1
|
Ren X, Wang Y, Sun J, Liang K, Zhu H, Li Y, Gao J, Zhang Y, Huang S, Zhu D. Legal Standards for Selenium Enriched Foods and Agricultural Products: Domestic and International Perspectives. Nutrients 2024; 16:3659. [PMID: 39519492 PMCID: PMC11547517 DOI: 10.3390/nu16213659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/21/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
Background/Objectives: Selenium is indispensable for human health, yet vast regions worldwide grapple with selenium-deficient soils, rendering dietary intake a critical avenue for supplementation. This narrative review aims to systematically examine and compare domestic and international regulations and standards related to selenium enrichment, providing insights to enhance regulatory frameworks and standardization within the selenium-enrichment industry. Methods: From June to September 2024, we conducted a comprehensive search of official websites belonging to international organizations (e.g., Codex Alimentarius Commission, European Union) and governmental agencies of countries such as China and the United States. Keywords, like "selenium enrichment", "selenium standards", and "selenium detection methods", were employed to identify pertinent regulations, standards, and guidelines encompassing intake benchmarks, detection methodologies, product specifications, technical guidelines for production, labeling requirements, and certification management norms. Results: Our analysis reveals several challenges within the current selenium-enriched regulatory and standardization systems, including inconsistent product determination criteria and limit settings, incomplete technical guidelines for selenium-enriched agricultural production, and a lack of unified regulations for labeling selenium-enriched agricultural products. Conclusions: These findings underscore the need for harmonization of standards and enhanced regulatory oversight. To address these issues, we recommend bolstering safety risk assessments for selenium-enriched agricultural products, establishing and refining a comprehensive standard system for selenium-enriched agriculture, and intensifying quality and safety supervision. This study offers a valuable reference for policymakers and stakeholders to promote the sustainable development of the selenium-enrichment industry.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Dazhou Zhu
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing 100081, China; (X.R.); (Y.W.); (K.L.); (H.Z.); (Y.L.); (J.G.); (Y.Z.); (S.H.)
| |
Collapse
|
2
|
Hao L, Han Y, Zhang S, Luo Y, Luo K, Zhang L, Chen W. Estimated daily intake and health risk assessment of total and organic selenium in crops across areas with different selenium levels. J Trace Elem Med Biol 2024; 86:127525. [PMID: 39265201 DOI: 10.1016/j.jtemb.2024.127525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/05/2024] [Accepted: 09/05/2024] [Indexed: 09/14/2024]
Abstract
BACKGROUND The health risk of Se has gained significant attention. Previous studies mainly focused on the health risk of total Se in high-Se area. Less attention has been paid to the health risk of organic selenium in areas with varying selenium levels. METHODS A total number of 109 crop samples (edible parts) were collected in Langao County, Shannxi Province, China from 2018 to 2020, including 42 corn, 18 rice, 9 sweet potato, 25 potato, 12 radish, and 3 eggplant samples. The hydride generation atomic fluorescence spectrometry (HG-AFS) method was used to determine the total and organic Se contents. RESULT AND CONCLUSION (1) Corn (2.82 mg/kg), rice (0.44 mg/kg), potato (6.56 mg/kg), and eggplant (0.77 mg/kg) in high-Se area, as well as sweet potato (1.07 mg/kg) and radish (4.28 mg/kg) in medium-Se area, exhibited the highest total Se content among all crops in this county, and 5-328 times higher than the values of Se-enriched standard (2) The average daily intake of total/organic Se of residents in high-Se area reached 676/449 μg/day, which was 1-4 times higher than levels observed in medium-Se area (419/257 μg/day) and low-Se area (196/128 μg/day). The organic Se daily intakes from dietary combinations of rice + radish and rice + eggplant in high-Se area lower than 400 μg/day, which could be safely consumed. The organic Se daily intakes from dietary combinations of sweet potato + radish and sweet + eggplant in medium-Se area higher than 400 μg/day, which could not be safely consumed. The total / organic Se daily intakes of all dietary combinations in low-Se area lower than 400 μg/day, which could be safely consumed. (3) The health risk associated with crops might be overestimated due to the higher non-carcinogenic risk attributed to total Se compared to organic Se. The present study demonstrated that daily intake and health risk of total and organic Se in crops across areas with different Se levels varied significantly.
Collapse
Affiliation(s)
- Litao Hao
- School of Geosciences and Surveying Engineering, China University of Mining and Technology Beijing, Beijing 100083, China; Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China; College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Yangchun Han
- School of Geosciences and Surveying Engineering, China University of Mining and Technology Beijing, Beijing 100083, China; Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China.
| | - Shixi Zhang
- School of Geosciences and Surveying Engineering, China University of Mining and Technology Beijing, Beijing 100083, China.
| | - Yingjie Luo
- School of Geosciences and Surveying Engineering, China University of Mining and Technology Beijing, Beijing 100083, China
| | - Kunli Luo
- Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China
| | - Lijun Zhang
- Ankang R&D Center for Se-enriched Products, China Se-enriched Industry Research Institute, Ankang 725000, China
| | - Weiqiang Chen
- ShaanXi Xibao Technology Co., Ltd., Ankang 725000, China
| |
Collapse
|
3
|
Li M, Qiu L, Ai X, Xu K, Peng M, Sun G, Zhang K, Huang C. Effects of Selenium and Cadmium on Human Liver and Kidney Functions in Exposed Black Shale Areas. GEOHEALTH 2024; 8:e2024GH001040. [PMID: 38651003 PMCID: PMC11033549 DOI: 10.1029/2024gh001040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/20/2024] [Accepted: 04/01/2024] [Indexed: 04/25/2024]
Abstract
Animal experiments suggest that selenium (Se) may alleviate cadmium (Cd) toxicity in animal liver and kidneys, but its effect on human liver and kidneys remains uncertain. In China, areas with black shale have shown elevated levels of Se and Cd. According to the USEPA (U.S. Environmental Protection Agency) evaluation method, the soil and rice in these areas pose significant risks. In black shale regions such as Enshi and Zhuxi County, residents who long-term consume local rice may surpass safe Se and Cd intake levels. Significantly high median blood Se (B-Se) and urine selenium (U-Se) levels were detected in these areas, measuring 416.977 μg/L and 352.690 μg/L and 104.527 μg/L and 51.820 μg/L, respectively. Additionally, the median blood Cd (B-Cd) and urine Cd (U-Cd) levels were markedly elevated at 4.821 μg/L and 3.848 μg/L and at 7.750 μg/L and 7.050 μg/L, respectively, indicating substantial Cd exposure. Nevertheless, sensitive liver and kidney biomarkers in these groups fall within healthy reference ranges, suggesting a potential antagonistic effect of Se on Cd in the human body. Therefore, the USEPA method may not accurately assess Cd risk in exposed black shale areas. However, within the healthy ranges, residents in the Enshi study area had significantly greater median levels of serum creatinine and cystatin C, measuring 67.3 μmol/L and 0.92 mg/L, respectively, than those in Zhuxi did (53.6 μmol/L and 0.86 mg/L). In cases of excessive Se and Cd exposure, high Se and Cd levels impact the filtration function of the human kidney to some extent.
Collapse
Affiliation(s)
- Minglong Li
- Hubei Key Laboratory of Resources and Eco‐environmental GeologyHubei Geological BureauWuhanChina
- Second Geological Brigade of Hubei Geological BureauEnshiChina
- School of Forestry and HorticultureHubei Minzu UniversityEnshiChina
| | - Liang Qiu
- School of Earth Science and ResourcesChina University of GeosciencesBeijingChina
| | - Xunru Ai
- School of Forestry and HorticultureHubei Minzu UniversityEnshiChina
| | - Keyuan Xu
- Second Geological Brigade of Hubei Geological BureauEnshiChina
| | - Min Peng
- Key Laboratory of Geochemical Cycling of Carbon and Mercury in the Earth's Critical ZoneInstitute of Geophysical and Geochemical ExplorationChinese Academy of Geological SciencesLangfangChina
- Research Center of Geochemical Survey and Assessment on Land QualityChina Geological SurveyLangfangChina
| | - Guogen Sun
- Central Hospital of Enshi Tujia and Miao Autonomous PrefectureEnshiChina
| | - Kai Zhang
- Second Geological Brigade of Hubei Geological BureauEnshiChina
| | - Chuying Huang
- Central Hospital of Enshi Tujia and Miao Autonomous PrefectureEnshiChina
| |
Collapse
|
4
|
Niu S, Wang Z, Yin X, Liu X, Qin L, Farooq MR, Danso OP, Zhang Z, Luo Q, Sun C, Song J. A preliminary predictive model for selenium nutritional status in residents based on three selenium biomarkers. J Trace Elem Med Biol 2024; 81:127347. [PMID: 37995511 DOI: 10.1016/j.jtemb.2023.127347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/15/2023] [Accepted: 11/17/2023] [Indexed: 11/25/2023]
Abstract
BACKGROUND Selenium (Se) is an essential nutrient and an important component of many selenoproteins that possess fundamental importance to human health. Selenium deficiency and excess will cause corresponding diseases in the human body. The nutritional health of Se in the human body mainly depends on the daily dietary Se intake of the human body, which in turn depends to a certain extent on the content of Se transmitted along the food chain. This study aims to research the transport of Se through the soil-crop-human chain in regions with different Se levels, and to establish the model between the residents' dietary Se intake and the three Se biomarkers (hair, nails, and plasma), to predict the nutritional health status of Se in residents through Se biomarkers. METHOD Carry out field and cross-sectional surveys of populations in Loujiaba Village and Longshui Village. Samples were collected from soil, crops, drinking water, residents' hair, nails, plasma, and diet. The concentration of available Se fractions was extracted from soil samples using 0.1 mol/L K2HPO4. The concentration of total Se for all samples was determined by Inductively Coupled Plasma-Mass Spectrometry (ICP-MS), and the relative standard deviation was less than 5%. In this study, hair, nails, and blood samples were collected from volunteers according to the Declaration of Helsinki and the Ethics Committee of Soochow University. The dietary nutritional structure and dietary Se intake of the population were randomly selected by 12 volunteers using the duplicate portion method. Data were described using mean ± standard deviation. We performed saliency analysis and correlation analysis (with Pearson correlation coefficient), and fitted a regression to evaluate the associations between these variables. RESULTS The soil total Se (5201 ± 609.2 μg/kg) and available Se (307.7 ± 83.5 μg/kg) in Luojiaba Village (LJB) were significantly higher than the soil total Se (229.2 ± 32.5 μg/kg) and available Se (21.9 ± 4.0 μg/kg) in Longshui Village (LS). The residents' dietary Se intake of LJB (150.3 ± 2.2 μg/d) was within the World Health Organization (WHO) recommended intake range, while LS (16.0 ± 0.4 μg/d) was close to the range of Keshan disease occurrence, and there was a risk of insufficient Se intake. The correlation analysis found significant positive correlations between residents' dietary Se intake and the three Se biomarkers. According to the preliminary model established in this study, if the daily dietary Se intake of residents reaches the WHO recommended value of 55-400 μg, the hair, nails, and plasma of Se concentration will be 522.1-2850.5 μg/kg, 1069.0-6147.4 μg/kg, and 128.3-661.36 μg/L, respectively. CONCLUSION Selenium is transmitted through the soil-crop-human chain, and the Se concentration that enters the human body through the food chain in high-Se areas is significantly higher than that in low-Se areas. The nutritional health status of Se in the human body depends on the daily dietary intake of the human body, and there is a significant correlation between the daily dietary Se intake of the human body and the three biomarkers of Se levels in the human body, so the three biomarkers can be used to evaluate the Se nutritional health of the human.
Collapse
Affiliation(s)
- Shanshan Niu
- School of Earth and Space Sciences, University of Science and Technology of China, Heifei 230026, Anhui, China
| | - Zhangmin Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, Jiangsu, China; Jiangsu Bio-Engineering Research Center for Selenium, Suzhou 215123, Jiangsu, China; Nanjing University (Suzhou) High-tech Institute, Suzhou 215123, Jiangsu, China.
| | - Xuebin Yin
- Institute of Functional Agriculture (Food) Science and Technology at Yangtze River Delta, Anhui Science and Technology University, Chuzhou 239000, Anhui, China; Jiangsu Bio-Engineering Research Center for Selenium, Suzhou 215123, Jiangsu, China; Nanjing University (Suzhou) High-tech Institute, Suzhou 215123, Jiangsu, China
| | - Xiaodong Liu
- School of Earth and Space Sciences, University of Science and Technology of China, Heifei 230026, Anhui, China
| | - Liqiang Qin
- School of Public Health, Medical College of Soochow University, Suzhou 215123, Jiangsu, China
| | - Muhammad Raza Farooq
- School of Earth and Space Sciences, University of Science and Technology of China, Heifei 230026, Anhui, China
| | - Ofori Prince Danso
- School of Earth and Space Sciences, University of Science and Technology of China, Heifei 230026, Anhui, China
| | - Zezhou Zhang
- School of Resources and Environment, Anhui Science and Technology University, Chuzhou 239000, Anhui, China; Institute of Functional Agriculture (Food) Science and Technology at Yangtze River Delta, Anhui Science and Technology University, Chuzhou 239000, Anhui, China; Nanjing University (Suzhou) High-tech Institute, Suzhou 215123, Jiangsu, China
| | - Qin Luo
- School of Earth and Space Sciences, University of Science and Technology of China, Heifei 230026, Anhui, China; Nanjing University (Suzhou) High-tech Institute, Suzhou 215123, Jiangsu, China
| | - Chenlu Sun
- Nanjing Institute for Functional Agriculture Science & Technology (iFAST), Nanjing 211800, Jiangsu, China
| | - Jiaping Song
- School of Resources and Environment, Anhui Science and Technology University, Chuzhou 239000, Anhui, China; Institute of Functional Agriculture (Food) Science and Technology at Yangtze River Delta, Anhui Science and Technology University, Chuzhou 239000, Anhui, China; Nanjing University (Suzhou) High-tech Institute, Suzhou 215123, Jiangsu, China.
| |
Collapse
|
5
|
Pastor-Sierra K, Espitia-Pérez L, Espitia-Pérez P, Peñata-Taborda A, Brango H, Galeano-Páez C, Bru-Cordero OE, Palma-Parra M, Díaz SM, Trillos C, Briceño L, Idrovo ÁJ, Miranda-Pacheco J, Téllez E, Jiménez-Vidal L, Coneo-Pretelt A, Álvarez AH, Arteaga-Arroyo G, Ricardo-Caldera D, Salcedo-Arteaga S, Porras-Ramírez A, Varona-Uribe M. Micronuclei frequency and exposure to chemical mixtures in three Colombian mining populations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:165789. [PMID: 37499817 DOI: 10.1016/j.scitotenv.2023.165789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/12/2023] [Accepted: 07/23/2023] [Indexed: 07/29/2023]
Abstract
The Colombian mining industry has witnessed significant growth. Depending on the scale and mineral extracted, complex chemical mixtures are generated, impacting the health of occupationally exposed populations and communities near mining projects. Increasing evidence suggests that chromosomal instability (CIN) is an important link between the development of certain diseases and exposure to complex mixtures. To better understand the effects of exposure to complex mixtures we performed a biomonitoring study on 407 healthy individuals from four areas: three located in municipalities exploiting different-scale mining systems and a reference area with no mining activity. Large, medium, and small-scale mining systems were analyzed in Montelibano (Córdoba), artisanal and small-scale mining (ASGM) in Nechí (Antioquia), and a closed mining system in Aranzazu (Caldas). The reference area with no mining activity was established in Montería (Córdoba). ICP-MS measured multi-elemental exposure in hair, and CIN was evaluated using the cytokinesis-block micronucleus technique (MNBN). Exposure to mixtures of chemical elements was comparable in workers and residents of the mining areas but significantly higher compared to reference individuals. In Montelibano, increased MNBN frequencies were associated with combined exposure to Se, Hg, Mn, Pb, and Mg. This distinct pattern significantly differed from other areas. Specifically, in Nechí, Cr, Ni, Hg, Se, and Mg emerged as the primary contributors to elevated frequencies of MNBN. In contrast, a combination of Hg and Ni played a role in increasing MNBN in Aranzazu. Interestingly, Se consistently correlated with increased MNBN frequencies across all active mining areas. Chemical elements in Montelibano exhibit a broader range compared to other mining zones, reflecting the characteristics of the high-impact and large-scale mining in the area. This research provides valuable insights into the effects of exposure to chemical mixtures, underscoring the importance of employing this approach in the risk assessment of communities, especially those from residential areas.
