1
|
Ceccarelli F, Dorrucci M, Pirone C, Mataj E, Garufi C, Farchi F, Bruni R, Villano U, Madonna E, Iaiani G, Ciccozzi M, Ciccaglione AR, Conti F, Lo Presti A. Hepatitis E Virus Infection in Patients with Systemic and Cutaneous Lupus Erythematosus. Int J Mol Sci 2024; 25:11162. [PMID: 39456944 PMCID: PMC11509021 DOI: 10.3390/ijms252011162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/02/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease characterized by a multifactorial etiology in which genetic and environmental factors interplay. An exclusively cutaneous condition has been described and defined as cutaneous lupus erythematosus (CLE). In Italy, a nationwide blood donor survey found an overall HEV prevalence of 8.7%, with an interregional variation from 2.2% to 22.8%. In this study, we aimed to estimate HEV seroprevalence in a cohort of patients affected by SLE and CLE attending the Lupus Clinic, Sapienza University of Rome. Serum samples were tested for anti-HEV immunoglobulin Ig G and M antibodies using commercial enzyme-linked immunosorbent assay (ELISA) kits. Statistical analysis was performed. In total, 138 patients were enrolled, 92 (67%) affected by SLE and 46 by CLE. The prevalence of HEV infection was 23.9% in the CLE group and 7.6% in the SLE group. The anti-HEV+ prevalence was significantly more frequent in CLE. Some mechanisms may be linked to increased susceptibility to HEV such as a molecular mimicry associated with the CLE condition or with the skin compartment/skin self-antigens, as well as the involvement of the genetic background. Regarding the possible risk factors, no association was found, although, of note, the odds of HEV+ relative to contact with animals and to eating raw seafood were strongly higher than the unit in the CLE group.
Collapse
Affiliation(s)
- Fulvia Ceccarelli
- Lupus Clinic, Rheumatology, Dipartimento di Scienze Cliniche, Internistiche, Anestesiologiche e Cardiovascolari, Sapienza Università di Roma, 00185 Rome, Italy; (F.C.); (C.P.); (C.G.); (F.C.)
| | - Maria Dorrucci
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (M.D.); (F.F.); (R.B.); (U.V.); (E.M.); (A.R.C.)
| | - Carmelo Pirone
- Lupus Clinic, Rheumatology, Dipartimento di Scienze Cliniche, Internistiche, Anestesiologiche e Cardiovascolari, Sapienza Università di Roma, 00185 Rome, Italy; (F.C.); (C.P.); (C.G.); (F.C.)
| | - Elida Mataj
- Institute of Public Health (ISHP), 1001 Tirana, Albania;
| | - Cristina Garufi
- Lupus Clinic, Rheumatology, Dipartimento di Scienze Cliniche, Internistiche, Anestesiologiche e Cardiovascolari, Sapienza Università di Roma, 00185 Rome, Italy; (F.C.); (C.P.); (C.G.); (F.C.)
| | - Francesca Farchi
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (M.D.); (F.F.); (R.B.); (U.V.); (E.M.); (A.R.C.)
| | - Roberto Bruni
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (M.D.); (F.F.); (R.B.); (U.V.); (E.M.); (A.R.C.)
| | - Umbertina Villano
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (M.D.); (F.F.); (R.B.); (U.V.); (E.M.); (A.R.C.)
| | - Elisabetta Madonna
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (M.D.); (F.F.); (R.B.); (U.V.); (E.M.); (A.R.C.)
| | - Giancarlo Iaiani
- Department of Tropical and Infectious Diseases, Aou Policlinico Umberto I, 00161 Rome, Italy;
| | - Massimo Ciccozzi
- Unit of Medical Statistics and Molecular Epidemiology, University Campus Bio-Medico of Rome, 00128 Rome, Italy;
| | - Anna Rita Ciccaglione
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (M.D.); (F.F.); (R.B.); (U.V.); (E.M.); (A.R.C.)
| | - Fabrizio Conti
- Lupus Clinic, Rheumatology, Dipartimento di Scienze Cliniche, Internistiche, Anestesiologiche e Cardiovascolari, Sapienza Università di Roma, 00185 Rome, Italy; (F.C.); (C.P.); (C.G.); (F.C.)
| | - Alessandra Lo Presti
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (M.D.); (F.F.); (R.B.); (U.V.); (E.M.); (A.R.C.)
| |
Collapse
|
2
|
Muñoz-Chimeno M, Díaz-Sánchez N, Morago L, Rodríguez-Paredes V, Barturen S, Rodríguez-Recio Á, García-Lugo MA, Zamora MI, Mateo M, Sánchez-Martínez M, Avellón A. Performance Comparison of Four Hepatitis E Antibodies Detection Methods. Microorganisms 2024; 12:1875. [PMID: 39338549 PMCID: PMC11434459 DOI: 10.3390/microorganisms12091875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/28/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
HEV antibody detection constitutes the main screening test for HEV infection. The aim of this study is to compare the sensitivity and specificity of four techniques: LIAISON® MUREX DiaSorin anti-HEV IgG and anti-HEV IgM assays, Hepatitis E VIRCLIA® IgM and IgG monotests, WANTAI HEV-IgM and IgG ELISA and VIDAS® anti-HEV IgM and IgG tests in five panels of samples configurated according to the immunoblot (RecomLine, Mikrogen, Neuss, Germany). Anti-HEV IgM sensitivity in the acute phase was 100% in all techniques, while sensitivity, including the immediate convalescence phase, was 96.74% for LIAISON®, 83.14% for VIRCLIA®, 84.78% for WANTAI and 88.04% for VIDAS®. Anti-HEV IgM specificity was 100% for both LIAISON® and VIRCLIA®. Anti-HEV IgM WANTAI agreed with VIRCLIA® with a good Kappa coefficient (κ = 0.71). Anti-HEV IgG post-infection sensitivity was 100% for LIAISON®, VIDAS® and VIRCLIA® and 99% for WANTAI. Anti-HEV IgG specificity reached 97.17% for LIAISON and 88.68% for VIRCLIA®. Our results demonstrated a better capacity of LIAISON® MUREX anti-HEV IgM than that of competitors for detecting acute infections as well as accurate anti-HEV IgG results and in how to resolve them.
Collapse
Affiliation(s)
- Milagros Muñoz-Chimeno
- Hepatitis Unit, National Center of Microbiology, Instituto de Salud Carlos III, 28220 Madrid, Spain
| | - Nazaret Díaz-Sánchez
- Hepatitis Unit, National Center of Microbiology, Instituto de Salud Carlos III, 28220 Madrid, Spain
| | - Lucía Morago
- Hepatitis Unit, National Center of Microbiology, Instituto de Salud Carlos III, 28220 Madrid, Spain
| | | | - Silvia Barturen
- Hepatitis Unit, National Center of Microbiology, Instituto de Salud Carlos III, 28220 Madrid, Spain
| | - Álvaro Rodríguez-Recio
- Hepatitis Unit, National Center of Microbiology, Instituto de Salud Carlos III, 28220 Madrid, Spain
| | | | - Maria Isabel Zamora
- Servicio de Microbiología, Hospital Central de la Defensa, 28047 Madrid, Spain
| | - María Mateo
- Servicio de Microbiología, Hospital Central de la Defensa, 28047 Madrid, Spain
| | | | - Ana Avellón
- Hepatitis Unit, National Center of Microbiology, Instituto de Salud Carlos III, 28220 Madrid, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
| |
Collapse
|
3
|
Katuwal N, Thapa M, Shrestha S, Vaidya K, Bogoch II, Shrestha R, Andrews JR, Tamrakar D, Aiemjoy K. Hepatitis E virus in the Kathmandu Valley: Insights from a representative longitudinal serosurvey. PLoS Negl Trop Dis 2024; 18:e0012375. [PMID: 39102451 PMCID: PMC11326703 DOI: 10.1371/journal.pntd.0012375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 08/15/2024] [Accepted: 07/16/2024] [Indexed: 08/07/2024] Open
Abstract
BACKGROUND Hepatitis-E virus (HEV), an etiologic agent of acute inflammatory liver disease, is a significant cause of morbidity and mortality in South Asia. HEV is considered endemic in Nepal; but data on population-level infection transmission is sparse. METHODS We conducted a longitudinal serosurvey in central Nepal to assess HEV exposure. At each visit, capillary blood samples were collected and analyzed for the presence of anti-HEV IgG antibodies. The study took place between February 2019 and April 2021, with up to 4 visits per participant approximately 6 months apart. RESULTS We collected 2513 samples from 923 participants aged 0-25 years, finding a seroprevalence of 4.8% and a seroincidence rate of 10.9 per 1000 person-years. Young adults and individuals consuming surface water faced the highest incidence of infection. Geospatial analysis identified potential HEV clusters, suggesting a need for targeted interventions. SIGNIFICANCE Our findings demonstrate that HEV is endemic in Nepal and that the risk of infection increases with age.
Collapse
Affiliation(s)
- Nishan Katuwal
- Research and Development Division, Dhulikhel Hospital Kathmandu University Hospital, Dhulikhel, Nepal
- Center for Infectious Disease Research and Surveillance, Dhulikhel Hospital, Kathmandu University Hospital, Dhulikhel, Nepal
| | - Melina Thapa
- Research and Development Division, Dhulikhel Hospital Kathmandu University Hospital, Dhulikhel, Nepal
- Center for Infectious Disease Research and Surveillance, Dhulikhel Hospital, Kathmandu University Hospital, Dhulikhel, Nepal
| | - Sony Shrestha
- Research and Development Division, Dhulikhel Hospital Kathmandu University Hospital, Dhulikhel, Nepal
| | - Krista Vaidya
- Research and Development Division, Dhulikhel Hospital Kathmandu University Hospital, Dhulikhel, Nepal
- Division of Epidemiology, Department of Public Health Sciences, University of California Davis School of Medicine, Sacramento, California, United States of America
| | - Isaac I Bogoch
- Department of Medicine, University of Toronto, Toronto, Canada
| | - Rajeev Shrestha
- Research and Development Division, Dhulikhel Hospital Kathmandu University Hospital, Dhulikhel, Nepal
- Center for Infectious Disease Research and Surveillance, Dhulikhel Hospital, Kathmandu University Hospital, Dhulikhel, Nepal
- Department of Pharmacology, Kathmandu University School of Medical Sciences, Dhulikhel, Nepal
| | - Jason R Andrews
- Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, California, United States of America
| | - Dipesh Tamrakar
- Research and Development Division, Dhulikhel Hospital Kathmandu University Hospital, Dhulikhel, Nepal
- Center for Infectious Disease Research and Surveillance, Dhulikhel Hospital, Kathmandu University Hospital, Dhulikhel, Nepal
- Department of Community Medicine, Kathmandu University School of Medical Sciences, Dhulikhel, Nepal
| | - Kristen Aiemjoy
- Division of Epidemiology, Department of Public Health Sciences, University of California Davis School of Medicine, Sacramento, California, United States of America
- Department of Microbiology and Immunology, Mahidol University Faculty of Tropical Medicine, Bangkok, Thailand
| |
Collapse
|
4
|
Ritter M, Yomade O, Holtz BO, Deinhardt-Emmer S, McLean AL, Hartinger S, Bechwar J, Schwab M, Huss A, Mawrin C, Axer H, Schrenk KG, Reuken PA, Mäurer I. Chronic hepatitis E virus-induced spinal cord atrophy in a patient with chronic lymphatic leukemia: a case report and interdisciplinary management proposal. Front Immunol 2024; 15:1445944. [PMID: 39131153 PMCID: PMC11310032 DOI: 10.3389/fimmu.2024.1445944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 07/08/2024] [Indexed: 08/13/2024] Open
Abstract
Background The hepatitis E virus (HEV) can cause acute viral hepatitis with or without neurological manifestations, and occasionally progresses to chronic infection in immunocompromised individuals. The management of chronic HEV infection in cancer patients may be challenging due to the complex immunological constellation. Furthermore, the diagnostic workflow and the impact on quality of life of neurological HEV manifestations in immunocompromised patients have not been sufficiently delineated previously. Case description A 61-year-old male with systemically treated chronic lymphocytic leukemia (CLL) experienced a slowly progressive atrophy of the spinal cord due to a chronic HEV infection. Despite continuous antiviral treatment with ribavirin, the patient's neurological condition continued to deteriorate, particularly following subsequent attempts to treat CLL. Treatment with obinutuzumab resulted in acute bowel and urinary retention and a further deterioration of motor skills, prompting the discontinuation of obinutuzumab. The patient's neurological status improved after the administration of intravenous immunoglobulins. Conclusion This case study provides a comprehensive long-term follow-up of a cancer patient with chronic HEV infection and associated CNS involvement, which resulted in progressive neurological disability over several years. The challenges faced in diagnosing new neurological symptoms in patients undergoing immunosuppressive cancer treatment underscore the need for an interdisciplinary diagnostic approach that includes HEV testing. We propose a diagnostic pathway for future validation in immunocompromised cohorts presenting with neurological symptoms, emphasizing its potential to enhance clinical outcomes.
Collapse
Affiliation(s)
- Marvin Ritter
- Department of Neurology, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Olaposi Yomade
- Department of Hematology and Medical Oncology, Clinic of Internal Medicine II, Jena University Hospital, Jena, Germany
- Comprehensive Cancer Center Central Germany (CCCG), Jena, Germany
| | - Ben-Ole Holtz
- Department of Neurology, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Stefanie Deinhardt-Emmer
- Institute of Medical Microbiology, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Aaron Lawson McLean
- Comprehensive Cancer Center Central Germany (CCCG), Jena, Germany
- Department of Neurosurgery, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Stefanie Hartinger
- Department of Neurology, Jena University Hospital, Friedrich Schiller University, Jena, Germany
- Comprehensive Cancer Center Central Germany (CCCG), Jena, Germany
| | - Julia Bechwar
- Department of Neurology, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Matthias Schwab
- Department of Neurology, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - André Huss
- Department of Neurology, University Hospital of Ulm, Ulm, Germany
| | - Christian Mawrin
- Department of Neuropathology, Otto von Guericke University Magdeburg, Magdeburg, Germany
- Department of Pathology, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Hubertus Axer
- Department of Neurology, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Karin G. Schrenk
- Department of Hematology and Medical Oncology, Clinic of Internal Medicine II, Jena University Hospital, Jena, Germany
- Comprehensive Cancer Center Central Germany (CCCG), Jena, Germany
| | - Philipp A. Reuken
- Department of Gastroenterology, Hepatology, and Infectious Diseases, Clinic of Internal Medicine IV, Jena University Hospital, Jena, Germany
| | - Irina Mäurer
- Department of Neurology, Jena University Hospital, Friedrich Schiller University, Jena, Germany
- Comprehensive Cancer Center Central Germany (CCCG), Jena, Germany
| |
Collapse
|
5
|
Csernalabics B, Marinescu MS, Maurer L, Kelsch L, Werner J, Baumann K, Zoldan K, Panning M, Reuken P, Bruns T, Bengsch B, Neumann-Haefelin C, Hofmann M, Thimme R, Dao Thi VL, Boettler T. Efficient formation and maintenance of humoral and CD4 T-cell immunity targeting the viral capsid in acute-resolving hepatitis E infection. J Hepatol 2024; 80:564-575. [PMID: 38154741 DOI: 10.1016/j.jhep.2023.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/06/2023] [Accepted: 12/11/2023] [Indexed: 12/30/2023]
Abstract
BACKGROUND & AIMS CD4 T cells shape the neutralizing antibody (nAb) response and facilitate viral clearance in various infections. Knowledge of their phenotype, specificity and dynamics in hepatitis E virus (HEV) infection is limited. HEV is enterically transmitted as a naked virus (nHEV) but acquires a host-derived quasi-envelope (eHEV) when budding from cells. While nHEV is composed of the open reading frame (ORF)-2-derived capsid, eHEV particles also contain ORF3-derived proteins. We aimed to longitudinally characterize the HEV-specific CD4 T cells targeting ORF1, 2 and 3 and antibodies against nHEV or eHEV in immunocompetent individuals with acute and resolved HEV infection. METHODS HEV-specific CD4 T cells were analyzed by intracellular cytokine staining after stimulation with in silico-predicted ORF1- and ORF2-derived epitopes and overlapping peptides spanning the ORF3 region. Ex vivo multiparametric characterization of capsid-specific CD4 T cells was performed using customized MHC class II tetramers. Total and neutralizing antibodies targeting nHEV or eHEV particles were determined. RESULTS HEV-specific CD4 T-cell frequencies and antibody titers are highest in individuals with acute infection and decline in a time-dependent process with an antigen hierarchy. HEV-specific CD4 T cells strongly target the ORF2-derived capsid and ORF3-specific CD4 T cells are hardly detectable. NAbs targeting nHEV are found in high titers while eHEV particles are less efficiently neutralized. Capsid-specific CD4 T cells undergo memory formation and stepwise contraction, accompanied by dynamic phenotypical and transcriptional changes over time. CONCLUSION The viral capsid is the main target of HEV-specific CD4 T cells and antibodies in acute-resolving infection, correlating with efficient neutralization of nHEV. Capsid-specific immunity rapidly emerges followed by a stepwise contraction several years after infection. IMPACT AND IMPLICATIONS The interplay of CD4 T cells and neutralizing antibody responses is critical in the host defense against viral infections, yet little is known about their characteristics in hepatitis E virus (HEV) infection. We conducted a longitudinal study of immunocompetent individuals with acute and resolved HEV infection to understand the characteristics of HEV-specific CD4 T cells and neutralizing antibodies targeting different viral proteins and particles. We found that HEV-specific CD4 T cells mainly target capsid-derived epitopes. This correlates with efficient neutralization of naked virions while quasi-enveloped particles are less susceptible to neutralization. As individuals with pre-existing liver disease and immunocompromised individuals are at risk for fulminant or chronic courses of HEV infection, these individuals might benefit from the development of vaccination strategies which require a detailed knowledge of the composition and longevity of HEV-specific CD4 T-cell and antibody immunity.
