapse
|
33
|
Sommer D, Corstjens I, Sanchez S, Dooley D, Lemmens S, Van Broeckhoven J, Bogie J, Vanmierlo T, Vidal PM, Rose-John S, Gou-Fabregas M, Hendrix S. ADAM17-deficiency on microglia but not on macrophages promotes phagocytosis and functional recovery after spinal cord injury. Brain Behav Immun 2019; 80:129-145. [PMID: 30851378 DOI: 10.1016/j.bbi.2019.02.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/12/2019] [Accepted: 02/27/2019] [Indexed: 12/26/2022] Open
Abstract
A disintegrin and metalloproteinase 17 (ADAM17) is the major sheddase involved in the cleavage of a plethora of cytokines, cytokine receptors and growth factors, thereby playing a substantial role in inflammatory and regenerative processes after central nervous system trauma. By making use of a hypomorphic ADAM17 knockin mouse model as well as pharmacological ADAM10/ADAM17 inhibitors, we showed that ADAM17-deficiency or inhibition significantly increases clearance of apoptotic cells, promotes axon growth and improves functional recovery after spinal cord injury (SCI) in mice. Microglia-specific ADAM17-knockout (ADAM17flox+/+-Cx3Cr1 Cre+/-) mice also showed improved functional recovery similar to hypomorphic ADAM17 mice. In contrast, endothelial-specific (ADAM17flox+/+-Cdh5Pacs Cre+/-) and macrophage-specific (ADAM17flox+/+-LysM Cre+/-) ADAM17-knockout mice or bone marrow chimera with transplanted ADAM17-deficient macrophages, displayed no functional improvement compared to wild type mice. These data indicate that ADAM17 expression on microglia cells (and not on macrophages or endothelial cells) plays a detrimental role in inflammation and functional recovery after SCI.
Collapse
Affiliation(s)
- Daniela Sommer
- Biomedical Research Institute, Hasselt University, 3500 Hasselt, Belgium
| | - Inge Corstjens
- Biomedical Research Institute, Hasselt University, 3500 Hasselt, Belgium
| | - Selien Sanchez
- Biomedical Research Institute, Hasselt University, 3500 Hasselt, Belgium
| | - Dearbhaile Dooley
- Health Science Centre, School of Medicine, University College Dublin, Dublin 4, Ireland
| | - Stefanie Lemmens
- Biomedical Research Institute, Hasselt University, 3500 Hasselt, Belgium
| | | | - Jeroen Bogie
- Biomedical Research Institute, Hasselt University, 3500 Hasselt, Belgium
| | - Tim Vanmierlo
- Biomedical Research Institute, Hasselt University, 3500 Hasselt, Belgium; Division of Translational Neuroscience, MHeNs, Maastricht University, 6229ER Maastricht, the Netherlands
| | - Pia M Vidal
- Laboratory of Neuroimmunology, Fundación Ciencia & Vida, 7780272 Santiago, Chile
| | - Stefan Rose-John
- Institute of Biochemistry, Christian-Albrechts University Kiel, 24098 Kiel, Germany
| | | | - Sven Hendrix
- Biomedical Research Institute, Hasselt University, 3500 Hasselt, Belgium.
| |
Collapse
|
34
|
Hsia HE, Tüshaus J, Brummer T, Zheng Y, Scilabra SD, Lichtenthaler SF. Functions of 'A disintegrin and metalloproteases (ADAMs)' in the mammalian nervous system. Cell Mol Life Sci 2019; 76:3055-3081. [PMID: 31236626 PMCID: PMC11105368 DOI: 10.1007/s00018-019-03173-7] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 05/22/2019] [Accepted: 05/29/2019] [Indexed: 12/31/2022]
Abstract
'A disintegrin and metalloproteases' (ADAMs) are a family of transmembrane proteins with diverse functions in multicellular organisms. About half of the ADAMs are active metalloproteases and cleave numerous cell surface proteins, including growth factors, receptors, cytokines and cell adhesion proteins. The other ADAMs have no catalytic activity and function as adhesion proteins or receptors. Some ADAMs are ubiquitously expressed, others are expressed tissue specifically. This review highlights functions of ADAMs in the mammalian nervous system, including their links to diseases. The non-proteolytic ADAM11, ADAM22 and ADAM23 have key functions in neural development, myelination and synaptic transmission and are linked to epilepsy. Among the proteolytic ADAMs, ADAM10 is the best characterized one due to its substrates Notch and amyloid precursor protein, where cleavage is required for nervous system development or linked to Alzheimer's disease (AD), respectively. Recent work demonstrates that ADAM10 has additional substrates and functions in the nervous system and its substrate selectivity may be regulated by tetraspanins. New roles for other proteolytic ADAMs in the nervous system are also emerging. For example, ADAM8 and ADAM17 are involved in neuroinflammation. ADAM17 additionally regulates neurite outgrowth and myelination and its activity is controlled by iRhoms. ADAM19 and ADAM21 function in regenerative processes upon neuronal injury. Several ADAMs, including ADAM9, ADAM10, ADAM15 and ADAM30, are potential drug targets for AD. Taken together, this review summarizes recent progress concerning substrates and functions of ADAMs in the nervous system and their use as drug targets for neurological and psychiatric diseases.
