1
|
Del Giacco AC, Morales AM, Jones SA, Barnes SJ, Nagel BJ. Ventral striatal-cingulate resting-state functional connectivity in healthy adolescents relates to later depression symptoms in adulthood. J Affect Disord 2024; 365:205-212. [PMID: 39134157 PMCID: PMC11438492 DOI: 10.1016/j.jad.2024.08.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 07/10/2024] [Accepted: 08/09/2024] [Indexed: 08/24/2024]
Abstract
BACKGROUND Depression is a significant public health concern. Identifying biopsychosocial risk factors for depression is important for developing targeted prevention. Studies have demonstrated that blunted striatal activation during reward processing is a risk factor for depression; however, few have prospectively examined whether adolescent reward-related resting-state functional connectivity (rsFC) predicts depression symptoms in adulthood and how this relates to known risk factors (e.g., childhood trauma). METHODS At baseline, 66 adolescents (mean age = 14.7, SD = 1.4, 68 % female) underwent rsFC magnetic resonance imaging and completed the Children's Depression Inventory (CDI). At follow-up (mean time between adolescent scan and adult follow-up = 10.1 years, SD = 1.6, mean adult age = 24.8 years, SD = 1.7), participants completed the Childhood Trauma Questionnaire (CTQ) and Beck Depression Inventory- Second Edition (BDI-2). Average rsFC was calculated between nodes in mesocorticolimbic reward circuitry: ventral striatum (VS), rostral anterior cingulate cortex (rACC), medial orbitofrontal cortex, and ventral tegmental area. Linear regressions assessed associations between rsFC, BDI-2, and CTQ, controlling for adolescent CDI, sex assigned at birth, and scan age (Bonferroni corrected). RESULTS Greater childhood trauma was associated with higher adulthood depression symptoms. Stronger VS-rACC rsFC during adolescence was associated with greater depression symptoms in adulthood and greater childhood trauma. LIMITATIONS The small sample size, limited depression severity, and seed-based approach are limitations. CONCLUSIONS The associations between adolescent striatal-cingulate rsFC and childhood trauma and adult depression symptoms suggest this connectivity may be an early neurobiological risk factor for depression and that early life experience plays an important role. Increased VS-rACC connectivity may represent an over-regulatory response on the striatum, commonly reported in depression, and warrants further investigation.
Collapse
Affiliation(s)
| | | | - Scott A Jones
- Department of Psychiatry, Oregon Health & Science University, USA
| | | | - Bonnie J Nagel
- Department of Psychiatry, Oregon Health & Science University, USA; Department of Behavioral Neuroscience, Oregon Health & Science University, USA
| |
Collapse
|
2
|
Kaminski A, Xie H, Hawkins B, Vaidya CJ. Change in striatal functional connectivity networks across 2 years due to stimulant exposure in childhood ADHD: results from the ABCD sample. Transl Psychiatry 2024; 14:463. [PMID: 39505862 DOI: 10.1038/s41398-024-03165-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/02/2024] [Accepted: 10/14/2024] [Indexed: 11/08/2024] Open
Abstract
Widely prescribed for Attention-Deficit/Hyperactivity Disorder (ADHD), stimulants (e.g., methylphenidate) have been studied for their chronic effects on the brain in prospective designs controlling dosage and adherence. While controlled approaches are essential, they do not approximate real-world stimulant exposure contexts where medication interruptions, dosage non-compliance, and polypharmacy are common. Brain changes in real-world conditions are largely unexplored. To fill this gap, we capitalized on the observational design of the Adolescent Brain Cognitive Development (ABCD) study to examine effects of stimulants on large-scale bilateral cortical networks' resting-state functional connectivity (rs-FC) with 6 striatal regions (left and right caudate, putamen, and nucleus accumbens) across two years in children with ADHD. Bayesian hierarchical regressions revealed associations between stimulant exposure and change in rs-FC of multiple striatal-cortical networks, affiliated with executive and visuo-motor control, which were not driven by general psychotropic medication. Of these connections, three were selective to stimulants versus stimulant naive: reduced rs-FC between caudate and frontoparietal network, and between putamen and frontoparietal and visual networks. Comparison with typically developing children in the ABCD sample revealed stronger rs-FC reduction in stimulant-exposed children for putamen and frontoparietal and visual networks, suggesting a normalizing effect of stimulants. 14% of stimulant-exposed children demonstrated reliable reduction in ADHD symptoms, and were distinguished by stronger rs-FC reduction between right putamen and visual network. Thus, stimulant exposure for a two-year period under real-world conditions modulated striatal-cortical functional networks broadly, had a normalizing effect on a subset of networks, and was associated with potential therapeutic effects involving visual attentional control.
Collapse
Affiliation(s)
- Adam Kaminski
- Department of Psychology, Georgetown University, Washington, DC, USA.
| | - Hua Xie
- Children's Research Institute, Children's National Medical Center, Washington, DC, USA
| | - Brylee Hawkins
- Department of Psychology, Georgetown University, Washington, DC, USA
| | - Chandan J Vaidya
- Department of Psychology, Georgetown University, Washington, DC, USA.
- Children's Research Institute, Children's National Medical Center, Washington, DC, USA.
| |
Collapse
|
3
|
DeAngelo V, Gehan A, Paliwal S, Ho K, Hilliard JD, Chiang CH, Viventi J, McConnell GC. Cerebellar activity in hemi-parkinsonian rats during volitional gait and freezing. Brain Commun 2024; 6:fcae246. [PMID: 39464215 PMCID: PMC11503953 DOI: 10.1093/braincomms/fcae246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/02/2024] [Accepted: 10/16/2024] [Indexed: 10/29/2024] Open
Abstract
Parkinson's disease is a neurodegenerative disease characterized by gait dysfunction in the advanced stages of the disease. The unilateral 6-hydroxydopamine toxin-induced model is the most studied animal model of Parkinson's disease, which reproduces gait dysfunction after >68% dopamine loss in the substantia nigra pars compacta. The extent to which the neural activity in hemi-parkinsonian rats correlates to gait dysfunction and dopaminergic cell loss is not clear. In this article, we report the effects of unilateral dopamine depletion on cerebellar vermis activity using micro-electrocorticography during walking and freezing on a runway. Gait and neural activity were measured in 6-hydroxydopamine- and sham-lesioned rats aged between 4 and 5 months at 14, 21 and 28 days after infusion of 6-hydroxydopamine or control vehicle into the medial forebrain bundle (n = 20). Gait deficits in 6-hydroxydopamine rats were different from sham rats at 14 days (P < 0.05). Gait deficits in 6-hydroxydopamine rats improved at 21 and 28 days except for run speed, which decreased at 28 days (P = 0.018). No differences in gait deficits were observed in sham-lesioned rats at any time points. Hemi-parkinsonian rats showed hyperactivity in the cerebellar vermis at 21 days (P < 0.05), but not at 14 and 28 days, and the activity was reduced during freezing epochs in Lobules VIa, VIb and VIc (P < 0.05). These results suggest that dopaminergic cell loss causes pathological cerebellar activity at 21 days post-lesion and suggest that compensatory mechanisms from the intact hemisphere contribute to normalized cerebellar activity at 28 days. The decrease in cerebellar oscillatory activity during freezing may be indicative of neurological changes during freezing of gait in patients with Parkinson's disease making this region a potential location for biomarker detection. Although the unilateral 6-hydroxydopamine model presents gait deficits that parallel clinical presentations of Parkinson's disease, further studies in animal models of bilateral dopamine loss are needed to understand the role of the cerebellar vermis in Parkinson's disease.
Collapse
Affiliation(s)
- Valerie DeAngelo
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA
| | - Arianna Gehan
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA
| | - Siya Paliwal
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA
| | - Katherine Ho
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA
| | - Justin D Hilliard
- Department of Neurosurgery, University of Florida, Gainesville, FL 32611, USA
| | - Chia-Han Chiang
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Jonathan Viventi
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
- Department of Neurosurgery, Duke School of Medicine, Durham, NC 27710, USA
- Department of Neurobiology, Duke School of Medicine, Durham, NC 27710, USA
- Duke Comprehensive Epilepsy Center, Duke School of Medicine, Durham, NC 27710, USA
| | - George C McConnell
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA
| |
Collapse
|
4
|
Koirala S, Grimsrud G, Mooney MA, Larsen B, Feczko E, Elison JT, Nelson SM, Nigg JT, Tervo-Clemmens B, Fair DA. Neurobiology of attention-deficit hyperactivity disorder: historical challenges and emerging frontiers. Nat Rev Neurosci 2024:10.1038/s41583-024-00869-z. [PMID: 39448818 DOI: 10.1038/s41583-024-00869-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2024] [Indexed: 10/26/2024]
Abstract
Extensive investigations spanning multiple levels of inquiry, from genetic to behavioural studies, have sought to unravel the mechanistic foundations of attention-deficit hyperactivity disorder (ADHD), with the aspiration of developing efficacious treatments for this condition. Despite these efforts, the pathogenesis of ADHD remains elusive. In this Review, we reflect on what has been learned about ADHD while also providing a framework that may serve as a roadmap for future investigations. We emphasize that ADHD is a highly heterogeneous disorder with multiple aetiologies that necessitates a multifactorial dimensional phenotype, rather than a fixed dichotomous conceptualization. We highlight new findings that suggest a more brain-wide, 'global' view of the disorder, rather than the traditional localizationist framework, which asserts that a limited set of brain regions or networks underlie ADHD. Last, we underscore how underpowered studies that have aimed to associate neurobiology with ADHD phenotypes have long precluded the field from making progress. However, a new age of ADHD research with refined phenotypes, advanced methods, creative study designs and adequately powered investigations is beginning to put the field on a good footing. Indeed, the field is at a promising juncture to advance the neurobiological understanding of ADHD and fulfil the promise of clinical utility.
Collapse
Affiliation(s)
- Sanju Koirala
- Institute of Child Development, University of Minnesota, Minneapolis, MN, USA
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
| | - Gracie Grimsrud
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Michael A Mooney
- Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR, USA
- Departments of Psychiatry, Oregon Health & Science University, Portland, OR, USA
- Center for Mental Health Innovation, Oregon Health & Science University, Portland, OR, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Bart Larsen
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Eric Feczko
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Jed T Elison
- Institute of Child Development, University of Minnesota, Minneapolis, MN, USA
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Steven M Nelson
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Joel T Nigg
- Departments of Psychiatry, Oregon Health & Science University, Portland, OR, USA
- Center for Mental Health Innovation, Oregon Health & Science University, Portland, OR, USA
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - Brenden Tervo-Clemmens
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Damien A Fair
- Institute of Child Development, University of Minnesota, Minneapolis, MN, USA.
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA.
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
5
|
Kosakowski HL, Eldaief MC, Buckner RL. Ventral Striatum is Preferentially Correlated with the Salience Network Including Regions in Dorsolateral Prefrontal Cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.13.618063. [PMID: 39416211 PMCID: PMC11482876 DOI: 10.1101/2024.10.13.618063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The ventral striatum (VS) receives input from the cerebral cortex and is modulated by midbrain dopaminergic projections in support of processing reward and motivation. Here we explored the organization of cortical regions linked to the human VS using within-individual functional connectivity MRI in intensively scanned participants. In two initial participants (scanned 31 sessions each), seed regions in the VS were preferentially correlated with distributed cortical regions that are part of the Salience (SAL) network. The VS seed region recapitulated SAL network topography in each individual including anterior and posterior midline regions, anterior insula, and dorsolateral prefrontal cortex (DLPFC) - a topography that was distinct from a nearby striatal seed region. The region of DLPFC linked to the VS is positioned adjacent to regions associated with domain-flexible cognitive control. The full pattern was replicated in independent data from the same two individuals and generalized to 15 novel participants (scanned 8 or more sessions each). These results suggest that the VS forms a cortico-basal ganglia loop as part of the SAL network. The DLPFC is a neuromodulatory target to treat major depressive disorder. The present results raise the possibility that the DLPFC may be an effective neuromodulatory target because of its preferential coupling to the VS and suggests a path toward further personalization.
Collapse
|
6
|
Hinojosa CA, van Rooij SJH, Fani N, Ellis RA, Harnett NG, Lebois LAM, Ely TD, Jovanovic T, Murty VP, House SL, Beaudoin FL, An X, Neylan TC, Clifford GD, Linnstaedt SD, Germine LT, Rauch SL, Haran JP, Storrow AB, Lewandowski C, Musey PI, Hendry PL, Sheikh S, Jones CW, Punches BE, Hudak LA, Pascual JL, Seamon MJ, Harris E, Pearson C, Peak DA, Merchant RC, Domeier RM, Rathlev NK, O'Neil BJ, Sergot P, Bruce SE, Pizzagalli DA, Sheridan JF, Harte SE, Koenen KC, Kessler RC, McLean SA, Ressler KJ, Stevens JS. Reward neurocircuitry predicts longitudinal changes in alcohol use following trauma exposure. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024:S2451-9022(24)00283-0. [PMID: 39389310 DOI: 10.1016/j.bpsc.2024.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/10/2024] [Accepted: 09/25/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND Trauma is a risk factor for developing maladaptive alcohol use. Preclinical research has shown that stress alters the processing of midbrain and striatal reward and incentive signals. However, little research has been conducted on alterations in reward-related neurocircuitry post-trauma in humans. Neuroimaging markers may be particularly useful as they can provide insight into the mechanisms that may make an individual vulnerable to developing trauma-related psychopathologies. This study aimed to identify reward-related neural correlates associated with changes in alcohol use after trauma exposure. METHODS Participants were recruited from U.S. emergency departments for the AURORA study (N=286, 178 female). Trauma-related change in alcohol use at 8 weeks post-trauma relative to pre-trauma was quantified as a change in 30-day total drinking per the PhenX Toolkit Alcohol 30-Day Quantity and Frequency Measure. Reward-related neurocircuitry activation and functional connectivity (FC) were assessed 2 weeks post-trauma using fMRI during a monetary reward task using region of interest and whole-brain voxelwise analyses. RESULTS Greater increase in alcohol use from pre-trauma to 8 weeks post-trauma was predicted by (1) greater ventral tegmental area (VTA) and (2) greater cerebellum activation during Gain>Loss trials measured 2 weeks post-trauma and (3) greater seed-based FC between the VTA and lateral occipital cortex and precuneus. CONCLUSIONS Altered VTA activation and FC early post-trauma may be associated with reward-seeking and processing, contributing to greater alcohol use post-trauma. These data provide novel evidence of neural correlates that underlie increased alcohol use early post-trauma that may be targeted via early interventions to prevent the development of maladaptive alcohol use.
Collapse
Affiliation(s)
- Cecilia A Hinojosa
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA.