Collapse
Affiliation(s)
- Benedikt Csernalabics
- Department of Medicine II, Medical Center - University of Freiburg, Germany; Faculty of Medicine, University of Freiburg, Germany
| | - Mircea Stefan Marinescu
- Department of Medicine II, Medical Center - University of Freiburg, Germany; Faculty of Medicine, University of Freiburg, Germany
| | - Lars Maurer
- Schaller Research Group, Department of Infectious Diseases and Virology, Heidelberg University Hospital, Germany
| | - Lara Kelsch
- Department of Medicine II, Medical Center - University of Freiburg, Germany; Faculty of Medicine, University of Freiburg, Germany
| | - Jill Werner
- Department of Medicine II, Medical Center - University of Freiburg, Germany; Faculty of Medicine, University of Freiburg, Germany
| | - Katharina Baumann
- Department of Medicine II, Medical Center - University of Freiburg, Germany; Faculty of Medicine, University of Freiburg, Germany
| | - Katharina Zoldan
- Department of Medicine II, Medical Center - University of Freiburg, Germany; Faculty of Medicine, University of Freiburg, Germany
| | - Marcus Panning
- Institute of Virology, University Hospital Freiburg, Germany
| | - Philipp Reuken
- Department of Internal Medicine IV, University Hospital Jena, Germany
| | - Tony Bruns
- Department of Internal Medicine IV, University Hospital Jena, Germany; Department of Internal Medicine III, University Hospital RWTH Aachen, Germany
| | - Bertram Bengsch
- Department of Medicine II, Medical Center - University of Freiburg, Germany; Faculty of Medicine, University of Freiburg, Germany; Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Christoph Neumann-Haefelin
- Department of Medicine II, Medical Center - University of Freiburg, Germany; Faculty of Medicine, University of Freiburg, Germany
| | - Maike Hofmann
- Department of Medicine II, Medical Center - University of Freiburg, Germany; Faculty of Medicine, University of Freiburg, Germany
| | - Robert Thimme
- Department of Medicine II, Medical Center - University of Freiburg, Germany; Faculty of Medicine, University of Freiburg, Germany
| | - Viet Loan Dao Thi
- Schaller Research Group, Department of Infectious Diseases and Virology, Heidelberg University Hospital, Germany; German Centre for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany
| | - Tobias Boettler
- Department of Medicine II, Medical Center - University of Freiburg, Germany; Faculty of Medicine, University of Freiburg, Germany.
| |
Collapse
|
6
|
Borlang J, Murphy D, Harlow J, Osiowy C, Nasheri N. The molecular epidemiology of hepatitis E virus genotype 3 in Canada. Epidemiol Infect 2024; 152:e55. [PMID: 38487841 PMCID: PMC11022259 DOI: 10.1017/s0950268824000475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/26/2024] [Accepted: 03/05/2024] [Indexed: 04/05/2024] Open
Abstract
Autochthonous hepatitis E virus (HEV) infection is increasingly reported in industrialized countries and is mostly associated with zoonotic HEV genotype 3 (HEV-3). In this study, we examined the molecular epidemiology of 63 human clinical HEV-3 isolates in Canada between 2014 and 2022. Fifty-five samples were IgM positive, 45 samples were IgG positive and 44 were IgM and IgG positive. The majority of the isolates belong to the subtypes 3a, 3b, and 3j, with high sequence homology to Canadian swine and pork isolates. There were a few isolates that clustered with subtypes 3c, 3e, 3f, 3h, and 3g, and an isolate from chronic infection with a rabbit strain (3ra). Previous studies have demonstrated that the isolates from pork products and swine from Canada belong to subtypes 3a and 3b, therefore, domestic swine HEV is likely responsible for the majority of clinical HEV cases in Canada and further support the hypothesis that swine serve as the main reservoirs for HEV-3 infections. Understanding the associated risk of zoonotic HEV infection requires the establishment of sustainable surveillance strategies at the interface between humans, animals, and the environment within a One-Health framework.
Collapse
Affiliation(s)
- Jamie Borlang
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Donald Murphy
- Laboratoire de santé publique du Québec, Institut national de santé publique du Québec, Sainte-Anne-de-Bellevue, QC, Canada
| | - Jennifer Harlow
- National Food Virology Reference Centre, Bureau of Microbial Hazards, Food Directorate, Health Canada, Ottawa, ON, Canada
| | - Carla Osiowy
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Neda Nasheri
- National Food Virology Reference Centre, Bureau of Microbial Hazards, Food Directorate, Health Canada, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
7
|
Zicker M, Pinho JRR, Welter EAR, Guardia BD, da Silva PGTM, da Silveira LB, Camargo LFA. The Risk of Reinfection or Primary Hepatitis E Virus Infection at a Liver Transplant Center in Brazil: An Observational Cohort Study. Viruses 2024; 16:301. [PMID: 38400077 PMCID: PMC10893537 DOI: 10.3390/v16020301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/31/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
The hepatitis E virus is a major etiological agent of chronic hepatitis in immunosuppressed individuals. Seroprevalence in the liver transplantation setting varies according to the seroprevalence of the general population in different countries. This was a prospective cohort study of liver transplant recipients in southeastern Brazil. Recipients were systematically followed for one year, with the objective of determining the prevalence, incidence, and natural history of HEV infection in this population. We included 107 liver transplant recipients and 83 deceased donors. Positivity for anti-HEV IgG was detected in 10.2% of the recipients and in 9.7% of the donors. None of the patients tested positive for HEV RNA at baseline or during follow-up. There were no episodes of reactivation or seroconversion, even in cases of serological donor-recipient mismatch or in recipients with acute hepatitis. Acute and chronic HEV infections seem to be rare events in the region studied. That could be attributable to social, economic, and environmental factors. Our data indicate that, among liver transplant recipients, hepatitis E should be investigated only when there are elevated levels of transaminases with no defined cause, as part of the differential diagnosis of seronegative hepatitis after transplantation.
Collapse
Affiliation(s)
- Michelle Zicker
- Division of Infectious Diseases, Department of Internal Medicine, Universidade Federal de São Paulo, São Paulo 04023-062, Brazil;
| | - João R. R. Pinho
- Research and Development Sector, Clinical Laboratory, Hospital Israelita Albert Einstein, São Paulo 05652-900, Brazil
| | - Eliane A. R. Welter
- Research and Development Sector, Clinical Laboratory, Hospital Israelita Albert Einstein, São Paulo 05652-900, Brazil
| | - Bianca D. Guardia
- Liver Transplant Program, Hospital Israelita Albert Einstein, São Paulo 05652-900, Brazil
| | | | | | - Luís F. A. Camargo
- Division of Infectious Diseases, Department of Internal Medicine, Universidade Federal de São Paulo, São Paulo 04023-062, Brazil;
- Faculdade Israelita de Ciências da Saúde Albert Einstein, São Paulo 05653-120, Brazil
| |
Collapse
|
8
|
Yoshida Y, Ito A, Eto H, Suzuki A, Abe T, Endo K, Kakisaka K, Oikawa T, Kuroda H, Miyasaka A, Matsumoto T, Takahashi M, Okamoto H. Seroprevalence and incidence of hepatitis E virus infection in the general population of Iwate prefecture, Japan: A retrospective cohort study. Hepatol Res 2024; 54:24-31. [PMID: 37635642 DOI: 10.1111/hepr.13961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/18/2023] [Accepted: 08/24/2023] [Indexed: 08/29/2023]
Abstract
AIM Hepatitis E virus (HEV) causes subclinical or acute self-limiting hepatitis. We surveyed the current seroprevalence and incidence of HEV infection among the general population in Iwate Prefecture, Japan, where the endemic infection is presumed to be low. METHODS Between 2014 and 2016, we recruited individuals from Iwate Prefecture, Japan, who visited a general medical work-up program. Serum anti-HEV antibody and HEV RNA were measured twice, with an interval of 2 years. Anti-HEV antibody was measured with enzyme-linked immunosorbent assay and HEV RNA with reverse transcription-polymerase chain reaction. RESULTS Study participants comprised 1284 Japanese (650 men and 634 women) with age ranging 20-89 years. A total of 90 participants were found to be positive for anti-HEV immunoglobulin G on the first visit, with a prevalence of 7.0% (95% confidence interval [CI] 5.6%-8.4%). Seroprevalence was higher in men than in women (10.1% vs. 3.7%, p < 0.001), and in those aged in their 50s-80s than in those aged in their 20s-40s (p = 0.006). Positive seroconversion indicating new HEV infection was found in seven of 1194 seronegative participants (0.59%; 95% CI 0.15%-1.0%), indicating the incidence of HEV infection to be 272 per 100 000 person-years (95% CI 109-561). CONCLUSIONS Our observations suggest that the incidence of HEV infection is high and that it is a leading cause of hepatitis virus infection in Iwate Prefecture, Japan.
Collapse
Affiliation(s)
- Yuichi Yoshida
- Division of Gastroenterology, Department of Internal Medicine, Iwate Medical University School of Medicine, Yahaba, Japan
| | - Asami Ito
- Division of Gastroenterology, Department of Internal Medicine, Iwate Medical University School of Medicine, Yahaba, Japan
| | - Hisashi Eto
- Division of Gastroenterology, Department of Internal Medicine, Iwate Medical University School of Medicine, Yahaba, Japan
| | - Akiko Suzuki
- Division of Gastroenterology, Department of Internal Medicine, Iwate Medical University School of Medicine, Yahaba, Japan
| | - Tamami Abe
- Division of Gastroenterology, Department of Internal Medicine, Iwate Medical University School of Medicine, Yahaba, Japan
| | - Kei Endo
- Division of Gastroenterology, Department of Internal Medicine, Iwate Medical University School of Medicine, Yahaba, Japan
| | - Keisuke Kakisaka
- Division of Gastroenterology, Department of Internal Medicine, Iwate Medical University School of Medicine, Yahaba, Japan
| | - Takayoshi Oikawa
- Division of Gastroenterology, Department of Internal Medicine, Iwate Medical University School of Medicine, Yahaba, Japan
| | - Hidekatsu Kuroda
- Division of Gastroenterology, Department of Internal Medicine, Iwate Medical University School of Medicine, Yahaba, Japan
| | - Akio Miyasaka
- Division of Gastroenterology, Department of Internal Medicine, Iwate Medical University School of Medicine, Yahaba, Japan
| | - Takayuki Matsumoto
- Division of Gastroenterology, Department of Internal Medicine, Iwate Medical University School of Medicine, Yahaba, Japan
| | - Masaharu Takahashi
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Shimotsuke, Japan
| | - Hiroaki Okamoto
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Shimotsuke, Japan
| |
Collapse
|
9
|
Kuznetsova T, Moor D, Khanirzayeva G, Geller J. Evaluation of Prevalence of Hepatitis E Clinical Markers among Donors in Estonia. Viruses 2023; 15:2118. [PMID: 37896895 PMCID: PMC10612021 DOI: 10.3390/v15102118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Hepatitis E virus (HEV) is now considered the most common cause of acute hepatitis worldwide. There are no published data about the prevalence of antibodies to HEV and RNA in donor sera in Estonia, and this precludes planning measures for preventing HEV proliferation through blood transfusion services. Here, were report data from an analysis of 1002 sera on the prevalence of anti-HEV IgG and IgM and the viral RNA. The antibodies were found in 48 donor sera (4.8%); of these, 40 (4%) harbored anti-HEV IgG, 15 (1.5%) contained anti-HEV IgM, and 7 donors had anti-HEV antibodies of both classes simultaneously. HEV RNA was not detected in any blood serum. Statistical associations of infection risk factors (gender, age, travel in the last six months, contact with pigs and/or wild boars in the last six months, consumption of thermally unprocessed/raw pork or boar meat, raw/unfiltered tap water or water from natural sources, unpasteurized farm dairy products, and unwashed berries and/or vegetables) were assessed. None of the listed factors were found to be associated with a higher or lower risk of anti-HEV antibody presence. At the same time, an increasing share of anti-HEV IgG carriers with age was found. The absence of HEV RNA in the analyzed donor plasma samples proves that HEV acute infection prevalence in Estonia does not exceed the average level of European countries. There is no urgent necessity to enter a requirement for a total screening of blood plasma for HEV RNA prevalence in Estonia.
Collapse
Affiliation(s)
- Tatiana Kuznetsova
- Department of Infectious Disease Research, National Institute for Health Development, 11619 Tallinn, Estonia
| | - Diana Moor
- North Estonia Medical Centre’s Blood Center, North Estonia Medical Centre Foundation, 13419 Tallinn, Estonia; (D.M.); (G.K.)
| | - Gulara Khanirzayeva
- North Estonia Medical Centre’s Blood Center, North Estonia Medical Centre Foundation, 13419 Tallinn, Estonia; (D.M.); (G.K.)
| | - Julia Geller
- Department of Infectious Disease Research, National Institute for Health Development, 11619 Tallinn, Estonia
| |
Collapse
|
10
|
Turlewicz-Podbielska H, Augustyniak A, Wojciechowski J, Pomorska-Mól M. Hepatitis E Virus in Livestock-Update on Its Epidemiology and Risk of Infection to Humans. Animals (Basel) 2023; 13:3239. [PMID: 37893962 PMCID: PMC10603682 DOI: 10.3390/ani13203239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/09/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Hepatitis E virus (HEV) is a public health problem worldwide and an important food pathogen known for its zoonotic potential. Increasing numbers of infection cases with human HEV are caused by the zoonotic transmission of genotypes 3 and 4, mainly by consuming contaminated, undercooked or raw porcine meat. Pigs are the main reservoir of HEV. However, it should be noted that other animal species, such as cattle, sheep, goats, and rabbits, may also be a source of infection for humans. Due to the detection of HEV RNA in the milk and tissues of cattle, the consumption of infected uncooked milk and meat or offal from these species also poses a potential risk of zoonotic HEV infections. Poultry infected by avian HEV may also develop symptomatic disease, although avian HEV is not considered a zoonotic pathogen. HEV infection has a worldwide distribution with different prevalence rates depending on the affected animal species, sampling region, or breeding system.
