1
|
Kombe Kombe AJ, Fotoohabadi L, Nanduri R, Gerasimova Y, Daskou M, Gain C, Sharma E, Wong M, Kelesidis T. The Role of the Nrf2 Pathway in Airway Tissue Damage Due to Viral Respiratory Infections. Int J Mol Sci 2024; 25:7042. [PMID: 39000157 PMCID: PMC11241721 DOI: 10.3390/ijms25137042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/14/2024] [Accepted: 06/20/2024] [Indexed: 07/16/2024] Open
Abstract
Respiratory viruses constitute a significant cause of illness and death worldwide. Respiratory virus-associated injuries include oxidative stress, ferroptosis, inflammation, pyroptosis, apoptosis, fibrosis, autoimmunity, and vascular injury. Several studies have demonstrated the involvement of the nuclear factor erythroid 2-related factor 2 (Nrf2) in the pathophysiology of viral infection and associated complications. It has thus emerged as a pivotal player in cellular defense mechanisms against such damage. Here, we discuss the impact of Nrf2 activation on airway injuries induced by respiratory viruses, including viruses, coronaviruses, rhinoviruses, and respiratory syncytial viruses. The inhibition or deregulation of Nrf2 pathway activation induces airway tissue damage in the presence of viral respiratory infections. In contrast, Nrf2 pathway activation demonstrates protection against tissue and organ injuries. Clinical trials involving Nrf2 agonists are needed to define the effect of Nrf2 therapeutics on airway tissues and organs damaged by viral respiratory infections.
Collapse
Affiliation(s)
- Arnaud John Kombe Kombe
- Division of Infectious Diseases and Geographic Medicine, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (A.J.K.K.)
| | - Leila Fotoohabadi
- Division of Infectious Diseases and Geographic Medicine, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (A.J.K.K.)
| | - Ravikanth Nanduri
- Division of Infectious Diseases and Geographic Medicine, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (A.J.K.K.)
| | - Yulia Gerasimova
- Division of Infectious Diseases and Geographic Medicine, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (A.J.K.K.)
| | - Maria Daskou
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Chandrima Gain
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Eashan Sharma
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Michael Wong
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Theodoros Kelesidis
- Division of Infectious Diseases and Geographic Medicine, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (A.J.K.K.)
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
2
|
Lee WP, Liao SX, Huang YH, Hou MC, Lan KH. Akt1 is involved in HCV release by promoting endoplasmic reticulum-to-endosome transition of infectious virions. Life Sci 2024; 338:122412. [PMID: 38191051 DOI: 10.1016/j.lfs.2024.122412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/25/2023] [Accepted: 01/02/2024] [Indexed: 01/10/2024]
Abstract
AIMS Hepatitis C virus (HCV) relies on the viral and host factors to complete its life cycle. It has evolved to profit from Akt activation at some stage in its life cycle through various mechanisms, notably by activating lipogenesis, which is crucial for infectious virions production. MATERIALS AND METHODS By employing an Akt-specific inhibitor, the impact of Akt on intracellular and extracellular infectivity was investigated. To ascertain the role of Akt in the HCV life cycle, the two-part cell culture-derived HCV infection protocol utilizing Akt1 small interfering RNAs (siRNAs) was implemented. The impact of Akt1 on intracellular HCV transition was determined using membrane flotation assay and proximity ligation assay coupled with Anti-Rab7 immunoprecipitation and immunofluorescence. KEY FINDINGS Akt1 silencing reduced infectious virions release to a degree comparable to that of ApoE, a host component involved in the HCV assembly and release, suggesting Akt1 was critical in the late stage of the HCV life cycle. Extracellular infectivity of HCV was inhibited by brefeldin A, and the inhibitory effect was augmented by Akt1 silencing and partially restored by ectopic Akt1 expression. Immunofluorescence revealed that Akt1 inhibition suppressed the interaction between HCV core protein and lipid droplet. Akt1 silencing impeded the transition of HCV from the endoplasmic reticulum to the endosome and hence inhibited the secretion of HCV infectious virions from the late endosome. SIGNIFICANCE Our study demonstrates that Akt1 has an impact on the lipogenesis pathway and plays a critical role in the assembly and secretion of infectious HCV.
Collapse
Affiliation(s)
- Wei-Ping Lee
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Biochemistry and Molecular Biology, School of Life Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shi-Xian Liao
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yi-Hsiang Huang
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Institute of Clinical Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ming-Chih Hou
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Keng-Hsin Lan
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
3
|
Daskou M, Fotooh Abadi L, Gain C, Wong M, Sharma E, Kombe Kombe AJ, Nanduri R, Kelesidis T. The Role of the NRF2 Pathway in the Pathogenesis of Viral Respiratory Infections. Pathogens 2023; 13:39. [PMID: 38251346 PMCID: PMC10819673 DOI: 10.3390/pathogens13010039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 01/23/2024] Open
Abstract
In humans, acute and chronic respiratory infections caused by viruses are associated with considerable morbidity and mortality. Respiratory viruses infect airway epithelial cells and induce oxidative stress, yet the exact pathogenesis remains unclear. Oxidative stress activates the transcription factor NRF2, which plays a key role in alleviating redox-induced cellular injury. The transcriptional activation of NRF2 has been reported to affect both viral replication and associated inflammation pathways. There is complex bidirectional crosstalk between virus replication and the NRF2 pathway because virus replication directly or indirectly regulates NRF2 expression, and NRF2 activation can reversely hamper viral replication and viral spread across cells and tissues. In this review, we discuss the complex role of the NRF2 pathway in the regulation of the pathogenesis of the main respiratory viruses, including coronaviruses, influenza viruses, respiratory syncytial virus (RSV), and rhinoviruses. We also summarize the scientific evidence regarding the effects of the known NRF2 agonists that can be utilized to alter the NRF2 pathway.