| | - Sanne J H van Rooij
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Negar Fani
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Robyn A Ellis
- McLean Hospital, Belmont, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Nathaniel G Harnett
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA; Division of Depression and Anxiety, McLean Hospital, Belmont, MA, USA
| | - Lauren A M Lebois
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA; Division of Depression and Anxiety, McLean Hospital, Belmont, MA, USA
| | - Timothy D Ely
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Tanja Jovanovic
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, MI, USA
| | - Vishnu P Murty
- Department of Psychology, Temple University, Philadelphia, PA, USA
| | - Stacey L House
- Department of Emergency Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Francesca L Beaudoin
- Department of Health Services, Policy, and Practice, The Alpert Medical School of Brown University, Providence, RI, USA; Department of Emergency Medicine, The Alpert Medical School of Brown University, Providence, RI
| | - Xinming An
- Institute for Trauma Recovery, Department of Anesthesiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Thomas C Neylan
- Departments of Psychiatry and Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Gari D Clifford
- Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, GA, USA; Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Sarah D Linnstaedt
- Institute for Trauma Recovery, Department of Anesthesiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Laura T Germine
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA; Institute for Technology in Psychiatry, McLean Hospital, Belmont, MA, USA; The Many Brains Project, Belmont, MA, USA
| | - Scott L Rauch
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA; Institute for Technology in Psychiatry, McLean Hospital, Belmont, MA, USA; Department of Psychiatry, McLean Hospital, Belmont, MA, USA
| | - John P Haran
- Department of Emergency Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Alan B Storrow
- Department of Emergency Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Paul I Musey
- Department of Emergency Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Phyllis L Hendry
- Department of Emergency Medicine, University of Florida College of Medicine -Jacksonville, Jacksonville, FL, USA
| | - Sophia Sheikh
- Department of Emergency Medicine, University of Florida College of Medicine -Jacksonville, Jacksonville, FL, USA
| | - Christopher W Jones
- Department of Emergency Medicine, Cooper Medical School of Rowan University, Camden, NJ, USA
| | - Brittany E Punches
- Department of Emergency Medicine, Ohio State University College of Medicine, Columbus, OH, USA; Ohio State University College of Nursing, Columbus, OH, USA
| | - Lauren A Hudak
- Department of Emergency Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Jose L Pascual
- Department of Surgery, Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, USA; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mark J Seamon
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Surgery, Division of Traumatology, Surgical Critical Care and Emergency Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Erica Harris
- Department of Emergency Medicine, Einstein Medical Center, Philadelphia, PA, USA
| | - Claire Pearson
- Department of Emergency Medicine, Wayne State University, Ascension St. John Hospital, Detroit, MI, USA
| | - David A Peak
- Department of Emergency Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Roland C Merchant
- Department of Emergency Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Robert M Domeier
- Department of Emergency Medicine, Trinity Health-Ann Arbor, Ypsilanti, MI, USA
| | - Niels K Rathlev
- Department of Emergency Medicine, University of Massachusetts Medical School-Baystate, Springfield, MA, USA
| | - Brian J O'Neil
- Department of Emergency Medicine, Wayne State University, Detroit Receiving Hospital, Detroit, MI, USA
| | - Paulina Sergot
- Department of Emergency Medicine, McGovern Medical School at UTHealth, Houston, TX, USA
| | - Steven E Bruce
- Department of Psychological Sciences, University of Missouri - St. Louis, St. Louis, MO, USA
| | - Diego A Pizzagalli
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA; Division of Depression and Anxiety, McLean Hospital, Belmont, MA, USA
| | - John F Sheridan
- Division of Biosciences, Ohio State University College of Dentistry, Columbus, OH, USA; Institute for Behavioral Medicine Research, OSU Wexner Medical Center, Columbus, OH, USA
| | - Steven E Harte
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI, USA; Department of Internal Medicine-Rheumatology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Karestan C Koenen
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Ronald C Kessler
- Department of Health Care Policy, Harvard Medical School, Boston, MA, USA
| | - Samuel A McLean
- Department of Emergency Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Institute for Trauma Recovery, Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kerry J Ressler
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA; Division of Depression and Anxiety, McLean Hospital, Belmont, MA, USA
| | - Jennifer S Stevens
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
7
|
Xue X, Wu J, Xing X, Ma J, Zhang J, Xiang Y, Zheng M, Hua X, Xu J. Mapping individual cortico-basal ganglia-thalamo-cortical circuits integrating structural and functional connectome: implications for upper limb motor impairment poststroke. MedComm (Beijing) 2024; 5:e764. [PMID: 39376737 PMCID: PMC11456677 DOI: 10.1002/mco2.764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 08/19/2024] [Accepted: 08/27/2024] [Indexed: 10/09/2024] Open
Abstract
This study investigated alterations in functional connectivity (FC) within cortico-basal ganglia-thalamo-cortical (CBTC) circuits and identified critical connections influencing poststroke motor recovery, offering insights into optimizing brain modulation strategies to address the limitations of traditional single-target stimulation. We delineated individual-specific parallel loops of CBTC through probabilistic tracking and voxel connectivity profiles-based segmentation and calculated FC values in poststroke patients and healthy controls, comparing with conventional atlas-based FC calculation. Support vector machine (SVM) analysis distinguished poststroke patients from controls. Connectome-based predictive modeling (CPM) used FC values within CBTC circuits to predict upper limb motor function. Poststroke patients exhibited decreased ipsilesional connectivity within the individual-specific CBTC circuits. SVM analysis achieved 82.8% accuracy, 76.6% sensitivity, and 89.1% specificity using individual-specific parallel loops. Additionally, CPM featuring positive connections/all connections significantly predicted Fugl-Meyer assessment of upper extremity scores. There were no significant differences in the group comparisons of conventional atlas-based FC values, and the FC values resulted in SVM accuracy of 75.0%, sensitivity of 67.2%, and specificity of 82.8%, with no significant CPM capability. Individual-specific parallel loops show superior predictive power for assessing upper limb motor function in poststroke patients. Precise mapping of the disease-related circuits is essential for understanding poststroke brain reorganization.
Collapse
Affiliation(s)
- Xin Xue
- Department of Rehabilitation MedicineYueyang Hospital of Integrated Traditional Chinese and Western MedicineShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Jia‐Jia Wu
- Department of Rehabilitation MedicineYueyang Hospital of Integrated Traditional Chinese and Western MedicineShanghai University of Traditional Chinese MedicineShanghaiChina
- Engineering Research Center of Traditional Chinese Medicine Intelligent RehabilitationMinistry of EducationShanghaiChina
| | - Xiang‐Xin Xing
- Rehabilitation CenterQilu Hospital of Shandong UniversityJinanChina
| | - Jie Ma
- Department of Rehabilitation MedicineYueyang Hospital of Integrated Traditional Chinese and Western MedicineShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Jun‐Peng Zhang
- School of Rehabilitation ScienceShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Yun‐Ting Xiang
- School of Rehabilitation ScienceShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Mou‐Xiong Zheng
- Engineering Research Center of Traditional Chinese Medicine Intelligent RehabilitationMinistry of EducationShanghaiChina
- Department of Traumatology and OrthopedicsYueyang Hospital of Integrated Traditional Chinese and Western MedicineShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Xu‐Yun Hua
- Engineering Research Center of Traditional Chinese Medicine Intelligent RehabilitationMinistry of EducationShanghaiChina
- Department of Traumatology and OrthopedicsYueyang Hospital of Integrated Traditional Chinese and Western MedicineShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Jian‐Guang Xu
- Department of Rehabilitation MedicineYueyang Hospital of Integrated Traditional Chinese and Western MedicineShanghai University of Traditional Chinese MedicineShanghaiChina
- Engineering Research Center of Traditional Chinese Medicine Intelligent RehabilitationMinistry of EducationShanghaiChina
- School of Rehabilitation ScienceShanghai University of Traditional Chinese MedicineShanghaiChina
| |
Collapse
|
8
|
Attaallah B, Toniolo S, Maio MR, Husain M. Apathy and effort-based decision-making in Alzheimer's disease and subjective cognitive impairment. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2024; 16:e70013. [PMID: 39416486 PMCID: PMC11480904 DOI: 10.1002/dad2.70013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 10/19/2024]
Abstract
INTRODUCTION Apathy is a significant feature in Alzheimer's disease (AD) and subjective cognitive impairment (SCI), though its mechanisms are not well established. METHODS An effort-based decision-making (EBDM) framework was applied to investigate apathy in 30 AD patients, 41 SCI participants, and 55 healthy controls (HC). Data were analyzed using a drift-diffusion model (DDM) to uncover latent psychological processes. RESULTS SCI participants reported higher apathy than AD patients and HC. However, informant reports of apathy in AD patients were higher than self-reports and indicated significant apathy compared to HC. Both the AD and SCI groups showed reduced sensitivity to effort changes, linked to executive dysfunction in AD and apathy in SCI. Increased resting functional cortical connectivity with the nucleus accumbens (NA) was associated with higher apathy in SCI. DISCUSSION These results highlight a similar disruption of EBDM in AD and SCI, differentially related to executive functioning in AD and apathy in SCI. Highlights This is the first study investigating apathy using an effort-based decision-making (EBDM) framework in Alzheimer's disease (AD) and subjective cognitive impairment (SCI).Self-reports underestimate apathy in AD patients when compared to informant reports and healthy controls (HC). SCI participants, in whom self and informant reports were more concordant, also showed higher degrees of apathy.Both AD and SCI groups showed reduced sensitivity to effort.Reduced sensitivity to effort correlates with executive dysfunction in AD and apathy, but not depression, in SCI.Increased nucleus accumbens (ventral striatum) connectivity with the frontoparietal network was associated with higher apathy scores in SCI.The results thus suggest that while AD and SCI can have similar deficits in EBDM, these deficits correlate with distinct clinical manifestations: executive dysfunction in AD and apathy in SCI.
Collapse
Affiliation(s)
- Bahaaeddin Attaallah
- Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
- Centre for Preventive NeurologyQueen Mary University of LondonLondonUK
| | - Sofia Toniolo
- Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
| | - Maria Raquel Maio
- Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
| | - Masud Husain
- Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
- Department of Experimental PsychologyUniversity of OxfordOxfordUK
| |
Collapse
|
9
|
Reynolds WT, Votava-Smith JK, Gabriel G, Lee VK, Rajagopalan V, Wu Y, Liu X, Yagi H, Slabicki R, Gibbs B, Tran NN, Weisert M, Cabral L, Subramanian S, Wallace J, del Castillo S, Baust T, Weinberg JG, Lorenzi Quigley L, Gaesser J, O’Neil SH, Schmithorst V, Panigrahy A, Ceschin R, Lo CW. Validation of a Paralimbic-Related Subcortical Brain Dysmaturation MRI Score in Infants with Congenital Heart Disease. J Clin Med 2024; 13:5772. [PMID: 39407833 PMCID: PMC11476423 DOI: 10.3390/jcm13195772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/23/2024] [Accepted: 09/13/2024] [Indexed: 10/20/2024] Open
Abstract
Background: Brain magnetic resonance imaging (MRI) of infants with congenital heart disease (CHD) shows brain immaturity assessed via a cortical-based semi-quantitative score. Our primary aim was to develop an infant paralimbic-related subcortical-based semi-quantitative dysmaturation score, termed brain dysplasia score (BDS), to detect abnormalities in CHD infants compared to healthy controls and secondarily to predict clinical outcomes. We also validated our BDS in a preclinical mouse model of hypoplastic left heart syndrome. Methods: A paralimbic-related subcortical BDS, derived from structural MRIs of infants with CHD, was compared to healthy controls and correlated with clinical risk factors, regional cerebral volumes, feeding, and 18-month neurodevelopmental outcomes. The BDS was validated in a known CHD mouse model named Ohia with two disease-causing genes, Sap130 and Pchda9. To relate clinical findings, RNA-Seq was completed on Ohia animals. Findings: BDS showed high incidence of paralimbic-related subcortical abnormalities (including olfactory, cerebellar, and hippocampal abnormalities) in CHD infants (n = 215) compared to healthy controls (n = 92). BDS correlated with reduced cortical maturation, developmental delay, poor language and feeding outcomes, and increased length of stay. Ohia animals (n = 63) showed similar BDS findings, and RNA-Seq analysis showed altered neurodevelopmental and feeding pathways. Sap130 mutants correlated with a more severe BDS, whereas Pcdha9 correlated with a milder phenotype. Conclusions: Our BDS is sensitive to dysmaturational differences between CHD and healthy controls and predictive of poor outcomes. A similar spectrum of paralimbic and subcortical abnormalities exists between human and Ohia mutants, suggesting a common genetic mechanistic etiology.
Collapse
Affiliation(s)
- William T. Reynolds
- Department of Biomedical Informatics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15206, USA
| | - Jodie K. Votava-Smith
- Division of Cardiology, Department of Pediatrics, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - George Gabriel
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Vincent K. Lee
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Vidya Rajagopalan
- Division of Cardiology, Department of Pediatrics, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Yijen Wu
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Xiaoqin Liu
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Hisato Yagi
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Ruby Slabicki
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Brian Gibbs
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Nhu N. Tran
- Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Division of Neonatology, Department of Pediatrics, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Molly Weisert
- Division of Cardiology, Department of Pediatrics, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Laura Cabral
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Subramanian Subramanian
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Department of Pediatric Radiology, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Julia Wallace
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Sylvia del Castillo
- Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Department of Anesthesiology Critical Care Medicine, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Tracy Baust
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 51213, USA
| | - Jacqueline G. Weinberg
- Division of Cardiology, Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Lauren Lorenzi Quigley
- Cardiac Neurodevelopmental Care Program, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Jenna Gaesser
- Division of Neurology and Child Development, Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Sharon H. O’Neil
- Division of Neurology, Department of Pediatrics, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Vanessa Schmithorst
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Ashok Panigrahy
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Rafael Ceschin
- Department of Biomedical Informatics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15206, USA
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Cecilia W. Lo
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| |
Collapse
|
10
|
Corbo I, Favieri F, Forte G, Casagrande M. Decision-making under uncertainty in healthy and cognitively impaired aging: A systematic review and meta-analysis. Arch Gerontol Geriatr 2024; 129:105643. [PMID: 39369563 DOI: 10.1016/j.archger.2024.105643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/07/2024] [Accepted: 09/22/2024] [Indexed: 10/08/2024]
Abstract
Decision-making (DM) is a complex cognitive behavior that involves gathering information and assessing options to identify choices under risky and uncertain conditions. Mild Cognitive Impairment (MCI) is a construct that includes a constellation of symptoms ranging from behavioral to cognitive impairments. This cluster of symptoms is frequently associated with poor decision-making. This study aimed to examine decision-making in pathological aging, specifically MCI. Therefore, we conducted a systematic review and meta-analysis to evaluate these relationships. According to the PRISMA 2020 Statement, nine studies were selected for the systematic review and eight for the meta-analysis. The results highlighted that MCI is associated with impaired decision-making in risky and ambiguous situations. The systematic review reported that MCI was associated with impaired decision-making in ambiguous and in risky conditions. In contrast, the meta-analysis showed significant differences in overall decision-making and particularly in ambiguous conditions. This difficulty may be due to different impairments that affect MCI. The difficulty in advantageous decision-making could be due to different brain alterations in MCI, which could lead to problems in tasks requiring feedback-based responses. These findings advance our understanding of decision-making in aging and suggest how decision-making alterations in MCI would affect the totality of executive functions and daily activities.
Collapse
Affiliation(s)
- Ilaria Corbo
- Department of Dynamic and Clinical Psychology, and Health Studies - "Sapienza" University of Rome, Italy.
| | - Francesca Favieri
- Department of Dynamic and Clinical Psychology, and Health Studies - "Sapienza" University of Rome, Italy.
| | - Giuseppe Forte
- Department of Dynamic and Clinical Psychology, and Health Studies - "Sapienza" University of Rome, Italy.
| | - Maria Casagrande
- Department of Dynamic and Clinical Psychology, and Health Studies - "Sapienza" University of Rome, Italy.
| |
Collapse
|
11
|
van Beest EH, Abdelwahab MAO, Cazemier JL, Baltira C, Maes MC, Peri BD, Self MW, Willuhn I, Roelfsema PR. The direct and indirect pathways of the basal ganglia antagonistically influence cortical activity and perceptual decisions. iScience 2024; 27:110753. [PMID: 39280625 PMCID: PMC11402218 DOI: 10.1016/j.isci.2024.110753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/19/2024] [Accepted: 08/13/2024] [Indexed: 09/18/2024] Open
Abstract
The striatum, the main input nucleus of the basal ganglia, receives topographically organized input from the cortex and gives rise to the direct and indirect output pathways, which have antagonistic effects on basal ganglia output directed to the cortex. We optogenetically stimulated the direct and indirect pathways in a visual and a working memory task in mice that responded by licking. Unilateral direct pathway stimulation increased the probability of lick responses toward the contralateral, non-stimulated side and increased cortical activity globally. In contrast, indirect pathway stimulation increased the probability of responses toward the stimulated side and decreased activity in the stimulated hemisphere. Moreover, direct pathway stimulation enhanced the neural representation of a contralateral visual stimulus during the delay of the working memory task, whereas indirect pathway stimulation had the opposite effect. Our results demonstrate how these two pathways influence perceptual decisions and working memory and modify activity in the dorsal cortex.
Collapse
Affiliation(s)
- Enny H van Beest
- Department of Vision and Cognition, Netherlands Institute for Neuroscience (NIN), Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, the Netherlands
| | - Mohammed A O Abdelwahab
- Department of Vision and Cognition, Netherlands Institute for Neuroscience (NIN), Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, the Netherlands
| | - J Leonie Cazemier
- Department of Cortical Structure and Function, Netherlands Institute for Neuroscience (NIN), Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, the Netherlands
| | - Chrysiida Baltira
- Department of Vision and Cognition, Netherlands Institute for Neuroscience (NIN), Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, the Netherlands
| | - M Cassandra Maes
- Department of Vision and Cognition, Netherlands Institute for Neuroscience (NIN), Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, the Netherlands
| | - Brandon D Peri
- Department of Vision and Cognition, Netherlands Institute for Neuroscience (NIN), Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, the Netherlands
| | - Matthew W Self
- Department of Vision and Cognition, Netherlands Institute for Neuroscience (NIN), Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, the Netherlands
| | - Ingo Willuhn
- Department of Neuromodulation and Behavior, Netherlands Institute for Neuroscience (NIN), Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, the Netherlands
- Department of Psychiatry, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Pieter R Roelfsema
- Department of Vision and Cognition, Netherlands Institute for Neuroscience (NIN), Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, the Netherlands
- Department of Neurosurgery, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), VU University, Amsterdam, the Netherlands
- Laboratory of Visual Brain Therapy, Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut de la Vision, Paris, France
| |
Collapse
|
12
|
Wang D, Jin H, Xie F, Wang Z, Xing W. Gray matter structural alterations of cortico-striato-thalamo-cortical loop in familial Paroxysmal Kinesigenic Dyskinesia. Heliyon 2024; 10:e36739. [PMID: 39263125 PMCID: PMC11387349 DOI: 10.1016/j.heliyon.2024.e36739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/13/2024] Open
Abstract
Background Previous studies have indicated that patients with Paroxysmal Kinesigenic Dyskinesia (PKD) exhibit reduced gray matter volume in certain brain regions within the cortico-striato-thalamo-cortical (CSTC) loop. However, a comprehensive investigation specifically targeting the CSTC loop in PKD has never been conducted. Objectives To provide evidence for the involvement of the CSTC loop in the pathogenesis of PKD from the perspective of structural alterations, this study carried out a surface-based morphometry (SBM), voxel-based morphometry (VBM), and structural covariance networks (SCN) combined analysis in familial PKD patients. Methods A total of 8 familial PKD patients and 10 healthy family members were included in the study and underwent Brain MRI examinations. Based on 3D T1 MPRAGE data, neuroimaging metrics of cortical thickness from SBM, subcortical nuclei volume from VBM, and covariance coefficient from SCN were used to systematically investigate the brain structural alterations along the CSTC loop of PKD patients. Results A significant decrease in the average cortical thickness of the left S1 region in the PKD group was observed. The volumes of subcortical nuclei, including the thalamus, putamen, and globus pallidus were reduced, with a pronounced effect observed in the bilateral putamen. And the structural covariance connection between the left putamen and the left globus pallidus was significantly strengthened. Conclusions The study confirms the involvement of the CSTC loop in the pathogenesis of PKD from the perspective of structural alterations, and the findings may provide potential targets for objective diagnosis and therapeutic monitoring of PKD.