Collapse
Affiliation(s)
- Karina Pastor-Sierra
- Grupo de Investigación Biomédica y Biología Molecular, Universidad del Sinú, Montería, Córdoba, Colombia; Programa de doctorado en Salud Pública, Universidad El Bosque, Bogotá, Colombia
| | - Lyda Espitia-Pérez
- Grupo de Investigación Biomédica y Biología Molecular, Universidad del Sinú, Montería, Córdoba, Colombia.
| | - Pedro Espitia-Pérez
- Grupo de Investigación Biomédica y Biología Molecular, Universidad del Sinú, Montería, Córdoba, Colombia
| | - Ana Peñata-Taborda
- Grupo de Investigación Biomédica y Biología Molecular, Universidad del Sinú, Montería, Córdoba, Colombia
| | - Hugo Brango
- Departamento de Matemáticas y Estadística, Universidad del Norte, Barranquilla, Colombia
| | - Claudia Galeano-Páez
- Grupo de Investigación Biomédica y Biología Molecular, Universidad del Sinú, Montería, Córdoba, Colombia
| | | | - Marien Palma-Parra
- Dirección de Investigación en Salud Pública, Grupo de Salud Ambiental y Laboral, Instituto Nacional de Salud, Bogotá, Colombia
| | - Sonia M Díaz
- Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia
| | - Carlos Trillos
- Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia
| | - Leonardo Briceño
- Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia
| | - Álvaro J Idrovo
- Departamento de Salud Pública, Escuela de Medicina, Universidad Industrial de Santander, Bucaramanga, Colombia
| | - Juan Miranda-Pacheco
- Grupo de Investigación Biomédica y Biología Molecular, Universidad del Sinú, Montería, Córdoba, Colombia
| | - Eliana Téllez
- Dirección de Investigación en Salud Pública, Grupo de Salud Ambiental y Laboral, Instituto Nacional de Salud, Bogotá, Colombia
| | - Luisa Jiménez-Vidal
- Grupo de Investigación Biomédica y Biología Molecular, Universidad del Sinú, Montería, Córdoba, Colombia
| | - Andrés Coneo-Pretelt
- Grupo de Investigación Biomédica y Biología Molecular, Universidad del Sinú, Montería, Córdoba, Colombia
| | - Alicia Humanez Álvarez
- Grupo de Investigación Biomédica y Biología Molecular, Universidad del Sinú, Montería, Córdoba, Colombia
| | - Gean Arteaga-Arroyo
- Grupo de Investigación Biomédica y Biología Molecular, Universidad del Sinú, Montería, Córdoba, Colombia
| | - Dina Ricardo-Caldera
- Grupo de Investigación en Enfermedades Tropicales y Resistencia Bacteriana, Universidad del Sinú, Montería, Córdoba, Colombia
| | - Shirley Salcedo-Arteaga
- Grupo de Investigación Biomédica y Biología Molecular, Universidad del Sinú, Montería, Córdoba, Colombia
| | | | - Marcela Varona-Uribe
- Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia
| |
Collapse
|
6
|
Wang P, Chen B, Huang Y, Li J, Cao D, Chen Z, Li J, Ran B, Yang J, Wang R, Wei Q, Dong Q, Liu L. Selenium intake and multiple health-related outcomes: an umbrella review of meta-analyses. Front Nutr 2023; 10:1263853. [PMID: 37781125 PMCID: PMC10534049 DOI: 10.3389/fnut.2023.1263853] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 08/28/2023] [Indexed: 10/03/2023] Open
Abstract
Selenium is an essential trace metalloid element that is associated with fundamental importance to human health. Our umbrella review aimed to evaluate the quality of evidence, validity, and biases in the relationship between selenium intake and health-related outcomes according to published systematic reviews with pooled data and meta-analyses. Selenium intake is associated with a decreased risk of digestive system cancers, all-cause mortality, depression, and Keshan disease, when in children reduce the risk of Kashin-Beck disease. Additionally, selenium supplementation can improve sperm quality, polycystic ovary syndrome, autoimmune thyroid disease, cardiovascular disease, and infective outcomes. Selenium supplementation also has relationship with a decreased concentration of serum lipids including total cholesterol and very low-density lipoprotein cholesterol. However, no evidence has shown that selenium is associated with better outcomes among patients in intensive care units. Furthermore, selenium intake may be related with a higher risk of type 2 diabetes and non-melanoma skin cancers. Moreover, most of included studies are evaluated as low quality according to our evidence assessment. Based on our study findings and the limited advantages of selenium intake, it is not recommended to receive extra supplementary selenium for general populations, and selenium supplementation should not be continued in patients whose selenium-deficient status has been corrected.
Collapse
Affiliation(s)
- Puze Wang
- Department of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Bo Chen
- Department of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Yin Huang
- Department of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Jin Li
- Department of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Dehong Cao
- Department of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Zeyu Chen
- Department of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Jinze Li
- Department of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Biao Ran
- Department of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Jiahao Yang
- Department of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Ruyi Wang
- Department of Urology, West China Hospital, Sichuan University, Chengdu, China
- Department of Urology, Hospital of Chengdu University, Chengdu, China
| | - Qiang Wei
- Department of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Qiang Dong
- Department of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Liangren Liu
- Department of Urology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
7
|
Li J, Huang C, Lai L, Wang L, Li M, Tan Y, Zhang T. Selenium hyperaccumulator plant Cardamine enshiensis: from discovery to application. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:5515-5529. [PMID: 37355493 DOI: 10.1007/s10653-023-01595-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/25/2023] [Indexed: 06/26/2023]
Abstract
Selenium (Se) is an essential trace element for animals and humans. Se biofortification and Se functional agriculture are emerging strategies to satisfy the needs of people who are deficient in Se. With 200 km2 of Se-excess area, Enshi is known as the "world capital of Se." Cardamine enshiensis (C. enshiensis) is a Se hyperaccumulation plant discovered in the Se mine drainage area of Enshi. It is edible and has been approved by National Health Commission of the People's Republic of China as a new source of food, and the annual output value of the Se-rich industry in Enshi City exceeds 60 billion RMB. This review will mainly focus on the discovery and mechanism underlying Se tolerance and Se hyperaccumulation in C. enshiensis and highlight its potential utilization in Se biofortification agriculture, graziery, and human health.
Collapse
Affiliation(s)
- Jiao Li
- Cancer Center, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chuying Huang
- Cancer Center, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Selenium and Human Health Institute, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei, China.
| | - Lin Lai
- Hubei Selenium and Human Health Institute, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei, China
| | - Li Wang
- Hubei Selenium and Human Health Institute, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei, China
| | - Minglong Li
- Second Geological Brigade of Hubei Geological Bureau, Enshi, 445000, Hubei, China
| | - Yong Tan
- Hubei Selenium and Human Health Institute, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei, China
| | - Tao Zhang
- Cancer Center, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
8
|
Wu Z, Li P, Dong H, Feng X. Mercury and selenium co-ingestion assessment via rice consumption using an in-vitro method: Bioaccessibility and interactions. Food Res Int 2023; 170:113027. [PMID: 37316027 DOI: 10.1016/j.foodres.2023.113027] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 05/08/2023] [Accepted: 05/21/2023] [Indexed: 06/16/2023]
Abstract
Mercury (Hg) was reported to accumulate in rice grains, and, together with the selenium (Se) was found in rice, the co-exposure of Hg-Se via rice consumption may present significant health effects to human. This research collected rice samples containing high Hg:high Se and high Se:low Hg concentrations from high Hg and high Se background areas. The physiologically based extraction test (PBET) in vitro digestion model was utilized to obtain bioaccessibility data from samples. The results showed relatively low bioaccessible for Hg (<60%) and Se (<25%) in both rice sample groups, and no statistically significant antagonism was identified. However, the correlations of Hg and Se bioaccessibility showed an inverse pattern for the two sample groups. A negative correlation was detected in the high Se background rice group and a positive correlation in the high Hg background group, suggesting various micro forms of Hg and Se in rice from different planting locations. In addition, when the benefit-risk value (BRV) was calculated, some "fake" positive results showed while Hg and Se concentrations were directly used, which indicated that bioaccessibility should not be neglected in benefit-risk assessment.
Collapse
Affiliation(s)
- Ze Wu
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang, Guizhou 550025, China; Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Ping Li
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.
| | - Hui Dong
- School of Karst Science, Guizhou Normal University, Guiyang, Guizhou 550001, China
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| |
Collapse
|
9
|
Hadrup N, Ravn-Haren G. Toxicity of repeated oral intake of organic selenium, inorganic selenium, and selenium nanoparticles: A review. J Trace Elem Med Biol 2023; 79:127235. [PMID: 37285631 DOI: 10.1016/j.jtemb.2023.127235] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 05/23/2023] [Accepted: 05/31/2023] [Indexed: 06/09/2023]
Abstract
BACKGROUND To protect from toxicity at supra-essential doses of selenium, it is important to determine dose levels at which adverse effects occur. METHODS We identified relevant literature on the repeated dosage of selenium and extracted dose descriptors on reported endpoints, except on genotoxicity/carcinogenicity. RESULTS Selenium forms with toxicological data were organic ones: selenomethionine, selenocystine/selenocysteine; and inorganic ones, including selenite (SeO32-), selenate (SeO42-), selenium sulphide (SeS2), selenide (Se2-) and selenium nanoparticles. Clinical signs of selenium toxicity in humans include a garlicky-smelling breath, hair loss, and nail changes. One human study showed increased mortality following daily ingestion of 300 µg Se per day for 5 years, equal to a lowest-observed-adverse-effect level (LOAEL) of ∼4.3 µg/kg bw/days. The corresponding no-observed-adverse-effect level (NOAEL) was ∼2.9 µg Se/kg bw/day. One study reported an increased risk of type 2 diabetes after ∼2.9 µg Se/kg bw/day, but other studies with similar doses found no increases in mortality or incidence of type 2 diabetes. NOAELs on affected body weight in animal studies were 0.24-1.2 mg Se/kg bw/day. Other endpoints of selenium toxicity in animals include hepatotoxicity with a NOAEL as low as 2 µg/kg bw/day in rats, as well as gastrointestinal, cardiovascular, and reproductive toxicities with NOAELs of 0.6 (gastrointestinal), 0.08, and 0.4 (cardiovascular) and ≥ 0.04 mg Se/kg bw/day (reproductive), respectively. CONCLUSIONS Dose descriptors describing selenium toxicity were as low as 2-3 µg Se/kg bw/day.
Collapse
Affiliation(s)
- Niels Hadrup
- The National Research Centre for the Working Environment, Lersø Parkalle 105, DK-2100, Denmark; Research group for risk-benefit, National Food Institute, Technical University of Denmark, Kemitorvet, DK 2800 Kgs., Lyngby, Denmark.
| | - Gitte Ravn-Haren
- Research group for risk-benefit, National Food Institute, Technical University of Denmark, Kemitorvet, DK 2800 Kgs., Lyngby, Denmark
| |
Collapse
|
10
|
Li M, Yang B, Ju Z, Qiu L, Xu K, Wang M, Chen C, Zhang K, Zhang Z, Xiang S, Zheng J, Yang B, Huang C, Zheng D. Do high soil geochemical backgrounds of selenium and associated heavy metals affect human hepatic and renal health? Evidence from Enshi County, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 883:163717. [PMID: 37116803 DOI: 10.1016/j.scitotenv.2023.163717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 03/30/2023] [Accepted: 04/20/2023] [Indexed: 05/08/2023]
Abstract
It is unclear whether the United States Environmental Protection Agency (US EPA) method can accurately assess heavy metal risks in high-Se areas. Herein, a black shale outcropping in Enshi County, China, was taken as the study area, and a carbonate outcropping in Lichuan County was the control area. Selenium and associated heavy metal concentrations in rock, soil, rice, human blood and urine samples and human sensitive hepatic and renal biomarkers were measured. The results showed that the contents of selenium, cadmium, molybdenum and copper in the study area were 3.68 ± 2.72 μg/g, 2.65 ± 1.42 μg/g, 16.3 ± 15.5 μg/g, and 57.3 ± 17.6 μg/g, respectively, in soil (n = 47) and 1.072 ± 0.924 μg/g, 0.252 ± 0.310 μg/g, 2.800 ± 2.167 μg/g, and 10.91 ± 27.42 μg/g, respectively, in rice (n = 47). The daily adult intake levels of selenium, cadmium and molybdenum from rice consumption in the study area (exposure group) exceed the recommended tolerance values in China. According to the US EPA method, these environmental media pose a significant risk to human health. However, in the exposure group (n = 111), the median levels of the sensitive hepatic biomarkers alanine aminotransferase (18 U/L), aspartate aminotransferase (28 U/L) and total bilirubin (10.9 μmol/L) and the sensitive renal biomarkers serum creatinine (70.1 μmol/L), urinary nitrogen (5.73 mmol/L) and uric acid (303.80 μmol/L) were within reference ranges and had values equivalent to those of the control group (P > 0.05). The elements tended to differentiate during migration from one medium to another. Due to the complex interaction between selenium and heavy metals, a survey of human health indicators is indispensable when the US EPA method is used to assess the heavy metal risks in high-Se areas. The recommended molybdenum tolerable intake in the U.S. (2000 μg/d) is reasonable based on a comparison.