Collapse
Affiliation(s)
- Maria Daskou
- Department of Medicine, Division of Infectious Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Leila Fotooh Abadi
- Department of Internal Medicine, Division of Infectious Diseases and Geographic Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (L.F.A.); (R.N.)
| | - Chandrima Gain
- Department of Medicine, Division of Infectious Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Michael Wong
- Department of Medicine, Division of Infectious Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Eashan Sharma
- Department of Medicine, Division of Infectious Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Arnaud John Kombe Kombe
- Department of Internal Medicine, Division of Infectious Diseases and Geographic Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (L.F.A.); (R.N.)
| | - Ravikanth Nanduri
- Department of Internal Medicine, Division of Infectious Diseases and Geographic Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (L.F.A.); (R.N.)
| | - Theodoros Kelesidis
- Department of Medicine, Division of Infectious Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Internal Medicine, Division of Infectious Diseases and Geographic Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (L.F.A.); (R.N.)
| |
Collapse
|
4
|
Mandal A, Hazra B. Medicinal plant molecules against hepatitis C virus: Current status and future prospect. Phytother Res 2023; 37:4353-4374. [PMID: 37439007 DOI: 10.1002/ptr.7936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/16/2023] [Accepted: 06/21/2023] [Indexed: 07/14/2023]
Abstract
Hepatitis C virus (HCV), a global malady, causes acute and chronic hepatitis leading to permanent liver damage, hepatocellular carcinoma, and death. Modern anti-HCV therapies are efficient, but mostly inaccessible for residents of underdeveloped regions. To innovate more effective treatments at affordable cost, medicinal plant-based products need to be explored. The aim of this article is to review plant constituents in the light of putative anti-HCV mechanisms of action, and discuss existing problems, challenges, and future directions for their potential application in therapeutic settings. One hundred sixty literatures were collected by using appropriate search strings via scientific search engines: Google Scholar, PubMed, ScienceDirect, and Scopus. Bibliography was prepared using Mendeley desktop software. We found a substantial number of plants that were reported to inhibit different stages of HCV life cycle. Traditional medicinal plants such as Phyllanthus amarus Schumach. and Thonn., Eclipta alba (L.) Hassk., and Acacia nilotica (L.) Delile exhibited strong anti-HCV activities. Again, several phytochemicals such as epigallocatechin-3-gallate, honokilol, punicalagin, and quercetin have shown broad-spectrum anti-HCV effect. We have presented promising phytochemicals like silymarin, curcumin, glycyrrhizin, and camptothecin for nanoparticle-based hepatocyte-targeted drug delivery. Nevertheless, only a few animal studies have been performed to validate the anti-HCV effect of these plant products. Again, insufficient clinical evaluation of the safety and effectiveness of herbal medications remain a problem. Selected plants products could be developed as novel therapeutics for HCV patients only after scrupulous evaluation of their safety and efficacy in a clinical set-up.
Collapse
Affiliation(s)
- Anirban Mandal
- Department of Microbiology, Mrinalini Datta Mahavidyapith, Birati, Kolkata, India
| | - Banasri Hazra
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| |
Collapse
|
5
|
Qin T, Chen X, Meng J, Guo Q, Xu S, Hou S, Yuan Z, Zhang W. The role of curcumin in the liver-gut system diseases: from mechanisms to clinical therapeutic perspective. Crit Rev Food Sci Nutr 2023; 64:8822-8851. [PMID: 37096460 DOI: 10.1080/10408398.2023.2204349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
Natural products have provided abundant sources of lead compounds for new drug discovery and development over the past centuries. Curcumin is a lipophilic polyphenol isolated from turmeric, a plant used in traditional Asian medicine for centuries. Despite the low oral bioavailability, curcumin exhibits profound medicinal value in various diseases, especially liver and gut diseases, bringing an interest in the paradox of its low bioavailability but high bioactivity. Several latest studies suggest that curcumin's health benefits may rely on its positive gastrointestinal effects rather than its poor bioavailability solely. Microbial antigens, metabolites, and bile acids regulate metabolism and immune responses in the intestine and liver, suggesting the possibility that the liver-gut axis bidirectional crosstalk controls gastrointestinal health and diseases. Accordingly, these pieces of evidence have evoked great interest in the curcumin-mediated crosstalk among liver-gut system diseases. The present study discussed the beneficial effects of curcumin against common liver and gut diseases and explored the underlying molecular targets, as well as collected evidence from human clinical studies. Moreover, this study summarized the roles of curcumin in complex metabolic interactions in liver and intestine diseases supporting the application of curcumin in the liver-gut system as a potential therapeutic option, which opens an avenue for clinical use in the future.