Collapse
Affiliation(s)
- Hung-En Hsia
- German Center for Neurodegenerative Diseases (DZNE), Feodor-Lynen Strasse 17, 81377, Munich, Germany
- Neuroproteomics, School of Medicine, Klinikum rechts der Isar, and Institute for Advanced Science, Technische Universität München, 81675, Munich, Germany
| | - Johanna Tüshaus
- German Center for Neurodegenerative Diseases (DZNE), Feodor-Lynen Strasse 17, 81377, Munich, Germany
- Neuroproteomics, School of Medicine, Klinikum rechts der Isar, and Institute for Advanced Science, Technische Universität München, 81675, Munich, Germany
| | - Tobias Brummer
- German Center for Neurodegenerative Diseases (DZNE), Feodor-Lynen Strasse 17, 81377, Munich, Germany
- Neuroproteomics, School of Medicine, Klinikum rechts der Isar, and Institute for Advanced Science, Technische Universität München, 81675, Munich, Germany
| | - Yuanpeng Zheng
- German Center for Neurodegenerative Diseases (DZNE), Feodor-Lynen Strasse 17, 81377, Munich, Germany
- Neuroproteomics, School of Medicine, Klinikum rechts der Isar, and Institute for Advanced Science, Technische Universität München, 81675, Munich, Germany
| | - Simone D Scilabra
- German Center for Neurodegenerative Diseases (DZNE), Feodor-Lynen Strasse 17, 81377, Munich, Germany
- Neuroproteomics, School of Medicine, Klinikum rechts der Isar, and Institute for Advanced Science, Technische Universität München, 81675, Munich, Germany
- Fondazione Ri.MED, Department of Research, IRCCS-ISMETT, via Tricomi 5, 90127, Palermo, Italy
| | - Stefan F Lichtenthaler
- German Center for Neurodegenerative Diseases (DZNE), Feodor-Lynen Strasse 17, 81377, Munich, Germany.
- Neuroproteomics, School of Medicine, Klinikum rechts der Isar, and Institute for Advanced Science, Technische Universität München, 81675, Munich, Germany.
- Munich Center for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
35
|
Gas6/TAM Receptors in Systemic Lupus Erythematosus. DISEASE MARKERS 2019; 2019:7838195. [PMID: 31360267 PMCID: PMC6652053 DOI: 10.1155/2019/7838195] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/14/2019] [Accepted: 06/25/2019] [Indexed: 01/25/2023]
Abstract
Systemic lupus erythematosus (SLE) is a multiorgan autoimmune disease associated with impaired immune system regulation. The exact mechanisms of SLE development remain to be elucidated. TAM receptor tyrosine kinases (RTKs) are important for apoptotic cell clearance, immune homeostasis, and resolution of immune responses. TAM deficiency leads to lupus-like autoimmune diseases. Activation of TAM receptors leads to proteolytic cleavage of the receptors, generating soluble forms of TAM. Circulating TAM receptors have an immunoregulatory function and may also serve as biomarkers for disease prognosis. Here, we review the biological function and signaling of TAM RTKs in the development and pathogenesis of lupus and lupus nephritis. Targeting Gas6/TAM pathways may be of therapeutic benefit. A discussion of potential TAM activation and inhibition in the treatment of lupus and lupus nephritis is included.
Collapse
|
36
|
Growth arrest-specific protein 6 (Gas6) attenuates inflammatory injury and apoptosis in iodine-induced NOD.H-2 h4 mice. Int Immunopharmacol 2019; 73:333-342. [PMID: 31129420 DOI: 10.1016/j.intimp.2019.04.038] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 03/15/2019] [Accepted: 04/18/2019] [Indexed: 02/02/2023]
Abstract
PURPOSE Growth arrest-specific protein 6 (Gas6) is a vitamin K-dependent protein that plays an important role in the pathogenesis of autoimmune diseases. The purpose of this study was to explore the expression of Gas6 and its effects on autoimmune thyroiditis (AIT). METHOD A total of 24 male NOD.H-2h4 mice were randomly assigned to three groups: (1) a control group supplied with regular water; (2) a sodium iodide (NaI) group supplied with 0.005% sodium iodide water; and (3) a group treated with recombinant mouse Gas6 (rmGas6) after iodine supplementation (NaI + Gas6 group). The severity of lymphocytic infiltration in the thyroid was measured through histopathology. Serum levels of tumor necrosis factor α (TNF-α), interleukin (IL) 6 and IL-1β, as well as anti-thyroglobulin antibody (TgAb) titers were measured using an enzyme-linked immunosorbent assay. In addition, the expression of Gas6, Caspase 3, TAM receptors (Axl and MerTK), nuclear factor κB (NF-κB) and I-kappa-B α (IκB-α) were measured by Western blotting. Finally, the proportions of T cells were determined in the splenocytes of NOD.H-2h4 mice by flow cytometry. RESULTS The mRNA and protein expression of Gas6 was significantly lower in the NaI group compared to the control group. Serum levels of TgAb, TNF-α, IL-6 and IL-1β were also significantly higher in the NaI group but were dramatically reduced after rmGas6 injection. The prevalence of thyroiditis and the infiltration of lymphocytes were significantly lower in the NaI + Gas6 group compared to the NaI group. The protein expression of cleaved-Caspase 3, phosphorylation of MerTK, and NF-κB and IκB-α in the thyroid gland were significantly reduced after rmGas6 administration. The proportion of Th1, Th2 and Th17 cells in splenocytes were also significantly reduced after rmGas6 treatment, whereas there was a dramatic increase in the proportion of Treg cells. CONCLUSION Gas6 exerts an anti-inflammatory effect in a mouse model of AIT and may therefore be a potential therapeutic target.