Collapse
Affiliation(s)
- Minglong Li
- Second Geological Brigade of Hubei Geological Bureau, Enshi 445000, China; Institute of Resources and Environment, Henan Polytechnic University, Jiaozuo 454000, China; Hubei Key Laboratory of resources and eco-environmental geology, Wuhan 430022, China.
| | - Boyong Yang
- Second Geological Brigade of Hubei Geological Bureau, Enshi 445000, China
| | - Zhaoqing Ju
- Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi 445000, China
| | - Liang Qiu
- School of Earth Science and Resources, China University of Geosciences, Beijing 100083, China
| | - Keyuan Xu
- Second Geological Brigade of Hubei Geological Bureau, Enshi 445000, China
| | - Minghua Wang
- Second Geological Brigade of Hubei Geological Bureau, Enshi 445000, China
| | - Can Chen
- Second Geological Brigade of Hubei Geological Bureau, Enshi 445000, China
| | - Kai Zhang
- Second Geological Brigade of Hubei Geological Bureau, Enshi 445000, China
| | - Zixiong Zhang
- Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi 445000, China
| | - Sufang Xiang
- Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi 445000, China
| | - Jinlong Zheng
- Hubei Key Laboratory of resources and eco-environmental geology, Wuhan 430022, China
| | - Baohong Yang
- Second Geological Brigade of Hubei Geological Bureau, Enshi 445000, China
| | - Chuying Huang
- Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi 445000, China; Hubei Provincial Key Lab of Selenium Resources and Bioapplications, Enshi 445000, China.
| | - Deshun Zheng
- Institute of Resources and Environment, Henan Polytechnic University, Jiaozuo 454000, China.
| |
Collapse
|
11
|
Tangjaidee P, Swedlund P, Xiang J, Yin H, Quek SY. Selenium-enriched plant foods: Selenium accumulation, speciation, and health functionality. Front Nutr 2023; 9:962312. [PMID: 36815133 PMCID: PMC9939470 DOI: 10.3389/fnut.2022.962312] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 09/13/2022] [Indexed: 02/09/2023] Open
Abstract
Selenium (Se) is an essential element for maintaining human health. The biological effects and toxicity of Se compounds in humans are related to their chemical forms and consumption doses. In general, organic Se species, including selenoamino acids such as selenomethionine (SeMet), selenocystine (SeCys2), and Se-methylselenocysteine (MSC), could provide greater bioactivities with less toxicity compared to those inorganics including selenite (Se IV) and selenate (Se VI). Plants are vital sources of organic Se because they can accumulate inorganic Se or metabolites and store them as organic Se forms. Therefore, Se-enriched plants could be applied as human food to reduce deficiency problems and deliver health benefits. This review describes the recent studies on the enrichment of Se-containing plants in particular Se accumulation and speciation, their functional properties related to human health, and future perspectives for developing Se-enriched foods. Generally, Se's concentration and chemical forms in plants are determined by the accumulation ability of plant species. Brassica family and cereal grains have excessive accumulation capacity and store major organic Se compounds in their cells compared to other plants. The biological properties of Se-enriched plants, including antioxidant, anti-diabetes, and anticancer activities, have significantly presented in both in vitro cell culture models and in vivo animal assays. Comparatively, fewer human clinical trials are available. Scientific investigations on the functional health properties of Se-enriched edible plants in humans are essential to achieve in-depth information supporting the value of Se-enriched food to humans.
Collapse
Affiliation(s)
- Pipat Tangjaidee
- Food Science, School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Peter Swedlund
- Food Science, School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Jiqian Xiang
- Enshi Autonomous Prefecture Academy of Agriculture Sciences, Enshi, Hubei, China
| | - Hongqing Yin
- Enshi Autonomous Prefecture Academy of Agriculture Sciences, Enshi, Hubei, China
| | - Siew Young Quek
- Food Science, School of Chemical Sciences, University of Auckland, Auckland, New Zealand,Riddet Institute New Zealand Centre of Research Excellence in Food, Palmerston North, New Zealand,*Correspondence: Siew Young Quek,
| |
Collapse
|
12
|
Ramires PF, Dos Santos M, Paz-Montelongo S, Rubio-Armendáriz C, Adamatti D, Fiasconaro ML, da Silva Júnior FMR. Multiple exposure pathways and health risk assessment of potentially harmful elements for children and adults living in a coal region in Brazil. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:305-318. [PMID: 35347513 DOI: 10.1007/s10653-022-01234-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
Energy generated by coal can contaminate the environment by releasing toxic elements, including metals. The human health risk assessment (HHRA) associated with geographic information system (GIS) tools can assist the management of contaminated areas, such as coal mining areas. The objective of the study was to carry out the assessment and spatialization of the risk to human health of potentially hazards elements (PHEs) in the soil for children and adults, from multiple exposure routes (oral, inhalation and dermal) in the Candiota mines, largest coal mining region of Brazil. The non-carcinogenic risks (HQ) of PHEs (Cu, Pb, Zn, Ni, Cr, Fe, Mn, Cd, As and Se) and carcinogenic risks of As were estimated and spatialized. The results revealed a risk for children exposure to Mn, with greatest contribution through dermal route. Mn (HQderm 72.41-96.09% and HQinh 40.84-82.52%) and Fe (HQo 43.90-81.44%) were the metals with greatest contribution to human health risk among studied population. As did not present carinogenic risk to adults. The spatial distribution of non-carcinogenic risk showed that Cr, As, Fe, Pb, Ni, Zn and Cu have higher HInc close to the coal mining areas, while Mn, Se and Cd have the highest HInc values in surrounding municipalities (Pinheiro Machado; Pedras Altas and Hulha Negra). The use of HHRA associated with GIS tools provides important elements for decision-making in the management of contaminated sites, indicating chemical elements, locations, routes of exposure and priority target populations.
Collapse
Affiliation(s)
- Paula Florencio Ramires
- Programa de Pós-Graduação em Ciências da Saúde, Faculdade de Medicina, Rio Grande, RS, Brazil
- Laboratório de Ensaios Farmacológicos E Toxicológicos, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil
| | - Marina Dos Santos
- Programa de Pós-Graduação em Ciências da Saúde, Faculdade de Medicina, Rio Grande, RS, Brazil
- Laboratório de Ensaios Farmacológicos E Toxicológicos, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil
| | - Soraya Paz-Montelongo
- Área de Toxicología, Universidad de La Laguna, 38200, La Laguna, Santa Cruz de Tenerife, Spain
| | - Carmen Rubio-Armendáriz
- Área de Toxicología, Universidad de La Laguna, 38200, La Laguna, Santa Cruz de Tenerife, Spain
| | - Diana Adamatti
- Centro de Ciências Computacionais, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil
| | - Maria Laura Fiasconaro
- Programa de Pós-Graduação em Ciências da Saúde, Faculdade de Medicina, Rio Grande, RS, Brazil
- CONICET - UNL, Instituto de Desarrollo Tecnologico Paraara La Industria Quimica (Intec), Ruta Nacional - Paraje "El Pozo", Santa Fe, Argentina
| | - Flávio Manoel Rodrigues da Silva Júnior
- Programa de Pós-Graduação em Ciências da Saúde, Faculdade de Medicina, Rio Grande, RS, Brazil.
- Laboratório de Ensaios Farmacológicos E Toxicológicos, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil.
| |
Collapse
|
13
|
Genchi G, Lauria G, Catalano A, Sinicropi MS, Carocci A. Biological Activity of Selenium and Its Impact on Human Health. Int J Mol Sci 2023; 24:2633. [PMID: 36768955 PMCID: PMC9917223 DOI: 10.3390/ijms24032633] [Citation(s) in RCA: 59] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 02/03/2023] Open
Abstract
Selenium (Se) is a naturally occurring metalloid element essential to human and animal health in trace amounts but it is harmful in excess. Se plays a substantial role in the functioning of the human organism. It is incorporated into selenoproteins, thus supporting antioxidant defense systems. Selenoproteins participate in the metabolism of thyroid hormones, control reproductive functions and exert neuroprotective effects. Among the elements, Se has one of the narrowest ranges between dietary deficiency and toxic levels. Its level of toxicity may depend on chemical form, as inorganic and organic species have distinct biological properties. Over the last decades, optimization of population Se intake for the prevention of diseases related to Se deficiency or excess has been recognized as a pressing issue in modern healthcare worldwide. Low selenium status has been associated with an increased risk of mortality, poor immune function, cognitive decline, and thyroid dysfunction. On the other hand, Se concentrations slightly above its nutritional levels have been shown to have adverse effects on a broad spectrum of neurological functions and to increase the risk of type-2 diabetes. Comprehension of the selenium biochemical pathways under normal physiological conditions is therefore an important issue to elucidate its effect on human diseases. This review gives an overview of the role of Se in human health highlighting the effects of its deficiency and excess in the body. The biological activity of Se, mainly performed through selenoproteins, and its epigenetic effect is discussed. Moreover, a brief overview of selenium phytoremediation and rhizofiltration approaches is reported.
Collapse
Affiliation(s)
- Giuseppe Genchi
- Dipartimento di Farmacia e Scienze della Salute e della Nutrizione, Università della Calabria, Arcavacata di Rende, 87036 Cosenza, Italy
| | - Graziantonio Lauria
- Dipartimento di Farmacia e Scienze della Salute e della Nutrizione, Università della Calabria, Arcavacata di Rende, 87036 Cosenza, Italy
| | - Alessia Catalano
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari “A. Moro”, 70125 Bari, Italy
| | - Maria Stefania Sinicropi
- Dipartimento di Farmacia e Scienze della Salute e della Nutrizione, Università della Calabria, Arcavacata di Rende, 87036 Cosenza, Italy
| | - Alessia Carocci
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari “A. Moro”, 70125 Bari, Italy
| |
Collapse
|
14
|
Wang F, Li C, Li S, Cui L, Zhao J, Liao L. Selenium and thyroid diseases. Front Endocrinol (Lausanne) 2023; 14:1133000. [PMID: 37033262 PMCID: PMC10080082 DOI: 10.3389/fendo.2023.1133000] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 03/13/2023] [Indexed: 04/11/2023] Open
Abstract
Selenium, a non-metallic element, is a micronutrient essential for the biosynthesis of selenoproteins containing selenocysteine. In adults, the thyroid contains the highest amount of selenium per gram of tissue. Most known selenoproteins, such as glutathione peroxidase, are expressed in the thyroid and are involved in thyroid hormone metabolism, redox state regulation, and maintenance of cellular homeostasis. Some clinical studies have shown that lack of selenium will increase the prevalence of several kinds of thyroid diseases. Selenium treatment in patients with Graves' orbitopathy has been shown to delay disease progression and improve the quality of life. Selenium supplementation in Hashimoto's thyroiditis was associated with the decreased levels of anti-thyroid peroxidase antibody and improved thyroid ultrasound structure. In thyroid cancer, various selenium supplements have shown variable anticancer activity. However, published results remain the conflicting and more clinical evidence is still needed to determine the clinical significance of selenium. This article reviews the strong association between selenium and thyroid disease and provides new ideas for the clinical management of selenium in thyroid disease.
Collapse
Affiliation(s)
- Fei Wang
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Institute of Nephrology, Jinan, China
| | - Chunyu Li
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Institute of Nephrology, Jinan, China
| | - Shaoxin Li
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Institute of Nephrology, Jinan, China
| | - Lili Cui
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Institute of Nephrology, Jinan, China
| | - Junyu Zhao
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Institute of Nephrology, Jinan, China
- Department of Endocrinology and Metabology, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- *Correspondence: Junyu Zhao, ; Lin Liao,
| | - Lin Liao
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Institute of Nephrology, Jinan, China
- Department of Endocrinology and Metabology, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- *Correspondence: Junyu Zhao, ; Lin Liao,
| |
Collapse
|
15
|
Selenium Status: Its Interactions with Dietary Mercury Exposure and Implications in Human Health. Nutrients 2022; 14:nu14245308. [PMID: 36558469 PMCID: PMC9785339 DOI: 10.3390/nu14245308] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
Selenium is an essential trace element in humans and animals and its role in selenoprotein and enzyme antioxidant activity is well documented. Food is the principal source of selenium, and it is important that selenium status in the body is adequately maintained for physiological functions. There has been increasing attention on the role of selenium in mitigating the toxic effects of mercury exposure from dietary intake in humans. In contrast, mercury is a neurotoxin, and its continuous exposure can cause adverse health effects in humans. The interactions of selenium and mercury are multi-factorial and involve complex binding mechanisms between these elements at a molecular level. Further insights and understanding in this area may help to evaluate the health implications of dietary mercury exposure and selenium status. This review aims to summarise current information on the interplay of the interactions between selenium and mercury in the body and the protective effect of selenium on at-risk groups in a population who may experience long-term mercury exposure.
Collapse
|
16
|
Singh A, Singh P, Kumar R, Kaushik A. Exploring nanoselenium to tackle mutated SARS-CoV-2 for efficient COVID-19 management. FRONTIERS IN NANOTECHNOLOGY 2022. [DOI: 10.3389/fnano.2022.1004729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Despite ongoing public health measures and increasing vaccination rates, deaths and disease severity caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its new emergent variants continue to threaten the health of people around the world. Therefore, there is an urgent need to develop novel strategies for research, diagnosis, treatment, and government policies to combat the variant strains of SARS-CoV-2. Since the state-of-the-art COVID-19 pandemic, the role of selenium in dealing with COVID-19 disease has been widely discussed due to its importance as an essential micronutrient. This review aims at providing all antiviral activities of nanoselenium (Nano-Se) ever explored using different methods in the literature. We systematically summarize the studied antiviral activities of Nano-Se required to project it as an efficient antiviral system as a function of shape, size, and synthesis method. The outcomes of this article not only introduce Nano-Se to the scientific community but also motivate scholars to adopt Nano-Se to tackle any serious virus such as mutated SARS-CoV-2 to achieve an effective antiviral activity in a desired manner.
Collapse
|
17
|
Jiao L, Zhang L, Zhang Y, Wang R, Liu X, Lu B. Prediction models for monitoring selenium and its associated heavy-metal accumulation in four kinds of agro-foods in seleniferous area. Front Nutr 2022; 9:990628. [PMID: 36211511 PMCID: PMC9537640 DOI: 10.3389/fnut.2022.990628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 09/01/2022] [Indexed: 11/23/2022] Open
Abstract
Se-rich agro-foods are effective Se supplements for Se-deficient people, but the associated metals have potential risks to human health. Factors affecting the accumulation of Se and its associated metals in Se-rich agro-foods were obscure, and the prediction models for the accumulation of Se and its associated metals have not been established. In this study, 661 samples of Se-rich rice, garlic, black fungus, and eggs, four typical Se-rich agro-foods in China, and soil, matrix, feed, irrigation, and feeding water were collected and analyzed. The major associated metal for Se-rich rice and garlic was Cd, and that for Se-rich black fungus and egg was Cr. Se and its associated metal contents in Se-rich agro-foods were positively correlated with Se and metal contents in soil, matrix, feed, and matrix organic contents. The Se and Cd contents in Se-rich rice grain and garlic were positively and negatively correlated with soil pH, respectively. Eight models for predicting the content of Se and its main associated metals in Se-rich rice, garlic, black fungus, and eggs were established by multiple linear regression. The accuracy of the constructed models was further validated with blind samples. In summary, this study revealed the main associated metals, factors, and prediction models for Se and metal accumulation in four kinds of Se-rich agro-foods, thus helpful in producing high-quality and healthy Se-rich.