Collapse
Affiliation(s)
- Hanna Turlewicz-Podbielska
- Department of Preclinical Sciences and Infectious Diseases, Poznan University of Life Sciences, Wolynska 35, 60-637 Poznan, Poland; (H.T.-P.); (A.A.)
| | - Agata Augustyniak
- Department of Preclinical Sciences and Infectious Diseases, Poznan University of Life Sciences, Wolynska 35, 60-637 Poznan, Poland; (H.T.-P.); (A.A.)
| | | | - Małgorzata Pomorska-Mól
- Department of Preclinical Sciences and Infectious Diseases, Poznan University of Life Sciences, Wolynska 35, 60-637 Poznan, Poland; (H.T.-P.); (A.A.)
| |
Collapse
|
11
|
Pires H, Cardoso L, Lopes AP, Fontes MDC, Santos-Silva S, Matos M, Pintado C, Figueira L, Matos AC, Mesquita JR, Coelho AC. Prevalence and Risk Factors for Hepatitis E Virus in Wild Boar and Red Deer in Portugal. Microorganisms 2023; 11:2576. [PMID: 37894234 PMCID: PMC10609178 DOI: 10.3390/microorganisms11102576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Hepatitis E virus (HEV) is a zoonotic foodborne virus with an annual infection prevalence of 20 million human cases, which seriously affects public health and economic development in both developed and developing countries. To better understand the epidemiology of HEV in Central Portugal, a cross-sectional study was conducted from 2016 to 2023 with sera samples from wild ungulates. The seroprevalence and risk factors for HEV seropositivity were evaluated in the present study. Specifically, antibodies against HEV were determined by a commercial enzyme-linked immune-sorbent assay (ELISA). Our results show that in the 650 sera samples collected from 298 wild red deer and 352 wild boars in Portugal, 9.1% red deer and 1.7% wild boar were positive for antibodies to HEV. Regarding age, the seropositivity in juvenile wild ungulates was 1.3%, whereas it was 7.2% in adults. Logistic regression models investigated risk factors for seropositivity. The odds of being seropositive was 3.6 times higher in adults than in juveniles, and the risk was 4.2 times higher in red deer than in wild boar. Both wild ungulate species were exposed to HEV. The higher seroprevalence in red deer suggests that this species may make a major contribution to the ecology of HEV in Central Portugal. Further research is needed to understand how wildlife affects the epidemiology of HEV infections in Portugal.
Collapse
Affiliation(s)
- Humberto Pires
- Polytechnic Institute of Castelo Branco, 6001-909 Castelo Branco, Portugal; (H.P.); (C.P.); (A.C.M.)
| | - Luís Cardoso
- Animal and Veterinary Research Centre (CECAV), Department of Veterinary Sciences, University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (L.C.); (A.P.L.); (M.d.C.F.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 5000-801 Vila Real, Portugal
| | - Ana Patrícia Lopes
- Animal and Veterinary Research Centre (CECAV), Department of Veterinary Sciences, University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (L.C.); (A.P.L.); (M.d.C.F.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 5000-801 Vila Real, Portugal
| | - Maria da Conceição Fontes
- Animal and Veterinary Research Centre (CECAV), Department of Veterinary Sciences, University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (L.C.); (A.P.L.); (M.d.C.F.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 5000-801 Vila Real, Portugal
| | - Sérgio Santos-Silva
- School of Medicine and Biomedical Sciences (ICBAS), Porto University, 4050-313 Porto, Portugal; (S.S.-S.); (J.R.M.)
| | - Manuela Matos
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
| | - Cristina Pintado
- Polytechnic Institute of Castelo Branco, 6001-909 Castelo Branco, Portugal; (H.P.); (C.P.); (A.C.M.)
- Research Center for Natural Resources, Environment and Society, Polytechnic Institute of Castelo Branco, 6001-909 Castelo Branco, Portugal;
- Quality of Life in the Rural World (Q-RURAL), Polytechnic Institute of Castelo Branco, 6001-909 Castelo Branco, Portugal
| | - Luís Figueira
- Research Center for Natural Resources, Environment and Society, Polytechnic Institute of Castelo Branco, 6001-909 Castelo Branco, Portugal;
- Quality of Life in the Rural World (Q-RURAL), Polytechnic Institute of Castelo Branco, 6001-909 Castelo Branco, Portugal
| | - Ana Cristina Matos
- Polytechnic Institute of Castelo Branco, 6001-909 Castelo Branco, Portugal; (H.P.); (C.P.); (A.C.M.)
- Research Center for Natural Resources, Environment and Society, Polytechnic Institute of Castelo Branco, 6001-909 Castelo Branco, Portugal;
- Quality of Life in the Rural World (Q-RURAL), Polytechnic Institute of Castelo Branco, 6001-909 Castelo Branco, Portugal
| | - João Rodrigo Mesquita
- School of Medicine and Biomedical Sciences (ICBAS), Porto University, 4050-313 Porto, Portugal; (S.S.-S.); (J.R.M.)
- Epidemiology Research Unit (EPIUnit), Instituto de Saúde Pública da Universidade do Porto, 4050-600 Porto, Portugal
- Laboratório Para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), 4050-600 Porto, Portugal
| | - Ana Cláudia Coelho
- Animal and Veterinary Research Centre (CECAV), Department of Veterinary Sciences, University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (L.C.); (A.P.L.); (M.d.C.F.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 5000-801 Vila Real, Portugal
| |
Collapse
|
12
|
Kevorkyan A, Golkocheva-Markova E, Raycheva R, Rangelova V, Komitova R, Atanasova M, Tzekov V, Kostadinova T, Chardakova T. Hepatitis E Virus (HEV) Infection among Hemodialysis Patients from Southern Bulgaria. Pathogens 2023; 12:1208. [PMID: 37887724 PMCID: PMC10610113 DOI: 10.3390/pathogens12101208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/23/2023] [Accepted: 09/24/2023] [Indexed: 10/28/2023] Open
Abstract
Viral hepatitis B and C are widely recognized problems in hemodialysis (HD) patients. There have been increasing reports of the importance of the hepatitis E virus (HEV) in recent years, but the worldwide data on the seroprevalence of HEV among them are conflicting. The aim of the present study was to assess the seroprevalence of HEV in HD patients and to analyze the predictors of seropositivity. This study was conducted in 2020 in the central part of southern Bulgaria. A total of 225 patients were enrolled. An enzyme-linked immunosorbent assay for the determination of anti-HEV IgM/IgG was used. All patients were tested for the presence of HEV RNA. Anti-HEV IgM alone and anti-HEV IgG alone were found in 6 (2.7%) and 14 (6.2%) patients, respectively, and in 4 (1.8%) patients, they were found simultaneously. All patients were HEV RNA-negative. The overall HEV seroprevalence was 10.7% (24/225). The binominal logistic regression analysis of available predictors confirmed the role of vascular access and a duration of dialysis treatment over 5 years as predictors significantly associated with increased risk for HEV, and the consumption of bottled water with lower levels of HEV IgG seroprevalence among hemodialysis patients. The accumulated data are the basis for comparative analysis in subsequent trials in the same dialysis centers and for enhancing the range of screening markers used in this particular patient group.
Collapse
Affiliation(s)
- Ani Kevorkyan
- Department of Epidemiology and Disaster Medicine, Faculty of Public Health, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria;
| | - Elitsa Golkocheva-Markova
- National Reference Laboratory “Hepatitis Viruses”, National Center of Infectious and Parasitic Diseases, 1233 Sofia, Bulgaria;
| | - Ralitsa Raycheva
- Department of Social Medical and Public Health, Faculty of Public Health, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria;
| | - Vanya Rangelova
- Department of Epidemiology and Disaster Medicine, Faculty of Public Health, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria;
| | - Radka Komitova
- Department of Infectious Diseases, Parasitology and Tropical Medicine, Faculty of Medicine, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria;
| | - Mariya Atanasova
- Department of Microbiology and Immunology, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria;
- Laboratory of Virology, University Multi-Profile Hospital for Active Treatment “St. George”, 4002 Plovdiv, Bulgaria
| | - Valeri Tzekov
- Section of Nephrology, Second Department of Internal Medicine, Faculty of Medicine, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria;
| | | | | |
Collapse
|
13
|
Fontana S, Ripellino P, Niederhauser C, Widmer N, Gowland P, Petrini O, Aprile M, Merlani G, Bihl F. Epidemiology of HEV Infection in Blood Donors in Southern Switzerland. Microorganisms 2023; 11:2375. [PMID: 37894033 PMCID: PMC10609445 DOI: 10.3390/microorganisms11102375] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/15/2023] [Accepted: 09/19/2023] [Indexed: 10/29/2023] Open
Abstract
From 2014 to 2016, the number of hepatitis E virus (HEV) infections in southern Switzerland increased dramatically and suggested food as a potential infection reservoir. We evaluated the effects of food control measures introduced to limit HEV infections, assessing anti-HEV IgG and IgM rates in blood donors before and after the implementation of food control measures in 2017. From 2012 to 2013, we screened 1283, and from 2017 to 2019, we screened 1447 donors for IgG and IgM antibodies. No statistically significant differences were detected for IgG (32.8% from 2012 to 2013 vs. 31.1% from 2017 to 2019, p = 0.337) or IgM rates (2.0% from 2012 to 2013 vs. 2.8% from 2017 to 2019, p = 0.21). Rural provenience and age > 66 are predictors for positive IgG serology. A total of 5.9% of 303 donors included in both groups lost IgG positivity. We also determined nucleic acid testing (NAT) rates after the introduction of this test in 2018, comparing 49,345 donation results from southern Switzerland with those of 625,559 Swiss donor controls, and only 9 NAT-positive donors were found from 2018 to 2023. The high HEV seroprevalence in southern Switzerland may depend on different food supply chains in rural and urban areas. Local preventive measures probably have a limited impact on blood HEV risk; thus, continuous NAT testing is recommended.
Collapse
Affiliation(s)
- Stefano Fontana
- Servizio Trasfusionale CRS della Svizzera Italiana, 6900 Lugano, Switzerland;
- Blood Transfusion Unit, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
| | - Paolo Ripellino
- Department of Neurology, Neurocenter of Southern Switzerland EOC, 6900 Lugano, Switzerland;
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland
| | - Christoph Niederhauser
- Interregional Blood Transfusion SRC, 3008 Berne, Switzerland (N.W.); (P.G.)
- Institute for Infectious Diseases, University of Berne, 3008 Berne, Switzerland
| | - Nadja Widmer
- Interregional Blood Transfusion SRC, 3008 Berne, Switzerland (N.W.); (P.G.)
| | - Peter Gowland
- Interregional Blood Transfusion SRC, 3008 Berne, Switzerland (N.W.); (P.G.)
| | - Orlando Petrini
- Institute of Microbiology, University of Applied Sciences and Arts of Southern Switzerland, 6500 Bellinzona, Switzerland;
| | - Manuela Aprile
- Servizio Trasfusionale CRS della Svizzera Italiana, 6900 Lugano, Switzerland;
| | - Giorgio Merlani
- Chief Medical Officer Office, Division of Public Health, Department for Health and Social Affairs, 6500 Bellinzona, Switzerland;
| | - Florian Bihl
- Epatocentro Ticino, Via Soldino 5, 6900 Lugano, Switzerland;
- Division of Gastroenterology and Hepatology, University Hospital Geneva, 1200 Geneva, Switzerland
| |
Collapse
|
14
|
Cao K, Wu X, Yang M, Chen C, Zhang X, Jiang D, Du Y, Chen M, You Y, Zhou W, Qi J, Chen D, Yan R, Miao Z, Yang S. Prevalence of hepatitis E virus in China from 1997 to 2022: a systematic review and meta-analysis. Front Public Health 2023; 11:1243408. [PMID: 37744517 PMCID: PMC10512461 DOI: 10.3389/fpubh.2023.1243408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/22/2023] [Indexed: 09/26/2023] Open
Abstract
Introduction Several studies have reported on hepatitis E virus (HEV) prevalence in various regions of China, but the results vary widely. Herein, we conducted a systematic review and meta-analysis to assess the seroprevalence, RNA-positive rate, genotype distribution of HEV in China, and its risk factors. Methods We included 208 related studies involving 1,785,569 participants published between 1997 and 2022. Random-effects models were used to pool prevalence, and subgroup analyses were conducted by population, gender, age, study period, regions, and rural-urban distribution. The meta regression models and pooled odds ratios (OR) were performed to identify risk factors for HEV infections. Results The pooled anti-HEV IgG, IgM, and Ag seroprevalence, and RNA detection rates in China from 1997 to 2022 were 23.17% [95% confidence interval (CI): 20.23-26.25], 0.73% (95% CI: 0.55-0.93), 0.12% (95% CI: 0.01-0.32), and 6.55% (95% CI: 3.46-12.05), respectively. The anti-HEV IgG seropositivity was higher in the occupational population (48.41%; 95% CI: 40.02-56.85) and older adult aged 50-59 years (40.87%; 95% CI: 31.95-50.11). The dominant genotype (GT) of hepatitis E in China was GT4. Notably, drinking non-tap water (OR = 1.82; 95% CI: 1.50-2.20), consumption of raw or undercooked meat (OR = 1.47; 95% CI: 1.17-1.84), and ethnic minorities (OR = 1.50; 95% CI: 1.29-1.73) were risk factors of anti-HEV IgG seroprevalence. Discussions Overall, the prevalence of hepatitis E was relatively high in China, especially among older adults, ethnic minorities, and humans with occupational exposure to pigs. Thus, there is a need for preventive measures, including HEV infection screening and surveillance, health education, and hepatitis E vaccine intervention in high-risk areas and populations. Systematic review registration https://www.crd.york.ac.uk/prospero/, identifier CRD42023397036.