Collapse
Affiliation(s)
- Tingting Qin
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Xiuying Chen
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jiahui Meng
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Qianqian Guo
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Shan Xu
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Shanshan Hou
- Department of Pharmacy, Zhejiang Pharmaceutical College, Ningbo, China
| | - Ziqiao Yuan
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Wenzhou Zhang
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
6
|
Perna A, Hay E, Sellitto C, Del Genio E, De Falco M, Guerra G, De Luca A, De Blasiis P, Lucariello A. Antiinflammatory Activities of Curcumin and Spirulina: Focus on Their Role against COVID-19. J Diet Suppl 2023; 20:372-389. [PMID: 36729019 DOI: 10.1080/19390211.2023.2173354] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Nutraceuticals have for several years aroused the interest of researchers for their countless properties, including the management of viral infections. In the context of the COVID-19 pandemic, studies and research on the antiviral properties of nutraceuticals have greatly increased. More specifically, over the past two years, researchers have focused on analyzing the possible role of nutraceuticals in reducing the risk of SARS-CoV-2 infection or mitigating the symptoms of COVID-19. Among nutraceuticals, turmeric, extracted from the rhizome of the Curcuma Longa plant, and spirulina, commercial name of the cyanobacterium Arthrospira platensis, have assumed considerable importance in recent years. The purpose of this review is to collect, through a search of the most recent articles on Pubmed, the scientific evidence on the role of these two compounds in the fight against COVID-19. In the last two years many hypotheses, some confirmed by clinical and experimental studies, have been made on the possible use of turmeric against COVID-19, while on spirulina and its possible role against SARS-CoV-2 infection information is much less. The demonstrated antiviral properties of spirulina and the fact that these cyanobacteria may modulate or modify some mechanisms also involved in the onset of COVID-19, lead us to think that it may have the same importance as curcumin in fighting this disease and to speculate on the possible combined use of these two substances to obtain a synergistic effect.
Collapse
Affiliation(s)
- Angelica Perna
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso, Italy
| | - Eleonora Hay
- Department of Mental and Physical Health and Preventive Medicine, Section of Human Anatomy, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Carmine Sellitto
- Department of Mental and Physical Health and Preventive Medicine, Section of Human Anatomy, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Emiliano Del Genio
- Department of Mental and Physical Health and Preventive Medicine, Section of Human Anatomy, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Maria De Falco
- Department of Biology, University of Naples ''Federico II'', Naples, Italy
- National Institute of Biostructures and Biosystems (INBB), Rome, Italy
- Center for Studies on Bioinspired Agro-Environmental Technology (BAT Center), Portici, Italy
| | - Germano Guerra
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso, Italy
| | - Antonio De Luca
- Department of Mental and Physical Health and Preventive Medicine, Section of Human Anatomy, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Paolo De Blasiis
- Department of Mental and Physical Health and Preventive Medicine, Section of Human Anatomy, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Angela Lucariello
- Department of Sport Sciences and Wellness, University of Naples "Parthenope", Naples, Italy
| |
Collapse
|
7
|
丁 香, 岳 冀, 董 碧, 冷 晓. [Activity of curcumin against human cytomegalovirus infection in vitro]. SHENG WU YI XUE GONG CHENG XUE ZA ZHI = JOURNAL OF BIOMEDICAL ENGINEERING = SHENGWU YIXUE GONGCHENGXUE ZAZHI 2022; 39:1158-1164. [PMID: 36575085 PMCID: PMC9927191 DOI: 10.7507/1001-5515.202108035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/21/2022] [Indexed: 12/29/2022]
Abstract
This study aimed to investigate the effect of curcumin (Cur) against human cytomegalovirus (HCMV) in vitro. Human embryonic lung fibroblasts were cultured in vitro. The tetrazolium salt (MTS) method was used to detect the effects of Cur on cell viability. The cells were divided into control group, HCMV group, HCMV + (PFA) group and HCMV + Cur group in this study. The cytopathic effect (CPE) of each group was observed by plaque test, then the copy number of HCMV DNA in each group was detected by quantitative polymerase chain reaction (qPCR), and the expression of HCMV proteins in different sequence was detected by Western blot. The results showed that when the concentration of Cur was not higher than 15 μmol/L, there was no significant change in cell growth and viability in the Cur group compared with the control group (P>0.05). After the cells were infected by HCMV for 5 d, the cells began to show CPE, and the number of plaques increased with time. Pretreatment with Cur significantly reduced CPE in a dose-dependent manner. After the cells were infected by HCMV, the DNA copy number and protein expression gradually increased in a time-dependent manner. Pretreatment with Cur significantly inhibited HCMV DNA copies and downregulate HCMV protein expression levels in a concentration-dependent manner, and the difference was statistically significant (P<0.05). In conclusion, Cur may exert anti-HCMV activity by inhibiting the replication of HCMV DNA and down-regulating the expression levels of different sequence proteins of HCMV. This study provides a new experimental basis for the development of anti-HCMV infectious drugs.
Collapse
Affiliation(s)
- 香 丁
- 四川大学华西医院 老年医学中心(成都 610041)The Center of Gerontology and Geriatrics, West China Hospital of Sichuan University, Chengdu 610041, P. R. China
| | - 冀蓉 岳
- 四川大学华西医院 老年医学中心(成都 610041)The Center of Gerontology and Geriatrics, West China Hospital of Sichuan University, Chengdu 610041, P. R. China
| | - 碧蓉 董
- 四川大学华西医院 老年医学中心(成都 610041)The Center of Gerontology and Geriatrics, West China Hospital of Sichuan University, Chengdu 610041, P. R. China
| | - 晓 冷
- 四川大学华西医院 老年医学中心(成都 610041)The Center of Gerontology and Geriatrics, West China Hospital of Sichuan University, Chengdu 610041, P. R. China
| |
Collapse
|
8
|
Liu S, Liu J, He L, Liu L, Cheng B, Zhou F, Cao D, He Y. A Comprehensive Review on the Benefits and Problems of Curcumin with Respect to Human Health. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27144400. [PMID: 35889273 PMCID: PMC9319031 DOI: 10.3390/molecules27144400] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 12/03/2022]
Abstract
Curcumin is the most important active component in turmeric extracts. Curcumin, a natural monomer from plants has received a considerable attention as a dietary supplement, exhibiting evident activity in a wide range of human pathological conditions. In general, curcumin is beneficial to human health, demonstrating pharmacological activities of anti-inflammation and antioxidation, as well as antitumor and immune regulation activities. Curcumin also presents therapeutic potential in neurodegenerative, cardiovascular and cerebrovascular diseases. In this review article, we summarize the advancements made in recent years with respect to curcumin as a biologically active agent in malignant tumors, Alzheimer’s disease (AD), hematological diseases and viral infectious diseases. We also focus on problems associated with curcumin from basic research to clinical translation, such as its low solubility, leading to poor bioavailability, as well as the controversy surrounding the association between curcumin purity and effect. Through a review and summary of the clinical research on curcumin and case reports of adverse effects, we found that the clinical transformation of curcumin is not successful, and excessive intake of curcumin may have adverse effects on the kidneys, heart, liver, blood and immune system, which leads us to warn that curcumin has a long way to go from basic research to application transformation.