Collapse
Affiliation(s)
- Dongcui Wang
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, XiangYa Hospital, Central South University, Changsha, China
| | - Hong Jin
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, XiangYa Hospital, Central South University, Changsha, China
| | - Fangfang Xie
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, XiangYa Hospital, Central South University, Changsha, China
| | - Ziyun Wang
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, XiangYa Hospital, Central South University, Changsha, China
| | - Wu Xing
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, XiangYa Hospital, Central South University, Changsha, China
| |
Collapse
|
13
|
Xu L, Ding H, Wu S, Xiong N, Hong Y, Zhu W, Chen X, Han X, Tao M, Wang Y, Wang D, Xu M, Huo D, Gu Z, Liu Y. Artificial Meshed Vessel-Induced Dimensional Breaking Growth of Human Brain Organoids and Multiregional Assembloids. ACS NANO 2024; 18. [PMID: 39270300 PMCID: PMC11440649 DOI: 10.1021/acsnano.4c07844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/06/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024]
Abstract
Brain organoids are widely used to model brain development and diseases. However, a major challenge in their application is the insufficient supply of oxygen and nutrients to the core region, restricting the size and maturation of the organoids. In order to vascularize brain organoids and enhance the nutritional supply to their core areas, two-photon polymerization (TPP) 3D printing is employed to fabricate high-resolution meshed vessels in this study. These vessels made of photoresist with densely distributed micropores with a diameter of 20 μm on the sidewall, are cocultured with brain organoids to facilitate the diffusion of culture medium into the organoids. The vascularized organoids exhibit dimensional breaking growth and enhanced proliferation, reduced hypoxia and apoptosis, suggesting that the 3D-printed meshed vessels partially mimic vascular function to promote the culture of organoids. Furthermore, cortical, striatal and medial ganglionic eminence (MGE) organoids are respectively differentiated to generate Cortico-Striatal-MGE assembloids by 3D-printed vessels. The enhanced migration, projection and excitatory signaling transduction are observed between different brain regional organoids in the assembloids. This study presents an approach using TPP 3D printing to construct vascularized brain organoids and assembloids for enhancing the development and assembly, offering a research model and platform for neurological diseases.
Collapse
Affiliation(s)
- Lei Xu
- State
Key Laboratory of Digital Medical Engineering, School of Biological
Science and Medical Engineering; Department of neurology, affiliated
Zhongda Hospital, Southeast University, Nanjing 210096, China
- State
Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China
- Institute
of Stem Cell and Neural Regeneration, School of pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Haibo Ding
- State
Key Laboratory of Digital Medical Engineering, School of Biological
Science and Medical Engineering; Department of neurology, affiliated
Zhongda Hospital, Southeast University, Nanjing 210096, China
| | - Shanshan Wu
- State
Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China
- Institute
of Stem Cell and Neural Regeneration, School of pharmacy, Nanjing Medical University, Nanjing 211166, China
- Key
Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative
Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Nankun Xiong
- State
Key Laboratory of Digital Medical Engineering, School of Biological
Science and Medical Engineering; Department of neurology, affiliated
Zhongda Hospital, Southeast University, Nanjing 210096, China
| | - Yuan Hong
- State
Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China
- Institute
of Stem Cell and Neural Regeneration, School of pharmacy, Nanjing Medical University, Nanjing 211166, China
- Key
Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative
Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Wanying Zhu
- State
Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China
- Institute
of Stem Cell and Neural Regeneration, School of pharmacy, Nanjing Medical University, Nanjing 211166, China
- Key
Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative
Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Xingyi Chen
- State
Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China
- Institute
of Stem Cell and Neural Regeneration, School of pharmacy, Nanjing Medical University, Nanjing 211166, China
- Key
Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative
Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Xiao Han
- State
Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China
- Institute
of Stem Cell and Neural Regeneration, School of pharmacy, Nanjing Medical University, Nanjing 211166, China
- Key
Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative
Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Mengdan Tao
- State
Key Laboratory of Digital Medical Engineering, School of Biological
Science and Medical Engineering; Department of neurology, affiliated
Zhongda Hospital, Southeast University, Nanjing 210096, China
| | - Yuanhao Wang
- State
Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China
- Institute
of Stem Cell and Neural Regeneration, School of pharmacy, Nanjing Medical University, Nanjing 211166, China
- Key
Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative
Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Da Wang
- State
Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China
- Institute
of Stem Cell and Neural Regeneration, School of pharmacy, Nanjing Medical University, Nanjing 211166, China
- Key
Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative
Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Min Xu
- State
Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China
- Institute
of Stem Cell and Neural Regeneration, School of pharmacy, Nanjing Medical University, Nanjing 211166, China
- Key
Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative
Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Da Huo
- Key
Laboratory of Cardiovascular and Cerebrovascular Medicine, Department
of Pharmaceutics, School of Pharmacy, Nanjing
Medical University, Nanjing 211166, China
| | - Zhongze Gu
- State
Key Laboratory of Digital Medical Engineering, School of Biological
Science and Medical Engineering; Department of neurology, affiliated
Zhongda Hospital, Southeast University, Nanjing 210096, China
| | - Yan Liu
- State
Key Laboratory of Digital Medical Engineering, School of Biological
Science and Medical Engineering; Department of neurology, affiliated
Zhongda Hospital, Southeast University, Nanjing 210096, China
- State
Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China
- Institute
of Stem Cell and Neural Regeneration, School of pharmacy, Nanjing Medical University, Nanjing 211166, China
- Key
Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative
Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
14
|
Rudroff T. Frontal-striatal glucose metabolism and fatigue in patients with multiple sclerosis, long COVID, and COVID-19 recovered controls. Exp Brain Res 2024; 242:2125-2136. [PMID: 38970653 DOI: 10.1007/s00221-024-06882-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 06/20/2024] [Indexed: 07/08/2024]
Abstract
This study compared brain glucose metabolism using FDG-PET in the caudate nucleus, putamen, globus pallidus, thalamus, and dorsolateral prefrontal cortex (DLPFC) among patients with Long COVID, patients with fatigue, people with multiple sclerosis (PwMS) patients with fatigue, and COVID recovered controls. PwMS exhibited greater hypometabolism compared to long COVID patients with fatigue and the COVID recovered control group in all studied brain areas except the globus pallidus (effect size range 0.7-1.5). The results showed no significant differences in glucose metabolism between patients with Long COVID and the COVID recovered control group in these regions. These findings suggest that long COVID fatigue may involve non-CNS systems, neurotransmitter imbalances, or psychological factors not captured by FDG-PET, while MS-related fatigue is associated with more severe frontal-striatal circuit dysfunction due to demyelination and neurodegeneration. Symmetrical standardized uptake values (SUVs) between hemispheres in all groups imply that fatigue in these conditions may be related to global or network-level alterations rather than hemisphere-specific changes. Future studies should employ fine-grained analysis methods, explore other brain regions, and control for confounding factors to better understand the pathophysiology of fatigue in MS and long COVID. Longitudinal studies tracking brain glucose metabolism in patients with Long COVID could provide insights into the evolution of metabolic patterns as the condition progresses.
Collapse
Affiliation(s)
- Thorsten Rudroff
- Department of Health and Human Physiology, University of Iowa, E432 Field House, Iowa City, IA, 52242, USA.
- Department of Neurology, University of Iowa Hospitals and Clinics, Iowa City, IA, USA.
| |
Collapse
|
15
|
He J, Li X, Li K, Yang H, Wang X. Abnormal functional connectivity of the putamen in obsessive-compulsive disorder. J Psychiatr Res 2024; 177:338-345. [PMID: 39068778 DOI: 10.1016/j.jpsychires.2024.07.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 06/28/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
The putamen has been proposed to play a critical role in the development of obsessive-compulsive disorder (OCD). The primary objective of this study was to examine the resting-state regional activity and functional connectivity patterns of the putamen in individuals diagnosed with OCD. To achieve this, we employed resting-state functional magnetic resonance imaging (rs-fMRI) to collect data from a sample of 45 OCD patients and 53 healthy control participants. We aimed to use the regional amplitude of low-frequency fluctuation (ALFF) analysis to generate the ROI masks of the putamen and then conduct the whole brain functional connectivity of the putamen in individuals with OCD. Compared to controls, the OCD group demonstrated decreased ALFF in bilateral putamen. The right putamen also displayed decreased FC with the left putamen extending to the inferior frontal gyrus (IFG), bilateral precuneus extending to calcarine, the right middle occipital cortex extending to the right middle temporal cortex, and the left middle occipital gyrus. The decreased connectivity between the right putamen and the left IFG was negatively correlated with Yale-Brown Obsessive Compulsive scale (Y-BOCS) Obsession Scores. This study aimed to reveal the putamen changes in resting-state activity and connectivity in OCD patients, highlighting the significance of aberrant ALFF/FC of the putamen is a key characteristic of OCD.
Collapse
Affiliation(s)
- Jie He
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Xun Li
- Department of Clinical Psychology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421002, Hunan, China
| | - Kangning Li
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Huan Yang
- Department of Psychiatry and Clinical Psychology, The Seventh Affiliated Hospital, Sun Yat-sen University, China.
| | - Xiaoping Wang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
16
|
Bore MC, Liu X, Huang X, Kendrick KM, Zhou B, Zhang J, Klugah-Brown B, Becker B. Common and separable neural alterations in adult and adolescent depression - Evidence from neuroimaging meta-analyses. Neurosci Biobehav Rev 2024; 164:105835. [PMID: 39084585 DOI: 10.1016/j.neubiorev.2024.105835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/25/2024] [Accepted: 07/28/2024] [Indexed: 08/02/2024]
Abstract
Depression is a highly prevalent and debilitating mental disorder that often begins in adolescence. However, it remains unclear whether adults and adolescents with depression exhibit common or distinct brain dysfunctions during reward processing. We aimed to identify common and separable neurofunctional alterations during receipt of rewards and brain structure in adolescents and adults with depression. A coordinate-based meta-analysis was employed using Seed-based d mapping with permutation of subject images (SDM-PSI). Compared with healthy controls, both age groups exhibited common activity decreases in the right striatum (putamen, caudate) and subgenual ACC. Adults with depression showed decreased reactivity in the right putamen and subgenual ACC, while adolescents with depression showed decreased activity in the left mid cingulate, right caudate but increased reactivity in the right postcentral gyrus. This meta-analysis revealed shared (caudate) and separable (putamen and mid cingulate cortex) reward-related alterations in adults and adolescents with depression. The findings suggest age-specific neurofunctional alterations and stress the importance of adolescent-specific interventions that target social functions.
Collapse
Affiliation(s)
- Mercy Chepngetich Bore
- Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiqin Liu
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular lmaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Xiaoqi Huang
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular lmaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan, China; The Xiaman Key Lab of Psychoradiology and Neuromodulation, West China Xiamen Hospital of Sichuan University, Xiamen, Fujian, China
| | - Keith M Kendrick
- Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Bo Zhou
- Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Jie Zhang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China; Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China
| | - Benjamin Klugah-Brown
- Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China.
| | - Benjamin Becker
- Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China; State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China; Department of Psychology, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
17
|
Godet A, Serrand Y, Léger B, Moirand R, Bannier E, Val-Laillet D, Coquery N. Functional near-infrared spectroscopy-based neurofeedback training targeting the dorsolateral prefrontal cortex induces changes in cortico-striatal functional connectivity. Sci Rep 2024; 14:20025. [PMID: 39198481 PMCID: PMC11358514 DOI: 10.1038/s41598-024-69863-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/09/2024] [Indexed: 09/01/2024] Open
Abstract
Due to its central role in cognitive control, the dorso-lateral prefrontal cortex (dlPFC) has been the target of multiple brain modulation studies. In the context of the present pilot study, the dlPFC was the target of eight repeated neurofeedback (NF) sessions with functional near infrared spectroscopy (fNIRS) to assess the brain responses during NF and with functional and resting state magnetic resonance imaging (task-based fMRI and rsMRI) scanning. Fifteen healthy participants were recruited. Cognitive task fMRI and rsMRI were performed during the 1st and the 8th NF sessions. During NF, our data revealed an increased activity in the dlPFC as well as in brain regions involved in cognitive control and self-regulation learning (pFWE < 0.05). Changes in functional connectivity between the 1st and the 8th session revealed increased connectivity between the posterior cingulate cortex and the dlPFC, and between the posterior cingulate cortex and the dorsal striatum (pFWE < 0.05). Decreased left dlPFC-left insula connectivity was also observed. Behavioural results revealed a significant effect of hunger and motivation on the participant control feeling and a lower control feeling when participants did not identify an effective mental strategy, providing new insights on the effects of behavioural factors that may affect the NF learning.
Collapse
Affiliation(s)
- A Godet
- INRAE, INSERM, CHU Rennes, Nutrition Metabolisms and Cancer, NuMeCan, Univ Rennes, Rennes, France
| | - Y Serrand
- INRAE, INSERM, CHU Rennes, Nutrition Metabolisms and Cancer, NuMeCan, Univ Rennes, Rennes, France
| | - B Léger
- INRAE, INSERM, CHU Rennes, Nutrition Metabolisms and Cancer, NuMeCan, Univ Rennes, Rennes, France
| | - R Moirand
- INRAE, INSERM, CHU Rennes, Nutrition Metabolisms and Cancer, NuMeCan, Univ Rennes, Rennes, France
- Unité d'Addictologie, CHU Rennes, Rennes, France
| | - E Bannier
- Inria, CRNS, Inserm, IRISA UMR 6074, Empenn U1228, Univ Rennes, Rennes, France.
- Radiology Department, CHU Rennes, Rennes, France.
| | - D Val-Laillet
- INRAE, INSERM, CHU Rennes, Nutrition Metabolisms and Cancer, NuMeCan, Univ Rennes, Rennes, France.
| | - N Coquery
- INRAE, INSERM, CHU Rennes, Nutrition Metabolisms and Cancer, NuMeCan, Univ Rennes, Rennes, France
| |
Collapse
|
18
|
Hurwitz T, Ching G, Bogod NM, Honey CR. Bilateral Anterior Capsulotomy for Treatment-Resistant Obsessive-Compulsive Disorder. Stereotact Funct Neurosurg 2024:1-15. [PMID: 39182480 DOI: 10.1159/000540503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/18/2024] [Indexed: 08/27/2024]
Abstract
INTRODUCTION Ablative surgery is an intervention of last resort for treatment-resistant obsessive-compulsive disorder (TROCD). Our center has been using bilateral anterior capsulotomy (BAC) for the past 20 years for patients eligible for limbic surgery. This report details our experience with BAC for TROCD. METHOD Five patients with OCD met eligibility criteria for BAC. Entry protocols were complex and took around 6 months to complete. Stereotactic radiofrequency was used to produce the capsulotomies. Lesion length varied between 5.7 and 16.9 mm in the coronal plane. Patients were followed between 4 and 20 years. RESULTS All 5 patients (100%) were responders as defined by the widely accepted criteria of a reduction of ≥35% in Yale-Brown Obsessive Compulsive Scale (YBOCS) score at 18-month follow-up. Four patients remained responders at the 48 months. One patient was lost to follow-up. Responder status when viewed from the perspective of the YBOCS was sustained over the 4- to 20-year follow-up with one relapse 19 years postsurgery when medications were discontinued. Real-world psychiatric outcomes were different as other vulnerabilities surfaced illustrating the multifactorial determinants of mental health. No patient had any significant long-term neurocognitive or physical side effects. CONCLUSION BAC should remain an option of last resort for patients with severe OCD who remain unresponsive to all other interventions.