Collapse
Affiliation(s)
- Linshu Jiao
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Liuquan Zhang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Key Laboratory For Quality Evaluation and Health Benefit of Agro-Products of Ministry of Agriculture and Rural Affairs, College of Biosystems Engineering and Food Science, Key Laboratory for Quality and Safety Risk Assessment of Agro-Products Storage and Preservation of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China
| | - Yongzhu Zhang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Ran Wang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xianjin Liu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- *Correspondence: Xianjin Liu,
| | - Baiyi Lu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Key Laboratory For Quality Evaluation and Health Benefit of Agro-Products of Ministry of Agriculture and Rural Affairs, College of Biosystems Engineering and Food Science, Key Laboratory for Quality and Safety Risk Assessment of Agro-Products Storage and Preservation of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China
- Baiyi,
| |
Collapse
|
18
|
Gao X, Yao Y, Chen X, Lin X, Yang X, Ho CT, Li B, Chen Z. Lentinan-functionalized selenium nanoparticles induce apoptosis and cell cycle arrest in human colon carcinoma HCT-116 cells. Front Nutr 2022; 9:987807. [PMID: 36082027 PMCID: PMC9445625 DOI: 10.3389/fnut.2022.987807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/04/2022] [Indexed: 11/13/2022] Open
Abstract
Selenium nanoparticles (SeNPs) have gained extensive attention for their excellent biological activity and low toxicity. However, SeNPs are extremely liable to aggregate into non-bioactive or gray elemental selenium, which limits their application in the biomedicine field. This study aimed to prepare stable SeNPs by using lentinan (LNT) as a template and evaluate its anti-colon cancer activity. The average particle diameter of obtained lentinan-selenium nanoparticles (LNT-SeNPs) was approximately 59 nm and presented zero-valent, amorphous, and spherical structures. The monodisperse SeNPs were stabilized by LNT through hydrogen bonding interactions. LNT-SeNPs solution remained highly stable at 4°C for at least 8 weeks. The stability of LNT-SeNPs solution sharply decreased under high temperature and strong acidic conditions. LNT-SeNPs showed no obvious cytotoxic effect on normal cells (IEC-6) but significantly inhibited the proliferation of five colon cancer cells (HCT-116, HT-29, Caco-2, SW620, and CT26). Among them, LNT-SeNPs exhibited the highest sensitivity toward HCT-116 cells with an IC50 value of 7.65 μM. Also, LNT-SeNPs displayed better cancer cell selectivity than sodium selenite and selenomethionine. Moreover, LNT-SeNPs promoted apoptosis of HCT-116 cells through activating mitochondria-mediated apoptotic pathway. Meanwhile, LNT-SeNPs induced cell cycle arrest at G0/G1 phase in HCT-116 cells via modulation of cell cycle regulatory proteins. The results of this study indicated that LNT-SeNPs possessed strong potential application in the treatment of colorectal cancer (CRC).
Collapse
Affiliation(s)
- Xiong Gao
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
- College of Food Science, South China Agricultural University, Guangzhou, China
- Guangdong Yuewei Edible Fungi Technology Co., Ltd., Guangzhou, China
| | - Yanting Yao
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Xujie Chen
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Xiaorong Lin
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Xiaobing Yang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, NJ, United States
| | - Bin Li
- College of Food Science, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, South China Agricultural University, Guangzhou, China
- *Correspondence: Bin Li,
| | - Zhongzheng Chen
- College of Food Science, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, South China Agricultural University, Guangzhou, China
- Zhongzheng Chen,
| |
Collapse
|
19
|
Kieliszek M, Bano I. Selenium as an important factor in various disease states - a review. EXCLI JOURNAL 2022; 21:948-966. [PMID: 36172072 PMCID: PMC9489890 DOI: 10.17179/excli2022-5137] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 06/28/2022] [Indexed: 12/02/2022]
Abstract
Selenium (Se) is an element that has a pro-health effect on humans and animals. However, both the deficiency of this element and its excess may prove harmful to the body depending on the chemical form of the selenium, the duration of supplementation, and the human health condition. Many data indicate insufficient coverage of the demand for selenium in humans and animals due to its low content in soils and food products. A balance in the physiological process of the body can be achieved via the proper percentage of organically active minerals in the feed of animals as well as human beings. Selenium is a trace mineral of great importance to the body, required for the maintenance of a variety of its processes; primarily, selenium maintains immune endocrine, metabolic, and cellular homeostasis. Recently, this element has been emerging as a most promising treatment option for various disorders. Therefore, research based on Se has been increasing in recent times. The present review is designed to provide up-to-date information related to Se and its different forms as well as its effects on health.
Collapse
Affiliation(s)
- Marek Kieliszek
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences, Nowoursynowska 159 C, 02-776 Warsaw, Poland
| | - Iqra Bano
- Department of Veterinary Physiology & Biochemistry, Shaheed Benazir Bhutto University of Veterinary and Animals Sciences Sakrand (SBBUVAS), 67210, Sindh, Pakistan
| |
Collapse
|
20
|
Bahrami A, Arabestani MR, Taheri M, Farmany A, Norozzadeh F, Hosseini SM, Nozari H, Nouri F. Exploring the Role of Heavy Metals and Their Derivatives on the Pathophysiology of COVID-19. Biol Trace Elem Res 2022; 200:2639-2650. [PMID: 34448983 PMCID: PMC8391869 DOI: 10.1007/s12011-021-02893-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 08/17/2021] [Indexed: 12/13/2022]
Abstract
Many aspects of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its disease, COVID-19, have been studied to determine its properties, transmission mechanisms, and pathology. These efforts are aimed at identifying potential approaches to control or treat the disease. Early treatment of novel SARS-CoV-2 infection to minimize symptom progression has minimal evidence; however, many researchers and firms are working on vaccines, and only a few vaccines exist. COVID-19 is affected by several heavy metals and their nanoparticles. We investigated the effects of heavy metals and heavy metal nanoparticles on SARS-CoV-2 and their roles in COVID-19 pathogenesis. AgNPs, AuNPs, gold-silver hybrid NPs, copper nanoparticles, zinc oxide, vanadium, gallium, bismuth, titanium, palladium, silver grafted graphene oxide, and some quantum dots were tested to see if they could minimize the severity or duration of symptoms in patients with SARS-CoV-2 infection when compared to standard therapy.
Collapse
Affiliation(s)
- Ali Bahrami
- Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Reza Arabestani
- Department of Medical Microbiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Taheri
- Department of Medical Microbiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Abbas Farmany
- Dental Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Fatemeh Norozzadeh
- Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Seyed Mostafa Hosseini
- Department of Medical Microbiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hesam Nozari
- Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Fatemeh Nouri
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
21
|
Chang C, Zhang H, Huang F, Feng X. Understanding the translocation and bioaccumulation of cadmium in the Enshi seleniferous area, China: Possible impact by the interaction of Se and Cd. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 300:118927. [PMID: 35104557 DOI: 10.1016/j.envpol.2022.118927] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 01/25/2022] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
Selenium (Se) plays an indispensable role in minimizing cadmium (Cd) hazards for organisms. However, their potential interactions and co-exposure risk in the naturally Se-Cd enriched paddy field ecosystem are poorly understood. In this study, rice plants with rhizosphere soils sampled from the Enshi seleniferous region, China, were investigated to resolve this confusion. Here, translocation and bioaccumulation of Cd showed some abnormal patterns in the system of soil-rice plants. Roots had the highest bioaccumulation factors of Cd (range: 0.30-57.69; mean: 11.86 ± 14.32), and the biomass of Cd in grains (range: 1.44-127.70 μg, mean: 36.55 ± 36.20 μg) only accounted for ∼10% of the total Cd in whole plants (range: 14.67-1363.20 μg, mean: 381.25 ± 387.57 μg). The elevated soil Cd did not result in the increase of Cd concentrations in rice grains (r2 = 0.03, p > 0.05). Most interestingly, the opposite distribution between Se and Cd in rice grains was found (r2 = 0.24, p < 0.01), which is contrary to the positive correlation for Se and Cd in soil (r2 = 0.46, p < 0.01). It is speculated that higher Se (0.85-11.46 μg/g), higher Se/Cd molar ratios (mean: 5.42 ≫1; range: 1.50-12.87), and higher proportions of reductive Se species (IV, 0) of the Enshi acidic soil may have the stronger capacity of favoring the occurrence of Se binding to Cd ions by forming Cd-Se complexes (Se2- + Cd2+ =CdSe) under reduction conditions during flooding, and hence change the Cd translocation from soil to roots. Furthermore, the negative correlation (r2 = 0.25, p < 0.05) between the Cd translocation factor (TFwhole grains/root) and the roots Se indicates that Cd translocation from the roots to rice grains was suppressed, possibly by the interaction of Se and Cd. This study inevitably poses a challenge for the traditional risk assessment of Cd and Se in the soils-crops-consumers continuum, especially in the seleniferous area.
Collapse
Affiliation(s)
- Chuanyu Chang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China; CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, China
| | - Hua Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China.
| | - Fang Huang
- CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, China
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| |
Collapse
|
22
|
Majeed M, Nagabhushanam K, Prakasan P, Mundkur L. Can Selenium Reduce the Susceptibility and Severity of SARS-CoV-2?-A Comprehensive Review. Int J Mol Sci 2022; 23:4809. [PMID: 35563199 PMCID: PMC9105991 DOI: 10.3390/ijms23094809] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 02/04/2023] Open
Abstract
The SARS-CoV-2 infection is a highly contagious viral infection, which has claimed millions of lives in the last two years. The infection can cause acute respiratory distress, myocarditis, and systemic inflammatory response in severe cases. The interaction of the viral spike protein with the angiotensin-converting enzyme in various tissues causes damage to vital organs and tissues, leading to complications in the post-infection period. Vaccines and antiviral drugs have improved patient response to the infection, but the long-term effect on vital organs is still unknown. Investigations are now focused on supportive nutrient therapies, which can mitigate the susceptibility as well as the long-term complications of COVID-19. Selenium is one such micronutrient that plays a vital role in preventing oxidative stress induced by the virus. Further, selenium is important for effective immune response, controlling systemic inflammation, and maintain overall health of humans. We examine the role of selenium in various aspects of SARS-CoV-2 infection and address the importance of selenium supplementation in reducing the susceptibility and severity of infection in this review.
Collapse
Affiliation(s)
- Muhammed Majeed
- Sami-Sabinsa Group Limited, 19/1&19/2, I Main, II Phase, Peenya Industrial Area, Bangalore 560-058, Karnataka, India; (M.M.); (P.P.)
- Sabinsa Corporation, 20 Lake Drive, East Windsor, NJ 08520, USA;
| | | | - Priji Prakasan
- Sami-Sabinsa Group Limited, 19/1&19/2, I Main, II Phase, Peenya Industrial Area, Bangalore 560-058, Karnataka, India; (M.M.); (P.P.)
| | - Lakshmi Mundkur
- Sami-Sabinsa Group Limited, 19/1&19/2, I Main, II Phase, Peenya Industrial Area, Bangalore 560-058, Karnataka, India; (M.M.); (P.P.)
| |
Collapse
|
23
|
Li Z, Tian Y, Wang B, Peng R, Xu J, Fu X, Han H, Wang L, Zhang W, Deng Y, Wang Y, Gong Z, Gao J, Yao Q. Enhanced phytoremediation of selenium using genetically engineered rice plants. JOURNAL OF PLANT PHYSIOLOGY 2022; 271:153665. [PMID: 35279561 DOI: 10.1016/j.jplph.2022.153665] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/06/2022] [Accepted: 03/06/2022] [Indexed: 06/14/2023]
Abstract
Selenium (Se) is a micronutrient essential for human and animal health. However, Se is toxic at high levels because the nonspecific substitution of cysteine by selenocysteine could lead to protein malfunction. In an attempt to prevent nonspecific selenocysteine incorporation into proteins, we simultaneously overexpressed the gene encoding selenocysteine lyase from Homo sapiens (HsSL), which specifically catalyzes the decomposition of selenocysteine into elemental Se0 and alanine, and the gene encoding selenocysteine methyltransferase from Astragalus bisulcatus (AbSMT), which methylates selenocysteine into methylselenocysteine in rice. The transgenic plants showed normal growth under standard conditions. Se treatment resulted in higher levels of alanine and methylselenocysteine in transgenic plants than in wild-type plants, which indicated that this approach might have successfully redirected Se flow in the plant. Overexpression of HsSL and AbSMT in rice also endows transgenic plants with hyposensitivity to Se stress at the seed germination stage. The transgenic plants showed enhanced selenate and selenite tolerance, which was simultaneously supported by fresh weight values. Moreover, our phytoremediation assay revealed that the transgenic plants exhibited greatly improved Se elimination capabilities and accumulated about 38.5% and 128.6% more Se than wild-type plants when treated with selenate and selenite, respectively. This study offers hope that genetically modified plants could play a role in the restoration of Se-contaminated environment.
Collapse
Affiliation(s)
- Zhenjun Li
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai, 201106, PR China
| | - Yongsheng Tian
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai, 201106, PR China
| | - Bo Wang
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai, 201106, PR China
| | - Rihe Peng
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai, 201106, PR China
| | - Jing Xu
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai, 201106, PR China
| | - Xiaoyan Fu
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai, 201106, PR China
| | - Hongjuan Han
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai, 201106, PR China
| | - Lijuan Wang
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai, 201106, PR China
| | - Wenhui Zhang
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai, 201106, PR China
| | - Yongdong Deng
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai, 201106, PR China
| | - Yu Wang
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai, 201106, PR China
| | - Zehao Gong
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai, 201106, PR China
| | - Jianjie Gao
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai, 201106, PR China.
| | - Quanhong Yao
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai, 201106, PR China.
| |
Collapse
|
24
|
Hu J, Wang Z, Zhang L, Peng J, Huang T, Yang X, Jeong BR, Yang Q. Seleno-Amino Acids in Vegetables: A Review of Their Forms and Metabolism. FRONTIERS IN PLANT SCIENCE 2022; 13:804368. [PMID: 35185982 PMCID: PMC8847180 DOI: 10.3389/fpls.2022.804368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
Seleno-amino acids are safe, health-promoting compounds for humans. Numerous studies have focused on the forms and metabolism of seleno-amino acids in vegetables. Based on research progress on seleno-amino acids, we provide insights into the production of selenium-enriched vegetables with high seleno-amino acids contents. To ensure safe and effective intake of selenium, several issues need to be addressed, including (1) how to improve the accumulation of seleno-amino acids and (2) how to control the total selenium and seleno-amino acids contents in vegetables. The combined use of plant factories with artificial lighting and multiple analytical technologies may help to resolve these issues. Moreover, we propose a Precise Control of Selenium Content production system, which has the potential to produce vegetables with specified amounts of selenium and high proportions of seleno-amino acids.
Collapse
Affiliation(s)
- Jiangtao Hu
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Zheng Wang
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Li Zhang
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Jie Peng
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Tao Huang
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Xiao Yang
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Byoung Ryong Jeong
- Division of Applied Life Science (BK21 Four), Department of Horticulture, Graduate School of Gyeongsang National University, Jinju, South Korea
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, South Korea
- Research Institute of Life Science, Gyeongsang National University, Jinju, South Korea
| | - Qichang Yang
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science and Technology Center, Chengdu, China
| |
Collapse
|
25
|
Li M, Yun H, Huang J, Wang J, Wu W, Guo R, Wang L. Hair Selenium Content in Middle-Aged and Elderly Chinese Population. Biol Trace Elem Res 2021; 199:3571-3578. [PMID: 33188457 DOI: 10.1007/s12011-020-02482-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 11/08/2020] [Indexed: 12/20/2022]
Abstract
Selenium (Se) is an essential nutrient element for human health, and middle-aged and elderly people (age ≥ 45 years old) are at higher risk of nutrient deficiency including Se due to their physiological characteristics. This study investigated the hair Se content of middle-aged and elderly people in China with the purpose of providing a reference for prescription of hair Se normal range in this population. In this study, the hair Se content of 2155 middle-aged and elderly people was detected with atomic fluorescence photometry. The participants were recruited from 15 provinces or municipalities spreading from south to north of China with a diverse Se content in soil. Additionally, the relationships between hair Se content with sex, age, and BMI were analyzed. The results found that the median and 95% quantile of hair Se content were 0.36 μg/g and 0.60 μg/g respectively, with a range of 0.08 to 20.04 μg/g in middle-aged and elderly Chinese. The hair Se content mostly concentrated at 0.23~0.48 μg/g in 81.11% of participants. The participants in Guangdong and Hunan provinces had the highest hair Se levels (medians were 0.51 and 0.50 μg/g, respectively), while Henan and Shaanxi provinces had the lowest levels (medians were 0.30 and 0.29 μg/g, respectively). In addition, the Se content of males was higher than that of females (p < 0.05), whereas there was no significant difference between different ages and BMI (p > 0.05). In conclusion, this study found that the hair Se content of middle-aged and elderly Chinese ranges from 0.08 to 20.04 μg/g, with median and 95% quantile of 0.36 μg/g and 0.60 μg/g, respectively. Our results provide a reference for the establishment of hair Se content in this population and suggest that the differences of region and sex should be considered when setting up the range.