Collapse
|
37
|
Abstract
Receptor tyrosine kinases (RTKs) play important roles in cell growth, motility, differentiation, and survival. These single-pass membrane proteins are grouped into subfamilies based on the similarity of their extracellular domains. They are generally thought to be activated by ligand binding, which promotes homodimerization and then autophosphorylation in trans. However, RTK interactions are more complicated, as RTKs can interact in the absence of ligand and heterodimerize within and across subfamilies. Here, we review the known cross-subfamily RTK heterointeractions and their possible biological implications, as well as the methodologies which have been used to study them. Moreover, we demonstrate how thermodynamic models can be used to study RTKs and to explain many of the complicated biological effects which have been described in the literature. Finally, we discuss the concept of the RTK interactome: a putative, extensive network of interactions between the RTKs. This RTK interactome can produce unique signaling outputs; can amplify, inhibit, and modify signaling; and can allow for signaling backups. The existence of the RTK interactome could provide an explanation for the irreproducibility of experimental data from different studies and for the failure of some RTK inhibitors to produce the desired therapeutic effects. We argue that a deeper knowledge of RTK interactome thermodynamics can lead to a better understanding of fundamental RTK signaling processes in health and disease. We further argue that there is a need for quantitative, thermodynamic studies that probe the strengths of the interactions between RTKs and their ligands and between different RTKs.
Collapse
Affiliation(s)
- Michael D. Paul
- Department of Materials Science and Engineering, Institute for NanoBioTechnology, and Program in Molecular Biophysics, Johns Hopkins University, Baltimore MD 21218
| | - Kalina Hristova
- Department of Materials Science and Engineering, Institute for NanoBioTechnology, and Program in Molecular Biophysics, Johns Hopkins University, Baltimore MD 21218
| |
Collapse
|
38
|
Tajbakhsh A, Gheibi Hayat SM, Butler AE, Sahebkar A. Effect of soluble cleavage products of important receptors/ligands on efferocytosis: Their role in inflammatory, autoimmune and cardiovascular disease. Ageing Res Rev 2019; 50:43-57. [PMID: 30639340 DOI: 10.1016/j.arr.2019.01.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 01/04/2019] [Accepted: 01/08/2019] [Indexed: 12/17/2022]
Abstract
Efferocytosis, the clearance of apoptotic cells (ACs), is a physiologic, multifaceted and dynamic process and a fundamental mechanism for the preservation of tissue homeostasis by avoiding unwanted inflammation and autoimmune responses through special phagocytic receptors. Defective efferocytosis is associated with several disease states, including cardiovascular disease and impaired immune surveillance, as occurs in cancer and autoimmune disease. A major cause of defective efferocytosis is non-functionality of surface receptors on either the phagocytic cells or the ACs, such as TAM family tyrosine kinase, which turns to a soluble form by cleavage/shedding or alternative splicing. Recently, soluble forms have featured prominently as potential biomarkers, indicative of prognosis and enabling targeted therapy using several commonly employed drugs and inhibitors, such as bleomycin, dexamethasone, statins and some matrix metalloproteinase inhibitors such as TAPI-1 and BB3103. Importantly, to design drug carriers with enhanced circulatory durability, the adaptation of soluble forms of physiological receptors/ligands has been purported. Research has shown that soluble forms are more effective than antibody forms in enabling targeted treatment of certain conditions, such as autoimmune diseases. In this review, we sought to summarize the current knowledge of these soluble products, how they are generated, their interactions, roles, and their potential use as biomarkers in prognosis and treatment related to inflammatory, cardiovascular, and autoimmune diseases.
Collapse
Affiliation(s)
- Amir Tajbakhsh
- Department of Modern Sciences and Technologies, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Alexandra E Butler
- Diabetes Research Center, Qatar Biomedical Research Institute, Doha, Qatar
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
39
|
Grajchen E, Hendriks JJA, Bogie JFJ. The physiology of foamy phagocytes in multiple sclerosis. Acta Neuropathol Commun 2018; 6:124. [PMID: 30454040 PMCID: PMC6240956 DOI: 10.1186/s40478-018-0628-8] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 11/02/2018] [Indexed: 12/15/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic disease of the central nervous system characterized by massive infiltration of immune cells, demyelination, and axonal loss. Active MS lesions mainly consist of macrophages and microglia containing abundant intracellular myelin remnants. Initial studies showed that these foamy phagocytes primarily promote MS disease progression by internalizing myelin debris, presenting brain-derived autoantigens, and adopting an inflammatory phenotype. However, more recent studies indicate that phagocytes can also adopt a beneficial phenotype upon myelin internalization. In this review, we summarize and discuss the current knowledge on the spatiotemporal physiology of foamy phagocytes in MS lesions, and elaborate on extrinsic and intrinsic factors regulating their behavior. In addition, we discuss and link the physiology of myelin-containing phagocytes to that of foamy macrophages in other disorders such atherosclerosis.
Collapse
Affiliation(s)
- Elien Grajchen
- Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium/School of Life Sciences, Transnationale Universiteit Limburg, Diepenbeek, Belgium
| | - Jerome J A Hendriks
- Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium/School of Life Sciences, Transnationale Universiteit Limburg, Diepenbeek, Belgium
| | - Jeroen F J Bogie
- Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium/School of Life Sciences, Transnationale Universiteit Limburg, Diepenbeek, Belgium.
| |
Collapse
|
40
|
The Dual Role of TAM Receptors in Autoimmune Diseases and Cancer: An Overview. Cells 2018; 7:cells7100166. [PMID: 30322068 PMCID: PMC6210017 DOI: 10.3390/cells7100166] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/05/2018] [Accepted: 10/09/2018] [Indexed: 01/01/2023] Open
Abstract
Receptor tyrosine kinases (RTKs) regulate cellular processes by converting signals from the extracellular environment to the cytoplasm and nucleus. Tyro3, Axl, and Mer (TAM) receptors form an RTK family that plays an intricate role in tissue maintenance, phagocytosis, and inflammation as well as cell proliferation, survival, migration, and development. Defects in TAM signaling are associated with numerous autoimmune diseases and different types of cancers. Here, we review the structure of TAM receptors, their ligands, and their biological functions. We discuss the role of TAM receptors and soluble circulating TAM receptors in the autoimmune diseases systemic lupus erythematosus (SLE) and multiple sclerosis (MS). Lastly, we discuss the effect of TAM receptor deregulation in cancer and explore the therapeutic potential of TAM receptors in the treatment of diseases.