Collapse
Affiliation(s)
- Siyu Liu
- Post-Graduate School, Hunan University of Chinese Medicine, Changsha 410208, China; (S.L.); (J.L.); (L.L.); (F.Z.)
| | - Jie Liu
- Post-Graduate School, Hunan University of Chinese Medicine, Changsha 410208, China; (S.L.); (J.L.); (L.L.); (F.Z.)
| | - Lan He
- The First Clinical College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410007, China; (L.H.); (B.C.)
| | - Liu Liu
- Post-Graduate School, Hunan University of Chinese Medicine, Changsha 410208, China; (S.L.); (J.L.); (L.L.); (F.Z.)
| | - Bo Cheng
- The First Clinical College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410007, China; (L.H.); (B.C.)
| | - Fangliang Zhou
- Post-Graduate School, Hunan University of Chinese Medicine, Changsha 410208, China; (S.L.); (J.L.); (L.L.); (F.Z.)
- Hunan Provincial Engineering and Technological Research Center for Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Chinese Medicine and Protecting Visual Function, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Deliang Cao
- Post-Graduate School, Hunan University of Chinese Medicine, Changsha 410208, China; (S.L.); (J.L.); (L.L.); (F.Z.)
- Correspondence: (D.C.); (Y.H.)
| | - Yingchun He
- Post-Graduate School, Hunan University of Chinese Medicine, Changsha 410208, China; (S.L.); (J.L.); (L.L.); (F.Z.)
- Hunan Provincial Engineering and Technological Research Center for Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Chinese Medicine and Protecting Visual Function, Hunan University of Chinese Medicine, Changsha 410208, China
- Hunan Provincial Key Laboratory for the Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, China
- Correspondence: (D.C.); (Y.H.)
| |
Collapse
|
9
|
Ferreira LLC, Abreu MP, Costa CB, Leda PO, Behrens MD, Dos Santos EP. Curcumin and Its Analogs as a Therapeutic Strategy in Infections Caused by RNA Genome Viruses. FOOD AND ENVIRONMENTAL VIROLOGY 2022; 14:120-137. [PMID: 35352306 PMCID: PMC8963406 DOI: 10.1007/s12560-022-09514-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 02/09/2022] [Indexed: 05/03/2023]
Abstract
The use of natural resources for the prevention and treatment of diseases considered fatal to humanity has evolved. Several medicinal plants have nutritional and pharmacological potential in the prevention and treatment of viral infections, among them, turmeric, which is recognized for its biological properties associated with curcuminoids, mainly represented by curcumin, and found mostly in rhizomes. The purpose of this review was to compile the pharmacological activities of curcumin and its analogs, aiming at stimulating their use as a therapeutic strategy to treat infections caused by RNA genome viruses. We revisited its historical application as an anti-inflammatory, antioxidant, and antiviral agent that combined with low toxicity, motivated research against viruses affecting the population for decades. Most findings concentrate particularly on arboviruses, HIV, and the recent SARS-CoV-2. As one of the main conclusions, associating curcuminoids with nanomaterials increases solubility, bioavailability, and antiviral effects, characterized by blocking the entry of the virus into the cell or by inhibiting key enzymes in viral replication and transcription.
Collapse
Affiliation(s)
- Leide Lene C Ferreira
- Herbal Medicines Department, Vital Brazil Institute, Maestro José Botelho, 64, Santa Rosa, CEP 24.230-340, Niterói, RJ, Brazil.
- Galenic Development Laboratory, Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Marina P Abreu
- Herbal Medicines Department, Vital Brazil Institute, Maestro José Botelho, 64, Santa Rosa, CEP 24.230-340, Niterói, RJ, Brazil
| | - Camila B Costa
- Technological Development and Innovation Laboratory, Vital Brazil Institute, Rio de Janeiro, Brazil
| | - Paulo O Leda
- Laboratory of Natural Products for Public Health, Institute of Pharmaceutical Technology, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Maria Dutra Behrens
- Laboratory of Natural Products for Public Health, Institute of Pharmaceutical Technology, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Elisabete Pereira Dos Santos
- Galenic Development Laboratory, Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
10
|
Owen L, Laird K, Shivkumar M. Antiviral plant-derived natural products to combat RNA viruses: Targets throughout the viral life cycle. Lett Appl Microbiol 2021; 75:476-499. [PMID: 34953146 PMCID: PMC9544774 DOI: 10.1111/lam.13637] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 11/08/2021] [Accepted: 12/13/2021] [Indexed: 11/30/2022]
Abstract
There is a need for new effective antivirals, particularly in response to the development of antiviral drug resistance and emerging RNA viruses such as SARS‐CoV‐2. Plants are a significant source of structurally diverse bioactive compounds for drug discovery suggesting that plant‐derived natural products could be developed as antiviral agents. This article reviews the antiviral activity of plant‐derived natural products against RNA viruses, with a focus on compounds targeting specific stages of the viral life cycle. A range of plant extracts and compounds have been identified with antiviral activity, often against multiple virus families suggesting they may be useful as broad‐spectrum antiviral agents. The antiviral mechanism of action of many of these phytochemicals is not fully understood and there are limited studies and clinical trials demonstrating their efficacy and toxicity in vivo. Further research is needed to evaluate the therapeutic potential of plant‐derived natural products as antiviral agents.