Collapse
Affiliation(s)
- Kexin Cao
- Department of Emergency Medicine, Second Affiliated Hospital, Department of Public Health, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoyue Wu
- Department of Emergency Medicine, Second Affiliated Hospital, Department of Public Health, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Mengya Yang
- Department of Emergency Medicine, Second Affiliated Hospital, Department of Public Health, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Can Chen
- Department of Emergency Medicine, Second Affiliated Hospital, Department of Public Health, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaobao Zhang
- Department of Emergency Medicine, Second Affiliated Hospital, Department of Public Health, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Daixi Jiang
- Department of Emergency Medicine, Second Affiliated Hospital, Department of Public Health, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuxia Du
- Department of Emergency Medicine, Second Affiliated Hospital, Department of Public Health, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Mengsha Chen
- Department of Emergency Medicine, Second Affiliated Hospital, Department of Public Health, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Yue You
- Department of Emergency Medicine, Second Affiliated Hospital, Department of Public Health, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenkai Zhou
- Department of Emergency Medicine, Second Affiliated Hospital, Department of Public Health, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiaxing Qi
- Department of Emergency Medicine, Second Affiliated Hospital, Department of Public Health, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Dingmo Chen
- Department of Emergency Medicine, Second Affiliated Hospital, Department of Public Health, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Rui Yan
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Ziping Miao
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Shigui Yang
- Department of Emergency Medicine, Second Affiliated Hospital, Department of Public Health, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
15
|
Kinast V, Andreica I, Ahrenstorf G, Gömer A, Elsner C, Schlienkamp S, Schrader JA, Klöhn M, Ulrich RG, Broering R, Vondran FWR, Todt D, Behrendt P, Dittmer U, Hamprecht A, Witte T, Baraliakos X, Steinmann E. Janus kinase-inhibition modulates hepatitis E virus infection. Antiviral Res 2023; 217:105690. [PMID: 37517633 DOI: 10.1016/j.antiviral.2023.105690] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/24/2023] [Accepted: 07/27/2023] [Indexed: 08/01/2023]
Abstract
Hepatitis E virus (HEV) usually causes a self-limiting disease, but especially immunocompromised individuals are at risk to develop a chronic and severe course of infection. Janus kinase (JAK) inhibitors (JAKi) are a novel drug class for the treatment of autoimmune inflammatory rheumatic disease (AIRD). As JAKs play a key role in innate immunity, viral infections and reactivations are frequently reported during JAKi treatment in AIRD patients. The aim of this study was to characterize the influence of JAKis on HEV replication. To this end, we evaluated liver enzymes of an AIRD patient under JAKi therapy with hepatitis E. Further, experiments with HEV (Kernow-C1 p6) were performed by infection of primary human hepatocytes (PHHs) followed by immunofluorescence staining of viral markers and transcriptomic analysis. Infection experiments in PHHs displayed an up to 50-fold increase of progeny virus production during JAKi treatment and transcriptomic analysis revealed induction of antiviral programs during infection. Upregulation of interferon-stimulated genes (ISG) was perturbed in the presence of JAKis, concomitant with elevated HEV RNA levels. The obtained results suggest that therapeutic JAK inhibition increases HEV replication by modulating the HEV-triggered immune response. Therefore, JAKi treatment and the occurrence of elevated liver enzymes requires a monitoring of potential HEV infections.
Collapse
Affiliation(s)
- Volker Kinast
- Department of Medical Microbiology and Virology, Carl von Ossietzky University Oldenburg, Oldenburg, Germany; Department for Molecular and Medical Virology, Faculty of Medicine, Ruhr University Bochum, Bochum, Germany.
| | - Ioana Andreica
- Rheumazentrum Ruhrgebiet, Ruhr University Bochum, Herne, Germany
| | - Gerrit Ahrenstorf
- Klinik für Immunologie und Rheumatologie, Medical University Hannover, Hannover, Germany
| | - André Gömer
- Department for Molecular and Medical Virology, Faculty of Medicine, Ruhr University Bochum, Bochum, Germany
| | - Carina Elsner
- Institute for Virology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Sarah Schlienkamp
- Department for Molecular and Medical Virology, Faculty of Medicine, Ruhr University Bochum, Bochum, Germany
| | - Jil Alexandra Schrader
- Department for Molecular and Medical Virology, Faculty of Medicine, Ruhr University Bochum, Bochum, Germany
| | - Mara Klöhn
- Department for Molecular and Medical Virology, Faculty of Medicine, Ruhr University Bochum, Bochum, Germany
| | - Rainer G Ulrich
- Institute of Novel and Emerging Infectious Disease, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493, Greifswald, Insel Riems, Germany; German Centre for Infection Research (DZIF), Partner site Hamburg-Lübeck-Borstel-Riems, 17493, Greifswald, Insel Riems, Germany
| | - Ruth Broering
- Department of Gastroenterology, Hepatology and Transplant Medicine, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Florian W R Vondran
- ReMediES, Department of General, Visceral and Transplantation Surgery, Hannover Medical School, Hannover, Germany
| | - Daniel Todt
- Department for Molecular and Medical Virology, Faculty of Medicine, Ruhr University Bochum, Bochum, Germany
| | - Patrick Behrendt
- Institute of Experimental Virology, TWINCORE Centre for Experimental and Clinical Infection Research, Hannover, Germany; Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Ulf Dittmer
- Institute for Virology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Axel Hamprecht
- Department of Medical Microbiology and Virology, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Torsten Witte
- Klinik für Immunologie und Rheumatologie, Medical University Hannover, Hannover, Germany
| | | | - Eike Steinmann
- Department for Molecular and Medical Virology, Faculty of Medicine, Ruhr University Bochum, Bochum, Germany; German Centre for Infection Research, External Partner Site, 44801, Bochum, Germany.
| |
Collapse
|
16
|
Santos-Silva S, da Silva Dias Moraes DF, López-López P, Rivero-Juarez A, Mesquita JR, Nascimento MSJ. Hepatitis E Virus in the Iberian Peninsula: A Systematic Review. FOOD AND ENVIRONMENTAL VIROLOGY 2023; 15:193-211. [PMID: 37434079 PMCID: PMC10499749 DOI: 10.1007/s12560-023-09560-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 06/26/2023] [Indexed: 07/13/2023]
Abstract
One of the most frequent causes of acute viral hepatitis is hepatitis E virus (HEV) causing 20 million infections worldwide each year and 44,000 deaths. Studies on HEV in the Iberian Peninsula have been increasing through time with HEV infection being identified in humans and animals. The aim of the present systematic review was to compile and evaluate all the published data on HEV from studies performed in humans, animals and environmental samples in the Iberian Peninsula. The electronic databases Mendeley, PubMed, Scopus, and Web of Science were thoroughly searched, and research published up until February 01, 2023 were included. Resulting in a total of 151 eligible papers by full reading and application of PRISMA exclusion/inclusion criteria. Overall, the present review shows that several HEV genotypes, namely HEV-1, 3, 4, and 6 as well as Rocahepevirus, are circulating in humans, animals, and in the environment in the Iberian Peninsula. HEV-3 was the most common genotype circulating in humans in Portugal and Spain, as expected for developed countries, with HEV-1 only being detected in travelers and emigrants from HEV endemic regions. Spain is the biggest pork producer in Europe and given the high circulation of HEV in pigs, with HEV-3 being primarily associated to zoonotic transmission through consumption of swine meat and meat products, in our opinion, the introduction of an HEV surveillance system in swine and inclusion of HEV in diagnostic routines for acute and chronic human hepatitis would be important. Additionally, we propose that establishing a monitoring mechanism for HEV is crucial in order to gain a comprehensive understanding of the prevalence of this illness and the various strains present in the Iberian Peninsula, as well as their potential impact on public health.
Collapse
Affiliation(s)
- Sérgio Santos-Silva
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | | | - Pedro López-López
- Grupo de Virología Clínica y Zoonosis, Unidad de Enfermedades Infecciosas, Instituto Maimónides de Investigación Biomédica de Córdoba, Hospital Reina Sofía, Universidad de Córdoba, Córdoba, Spain
- CIBERINFEC, ISCIII - CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - António Rivero-Juarez
- Grupo de Virología Clínica y Zoonosis, Unidad de Enfermedades Infecciosas, Instituto Maimónides de Investigación Biomédica de Córdoba, Hospital Reina Sofía, Universidad de Córdoba, Córdoba, Spain
- CIBERINFEC, ISCIII - CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - João R Mesquita
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal.
- Epidemiology Research Unit (EPIUnit), Instituto de Saúde Pública da Universidade do Porto, Porto, Portugal.
- Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Porto, Portugal.
| | | |
Collapse
|
17
|
Lautredou CC, Dao B, Gounder P. Epidemiology of Suspected and Confirmed Acute Hepatitis E Cases Reported Among Los Angeles County Residents, 2017-2019. Clin Infect Dis 2023; 77:589-592. [PMID: 37092697 DOI: 10.1093/cid/ciad242] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/11/2023] [Accepted: 04/19/2023] [Indexed: 04/25/2023] Open
Abstract
In a 3-year period, 38 of 48 persons testing positive for hepatitis E virus (HEV) immunoglobulin M in Los Angeles County did not meet the acute HEV case definition. Healthcare providers should restrict HEV serologic testing for persons with clinically compatible symptoms or epidemiologic risk factors.
Collapse
Affiliation(s)
- Cassandra C Lautredou
- Division of Infectious Diseases and Preventive Medicine, David Geffen School of Medicine, University of California, Los Angeles, USA
| | - Bonnie Dao
- Acute Communicable Disease Control Program, County of Los Angeles Public Health, Los Angeles, USA
| | - Prabhu Gounder
- Acute Communicable Disease Control Program, County of Los Angeles Public Health, Los Angeles, USA
| |
Collapse
|
18
|
Raji YE, Toung OP, Taib NM, Sekawi ZB. Meta-analysis and moderator analysis of the seroprevalence of hepatitis E in South-Eastern Asia. Sci Rep 2023; 13:11880. [PMID: 37482578 PMCID: PMC10363542 DOI: 10.1038/s41598-023-37941-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 06/29/2023] [Indexed: 07/25/2023] Open
Abstract
By 2030, the World Health Organization wants to decrease viral hepatitis incidence and mortality by 90% and 65%, respectively. One of the agents responsible for the increased burden of viral hepatitis is the hepatitis E virus (HEV). This emerging pathogen is prevalent worldwide causing both acute and chronic infection. The rising risk profile of HEV has become a source of increased global public health concern. Despite this challenge, South-Eastern Asia (SEA), where many at-risk people are found, lacks uniform HEV prevalence data. Therefore, a meta-analysis was conducted to assess the overall prevalence of hepatitis E in SEA. Using R statistical software, a random effect model was used to estimate the logit-transformed prevalence. Moderator analyses were used to investigate the potential sources of variation. Thirty-two studies comprising 29,944 with 6806 anti-HEV antibody-positive individuals were evaluated. The overall HEV seroprevalence in SEA was 21% (95% confidence interval [CI]: 17-27) with high heterogeneity. At the country level, Laos has the highest prevalence estimate of 39% (CI: 16-69). Also, the studied population, year of publication, duration of sampling, and diagnostic method are significant HEV prevalence predictors accounting for 22.61% of the observed heterogeneity. The high HEV prevalence found in this study necessitates coordinated national and regional efforts to combat this emerging disease.
Collapse
Affiliation(s)
- Yakubu Egigogo Raji
- Department of Medical Microbiology Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
- Department of Clinical Microbiology, College of Health Sciences, Ibrahim Badamasi Babangida University, Lapai, Nigeria
| | - Ooi Peck Toung
- Department of Veterinary Clinical Studies Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Malaysia
| | - Niazlin Mohd Taib
- Department of Medical Microbiology Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Zamberi Bin Sekawi
- Department of Medical Microbiology Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia.
| |
Collapse
|
19
|
Zahmanova G, Takova K, Tonova V, Koynarski T, Lukov LL, Minkov I, Pishmisheva M, Kotsev S, Tsachev I, Baymakova M, Andonov AP. The Re-Emergence of Hepatitis E Virus in Europe and Vaccine Development. Viruses 2023; 15:1558. [PMID: 37515244 PMCID: PMC10383931 DOI: 10.3390/v15071558] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/11/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Hepatitis E virus (HEV) is one of the leading causes of acute viral hepatitis. Transmission of HEV mainly occurs via the fecal-oral route (ingesting contaminated water or food) or by contact with infected animals and their raw meat products. Some animals, such as pigs, wild boars, sheep, goats, rabbits, camels, rats, etc., are natural reservoirs of HEV, which places people in close contact with them at increased risk of HEV disease. Although hepatitis E is a self-limiting infection, it could also lead to severe illness, particularly among pregnant women, or chronic infection in immunocompromised people. A growing number of studies point out that HEV can be classified as a re-emerging virus in developed countries. Preventative efforts are needed to reduce the incidence of acute and chronic hepatitis E in non-endemic and endemic countries. There is a recombinant HEV vaccine, but it is approved for use and commercially available only in China and Pakistan. However, further studies are needed to demonstrate the necessity of applying a preventive vaccine and to create conditions for reducing the spread of HEV. This review emphasizes the hepatitis E virus and its importance for public health in Europe, the methods of virus transmission and treatment, and summarizes the latest studies on HEV vaccine development.
Collapse
Affiliation(s)
- Gergana Zahmanova
- Department of Plant Physiology and Molecular Biology, University of Plovdiv, 4000 Plovdiv, Bulgaria
- Department of Technology Transfer and IP Management, Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Katerina Takova
- Department of Plant Physiology and Molecular Biology, University of Plovdiv, 4000 Plovdiv, Bulgaria
| | - Valeria Tonova
- Department of Plant Physiology and Molecular Biology, University of Plovdiv, 4000 Plovdiv, Bulgaria
| | - Tsvetoslav Koynarski
- Department of Animal Genetics, Faculty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria
| | - Laura L Lukov
- Faculty of Sciences, Brigham Young University-Hawaii, Laie, HI 96762, USA
| | - Ivan Minkov
- Department of Technology Transfer and IP Management, Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
- Institute of Molecular Biology and Biotechnologies, 4108 Markovo, Bulgaria
| | - Maria Pishmisheva
- Department of Infectious Diseases, Pazardzhik Multiprofile Hospital for Active Treatment, 4400 Pazardzhik, Bulgaria
| | - Stanislav Kotsev
- Department of Infectious Diseases, Pazardzhik Multiprofile Hospital for Active Treatment, 4400 Pazardzhik, Bulgaria
| | - Ilia Tsachev
- Department of Microbiology, Infectious and Parasitic Diseases, Faculty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria
| | - Magdalena Baymakova
- Department of Infectious Diseases, Military Medical Academy, 1606 Sofia, Bulgaria
| | - Anton P Andonov
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
20
|
Franz A, Reuken PA, Guliyeva S, Rose M, Boden K, Stallmach A, Bruns T. Early ribavirin for hepatitis E virus infection in patients receiving immunosuppressive therapy: a retrospective, observational study. J Int Med Res 2023; 51:3000605231187941. [PMID: 37523153 PMCID: PMC10392516 DOI: 10.1177/03000605231187941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023] Open
Abstract
OBJECTIVE Hepatitis E virus (HEV) infections are common, self-limiting causes of acute viral hepatitis. This study aimed to analyze hepatic injury, viremia, and chronicity rates in patients with acute HEV infection receiving immunosuppressive (IS) therapy taking into account ribavirin treatment. METHODS In this retrospective, single-center, observational study, we analyzed the disease course of 25 non-cirrhotic patients receiving IS therapy who were diagnosed with acute HEV viremia. Forty-four patients with acute HEV viremia without IS therapy were controls. RESULTS Demographics, symptoms at presentation, and extrahepatic manifestations were not different between patients with and without IS therapy, but liver injury at presentation was less severe in patients with IS therapy. Among the patients with IS therapy, 18 (72%) received ribavirin for a median of 56 days. Sustained viral clearance was observed in 21 patients with IS therapy, whereas 3 patients relapsed after ribavirin, and 1 patient had viral persistence. Among patients with sustained viral clearance, there was a longer duration of viremia in patients with IS therapy than in those without. CONCLUSIONS In this cohort of non-cirrhotic patient with IS, early treatment with ribavirin for acute HEV infection did not improve viral clearance rates, but may have shortened the duration of viremia.