Collapse
Affiliation(s)
- Mengli Li
- School of Nursing, Medical College, Soochow University, No.1 Shizi Street, Suzhou, 215006, China
| | - Hang Yun
- School of Nursing, Medical College, Soochow University, No.1 Shizi Street, Suzhou, 215006, China
| | - Jie Huang
- Research Center, Soochow Setek Biotechnology Co., Ltd., Suzhou, 215123, China
| | - Jian Wang
- Research Center, Soochow Setek Biotechnology Co., Ltd., Suzhou, 215123, China
| | - Wansheng Wu
- Research Center, Soochow Setek Biotechnology Co., Ltd., Suzhou, 215123, China
| | - Remmei Guo
- Research Center, Soochow Setek Biotechnology Co., Ltd., Suzhou, 215123, China
| | - Li Wang
- School of Nursing, Medical College, Soochow University, No.1 Shizi Street, Suzhou, 215006, China.
| |
Collapse
|
26
|
Yang R, He Y, Luo L, Zhu M, Zan S, Guo F, Wang B, Yang B. The interaction between selenium and cadmium in the soil-rice-human continuum in an area with high geological background of selenium and cadmium. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 222:112516. [PMID: 34273847 DOI: 10.1016/j.ecoenv.2021.112516] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/09/2021] [Accepted: 07/10/2021] [Indexed: 06/13/2023]
Abstract
Natural selenium (Se)-rich areas in China are generally characterized by high geological background of cadmium (Cd). However, the interaction between Se and Cd in the soil-rice-human continuum in such areas remains elusive. The concentrations, bioaccessibilities, and biomarkers of Se and Cd in a typical Se-Cd rich area were determined through chemical analysis, in vitro digestion model and cross-sectional study, respectively. The results showed that the molar ratio of available Se/Cd in the soil was averaged at 0.55 and soil Se did not reduce Cd accumulation and transportation in rice. Se bioaccessibility increased from the gastric phase to the intestinal phase, but the opposite was the case for Cd bioaccessibility. Moreover, bioaccessible concentration of Cd was positively correlated to corresponding total concentration in rice but negatively associated with the logarithm of molar ratio of Se/Cd. The risk of Cd-induced nephrotoxicity for the exposure group was not higher than the reference group, which could be ascribed to the mitigative effect of Se. Males and elders were at higher risk of Cd-induced injury owing to higher urinary Cd (U-Cd) and β2-microglobulin (U-β2-MG), and lower urinary Se (U-Se). Our results suggested that Cd-induced health risk should be assessed from a soil-rice-human perspective and the interaction between Se and Cd should be taken into account.
Collapse
Affiliation(s)
- Ruyi Yang
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China; Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Anhui Normal University, Wuhu 241002, China; Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, Anhui Normal University, Wuhu 241002, China.
| | - Yuhuan He
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Linfeng Luo
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Meng Zhu
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China; Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Anhui Normal University, Wuhu 241002, China; Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, Anhui Normal University, Wuhu 241002, China
| | - Shuting Zan
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China; Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Anhui Normal University, Wuhu 241002, China; Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, Anhui Normal University, Wuhu 241002, China
| | - Fuyu Guo
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China; Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Anhui Normal University, Wuhu 241002, China; Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, Anhui Normal University, Wuhu 241002, China
| | - Bo Wang
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China; Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Anhui Normal University, Wuhu 241002, China; Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, Anhui Normal University, Wuhu 241002, China
| | - Beibei Yang
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| |
Collapse
|
27
|
Qin J, Huang X, Wang N, Zhou P, Zhang H, Chen Z, Liang K, Gong D, Zeng Q, Niu P, Chen A, Yuan L, Yang Z, Su L, Shen N, Deng J, Yu D. Supranutritional selenium suppresses ROS-induced generation of RANKL-expressing osteoclastogenic CD4 + T cells and ameliorates rheumatoid arthritis. Clin Transl Immunology 2021; 10:e1338. [PMID: 34584694 PMCID: PMC8452973 DOI: 10.1002/cti2.1338] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 08/11/2021] [Accepted: 08/11/2021] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE The benefit of Se supplementation in rheumatoid arthritis (RA) has been tested in clinical trials, but results remain inconclusive. The objective of this study was to specifically investigate the potential benefit of supranutritional Se by examining human samples from an area with supranutritional Se intake and testing a mouse model of RA. METHODS Peripheral blood mononuclear cells (PBMCs) from RA patients (N = 57) and healthy controls (HC, N = 71) from an area of supranutritional Se intake (Enshi, Hubei, China) were analysed by flow cytometry. Serum cytokine and Se levels were measured by cytometric beads array (CBA) and inductively coupled plasma mass spectrometry (ICP-MS), respectively. With sufficient or supranutritional selenium intake, mice were induced with collagen-induced arthritis (CIA) and examined for disease activity and immunopathology. The influence of Se supplementation in the generation of RANKL-expressing osteoclastogenic CD4+ T cells was investigated by in vitro assays. RESULTS In Enshi city, HC showed the above-normal concentrations of serum Se concentrations while RA patients were enriched in the normal range (70-150 ng mL-1) or below. RA patients with higher Se levels demonstrated milder disease and lower levels of C-reactive protein, IL-6, RANKL and Th17 cells. In the mouse CIA model, supranutritional Se supplementation delayed disease onset, ameliorated joint pathology and reduced CD4+CD44+RANKL+ T cells. Se supplementation could suppress RANKL expression in cultured mouse Th17 cells. CONCLUSION Supranutritional Se suppresses RANKL-expressing osteoclastogenic CD4+ T cells and could be beneficial to RA, which warrants formal testing in randomised clinical trials.
Collapse
Affiliation(s)
- Jiahuan Qin
- Shanghai Institute of RheumatologyChina‐Australia Centre for Personalized ImmunologyRenji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xia Huang
- Department of RheumatologyMinda Hospital of Hubei Minzu UniversityEnshiChina
| | - Naiqi Wang
- The University of Queensland Diamantina InstituteFaculty of MedicineThe University of QueenslandBrisbaneQLDAustralia
| | - Pengcheng Zhou
- The University of Queensland Diamantina InstituteFaculty of MedicineThe University of QueenslandBrisbaneQLDAustralia
| | - Hao Zhang
- Laboratory of Immunology for Environment and HealthSchool of Pharmaceutical ScienceShandong Analysis and Test CenterQilu University of Technology (Shandong Academy of Sciences)JinanChina
| | - Zhian Chen
- The University of Queensland Diamantina InstituteFaculty of MedicineThe University of QueenslandBrisbaneQLDAustralia
| | - Kaili Liang
- Shanghai Institute of RheumatologyChina‐Australia Centre for Personalized ImmunologyRenji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Dongcheng Gong
- Shanghai Institute of RheumatologyChina‐Australia Centre for Personalized ImmunologyRenji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Qunxiong Zeng
- Shanghai Institute of RheumatologyChina‐Australia Centre for Personalized ImmunologyRenji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Peng Niu
- Shanghai Institute of RheumatologyChina‐Australia Centre for Personalized ImmunologyRenji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Anping Chen
- Department of RheumatologyMinda Hospital of Hubei Minzu UniversityEnshiChina
| | - Lin Yuan
- Hubei Provincial Key Laboratory of Occurrence and Intervention of Rheumatic DiseasesMinda Hospital of Hubei Minzu UniversityEnshiChina
| | - Zhaohui Yang
- Department of OrthopaedicsMinda Hospital of Hubei Minzu UniversityEnshiChina
| | - Linchong Su
- Department of RheumatologyMinda Hospital of Hubei Minzu UniversityEnshiChina
| | - Nan Shen
- Shanghai Institute of RheumatologyChina‐Australia Centre for Personalized ImmunologyRenji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- State Key Laboratory of Oncogenes and Related GenesShanghai Cancer InstituteRenji HospitalShanghai Jiao Tong University School of Medicine (SJTUSM)ShanghaiChina
| | - Jun Deng
- Shanghai Institute of RheumatologyChina‐Australia Centre for Personalized ImmunologyRenji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- State Key Laboratory of Oncogenes and Related GenesShanghai Cancer InstituteRenji HospitalShanghai Jiao Tong University School of Medicine (SJTUSM)ShanghaiChina
| | - Di Yu
- Shanghai Institute of RheumatologyChina‐Australia Centre for Personalized ImmunologyRenji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- The University of Queensland Diamantina InstituteFaculty of MedicineThe University of QueenslandBrisbaneQLDAustralia
- Laboratory of Immunology for Environment and HealthSchool of Pharmaceutical ScienceShandong Analysis and Test CenterQilu University of Technology (Shandong Academy of Sciences)JinanChina
| |
Collapse
|
28
|
Lima LW, Nardi S, Santoro V, Schiavon M. The Relevance of Plant-Derived Se Compounds to Human Health in the SARS-CoV-2 (COVID-19) Pandemic Era. Antioxidants (Basel) 2021; 10:antiox10071031. [PMID: 34202330 PMCID: PMC8300636 DOI: 10.3390/antiox10071031] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/20/2021] [Accepted: 06/23/2021] [Indexed: 12/27/2022] Open
Abstract
Dietary selenium (Se)-compounds accumulated in plants are essential for human metabolism and normal physiological processes. Inorganic and organic Se species can be readily absorbed by the human body, but are metabolized differently and thus exhibit distinct mechanisms of action. They can act as antioxidants or serve as a source of Se for the synthesis of selenoproteins. Selenocysteine, in particular, is incorporated at the catalytic center of these proteins through a specific insertion mechanism and, due to its electronic features, enhances their catalytic activity against biological oxidants. Selenite and other Se-organic compounds may also act as direct antioxidants in cells due to their strong nucleophilic properties. In addition, Se-amino acids are more easily subjected to oxidation than the corresponding thiols/thioethers and can bind redox-active metal ions. Adequate Se intake aids in preventing several metabolic disorders and affords protection against viral infections. At present, an epidemic caused by a novel coronavirus (SARS-CoV-2) threatens human health across several countries and impacts the global economy. Therefore, Se-supplementation could be a complementary treatment to vaccines and pharmacological drugs to reduce the viral load, mutation frequency, and enhance the immune system of populations with low Se intake in the diet.
Collapse
Affiliation(s)
| | - Serenella Nardi
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale dell’Università 16, 35020 Legnaro, PD, Italy;
| | - Veronica Santoro
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, Via Leonardo da Vinci, 44, 10095 Grugliasco, TO, Italy;
| | - Michela Schiavon
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, Via Leonardo da Vinci, 44, 10095 Grugliasco, TO, Italy;
- Correspondence: ; Tel.: +1-1670-8520
| |
Collapse
|
29
|
Zhao M, Luo T, Zhao Z, Rong H, Zhao G, Lei L. Food Chemistry of Selenium and Controversial Roles of Selenium in Affecting Blood Cholesterol Concentrations. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:4935-4945. [PMID: 33902277 DOI: 10.1021/acs.jafc.1c00784] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Hypercholesterolemia, one of the major risk factors of cardiovascular diseases, is a worldwide public health problem. Nutraceuticals and phytochemicals are attracting attention as a result of their cholesterol-lowering ability and minimal side effects. Among them, selenium (Se) is on the list. The amount of Se in foods varies by region. Se-enriched fertilizers and feeds can raise the Se content in plants and animals, while some processing methods decrease food Se content. This review summarizes recent studies on (1) the content distribution of Se in foods and factors influencing Se-enriched foods, (2) the bioavailability and metabolism of Se, and (3) the role of Se in affecting blood cholesterol and cholesterol metabolism. Although the hypocholesterolemic effect of Se is equivocal, its cholesterol-lowering activity may be more remarkable when the Se supplementation is 200 μg/day or the baseline blood total cholesterol is above 200 mg/dL in humans with low Se status.
Collapse
Affiliation(s)
- Meng Zhao
- College of Food Science, Southwest University, No. 2 Tiansheng Road, Chongqing 400715, People's Republic of China
| | - Ting Luo
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, People's Republic of China
| | - Zixuan Zhao
- College of Food Science, Southwest University, No. 2 Tiansheng Road, Chongqing 400715, People's Republic of China
| | - Han Rong
- College of Material and Environment, Beijing Institute of Technology, Zhuhai, Guangdong 519085, People's Republic of China
| | - Guohua Zhao
- College of Food Science, Southwest University, No. 2 Tiansheng Road, Chongqing 400715, People's Republic of China
| | - Lin Lei
- College of Food Science, Southwest University, No. 2 Tiansheng Road, Chongqing 400715, People's Republic of China
| |
Collapse
|
30
|
|
31
|
Dos Santos M, Ramires PF, Gironés MCR, Rubio Armendáriz MDC, Montelongo SP, Muccillo-Baisch AL, da Silva Junior FMR. Multiple exposure pathways and health risk assessment of selenium for children in a coal mining area. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:13562-13569. [PMID: 33185795 DOI: 10.1007/s11356-020-11514-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 11/02/2020] [Indexed: 06/11/2023]
Abstract
Selenium (Se) presents a dual role to human body, harmful or beneficial, depending on its concentration. The exposure to this element has been associated to coal mining. Health risk assessment allows estimating and evaluating the risks that environmental hazards pose to vulnerable groups of populations. The present study aimed to analyze the risk of exposure to Se through multiple exposure pathways in children living in Candiota city, where the largest coal reserve of Brazil is located. Data from previous environmental (air, soil, drinking water, and food) and population parameters (age, weight, and food intake) were used to assess the health risk, which was calculated with real values (extracted from the population) and fixed reference values, based on the USEPA recommendation. Most of the children had low health risk (HQ < 1); however, in the most conservative scenarios (higher Se values in the different matrices), there was a high health risk in both scenarios, using population data or the USEPA parameters. The mean HQ using reference values was twice higher than using real values. Se content in air, soil, and drinking water did not represent important average daily dose in both scenarios. While, food intake was a main source of Se exposure, contributing with 96.9% of total Se intake. The findings of this study reinforce the importance of food intake for exposure to Se and the difference between HQs using population measures and fixed parameters of the USEPA highlights the need for adaptations to local scenarios for a better dimensioning of toxicological risk management actions.