Collapse
Affiliation(s)
- Lucy Owen
- Infectious Disease Research Group, The Leicester School of Pharmacy, De Montfort University, Leicester, UK
| | - Katie Laird
- Infectious Disease Research Group, The Leicester School of Pharmacy, De Montfort University, Leicester, UK
| | - Maitreyi Shivkumar
- Infectious Disease Research Group, The Leicester School of Pharmacy, De Montfort University, Leicester, UK
| |
Collapse
|
11
|
Antiviral Therapeutic Potential of Curcumin: An Update. Molecules 2021; 26:molecules26226994. [PMID: 34834089 PMCID: PMC8617637 DOI: 10.3390/molecules26226994] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 01/10/2023] Open
Abstract
The treatment of viral disease has become a medical challenge because of the increasing incidence and prevalence of human viral pathogens, as well as the lack of viable treatment alternatives, including plant-derived strategies. This review attempts to investigate the trends of research on in vitro antiviral effects of curcumin against different classes of human viral pathogens worldwide. Various electronic databases, including PubMed, Scopus, Web of Science, and Google Scholar were searched for published English articles evaluating the anti-viral activity of curcumin. Data were then extracted and analyzed. The forty-three studies (published from 1993 to 2020) that were identified contain data for 24 different viruses. The 50% cytotoxic concentration (CC50), 50% effective/inhibitory concentration (EC50/IC50), and stimulation index (SI) parameters showed that curcumin had antiviral activity against viruses causing diseases in humans. Data presented in this review highlight the potential antiviral applications of curcumin and open new avenues for further experiments on the clinical applications of curcumin and its derivatives.
Collapse
|
12
|
Santana MS, Lopes R, Peron IH, Cruz CR, Gaspar AM, Costa PI. Natural Bioactive Compounds as Adjuvant Therapy for Hepatitis C Infection. CURRENT NUTRITION & FOOD SCIENCE 2021. [DOI: 10.2174/1573401316999201009152726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background:
Hepatitis C virus infection is a significant global health burden, which
causes acute or chronic hepatitis. Acute hepatitis C is generally asymptomatic and progresses to
cure, while persistent infection can progress to chronic liver disease and extrahepatic manifestations.
Standard treatment is expensive, poorly tolerated, and has variable sustained virologic responses
amongst the different viral genotypes. New therapies involve direct acting antivirals; however,
it is also very expensive and may not be accessible for all patients worldwide. In order to provide
a complementary approach to the already existing therapies, natural bioactive compounds are
investigated as to their several biologic activities, such as direct antiviral properties against hepatitis
C, and effects on mitigating chronic progression of the disease, which include hepatoprotective,
antioxidant, anticarcinogenic and anti-inflammatory activities; additionally, these compounds present
advantages, as chemical diversity, low cost of production and milder or inexistent side effects.
Objective:
To present a broad perspective on hepatitis C infection, the chronic disease, and natural
compounds with promising anti-HCV activity. Methods: This review consists of a systematic review
study about the natural bioactive compounds as a potential therapy for hepatitis C infection.
Results:
The quest for natural products has yielded compounds with biologic activity, including viral
replication inhibition in vitro, demonstrating antiviral activity against hepatitis C.
Conclusion:
One of the greatest advantages of using natural molecules from plant extracts is the
low cost of production, not requiring chemical synthesis, which can lead to less expensive therapies
available to low and middle-income countries.
Collapse
Affiliation(s)
- Moema S. Santana
- Food and Nutrition Department, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara-SP, Brazil
| | - Rute Lopes
- Department of Biotechnology, Institute of Chemistry, Sao Paulo State University (UNESP), Araraquara-SP, Brazil
| | - Isabela H. Peron
- Food and Nutrition Department, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara-SP, Brazil
| | - Carla R. Cruz
- Food and Nutrition Department, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara-SP, Brazil
| | - Ana M.M. Gaspar
- Department of Biotechnology, Institute of Chemistry, São Paulo State University (UNESP), Araraquara-SP, Brazil
| | - Paulo I. Costa
- Food and Nutrition Department, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara-SP, Brazil
| |
Collapse
|
13
|
Rattis BAC, Ramos SG, Celes MRN. Curcumin as a Potential Treatment for COVID-19. Front Pharmacol 2021; 12:675287. [PMID: 34025433 PMCID: PMC8138567 DOI: 10.3389/fphar.2021.675287] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/21/2021] [Indexed: 01/08/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is an infectious disease that rapidly spread throughout the world leading to high mortality rates. Despite the knowledge of previous diseases caused by viruses of the same family, such as MERS and SARS-CoV, management and treatment of patients with COVID-19 is a challenge. One of the best strategies around the world to help combat the COVID-19 has been directed to drug repositioning; however, these drugs are not specific to this new virus. Additionally, the pathophysiology of COVID-19 is highly heterogeneous, and the way of SARS-CoV-2 modulates the different systems in the host remains unidentified, despite recent discoveries. This complex and multifactorial response requires a comprehensive therapeutic approach, enabling the integration and refinement of therapeutic responses of a given single compound that has several action potentials. In this context, natural compounds, such as Curcumin, have shown beneficial effects on the progression of inflammatory diseases due to its numerous action mechanisms: antiviral, anti-inflammatory, anticoagulant, antiplatelet, and cytoprotective. These and many other effects of curcumin make it a promising target in the adjuvant treatment of COVID-19. Hence, the purpose of this review is to specifically point out how curcumin could interfere at different times/points during the infection caused by SARS-CoV-2, providing a substantial contribution of curcumin as a new adjuvant therapy for the treatment of COVID-19.