Collapse
Affiliation(s)
- Trevor Hurwitz
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Geoffrey Ching
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Nicholas Mark Bogod
- Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Christopher R Honey
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
19
|
Tymofiyeva O, Sipes BS, Luks T, Hamlat EJ, Samson TE, Hoffmann TJ, Glidden DV, Jakary A, Li Y, Ngan T, Henje E, Yang TT. Interoceptive brain network mechanisms of mindfulness-based training in healthy adolescents. Front Psychol 2024; 15:1410319. [PMID: 39193038 PMCID: PMC11348390 DOI: 10.3389/fpsyg.2024.1410319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 07/18/2024] [Indexed: 08/29/2024] Open
Abstract
Introduction This study evaluated changes in the white matter of the brain and psychological health variables, resulting from a neuroscience-based mindfulness intervention, the Training for Awareness, Resilience, and Action (TARA), in a population of healthy adolescents. Methods A total of 100 healthy adolescents (57 female, age ranges 14-18 years) were randomized into the 12-week TARA intervention or a waitlist-control group. All participants were imaged with diffusion MRI to quantify white matter connectivity between brain regions. Imaging occurred at baseline/randomization and after 12 weeks of baseline (pre- and post-intervention in the TARA group). We hypothesized that structural connectivity in the striatum and interoceptive networks would increase following the TARA intervention, and that, this increased connectivity would relate to psychological health metrics from the Strengths and Difficulties Questionnaire (SDQ) and the Insomnia Severity Index (ISI). The TARA intervention and all assessments, except for the MRIs, were fully remotely delivered using secure telehealth platforms and online electronic data capture systems. Results The TARA intervention showed high consistency, tolerability, safety, recruitment, fidelity, adherence, and retention. After 12 weeks, the TARA group, but not controls, also demonstrated significantly improved sleep quality (p = 0.02), and changes in the right putamen node strength were related to this improved sleep quality (r = -0.42, p = 0.006). Similarly, the TARA group, but not controls, had significantly increased right insula node strength related to improved emotional well-being (r = -0.31, p = 0.04). Finally, we used the network-based statistics to identify a white matter interoception network that strengthened following TARA (p = 0.009). Discussion These results suggest that the TARA mindfulness-based intervention in healthy adolescents is feasible and safe, and it may act to increase structural connectivity strength in interoceptive brain regions. Furthermore, these white matter changes are associated with improved adolescent sleep quality and emotional well-being. Our results suggest that TARA could be a promising fully remotely delivered intervention for improving psychological well-being in adolescents. As our findings suggest that TARA affects brain regions in healthy adolescents, which are also known to be altered during depression in adolescents, future studies will examine the effects of TARA on depressed adolescents. Clinical trial registration https://clinicaltrials.gov/study/NCT04254796.
Collapse
Affiliation(s)
- Olga Tymofiyeva
- Department of Radiology & Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
| | - Benjamin S. Sipes
- Department of Radiology & Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
| | - Tracy Luks
- Department of Radiology & Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
| | - Elissa J. Hamlat
- Division of Child and Adolescent Psychiatry, Department of Psychiatry and Behavioral Sciences, Langley Porter Psychiatric Institute, University of California, San Francisco, San Francisco, CA, United States
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| | - Tara E. Samson
- Department of Radiology & Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
| | - Thomas J. Hoffmann
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, United States
| | - David V. Glidden
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, United States
| | - Angela Jakary
- Department of Radiology & Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
| | - Yi Li
- Department of Radiology & Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
| | - Tiffany Ngan
- Department of Radiology & Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
| | - Eva Henje
- Department of Clinical Science/Child- and Adolescent Psychiatry, Umeå University, Umeå, Sweden
| | - Tony T. Yang
- Division of Child and Adolescent Psychiatry, Department of Psychiatry and Behavioral Sciences, Langley Porter Psychiatric Institute, University of California, San Francisco, San Francisco, CA, United States
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
20
|
Tu S, Li T, Carroll AS, Mahoney CJ, Huynh W, Park SB, Henderson R, Vucic S, Kiernan MC, Lin CSY. Central neurodegeneration in Kennedy's disease accompanies peripheral motor dysfunction. Sci Rep 2024; 14:18331. [PMID: 39112530 PMCID: PMC11306389 DOI: 10.1038/s41598-024-69393-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 08/05/2024] [Indexed: 08/10/2024] Open
Abstract
Spinal and bulbar muscular atrophy (SBMA), or Kennedy's disease (KD), is a rare hereditary neuromuscular disorder demonstrating commonalities with amyotrophic lateral sclerosis (ALS). The current study aimed to define functional and central nervous system abnormalities associated with SBMA pathology, their interaction, and to identify novel clinical markers for quantifying disease activity. 27 study participants (12 SBMA; 8 ALS; 7 Control) were recruited. SBMA patients underwent comprehensive motor and sensory functional assessments, and neurophysiological testing. All participants underwent whole-brain structural and diffusion MRI. SBMA patients demonstrated marked peripheral motor and sensory abnormalities across clinical assessments. Increased abnormalities on neurological examination were significantly associated with increased disease duration in SBMA patients (R2 = 0.85, p < 0.01). Widespread juxtacortical axonal degeneration of corticospinal white matter tracts were detected in SBMA patients (premotor; motor; somatosensory; p < 0.05), relative to controls. Increased axial diffusivity was significantly correlated with total neuropathy score in SBMA patients across left premotor (R2 = 0.59, p < 0.01), motor (R2 = 0.63, p < 0.01), and somatosensory (R2 = 0.61, p < 0.01) tracts. The present series has identified involvement of motor and sensory brain regions in SBMA, associated with disease duration and increasing severity of peripheral neuropathy. Quantification of annualized brain MRI together with Total Neuropathy Score may represent a novel approach for clinical monitoring.
Collapse
Affiliation(s)
- Sicong Tu
- Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, 2050, Australia.
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, 2050, Australia.
| | - Tiffany Li
- Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, 2050, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, 2050, Australia
| | - Antonia S Carroll
- Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, 2050, Australia
- Department of Neurology and Neurophysiology, St Vincent's Hospital, Sydney, 2010, Australia
| | - Colin J Mahoney
- Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, 2050, Australia
| | - William Huynh
- Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, 2050, Australia
- Prince of Wales Clinical School, The University of New South Wales, Sydney, 2052, Australia
| | - Susanna B Park
- Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, 2050, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, 2050, Australia
| | - Robert Henderson
- Royal Brisbane and Women's Hospital, University of Queensland, Brisbane, 4029, Australia
| | - Steve Vucic
- Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, 2050, Australia
- Brain and Nerve Research Centre, Concord Clinical School, The University of Sydney, Sydney, 2137, Australia
| | - Matthew C Kiernan
- Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, 2050, Australia
- Department of Neurology, Royal Prince Alfred Hospital, Sydney, 2050, Australia
| | - Cindy S-Y Lin
- Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, 2050, Australia.
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, 2050, Australia.
| |
Collapse
|
21
|
Hédouin R, Roy JC, Desmidt T, Robert G, Coloigner J. Microstructural brain assessment in late-life depression and apathy using diffusion MRI multi-compartments models and tractometry. Sci Rep 2024; 14:18193. [PMID: 39107406 PMCID: PMC11303796 DOI: 10.1038/s41598-024-67535-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 07/12/2024] [Indexed: 08/10/2024] Open
Abstract
Late-life depression (LLD) is both common and disabling and doubles the risk of dementia onset. Apathy might constitute an additional risk of cognitive decline but clear understanding of its pathophysiology is lacking. While white matter (WM) alterations have been assessed using diffusion tensor imaging (DTI), this model cannot accurately represent WM microstructure. We hypothesized that a more complex multi-compartment model would provide new biomarkers of LLD and apathy. Fifty-six individuals (LLD n = 35, 26 females, 75.2 ± 6.4 years, apathy evaluation scale scores (41.8 ± 8.7) and Healthy controls, n = 21, 16 females, 74.7 ± 5.2 years) were included. In this article, a tract-based approach was conducted to investigate novel diffusion model biomarkers of LLD and apathy by interpolating microstructural metrics directly along the fiber bundle. We performed multivariate statistical analysis, combined with principal component analysis for dimensional data reduction. We then tested the utility of our framework by demonstrating classically reported from the literature modifications in LDD while reporting new results of biological-basis of apathy in LLD. Finally, we aimed to investigate the relationship between apathy and microstructure in different fiber bundles. Our study suggests that new fiber bundles, such as the striato-premotor tracts, may be involved in LLD and apathy, which bring new light of apathy mechanisms in major depression. We also identified statistical changes in diffusion MRI metrics in 5 different tracts, previously reported in major cognitive disorders dementia, suggesting that these alterations among these tracts are both involved in motivation and cognition and might explain how apathy is a prodromal phase of degenerative disorders.
Collapse
Affiliation(s)
- Renaud Hédouin
- Univ Rennes, INRIA, CNRS, INSERM, IRISA UMR 6074, Empenn ERL U 1228, 35000, Rennes, France
| | - Jean-Charles Roy
- Univ Rennes, INRIA, CNRS, INSERM, IRISA UMR 6074, Empenn ERL U 1228, 35000, Rennes, France
- CIC 1414, CHU de Rennes, INSERM, Rennes, France
- Adult University Psychiatry Department, Guillaume Régnier Hospital, Rennes, France
| | - Thomas Desmidt
- CHU de Tours, Tours, France
- UMR 1253, iBrain, Université de Tours, INSERM, Tours, France
- CIC 1415, CHU de Tours, INSERM, Tours, France
| | - Gabriel Robert
- Univ Rennes, INRIA, CNRS, INSERM, IRISA UMR 6074, Empenn ERL U 1228, 35000, Rennes, France
- CIC 1414, CHU de Rennes, INSERM, Rennes, France
- Adult University Psychiatry Department, Guillaume Régnier Hospital, Rennes, France
| | - Julie Coloigner
- Univ Rennes, INRIA, CNRS, INSERM, IRISA UMR 6074, Empenn ERL U 1228, 35000, Rennes, France.
| |
Collapse
|
22
|
Zhang M, Wu C, Lu S, Wang Y, Ma R, Du Y, Wang S, Fang J. Regional brain activity and connectivity associated with childhood trauma in drug-naive patients with obsessive-compulsive disorder. Sci Rep 2024; 14:18111. [PMID: 39103500 PMCID: PMC11300583 DOI: 10.1038/s41598-024-69122-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 07/31/2024] [Indexed: 08/07/2024] Open
Abstract
Obsessive-compulsive disorder (OCD) is characterized by intrusive thoughts and repetitive, compulsive behaviors, with childhood trauma recognized as a contributing factor to its pathophysiology. This study aimed to delineate brain functional aberrations in OCD patients and explore the association between these abnormalities and childhood trauma, to gain insights into the neural underpinnings of OCD. Forty-eight drug-naive OCD patients and forty-two healthy controls (HC) underwent resting-state functional magnetic resonance imaging and clinical assessments, including the Yale-Brown Obsessive Compulsive Scale (Y-BOCS) and Childhood Trauma Questionnaire-Short Form (CTQ-SF). Compared to HCs, OCD patients exhibited significantly decreased amplitude of low-frequency fluctuations (ALFF) in the right cerebellum, decreased regional homogeneity (ReHo) in the right cerebellum and right superior occipital lobes (FWE-corrected p < 0.05), which negatively correlated with Y-BOCS scores (p < 0.05). Furthermore, cerebellar ALFF negatively correlated with the CTQ emotional abuse subscale (r = - 0.514, p < 0.01). Mediation analysis revealed that cerebellar ALFF mediated the relationship between CTQ-emotional abuse and Y-BOCS (good model fit: R2 = 0.231, MSE = 14.311, F = 5.721, p < 0.01; direct effect, c' = 0.153, indirect effect, a*b = 0.191). Findings indicated abnormal spontaneous and regional cerebellar activity in OCD, suggesting childhood trauma impacts OCD symptoms through cerebellar neural remodeling, highlighting its importance for clinical treatment selection.
Collapse
Affiliation(s)
- Manxue Zhang
- Mental Health Center, Ningxia Medical University General Hospital, Yinchuan, China
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, China
| | - Chujun Wu
- Mental Health Center, Ningxia Medical University General Hospital, Yinchuan, China
| | - Shihao Lu
- Mental Health Center, Ningxia Medical University General Hospital, Yinchuan, China
| | - Yanrong Wang
- Mental Health Center, Ningxia Medical University General Hospital, Yinchuan, China
| | - Rui Ma
- Mental Health Center, Ningxia Medical University General Hospital, Yinchuan, China
| | - Yunyun Du
- Mental Health Center, Ningxia Medical University General Hospital, Yinchuan, China
| | - Shaoxia Wang
- Mental Health Center, Ningxia Medical University General Hospital, Yinchuan, China
| | - Jianqun Fang
- Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China.
- Mental Health Center, Ningxia Medical University General Hospital, Yinchuan, China.
| |
Collapse
|
23
|
Zampogna A, Suppa A, Bove F, Cavallieri F, Castrioto A, Meoni S, Pelissier P, Schmitt E, Chabardes S, Fraix V, Moro E. Disentangling Bradykinesia and Rigidity in Parkinson's Disease: Evidence from Short- and Long-Term Subthalamic Nucleus Deep Brain Stimulation. Ann Neurol 2024; 96:234-246. [PMID: 38721781 DOI: 10.1002/ana.26961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/04/2024] [Accepted: 04/07/2024] [Indexed: 07/11/2024]
Abstract
OBJECTIVE Bradykinesia and rigidity are considered closely related motor signs in Parkinson disease (PD), but recent neurophysiological findings suggest distinct pathophysiological mechanisms. This study aims to examine and compare longitudinal changes in bradykinesia and rigidity in PD patients treated with bilateral subthalamic nucleus deep brain stimulation (STN-DBS). METHODS In this retrospective cohort study, the clinical progression of appendicular and axial bradykinesia and rigidity was assessed up to 15 years after STN-DBS in the best treatment conditions (ON medication and ON stimulation). The severity of bradykinesia and rigidity was examined using ad hoc composite scores from specific subitems of the Unified Parkinson's Disease Rating Scale motor part (UPDRS-III). Short- and long-term predictors of bradykinesia and rigidity were analyzed through linear regression analysis, considering various preoperative demographic and clinical data, including disease duration and severity, phenotype, motor and cognitive scores (eg, frontal score), and medication. RESULTS A total of 301 patients were examined before and 1 year after surgery. Among them, 101 and 56 individuals were also evaluated at 10-year and 15-year follow-ups, respectively. Bradykinesia significantly worsened after surgery, especially in appendicular segments (p < 0.001). Conversely, rigidity showed sustained benefit, with unchanged clinical scores compared to preoperative assessment (p > 0.05). Preoperative motor disability (eg, composite scores from the UPDRS-III) predicted short- and long-term outcomes for both bradykinesia and rigidity (p < 0.01). Executive dysfunction was specifically linked to bradykinesia but not to rigidity (p < 0.05). INTERPRETATION Bradykinesia and rigidity show long-term divergent progression in PD following STN-DBS and are associated with independent clinical factors, supporting the hypothesis of partially distinct pathophysiology. ANN NEUROL 2024;96:234-246.
Collapse
Affiliation(s)
- Alessandro Zampogna
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
- Grenoble Alpes University, Division of Neurology, Centre Hospitalier Universitaire de Grenoble, Grenoble Institute of Neuroscience, INSERM U1216, Grenoble, France
- IRCCS Neuromed Institute, Pozzilli, Italy
| | - Antonio Suppa
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
- IRCCS Neuromed Institute, Pozzilli, Italy
| | - Francesco Bove
- Neurology Unit, Department of Neuroscience, Sensory Organs and Chest, Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic University of the Sacred Heart, Rome, Italy
| | - Francesco Cavallieri
- Neurology Unit, Neuromotor and Rehabilitation Department, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Anna Castrioto
- Grenoble Alpes University, Division of Neurology, Centre Hospitalier Universitaire de Grenoble, Grenoble Institute of Neuroscience, INSERM U1216, Grenoble, France
| | - Sara Meoni
- Grenoble Alpes University, Division of Neurology, Centre Hospitalier Universitaire de Grenoble, Grenoble Institute of Neuroscience, INSERM U1216, Grenoble, France
| | - Pierre Pelissier
- Grenoble Alpes University, Division of Neurology, Centre Hospitalier Universitaire de Grenoble, Grenoble Institute of Neuroscience, INSERM U1216, Grenoble, France
| | - Emmanuelle Schmitt
- Grenoble Alpes University, Division of Neurology, Centre Hospitalier Universitaire de Grenoble, Grenoble Institute of Neuroscience, INSERM U1216, Grenoble, France
| | - Stephan Chabardes
- Division of Neurosurgery, Grenoble Alpes University, Centre Hospitalier Universitaire de Grenoble, Grenoble, France
| | - Valerie Fraix
- Grenoble Alpes University, Division of Neurology, Centre Hospitalier Universitaire de Grenoble, Grenoble Institute of Neuroscience, INSERM U1216, Grenoble, France
| | - Elena Moro
- Grenoble Alpes University, Division of Neurology, Centre Hospitalier Universitaire de Grenoble, Grenoble Institute of Neuroscience, INSERM U1216, Grenoble, France
| |
Collapse
|
24
|
Keller GB, Sterzer P. Predictive Processing: A Circuit Approach to Psychosis. Annu Rev Neurosci 2024; 47:85-101. [PMID: 38424472 DOI: 10.1146/annurev-neuro-100223-121214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Predictive processing is a computational framework that aims to explain how the brain processes sensory information by making predictions about the environment and minimizing prediction errors. It can also be used to explain some of the key symptoms of psychotic disorders such as schizophrenia. In recent years, substantial advances have been made in our understanding of the neuronal circuitry that underlies predictive processing in cortex. In this review, we summarize these findings and how they might relate to psychosis and to observed cell type-specific effects of antipsychotic drugs. We argue that quantifying the effects of antipsychotic drugs on specific neuronal circuit elements is a promising approach to understanding not only the mechanism of action of antipsychotic drugs but also psychosis. Finally, we outline some of the key experiments that should be done. The aims of this review are to provide an overview of the current circuit-based approaches to psychosis and to encourage further research in this direction.