Collapse
|
41
|
Martin NA, Nawrocki A, Molnar V, Elkjaer ML, Thygesen EK, Palkovits M, Acs P, Sejbaek T, Nielsen HH, Hegedus Z, Sellebjerg F, Molnar T, Barbosa EGV, Alcaraz N, Gallyas F, Svenningsen AF, Baumbach J, Lassmann H, Larsen MR, Illes Z. Orthologous proteins of experimental de- and remyelination are differentially regulated in the CSF proteome of multiple sclerosis subtypes. PLoS One 2018; 13:e0202530. [PMID: 30114292 PMCID: PMC6095600 DOI: 10.1371/journal.pone.0202530] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 08/03/2018] [Indexed: 01/09/2023] Open
Abstract
OBJECTIVE Here, we applied a multi-omics approach (i) to examine molecular pathways related to de- and remyelination in multiple sclerosis (MS) lesions; and (ii) to translate these findings to the CSF proteome in order to identify molecules that are differentially expressed among MS subtypes. METHODS To relate differentially expressed genes in MS lesions to de- and remyelination, we compared transcriptome of MS lesions to transcriptome of cuprizone (CPZ)-induced de- and remyelination. Protein products of the overlapping orthologous genes were measured within the CSF by quantitative proteomics, parallel reaction monitoring (PRM). Differentially regulated proteins were correlated with molecular markers of inflammation by using MesoScale multiplex immunoassay. Expression kinetics of differentially regulated orthologous genes and proteins were examined in the CPZ model. RESULTS In the demyelinated and remyelinated corpus callosum, we detected 1239 differentially expressed genes; 91 orthologues were also differentially expressed in MS lesions. Pathway analysis of these orthologues suggested that the TYROBP (DAP12)-TREM2 pathway, TNF-receptor 1, CYBA and the proteasome subunit PSMB9 were related to de- and remyelination. We designed 129 peptides representing 51 orthologous proteins, measured them by PRM in 97 individual CSF, and compared their levels between relapsing (n = 40) and progressive MS (n = 57). Four proteins were differentially regulated among relapsing and progressive MS: tyrosine protein kinase receptor UFO (UFO), TIMP-1, apolipoprotein C-II (APOC2), and beta-2-microglobulin (B2M). The orthologous genes/proteins in the mouse brain peaked during acute remyelination. UFO, TIMP-1 and B2M levels correlated inversely with inflammation in the CSF (IL-6, MCP-1/CCL2, TARC/CCL17). APOC2 showed positive correlation with IL-2, IL-16 and eotaxin-3/CCL26. CONCLUSIONS Pathology-based multi-omics identified four CSF markers that were differentially expressed in MS subtypes. Upregulated TIMP-1, UFO and B2M orthologues in relapsing MS were associated with reduced inflammation and reflected reparatory processes, in contrast to the upregulated orthologue APOC2 in progressive MS that reflected changes in lipid metabolism associated with increased inflammation.
Collapse
Affiliation(s)
- Nellie A. Martin
- Department of Neurology, Odense University Hospital, Odense, Denmark
| | - Arkadiusz Nawrocki
- Department of Neurology, Odense University Hospital, Odense, Denmark
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Viktor Molnar
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Maria L. Elkjaer
- Department of Neurology, Odense University Hospital, Odense, Denmark
| | - Eva K. Thygesen
- Department of Neurology, Odense University Hospital, Odense, Denmark
| | - Miklos Palkovits
- Laboratory of Neuromorphology and Human Brain Tissue Bank/Microdissection Laboratory, Semmelweis University, Budapest, Hungary
| | - Peter Acs
- Department of Neurology, University of Pecs, Pecs, Hungary
| | - Tobias Sejbaek
- Department of Neurology, Odense University Hospital, Odense, Denmark
| | - Helle H. Nielsen
- Department of Neurology, Odense University Hospital, Odense, Denmark
| | - Zoltan Hegedus
- Laboratory of Bioinformatics, Biological Research Centre, Szeged, Hungary
| | - Finn Sellebjerg
- Danish Multiple Sclerosis Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Tihamer Molnar
- Department of Anaesthesiology and Intensive Therapy, University of Pecs, Pecs, Hungary
| | - Eudes G. V. Barbosa
- Computational Biology Group, Department of Mathematics and Computer Science, University of Southern Denmark, Odense, Denmark
| | - Nicolas Alcaraz
- Computational Biology Group, Department of Mathematics and Computer Science, University of Southern Denmark, Odense, Denmark
- The Bioinformatics Centre, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Ferenc Gallyas
- Department of Biochemistry and Medical Chemistry, University of Pecs, Pecs, Hungary
- Szentagothai Research Centre, University of Pécs, Pécs, Hungary
- Nuclear-Mitochondrial Interactions Research Group, Hungarian Academy of Sciences, Budapest, Hungary
| | - Asa F. Svenningsen
- Department of Neurobiology Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Jan Baumbach
- Computational Biology Group, Department of Mathematics and Computer Science, University of Southern Denmark, Odense, Denmark
| | - Hans Lassmann
- Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Martin R. Larsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Zsolt Illes
- Department of Neurology, Odense University Hospital, Odense, Denmark
- Department of Neurology, University of Pecs, Pecs, Hungary