Collapse
Affiliation(s)
- Bruna A. C. Rattis
- Department of Pathology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goias, Goiania, Brazil
| | - Simone G. Ramos
- Department of Pathology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Mara R. N. Celes
- Department of Pathology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goias, Goiania, Brazil
| |
Collapse
|
14
|
Sander WJ, Fourie C, Sabiu S, O'Neill FH, Pohl CH, O'Neill HG. Reactive oxygen species as potential antiviral targets. Rev Med Virol 2021; 32:e2240. [PMID: 33949029 DOI: 10.1002/rmv.2240] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Indexed: 12/14/2022]
Abstract
Reactive oxygen species (ROS) are by-products of cellular metabolism and can be either beneficial, at low levels, or deleterious, at high levels, to the cell. It is known that several viral infections can increase oxidative stress, which is mainly facilitated by viral-induced imbalances in the antioxidant defence mechanisms of the cell. While the exact role of ROS in certain viral infections (adenovirus and dengue virus) remains unknown, other viruses can use ROS for enhancement of pathogenesis (SARS coronavirus and rabies virus) or replication (rhinovirus, West Nile virus and vesicular stomatitis virus) or both (hepatitis C virus, human immunodeficiency virus and influenza virus). While several viral proteins (mainly for hepatitis C and human immunodeficiency virus) have been identified to play a role in ROS formation, most mediators of viral ROS modulation are yet to be elucidated. Treatment of viral infections, including hepatitis C virus, human immunodeficiency virus and influenza virus, with ROS inhibitors has shown a decrease in both pathogenesis and viral replication both in vitro and in animal models. Clinical studies indicating the potential for targeting ROS-producing pathways as possible broad-spectrum antiviral targets should be evaluated in randomized controlled trials.
Collapse
Affiliation(s)
- Willem J Sander
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, South Africa
| | - Corinne Fourie
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, South Africa
| | - Saheed Sabiu
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, South Africa.,Department of Biotechnology and Food Science, Durban University of Technology, Durban, South Africa
| | - Frans H O'Neill
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, South Africa
| | - Carolina H Pohl
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, South Africa
| | - Hester G O'Neill
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, South Africa
| |
Collapse
|
15
|
Rahban M, Habibi-Rezaei M, Mazaheri M, Saso L, Moosavi-Movahedi AA. Anti-Viral Potential and Modulation of Nrf2 by Curcumin: Pharmacological Implications. Antioxidants (Basel) 2020; 9:E1228. [PMID: 33291560 PMCID: PMC7761780 DOI: 10.3390/antiox9121228] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 11/29/2020] [Accepted: 12/01/2020] [Indexed: 12/13/2022] Open
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) is an essential transcription factor that maintains the cell's redox balance state and reduces inflammation in different adverse stresses. Under the oxidative stress, Nrf2 is separated from Kelch-like ECH-associated protein 1 (Keap1), which is a key sensor of oxidative stress, translocated to the nucleus, interacts with the antioxidant response element (ARE) in the target gene, and then activates the transcriptional pathway to ameliorate the cellular redox condition. Curcumin is a yellow polyphenolic curcuminoid from Curcuma longa (turmeric) that has revealed a broad spectrum of bioactivities, including antioxidant, anti-inflammatory, anti-tumor, and anti-viral activities. Curcumin significantly increases the nuclear expression levels and promotes the biological effects of Nrf2 via the interaction with Cys151 in Keap1, which makes it a marvelous therapeutic candidate against a broad range of oxidative stress-related diseases, including type 2 diabetes (T2D), neurodegenerative diseases (NDs), cardiovascular diseases (CVDs), cancers, viral infections, and more recently SARS-CoV-2. Currently, the multifactorial property of the diseases and lack of adequate medical treatment, especially in viral diseases, result in developing new strategies to finding potential drugs. Curcumin potentially opens up new views as possible Nrf2 activator. However, its low bioavailability that is due to low solubility and low stability in the physiological conditions is a significant challenge in the field of its efficient and effective utilization in medicinal purposes. In this review, we summarized recent studies on the potential effect of curcumin to activate Nrf2 as the design of potential drugs for a viral infection like SARS-Cov2 and acute and chronic inflammation diseases in order to improve the cells' protection.