Collapse
Affiliation(s)
- Marina Dos Santos
- Programa de Pós-Graduação em Ciências Da Saúde, Faculdade de Medicina, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil
- Laboratório de Ensaios Farmacológicos e Toxicológicos, Instituto de Ciências Biológicas, Universidade Federal Do Rio Grande, Rio Grande, RS, Brazil
| | - Paula Florêncio Ramires
- Programa de Pós-Graduação em Ciências Da Saúde, Faculdade de Medicina, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil
- Laboratório de Ensaios Farmacológicos e Toxicológicos, Instituto de Ciências Biológicas, Universidade Federal Do Rio Grande, Rio Grande, RS, Brazil
| | | | | | - Soraya Paz Montelongo
- Área de Toxicología, Universidad de La Laguna, 38200 La Laguna, Santa Cruz de Tenerife, Spain
| | - Ana Luíza Muccillo-Baisch
- Programa de Pós-Graduação em Ciências Da Saúde, Faculdade de Medicina, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil
- Laboratório de Ensaios Farmacológicos e Toxicológicos, Instituto de Ciências Biológicas, Universidade Federal Do Rio Grande, Rio Grande, RS, Brazil
| | - Flavio Manoel Rodrigues da Silva Junior
- Programa de Pós-Graduação em Ciências Da Saúde, Faculdade de Medicina, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil.
- Laboratório de Ensaios Farmacológicos e Toxicológicos, Instituto de Ciências Biológicas, Universidade Federal Do Rio Grande, Rio Grande, RS, Brazil.
| |
Collapse
|
32
|
Trippe RC, Pilon-Smits EAH. Selenium transport and metabolism in plants: Phytoremediation and biofortification implications. JOURNAL OF HAZARDOUS MATERIALS 2021; 404:124178. [PMID: 33068997 PMCID: PMC7538129 DOI: 10.1016/j.jhazmat.2020.124178] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/06/2020] [Accepted: 10/02/2020] [Indexed: 05/07/2023]
Abstract
The aim of this review is to synthesize current knowledge of selenium (Se) transport and metabolism in plants, with a focus on implications for biofortification and phytoremediation. Selenium is a necessary human micronutrient, and around a billion people worldwide may be Se deficient. This can be ameliorated by Se biofortification of staple crops. Selenium is also a potential toxin at higher concentrations, and multiple environmental disasters over the past 50 years have been caused by Se pollution from agricultural and industrial sources. Phytoremediation by plants able to take up large amounts of Se is an important tool to combat pollution issues. Both biofortification and phytoremediation applications require a thorough understanding of how Se is taken up and metabolized by plants. Selenium uptake and translocation in plants are largely accomplished via sulfur (S) transport proteins. Current understanding of these transporters is reviewed here, and transporters that may be manipulated to improve Se uptake are discussed. Plant Se metabolism also largely follows the S metabolic pathway. This pathway is reviewed here, with special focus on genes that have been, or may be manipulated to reduce the accumulation of toxic metabolites or enhance the accumulation of nontoxic metabolites. Finally, unique aspects of Se transport and metabolism in Se hyperaccumulators are reviewed. Hyperaccumulators, which can accumulate Se at up to 1000 times higher concentrations than normal plants, present interesting specialized systems of Se transport and metabolism. Selenium hyperaccumulation mechanisms and potential applications of these mechanisms to biofortification and phytoremediation are presented.
Collapse
Affiliation(s)
- Richard C Trippe
- Colorado State University, Biology Department, Fort Collins, CO 80523, USA.
| | | |
Collapse
|
33
|
He L, Zhao J, Wang L, Liu Q, Fan Y, Li B, Yu YL, Chen C, Li YF. Using nano-selenium to combat Coronavirus Disease 2019 (COVID-19)? NANO TODAY 2021; 36:101037. [PMID: 33250930 PMCID: PMC7683300 DOI: 10.1016/j.nantod.2020.101037] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 05/20/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic represents a severe global health threat. Selenium (Se), as one of the essential trace elements in human body, is well known for its antioxidant and immunity-boosting capabilities that induce a strong antiviral effect. In response to the global pandemic, we highlight here the current status of Se in combating different viruses, as well as the potential application of nano-selenium (nanoSe) in combating COVID-19.
Collapse
Affiliation(s)
- Lina He
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, & CAS-HKU Joint Laboratory of Metallomics on Health and Environment, & Beijing Metallomics Facility, & National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, Liaoning, China
| | - Jiating Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, & CAS-HKU Joint Laboratory of Metallomics on Health and Environment, & Beijing Metallomics Facility, & National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Liming Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, & CAS-HKU Joint Laboratory of Metallomics on Health and Environment, & Beijing Metallomics Facility, & National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Quancheng Liu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Yuqin Fan
- Shandong Provincial Maternal & Child Health Care Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250014, Shandong, China
| | - Bai Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, & CAS-HKU Joint Laboratory of Metallomics on Health and Environment, & Beijing Metallomics Facility, & National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Yong-Liang Yu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, Liaoning, China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, & CAS Center for Excellence in Nanoscience, & Beijing Metallomics Facility, National Centre for Nanoscience and Technology, Beijing 100191, China
| | - Yu-Feng Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, & CAS-HKU Joint Laboratory of Metallomics on Health and Environment, & Beijing Metallomics Facility, & National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
34
|
Dos Santos M, Penteado JO, Baisch PRM, Soares BM, Muccillo-Baisch AL, da Silva Júnior FMR. Selenium dietary intake, urinary excretion, and toxicity symptoms among children from a coal mining area in Brazil. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:65-75. [PMID: 32710235 DOI: 10.1007/s10653-020-00672-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 07/09/2020] [Indexed: 06/11/2023]
Abstract
Selenium (Se) is necessary for several physiological functions in the human body; however, high concentrations of this element in coal mining areas raise the possibility of Se-related health risks. Children are much more vulnerable and at risk to environmental hazards than adults. The largest coal mining area of Brazil is located in the city of Candiota, where previous studies point to significant urinary Se concentrations among children. Food intake is the main Se source. The study aimed to evaluate dietary Se intake, as well as urinary Se excretion and classic symptoms of Se intoxication among children from Candiota and a control city in the same region. A cross-sectional study was carried out, with participation from 242 children between 6 and 12 years old in two cities in Rio Grande do Sul state, Brazil. Socioeconomic variables, dietary intake, and Se toxicity symptoms were evaluated through a structured questionnaire, and urinary Se levels were measured. Children from both cities had normal levels of Se intake and urinary excretion; however, children from Candiota had significantly higher levels of Se in both parameters in relation to the control city, especially for Se urinary excretion. There was low prevalence of Se toxicity symptoms. We conclude that coal mining activities may increase Se intake in children and consequently its urinary excretion.
Collapse
Affiliation(s)
- Marina Dos Santos
- Programa de Pós-graduação em Ciências Da Saúde, Faculdade de Medicina, Universidade Federal do Rio Grande, Rio Grande, Brazil
- Laboratório de Ensaios Farmacológicos e Toxicológicos, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, Brazil
| | - Júlia Oliveira Penteado
- Programa de Pós-graduação em Ciências Da Saúde, Faculdade de Medicina, Universidade Federal do Rio Grande, Rio Grande, Brazil
- Laboratório de Ensaios Farmacológicos e Toxicológicos, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, Brazil
| | - Paulo Roberto Martins Baisch
- Laboratório de Oceanografia Geológica, Instituto de Oceanografia, Universidade Federal do Rio Grande do Sul, Rio Grande, Brazil
| | - Bruno Meira Soares
- Escola de Química de Alimentos, Universidade Federal do Rio Grande, Rio Grande, Brazil
| | - Ana Luíza Muccillo-Baisch
- Programa de Pós-graduação em Ciências Da Saúde, Faculdade de Medicina, Universidade Federal do Rio Grande, Rio Grande, Brazil
- Laboratório de Ensaios Farmacológicos e Toxicológicos, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, Brazil
| | - Flavio Manoel Rodrigues da Silva Júnior
- Programa de Pós-graduação em Ciências Da Saúde, Faculdade de Medicina, Universidade Federal do Rio Grande, Rio Grande, Brazil.
- Laboratório de Ensaios Farmacológicos e Toxicológicos, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, Brazil.
| |
Collapse
|
35
|
Hasanuzzaman M, Bhuyan MHMB, Raza A, Hawrylak-Nowak B, Matraszek-Gawron R, Nahar K, Fujita M. Selenium Toxicity in Plants and Environment: Biogeochemistry and Remediation Possibilities. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1711. [PMID: 33291816 PMCID: PMC7762096 DOI: 10.3390/plants9121711] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 02/06/2023]
Abstract
Selenium (Se) is a widely distributed trace element with dual (beneficial or toxic) effects for humans, animals, and plants. The availability of Se in the soil is reliant on the structure of the parental material and the procedures succeeding to soil formation. Anthropogenic activities affect the content of Se in the environment. Although plants are the core source of Se in animal and human diet, the role of Se in plants is still debatable. A low concentration of Se can be beneficial for plant growth, development, and ecophysiology both under optimum and unfavorable environmental conditions. However, excess Se results in toxic effects, especially in Se sensitive plants, due to changing structure and function of proteins and induce oxidative/nitrosative stress, which disrupts several metabolic processes. Contrary, Se hyperaccumulators absorb and tolerate exceedingly large amounts of Se, could be potentially used to remediate, i.e., remove, transfer, stabilize, and/or detoxify Se-contaminants in the soil and groundwater. Thereby, Se-hyperaccumulators can play a dynamic role in overcoming global problem Se-inadequacy and toxicity. However, the knowledge of Se uptake and metabolism is essential for the effective phytoremediation to remove this element. Moreover, selecting the most efficient species accumulating Se is crucial for successful phytoremediation of a particular Se-contaminated area. This review emphasizes Se toxicity in plants and the environment with regards to Se biogeochemistry and phytoremediation aspects. This review follows a critical approach and stimulates thought for future research avenues.
Collapse
Affiliation(s)
- Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
| | | | - Ali Raza
- Key Lab of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Wuhan 430062, China;
| | - Barbara Hawrylak-Nowak
- Department of Botany and Plant Physiology, University of Life Sciences in Lublin, Akademicka 15, 20-950 Lublin, Poland; (B.H.-N.); (R.M.-G.)
| | - Renata Matraszek-Gawron
- Department of Botany and Plant Physiology, University of Life Sciences in Lublin, Akademicka 15, 20-950 Lublin, Poland; (B.H.-N.); (R.M.-G.)
| | - Kamrun Nahar
- Department of Agricultural Botany, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh;
| | - Masayuki Fujita
- Laboratory of Plant Stress Responses, Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, 2393 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0795, Japan
| |
Collapse
|
36
|
Hasanuzzaman M, Bhuyan MHMB, Raza A, Hawrylak-Nowak B, Matraszek-Gawron R, Nahar K, Fujita M. Selenium Toxicity in Plants and Environment: Biogeochemistry and Remediation Possibilities. PLANTS (BASEL, SWITZERLAND) 2020; 9:plants9121711. [PMID: 33291816 DOI: 10.1016/j.envexpbot.2020.104170] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 05/22/2023]
Abstract
Selenium (Se) is a widely distributed trace element with dual (beneficial or toxic) effects for humans, animals, and plants. The availability of Se in the soil is reliant on the structure of the parental material and the procedures succeeding to soil formation. Anthropogenic activities affect the content of Se in the environment. Although plants are the core source of Se in animal and human diet, the role of Se in plants is still debatable. A low concentration of Se can be beneficial for plant growth, development, and ecophysiology both under optimum and unfavorable environmental conditions. However, excess Se results in toxic effects, especially in Se sensitive plants, due to changing structure and function of proteins and induce oxidative/nitrosative stress, which disrupts several metabolic processes. Contrary, Se hyperaccumulators absorb and tolerate exceedingly large amounts of Se, could be potentially used to remediate, i.e., remove, transfer, stabilize, and/or detoxify Se-contaminants in the soil and groundwater. Thereby, Se-hyperaccumulators can play a dynamic role in overcoming global problem Se-inadequacy and toxicity. However, the knowledge of Se uptake and metabolism is essential for the effective phytoremediation to remove this element. Moreover, selecting the most efficient species accumulating Se is crucial for successful phytoremediation of a particular Se-contaminated area. This review emphasizes Se toxicity in plants and the environment with regards to Se biogeochemistry and phytoremediation aspects. This review follows a critical approach and stimulates thought for future research avenues.
Collapse
Affiliation(s)
- Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
| | - M H M Borhannuddin Bhuyan
- Citrus Research Station, Bangladesh Agricultural Research Institute, Jaintapur, Sylhet 3156, Bangladesh
| | - Ali Raza
- Key Lab of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Wuhan 430062, China
| | - Barbara Hawrylak-Nowak
- Department of Botany and Plant Physiology, University of Life Sciences in Lublin, Akademicka 15, 20-950 Lublin, Poland
| | - Renata Matraszek-Gawron
- Department of Botany and Plant Physiology, University of Life Sciences in Lublin, Akademicka 15, 20-950 Lublin, Poland
| | - Kamrun Nahar
- Department of Agricultural Botany, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
| | - Masayuki Fujita
- Laboratory of Plant Stress Responses, Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, 2393 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0795, Japan
| |
Collapse
|
37
|
Zhang J, Saad R, Taylor EW, Rayman MP. Selenium and selenoproteins in viral infection with potential relevance to COVID-19. Redox Biol 2020; 37:101715. [PMID: 32992282 PMCID: PMC7481318 DOI: 10.1016/j.redox.2020.101715] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/03/2020] [Accepted: 09/05/2020] [Indexed: 02/07/2023] Open
Abstract
Selenium is a trace element essential to human health largely because of its incorporation into selenoproteins that have a wide range of protective functions. Selenium has an ongoing history of reducing the incidence and severity of various viral infections; for example, a German study found selenium status to be significantly higher in serum samples from surviving than non-surviving COVID-19 patients. Furthermore, a significant, positive, linear association was found between the cure rate of Chinese patients with COVID-19 and regional selenium status. Moreover, the cure rate continued to rise beyond the selenium intake required to optimise selenoproteins, suggesting that selenoproteins are probably not the whole story. Nonetheless, the significantly reduced expression of a number of selenoproteins, including those involved in controlling ER stress, along with increased expression of IL-6 in SARS-CoV-2 infected cells in culture suggests a potential link between reduced selenoprotein expression and COVID-19-associated inflammation. In this comprehensive review, we describe the history of selenium in viral infections and then go on to assess the potential benefits of adequate and even supra-nutritional selenium status. We discuss the indispensable function of the selenoproteins in coordinating a successful immune response and follow by reviewing cytokine excess, a key mediator of morbidity and mortality in COVID-19, and its relationship to selenium status. We comment on the fact that the synthetic redox-active selenium compound, ebselen, has been found experimentally to be a strong inhibitor of the main SARS-CoV-2 protease that enables viral maturation within the host. That finding suggests that redox-active selenium species formed at high selenium intake might hypothetically inhibit SARS-CoV-2 proteases. We consider the tactics that SARS-CoV-2 could employ to evade an adequate host response by interfering with the human selenoprotein system. Recognition of the myriad mechanisms by which selenium might potentially benefit COVID-19 patients provides a rationale for randomised, controlled trials of selenium supplementation in SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Jinsong Zhang
- Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036, Anhui, PR China
| | - Ramy Saad
- Department of Nutritional Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, UK; Royal Sussex County Hospital, Brighton, BN2 5BE, UK
| | - Ethan Will Taylor
- Department of Chemistry and Biochemistry, University of North Carolina Greensboro, Greensboro, NC 27402, USA
| | - Margaret P Rayman
- Department of Nutritional Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, UK.
| |
Collapse
|
38
|
Yu T, Hou W, Hou Q, Ma W, Xia X, Li Y, Yan B, Yang Z. Safe utilization and zoning on natural selenium-rich land resources: a case study of the typical area in Enshi County, China. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2020; 42:2803-2818. [PMID: 32036508 PMCID: PMC7903387 DOI: 10.1007/s10653-020-00519-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 01/18/2020] [Indexed: 05/04/2023]
Abstract
Selenium (Se) is an essential trace element. However, Se in soil is often accompanied by heavy metals, such as cadmium (Cd), because of geological background. The safe utilization of such Se-rich land resources remains a challenge. A typical Se-rich area located in Enshi County, China, was systematically investigated with geochemical and epidemiological methods. The results show that Se in the topsoil is 0.84 ± 1.39 μg/g, whereas that of Cd is 0.93 ± 1.63 μg/g. And the concentration of Se and Cd in corn is 0.22 ± 0.96 μg/g and 0.15 ± 0.32 μg/g, respectively, which is mainly related to the high concentrations in soil. The benchmark dose limit of urinary Cd for β2-microglobulin in subjects (n = 160) was calculated as 3.27 µg/g Cr. In view of crop-human dose effect and combining the relationship among the concentrations of crops and human biomarkers and the concentrations of crops and topsoil, this study established the models of land resource safety zoning. With that, the risk screening value of Cd in the soil could be obtained as 0.98 μg/g in this typical area. The proportions of priority utilization, safe utilization, and strict management of agricultural land area were 58.85%, 22.90%, and 18.25%, respectively, in Enshi, China. These results could provide scientific support for local agricultural development and ecological sustainability.