Collapse
Affiliation(s)
- Anika Franz
- Department of Internal Medicine IV, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Philipp A Reuken
- Department of Internal Medicine IV, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Sura Guliyeva
- Department of Internal Medicine IV, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Michael Rose
- Department of Clinical Chemistry and Laboratory Medicine, Jena University Hospital, Jena, Germany
| | - Katharina Boden
- Department of Clinical Chemistry and Laboratory Medicine, Jena University Hospital, Jena, Germany
- Dianovis GmbH, Greiz, Germany
| | - Andreas Stallmach
- Department of Internal Medicine IV, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Tony Bruns
- Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| |
Collapse
|
21
|
Golkocheva-Markova E, Ismailova C, Kevorkyan A, Raycheva R, Zhelyazkova S, Kotsev S, Pishmisheva M, Rangelova V, Stoyanova A, Yoncheva V, Tenev T, Gladnishka T, Trifonova I, Christova I, Dimitrov R, Bruni R, Ciccaglione AR. Age and Gender Trends in the Prevalence of Markers for Hepatitis E Virus Exposure in the Heterogeneous Bulgarian Population. Life (Basel) 2023; 13:1345. [PMID: 37374127 DOI: 10.3390/life13061345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
The prevalence of hepatitis E virus (HEV) in the Bulgarian population remains underestimated. The aim of the present study was to evaluate age and gender trends in HEV prevalence in the heterogeneous Bulgarian population. Stored serum samples from blood donors and different patient sub-populations-kidney recipients (KR), patients with Guillain-Barre syndrome (GBS), Lyme disease (LD), patients with liver involvement and a clinical diagnosis other than viral hepatitis A and E (non-AE), hemodialysis (HD) and HIV-positive patients (HIV)-were retrospectively investigated for markers of past and recent/ongoing HEV infection. The estimated overall seroprevalence of past infection was 10.6%, ranging from 5.9% to 24.5% for the sub-populations evaluated, while the seroprevalence of recent/ongoing HEV infection was 7.5%, ranging from 2.1% to 20.4%. The analysis of the individual sub-populations showed a different prevalence with respect to sex. In regard to age, the cohort effect was preserved, as a multimodal pattern was observed only for the GBS sub-population. Molecular analysis revealed HEV 3f and 3e. The type of the population is one of the main factors on which the anti-HEV prevalence depends, highlighting the need for the development of guidelines related to the detection and diagnosis of HEV infection with regard to specific patient populations.
Collapse
Affiliation(s)
- Elitsa Golkocheva-Markova
- NRL Hepatitis Viruses, Department of Virology, National Center of Infectious and Parasitic Diseases, 1504 Sofia, Bulgaria
| | - Chiydem Ismailova
- NRL Hepatitis Viruses, Department of Virology, National Center of Infectious and Parasitic Diseases, 1504 Sofia, Bulgaria
| | - Ani Kevorkyan
- Department of Epidemiology and Disaster Medicine, Faculty of Public Health, Medical University, 4002 Plovdiv, Bulgaria
| | - Ralitsa Raycheva
- Department of Social Medicine and Public Health, Faculty of Public Health, Medical University, 4002 Plovdiv, Bulgaria
| | - Sashka Zhelyazkova
- Clinic of Nervous Diseases, University Hospital "Alexandrovska", Medical University, 1431 Sofia, Bulgaria
| | - Stanislav Kotsev
- Department Infectious Diseases, Regional Hospital, 4400 Pazardzhik, Bulgaria
| | - Maria Pishmisheva
- Department Infectious Diseases, Regional Hospital, 4400 Pazardzhik, Bulgaria
| | - Vanya Rangelova
- Department of Epidemiology and Disaster Medicine, Faculty of Public Health, Medical University, 4002 Plovdiv, Bulgaria
| | - Asya Stoyanova
- NRL Enteroviruses, Department of Virology, National Center of Infectious and Parasitic Diseases, 1504 Sofia, Bulgaria
| | - Viliana Yoncheva
- NRL Hepatitis Viruses, Department of Virology, National Center of Infectious and Parasitic Diseases, 1504 Sofia, Bulgaria
| | - Tencho Tenev
- NRL Hepatitis Viruses, Department of Virology, National Center of Infectious and Parasitic Diseases, 1504 Sofia, Bulgaria
| | - Teodora Gladnishka
- NRL of Vector-Borne Infections, Listeria and Leptospires, Department of Microbiology, National Center of Infectious and Parasitic Diseases, 1504 Sofia, Bulgaria
| | - Iva Trifonova
- NRL of Vector-Borne Infections, Listeria and Leptospires, Department of Microbiology, National Center of Infectious and Parasitic Diseases, 1504 Sofia, Bulgaria
| | - Iva Christova
- NRL of Vector-Borne Infections, Listeria and Leptospires, Department of Microbiology, National Center of Infectious and Parasitic Diseases, 1504 Sofia, Bulgaria
| | - Roumen Dimitrov
- Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, 1000 Sofia, Bulgaria
| | - Roberto Bruni
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy
| | | |
Collapse
|
22
|
Shionoya K, Kako M. A case of persistent hepatitis E virus infection in a young adult with no medical history. Clin Case Rep 2023; 11:e7217. [PMID: 37077725 PMCID: PMC10106783 DOI: 10.1002/ccr3.7217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 04/04/2023] [Indexed: 04/21/2023] Open
Abstract
Most patients with hepatitis E virus (HEV) infection are asymptomatic and improve naturally without any treatment, but even non-immunocompromised individuals may develop persistent HEV infections and should be monitored regularly for the onset.
Collapse
Affiliation(s)
- Kento Shionoya
- Gastroenterology Medicine CenterShonan Kamakura General HospitalKanagawaJapan
| | - Makoto Kako
- Gastroenterology Medicine CenterShonan Kamakura General HospitalKanagawaJapan
| |
Collapse
|
23
|
Higher Risk of HEV Transmission and Exposure among Blood Donors in Europe and Asia in Comparison to North America: A Meta-Analysis. Pathogens 2023; 12:pathogens12030425. [PMID: 36986347 PMCID: PMC10059948 DOI: 10.3390/pathogens12030425] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/01/2023] [Accepted: 03/05/2023] [Indexed: 03/10/2023] Open
Abstract
Background and aims: The increasing number of diagnosed hepatitis E virus (HEV) infections in Europe has led to the implementation of the testing of blood products in various countries. Many nations have not yet implemented such screening. To assess the need for HEV screening in blood products worldwide, we conducted a systematic review and meta-analysis assessing HEV RNA positivity and anti-HEV seroprevalence in blood donors. Methods: Studies reporting anti-HEV IgG/IgM or HEV RNA positivity rates among blood donors worldwide were identified via predefined search terms in PubMed and Scopus. Estimates were calculated by pooling study data with multivariable linear mixed-effects metaregression analysis. Results: A total of 157 (14%) of 1144 studies were included in the final analysis. The estimated HEV PCR positivity rate ranged from 0.01 to 0.14% worldwide, with strikingly higher rates in Asia (0.14%) and Europe (0.10%) in comparison to North America (0.01%). In line with this, anti-HEV IgG seroprevalence in North America (13%) was lower than that in Europe (19%). Conclusions: Our data demonstrate large regional differences regarding the risk of HEV exposure and blood-borne HEV transmission. Considering the cost–benefit ratio, this supports blood product screening in high endemic areas, such as Europe and Asia, in contrast to low endemic regions, such as the U.S.
Collapse
|
24
|
Chaix ML, Leturque N, Gabassi A, Charreau I, Minier M, Pialoux G, Cua É, Chidiac C, Raffi F, Tremblay C, Meyer L, Molina JM, Delaugerre C. Prevalence and incidence of HEV among men using HIV pre-exposure prophylaxis: A sub-study of the ANRS IPERGAY trial. J Clin Virol 2023; 160:105380. [PMID: 36638749 DOI: 10.1016/j.jcv.2023.105380] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 01/11/2023]
Abstract
BACKGROUND Men who have sex with men (MSM) have an increased risk of infection by pathogens transmitted by the oro-fecal route. Here, we investigated the seroprevalence and incidence of hepatitis E virus (HEV) infection in 416 MSM included in the ANRS IPERGAY PrEP trial. RESULTS Among the 62 (14.9% (95% CI: [11.6%-18.7%]) seropositive for HEV at inclusion, the only factor associated with testing seropositive for HEV was older age. Geographical origin, use of recreational drugs, number of sexual partners, status for HAV and bacterial sexually transmitted infection (STI) at inclusion were not associated. Among the 342 HEV-seronegative patients with available samples, 9 seroconverted after a median of follow-up of 2.1 years (IQR (interquartile range): [1.6; 3.0]). CONCLUSION Overall, the HEV incidence was 1.19% per 100 person-years [95% CI: 0.54%; 2.26%]. Sexual transmission does not seem to be a major route of HEV infection in MSM, unlike HAV.
Collapse
Affiliation(s)
- Marie-Laure Chaix
- Virologie, Hôpital Saint-Louis, Assistance Publique Hôpitaux de Paris, Paris, France; INSERM U944, CNRS UMR 7212, Institut Universitaire d'Hématologie, Université Paris Cité, Hôpital Saint Louis, 75010 Paris, France.
| | | | - Audrey Gabassi
- Virologie, Hôpital Saint-Louis, Assistance Publique Hôpitaux de Paris, Paris, France
| | | | - Marine Minier
- Virologie, Hôpital Saint-Louis, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Gilles Pialoux
- Maladies infectieuses, Hôpital Tenon, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Éric Cua
- Maladies infectieuses, Hôpital de l'Archet, Centre Hospitalier de Nice, France
| | - Christian Chidiac
- Maladies infectieuses, Hôpital de la Croix Rousse, Centre Hospitalier et Universitaire de Lyon, France
| | - François Raffi
- Department of Infectious Diseases, University Hospital of Nantes and CIC 1413, INSERM, Nantes, France
| | - Cécile Tremblay
- Maladies infectieuses, Centre Hospitalier de l'Université de Montréal, Canada
| | - Laurence Meyer
- INSERM SC10 US19, Villejuif, France; Université Paris-Sud, Université Paris-Saclay, France
| | - Jean-Michel Molina
- INSERM U944, CNRS UMR 7212, Institut Universitaire d'Hématologie, Université Paris Cité, Hôpital Saint Louis, 75010 Paris, France; Maladies infectieuses, Hôpital Saint-Louis, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Constance Delaugerre
- Virologie, Hôpital Saint-Louis, Assistance Publique Hôpitaux de Paris, Paris, France; INSERM U944, CNRS UMR 7212, Institut Universitaire d'Hématologie, Université Paris Cité, Hôpital Saint Louis, 75010 Paris, France
| | | |
Collapse
|
25
|
Geng Y, Shi T, Wang Y. Transmission of Hepatitis E Virus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1417:73-92. [PMID: 37223860 DOI: 10.1007/978-981-99-1304-6_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Transmission of hepatitis E virus (HEV) occurs predominantly by the fecal-oral route. Large epidemics of hepatitis E in the developing countries of Asia and Africa are waterborne and spread through contaminated drinking water. The reservoir of HEV in developed countries is believed to be in animals with zoonotic transmission to humans, possibly through direct contact or the consumption of undercooked contaminated meat. And HEV transmission through blood transfusion, organ transplantation, and vertical transmission has been reported.
Collapse
Affiliation(s)
- Yansheng Geng
- Key Laboratory of Public Health Safety of Hebei Province, School of Public Health, Hebei University, Baoding, China
| | - Tengfei Shi
- Key Laboratory of Public Health Safety of Hebei Province, School of Public Health, Hebei University, Baoding, China
| | - Youchun Wang
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, China.
| |
Collapse
|
26
|
Favourable outcome of acute hepatitis E infection in patients with ANCA-associated vasculitis. Orphanet J Rare Dis 2022; 17:433. [PMID: 36514177 PMCID: PMC9746154 DOI: 10.1186/s13023-022-02586-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 11/22/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Hepatitis E virus (HEV) infection is a frequent cause of acute viral hepatitis. Immunocompromised patients are at increased risk for viral infection and chronic courses of hepatitis. Whether patients with autoimmune diseases are at risk of developing clinically relevant hepatitis or even chronic liver disease after HEV infection is discussed controversially. ANCA-associated vasculitis is a rare autoimmune disease with potentially life-threatening organ involvement, thus requiring intensive immunosuppression with glucocorticoids, cyclophosphamide, or rituximab. As there are no reports available on the infection with HEV in patients with ANCA-associated vasculitis, clinical decision making in such cases is based on experiences from other disease entities. Therefore, in this study we analyzed the course of liver disease and the therapeutic management of autoimmune vasculitis in a retrospective cohort of five patients with ANCA-associated vasculitis and acute hepatitis E. RESULTS Four patients were on immunosuppressive maintenance therapy and one patient was on remission induction therapy with cyclophosphamide and high dose glucocorticoids. All patients had at least one potentially hepatotoxic co-medication at the time of hepatitis. Hepatitis-associated clinical symptoms were recorded in four of five patients. The course of hepatitis was characterized by strongly elevated transaminases, a temporary liver failure was observed in one case. The management of hepatitis E included cessation of the immunosuppressants in all patients, whereas oral glucocorticoids were not discontinued. Under this regime, all patients cleared the virus without additional anti-viral treatment. Liver enzymes normalized one month after they peaked. In the follow-up period of at least 1.5 years (range 1.5-12 years), no chronic liver disease was observed, although one patient died of cholangiocarcinoma with liver metastases some years after HEV infection. Vasculitis was not active in our patient cohort at the time of HEV infection. However, inflammatory flares occured in three of five patients after discontinuation of the immunosuppressive therapy. Immunosuppressants were paused for a median time of 4 weeks and after their resumption vasculitic disease activity was controlled in all patients. CONCLUSIONS Acute HEV infection in patients with ANCA-associated vasculitis shows a favorable outcome of liver disease but bears the risk of inflammatory flares due to cessation of immunosuppression.
Collapse
|
27
|
Current Knowledge of Hepatitis E Virus (HEV) Epidemiology in Ruminants. Pathogens 2022; 11:pathogens11101124. [PMID: 36297181 PMCID: PMC9609093 DOI: 10.3390/pathogens11101124] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 12/20/2022] Open
Abstract
Hepatitis E virus (HEV) infection represents an emerging public health concern worldwide. In industrialized countries, increasing numbers of autochthonous cases of human HEV infection are caused by zoonotic transmission of genotypes 3 and 4, mainly through the consumption of contaminated raw or undercooked meat of infected pigs and wild boars, which are considered the main reservoirs of HEV. However, in the last few years, accumulating evidence seems to indicate that several other animals, including different ruminant species, may harbor HEV. Understanding the impact of HEV infection in ruminants and identifying the risk factors affecting transmission among animals and to humans is critical in order to determine their role in the epidemiological cycle of HEV. In this review, we provide a summary of current knowledge on HEV ecology in ruminants. A growing body of evidence has revealed that these animal species may be potential important hosts of HEV, raising concerns about the possible implications for public health.
Collapse
|
28
|
Maslinska M, Kostyra-Grabczak K. The role of virus infections in Sjögren’s syndrome. Front Immunol 2022; 13:823659. [PMID: 36148238 PMCID: PMC9488556 DOI: 10.3389/fimmu.2022.823659] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 08/09/2022] [Indexed: 11/26/2022] Open
Abstract
Primary Sjögren’s syndrome (pSS) is an autoimmune disease with a clinical picture of not only mainly exocrine gland involvement, with dryness symptoms, but also internal organ and systems involvement. The epithelial damage and releasing of antigens, which, in some circumstances, become autoantigens, underlay the pathogenesis of pSS. The activation of autoimmune processes in pSS leads to the hyperactivation of B cells with autoantibody production and other immunological phenomena such as hypergammaglobulinemia, production of cryoglobulins, or formation of extra-nodal lymphoid tissue. Among the risk factors for the development of this disease are viral infections, which themselves can activate autoimmune reactions and influence the host’s immune response. It is known that viruses, through various mechanisms, can influence the immune system and initiate autoimmune reactions. These mechanisms include molecular mimicry, bystander activation, production of superantigens—proteins encoded by viruses—or a programming to produce viral cytokines similar to host cytokines such as, e.g., interleukin-10. Of particular importance for pSS are viruses which not only, as expected, activate the interferon pathway but also play a particular role, directly or indirectly, in B cell activation or present tropism to organs also targeted in the course of pSS. This article is an attempt to present the current knowledge of the influence specific viruses have on the development and course of pSS.