Collapse
Affiliation(s)
- Mahdie Rahban
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran 1417614335, Iran;
| | - Mehran Habibi-Rezaei
- School of Biology, College of Science, University of Tehran, Tehran 1417614335, Iran
- Center of Excellence in NanoBiomedicine, University of Tehran, Tehran 1417614335, Iran
| | - Mansoureh Mazaheri
- Research Center of Food Technology and Agricultural Products, Department of Food Toxicology, Standard Research Institute, Karaj 3158777871, Iran;
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy;
| | - Ali A. Moosavi-Movahedi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran 1417614335, Iran;
- UNESCO Chair on Interdisciplinary Research in Diabetes, University of Tehran, Tehran 1417614335, Iran
| |
Collapse
|
16
|
Singh D, Wasan H, Reeta KH. Heme oxygenase-1 modulation: A potential therapeutic target for COVID-19 and associated complications. Free Radic Biol Med 2020; 161:263-271. [PMID: 33091573 PMCID: PMC7571447 DOI: 10.1016/j.freeradbiomed.2020.10.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 12/12/2022]
Abstract
Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to infect hundred thousands of people every day worldwide. Since it is a novel virus, research continues to update the possible therapeutic targets when new evidence regarding COVID-19 are gathered. This article presents an evidence-based hypothesis that activating the heme oxygenase-1 (HO-1) pathway is a potential target for COVID-19. Interferons (IFNs) have broad-spectrum antiviral activity including against SARS-CoV-2. Induction of HO-1 and increase in the heme catabolism end-product confer antiviral activity. IFN activation results in inhibition of viral replication in various viral infections. COVID-19 induced inflammation as well as acute respiratory distress syndrome (ARDS), and coagulopathies are now known major causes of mortality. A protective role of HO-1 induction in inflammation, inflammation-induced coagulation, and ARDS has been reported. Based on an association of HO-1 promoter polymorphisms and disease severity, we propose an evaluation of the status of these polymorphisms in COVID-19 patients who become severely ill. If an association is established, it might be helpful in identifying patients at high risk. Hence, we hypothesize that HO-1 pathway activation could be a therapeutic strategy against COVID-19 and associated complications.
Collapse
Affiliation(s)
- Devendra Singh
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, India
| | - Himika Wasan
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, India
| | - K H Reeta
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
17
|
Hahn D, Shin SH, Bae JS. Natural Antioxidant and Anti-Inflammatory Compounds in Foodstuff or Medicinal Herbs Inducing Heme Oxygenase-1 Expression. Antioxidants (Basel) 2020; 9:E1191. [PMID: 33260980 PMCID: PMC7761319 DOI: 10.3390/antiox9121191] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/20/2020] [Accepted: 11/24/2020] [Indexed: 02/06/2023] Open
Abstract
Heme oxygenase-1 (HO-1) is an inducible antioxidant enzyme that catalyzes heme group degradation. Decreased level of HO-1 is correlated with disease progression, and HO-1 induction suppresses development of metabolic and neurological disorders. Natural compounds with antioxidant activities have emerged as a rich source of HO-1 inducers with marginal toxicity. Here we discuss the therapeutic role of HO-1 in obesity, hypertension, atherosclerosis, Parkinson's disease and hepatic fibrosis, and present important signaling pathway components that lead to HO-1 expression. We provide an updated, comprehensive list of natural HO-1 inducers in foodstuff and medicinal herbs categorized by their chemical structures. Based on the continued research in HO-1 signaling pathways and rapid development of their natural inducers, HO-1 may serve as a preventive and therapeutic target for metabolic and neurological disorders.
Collapse
Affiliation(s)
- Dongyup Hahn
- School of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Korea;
- Department of Integrative Biology, Kyungpook National University, Daegu 41566, Korea
| | - Seung Ho Shin
- Department of Food and Nutrition, Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Korea;
| | - Jong-Sup Bae
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics based Creative Drug Research Team, Kyungpook National University, Daegu 41566, Korea
| |
Collapse
|
18
|
Emirik M. Potential therapeutic effect of turmeric contents against SARS-CoV-2 compared with experimental COVID-19 therapies: in silico study. J Biomol Struct Dyn 2020; 40:2024-2037. [PMID: 33078675 DOI: 10.1080/07391102.2020.1835719] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Inspired by the 'There is no scientific evidence that turmeric prevents COVID-19' statement made by WHO, the protective or therapeutic potential of the compounds in turmeric contents was investigated against COVID-19 with in silico methodology. The drugs used for experimental COVID-19 therapies were included in this study using the same method for comparison with turmeric components. The 30 turmeric compounds and nine drugs were performed in the docking procedure for vital proteins of COVID-19. With evaluations based on docking scores, the Prime MMGBSA binding free energy and protein-ligand interactions were identified in detail. The 100 ns MD simulations were also performed to assess the stability of the ligands at the binding site of the target proteins. The Root Mean Square Deviation (RMSD) is used to obtain the average displacement for a particular frame concerning a reference frame. The results of this study are suggesting that turmeric spice have a potential to inhibit the SARS-CoV-2 vital proteins and can be use a therapeutic or protective agent against SARS-CoV-2 via inhibiting key protein of the SARS-CoV-2 virus. The compound 4, 23 and 6 are the most prominent inhibitor for the main protease, the spike glycoprotein and RNA polymerase of virus, respectively. The MD simulation validated the stability of ligand-protein interactions. The compactness of the complexes was shown using a radius of gyration. ADME properties of featured compounds are in range of 95% drug molecules. It is hoped that the outputs of this study will contribute to the struggle of humanity with COVID-19.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mustafa Emirik