Collapse
Affiliation(s)
- Georg B Keller
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland;
- Faculty of Natural Science, University of Basel, Basel, Switzerland
| | - Philipp Sterzer
- Department of Psychiatry, University of Basel, Basel, Switzerland
| |
Collapse
|
25
|
Vázquez D, Peña-Flores N, Maulhardt SR, Solway A, Charpentier CJ, Roesch MR. Anterior cingulate cortex lesions impair multiple facets of task engagement not mediated by dorsomedial striatum neuron firing. Cereb Cortex 2024; 34:bhae332. [PMID: 39128939 DOI: 10.1093/cercor/bhae332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/22/2024] [Accepted: 07/25/2024] [Indexed: 08/13/2024] Open
Abstract
The anterior cingulate cortex (ACC) has been implicated across multiple highly specialized cognitive functions-including task engagement, motivation, error detection, attention allocation, value processing, and action selection. Here, we ask if ACC lesions disrupt task performance and firing in dorsomedial striatum (DMS) during the performance of a reward-guided decision-making task that engages many of these cognitive functions. We found that ACC lesions impacted several facets of task performance-including decreasing the initiation and completion of trials, slowing reaction times, and resulting in suboptimal and inaccurate action selection. Reductions in movement times towards the end of behavioral sessions further suggested attenuations in motivation, which paralleled reductions in directional action selection signals in the DMS that were observed later in recording sessions. Surprisingly, however, beyond altered action signals late in sessions-neural correlates in the DMS were largely unaffected, even though behavior was disrupted at multiple levels. We conclude that ACC lesions result in overall deficits in task engagement that impact multiple facets of task performance during our reward-guided decision-making task, which-beyond impacting motivated action signals-arise from dysregulated attentional signals in the ACC and are mediated via downstream targets other than DMS.
Collapse
Affiliation(s)
- Daniela Vázquez
- Department of Psychology, University of Maryland, College Park, Maryland 20742, United States
- Program in Neuroscience and Cognitive Science, University of Maryland, College Park, Maryland 20742, United States
| | - Norma Peña-Flores
- Department of Psychology, University of Maryland, College Park, Maryland 20742, United States
- Program in Neuroscience and Cognitive Science, University of Maryland, College Park, Maryland 20742, United States
| | - Sean R Maulhardt
- Department of Psychology, University of Maryland, College Park, Maryland 20742, United States
| | - Alec Solway
- Department of Psychology, University of Maryland, College Park, Maryland 20742, United States
- Program in Neuroscience and Cognitive Science, University of Maryland, College Park, Maryland 20742, United States
| | - Caroline J Charpentier
- Department of Psychology, University of Maryland, College Park, Maryland 20742, United States
- Program in Neuroscience and Cognitive Science, University of Maryland, College Park, Maryland 20742, United States
| | - Matthew R Roesch
- Department of Psychology, University of Maryland, College Park, Maryland 20742, United States
- Program in Neuroscience and Cognitive Science, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
26
|
Vassiliadis P, Beanato E, Popa T, Windel F, Morishita T, Neufeld E, Duque J, Derosiere G, Wessel MJ, Hummel FC. Non-invasive stimulation of the human striatum disrupts reinforcement learning of motor skills. Nat Hum Behav 2024; 8:1581-1598. [PMID: 38811696 PMCID: PMC11343719 DOI: 10.1038/s41562-024-01901-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 04/23/2024] [Indexed: 05/31/2024]
Abstract
Reinforcement feedback can improve motor learning, but the underlying brain mechanisms remain underexplored. In particular, the causal contribution of specific patterns of oscillatory activity within the human striatum is unknown. To address this question, we exploited a recently developed non-invasive deep brain stimulation technique called transcranial temporal interference stimulation (tTIS) during reinforcement motor learning with concurrent neuroimaging, in a randomized, sham-controlled, double-blind study. Striatal tTIS applied at 80 Hz, but not at 20 Hz, abolished the benefits of reinforcement on motor learning. This effect was related to a selective modulation of neural activity within the striatum. Moreover, 80 Hz, but not 20 Hz, tTIS increased the neuromodulatory influence of the striatum on frontal areas involved in reinforcement motor learning. These results show that tTIS can non-invasively and selectively modulate a striatal mechanism involved in reinforcement learning, expanding our tools for the study of causal relationships between deep brain structures and human behaviour.
Collapse
Affiliation(s)
- Pierre Vassiliadis
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute, EPFL Valais, Clinique Romande de Réadaptation, Sion, Switzerland
- Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - Elena Beanato
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute, EPFL Valais, Clinique Romande de Réadaptation, Sion, Switzerland
| | - Traian Popa
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute, EPFL Valais, Clinique Romande de Réadaptation, Sion, Switzerland
| | - Fabienne Windel
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute, EPFL Valais, Clinique Romande de Réadaptation, Sion, Switzerland
| | - Takuya Morishita
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute, EPFL Valais, Clinique Romande de Réadaptation, Sion, Switzerland
| | - Esra Neufeld
- Foundation for Research on Information Technologies in Society, Zurich, Switzerland
| | - Julie Duque
- Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - Gerard Derosiere
- Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
- Lyon Neuroscience Research Center, Impact Team, Inserm U1028, CNRS UMR5292, Lyon 1 University, Bron, France
| | - Maximilian J Wessel
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute, EPFL Valais, Clinique Romande de Réadaptation, Sion, Switzerland
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Friedhelm C Hummel
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland.
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute, EPFL Valais, Clinique Romande de Réadaptation, Sion, Switzerland.
- Clinical Neuroscience, University of Geneva Medical School, Geneva, Switzerland.
| |
Collapse
|
27
|
Scott DN, Mukherjee A, Nassar MR, Halassa MM. Thalamocortical architectures for flexible cognition and efficient learning. Trends Cogn Sci 2024; 28:739-756. [PMID: 38886139 PMCID: PMC11305962 DOI: 10.1016/j.tics.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 05/12/2024] [Accepted: 05/13/2024] [Indexed: 06/20/2024]
Abstract
The brain exhibits a remarkable ability to learn and execute context-appropriate behaviors. How it achieves such flexibility, without sacrificing learning efficiency, is an important open question. Neuroscience, psychology, and engineering suggest that reusing and repurposing computations are part of the answer. Here, we review evidence that thalamocortical architectures may have evolved to facilitate these objectives of flexibility and efficiency by coordinating distributed computations. Recent work suggests that distributed prefrontal cortical networks compute with flexible codes, and that the mediodorsal thalamus provides regularization to promote efficient reuse. Thalamocortical interactions resemble hierarchical Bayesian computations, and their network implementation can be related to existing gating, synchronization, and hub theories of thalamic function. By reviewing recent findings and providing a novel synthesis, we highlight key research horizons integrating computation, cognition, and systems neuroscience.
Collapse
Affiliation(s)
- Daniel N Scott
- Department of Neuroscience, Brown University, Providence, RI, USA; Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, RI, USA.
| | - Arghya Mukherjee
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA
| | - Matthew R Nassar
- Department of Neuroscience, Brown University, Providence, RI, USA; Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, RI, USA
| | - Michael M Halassa
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA; Department of Psychiatry, Tufts University School of Medicine, Boston, MA, USA.
| |
Collapse
|
28
|
Beck DW, Heaton CN, Davila LD, Rakocevic LI, Drammis SM, Tyulmankov D, Vara P, Giri A, Umashankar Beck S, Zhang Q, Pokojovy M, Negishi K, Batson SA, Salcido AA, Reyes NF, Macias AY, Ibanez-Alcala RJ, Hossain SB, Waller GL, O'Dell LE, Moschak TM, Goosens KA, Friedman A. Model of a striatal circuit exploring biological mechanisms underlying decision-making during normal and disordered states. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.29.605535. [PMID: 39211231 PMCID: PMC11361035 DOI: 10.1101/2024.07.29.605535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Decision-making requires continuous adaptation to internal and external contexts. Changes in decision-making are reliable transdiagnostic symptoms of neuropsychiatric disorders. We created a computational model demonstrating how the striosome compartment of the striatum constructs a mathematical space for decision-making computations depending on context, and how the matrix compartment defines action value depending on the space. The model explains multiple experimental results and unifies other theories like reward prediction error, roles of the direct versus indirect pathways, and roles of the striosome versus matrix, under one framework. We also found, through new analyses, that striosome and matrix neurons increase their synchrony during difficult tasks, caused by a necessary increase in dimensionality of the space. The model makes testable predictions about individual differences in disorder susceptibility, decision-making symptoms shared among neuropsychiatric disorders, and differences in neuropsychiatric disorder symptom presentation. The model reframes the role of the striosomal circuit in neuroeconomic and disorder-affected decision-making. Highlights Striosomes prioritize decision-related data used by matrix to set action values. Striosomes and matrix have different roles in the direct and indirect pathways. Abnormal information organization/valuation alters disorder presentation. Variance in data prioritization may explain individual differences in disorders. eTOC Beck et al. developed a computational model of how a striatal circuit functions during decision-making. The model unifies and extends theories about the direct versus indirect pathways. It further suggests how aberrant circuit function underlies decision-making phenomena observed in neuropsychiatric disorders.
Collapse
|
29
|
Kolomeets NS, Uranova NA. Deficit of satellite oligodendrocytes of neurons in the rostral part of the head of the caudate nucleus in schizophrenia. Eur Arch Psychiatry Clin Neurosci 2024:10.1007/s00406-024-01869-x. [PMID: 39073446 DOI: 10.1007/s00406-024-01869-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/15/2024] [Indexed: 07/30/2024]
Abstract
Increasing evidence implicates compromised myelin integrity and oligodendrocyte abnormalities in the dysfunction of neuronal networks in schizophrenia. We previously reported a deficiency of myelinating oligodendrocytes (OL), oligodendrocyte progenitors (OP) and satellite oligodendrocytes of neurons (Sat-OL) in the prefrontal cortex and the inferior parietal cortex - cortical hubs of the frontoparietal cognitive network and default mode network (DMN) altered in schizophrenia. Deficiency of OL and OP was also detected in the head of the caudate nucleus (HCN), which accumulates cortical projections from the associative cortex and is the central node of these networks. However, the number of Sat-Ol per neuron in schizophrenia has not been studied in the HCN. In the current study we estimated the number of Sat-Ol per neuron in the rostral part of the HCN in schizophrenia (n = 18) compared to healthy controls (n = 18) in the same section collection that was previously used to study the number Ol and OP. We found a significant decrease of the number of Sat-Ol per neuron (- 50%, p < 0.001) in schizophrenia as compared to normal controls. Considering that the rostral part of the HCN is an individual network-specific projection zone of the DMN, the deficit of Sat-Ol found in schizophrenia may be related to the dysfunctional DMN-HCN connections, which has been repeatedly described in schizophrenia. The dramatic decrease of the number of Sat-Ol per neuron may be partially related to a pronounced excess of dopamine concentration in the rostral part of the HCN in schizophrenia.
Collapse
Affiliation(s)
- N S Kolomeets
- Laboratory of Clinical Neuropathology, Mental Health Research Center, Kashirskoe shosse 34, Moscow, 115522, Russia
| | - N A Uranova
- Laboratory of Clinical Neuropathology, Mental Health Research Center, Kashirskoe shosse 34, Moscow, 115522, Russia.
| |
Collapse
|
30
|
Matthews TE, Lumaca M, Witek MAG, Penhune VB, Vuust P. Music reward sensitivity is associated with greater information transfer capacity within dorsal and motor white matter networks in musicians. Brain Struct Funct 2024:10.1007/s00429-024-02836-x. [PMID: 39052097 DOI: 10.1007/s00429-024-02836-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 07/12/2024] [Indexed: 07/27/2024]
Abstract
There are pronounced differences in the degree to which individuals experience music-induced pleasure which are linked to variations in structural connectivity between auditory and reward areas. However, previous studies exploring the link between white matter structure and music reward sensitivity (MRS) have relied on standard diffusion tensor imaging methods, which present challenges in terms of anatomical accuracy and interpretability. Further, the link between MRS and connectivity in regions outside of auditory-reward networks, as well as the role of musical training, have yet to be investigated. Therefore, we investigated the relation between MRS and structural connectivity in a large number of directly segmented and anatomically verified white matter tracts in musicians (n = 24) and non-musicians (n = 23) using state-of-the-art tract reconstruction and fixel-based analysis. Using a manual tract-of-interest approach, we additionally tested MRS-white matter associations in auditory-reward networks seen in previous studies. Within the musician group, there was a significant positive relation between MRS and fiber density and cross section in the right middle longitudinal fascicle connecting auditory and inferior parietal cortices. There were also positive relations between MRS and fiber-bundle cross-section in tracts connecting the left thalamus to the ventral precentral gyrus and connecting the right thalamus to the right supplementary motor area, however, these did not survive FDR correction. These results suggest that, within musicians, dorsal auditory and motor networks are crucial to MRS, possibly via their roles in top-down predictive processing and auditory-motor transformations.
Collapse
Affiliation(s)
- Tomas E Matthews
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University Hospital, Nørrebrogade 44, Building 1A, Aarhus C, 8000, Denmark.
| | - Massimo Lumaca
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University Hospital, Nørrebrogade 44, Building 1A, Aarhus C, 8000, Denmark
| | - Maria A G Witek
- Department of Music School of Languages, Art History and Music, University of Birmingham, Cultures, Birmingham, B15 2TT, UK
| | - Virginia B Penhune
- Department of Psychology, Concordia University, 7141 Sherbrooke St W, Montreal, QC, H4B 1R6, Canada
| | - Peter Vuust
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University Hospital, Nørrebrogade 44, Building 1A, Aarhus C, 8000, Denmark
- Royal Academy of Music, Skovgaardsgade 2C, Aarhus C, DK-8000, Denmark
| |
Collapse
|
31
|
Bagdasarian FA, Hansen HD, Chen J, Yoo CH, Placzek MS, Hooker JM, Wey HY. Acute Effects of Hallucinogens on Functional Connectivity: Psilocybin and Salvinorin-A. ACS Chem Neurosci 2024; 15:2654-2661. [PMID: 38916752 DOI: 10.1021/acschemneuro.4c00245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024] Open
Abstract
The extent of changes in functional connectivity (FC) within functional networks as a common feature across hallucinogenic drug classes is under-explored. This work utilized fMRI to assess the dissociative hallucinogens Psilocybin, a classical serotonergic psychedelic, and Salvinorin-A, a kappa-opioid receptor (KOR) agonist, on resting-state FC in nonhuman primates. We highlight overlapping and differing influence of these substances on FC relative to the thalamus, claustrum, prefrontal cortex (PFC), default mode network (DMN), and DMN subcomponents. Analysis was conducted on a within-subject basis. Findings support the cortico-claustro-cortical network model for probing functional effects of hallucinogens regardless of serotonergic potential, with a potential key paradigm centered around the claustrum, PFC, anterior cingulate cortices (ACC), and angular gyrus relationship. Thalamo-cortical networks are implicated but appear dependent on 5-HT2AR activation. Acute desynchronization relative to the DMN for both drugs was also shown. Our findings provide a framework to understand broader mechanisms at which hallucinogens in differing classes may impact subjects regardless of the target receptor.
Collapse
Affiliation(s)
- Frederick A Bagdasarian
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts 02129-2020, United States
| | - Hanne D Hansen
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts 02129-2020, United States
- Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, Copenhagen DK-2100, Denmark
| | - Jingyuan Chen
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts 02129-2020, United States
| | - Chi-Hyeon Yoo
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts 02129-2020, United States
| | - Michael S Placzek
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts 02129-2020, United States
| | - Jacob M Hooker
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts 02129-2020, United States
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Center for the Neuroscience of Psychedelics, Charlestown, Massachusetts 02129, United States
| | - Hsiao-Ying Wey
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts 02129-2020, United States
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Center for the Neuroscience of Psychedelics, Charlestown, Massachusetts 02129, United States
| |
Collapse
|
32
|
Cotter DL, Morrel J, Sukumaran K, Cardenas-Iniguez C, Schwartz J, Herting MM. Prenatal and childhood air pollution exposure, cellular immune biomarkers, and brain connectivity in early adolescents. Brain Behav Immun Health 2024; 38:100799. [PMID: 39021436 PMCID: PMC11252082 DOI: 10.1016/j.bbih.2024.100799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 05/10/2024] [Accepted: 05/21/2024] [Indexed: 07/20/2024] Open
Abstract
Introduction Ambient air pollution is a neurotoxicant with hypothesized immune-related mechanisms. Adolescent brain structural and functional connectivity may be especially vulnerable to ambient pollution due to the refinement of large-scale brain networks during this period, which vary by sex and have important implications for cognitive, behavioral, and emotional functioning. In the current study we explored associations between air pollutants, immune markers, and structural and functional connectivity in early adolescence by leveraging cross-sectional sex-stratified data from the Adolescent Brain Cognitive Development℠ Study®. Methods Pollutant concentrations of fine particulate matter, nitrogen dioxide, and ozone were assigned to each child's primary residential address during the prenatal period and childhood (9-10 years-old) using an ensemble-based modeling approach. Data collected at 11-13 years-old included resting-state functional connectivity of the default mode, frontoparietal, and salience networks and limbic regions of interest, intracellular directional and isotropic diffusion of available white matter tracts, and markers of cellular immune activation. Using partial least squares correlation, a multivariate data-driven method that identifies important variables within latent dimensions, we investigated associations between 1) pollutants and structural and functional connectivity, 2) pollutants and immune markers, and 3) immune markers and structural and functional connectivity, in each sex separately. Results Air pollution exposure was related to white matter intracellular directional and isotropic diffusion at ages 11-13 years, but the direction of associations varied by sex. There were no associations between pollutants and resting-state functional connectivity at ages 11-13 years. Childhood exposure to nitrogen dioxide was negatively correlated with white blood cell count in males. Immune biomarkers were positively correlated with white matter intracellular directional diffusion in females and both white matter intracellular directional and isotropic diffusion in males. Lastly, there was a reliable negative correlation between lymphocyte-to-monocyte ratio and default mode network resting-state functional connectivity in females, as well as a compromised immune marker profile associated with lower resting-state functional connectivity between the salience network and the left hippocampus in males. In post-hoc exploratory analyses, we found that the PLSC-identified white matter tracts and resting-state networks related to processing speed and cognitive control performance from the NIH Toolbox. Conclusions We identified novel links between childhood nitrogen dioxide and cellular immune activation in males, and brain network connectivity and immune markers in both sexes. Future research should explore the potentially mediating role of immune activity in how pollutants affect neurological outcomes as well as the potential consequences of immune-related patterns of brain connectivity in service of improved brain health for all.