Collapse
Affiliation(s)
- Tao Yu
- School of Science, China University of Geosciences, Beijing, 100083, China
| | - Wanling Hou
- School of Earth Science and Resources, China University of Geosciences, Beijing, 100083, China
| | - Qingye Hou
- School of Earth Science and Resources, China University of Geosciences, Beijing, 100083, China
| | - Wenjun Ma
- School of Public Health, Peking University Health Science Center, Beijing, 100191, China
| | - Xueqi Xia
- School of Earth Science and Resources, China University of Geosciences, Beijing, 100083, China
| | - Yutong Li
- School of Earth Science and Resources, China University of Geosciences, Beijing, 100083, China
| | - Beizhan Yan
- Lamont-Doherty Earth Observatory, Columbia University, New York, 10964, USA
| | - Zhongfang Yang
- School of Earth Science and Resources, China University of Geosciences, Beijing, 100083, China.
| |
Collapse
|
39
|
Lin L, Sun J, Cui T, Zhou X, Liao M, Huan Y, Yang L, Wu C, Xia X, Wang Y, Li Z, Zhu J, Wang Z. Selenium accumulation characteristics of Cyphomandra betacea ( Solanum betaceum) seedlings. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2020; 26:1375-1383. [PMID: 32647455 PMCID: PMC7326803 DOI: 10.1007/s12298-020-00838-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 04/23/2020] [Accepted: 06/12/2020] [Indexed: 05/13/2023]
Abstract
A pot experiment was conducted to study the selenium (Se) accumulation characteristics and the tolerance of Cyphomandra betacea (Solanum betaceum) seedlings under different soil Se concentrations. The 5 mg/kg soil Se concentration increased the C. betacea seedling biomass and photosynthetic pigment contents (chlorophyll a, chlorophyll b, total chlorophyll, and carotenoid), whereas the other soil Se concentrations (10, 25, and 50 mg/kg) inhibited seedling growth. Increases in the soil Se concentrations tended to decrease the superoxide dismutase activity and soluble protein content, but had the opposite effect on the peroxidase and catalase activities. The 5, 10, and 25 mg/kg soil Se concentrations decreased the DNA methylation levels of C. betacea seedlings because of an increase in demethylation patterns (versus 0 mg/kg), whereas the 50 mg/kg soil Se concentration increased the DNA methylation levels because of an increase in hypermethylation patterns (versus 0 mg/kg). Increases in the soil Se concentrations were accompanied by an increasing trend in the Se content of C. betacea seedlings. Moreover, the amount of Se extracted by the shoots was highest for the 25 mg/kg soil Se concentration. Therefore, C. betacea may be able to accumulate relatively large amounts of Se and its growth may be promoted in 5 mg/kg soil Se.
Collapse
Affiliation(s)
- Linjin Lin
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, Sichuan China
| | - Jing Sun
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, Sichuan China
| | - Tonghao Cui
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan China
| | - Xiong Zhou
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan China
| | - Ming’an Liao
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan China
| | - Yunmin Huan
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan China
| | - Liu Yang
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan China
| | - Caifang Wu
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, Sichuan China
| | - Xianmin Xia
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan China
| | - Yuxi Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan China
| | - Zhiyu Li
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan China
| | - Jinpeng Zhu
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan China
| | - Zhihui Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan China
| |
Collapse
|
40
|
Zhang J, Taylor EW, Bennett K, Saad R, Rayman MP. Association between regional selenium status and reported outcome of COVID-19 cases in China. Am J Clin Nutr 2020. [PMID: 32342979 DOI: 10.1093/ajcn/nqaa095/5826147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023] Open
Affiliation(s)
- Jinsong Zhang
- From the State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei, China
| | - Ethan Will Taylor
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Kate Bennett
- Surrey Clinical Trials Unit and Clinical Research Facility, Department of Clinical and Experimental Medicine, University of Surrey, Guildford, United Kingdom
| | - Ramy Saad
- Royal Sussex County Hospital, Brighton, United Kingdom
| | - Margaret P Rayman
- and Faculty of Health and Medical Sciences, Department of Nutritional Sciences, University of Surrey, Guildford, United Kingdom
| |
Collapse
|
41
|
Zhang J, Taylor EW, Bennett K, Saad R, Rayman MP. Association between regional selenium status and reported outcome of COVID-19 cases in China. Am J Clin Nutr 2020; 111:1297-1299. [PMID: 32342979 PMCID: PMC7197590 DOI: 10.1093/ajcn/nqaa095] [Citation(s) in RCA: 224] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- Jinsong Zhang
- From the State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei, China
| | - Ethan Will Taylor
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Kate Bennett
- Surrey Clinical Trials Unit and Clinical Research Facility, Department of Clinical and Experimental Medicine, University of Surrey, Guildford, United Kingdom
| | - Ramy Saad
- Royal Sussex County Hospital, Brighton, United Kingdom
| | - Margaret P Rayman
- Faculty of Health and Medical Sciences, Department of Nutritional Sciences, University of Surrey, Guildford, United Kingdom,Address correspondence to RS (e-mail: )
| |
Collapse
|
42
|
Brodin O, Hackler J, Misra S, Wendt S, Sun Q, Laaf E, Stoppe C, Björnstedt M, Schomburg L. Selenoprotein P as Biomarker of Selenium Status in Clinical Trials with Therapeutic Dosages of Selenite. Nutrients 2020; 12:nu12041067. [PMID: 32290626 PMCID: PMC7230801 DOI: 10.3390/nu12041067] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 01/31/2023] Open
Abstract
Selenoprotein P (SELENOP) is an established biomarker of selenium (Se) status. Serum SELENOP becomes saturated with increasing Se intake, reaching maximal concentrations of 5–7 mg SELENOP/L at intakes of ca. 100–150 µg Se/d. A biomarker for higher Se intake is missing. We hypothesized that SELENOP may also reflect Se status in clinical applications of therapeutic dosages of selenite. To this end, blood samples from two supplementation studies employing intravenous application of selenite at dosages >1 mg/d were analyzed. Total Se was quantified by spectroscopy, and SELENOP by a validated ELISA. The high dosage selenite infusions increased SELENOP in parallel to elevated Se concentrations relatively fast to final values partly exceeding 10 mg SELENOP/L. Age or sex were not related to the SELENOP increase. Western blot analyses of SELENOP verified the results obtained by ELISA, and indicated an unchanged pattern of immunoreactive protein isoforms. We conclude that the saturation of SELENOP concentrations observed in prior studies with moderate Se dosages (<400 µg/d) may reflect an intermediate plateau of expression, rather than an absolute upper limit. Circulating SELENOP seems to be a suitable biomarker for therapeutic applications of selenite exceeding the recommended upper intake levels. Whether SELENOP is also capable of reflecting other supplemental selenocompounds in high dosage therapeutic applications remains to be investigated.
Collapse
Affiliation(s)
- Ola Brodin
- Department of Laboratory Medicine, Division of Pathology F46, Karolinska Institutet, Karolinska University Hospital Huddinge, SE-141 86 Stockholm, Sweden; (O.B.); (S.M.)
- Department of Head and Neck, Lung and Skin Cancer, Karolinska University Hospital, SE-17176 Stockholm, Sweden
| | - Julian Hackler
- Institute for Experimental Endocrinology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, CVK, D-13353 Berlin, Germany; (J.H.); (Q.S.)
| | - Sougat Misra
- Department of Laboratory Medicine, Division of Pathology F46, Karolinska Institutet, Karolinska University Hospital Huddinge, SE-141 86 Stockholm, Sweden; (O.B.); (S.M.)
| | - Sebastian Wendt
- Department of Intensive Care Medicine, RWTH Aachen University, D-52074 Aachen, Germany; (S.W.); (E.L.); (C.S.)
| | - Qian Sun
- Institute for Experimental Endocrinology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, CVK, D-13353 Berlin, Germany; (J.H.); (Q.S.)
| | - Elena Laaf
- Department of Intensive Care Medicine, RWTH Aachen University, D-52074 Aachen, Germany; (S.W.); (E.L.); (C.S.)
| | - Christian Stoppe
- Department of Intensive Care Medicine, RWTH Aachen University, D-52074 Aachen, Germany; (S.W.); (E.L.); (C.S.)
| | - Mikael Björnstedt
- Department of Laboratory Medicine, Division of Pathology F46, Karolinska Institutet, Karolinska University Hospital Huddinge, SE-141 86 Stockholm, Sweden; (O.B.); (S.M.)
- Correspondence: (M.B.); (L.S.); Tel.: +46-8-58581034 (M.B.); +49-30-450524289 (L.S.); Fax: +46-8-58581020 (M.B.); +49-30-450922 (L.S.)
| | - Lutz Schomburg
- Institute for Experimental Endocrinology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, CVK, D-13353 Berlin, Germany; (J.H.); (Q.S.)
- Correspondence: (M.B.); (L.S.); Tel.: +46-8-58581034 (M.B.); +49-30-450524289 (L.S.); Fax: +46-8-58581020 (M.B.); +49-30-450922 (L.S.)
| |
Collapse
|
43
|
Zhao B, Xing C, Zhou S, Wu X, Yang R, Yan S. Sources, Fraction Distribution and Health Risk Assessment of Selenium (Se) in Dashan Village, a Se-Rich Area in Anhui Province, China. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 104:545-550. [PMID: 32179940 DOI: 10.1007/s00128-020-02827-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 03/12/2020] [Indexed: 06/10/2023]
Abstract
Soil, rock, potable water, animal food and human hair samples were collected from the Dashan village, a typical selenium (Se)-rich area of China. Se content and fraction distribution were determined to trace the source of soil Se and evaluate the potential health risk to humans. Total Se contents in soils ranged from 0.60 to 10.46 mg kg- 1. The fractions of soil Se followed the order: residual Se (R-Se) > organic-bound Se (O-Se) > acid soluble Se (A-Se) > exchangeable Se (E-Se) > water soluble Se (W-Se). Total Se contents in rocks ranged from 0.07 to 24.8 mg kg- 1. The dietary Se intake of local residents was estimated to be 261.2 µg day- 1 and hair Se content varied from 0.34 to 1.35 mg kg- 1, suggesting that the potential health risk should be concerned. Weathering of carbonaceous rock was speculated to be the primary source of soil Se according to the contents of Se in rocks, the distribution of Se in soil profiles and the relationships between Se and other elements in soils and parent rocks.
Collapse
Affiliation(s)
- Bing Zhao
- Key Laboratory of Biological Resources Conservation and Utilization, College of Life Sciences, Anhui Normal University, Wuhu, 241002, Anhui, People's Republic of China
| | - Chen Xing
- Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, Anhui Normal University, Wuhu, 241002, Anhui, People's Republic of China
- College of Environmental Science and Engineering, Anhui Normal University, Wuhu, 241002, Anhui, People's Republic of China
| | - Shoubiao Zhou
- Key Laboratory of Biological Resources Conservation and Utilization, College of Life Sciences, Anhui Normal University, Wuhu, 241002, Anhui, People's Republic of China.
- Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, Anhui Normal University, Wuhu, 241002, Anhui, People's Republic of China.
- College of Environmental Science and Engineering, Anhui Normal University, Wuhu, 241002, Anhui, People's Republic of China.
| | - Xiaoguo Wu
- Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, Anhui Normal University, Wuhu, 241002, Anhui, People's Republic of China
- College of Environmental Science and Engineering, Anhui Normal University, Wuhu, 241002, Anhui, People's Republic of China
| | - Ruyi Yang
- Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, Anhui Normal University, Wuhu, 241002, Anhui, People's Republic of China
- College of Environmental Science and Engineering, Anhui Normal University, Wuhu, 241002, Anhui, People's Republic of China
| | - Shaokai Yan
- Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, Anhui Normal University, Wuhu, 241002, Anhui, People's Republic of China
- College of Environmental Science and Engineering, Anhui Normal University, Wuhu, 241002, Anhui, People's Republic of China
| |
Collapse
|
44
|
Dos Santos M, Veneziani Y, Muccillo-Baisch AL, Da Silva Júnior FMR. Global survey of urinary selenium in children: A systematic review. J Trace Elem Med Biol 2019; 56:1-5. [PMID: 31442946 DOI: 10.1016/j.jtemb.2019.07.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 07/05/2019] [Accepted: 07/08/2019] [Indexed: 11/26/2022]
Abstract
BACKGROUND Selenium (Se) is an essential element in the human body that plays an important role in numerous fundamental physiological functions. However, the distribution of Se in the environment varies widely resulting in this element being available in a large concentration range in the ecosystem, and thus, in the human body. Urinary Se is a biomarker considered to be involved in adaptive mechanisms that help prevent health problems. OBJECTIVES The purpose of the present study was to conduct a systematic review to identify studies reporting the status of urinary Se in healthy children and create a global map. METHODS A literature search was conducted using MEDLINE (United States National Library of Medicine), Web of Science, Toxicology Bibliographic Information (TOXLINE), Latin-American and Caribbean Literature on Health Sciences (LILACS), and the grey literature. This study was registered in PROSPERO (international prospective register of systematic reviews) and was conducted in accordance with the PRISMA guidelines. RESULTS We identified 322 relevant articles, out of which 15 were included in this systematic review. The study identified a total of 4038 healthy children worldwide with urinary Se concentrations from 7.7 to 145.0 μg/L. CONCLUSION This is a pioneering study that provides evidence for the presence of Se in the urine of healthy children; we have shown that the available data is restricted to a small number of individuals and specific groups. Furthermore, there is a lack of information on urinary Se, especially in Latin America, Africa, and Asia.