- Department of Clinical Research, BRIDGE, University of Southern Denmark, Odense, Denmark
- * E-mail:
| |
Collapse
|
42
|
Bedoui Y, Neal JW, Gasque P. The Neuro-Immune-Regulators (NIREGs) Promote Tissue Resilience; a Vital Component of the Host's Defense Strategy against Neuroinflammation. J Neuroimmune Pharmacol 2018; 13:309-329. [PMID: 29909495 DOI: 10.1007/s11481-018-9793-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 05/24/2018] [Indexed: 01/29/2023]
Abstract
An effective protective inflammatory response in the brain is crucial for the clearance of pathogens (e.g. microbes, amyloid fibrils, prionSC) and should be closely regulated. However, the CNS seems to have limited tissue resilience to withstand the detrimental effects of uncontrolled inflammation compromising functional recovery and tissue repair. Newly described neuro-immune-regulators (NIREGs) are functionally related proteins regulating the severity and duration of the host inflammatory response. NIREGs such as CD200, CD47 and CX3CL1 are vital for increasing tissue resilience and are constitutively expressed by neurons. The interaction with co-receptors (CD200R, CD172a, CX3CR1) will maintain microglia in the resting phenotype, directing aggressive microglia phenotype and limiting bystander injuries. Neurons can also express many of the complement NIREGs (CD55, CD46, CD59 and factor H). Neurons and glia also express suppressor of cytokine signaling proteins (SOCS) down regulating janus kinase-signal transducer and activator of transcription (JAK/STAT) pathway and to lead to the polarization of microglia towards anti-inflammatory phenotype. Other NIREGs such as serine protease inhibitors (serpins) and thrombomodulin (CD141) inhibit neurotoxic systemic coagulation proteins such as thrombin. The unfolded protein response (UPR) detects misfolded proteins and other stressors to prevent irreversible cell injury. Microglial pattern recognition receptors (PRR) (TREM-2, CR3, FcγR) are important to clear apoptotic cells and cellular debris but in non-phlogystic manner through inhibitory signaling pathways. The TYRO3, Axl, Mer (TAM) tyrosine receptor kinases activated by Gas 6 and PROS1 regulate inflammation by inhibiting Toll like receptors (TLR) /JAK-STAT activation and contribute to NIREG's functions.
Collapse
Affiliation(s)
- Yosra Bedoui
- Université de la Réunion, CRNS 9192, INSERM U1187, IRD249, Unité Mixte Processus Infectieux en Milieu Insulaire Tropical (PIMIT), Plateforme Technologique CYROI, Saint -Clotilde, La Réunion, France
| | - Jim W Neal
- Infection and Immunity, Cardiff University, Henry Wellcome Building, Cardiff, CF14 4XN, UK.
| | - Philippe Gasque
- Laboratoire de biologie, secteur laboratoire d'immunologie Clinique et expérimentale ZOI, LICE-OI, CHU Felix Guyon Bellepierre, St Denis, La Réunion, France.
| |
Collapse
|
43
|
Mulla MJ, Weel IC, Potter JA, Gysler SM, Salmon JE, Peraçoli MTS, Rothlin CV, Chamley LW, Abrahams VM. Antiphospholipid Antibodies Inhibit Trophoblast Toll-Like Receptor and Inflammasome Negative Regulators. Arthritis Rheumatol 2018; 70:891-902. [PMID: 29342502 DOI: 10.1002/art.40416] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 01/09/2018] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Women with antiphospholipid antibodies (aPL) are at risk for pregnancy complications associated with poor placentation and placental inflammation. Although these antibodies are heterogeneous, some anti-β2 -glycoprotein I (anti-β2 GPI) antibodies can activate Toll-like receptor 4 (TLR-4) and NLRP3 in human first-trimester trophoblasts. The objective of this study was to determine the role of negative regulators of TLR and inflammasome function in aPL-induced trophoblast inflammation. METHODS Human trophoblasts were not treated or were treated with anti-β2 GPI aPL or control IgG in the presence or absence of the common TAM (TYRO3, AXL, and Mer tyrosine kinase [MERTK]) receptor ligand growth arrest-specific protein 6 (GAS6) or the autophagy-inducer rapamycin. The expression and function of the TAM receptor pathway and autophagy were measured by quantitative reverse transcription-polymerase chain reaction (qRT-PCR), Western blotting, and enzyme-linked immunosorbent assay (ELISA). Antiphospholipid antibody-induced trophoblast inflammation was measured by qRT-PCR, activity assays, and ELISA. RESULTS Anti-β2 GPI aPL inhibited trophoblast TAM receptor function by reducing cellular expression of the receptor tyrosine kinases AXL and MERTK and the ligand GAS6. The addition of GAS6 blocked the effects of aPL on the TLR-4-mediated interleukin-8 (IL-8) response. However, the NLRP3 inflammasome-mediated IL-1β response was not affected by GAS6, suggesting that another regulatory pathway was involved. Indeed, anti-β2 GPI aPL inhibited basal trophoblast autophagy, and reversing this with rapamycin inhibited aPL-induced inflammasome function and IL-1β secretion. CONCLUSION Basal TAM receptor function and autophagy may serve to inhibit trophoblast TLR and inflammasome function, respectively. Impairment of TAM receptor signaling and autophagy by anti-β2 GPI aPL may allow subsequent TLR and inflammasome activity, leading to a robust inflammatory response.