Collapse
|
29
|
Markakis GE, Papatheodoridis GV, Cholongitas E. Epidemiology and treatment of hepatitis E in the liver transplantation setting: A literature review. J Viral Hepat 2022; 29:698-718. [PMID: 35644040 DOI: 10.1111/jvh.13709] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 02/01/2022] [Accepted: 05/10/2022] [Indexed: 12/09/2022]
Abstract
Hepatitis E virus (HEV) is a common cause of acute hepatitis in developing countries, but it can also take a chronic course especially in immunocompromised patients. Its epidemiology after liver transplantation (LT) is hard to assess and treatment options are still explored. Between 2009 and 2020, literature reporting HEV prevalence and treatment in LT recipients was searched and a synthesis was attempted. Sixteen studies reported HEV prevalence in consecutive LT patients: HEV RNA positivity ranged between 0%-1.4% and 0%-7.7% for Western and Eastern cohorts, respectively. In studies published between 2009-2014 and 2015-2020, HEV RNA positivity ranged between 0.35%-1.3% (all European) and 0%-7.7% (European: 0%-1.4%), respectively. Five studies evaluated HEV prevalence in LT recipients with abnormal liver enzymes: HEV RNA positivity was 2.9% in studies published between 2009 and 2014 and from 3.5% to 20% in studies published between 2015 and 2020. Twenty-seven studies reported HEV treatment in LT recipients: sustained virologic response was achieved in 15% by immunosuppression reduction alone and in 83% of cases by ribavirin regiments. Chronic HEV infection is affecting LT recipients, mostly those with abnormal liver enzymes and in Eastern countries. HEV diagnoses should be based on PCR techniques. Successful treatment can be achieved with ribavirin in most cases.
Collapse
Affiliation(s)
- George E Markakis
- Department of Gastroenterology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - George V Papatheodoridis
- Department of Gastroenterology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Evangelos Cholongitas
- First Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
30
|
Hepatitis E Virus Infection in Cancer Patients. Transplant Cell Ther 2022; 28:788.e1-788.e5. [DOI: 10.1016/j.jtct.2022.08.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/06/2022] [Accepted: 08/18/2022] [Indexed: 11/21/2022]
|
31
|
Seroprevalence of Anti-Hepatitis E Virus Antibodies among Patients from a Tertiary Hospital from Northeast Romania. Medicina (B Aires) 2022; 58:medicina58081020. [PMID: 36013487 PMCID: PMC9414562 DOI: 10.3390/medicina58081020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 07/23/2022] [Accepted: 07/27/2022] [Indexed: 11/22/2022] Open
Abstract
Background and Objectives. Being an enterically transmitted pathogen with a growing prevalence in developed countries, hepatitis E virus (HEV) infection remains an underdiagnosed disease in Eastern Europe. As far as Romania is concerned, only a few studies address this issue. Our goal was to estimate the prevalence of serum anti-HEV IgA/IgM/IgG antibodies in a group of patients admitted to the Clinical Hospital for Infectious Diseases “St. Parascheva” Iasi. Materials and Methods. The cross-sectional study consisted of enrollment of 98 patients admitted to the clinic for COVID-19 over a period of three months in 2020. Results. The median age in our study was 73 years, with an equal gender ratio and with a predominance of people from the urban environment (75%). The overall HEV antibody seroprevalence was 12.2%. The main risk factors associated with HEV infection were consumption of water from unsafe sources (58.3% HEV-positive patients vs. 26.7% HEV-negative patients, p = 0.026) and improperly cooked meat (58.3% HEV-positive patients vs. 23.2% HEV-negative patients, p = 0.01). Zoonotic transmission was an important criterion in our study, with patients reporting contact with pigs, poultry, rats, or other farms animals, but no significant differences were found between HEV antibody positive and negative groups. Conclusions. The seroprevalence rate of HEV antibodies was similar to other previous reports from our area but higher than in most European countries. The fact that HEV antibodies were detected in patients without identifiable risk factors for hepatitis E is evidence of subclinical infection as a silent threat.
Collapse
|
32
|
Qashqari FS. Seroprevalence of Hepatitis E Virus Infection in Middle Eastern Countries: A Systematic Review and Meta-Analysis. Medicina (B Aires) 2022; 58:medicina58070905. [PMID: 35888624 PMCID: PMC9318471 DOI: 10.3390/medicina58070905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/02/2022] [Accepted: 07/04/2022] [Indexed: 11/25/2022] Open
Abstract
Hepatitis E virus (HEV) is a hepatotropic virus that is a major public health concern worldwide. Autochthonous HEV is spread through oral feces in unsanitary environments, as well as vertical and, occasionally, blood transfusion. HEV is more common in developing countries, but it has recently become more widespread in developed countries as well. The Middle East (ME) has long been an endemic location for HEV infection. Therefore, the aim of this systematic review and meta-analysis was to assess the seroprevalence of anti-HEV antibodies in ME countries. The author systematically searched five databases, namely ScienceDirect, EMBASE, Scopus, PubMed, and Google Scholar, to identify English-language articles published on or before 25 April 2022. Comprehensive meta-analysis software was used for all statistical analyses (CMA, version 3, BioStat, Englewood, CO, USA). After quality control and exclusion of irrelevant studies, 80 studies were included in the qualitative synthesis and meta-analysis. A forest plot showed that the overall pooled seroprevalence of HEV infection in ME countries in the fixed-effect and random-effect models were 21.3% (95% CI: 0.209–0.216) and 11.8% (95% CI: 0.099–0.144), respectively. Furthermore, the findings showed a high level of heterogeneity (I2 = 98.733%) among the included studies. In both fixed-effect and random-effect models, the seroprevalence of HEV infection by country was high in Egypt as compared to other regions, at 35.0% (95% CI: 0.342–0.359), and 34.7% (95% CI: 0.153–0.611), respectively. The seroprevalence of HEV infection by country was high among pregnant women, at 47.9% (95% CI: 0.459–0.499) in the fixed-effect model, and in renal transplant recipients, at 30.8% (95% CI: 0.222–0.410) in the random-effect model. The seroprevalence of HEV infection varies by country and study population in the Middle East. More research is needed to determine the disease’s incidence, morbidity, and mortality in the region, where it is prevalent.
Collapse
Affiliation(s)
- Fadi S Qashqari
- Department of Microbiology, College of Medicine, Umm Al-Qura University, Makkah 24381, Saudi Arabia
| |
Collapse
|
33
|
Spada E, Simeoni M, Martina A, Pati I, Villano U, Adriani D, D'Angiò A, Tritarelli E, Taffon S, Bellino S, Boros S, Urciuoli R, Masiello F, Marano G, Bruni R, Pezzotti P, Ciccaglione AR, Pupella S, De Angelis V, Pisani G. Prevalence and risk factors for hepatitis E virus infection in blood donors: a nationwide survey in Italy, 2017 to 2019. EURO SURVEILLANCE : BULLETIN EUROPEEN SUR LES MALADIES TRANSMISSIBLES = EUROPEAN COMMUNICABLE DISEASE BULLETIN 2022; 27. [PMID: 35656832 PMCID: PMC9164674 DOI: 10.2807/1560-7917.es.2022.27.22.2100516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Background In high-income countries, hepatitis E virus (HEV) infection is mainly a zoonosis. However, it is also transfusion-transmissible and some countries, but not Italy, have introduced HEV screening for blood donations. Aim We assessed HEV infection prevalence and risk factors in a nationwide sample of Italian blood donors. Methods We selected 107 blood establishments (BE) distributed in the 20 Italian regions by a stratified two-stage design and invited them to participate in the study. Donors were tested for anti-HEV IgG and IgM and HEV RNA. Sociodemographic data and risk factors were collected through a questionnaire. Results Overall, 60 BE from 60 provinces in 19 Italian regions joined the study. We assessed HEV markers in 7,172 blood donors, of whom 6,235 completed the questionnaire. Overall crude and adjusted anti-HEV IgG prevalences were 8.3% and 5.5%, respectively. Overall anti-HEV IgM prevalence was 0.5%, while no blood donor was HEV RNA-positive. Anti-HEV IgG prevalence varied widely among regions (range: 1.3%–27.20%) and hyperendemic prevalences (> 40%) were detected in some provinces in two regions. Older age (AOR = 1.81; 95% CI: 1.36–2.41), foreign nationality (AOR = 2.77; 95% CI: 1.06–7.24), eating raw pork liver sausages (AOR = 2.23; 95% CI: 1.55–3.20) and raw homemade sausages (AOR = 3.63; 95% CI: 2.50–5.24) were independent infection predictors. Conclusion Italian blood donors showed a low to moderate HEV seroprevalence. High levels in some regions and/or provinces were mainly attributable to eating habits. Prevention should include avoiding consumption of raw or undercooked meat and safe production of commercial pork products.
Collapse
Affiliation(s)
- Enea Spada
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Matteo Simeoni
- National Centre for the Control and Evaluation of Medicines, Istituto Superiore di Sanità, Rome, Italy
| | - Antonio Martina
- National Centre for the Control and Evaluation of Medicines, Istituto Superiore di Sanità, Rome, Italy
| | - Ilaria Pati
- Italian National Blood Centre, Istituto Superiore di Sanità, Rome, Italy
| | - Umbertina Villano
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Daniela Adriani
- National Centre for the Control and Evaluation of Medicines, Istituto Superiore di Sanità, Rome, Italy
| | - Agnese D'Angiò
- National Centre for the Control and Evaluation of Medicines, Istituto Superiore di Sanità, Rome, Italy
| | - Elena Tritarelli
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Stefania Taffon
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Stefania Bellino
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Stefano Boros
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Roberta Urciuoli
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Francesca Masiello
- Italian National Blood Centre, Istituto Superiore di Sanità, Rome, Italy
| | - Giuseppe Marano
- Italian National Blood Centre, Istituto Superiore di Sanità, Rome, Italy
| | - Roberto Bruni
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Patrizio Pezzotti
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | | | - Simonetta Pupella
- Italian National Blood Centre, Istituto Superiore di Sanità, Rome, Italy
| | | | - Giulio Pisani
- National Centre for the Control and Evaluation of Medicines, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
34
|
Fernández Villalobos NV, Kessel B, Rodiah I, Ott JJ, Lange B, Krause G. Seroprevalence of hepatitis E virus infection in the Americas: Estimates from a systematic review and meta-analysis. PLoS One 2022; 17:e0269253. [PMID: 35648773 PMCID: PMC9159553 DOI: 10.1371/journal.pone.0269253] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/17/2022] [Indexed: 11/18/2022] Open
Abstract
Background
Hepatitis E virus (HEV) infection is responsible for inflammatory liver disease and can cause severe health problems. Because the seroprevalence of HEV varies within different population groups and between regions of the continent, we conducted a systematic review on the topic in order to provide evidence for targeted prevention strategies.
Methods
We performed a systematic review in PubMed, SCIELO, LILACS, EBSCO, and Cochrane Library and included reports up to 25 May 2021 (PROSPERO registration number: CRD42020173934). We assessed the risk of bias, publication bias, and heterogeneity between studies and conducted a random-effect meta-analysis for proportions using a (binomial-normal) generalized linear mixed model (GLMM) fitted by Maximum Likelihood (ML). We also reported other characteristics like genotype and risk factors.
Results
Of 1212 identified records, 142 fulfilled the inclusion criteria and were included in the qualitative analysis and 132 in the quantitative analysis. Our random-effects GLMM pooled overall estimate for past infection (IgG) was 7.7% (95% CI 6.4%–9.2%) with high heterogeneity (I2 = 97%). We found higher seroprevalence in certain population groups, for example in people with pig related exposure for IgG (ranges from 6.2%–28% and pooled estimate of 13.8%, 95% CI: 7.6%–23.6%), or with diagnosed or suspected acute viral hepatitis for IgM (ranges from 0.3%–23.9% and pooled estimate of 5.5%, 95% CI: 2.0%–14.1%). Increasing age, contact with pigs and meat products, and low socioeconomic conditions are the main risk factors for HEV infection. Genotype 1 and 3 were documented across the region.
Conclusion
HEV seroprevalence estimates demonstrated high variability within the Americas. There are population groups with higher seroprevalence and reported risk factors for HEV infection that need to be prioritized for further research. Due to human transmission and zoonotic infections in the region, preventive strategies should include water sanitation, occupational health, and food safety.
Collapse
Affiliation(s)
| | - Barbora Kessel
- Department of Epidemiology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Isti Rodiah
- Department of Epidemiology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Jördis Jennifer Ott
- Department of Epidemiology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
- Hannover Medical School, Hannover, Germany
| | - Berit Lange
- Department of Epidemiology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
- German Centre for Infection Research (DZIF), Braunschweig, Germany
| | - Gérard Krause
- Department of Epidemiology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
- Hannover Medical School, Hannover, Germany
- German Centre for Infection Research (DZIF), Braunschweig, Germany
- Twincore, Centre for Experimental and Clinical Infection Research, Braunschweig-Hannover, Germany
| |
Collapse
|
35
|
Filipe R, Prista-Leão B, Silva-Pinto A, Abreu I, Serrão R, Costa R, Guedes E, Sobrinho-Simões J, Sarmento A, Koch C, Santos L. Hepatitis E in a Portuguese cohort of human immunodeficiency virus positive patients: High seroprevalence but no chronic infections. Health Sci Rep 2022; 5:e624. [PMID: 35601036 PMCID: PMC9121181 DOI: 10.1002/hsr2.624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/31/2022] [Accepted: 03/21/2022] [Indexed: 12/03/2022] Open
Abstract
Introduction Hepatitis E virus (HEV) infection causes zoonotic hepatitis in Europe, with a higher risk of complications in immunocompromised hosts. HEV natural history in human immunodeficiency virus (HIV) positive patients is not fully understood, and its prevalence is unknown. Objectives To study the seroprevalence of HEV and prevalence of chronic HEV in HIV‐positive patients from Porto, Portugal. Methods We randomly selected patients from the cohort of HIV‐positive patients followed in our hospital. We performed an enzyme‐linked immunosorbent assay to search for immunoglobulin G for HEV. When the absorbance/cut‐off was inferior to 3.5, the test was repeated, and a confirmatory test executed in that sample. For reactive tests and for immunosuppressed patients (CD4 count < 200/mm3) with nonreactive test, a polymerase chain reaction (PCR) test was also performed. Results We included 299 patients. The mean age was 48 and 75.3% were men. Regarding HIV infection, the median follow‐up time was 10 years, the acquisition was mainly heterosexual contact, and 94% were on antiretroviral therapy. Seventy‐six patients (25.4%) had reactive immunoglobulin G (IgG) hepatitis E serology. Patients with a reactive test were older (statistically significant difference). Otherwise, there was no difference between groups concerning birthplace, rural residence, chronic viral hepatitis coinfection, or cirrhosis. Nadir and actual TCD4+ lymphocyte counts did not differ significantly from patients with HEV reactive and nonreactive serology. Gamma‐glutamyl‐transferase (GGT) was higher in patients with reactive IgG HEV. All serum HEV PCR tests were negative. Conclusions Seroprevalence of HEV was 25.4% in HIV‐positive patients. Older age and higher GGT correlated to HEV reactive IgG test. No cases of current hepatitis E were found.