Collapse
Affiliation(s)
- Devyn L. Cotter
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jessica Morrel
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Kirthana Sukumaran
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Carlos Cardenas-Iniguez
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Joel Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Megan M. Herting
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Children's Hospital Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
33
|
Elliott BL, Mohyee RA, Ballard IC, Olson IR, Ellman LM, Murty VP. In vivo structural connectivity of the reward system along the hippocampal long axis. Hippocampus 2024; 34:327-341. [PMID: 38700259 DOI: 10.1002/hipo.23608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 03/11/2024] [Accepted: 04/18/2024] [Indexed: 05/05/2024]
Abstract
Recent work has identified a critical role for the hippocampus in reward-sensitive behaviors, including motivated memory, reinforcement learning, and decision-making. Animal histology and human functional neuroimaging have shown that brain regions involved in reward processing and motivation are more interconnected with the ventral/anterior hippocampus. However, direct evidence examining gradients of structural connectivity between reward regions and the hippocampus in humans is lacking. The present study used diffusion MRI (dMRI) and probabilistic tractography to quantify the structural connectivity of the hippocampus with key reward processing regions in vivo. Using a large sample of subjects (N = 628) from the human connectome dMRI data release, we found that connectivity profiles with the hippocampus varied widely between different regions of the reward circuit. While the dopaminergic midbrain (ventral tegmental area) showed stronger connectivity with the anterior versus posterior hippocampus, the ventromedial prefrontal cortex showed stronger connectivity with the posterior hippocampus. The limbic (ventral) striatum demonstrated a more homogeneous connectivity profile along the hippocampal long axis. This is the first study to generate a probabilistic atlas of the hippocampal structural connectivity with reward-related networks, which is essential to investigating how these circuits contribute to normative adaptive behavior and maladaptive behaviors in psychiatric illness. These findings describe nuanced structural connectivity that sets the foundation to better understand how the hippocampus influences reward-guided behavior in humans.
Collapse
Affiliation(s)
- Blake L Elliott
- Department of Psychology and Neuroscience, Temple University, Philadelphia, Pennsylvania, USA
| | - Raana A Mohyee
- Department of Psychology and Neuroscience, Temple University, Philadelphia, Pennsylvania, USA
| | - Ian C Ballard
- Department of Psychology, University of California, Riverside, California, USA
| | - Ingrid R Olson
- Department of Psychology and Neuroscience, Temple University, Philadelphia, Pennsylvania, USA
| | - Lauren M Ellman
- Department of Psychology and Neuroscience, Temple University, Philadelphia, Pennsylvania, USA
| | - Vishnu P Murty
- Department of Psychology and Neuroscience, Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
34
|
Thng G, Shen X, Stolicyn A, Adams MJ, Yeung HW, Batziou V, Conole ELS, Buchanan CR, Lawrie SM, Bastin ME, McIntosh AM, Deary IJ, Tucker-Drob EM, Cox SR, Smith KM, Romaniuk L, Whalley HC. A comprehensive hierarchical comparison of structural connectomes in Major Depressive Disorder cases v. controls in two large population samples. Psychol Med 2024; 54:2515-2526. [PMID: 38497116 DOI: 10.1017/s0033291724000643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
BACKGROUND The brain can be represented as a network, with nodes as brain regions and edges as region-to-region connections. Nodes with the most connections (hubs) are central to efficient brain function. Current findings on structural differences in Major Depressive Disorder (MDD) identified using network approaches remain inconsistent, potentially due to small sample sizes. It is still uncertain at what level of the connectome hierarchy differences may exist, and whether they are concentrated in hubs, disrupting fundamental brain connectivity. METHODS We utilized two large cohorts, UK Biobank (UKB, N = 5104) and Generation Scotland (GS, N = 725), to investigate MDD case-control differences in brain network properties. Network analysis was done across four hierarchical levels: (1) global, (2) tier (nodes grouped into four tiers based on degree) and rich club (between-hub connections), (3) nodal, and (4) connection. RESULTS In UKB, reductions in network efficiency were observed in MDD cases globally (d = -0.076, pFDR = 0.033), across all tiers (d = -0.069 to -0.079, pFDR = 0.020), and in hubs (d = -0.080 to -0.113, pFDR = 0.013-0.035). No differences in rich club organization and region-to-region connections were identified. The effect sizes and direction for these associations were generally consistent in GS, albeit not significant in our lower-N replication sample. CONCLUSION Our results suggest that the brain's fundamental rich club structure is similar in MDD cases and controls, but subtle topological differences exist across the brain. Consistent with recent large-scale neuroimaging findings, our findings offer a connectomic perspective on a similar scale and support the idea that minimal differences exist between MDD cases and controls.
Collapse
Affiliation(s)
- Gladi Thng
- Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Xueyi Shen
- Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Aleks Stolicyn
- Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Mark J Adams
- Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Hon Wah Yeung
- Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Venia Batziou
- Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| | - Eleanor L S Conole
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
- Lothian Birth Cohorts, University of Edinburgh, Edinburgh, UK
| | - Colin R Buchanan
- Lothian Birth Cohorts, University of Edinburgh, Edinburgh, UK
- Department of Psychology, University of Edinburgh, Edinburgh, UK
- Scottish Imaging Network, A Platform for Scientific Excellence Collaboration (SINAPSE), Edinburgh, UK
| | - Stephen M Lawrie
- Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Mark E Bastin
- Lothian Birth Cohorts, University of Edinburgh, Edinburgh, UK
- Scottish Imaging Network, A Platform for Scientific Excellence Collaboration (SINAPSE), Edinburgh, UK
| | - Andrew M McIntosh
- Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
- Generation Scotland, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Ian J Deary
- Lothian Birth Cohorts, University of Edinburgh, Edinburgh, UK
- Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Elliot M Tucker-Drob
- Department of Psychology, University of Texas, Austin, TX, USA
- Population Research Center and Center on Aging and Population Sciences, University of Texas, Austin, TX, USA
| | - Simon R Cox
- Lothian Birth Cohorts, University of Edinburgh, Edinburgh, UK
- Department of Psychology, University of Edinburgh, Edinburgh, UK
- Scottish Imaging Network, A Platform for Scientific Excellence Collaboration (SINAPSE), Edinburgh, UK
| | - Keith M Smith
- Department of Computer and Information Sciences, University of Strathclyde, Glasgow, UK
| | - Liana Romaniuk
- Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Heather C Whalley
- Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
- Generation Scotland, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
35
|
Mattia GM, Villain E, Nemmi F, Le Lann MV, Franceries X, Péran P. Investigating the discrimination ability of 3D convolutional neural networks applied to altered brain MRI parametric maps. Artif Intell Med 2024; 153:102897. [PMID: 38810471 DOI: 10.1016/j.artmed.2024.102897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 03/05/2024] [Accepted: 05/15/2024] [Indexed: 05/31/2024]
Abstract
Convolutional neural networks (CNNs) are gradually being recognized in the neuroimaging community as a powerful tool for image analysis. Despite their outstanding performances, some aspects of CNN functioning are still not fully understood by human operators. We postulated that the interpretability of CNNs applied to neuroimaging data could be improved by investigating their behavior when they are fed data with known characteristics. We analyzed the ability of 3D CNNs to discriminate between original and altered whole-brain parametric maps derived from diffusion-weighted magnetic resonance imaging. The alteration consisted in linearly changing the voxel intensity of either one (monoregion) or two (biregion) anatomical regions in each brain volume, but without mimicking any neuropathology. Performing ten-fold cross-validation and using a hold-out set for testing, we assessed the CNNs' discrimination ability according to the intensity of the altered regions, comparing the latter's size and relative position. Monoregion CNNs showed that the larger the modified region, the smaller the intensity increase needed to achieve good performances. Biregion CNNs systematically outperformed monoregion CNNs, but could only detect one of the two target regions when tested on the corresponding monoregion images. Exploiting prior information on training data allowed for a better understanding of CNN behavior, especially when altered regions were combined. This can inform about the complexity of CNN pattern retrieval and elucidate misclassified examples, particularly relevant for pathological data. The proposed analytical approach may serve to gain insights into CNN behavior and guide the design of enhanced detection systems exploiting our prior knowledge.
Collapse
Affiliation(s)
- Giulia Maria Mattia
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France.
| | - Edouard Villain
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France; LAAS CNRS, Université de Toulouse, CNRS, INSA, UPS, Toulouse, France.
| | - Federico Nemmi
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France.
| | | | - Xavier Franceries
- CRCT, Centre de Recherche en Cancérologie de Toulouse, Inserm, UPS, Toulouse, France.
| | - Patrice Péran
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France.
| |
Collapse
|
36
|
Joyce MKP, Uchendu S, Arnsten AFT. Stress and Inflammation Target Dorsolateral Prefrontal Cortex Function: Neural Mechanisms Underlying Weakened Cognitive Control. Biol Psychiatry 2024:S0006-3223(24)01420-3. [PMID: 38944141 DOI: 10.1016/j.biopsych.2024.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/15/2024] [Accepted: 06/22/2024] [Indexed: 07/01/2024]
Abstract
Most mental disorders involve dysfunction of the dorsolateral prefrontal cortex (dlPFC), a recently evolved brain region that subserves working memory, abstraction, and the thoughtful regulation of attention, action, and emotion. For example, schizophrenia, depression, long COVID, and Alzheimer's disease are all associated with dlPFC dysfunction, with neuropathology often being focused in layer III. The dlPFC has extensive top-down projections, e.g., to the posterior association cortices to regulate attention and to the subgenual cingulate cortex via the rostral and medial PFC to regulate emotional responses. However, the dlPFC is particularly dependent on arousal state and is very vulnerable to stress and inflammation, which are etiological and/or exacerbating factors for most mental disorders. The cellular mechanisms by which stress and inflammation impact the dlPFC are a topic of current research and are summarized in this review. For example, the layer III dlPFC circuits that generate working memory-related neuronal firing have unusual neurotransmission, depending on NMDA receptor and nicotinic α7 receptor actions that are blocked under inflammatory conditions by kynurenic acid. These circuits also have unusual neuromodulation, with the molecular machinery to magnify calcium signaling in spines needed to support persistent firing, which must be tightly regulated to prevent toxic calcium actions. Stress rapidly weakens layer III connectivity by driving feedforward calcium-cAMP (cyclic adenosine monophosphate) opening of potassium channels on spines. This is regulated by postsynaptic noradrenergic α2A adrenergic receptor and mGluR3 (metabotropic glutamate receptor 3) signaling but dysregulated by inflammation and/or chronic stress exposure, which contribute to spine loss. Treatments that strengthen the dlPFC via pharmacological (the α2A adrenergic receptor agonist, guanfacine) or repetitive transcranial magnetic stimulation manipulation provide a rational basis for therapy.
Collapse
Affiliation(s)
- Mary Kate P Joyce
- Department of Neuroscience, Yale Medical School, New Haven, Connecticut
| | - Stacy Uchendu
- Department of Neuroscience, Yale Medical School, New Haven, Connecticut
| | - Amy F T Arnsten
- Department of Neuroscience, Yale Medical School, New Haven, Connecticut.
| |
Collapse
|
37
|
Moazeni O, Northoff G, Batouli SAH. The subcortical brain regions influence the cortical areas during resting-state: an fMRI study. Front Hum Neurosci 2024; 18:1363125. [PMID: 39055533 PMCID: PMC11271203 DOI: 10.3389/fnhum.2024.1363125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 06/06/2024] [Indexed: 07/27/2024] Open
Abstract
Introduction Numerous modes or patterns of neural activity can be seen in the brain of individuals during the resting state. However, those functions do not persist long, and they are continuously altering in the brain. We have hypothesized that the brain activations during the resting state should themselves be responsible for this alteration of the activities. Methods Using the resting-state fMRI data of 63 healthy young individuals, we estimated the causality effects of each resting-state activation map on all other networks. The resting-state networks were identified, their causality effects on the other components were extracted, the networks with the top 20% of the causality were chosen, and the networks which were under the influence of those causal networks were also identified. Results Our results showed that the influence of each activation component over other components is different. The brain areas which showed the highest causality coefficients were subcortical regions, such as the brain stem, thalamus, and amygdala. On the other hand, nearly all the areas which were mostly under the causal effects were cortical regions. Discussion In summary, our results suggest that subcortical brain areas exert a higher influence on cortical regions during the resting state, which could help in a better understanding the dynamic nature of brain functions.
Collapse
Affiliation(s)
- Omid Moazeni
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Georg Northoff
- Mind, Brain Imaging and Neuroethics Research Unit, The Royal’s Institute of Mental Health Research, University of Ottawa, Ottawa, ON, Canada
| | - Seyed Amir Hossein Batouli
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- BrainEE Research Group, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
38
|
Marecek S, Krajca T, Krupicka R, Sojka P, Nepozitek J, Varga Z, Mala C, Keller J, Waugh JL, Zogala D, Trnka J, Sonka K, Ruzicka E, Dusek P. Analysis of striatal connectivity corresponding to striosomes and matrix in de novo Parkinson's disease and isolated REM behavior disorder. NPJ Parkinsons Dis 2024; 10:124. [PMID: 38918417 PMCID: PMC11199557 DOI: 10.1038/s41531-024-00736-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 06/07/2024] [Indexed: 06/27/2024] Open
Abstract
Striosomes and matrix are two compartments that comprise the striatum, each having its own distinct immunohistochemical properties, function, and connectivity. It is currently not clear whether prodromal or early manifest Parkinson's disease (PD) is associated with any striatal matrix or striosomal abnormality. Recently, a method of striatal parcellation using probabilistic tractography has been described and validated, using the distinct connectivity of these two compartments to identify voxels with striosome- and matrix-like connectivity. The goal of this study was to use this approach in tandem with DAT-SPECT, a method used to quantify the level of nigrostriatal denervation, to analyze the striatum in populations of de novo diagnosed, treatment-naïve patients with PD, isolated REM behavioral disorder (iRBD) patients, and healthy controls. We discovered a shift in striatal connectivity, which showed correlation with nigrostriatal denervation. Patients with PD exhibited a significantly higher matrix-like volume and associated connectivity than healthy controls and higher matrix-associated connectivity than iRBD patients. In contrast, the side with less pronounced nigrostriatal denervation in PD and iRBD patients showed a decrease in striosome-like volume and associated connectivity indices. These findings could point to a compensatory neuroplastic mechanism in the context of nigrostriatal denervation and open a new avenue in the investigation of the pathophysiology of Parkinson's disease.
Collapse
Affiliation(s)
- S Marecek
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic.
| | - T Krajca
- Czech Technical University in Prague, Faculty of Biomedical Engineering, Kladno, Czech Republic
| | - R Krupicka
- Czech Technical University in Prague, Faculty of Biomedical Engineering, Kladno, Czech Republic
| | - P Sojka
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - J Nepozitek
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Z Varga
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - C Mala
- Czech Technical University in Prague, Faculty of Biomedical Engineering, Kladno, Czech Republic
| | - J Keller
- Department of Radiodiagnostics, Na Homolce Hospital, Prague, Czech Republic
| | - J L Waugh
- Division of Pediatric Neurology, Department of Pediatrics, University of Texas Southwestern, Dallas, TX, USA
| | - D Zogala
- Institute of Nuclear Medicine, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - J Trnka
- Institute of Nuclear Medicine, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - K Sonka
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - E Ruzicka
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - P Dusek
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| |
Collapse
|
39
|
Kaminski A, Xie H, Hawkins B, Vaidya CJ. Change in Striatal Functional Connectivity Networks Across Two Years Due to Stimulant Exposure in Childhood ADHD: Results from the ABCD Sample. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.03.18.24304470. [PMID: 38562872 PMCID: PMC10984058 DOI: 10.1101/2024.03.18.24304470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Widely prescribed for Attention-Deficit/Hyperactivity Disorder (ADHD), stimulants (e.g., methylphenidate) have been studied for their chronic effects on the brain in prospective designs controlling dosage and adherence. While controlled approaches are essential, they do not approximate real-world stimulant exposure contexts where medication interruptions, dosage non-compliance, and polypharmacy are common. Brain changes in real-world conditions are largely unexplored. To fill this gap, we capitalized on the observational design of the Adolescent Brain Cognitive Development (ABCD) study to examine effects of stimulants on large-scale bilateral cortical networks' resting-state functional connectivity (rs-FC) with 6 striatal regions (left and right caudate, putamen, and nucleus accumbens) across two years in children with ADHD. Bayesian hierarchical regressions revealed associations between stimulant exposure and change in rs-FC of multiple striatal-cortical networks, affiliated with executive and visuo-motor control, which were not driven by general psychotropic medication. Of these connections, three were selective to stimulants versus stimulant naive: reduced rs-FC between caudate and frontoparietal network, and between putamen and frontoparietal and visual networks. Comparison with typically developing children in the ABCD sample revealed stronger rs-FC reduction in stimulant-exposed children for putamen and frontoparietal and visual networks, suggesting a normalizing effect of stimulants. 14% of stimulant-exposed children demonstrated reliable reduction in ADHD symptoms, and were distinguished by stronger rs-FC reduction between right putamen and visual network. Thus, stimulant exposure for a two-year period under real-world conditions modulated striatal-cortical functional networks broadly, had a normalizing effect on a subset of networks, and was associated with potential therapeutic effects involving visual attentional control.