Collapse
Affiliation(s)
| | - Ingrid C Weel
- Yale University, New Haven, Connecticut, and São Paulo State University, São Paulo, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Shafit-Zagardo B, Gruber RC, DuBois JC. The role of TAM family receptors and ligands in the nervous system: From development to pathobiology. Pharmacol Ther 2018. [PMID: 29514053 DOI: 10.1016/j.pharmthera.2018.03.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Tyro3, Axl, and Mertk, referred to as the TAM family of receptor tyrosine kinases, are instrumental in maintaining cell survival and homeostasis in mammals. TAM receptors interact with multiple signaling molecules to regulate cell migration, survival, phagocytosis and clearance of metabolic products and cell debris called efferocytosis. The TAMs also function as rheostats to reduce the expression of proinflammatory molecules and prevent autoimmunity. All three TAM receptors are activated in a concentration-dependent manner by the vitamin K-dependent growth arrest-specific protein 6 (Gas6). Gas6 and the TAMs are abundantly expressed in the nervous system. Gas6, secreted by neurons and endothelial cells, is the sole ligand for Axl. ProteinS1 (ProS1), another vitamin K-dependent protein functions mainly as an anti-coagulant, and independent of this function can activate Tyro3 and Mertk, but not Axl. This review will focus on the role of the TAM receptors and their ligands in the nervous system. We highlight studies that explore the function of TAM signaling in myelination, the visual cortex, neural cancers, and multiple sclerosis (MS) using Gas6-/- and TAM mutant mice models.
Collapse
Affiliation(s)
- Bridget Shafit-Zagardo
- Albert Einstein College of Medicine, Department of Pathology, 1300 Morris Park Avenue, Bronx, NY 10461, United States.
| | - Ross C Gruber
- Sanofi, Neuroinflammation and MS Research, 49 New York Ave, Framingham, MA 01701, United States
| | - Juwen C DuBois
- Albert Einstein College of Medicine, Department of Pathology, 1300 Morris Park Avenue, Bronx, NY 10461, United States
| |
Collapse
|
45
|
Chang CF, Goods BA, Askenase MH, Hammond MD, Renfroe SC, Steinschneider AF, Landreneau MJ, Ai Y, Beatty HE, da Costa LHA, Mack M, Sheth KN, Greer DM, Huttner A, Coman D, Hyder F, Ghosh S, Rothlin CV, Love JC, Sansing LH. Erythrocyte efferocytosis modulates macrophages towards recovery after intracerebral hemorrhage. J Clin Invest 2018; 128:607-624. [PMID: 29251628 PMCID: PMC5785262 DOI: 10.1172/jci95612] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 11/07/2017] [Indexed: 02/03/2023] Open
Abstract
Macrophages are a source of both proinflammatory and restorative functions in damaged tissue through complex dynamic phenotypic changes. Here, we sought to determine whether monocyte-derived macrophages (MDMs) contribute to recovery after acute sterile brain injury. By profiling the transcriptional dynamics of MDMs in the murine brain after experimental intracerebral hemorrhage (ICH), we found robust phenotypic changes in the infiltrating MDMs over time and demonstrated that MDMs are essential for optimal hematoma clearance and neurological recovery. Next, we identified the mechanism by which the engulfment of erythrocytes with exposed phosphatidylserine directly modulated the phenotype of both murine and human MDMs. In mice, loss of receptor tyrosine kinases AXL and MERTK reduced efferocytosis of eryptotic erythrocytes and hematoma clearance, worsened neurological recovery, exacerbated iron deposition, and decreased alternative activation of macrophages after ICH. Patients with higher circulating soluble AXL had poor 1-year outcomes after ICH onset, suggesting that therapeutically augmenting efferocytosis may improve functional outcomes by both reducing tissue injury and promoting the development of reparative macrophage responses. Thus, our results identify the efferocytosis of eryptotic erythrocytes through AXL/MERTK as a critical mechanism modulating macrophage phenotype and contributing to recovery from ICH.
Collapse
Affiliation(s)
- Che-Feng Chang
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Brittany A. Goods
- Department of Biological Engineering, Koch Institute for Integrative Cancer Research at Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Michael H. Askenase
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Matthew D. Hammond
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Stephen C. Renfroe
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | - Margaret J. Landreneau
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Youxi Ai
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Hannah E. Beatty
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Luís Henrique Angenendt da Costa
- Department of Neurosciences and Behavioral Sciences, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Matthias Mack
- Department of Internal Medicine (Nephrology), University of Regensburg, Regensburg, Germany
| | - Kevin N. Sheth
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - David M. Greer
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | - Daniel Coman
- Department of Diagnostic Radiology and Biomedical Engineering
| | - Fahmeed Hyder
- Department of Diagnostic Radiology and Biomedical Engineering
| | - Sourav Ghosh
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Pharmacology, and
| | - Carla V. Rothlin
- Department of Pharmacology, and
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - J. Christopher Love
- Chemical Engineering, Koch Institute for Integrative Cancer Research at Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Lauren H. Sansing
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
46
|
Narayanaswami V, Dahl K, Bernard-Gauthier V, Josephson L, Cumming P, Vasdev N. Emerging PET Radiotracers and Targets for Imaging of Neuroinflammation in Neurodegenerative Diseases: Outlook Beyond TSPO. Mol Imaging 2018; 17:1536012118792317. [PMID: 30203712 PMCID: PMC6134492 DOI: 10.1177/1536012118792317] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 05/31/2018] [Accepted: 07/09/2018] [Indexed: 11/16/2022] Open
Abstract
The dynamic and multicellular processes of neuroinflammation are mediated by the nonneuronal cells of the central nervous system, which include astrocytes and the brain's resident macrophages, microglia. Although initiation of an inflammatory response may be beneficial in response to injury of the nervous system, chronic or maladaptive neuroinflammation can have harmful outcomes in many neurological diseases. An acute neuroinflammatory response is protective when activated neuroglia facilitate tissue repair by releasing anti-inflammatory cytokines and neurotrophic factors. On the other hand, chronic neuroglial activation is a major pathological mechanism in neurodegenerative diseases, likely contributing to neuronal dysfunction, injury, and disease progression. Therefore, the development of specific and sensitive probes for positron emission tomography (PET) studies of neuroinflammation is attracting immense scientific and clinical interest. An early phase of this research emphasized PET studies of the prototypical imaging biomarker of glial activation, translocator protein-18 kDa (TSPO), which presents difficulties for quantitation and lacks absolute cellular specificity. Many alternate molecular targets present themselves for PET imaging of neuroinflammation in vivo, including enzymes, intracellular signaling molecules as well as ionotropic, G-protein coupled, and immunoglobulin receptors. We now review the lead structures in radiotracer development for PET studies of neuroinflammation targets for neurodegenerative diseases extending beyond TSPO, including glycogen synthase kinase 3, monoamine oxidase-B, reactive oxygen species, imidazoline-2 binding sites, cyclooxygenase, the phospholipase A2/arachidonic acid pathway, sphingosine-1-phosphate receptor-1, cannabinoid-2 receptor, the chemokine receptor CX3CR1, purinergic receptors: P2X7 and P2Y12, the receptor for advanced glycation end products, Mer tyrosine kinase, and triggering receptor expressed on myeloid cells-1. We provide a brief overview of the cellular expression and function of these targets, noting their selectivity for astrocytes and/or microglia, and highlight the classes of PET radiotracers that have been investigated in early-stage preclinical or clinical research studies of neuroinflammation.