Collapse
Affiliation(s)
- Rita Filipe
- Infectious Diseases Department Centro Hospitalar Universitário de São João Porto Portugal.,Faculty of Medicine University of Porto Porto Portugal
| | - Beatriz Prista-Leão
- Infectious Diseases Department Centro Hospitalar Universitário de São João Porto Portugal.,Faculty of Medicine University of Porto Porto Portugal
| | - André Silva-Pinto
- Infectious Diseases Department Centro Hospitalar Universitário de São João Porto Portugal.,Faculty of Medicine University of Porto Porto Portugal.,ESCMID Study Group for Immunocompromised Hosts-ESGICH Porto Portugal
| | - Isabel Abreu
- Infectious Diseases Department Centro Hospitalar Universitário de São João Porto Portugal.,Faculty of Medicine University of Porto Porto Portugal
| | - Rosário Serrão
- Infectious Diseases Department Centro Hospitalar Universitário de São João Porto Portugal
| | - Rosário Costa
- Clinical Pathology Department Centro Hospitalar Universitário de São João Porto Portugal
| | - Edite Guedes
- Imunohemotherapy Department Centro Hospitalar Universitário São João Porto Portugal
| | - Joana Sobrinho-Simões
- Clinical Pathology Department Centro Hospitalar Universitário de São João Porto Portugal
| | - António Sarmento
- Infectious Diseases Department Centro Hospitalar Universitário de São João Porto Portugal.,Faculty of Medicine University of Porto Porto Portugal
| | - Carmo Koch
- Imunohemotherapy Department Centro Hospitalar Universitário São João Porto Portugal
| | - Lurdes Santos
- Infectious Diseases Department Centro Hospitalar Universitário de São João Porto Portugal.,Faculty of Medicine University of Porto Porto Portugal.,ESCMID Study Group for Immunocompromised Hosts-ESGICH Porto Portugal
| |
Collapse
|
36
|
Diagnostic Performance of an Automated System for Assaying Anti-Hepatitis E Virus Immunoglobulins M and G Compared with a Conventional Microplate Assay. Viruses 2022; 14:v14051065. [PMID: 35632806 PMCID: PMC9145211 DOI: 10.3390/v14051065] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/13/2022] [Accepted: 05/14/2022] [Indexed: 11/17/2022] Open
Abstract
To evaluate the diagnostic performance of the Liaison® Murex anti-HEV IgM and IgG assays running on the Liaison® instrument and compare the results with those obtained with Wantai HEV assays. We tested samples collected in immunocompetent and immunocompromised patients during the acute (HEV RNA positive, anti-HEV IgM positive) and the post-viremic phase (HEV RNA negative, anti-HEV IgM positive) of infections. The specificity was assessed by testing HEV RNA negative/anti-HEV IgG-IgM negative samples. The clinical sensitivity of the Liaison® IgM assay was 100% for acute-phase samples (56/56) and 57.4% (27/47) for post-viremic samples from immunocompetent patients. It was 93.8% (30/32) for acute-phase (viremic) samples and 71%% (22/31) for post-viremic samples from immunocompromised patients. The clinical sensitivity of the Liaison® IgG assay was 100% for viremic samples (56/56) and 94.6% (43/47) for post-viremic samples from immunocompetent patients. It was 84.3% (27/32) for viremic samples and 93.5% (29/31) for post-viremic samples from immunocompromised patients. Specificity was very high (>99%) in both populations. We checked the limit of detection stated for the Liaison® IgG assay (0.3 U/mL). The clinical performance of the Liaison® ANTI-HEV assays was good. These rapid, automated assays for detecting anti-HEV antibodies will greatly enhance the arsenal for diagnosing HEV infections.
Collapse
|
37
|
Viral Interference of Hepatitis C and E Virus Replication in Novel Experimental Co-Infection Systems. Cells 2022; 11:cells11060927. [PMID: 35326378 PMCID: PMC8946046 DOI: 10.3390/cells11060927] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/04/2022] [Accepted: 03/04/2022] [Indexed: 12/04/2022] Open
Abstract
Background: Hepatitis C virus (HCV) constitutes a global health problem, while hepatitis E virus (HEV) is the major cause of acute viral hepatitis globally. HCV/HEV co-infections have been poorly characterized, as they are hampered by the lack of robust HEV cell culture systems. This study developed experimental models to study HCV/HEV co-infections and investigate viral interference in cells and humanized mice. Methods: We used state-of-the art human hepatocytes tissue culture models to assess HEV and HCV replication in co- or super-transfection settings. Findings were confirmed by co- and super-infection experiments in human hepatocytes and in vivo in human liver chimeric mice. Results: HEV was inhibited by concurrent HCV replication in human hepatocytes. This exclusion phenotype was linked to the protease activity of HCV. These findings were corroborated by the fact that in HEV on HCV super-infected mice, HEV viral loads were reduced in individual mice. Similarly, HCV on HEV super-infected mice showed reduced HCV viral loads. Conclusion: Direct interference of both viruses with HCV NS3/4A as the determinant was observed. In vivo, we detected reduced replication of both viruses after super-infection in individual mice. These findings provide new insights into the pathogenesis of HCV-HEV co-infections and should contribute to its clinical management in the future.
Collapse
|
38
|
Cheung CKM, Wong SH, Law AWH, Law MF. Transfusion-transmitted hepatitis E: What we know so far? World J Gastroenterol 2022; 28:47-75. [PMID: 35125819 PMCID: PMC8793017 DOI: 10.3748/wjg.v28.i1.47] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 07/16/2021] [Accepted: 12/22/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatitis E virus (HEV) is a major cause of viral hepatitis globally. There is growing concern about transfusion-transmitted HEV (TT-HEV) as an emerging global health problem. HEV can potentially result in chronic infection in immunocompromised patients, leading to a higher risk of liver cirrhosis and even death. Between 0.0013% and 0.281% of asymptomatic blood donors around the world have HEV viremia, and 0.27% to 60.5% have anti-HEV immunoglobulin G. HEV is infectious even at very low blood concentrations of the virus. Immunosuppressed patients who develop persistent hepatitis E infection should have their immunosuppressant regimen reduced; ribavirin may be considered as treatment. Pegylated interferon can be considered in those who are refractory or intolerant to ribavirin. Sofosbuvir, a nucleotide analog, showed modest antiviral activity in some clinical studies but sustained viral response was not achieved. Therefore, rescue treatment remains an unmet need. The need for HEV screening of all blood donations remains controversial. Universal screening has been adopted in some countries after consideration of risk and resource availability. Various pathogen reduction methods have also been proposed to reduce the risk of TT-HEV. Future studies are needed to define the incidence of transmission through transfusion, their clinical features, outcomes and prognosis.
Collapse
Affiliation(s)
| | - Sunny Hei Wong
- Institute of Digestive Disease and Department of Medicine and Therapeutics, the Chinese University of Hong Kong, Hong Kong 852, China
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 639798, Singapore
| | | | - Man Fai Law
- Medicine and Therapeutics, Prince of Wales Hospital, Hong Kong 852, China
| |
Collapse
|
39
|
Golkocheva-Markova E, Kevorkyan A, Raycheva R, Ismailova C, Yoncheva V, Tenev T, Emilova R, Grigorova L, Baltadzhiev I, Komitova R. Assessment of hepatitis E seropositivity among HIV-infected patients in Bulgaria. Braz J Infect Dis 2022; 26:102329. [PMID: 35176255 PMCID: PMC9387478 DOI: 10.1016/j.bjid.2022.102329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/26/2021] [Accepted: 01/03/2022] [Indexed: 11/30/2022] Open
Abstract
It is debatable whether HIV-infected patients are at greater risk for hepatitis E virus (HEV) infection compared with healthy subjects. The reported anti-HEV seroprevalence among different groups in Bulgaria varied from 9.04% to 25.9%, but the information regarding the HIV population is still missing. The aim of the present study was to evaluate hepatitis E seroprevalence among HIV-infected patients in Bulgaria and to analyze demographic and immunological factors associated with HEV infection. Serum samples of 312 HIV-infected patients were analyzed retrospectively. Age, sex, residence and laboratory markers for HEV, HBV, HCV and HIV infection, and lymphocytes subpopulations were collected for all patients. None of the tested samples were positive for HEV RNA. HEV seroprevalence among HIV-infected patients was 10.9%. Males were more affected with the highest prevalence of positivity in the age group > 30 to ≤ 40 years. The documented HIV transmission routes in HIV/HEV co-infected group were heterosexual, homosexual, intravenous drug use (IDU), and vertical with predominace of the heterosexual route (z = 0.2; p = 0.804). There was a statistically significant trend of HIV mixed infection with routes of HIV transmission other than homosexual - heterosexual in HIV/HEV group and injection drug use in HIV/HBV/HCV co-infected group. The route of HIV transmission, in contexts of patients’ behavior, was associated with HEV prevalence among HIV-infected patients.
Collapse
|
40
|
Fanelli A, Tizzani P, Buonavoglia D. A systematic review and meta-analysis of hepatitis E virus (HEV) in wild boars. Res Vet Sci 2021; 142:54-69. [PMID: 34864434 DOI: 10.1016/j.rvsc.2021.11.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/02/2021] [Accepted: 11/26/2021] [Indexed: 12/19/2022]
Abstract
This systematic review and meta-analysis summarize the available information on Hepatitis E virus (HEV) -specific antibody seroprevalence and HEV RNA prevalence in wild boar, one of the most abundant game species worldwide. A literature search (CAB Abstracts, Web of Science, Embase and Scopus) was performed to find relevant peer-reviewed works published during the period 1990-2020. A random-effect model was carried out to calculate the pooled HEV-specific antibody seroprevalence and HEV RNA prevalence estimates with 95% confidence intervals, and I2 statistic was used to assess the heterogeneity of the data. Values by subgroups were compared according to the geographical area, age class (≤ 12 months old and > 12 months old), and sample type (bile, faeces, liver, meat/muscle, serum). Sixty-nine publications were selected, with the majority of the studies from Southern Europe (n = 27). The pooled HEV-specific antibody seroprevalence in wild boar was 28% (CI95% 23-34) and the HEV RNA prevalence 8% (CI95% 6-10). The analysis highlighted a significant heterogeneity among the estimates from the included studies (I2 = 98% and I2 = 95% for HEV-specific antibody seroprevalence and viral prevalence respectively). The moderator analysis indicated a statistically significant difference (p-value = 0.03) for the HEV RNA prevalence according to the sample type, with the highest value in bile (17%, CI95% 9-27), followed by liver (10%, CI95% 7-14), serum (7%, CI95% 4-10), faeces (5%, CI95% 2-9), and meat/muscle (3%, CI95% 0.04-10). Finally, the HEV RNA prevalence in Europe (8.7, CI95% 6.7-11) was significantly (p-value = 0.04) higher than in Asia (4, CI95% 0.6-8). The analysis highlights the important role of wild boar in the epidemiology of HEV.
Collapse
Affiliation(s)
- Angela Fanelli
- Department of Veterinary Medicine, University of Bari, Valenzano, Bari, Italy.
| | - Paolo Tizzani
- Department of Veterinary Sciences, University of Turin, Grugliasco, Turin, Italy
| | | |
Collapse
|
41
|
Serological Evidence of Hepatitis E Virus Infection in Semi-Domesticated Eurasian Tundra Reindeer ( Rangifer tarandus tarandus) in Norway. Pathogens 2021; 10:pathogens10121542. [PMID: 34959497 PMCID: PMC8709481 DOI: 10.3390/pathogens10121542] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/19/2021] [Accepted: 11/23/2021] [Indexed: 01/23/2023] Open
Abstract
Hepatitis E virus (HEV) is a common cause of viral hepatitis in humans. In developing countries, HEV-infections seem to be mainly associated with pigs, but other animal species may be involved in viral transmission. Recently, anti-HEV antibodies were detected in Norwegian wild reindeer. Here, we investigated anti-HEV seroprevalence in Norwegian semi-domesticated reindeer, animals in closer contact with humans than their wild counterparts. Blood samples (n = 516) were obtained from eight reindeer herds during the period 2013–2017 and analysed with a commercial enzyme-linked immunosorbent assay designed for detecting anti-HEV antibodies in livestock. Antibodies were found in all herds and for all sampling seasons. The overall seroprevalence was 15.7% (81/516), with adults showing a slightly higher seroprevalence (18.0%, 46/256) than calves (13.5%, 35/260, p = 0.11). The seroprevalence was not influenced by gender or latitude, and there was no temporal trend (p > 0.15). A positive association between the presence of anti-HEV antibodies and antibodies against alphaherpesvirus and pestivirus, detected in a previous screening, was found (p < 0.05). We conclude that Norwegian semi-domesticated reindeer are exposed to HEV or an antigenically similar virus. Whether the virus is affecting reindeer health or infects humans and poses a threat for human health remains unknown and warrants further investigations.
Collapse
|
42
|
Mrzljak A, Balen I, Barbic L, Ilic M, Vilibic-Cavlek T. Hepatitis E virus in professionally exposed: A reason for concern? World J Hepatol 2021; 13:723-730. [PMID: 34367494 PMCID: PMC8326162 DOI: 10.4254/wjh.v13.i7.723] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 03/31/2021] [Accepted: 06/25/2021] [Indexed: 02/06/2023] Open
Abstract
The zoonotic risk of hepatitis E virus (HEV) is well established. The HEV seroprevalence rates vary according to geographical region, assays used, and study cohorts. HEV infection is still underdiagnosed, implying the need to evaluate the disease's burden in the general population and specific risk groups, such as professionally exposed. Close contact with various animal reservoirs such as pigs, rabbits, sheep, dogs, wild boars, and deer has been associated with higher anti-HEV seroprevalence as a part of occupational exposure. While exact transmission routes remain to be determined, some general preventive measures such as proper hand hygiene, the usage of personal protective equipment, and the thermal processing of food before consumption should be followed. A “One-Health” multisectoral approach should be implemented to achieve optimal health and well-being outcomes, recognizing the interconnections between humans, animals, plants, and their shared environment, in which a vaccine against the zoonotic genotypes 3 and 4 and swine vaccination should be considered as a possible public health measure. This opinion review comprehensively addresses the HEV burden of professional exposure for butchers, slaughterhouse workers, veterinarians, farmers, hunters, and forestry workers delineates the current limits of protective work measures, and tackles future directions.
Collapse
Affiliation(s)
- Anna Mrzljak
- Department of Gastroenterology and Hepatology, University Hospital Centre Zagreb, Zagreb 10000, Croatia
- School of Medicine, University of Zagreb, Zagreb 10000, Croatia
| | - Ivan Balen
- Department of Gastroenterology and Endocrinology, General Hospital “Dr. Josip Bencevic”, Slavonski Brod 35000, Croatia
| | - Ljubo Barbic
- Faculty of Veterinary Medicine, University of Zagreb, Zagreb 10000, Croatia
| | - Maja Ilic
- Department of Epidemiology, Croatian Institute of Public Health, School of Medicine, University of Zagreb, Zagreb 10000, Croatia
| | - Tatjana Vilibic-Cavlek
- School of Medicine, University of Zagreb, Zagreb 10000, Croatia
- Department of Virology, Croatian Institute of Public Health, School of Medicine, University of Zagreb, Zagreb 10000, Croatia
| |
Collapse
|
43
|
Hepatitis E Outbreak in the Central Part of Italy Sustained by Multiple HEV Genotype 3 Strains, June-December 2019. Viruses 2021; 13:v13061159. [PMID: 34204376 PMCID: PMC8235070 DOI: 10.3390/v13061159] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 12/20/2022] Open
Abstract
In European countries, autochthonous acute hepatitis E cases are caused by Hepatitis E Virus (HEV) genotype 3 and are usually observed as sporadic cases. In mid/late September 2019, a hepatitis E outbreak caused by HEV genotype 3 was recognized by detection of identical/highly similar HEV sequences in some hepatitis E cases from two Italian regions, Abruzzo and Lazio, with most cases from this latter region showing a link with Abruzzo. Overall, 47 cases of HEV infection were finally observed with onsets from 8 June 2019 to 6 December 2019; they represent a marked increase as compared with just a few cases in the same period of time in the past years and in the same areas. HEV sequencing was successful in 35 cases. The phylogenetic analysis of the viral sequences showed 30 of them grouped in three distinct molecular clusters, termed A, B, and C: strains in cluster A and B were of subtype 3e and strains in cluster C were of subtype 3f. No strains detected in Abruzzo in the past years clustered with the strains involved in the present outbreak. The outbreak curve showed partially overlapped temporal distribution of the three clusters. Analysis of collected epidemiological data identified pork products as the most likely source of the outbreak. Overall, the findings suggest that the outbreak might have been caused by newly and almost simultaneously introduced strains not previously circulating in this area, which are possibly harbored by pork products or live animals imported from outside Abruzzo. This possibility deserves further studies in this area in order to monitor the circulation of HEV in human cases as well as in pigs and wild boars.