Collapse
Affiliation(s)
- Marina Dos Santos
- Programa de Pós-graduação em Ciências Da Saúde, Faculdade de Medicina, Universidade Federal do Rio Grande, Rio Grande, Brazil.
| | - Yuri Veneziani
- Programa de Pós-graduação em Geografia Física, Departamento de Geografia, Universidade de São Paulo, São Paulo, Brazil.
| | - Ana Luíza Muccillo-Baisch
- Programa de Pós-graduação em Ciências Da Saúde, Faculdade de Medicina, Universidade Federal do Rio Grande, Rio Grande, Brazil; Laboratório de Ensaios Farmacológicos e Toxicológicos, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, Brazil.
| | - Flávio Manoel Rodrigues Da Silva Júnior
- Programa de Pós-graduação em Ciências Da Saúde, Faculdade de Medicina, Universidade Federal do Rio Grande, Rio Grande, Brazil; Laboratório de Ensaios Farmacológicos e Toxicológicos, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, Brazil.
| |
Collapse
|
45
|
Wang M, Cui Z, Xue M, Peng Q, Zhou F, Wang D, Dinh QT, Liu Y, Liang D. Assessing the uptake of selenium from naturally enriched soils by maize (Zea mays L.) using diffusive gradients in thin-films technique (DGT) and traditional extractions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 689:1-9. [PMID: 31260894 DOI: 10.1016/j.scitotenv.2019.06.346] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 06/21/2019] [Accepted: 06/22/2019] [Indexed: 05/21/2023]
Abstract
A generally accepted method to predict selenium (Se) bioavailability of long-term contaminated soils has not yet been established, even if risk assessments in selenosis areas are crucial. In this study, a set of methods were tested to assess the bioavailability of Se to field maize. Fifty maize (Zea mays L.) samples and corresponding soils were collected from a selenosis area (Ziyang, China). The diffusive gradients in thin-films (DGT) technique and the traditional chemical extraction methods, including seven single-step extraction procedures and a five-step sequential extraction were used to predict the bioaccumulation of Se in plant. The result verified the presence of 50% of total Se in the form of residual Se fraction, followed by organic-bound and Fe-Mn oxide-bound Se fractions in soil. In addition, Se6+, Se4+, and Se2- were all detected in the solution extracted by H2O, KCl, phosphate-buffered solution (PBS), NaHCO3, ethylenediaminetetraacetic acid-2Na (EDTA-2Na) and ammonium bicarbonate-diethylenetriaminepentaacetic acid (AB-DTPA), but Se6+ was not extracted by NaOH. The Se extracted by single-step extraction methods was weakly correlated with the Se uptake by plants with relatively high Se concentration (>3 mg·kg-1). The abilities of the tested methods to predict Se bioavailability in naturally Se-enriched soils declined in the following order: DGT > soil solution > PBS > KCl > H2O > NaHCO3 > EDTA > DTPA > NaOH. The ratio of CDGT to soil solution Se (Csoln) totaled 0.13, indicating an extremely low Se supply from the soil solid phase to the soil solution. Se measured by DGT was mainly derived from the soluble and exchangeable Se fractions that can accurately reflect the plant-absorbed Se pool. Therefore, the DGT technique is highly applicable in the simultaneous prediction of Se bioavailability in naturally Se-enriched soils.
Collapse
Affiliation(s)
- Mengke Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zewei Cui
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mingyue Xue
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qin Peng
- Chongqing Key Laboratory of Environmental Materials & Remediation Technologies, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Fei Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Dan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Quang Toan Dinh
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yongxian Liu
- Agricultural Resource and Environment Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi 530007, China
| | - Dongli Liang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China.
| |
Collapse
|
46
|
Al-Saleh I, Al-Mohawes S, Al-Rouqi R, Elkhatib R. Selenium status in lactating mothers-infants and its potential protective role against the neurotoxicity of methylmercury, lead, manganese, and DDT. ENVIRONMENTAL RESEARCH 2019; 176:108562. [PMID: 31280027 DOI: 10.1016/j.envres.2019.108562] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 06/26/2019] [Accepted: 06/27/2019] [Indexed: 05/29/2023]
Abstract
A total of 206 lactating mothers and their infants (3-12 months) were included in this study to evaluate postnatal exposure to neurotoxic pollutants such as methylmercury (MeHg), lead (Pb), manganese (Mn), dichlorodiphenyltrichloroethane (DDT) and its metabolites [dichlorodiphenyldichloroethane (DDD), and dichlorodiphenyldichloroethylene (DDE)] and their association with delayed neurological development and to explore the protective role of selenium (Se) against chemical neurotoxicity. Neurodevelopmental performance was evaluated using Denver Developmental Screening Test II and Parents' Evaluation of Developmental Status (PEDS). Multivariate log-binomial regression modeling was applied for both single and multiple exposures to chemicals using a principal component analysis that generated six principal components. Both mothers and their infants had been exposed to metals and DDT metabolites, with some exceeding the accepted permissible limits. The geometric means of MeHg, Pb, Mn, DDD, DDE and DDT levels in breast milk were 1.333, 45.327, 15.576, 0.069, 0.542 and 1.08 μg/l, respectively. A single-exposure model identified a high risk of reduced PEDS performance significantly associated with DDD in breast milk [relative risk (RR) = 1.484; 95% confidence interval (95%CI) = 1.091-2.019] and marginally significantly associated with Pb in the mothers' blood (RR = 2.164; 95%CI = 0.87-5.382). We did not find a protective role of Se in neurodevelopment due to its high levels in the mothers. Models of multi-chemical exposure indicated that Mn in blood and breast milk, Se in blood and Pb in the mothers' urine were marginally significantly associated with a high risk of reduced PEDS performance (RR = 0.424; 95%CI = 0.176-1.022). The use of multi-chemical exposure approach in early life risk assessments is important because it indicates real-world exposure. Our results were not conclusive because the sample size was small, so future studies examining the implications to health of the impact of prenatal/postnatal exposure to a mixture of chemicals in the Saudi population are merited.
Collapse
Affiliation(s)
- Iman Al-Saleh
- Environmental Health Program, Research Centre, King Faisal Specialist Hospital and Research Centre, PO Box: 3354, Riyadh, 11211, Saudi Arabia.
| | | | - Reem Al-Rouqi
- Environmental Health Program, Research Centre, King Faisal Specialist Hospital and Research Centre, PO Box: 3354, Riyadh, 11211, Saudi Arabia
| | - Rola Elkhatib
- Environmental Health Program, Research Centre, King Faisal Specialist Hospital and Research Centre, PO Box: 3354, Riyadh, 11211, Saudi Arabia
| |
Collapse
|
47
|
Chang C, Yin R, Zhang H, Yao L. Bioaccumulation and Health Risk Assessment of Heavy Metals in the Soil-Rice System in a Typical Seleniferous Area in Central China. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2019; 38:1577-1584. [PMID: 30994945 DOI: 10.1002/etc.4443] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 03/25/2019] [Accepted: 04/15/2019] [Indexed: 05/22/2023]
Abstract
Heavy metals are rich in seleniferous areas; however, the bioaccumulation and health risk of heavy metals are poorly understood, given the fact that selenium (Se) can inhibit the phytotoxicity and bioavailability of many heavy metals. The present study investigated the bioaccumulation of heavy metals in the soil-rice system in the Enshi seleniferous area of central China. Soils were contaminated by Mo, Cu, As, Sb, Zn, Cd, Tl, and Hg caused by the weathering of Se-rich shales. Among these heavy metals, Cd and Mo had the highest bioavailability in soils. The bioavailable fractions of Cd and Mo accounted for 41.84 and 10.75% of the total Cd and Mo in soils, respectively. Correspondingly, much higher bioaccumulation factors (BAFs) of Cd (0.34) and Mo (0.46) were found in rice, compared with those of other heavy metals (Zn 0.16, Cu 0.05, Hg 0.04, and Sb 0.0002). For the first time-to our knowledge-we showed that the uptake of Hg, Cd, and Cu by rice could be inhibited by the presence of Se in the soil. The probable daily intake (PDI) of Se, Cd, Mo, Zn, and Cu through consumption of local rice was 252 ± 184, 314 ± 301, and 1774 ± 1326 μg/d; and 7.4 ± 1.68 and 0.87 ± 0.35 mg/d, respectively. The high hazard quotients (HQs) of Mo (1.97 ± 1.47) and Cd (5.22 ± 5.02) suggested a high risk of Cd and Mo for Enshi residents through consumption of rice. Environ Toxicol Chem 2019;38:1577-1584. © 2019 SETAC.
Collapse
Affiliation(s)
- Chuanyu Chang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Runsheng Yin
- State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China
| | - Hua Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China
| | - Linjun Yao
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
48
|
Sharma SK, Bansal MP, Sandhir R. Altered dietary selenium influences brain iron content and behavioural outcomes. Behav Brain Res 2019; 372:112011. [PMID: 31212061 DOI: 10.1016/j.bbr.2019.112011] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/31/2019] [Accepted: 06/03/2019] [Indexed: 02/07/2023]
Abstract
Selenium (Se) is an essential micronutrient that provides antioxidant defence through selenoproteins, but at high concentrations, deleterious effects have been reported. The present study examines the antioxidant response in brain regions and behavioural functions in mice under various dietary Se paradigms; Se-deficient, Se-adequate and Se-excess. Se levels were found to be reduced in the cortex and hippocampus of Se-deficient animals, whereas no change was observed in animals on Se-excess diet. In the hippocampus, iron (Fe) levels increased in animals on Se-deficient and Se-excess diets. Moreover, in Se-deficient animals, Fe levels increased in cortex also. Interestingly, Se content in the hair positively correlated with the dietary Se intake. Total and Se-dependent glutathione peroxidase activity decreased in the cortex, hippocampus and cerebellum of animals on Se-deficient diet. On the other hand, the activity of these enzymes decreased in the cortex of animals on Se-excess diet. Further, lipid peroxidation increased in the cortex of animals on Se-deficient diet and in the hippocampus of animals on Se-excess diet. Cognitive functions assessed by Morris water maze and Y-maze tests revealed deficits in Se-deficient state. However, in Se-excess state cognitive deficits were observed only in Y-maze test. These findings suggest that long-term dietary variation in Se influences oxidative stress that impacts cognitive functions. Therefore, it is suggested that maintenance of Se status during postnatal development may be crucial for mental health.
Collapse
Affiliation(s)
- Sunil Kumar Sharma
- Department of Biochemistry, Basic Medical Sciences Block-II, Panjab University, Sector-25, Chandigarh 160014, India
| | - Mohinder Pal Bansal
- Department of Biophysics, Basic Medical Sciences Block-II, Panjab University, Sector-25, Chandigarh 160014, India
| | - Rajat Sandhir
- Department of Biochemistry, Basic Medical Sciences Block-II, Panjab University, Sector-25, Chandigarh 160014, India.
| |
Collapse
|
49
|
Chang C, Yin R, Wang X, Shao S, Chen C, Zhang H. Selenium translocation in the soil-rice system in the Enshi seleniferous area, Central China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 669:83-90. [PMID: 30878943 DOI: 10.1016/j.scitotenv.2019.02.451] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 02/26/2019] [Accepted: 02/28/2019] [Indexed: 06/09/2023]
Abstract
Rice is an important source of selenium (Se) exposure; however, the transformation and translocation of Se in the soil-rice system remain poorly understood. Here, we investigated the speciation of Se in Se-rich soils from Enshi, Central China and assessed which Se species is bioavailable for rice grown in Enshi. Extremely high Se concentrations (0.85 to 11.46 mg/kg) were observed in the soils. The soil Se fractions, which include water-soluble Se (0.2 to 3.4%), ligand-exchangeable Se (4.5 to 15.0%), organically bound Se (57.8 to 80.0%) and residual Se (6.1 to 32.9%), are largely controlled by soil organic matter (SOM) levels. Decomposition of SOM promotes the transformation of organically bound Se to water-soluble Se and ligand-exchangeable Se, thereby increasing the bioavailability of Se. The bioaccumulation factors (BAFs) of Se decrease in the following order: roots (0.84 ± 0.30) > bran (0.33 ± 0.17) > leaves (0.18 ± 0.09) > polished rice (0.14 ± 0.07) > stems (0.12 ± 0.07) > husks (0.11 ± 0.07). Selenium levels in rice plants are affected by multiple soil Se fractions in the soil. Water-soluble, ligand-exchangeable and organically bound Se fractions are the major sources of Se in rice tissues.
Collapse
Affiliation(s)
- Chuanyu Chang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Runsheng Yin
- State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Xun Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Shuxun Shao
- State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Chongying Chen
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hua Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.
| |
Collapse
|
50
|
Santos MD, da Silva Júnior FMR, Zurdo DV, Baisch PRM, Muccillo-Baisch AL, Madrid Y. Selenium and mercury concentration in drinking water and food samples from a coal mining area in Brazil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:15510-15517. [PMID: 30937748 DOI: 10.1007/s11356-019-04942-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 03/20/2019] [Indexed: 06/09/2023]
Abstract
Selenium (Se) is an essential element for human health and can also alleviate the toxicity of elements such as mercury (Hg), which is considered deleterious to health. The study area is an important coal mineral region in Brazil, generating 40% of all Brazilian coal. During the coal mining process, Se and Hg are released, which can induce potential human health risks via the food chain. The purpose of the present study is to determine total Se and its species and total Hg in drinking water and food locally produced from a coal mining area, to assess the impact of coal mining. The samples were collected in two cities, with and without coal mining influence. Total Se levels in drinking water and food were assessed by inductively coupled plasma mass spectrometry (ICP-MS) and its species by high-performance liquid-ICP-MS, while total Hg was determined by cold vapor atomic fluorescence spectrometry. Drinking water (1.1 ± 0.2 mg L-1 dry weight) (p = 0.02) and tomatoes (1.5 ± 0.1 mg kg-1 dry weight) (p = 0.01) from the coal mining area had higher total Se concentration than the control area. The highest Se concentrations were found in animal-based food (6.4 ± 0.8 mg kg-1 dry weight) with an important contribution of Se IV (65%). The analyzed sample did not accumulate a significant amount of Hg. Future studies on the estimates of daily intake of these elements and dietary pattern of the population are needed to make appropriate dietary recommendations and support public health action.
Collapse
Affiliation(s)
- Marina Dos Santos
- Programa de Pós-Graduação em Ciências Da Saúde, Faculdade de Medicina, Universidade Federal do Rio Grande, Rua Visconde de Paranaguá, 102, Rio Grande, 96203-900, Brazil
- Laboratório de Ensaios Farmacológicos e Toxicológicos, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Avenida Itália, km 8,, Rio Grande, 96203-900, Brazil
| | - Flavio Manoel Rodrigues da Silva Júnior
- Programa de Pós-Graduação em Ciências Da Saúde, Faculdade de Medicina, Universidade Federal do Rio Grande, Rua Visconde de Paranaguá, 102, Rio Grande, 96203-900, Brazil.
- Laboratório de Ensaios Farmacológicos e Toxicológicos, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Avenida Itália, km 8,, Rio Grande, 96203-900, Brazil.
| | - David Vicente Zurdo
- Departamento de Química Analítica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Avda Complutense s/n, 28040, Madrid, Spain
| | - Paulo Roberto Martins Baisch
- Laboratório de Geoquímica Ambiental, IO FURG Instituto de Oceanografia, Universidade Federal do Rio Grande, Avenida Itália, km 8, Rio Grande, 96203-900, Brazil
| | - Ana Luíza Muccillo-Baisch
- Programa de Pós-Graduação em Ciências Da Saúde, Faculdade de Medicina, Universidade Federal do Rio Grande, Rua Visconde de Paranaguá, 102, Rio Grande, 96203-900, Brazil
- Laboratório de Ensaios Farmacológicos e Toxicológicos, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Avenida Itália, km 8,, Rio Grande, 96203-900, Brazil
| | - Yolanda Madrid
- Departamento de Química Analítica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Avda Complutense s/n, 28040, Madrid, Spain
| |
Collapse
|