Collapse
Affiliation(s)
- Vidya Narayanaswami
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, Boston, MA, USA
- Azrieli Centre for Neuro-Radiochemistry, Research Imaging Centre, Centre for Addiction and Mental Health & Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Kenneth Dahl
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, Boston, MA, USA
- Azrieli Centre for Neuro-Radiochemistry, Research Imaging Centre, Centre for Addiction and Mental Health & Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Vadim Bernard-Gauthier
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, Boston, MA, USA
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Lee Josephson
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, Boston, MA, USA
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Paul Cumming
- School of Psychology and Counselling and IHBI, Queensland University of Technology, Brisbane, Queensland, Australia
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Neil Vasdev
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, Boston, MA, USA
- Azrieli Centre for Neuro-Radiochemistry, Research Imaging Centre, Centre for Addiction and Mental Health & Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
47
|
Xu L, Hu F, Zhu H, Liu X, Shi L, Li Y, Zhong H, Su Y. Soluble TAM receptor tyrosine kinases in rheumatoid arthritis: correlation with disease activity and bone destruction. Clin Exp Immunol 2017; 192:95-103. [PMID: 29148078 DOI: 10.1111/cei.13082] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2017] [Indexed: 12/28/2022] Open
Abstract
The TAM receptor tyrosine kinases (TAM RTK) are a subfamily of receptor tyrosine kinases, the role of which in autoimmune diseases such as systemic lupus erythematosus has been well explored, while their functions in rheumatoid arthritis (RA) remain largely unknown. In this study, we investigated the role of soluble TAM receptor tyrosine kinases (sAxl/sMer/sTyro3) in patients with RA. A total of 306 RA patients, 100 osteoarthritis (OA) patients and 120 healthy controls (HCs) were enrolled into this study. The serum concentrations of sAxl/sMer/sTyro3 were measured by enzyme-linked immunosorbent assay (ELISA), then the associations between sAxl/sMer/sTyro3 levels and clinical features of RA patients were analysed. We also investigated whether sTyro3 could promote osteoclast differentiation in vitro in RA patients. The results showed that compared with healthy controls (HCs), sTyro3 levels in the serum of RA patients were elevated remarkably and sMer levels were decreased significantly, whereas there was no difference between HCs and RA patients on sAxl levels. The sTyro3 levels were correlated weakly but positively with white blood cells (WBC), immunoglobulin (Ig)M, rheumatoid factor (RF), swollen joint counts, tender joint counts, total sharp scores and joint erosion scores. Conversely, there were no significant correlations between sMer levels and the above indices. Moreover, RA patients with high disease activity also showed higher sTyro3 levels. In-vitro osteoclast differentiation assay showed further that tartrate-resistant acid phosphatase (TRAP)+ osteoclasts were increased significantly in the presence of sTyro3. Collectively, our study indicated that serum sTyro3 levels were elevated in RA patients and correlated positively with disease activity and bone destruction, which may serve as an important participant in RA pathogenesis.