Collapse
Affiliation(s)
- Adam Kaminski
- Department of Psychology, Georgetown University, Washington, DC
| | - Hua Xie
- Children’s Research Institute, Children’s National Medical Center, Washington, DC
| | - Brylee Hawkins
- Department of Psychology, Georgetown University, Washington, DC
| | - Chandan J. Vaidya
- Department of Psychology, Georgetown University, Washington, DC
- Children’s Research Institute, Children’s National Medical Center, Washington, DC
| |
Collapse
|
40
|
Coenen MA, Spikman JM, Smit M, Klooster J, Tijssen MAJ, Gerritsen MJJ. Moving on with (social) cognition in idiopathic cervical dystonia. J Int Neuropsychol Soc 2024; 30:464-470. [PMID: 38223955 DOI: 10.1017/s1355617723011426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
OBJECTIVE Cervical dystonia (CD) is a movement disorder characterized by involuntary muscle contractions causing sustained twisting movements and abnormal postures of the neck and head. Assumed affected neuronal regions are the cortico-striatal-thalamo-cortical circuits, which are also involved in cognitive functioning. Indeed, impairments in different cognitive domains have been found in CD patients. However, to date studies have only investigated a limited range of cognitive functions within the same sample. In particular, social cognition (SC) is often missing from study designs. Hence, we aimed to evaluate a broad range of cognitive functions including SC in CD patients. METHOD In the present study 20 idiopathic CD patients and 40 age-, gender-, and IQ-matched healthy controls (HCs) were assessed with tests for non-SC (verbal memory, psychomotor speed, and executive functions) as well as for SC (emotion recognition, Theory of Mind (ToM), and empathy). RESULTS CD patients scored on average significantly lower than HC on tests for non-SC, but did not show impairments on any of the tests for SC. CONCLUSIONS The current study showed impairments in non-SC in CD, but intact social cognitive functions. These results underline the importance of recognizing non-motor symptoms in idiopathic CD patients, but emphasize a focus on identifying strengths and weaknesses in cognitive functioning as these influence daily life activities.
Collapse
Affiliation(s)
- Maraike A Coenen
- Department of Neurology, University of Groningen, University Medical Center, Groningen, The Netherlands
- Expertise Center Movement Disorders Groningen, University Medical Center Groningen (UMCG), Groningen, The Netherlands
| | - Jacoba M Spikman
- Department of Neurology, University of Groningen, University Medical Center, Groningen, The Netherlands
- Expertise Center Movement Disorders Groningen, University Medical Center Groningen (UMCG), Groningen, The Netherlands
| | - Marenka Smit
- Department of Neurology, University of Groningen, University Medical Center, Groningen, The Netherlands
- Expertise Center Movement Disorders Groningen, University Medical Center Groningen (UMCG), Groningen, The Netherlands
| | - Jesper Klooster
- Expertise Center Movement Disorders Groningen, University Medical Center Groningen (UMCG), Groningen, The Netherlands
- Tactus Verslavingszorg, Zwolle, The Netherlands
| | - Marina A J Tijssen
- Department of Neurology, University of Groningen, University Medical Center, Groningen, The Netherlands
- Expertise Center Movement Disorders Groningen, University Medical Center Groningen (UMCG), Groningen, The Netherlands
| | - Marleen J J Gerritsen
- Department of Neurology, University of Groningen, University Medical Center, Groningen, The Netherlands
- Expertise Center Movement Disorders Groningen, University Medical Center Groningen (UMCG), Groningen, The Netherlands
- Department of Medical Psychology, Deventer Ziekenhuis, Deventer, The Netherlands
| |
Collapse
|
41
|
Liu Q, Davey D, Jimmy J, Ajilore O, Klumpp H. Network Analysis of Behavioral Activation/Inhibition Systems and Brain Volume in Individuals With and Without Major Depressive Disorder or Social Anxiety Disorder. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024; 9:551-560. [PMID: 37659443 PMCID: PMC10904669 DOI: 10.1016/j.bpsc.2023.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 08/11/2023] [Accepted: 08/13/2023] [Indexed: 09/04/2023]
Abstract
BACKGROUND Social anxiety disorder (SAD) and major depressive disorder (MDD) are characterized by behavioral abnormalities in motivational systems, namely the behavioral inhibition system (BIS) and behavioral activation system (BAS). Limited studies indicate brain volume in regions that support emotion, learning/memory, reward, and cognitive functions relate to BIS/BAS. To increase understanding of BIS/BAS, the current study used a network approach. METHODS Patients with SAD (n = 59), patients with MDD (n = 64), and healthy control participants (n = 36) completed a BIS/BAS questionnaire and structural magnetic resonance imaging scans; volumetric regions of interest comprised cortical and limbic structures based on previous BIS/BAS studies. A Bayesian Gaussian graphical model was used for each diagnostic group, and groups were compared. Among network metrics, bridge centrality was of primary interest. Analysis of variance evaluated BIS/BAS behaviors between groups. RESULTS Bridge centrality showed hippocampus positively related to BAS, but not to BIS, in the MDD group; no findings were observed in the SAD or control groups. Yet, network density (i.e., overall strength of relationships between variables) and degree centrality (i.e., overall relationship between one variable to all other variables) showed that cortical (e.g., precuneus, medial orbitofrontal) and subcortical (e.g., amygdala, hippocampus) regions differed between diagnostic groups. Analysis of variance results showed BAS was lower in the MDD/SAD groups compared with the control group, while BIS was higher in the SAD group relative to the MDD group, which in turn was higher than the control group. CONCLUSIONS Preliminary findings indicate that network-level aberrations may underlie motivational abnormalities in MDD and SAD. Evidence of BIS/BAS differences builds on previous work that points to shared and distinct motivational differences in internalizing psychopathologies.
Collapse
Affiliation(s)
- Qimin Liu
- Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois
| | - Delaney Davey
- Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois.
| | - Jagan Jimmy
- Department of Psychiatry and Behavioral Health, The Ohio State University, Columbus, Ohio
| | - Olusola Ajilore
- Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois
| | - Heide Klumpp
- Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
42
|
Yan YJ, Hu HX, Zhang YJ, Wang LL, Pan YM, Lui SSY, Huang J, Chan RCK. Reward motivation adaptation in people with negative schizotypal features: development of a novel behavioural paradigm and identifying its neural correlates using resting-state functional connectivity analysis. Eur Arch Psychiatry Clin Neurosci 2024; 274:941-953. [PMID: 37395812 DOI: 10.1007/s00406-023-01640-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 06/13/2023] [Indexed: 07/04/2023]
Abstract
Reward motivation in individuals with high levels of negative schizotypal traits (NS) has been found to be lower than that in their counterparts. But it is unclear that whether their reward motivation adaptively changes with external effort-reward ratio, and what resting-state functional connectivity (rsFC) is associated with this change. Thirty-five individuals with high levels of NS and 44 individuals with low levels of NS were recruited. A 3T resting-state functional brain scan and a novel reward motivation adaptation behavioural task were administrated in all participants. The behavioural task was manipulated with three conditions (effort > reward condition vs. effort < reward condition vs. effort = reward condition). Under each condition were rated 'wanting' and 'liking' for rewards. The seed-based voxel-wise rsFC analysis was conducted to explore the rsFCs associated with the 'wanting' and 'liking' ratings in individuals with high levels of NS. 'Wanting' and 'liking' ratings of individuals with high levels of NS significantly declined in the effort > reward condition but did not rebound as high as their counterparts in the effort < reward condition. The rsFCs in NS group associated with these ratings were altered. The altered rsFCs in NS group involved regions in the prefrontal lobe, dopaminergic brain regions (ventral tegmental area, substantia nigra), hippocampus, thalamus and cerebellum. Individuals with high levels of NS manifested their reward motivation adaptation impairment as a failure of adjustment adaptively during effort-reward imbalance condition and altered rsFCs in prefrontal, dopaminergic and other brain regions.
Collapse
Affiliation(s)
- Yong-Jie Yan
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, 16 Lincui Road, Chaoyang District, Beijing, 100101, People's Republic of China
- Sino-Danish College of University of Chinese Academy of Sciences, Beijing, People's Republic of China
- Sino-Danish Centre for Education and Research, Beijing, People's Republic of China
| | - Hui-Xin Hu
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, 16 Lincui Road, Chaoyang District, Beijing, 100101, People's Republic of China
- Department of Psychology, The University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Yi-Jing Zhang
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, 16 Lincui Road, Chaoyang District, Beijing, 100101, People's Republic of China
- Department of Psychology, The University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Ling-Ling Wang
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, 16 Lincui Road, Chaoyang District, Beijing, 100101, People's Republic of China
- Department of Psychology, The University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Yi-Ming Pan
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, 16 Lincui Road, Chaoyang District, Beijing, 100101, People's Republic of China
- Department of Psychology, The University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Simon S Y Lui
- Department of Psychiatry, School of Clinical Medicine, The University of Hong Kong, Hong Kong Special Administrative Region , People's Republic of China
| | - Jia Huang
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, 16 Lincui Road, Chaoyang District, Beijing, 100101, People's Republic of China.
- Department of Psychology, The University of Chinese Academy of Sciences, Beijing, People's Republic of China.
| | - Raymond C K Chan
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, 16 Lincui Road, Chaoyang District, Beijing, 100101, People's Republic of China.
- Sino-Danish College of University of Chinese Academy of Sciences, Beijing, People's Republic of China.
- Department of Psychology, The University of Chinese Academy of Sciences, Beijing, People's Republic of China.
| |
Collapse
|
43
|
Thomas-Odenthal F, Stein F, Vogelbacher C, Alexander N, Bechdolf A, Bermpohl F, Bröckel K, Brosch K, Correll CU, Evermann U, Falkenberg I, Fallgatter A, Flinkenflügel K, Grotegerd D, Hahn T, Hautzinger M, Jansen A, Juckel G, Krug A, Lambert M, Leicht G, Leopold K, Meinert S, Mikolas P, Mulert C, Nenadić I, Pfarr JK, Reif A, Ringwald K, Ritter P, Stamm T, Straube B, Teutenberg L, Thiel K, Usemann P, Winter A, Wroblewski A, Dannlowski U, Bauer M, Pfennig A, Kircher T. Larger putamen in individuals at risk and with manifest bipolar disorder. Psychol Med 2024:1-11. [PMID: 38801091 DOI: 10.1017/s0033291724001193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
BACKGROUND Individuals at risk for bipolar disorder (BD) have a wide range of genetic and non-genetic risk factors, like a positive family history of BD or (sub)threshold affective symptoms. Yet, it is unclear whether these individuals at risk and those diagnosed with BD share similar gray matter brain alterations. METHODS In 410 male and female participants aged 17-35 years, we compared gray matter volume (3T MRI) between individuals at risk for BD (as assessed using the EPIbipolar scale; n = 208), patients with a DSM-IV-TR diagnosis of BD (n = 87), and healthy controls (n = 115) using voxel-based morphometry in SPM12/CAT12. We applied conjunction analyses to identify similarities in gray matter volume alterations in individuals at risk and BD patients, relative to healthy controls. We also performed exploratory whole-brain analyses to identify differences in gray matter volume among groups. ComBat was used to harmonize imaging data from seven sites. RESULTS Both individuals at risk and BD patients showed larger volumes in the right putamen than healthy controls. Furthermore, individuals at risk had smaller volumes in the right inferior occipital gyrus, and BD patients had larger volumes in the left precuneus, compared to healthy controls. These findings were independent of course of illness (number of lifetime manic and depressive episodes, number of hospitalizations), comorbid diagnoses (major depressive disorder, attention-deficit hyperactivity disorder, anxiety disorder, eating disorder), familial risk, current disease severity (global functioning, remission status), and current medication intake. CONCLUSIONS Our findings indicate that alterations in the right putamen might constitute a vulnerability marker for BD.
Collapse
Affiliation(s)
- Florian Thomas-Odenthal
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Universities of Marburg and Gießen, Marburg, Germany
| | - Frederike Stein
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Universities of Marburg and Gießen, Marburg, Germany
| | - Christoph Vogelbacher
- Center for Mind, Brain and Behavior (CMBB), Universities of Marburg and Gießen, Marburg, Germany
- Translational Clinical Psychology, Department of Psychology, Philipps-University Marburg, Marburg, Germany
| | - Nina Alexander
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Universities of Marburg and Gießen, Marburg, Germany
| | - Andreas Bechdolf
- Department of Psychiatry, Psychotherapy and Psychosomatic Medicine, Vivantes Hospital Am Urban and Vivantes Hospital Im Friedrichshain, Berlin, Germany
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin, Campus Mitte, Berlin, Germany
| | - Felix Bermpohl
- Department of Psychiatry and Neuroscience, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Kyra Bröckel
- Department of Psychiatry and Psychotherapy, Faculty of Medicine, TUD Dresden University of Technology, Dresden, Germany
| | - Katharina Brosch
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Universities of Marburg and Gießen, Marburg, Germany
- Department of Psychiatry, Zucker Hillside Hospital, Northwell Health, Glen Oaks, NY, USA
- Institute of Behavioral Science, Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Christoph U Correll
- Department of Psychiatry, Zucker Hillside Hospital, Northwell Health, Glen Oaks, NY, USA
- Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin Berlin, Berlin, Germany
- Department of Psychiatry and Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
- Center for Psychiatric Neuroscience, Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - Ulrika Evermann
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Universities of Marburg and Gießen, Marburg, Germany
| | - Irina Falkenberg
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Universities of Marburg and Gießen, Marburg, Germany
| | - Andreas Fallgatter
- Department of Psychiatry and Psychotherapy, University of Tübingen, Germany; German Center for Mental Health (DZPG), partner site Tübingen, Germany
| | - Kira Flinkenflügel
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Dominik Grotegerd
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Tim Hahn
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Martin Hautzinger
- Department of Psychology, Clinical Psychology and Psychotherapy, Eberhard Karls University, Tübingen, Germany
| | - Andreas Jansen
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Universities of Marburg and Gießen, Marburg, Germany
- Core-Facility BrainImaging, Faculty of Medicine, Philipps-Universität Marburg, Marburg, Germany
| | - Georg Juckel
- Department of Psychiatry, Ruhr University Bochum, Bochum, Germany
| | - Axel Krug
- Department of Psychiatry and Psychotherapy, University Hospital of Bonn, Bonn, Germany
| | - Martin Lambert
- Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gregor Leicht
- Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Karolina Leopold
- Department of Psychiatry, Psychotherapy and Psychosomatic Medicine, Vivantes Hospital Am Urban and Vivantes Hospital Im Friedrichshain, Berlin, Germany
- Department of Psychiatry and Psychotherapy, Faculty of Medicine, TUD Dresden University of Technology, Dresden, Germany
| | - Susanne Meinert
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
- Institute for Translational Neuroscience, University of Münster, Münster, Germany
| | - Pavol Mikolas
- Department of Psychiatry and Psychotherapy, Faculty of Medicine, TUD Dresden University of Technology, Dresden, Germany
| | - Christoph Mulert
- Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Center for Psychiatry, Justus Liebig University, Giessen, Germany
| | - Igor Nenadić
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Universities of Marburg and Gießen, Marburg, Germany
| | - Julia-Katharina Pfarr
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Universities of Marburg and Gießen, Marburg, Germany
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt, Germany
| | - Kai Ringwald
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Universities of Marburg and Gießen, Marburg, Germany
| | - Philipp Ritter
- Department of Psychiatry and Psychotherapy, Faculty of Medicine, TUD Dresden University of Technology, Dresden, Germany
| | - Thomas Stamm
- Department of Psychiatry and Neuroscience, Charité Universitätsmedizin Berlin, Berlin, Germany
- Department of Clinical Psychiatry and Psychotherapy Brandenburg Medical School, Neuruppin, Germany
| | - Benjamin Straube
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Universities of Marburg and Gießen, Marburg, Germany
| | - Lea Teutenberg
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Universities of Marburg and Gießen, Marburg, Germany
| | - Katharina Thiel
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Paula Usemann
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Universities of Marburg and Gießen, Marburg, Germany
| | - Alexandra Winter
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Adrian Wroblewski
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Universities of Marburg and Gießen, Marburg, Germany
| | - Udo Dannlowski
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Michael Bauer
- Department of Psychiatry and Psychotherapy, Faculty of Medicine, TUD Dresden University of Technology, Dresden, Germany
| | - Andrea Pfennig
- Department of Psychiatry and Psychotherapy, Faculty of Medicine, TUD Dresden University of Technology, Dresden, Germany
| | - Tilo Kircher
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Universities of Marburg and Gießen, Marburg, Germany
| |
Collapse
|
44
|
Westerman HB, Suarez GL, Richmond-Rakerd LS, Nusslock R, Klump KL, Burt SA, Hyde LW. Exposure to community violence as a mechanism linking neighborhood socioeconomic disadvantage and neural responses to reward. Soc Cogn Affect Neurosci 2024; 19:nsae029. [PMID: 38619118 PMCID: PMC11079326 DOI: 10.1093/scan/nsae029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/23/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024] Open
Abstract
A growing literature links socioeconomic disadvantage and adversity to brain function, including disruptions in reward processing. Less research has examined exposure to community violence (ECV) as a specific adversity related to differences in reward-related brain activation, despite the prevalence of community violence exposure for those living in disadvantaged contexts. The current study tested whether ECV was associated with reward-related ventral striatum (VS) activation after accounting for familial factors associated with differences in reward-related activation (e.g. parenting and family income). Moreover, we tested whether ECV is a mechanism linking socioeconomic disadvantage to reward-related activation in the VS. We utilized data from 444 adolescent twins sampled from birth records and residing in neighborhoods with above-average levels of poverty. ECV was associated with greater reward-related VS activation, and the association remained after accounting for family-level markers of disadvantage. We identified an indirect pathway in which socioeconomic disadvantage predicted greater reward-related activation via greater ECV, over and above family-level adversity. These findings highlight the unique impact of community violence exposure on reward processing and provide a mechanism through which socioeconomic disadvantage may shape brain function.