Collapse
|
44
|
Suda T, Iguchi R, Ishiyama T, Kanefuji T, Hoshi T, Abe S, Morita S, Yagi K. A Superinfection of Salmonella typhi and Hepatitis E Virus Causes Biphasic Acute Hepatitis. Intern Med 2021; 60:1717-1722. [PMID: 33431734 PMCID: PMC8222138 DOI: 10.2169/internalmedicine.6458-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
A 47-year-old Japanese man was referred to our hospital because of a sustained high fever with diarrhea 12 days after a flight from India. Liver enzymes were elevated with rose spots, hepatosplenomegaly, relative bradycardia, and acute cholecystitis. A liver biopsy depicted the dense infiltration of lymphocytes and Kupffer cells in sinusoids and the granulomatous formation in the parenchyma. The liver damage was initially resolved with the administration of ceftriaxone for 16 days but flared up 1 week later. Laboratory tests yielded positive reactions for Salmonella typhi and hepatitis E virus RNA. The pathophysiological presentations of concurrent typhoid and type E hepatitis are discussed.
Collapse
Affiliation(s)
- Takeshi Suda
- Department of Gastroenterology and Hepatology, Uonuma Institute of Community Medicine, Niigata University Medical & Dental Hospital, Japan
| | - Ryo Iguchi
- Division of General Internal Medicine, National Hospital Organization Shizuoka Medical Center, Japan
| | - Takaaki Ishiyama
- Department of Internal Medicine, Hospital Medicine Section, St. Louis University, USA
| | - Tsutomu Kanefuji
- Department of Gastroenterology and Hepatology, Tsubame Rosai Hospital, Japan
| | - Takahiro Hoshi
- Department of Gastroenterology and Hepatology, Uonuma Institute of Community Medicine, Niigata University Medical & Dental Hospital, Japan
| | - Satoshi Abe
- Department of Gastroenterology and Hepatology, Uonuma Institute of Community Medicine, Niigata University Medical & Dental Hospital, Japan
| | - Shinichi Morita
- Department of Gastroenterology and Hepatology, Uonuma Institute of Community Medicine, Niigata University Medical & Dental Hospital, Japan
| | - Kazuyoshi Yagi
- Department of Gastroenterology and Hepatology, Uonuma Institute of Community Medicine, Niigata University Medical & Dental Hospital, Japan
| |
Collapse
|
45
|
Hepatitis E Virus RNA Presence in Wild Boar Carcasses at Slaughterhouses in Italy. Animals (Basel) 2021; 11:ani11061624. [PMID: 34072795 PMCID: PMC8230283 DOI: 10.3390/ani11061624] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 12/26/2022] Open
Abstract
Simple Summary Hepatitis E virus (HEV) is a worldwide diffused pathogen responsible for acute hepatitis of humans. Transmission of the pathogen is mostly related to the consumption of contaminated food and water. Although initially the disease was contained in developing countries, in recent years autochthonous infections have been reported in several industrialised countries. A different epidemiological pattern of transmission has been highlighted; while in Africa and Asia transmission is mainly due to waterborne outbreaks caused by low sanitation standards, in Europe and other industrialised countries, the disease has mainly spread due to consumption of raw or undercooked meat and seafood. Although HEV has been identified in several domestic and wild animal species, pigs and wild boar, appear to play a distinct role mainly acting as a reservoir of the pathogen. In this study, we monitored the presence of HEV in carcasses and livers of wild boar sampled in Tuscany at the slaughterhouse following hunting activities. Our data indicate the presence of the pathogen in the liver and the carcasses, suggesting cross-contamination. This evidence highlights the importance of maintaining safety control measures to avoid the spreading of HEV infection. Abstract Hepatitis E virus (HEV) is a waterborne and foodborne pathogen largely spread around the world. HEV is responsible for acute hepatitis in humans and it is also diffused in domestic and wild animals. In particular, domestic pigs represent the main reservoir of the infection and particular attention should be paid to the consumption of raw and undercooked meat as a possible zoonotic vehicle of the pathogen. Several studies have reported the presence of HEV in wild boar circulating in European countries with similar prevalence rates. In this study, we evaluated the occurrence of HEV in wild boar hunted in specific areas of Tuscany. Sampling was performed by collecting liver samples and also by swabbing the carcasses at the slaughterhouses following hunting activities. Our data indicated that 8/67 (12%) of liver samples and 4/67 (6%) of swabs were positive for HEV RNA. The presence of HEV genome on swabs indicates the possible cross-contamination of carcass surfaces during slaughtering procedures. Altogether, our data indicated that it is essential to promote health education programmes for hunters and consumers to limit the diffusion of the pathogen to humans.
Collapse
|
46
|
The Risk of Transfusion-Transmitted Hepatitis E Virus: Evidence from Seroprevalence Screening of Blood Donations. Indian J Hematol Blood Transfus 2021; 38:145-152. [PMID: 33879981 PMCID: PMC8050642 DOI: 10.1007/s12288-021-01428-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/18/2021] [Indexed: 01/04/2023] Open
Abstract
Throughout the world, there has been growing concern over the risk of hepatitis E virus (HEV) transmission via blood transfusion. The present study screened blood donor samples for anti-HEV immunoglobulin M (IgM) and immunoglobulin G (IgG). The prevalence of HEV infection was assessed on a total of 1,003 archived serum samples obtained from the National Blood Centre, Malaysia. The samples were collected from healthy blood donor from Klang Valley between 2017 and 2018. All samples were tested for IgM and IgG antibodies to HEV using enzyme-linked immunosorbent assays (ELISA). HEV-specific IgG antibodies were detected in 31/1003 (3.1%; 95% confidence interval [CI] 2.1%–4.4%) and IgM in 9/1003 (0.9%; 95% CI 0.4%–1.7%) samples. In bivariate analysis, there was no significant difference in the prevalence of anti-HEV IgG with respect to gender and district of origin. Although not statistically significant, males had higher odds of having anti-HEV IgG than females (odds ratio [OR] = 2.86; 95% CI 0.95–8.64). All anti-HEV IgG positive individuals were people of Chinese descent. Anti-HEV IgG increased significantly with age, from 0.6% (95% CI 0.1%–2.6%) of 18–30-year-old donors to 7.4% (95% CI 2.7%–17.0%) of donors older than 50 years and was highest among non-professional workers (5.3%; 95% CI 2.5%–10.5%). Increasing age and a non-professional occupation remained significant predictors for anti-HEV IgG in the multivariable analysis. Screening of blood donations for HEV in Malaysia is important to safeguard the health of transfusion recipients. The higher rates of HEV infection in blood from older donors and donors who are non-professional workers may provide insights into targeted groups for blood screening.
Collapse
|
47
|
Molecular Characterization and Seroprevalence of Hepatitis E Virus in Inflammatory Bowel Disease Patients and Solid Organ Transplant Recipients. Viruses 2021; 13:v13040670. [PMID: 33924409 PMCID: PMC8070591 DOI: 10.3390/v13040670] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/01/2021] [Accepted: 04/05/2021] [Indexed: 12/13/2022] Open
Abstract
Seroprevalence rates and molecular characterization of hepatitis E virus (HEV) prevalent in the Lithuanian human population has not yet been evaluated. Immunosuppressed individuals have been recognized as a risk group for chronic hepatitis due to HEV genotype 3 (HEV-3) infections. The objectives of the present study were to determine prevalence rates of anti-HEV antibodies among inflammatory bowel disease (IBD) patients and solid organ transplant (SOT) recipients, to isolate and characterize HEV strain present in the Lithuanian human population, and to investigate its capacity to infect non-human primate (MARC-145 and Vero), swine (PK-15) and murine (Neuro-2a) cells in vitro. In the present study, the significant difference of anti-HEV IgG prevalence between healthy (3.0% (95% CI 0–6.3)) and immunosuppressed individuals (12.0% [95% CI 8.1–15.9]) was described. Moreover, our findings showed that anti-HEV IgG seropositivity can be significantly predicted by increasing age (OR = 1.032, p < 0.01), diagnosis of IBD (OR = 4.541, p < 0.01) and reception of SOT (OR = 4.042, <0.05). Locally isolated HEV strain clustered within genotype 3i subtype of genotype 3 and was capable of infecting MARC-145 cells. This study demonstrates higher HEV seroprevalence in the risk group compared to healthy control individuals without confidence interval overlap. The high level of genetic homology between human and animal strains in Lithuania and the capacity of locally isolated strains to infect cells of non-human origin suggests its potential for zoonotic transmission.
Collapse
|
48
|
Ahmad T, Nasir S, Musa TH, AlRyalat SAS, Khan M, Hui J. Epidemiology, diagnosis, vaccines, and bibliometric analysis of the 100 top-cited studies on Hepatitis E virus. Hum Vaccin Immunother 2021; 17:857-871. [PMID: 32755437 PMCID: PMC7993234 DOI: 10.1080/21645515.2020.1795458] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/27/2020] [Accepted: 07/08/2020] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION In low-income countries, Hepatitis E infection is a common cause of acute hepatitis. So far, only two recombinant vaccines (rHEV and HEV 239) have been developed against Hepatitis E virus (HEV). Of which HEV 239 is licensed in China, but is not yet available in any other country. OBJECTIVE This study aims to discuss epidemiology, diagnosis, available vaccines for HEV, and provides an overview of 100 top-cited studies on HEV. METHODS A bibliometric analysis was conducted on the topic "HEV" through a systematic search of the Web of Science. The keywords used were "Hepatitis E" and retrieved articles were assessed for number of attributes. RESULTS The search returned a total of 3,235 publications, cited 95,858 times with h-index 129. The main finding for the 100 top-cited articles on HEV showed: number of authors ranging from 1 to 23, cited references range from 4 to 304, global citations score per year range from 6.61 to 175, and global citations score range from 148 to 791. Of the 100 top-cited studies, the authors who published most articles are Purcell (n = 18), Meng (n = 17), and Emerson (n = 15). Most The largest share of articles on HEV was contributed by United States of America (n = 49) with 12,795 citations. The National Institute of Allergy andInfectious Diseases was leading institute with greatest number of publications (n = 16), cited 3,950 times. CONCLUSIONS The studies conducted on HEV have increased over time. The information presented would be very useful in decision making for policy makers providing health care, and for academicians in providing a reference point for future research.
Collapse
Affiliation(s)
- Tauseef Ahmad
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Saima Nasir
- Allama Iqbal Open University, Islamabad, Islamic Republic of Pakistan
| | - Taha Hussein Musa
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | | | - Muhammad Khan
- Department of Genetics, Centre for Human Genetics, Hazara University, Mansehra, Khyber Pakhtunkhwa, Islamic Republic of Pakistan
| | - Jin Hui
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| |
Collapse
|
49
|
Gorris M, van der Lecq BM, van Erpecum KJ, de Bruijne J. Treatment for chronic hepatitis E virus infection: A systematic review and meta-analysis. J Viral Hepat 2021; 28:454-463. [PMID: 33301609 PMCID: PMC7898834 DOI: 10.1111/jvh.13456] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/09/2020] [Accepted: 11/23/2020] [Indexed: 12/19/2022]
Abstract
Hepatitis E virus infection can cause chronic hepatitis in immunocompromised patients with significant chance of progressive fibrosis and possibly cirrhosis. The aim of this systematic review was to summarize the efficacy and safety of the various treatment options for chronic hepatitis E. We performed a systematic literature search. The primary outcome measure was a sustained virological response (SVR). Secondary end points were rapid virological response (RVR), relapse rates, side effects and adverse events. Forty-four articles were included with a total of 582 patients. Reduction of immunosuppressive medication induced viral clearance in 55/174 (32%) of the patients. Meta-analysis of 395 patients showed a pooled SVR rate of 78% (95-CI 72%-84%) after ribavirin treatment. Twenty-five per cent of the patients obtained a RVR, whereas a relapse occurred in 18% of the patients. Anaemia during treatment led to dose reduction, use of erythropoietin and/or blood transfusion in 37% of the patients. A second treatment attempt with ribavirin led to a SVR in 39/51 (76%) of the patients. Pegylated interferon-alpha was administered to 13 patients and SVR was obtained in 85%. Two patients (15%) suffered from acute transplant rejection during treatment with interferon. In conclusion, reduction of immunosuppressive medication and treatment with ribavirin is safe, generally well tolerated and induced viral clearance in 32% and 78% of patients, respectively. Therefore, ribavirin should be considered as first treatment step for chronic hepatitis E. Treatment with pegylated interferon-alpha increases the risk of transplant rejection and should therefore be administered with great caution.
Collapse
Affiliation(s)
- Myrte Gorris
- Department of Gastroenterology & HepatologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Bernice M. van der Lecq
- Department of Gastroenterology & HepatologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Karel J. van Erpecum
- Department of Gastroenterology & HepatologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Joep de Bruijne
- Department of Gastroenterology & HepatologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| |
Collapse
|
50
|
Buescher G, Ozga AK, Lorenz E, Pischke S, May J, Addo MM, Horvatits T. Hepatitis E seroprevalence and viremia rate in immunocompromised patients: a systematic review and meta-analysis. Liver Int 2021; 41:449-455. [PMID: 33034121 DOI: 10.1111/liv.14695] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 09/09/2020] [Accepted: 09/29/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND AND AIMS Hepatitis E is an infectious disease of the liver caused by the hepatitis E virus (HEV). Immunocompromised patients present a particular risk group, as chronification of hepatitis E leading to life-threatening cirrhosis occurs when these patients are infected. Therefore, this study aims to estimate and compare the anti-HEV seroprevalence and the rate of HEV RNA positivity in transplant recipients and patients with human immunodeficiency virus (HIV). METHODS This systematic review and meta-analysis involved a literature search (PubMed, Scopus; 1,138 studies) including 120 studies from 1996 to 2019, reporting anti-HEV seroprevalence and/or HEV-RNA positivity. Statistical analysis was performed using a linear mixed-effects meta regression model. RESULTS Anti-HEV seroprevalence in 14 626 transplant recipients ranged from 6% (95% CI: 1.9-17.2) to 29.6% (95% CI: 21.6-39.) in different commercially available assays and did not differ significantly compared to 20 825 HIV positive patients (range: 3.5% (95% CI: 0.9-12.8) - 19.4% (95% CI: 13.5-26.9). In contrast, HEV-RNA positivity rate was significantly higher in transplant recipients than in HIV positive patients (1.2% (95% CI: 0.9-1.6) vs 0.39% (95% CI: 0.2-0.7); P-value = 0.0011). CONCLUSION Anti-HEV seroprevalence did not differ significantly between transplant recipients and HIV positive patients. Interestingly, rates of HEV-RNA positivity, indicating ongoing infection, were significantly higher in transplant recipients. These findings demonstrate that transplant patients have an elevated risk of chronic infection in comparison to HIV patients at comparable risk of HEV-exposure.
Collapse
Affiliation(s)
- Gustav Buescher
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ann-Kathrin Ozga
- Institute of Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Eva Lorenz
- Department of Infectious Disease Epidemiology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.,German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel and Heidelberg Partner sites, Germany.,Institute of Medical Biostatistics, Epidemiology and Informatics, University Medical Centre of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Sven Pischke
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel and Heidelberg Partner sites, Germany
| | - Jürgen May
- Department of Infectious Disease Epidemiology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.,German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel and Heidelberg Partner sites, Germany
| | - Marylyn M Addo
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel and Heidelberg Partner sites, Germany
| | - Thomas Horvatits
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel and Heidelberg Partner sites, Germany
| |
Collapse
|