Collapse
Affiliation(s)
- L Xu
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China.,Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - F Hu
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China.,Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - H Zhu
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China.,Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - X Liu
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China.,Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - L Shi
- Department of Rheumatology and Immunology, Peking University International Hospital, Beijing, China
| | - Y Li
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China.,Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - H Zhong
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China.,Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Y Su
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China.,Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| |
Collapse
|
48
|
Ray AK, DuBois JC, Gruber RC, Guzik HM, Gulinello ME, Perumal G, Raine C, Kozakiewicz L, Williamson J, Shafit-Zagardo B. Loss of Gas6 and Axl signaling results in extensive axonal damage, motor deficits, prolonged neuroinflammation, and less remyelination following cuprizone exposure. Glia 2017; 65:2051-2069. [PMID: 28925029 DOI: 10.1002/glia.23214] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 08/10/2017] [Accepted: 08/11/2017] [Indexed: 01/08/2023]
Abstract
The TAM (Tyro3, Axl, and MerTK) family of receptor tyrosine kinases (RTKs) and their ligands, Gas6 and ProS1, are important for innate immune responses and central nervous system (CNS) homeostasis. While only Gas6 directly activates Axl, ProS1 activation of Tyro3/MerTK can indirectly activate Axl through receptor heterodimerization. Therefore, we generated Gas6-/- Axl-/- double knockout (DKO) mice to specifically examine the contribution of this signaling axis while retaining ProS1 signaling through Tyro3 and MerTK. We found that naïve young adult DKO and WT mice have comparable myelination and equal numbers of axons and oligodendrocytes in the corpus callosum. Using the cuprizone model of demyelination/remyelination, transmission electron microscopy revealed extensive axonal swellings containing autophagolysosomes and multivesicular bodies, and fewer myelinated axons in brains of DKO mice at 3-weeks recovery from a 6-week cuprizone diet. Analysis of immunofluorescent staining demonstrated more SMI32+ and APP+ axons and less myelin in the DKO mice. There were no significant differences in the number of GFAP+ astrocytes or Iba1+ microglia/macrophages between the groups of mice. However, at 6-weeks cuprizone and recovery, DKO mice had increased proinflammatory cytokine and altered suppressor of cytokine signaling (SOCS) mRNA expression supporting a role for Gas6-Axl signaling in proinflammatory cytokine suppression. Significant motor deficits in DKO mice relative to WT mice on cuprizone were also observed. These data suggest that Gas6-Axl signaling plays an important role in maintaining axonal integrity and regulating and reducing CNS inflammation that cannot be compensated for by ProS1/Tyro3/MerTK signaling.
Collapse
Affiliation(s)
- Alex K Ray
- Department of Pathology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York, 10461
| | - Juwen C DuBois
- Department of Pathology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York, 10461
| | - Ross C Gruber
- Neuroimmunology and MS Research, Sanofi, Framingham, Massachusetts, 01701
| | - Hillary M Guzik
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York, 10461
| | - Maria E Gulinello
- Rodent Behavioral Core, Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, 10461
| | - Geoffrey Perumal
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York, 10461
| | - Cedric Raine
- Department of Pathology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York, 10461
| | - Lauren Kozakiewicz
- Department of Pathology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York, 10461
| | - Julie Williamson
- Department of Pathology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York, 10461
| | - Bridget Shafit-Zagardo
- Department of Pathology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York, 10461
| |
Collapse
|
49
|
Abstract
A major challenge in anticancer treatment is the pre-existence or emergence of resistance to therapy. AXL and MER are two members of the TAM (TYRO3-AXL-MER) family of receptor tyrosine kinases, which, when activated, can regulate tumor cell survival, proliferation, migration and invasion, angiogenesis, and tumor-host interactions. An increasing body of evidence strongly suggests that these receptors play major roles in resistance to targeted therapies and conventional cytotoxic agents. Multiple resistance mechanisms exist, including the direct and indirect crosstalk of AXL and MER with other receptors and the activation of feedback loops regulating AXL and MER expression and activity. These mechanisms may be innate, adaptive, or acquired. A principal role of AXL appears to be in sustaining a mesenchymal phenotype, itself a major mechanism of resistance to diverse anticancer therapies. Both AXL and MER play a role in the repression of the innate immune response which may also limit response to treatment. Small molecule and antibody inhibitors of AXL and MER have recently been described, and some of these have already entered clinical trials. The optimal design of treatment strategies to maximize the clinical benefit of these AXL and MER targeting agents are discussed in relation to the different cancer types and the types of resistance encountered. One of the major challenges to successful development of these therapies will be the application of robust predictive biomarkers for clear-cut patient stratification.
Collapse
|
50
|
Bassyouni IH, El-Wakd MM, Azab NA, Bassyouni RH. Diminished soluble levels of growth arrest specific protein 6 and tyrosine kinase receptor Axl in patients with rheumatoid arthritis. Int J Rheum Dis 2017; 20:53-59. [PMID: 24702788 DOI: 10.1111/1756-185x.12367] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
AIM Growth arrest specific protein 6 (Gas-6) and its tyrosine kinase receptor Axl plays an important role in apoptosis, and regulation of innate immune response, therefore, we investigated their plasma concentrations in Rheumatoid arthritis (RA) patients and correlated them to clinical, laboratory and radiological parameters of the disease. METHODS Plasma from 77 RA patients and 50 normal healthy subjects were assayed for plasma Gas6 and Axl levels. Demographic, clinical and serological data were prospectively assessed. Rheumatoid arthritis disease activity was assessed using 28-joint Disease Activity Score (DAS-28) and functional capacity by modified health assessment questionnaire (mHAQ). Standardized x-rays for hands and feet were done to all participants. RESULTS The level of Gas6 and Axl were significantly decreased in the RA patients compared to those of the healthy control subjects. Levels of Gas6 correlated positively with Axl levels in both patients and healthy control. Gas6 levels were remarkably reduced in those patients with erosive RA than those without. Levels of Gas6 were found to be negatively correlated with the presence of erosive disease and positively correlated with DAS-28, ESR, Leucocytosis and IL6. CONCLUSION The plasma concentrations of Gas6 and Axl are altered in RA patients and thus may have a role in RA pathogenesis. Further mechanistic studies on the involvement of all TAM receptors tyrosine kinases pathway in RA are needed to help in understanding the pathogenesis and possibly aid in diagnosis and future treatments of RA especially for patients with erosive disease.
Collapse
Affiliation(s)
- Iman H Bassyouni
- Rheumatology and Rehabilitation Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mohammed M El-Wakd
- Rheumatology and Rehabilitation Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Noha A Azab
- Rheumatology and Rehabilitation Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Rasha H Bassyouni
- Medical Microbiology and Immunology, Faculty of Medicine, El-Fayoum University, Cairo, Egypt
| |
Collapse
|