Collapse
Affiliation(s)
- Heidi B Westerman
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Gabriela L Suarez
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Robin Nusslock
- Department of Psychology and Institute for Policy Research, Northwestern University, Evanston, IL 60208, USA
| | - Kelly L Klump
- Department of Psychology and Institute for Policy Research, Northwestern University, Evanston, IL 60208, USA
| | - S Alexandra Burt
- Department of Psychology, Michigan State University, East Lansing, MI 48824, USA
| | - Luke W Hyde
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
45
|
Khandelwal N, Kulkarni A, Ahmed NI, Harper M, Konopka G, Gibson JR. FOXP1 regulates the development of excitatory synaptic inputs onto striatal neurons and induces phenotypic reversal with reinstatement. SCIENCE ADVANCES 2024; 10:eadm7039. [PMID: 38701209 PMCID: PMC11068015 DOI: 10.1126/sciadv.adm7039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 04/01/2024] [Indexed: 05/05/2024]
Abstract
Long-range glutamatergic inputs originating from the cortex and thalamus are indispensable for striatal development, providing the foundation for motor and cognitive functions. Despite their significance, transcriptional regulation governing these inputs remains largely unknown. We investigated the role of a transcription factor encoded by a high-risk autism-associated gene, FOXP1, in sculpting glutamatergic inputs onto spiny projection neurons (SPNs) within the striatum. We find a neuron subtype-specific role of FOXP1 in strengthening and maturing glutamatergic inputs onto dopamine receptor 2-expressing SPNs (D2 SPNs). We also find that FOXP1 promotes synaptically driven excitability in these neurons. Using single-nuclei RNA sequencing, we identify candidate genes that mediate these cell-autonomous processes through postnatal FOXP1 function at the post-synapse. Last, we demonstrate that postnatal FOXP1 reinstatement rescues electrophysiological deficits, cell type-specific gene expression changes, and behavioral phenotypes. Together, this study enhances our understanding of striatal circuit development and provides proof of concept for a therapeutic approach for FOXP1 syndrome and other neurodevelopmental disorders.
Collapse
Affiliation(s)
- Nitin Khandelwal
- Department of Neuroscience and Peter O’Donnell Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Ashwinikumar Kulkarni
- Department of Neuroscience and Peter O’Donnell Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Newaz I. Ahmed
- Department of Neuroscience and Peter O’Donnell Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Matthew Harper
- Department of Neuroscience and Peter O’Donnell Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | | | | |
Collapse
|
46
|
Moisseinen N, Ahveninen L, Martínez‐Molina N, Sairanen V, Melkas S, Kleber B, Sihvonen AJ, Särkämö T. Choir singing is associated with enhanced structural connectivity across the adult lifespan. Hum Brain Mapp 2024; 45:e26705. [PMID: 38716698 PMCID: PMC11077432 DOI: 10.1002/hbm.26705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/06/2024] [Accepted: 04/21/2024] [Indexed: 05/12/2024] Open
Abstract
The global ageing of populations calls for effective, ecologically valid methods to support brain health across adult life. Previous evidence suggests that music can promote white matter (WM) microstructure and grey matter (GM) volume while supporting auditory and cognitive functioning and emotional well-being as well as counteracting age-related cognitive decline. Adding a social component to music training, choir singing is a popular leisure activity among older adults, but a systematic account of its potential to support healthy brain structure, especially with regard to ageing, is currently missing. The present study used quantitative anisotropy (QA)-based diffusion MRI connectometry and voxel-based morphometry to explore the relationship of lifetime choir singing experience and brain structure at the whole-brain level. Cross-sectional multiple regression analyses were carried out in a large, balanced sample (N = 95; age range 21-88) of healthy adults with varying levels of choir singing experience across the whole age range and within subgroups defined by age (young, middle-aged, and older adults). Independent of age, choir singing experience was associated with extensive increases in WM QA in commissural, association, and projection tracts across the brain. Corroborating previous work, these overlapped with language and limbic networks. Enhanced corpus callosum microstructure was associated with choir singing experience across all subgroups. In addition, choir singing experience was selectively associated with enhanced QA in the fornix in older participants. No associations between GM volume and choir singing were found. The present study offers the first systematic account of amateur-level choir singing on brain structure. While no evidence for counteracting GM atrophy was found, the present evidence of enhanced structural connectivity coheres well with age-typical structural changes. Corroborating previous behavioural studies, the present results suggest that regular choir singing holds great promise for supporting brain health across the adult life span.
Collapse
Affiliation(s)
- Nella Moisseinen
- Cognitive Brain Research Unit, Centre of Excellence in Music, Mind, Body and the Brain, Department of Psychology and Logopedics, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
| | - Lotta Ahveninen
- Cognitive Brain Research Unit, Centre of Excellence in Music, Mind, Body and the Brain, Department of Psychology and Logopedics, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
| | - Noelia Martínez‐Molina
- Cognitive Brain Research Unit, Centre of Excellence in Music, Mind, Body and the Brain, Department of Psychology and Logopedics, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
- Center for Brain and Cognition, Department of Information and Communication TechnologiesUniversity Pompeu FabraBarcelonaSpain
| | - Viljami Sairanen
- Department of RadiologyKanta‐Häme Central HospitalHämeenlinnaFinland
- Baby Brain Activity Center, Children's HospitalHelsinki University Hospital and University of HelsinkiHelsinkiFinland
| | - Susanna Melkas
- Clinical Neurosciences, NeurologyUniversity of HelsinkiHelsinkiFinland
| | - Boris Kleber
- Center for Music in the Brain, Department of Clinical MedicineAarhus University and The Royal Academy of Music Aarhus/AalborgAarhusDenmark
| | - Aleksi J. Sihvonen
- Cognitive Brain Research Unit, Centre of Excellence in Music, Mind, Body and the Brain, Department of Psychology and Logopedics, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
- Centre for Clinical Research, School of Health and Rehabilitation SciencesUniversity of QueenslandBrisbaneAustralia
- Department of NeurologyHelsinki University HospitalHelsinkiFinland
| | - Teppo Särkämö
- Cognitive Brain Research Unit, Centre of Excellence in Music, Mind, Body and the Brain, Department of Psychology and Logopedics, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
| |
Collapse
|
47
|
Robbins TW, Banca P, Belin D. From compulsivity to compulsion: the neural basis of compulsive disorders. Nat Rev Neurosci 2024; 25:313-333. [PMID: 38594324 DOI: 10.1038/s41583-024-00807-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2024] [Indexed: 04/11/2024]
Abstract
Compulsive behaviour, an apparently irrational perseveration in often maladaptive acts, is a potential transdiagnostic symptom of several neuropsychiatric disorders, including obsessive-compulsive disorder and addiction, and may reflect the severe manifestation of a dimensional trait termed compulsivity. In this Review, we examine the psychological basis of compulsions and compulsivity and their underlying neural circuitry using evidence from human neuroimaging and animal models. Several main elements of this circuitry are identified, focused on fronto-striatal systems implicated in goal-directed behaviour and habits. These systems include the orbitofrontal, prefrontal, anterior cingulate and insular cortices and their connections with the basal ganglia as well as sensoriomotor and parietal cortices and cerebellum. We also consider the implications for future classification of impulsive-compulsive disorders and their treatment.
Collapse
Affiliation(s)
- Trevor W Robbins
- Behavioural and Clinical Neuroscience Institute, Department of Psychology, University of Cambridge, Cambridge, UK.
| | - Paula Banca
- Behavioural and Clinical Neuroscience Institute, Department of Psychology, University of Cambridge, Cambridge, UK
| | - David Belin
- Behavioural and Clinical Neuroscience Institute, Department of Psychology, University of Cambridge, Cambridge, UK
| |
Collapse
|
48
|
Zhou H, Gong L, Su C, Teng B, Xi W, Li X, Geng F, Hu Y. White matter integrity of right frontostriatal circuit predicts internet addiction severity among internet gamers. Addict Biol 2024; 29:e13399. [PMID: 38711213 PMCID: PMC11074389 DOI: 10.1111/adb.13399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/25/2024] [Accepted: 04/16/2024] [Indexed: 05/08/2024]
Abstract
Excessive use of the internet, which is a typical scenario of self-control failure, could lead to potential consequences such as anxiety, depression, and diminished academic performance. However, the underlying neuropsychological mechanisms remain poorly understood. This study aims to investigate the structural basis of self-control and internet addiction. In a cohort of 96 internet gamers, we examined the relationships among grey matter volume and white matter integrity within the frontostriatal circuits and internet addiction severity, as well as self-control measures. The results showed a significant and negative correlation between dACC grey matter volume and internet addiction severity (p < 0.001), but not with self-control. Subsequent tractography from the dACC to the bilateral ventral striatum (VS) was conducted. The fractional anisotropy (FA) and radial diffusivity of dACC-right VS pathway was negatively (p = 0.011) and positively (p = 0.020) correlated with internet addiction severity, respectively, and the FA was also positively correlated with self-control (p = 0.036). These associations were not observed for the dACC-left VS pathway. Further mediation analysis demonstrated a significant complete mediation effect of self-control on the relationship between FA of the dACC-right VS pathway and internet addiction severity. Our findings suggest that the dACC-right VS pathway is a critical neural substrate for both internet addiction and self-control. Deficits in this pathway may lead to impaired self-regulation over internet usage, exacerbating the severity of internet addiction.
Collapse
Affiliation(s)
- Hui Zhou
- The State Key Lab of Brain‐Machine IntelligenceZhejiang UniversityHangzhouChina
- Department of Psychology and Behavioral SciencesZhejiang UniversityHangzhouChina
| | - Liangyu Gong
- Department of Psychology and Behavioral SciencesZhejiang UniversityHangzhouChina
| | - Conghui Su
- Department of Psychology and Behavioral SciencesZhejiang UniversityHangzhouChina
| | - Binyu Teng
- Department of Psychology and Behavioral SciencesZhejiang UniversityHangzhouChina
| | - Wan Xi
- Department of Psychology and Behavioral SciencesZhejiang UniversityHangzhouChina
| | - Xiumei Li
- Department of Psychology and Behavioral SciencesZhejiang UniversityHangzhouChina
| | - Fengji Geng
- Department of Curriculum and Learning SciencesZhejiang University, Zijingang CampusHangzhouChina
| | - Yuzheng Hu
- The State Key Lab of Brain‐Machine IntelligenceZhejiang UniversityHangzhouChina
- Department of Psychology and Behavioral SciencesZhejiang UniversityHangzhouChina
- MOE Frontiers Science Center for Brain Science & Brain‐Machine IntegrationZhejiang UniversityHangzhouChina
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of MedicineHangzhou City UniversityHangzhouChina
| |
Collapse
|
49
|
Dam S, Batail JM, Robert GH, Drapier D, Maurel P, Coloigner J. Structural Brain Connectivity and Treatment Improvement in Mood Disorder. Brain Connect 2024; 14:239-251. [PMID: 38534988 DOI: 10.1089/brain.2023.0063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024] Open
Abstract
Background: The treatment of depressive episodes is well established, with clearly demonstrated effectiveness of antidepressants and psychotherapies. However, more than one-third of depressed patients do not respond to treatment. Identifying the brain structural basis of treatment-resistant depression could prevent useless pharmacological prescriptions, adverse events, and lost therapeutic opportunities. Methods: Using diffusion magnetic resonance imaging, we performed structural connectivity analyses on a cohort of 154 patients with mood disorder (MD) and 77 sex- and age-matched healthy control (HC) participants. To assess illness improvement, the patients with MD went through two clinical interviews at baseline and at 6-month follow-up and were classified based on the Clinical Global Impression-Improvement score into improved or not-improved (NI). First, the threshold-free network-based statistics (NBS) was conducted to measure the differences in regional network architecture. Second, nonparametric permutations tests were performed on topological metrics based on graph theory to examine differences in connectome organization. Results: The threshold-free NBS revealed impaired connections involving regions of the basal ganglia in patients with MD compared with HC. Significant increase of local efficiency and clustering coefficient was found in the lingual gyrus, insula, and amygdala in the MD group. Compared with the NI, the improved displayed significantly reduced network integration and segregation, predominately in the default-mode regions, including the precuneus, middle temporal lobe, and rostral anterior cingulate. Conclusions: This study highlights the involvement of regions belonging to the basal ganglia, the fronto-limbic network, and the default mode network, leading to a better understanding of MD disease and its unfavorable outcome.
Collapse
Affiliation(s)
- Sébastien Dam
- Univ Rennes, Inria, CNRS, IRISA, INSERM, Empenn U1228 ERL, Rennes, France
| | - Jean-Marie Batail
- Academic Psychiatry Department, Centre Hospitalier Guillaume Régnier, Rennes, France
- CIC 1414, CHU de Rennes, INSERM, Rennes, France
| | - Gabriel H Robert
- Univ Rennes, Inria, CNRS, IRISA, INSERM, Empenn U1228 ERL, Rennes, France
- Academic Psychiatry Department, Centre Hospitalier Guillaume Régnier, Rennes, France
- CIC 1414, CHU de Rennes, INSERM, Rennes, France
| | - Dominique Drapier
- Academic Psychiatry Department, Centre Hospitalier Guillaume Régnier, Rennes, France
- CIC 1414, CHU de Rennes, INSERM, Rennes, France
| | - Pierre Maurel
- Univ Rennes, Inria, CNRS, IRISA, INSERM, Empenn U1228 ERL, Rennes, France
| | - Julie Coloigner
- Univ Rennes, Inria, CNRS, IRISA, INSERM, Empenn U1228 ERL, Rennes, France
| |
Collapse
|
50
|
Wallace R, Fricchione G. Stress-induced failure of embodied cognition: A general model. Biosystems 2024; 239:105193. [PMID: 38522638 DOI: 10.1016/j.biosystems.2024.105193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 03/18/2024] [Indexed: 03/26/2024]
Abstract
We derive the classic, ubiquitous, but enigmatic Yerkes-Dodson effect of applied stress on real-world performance in a highly natural manner from fundamental assumptions on cognition and its dynamics, as constrained by the asymptotic limit theorems of information and control theories. We greatly extend the basic approach by showing how differences in an underlying probability model can affect the dynamics of decision across a broad range of cognitive enterprise. Most particularly, however, this development may help inform our understanding of the different expressions of human psychopathology. A 'thin tailed' underlying distribution appears to characterize expression of 'ordinary' situational depression/anxiety symptoms of conditions like burnout induced by toxic stress. A 'fat tailed' underlying distribution appears to be associated with brain structure and function abnormalities leading to serious mental illness and poor decision making where symptoms are not only emerging in the setting of severe stress but may also appear in a highly punctuated manner at relatively lower levels of stress. A simple hierarchical optimization shows how environmental 'shadow price' constraints can buffer or aggravate the effects of stress and arousal. Extension of the underlying theory to other patterns of pathology, like immune disorders and premature aging, seems apt. Applications to the punctuated dynamics of institutional cognition under stress also appear possible. Ultimately, the probability models studied here can be converted to new statistical tools for the analysis of observational and experimental data.
Collapse
Affiliation(s)
- Rodrick Wallace
- The New York State Psychiatric Institute, Harvard University, United States of America.
| | - Gregory Fricchione
- The New York State Psychiatric Institute, Harvard University, United States of America.
| |
Collapse
|