- Department of Chemistry, Recep Tayyip Erdogan University, Rize, Turkey
| |
Collapse
|
19
|
Roumy V, Ruiz L, Ruiz Macedo JC, Gutierrez-Choquevilca AL, Samaillie J, Encinas LA, Mesia WR, Ricopa Cotrina HE, Rivière C, Sahpaz S, Bordage S, Garçon G, Dubuisson J, Anthérieu S, Seron K, Hennebelle T. Viral hepatitis in the Peruvian Amazon: Ethnomedical context and phytomedical resource. JOURNAL OF ETHNOPHARMACOLOGY 2020; 255:112735. [PMID: 32147478 DOI: 10.1016/j.jep.2020.112735] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/25/2020] [Accepted: 03/01/2020] [Indexed: 05/25/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE An extensive ethnopharmacological survey was carried out in the Peruvian Amazonian district of Loreto with informants of various cultural origins from the surroundings of Iquitos (capital city of Loreto) and from 15 isolated riverine Quechua communities of the Pastaza River. A close attention was paid to the medical context and plant therapy, leading to the selection of 35 plant species (45 extracts). The extracts were tested for antiviral activity against HCV with counting of Huh-7 cellular death in case of toxicity, and cytotoxicity was evaluated in HepG2 cells. AIM OF THE STUDY The aim of the study was to inventory the plants used against hepatitis in Loreto, then to evaluate their antiviral activity and to suggest a way to improve local therapeutic strategy against viral hepatitis, which is a fatal disease that is still increasing in this area. MATERIALS AND METHODS An ethnographic survey was carried out using "participant-observation" methodology and focusing on plant therapy against hepatitis including associated remedies. 45 parts of plant were extracted with methanol and tested in vitro for anti-HCV activity in 96-well plate, using HCV cell culture system with immunofluorescent detection assisted by automated confocal microscopy. Toxicity of plant extracts was also evaluated in microplates on hepatic cells by immunofluorescent detection, for the Huh-7 nuclei viability, and by UV-absorbance measurement of MTT formazan for cytotoxicity in HepG2 cells. RESULTS In vitro assay revealed interesting activity of 18 extracts (50% infection inhibition at 25 μg/mL) with low cytotoxicity for 15 of them. Result analysis showed that at least 30% of HCV virus were inhibited at 25 μg/mL for 60% of the plant extracts. Moreover, the ethnomedical survey showed that remedies used with low and accurate dosing as targeted therapy against hepatitis are usually more active than species indicated with more flexible dosing to alleviate symptoms of hepatic diseases. CONCLUSION Together with bibliographic data analysis, this study supported the traditional medicinal uses of many plants and contributed to a better understanding of the local medical system. It also permitted to refine the therapeutic plant indications regarding patients' liver injuries and vulnerability. Only 2 of the 15 most active plant species have already been studied for antiviral activity against hepatitis suggesting new avenues to be followed for the 13 other species.
Collapse
Affiliation(s)
- Vincent Roumy
- Univ. Lille, INRA, YNCREA, Univ. Artois, Univ. Littoral Côte d'Opale, EA 7394-ICV-Institut Charles Viollette, F-59000, Lille, France.
| | - Lastenia Ruiz
- Laboratorio de Investigación de Productos Naturales Antiparasitarios de la Amazonia (LIPNAA), Universidad Nacional de la Amazonía Peruana (UNAP), Centro de Investigaciones de Recursos Naturales de la Amazonía (CIRNA), Nuevo San Lorenzo, Iquitos, Perú
| | - Juan Celidonio Ruiz Macedo
- Herbarium de la Amazonía Peruana Amazonense de la Universidad Nacional de la Amazonía Peruana (UNAP), Nanay con Pevas, Iquitos, Perú
| | - Andrea-Luz Gutierrez-Choquevilca
- Ecole Pratique des Hautes Etudes, EPHE PSL, Laboratoire d'anthropologie sociale (UMR 7130, Collège de France, 75005, Paris France)
| | - Jennifer Samaillie
- Univ. Lille, INRA, YNCREA, Univ. Artois, Univ. Littoral Côte d'Opale, EA 7394-ICV-Institut Charles Viollette, F-59000, Lille, France
| | - Leonor Arévalo Encinas
- Laboratorio de Investigación de Productos Naturales Antiparasitarios de la Amazonia (LIPNAA), Universidad Nacional de la Amazonía Peruana (UNAP), Centro de Investigaciones de Recursos Naturales de la Amazonía (CIRNA), Nuevo San Lorenzo, Iquitos, Perú
| | - Wilfredo Ruiz Mesia
- Laboratorio de Investigación de Productos Naturales Antiparasitarios de la Amazonia (LIPNAA), Universidad Nacional de la Amazonía Peruana (UNAP), Centro de Investigaciones de Recursos Naturales de la Amazonía (CIRNA), Nuevo San Lorenzo, Iquitos, Perú
| | - Hivelli Ericka Ricopa Cotrina
- Laboratorio de Investigación de Productos Naturales Antiparasitarios de la Amazonia (LIPNAA), Universidad Nacional de la Amazonía Peruana (UNAP), Centro de Investigaciones de Recursos Naturales de la Amazonía (CIRNA), Nuevo San Lorenzo, Iquitos, Perú
| | - Céline Rivière
- Univ. Lille, INRA, YNCREA, Univ. Artois, Univ. Littoral Côte d'Opale, EA 7394-ICV-Institut Charles Viollette, F-59000, Lille, France
| | - Sevser Sahpaz
- Univ. Lille, INRA, YNCREA, Univ. Artois, Univ. Littoral Côte d'Opale, EA 7394-ICV-Institut Charles Viollette, F-59000, Lille, France
| | - Simon Bordage
- Univ. Lille, INRA, YNCREA, Univ. Artois, Univ. Littoral Côte d'Opale, EA 7394-ICV-Institut Charles Viollette, F-59000, Lille, France
| | - Guillaume Garçon
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, EA 4483-IMPECS-IMPact de l'Environnement Chimique sur la Santé humaine, F-59000, Lille France
| | - Jean Dubuisson
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL, Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Sebastien Anthérieu
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, EA 4483-IMPECS-IMPact de l'Environnement Chimique sur la Santé humaine, F-59000, Lille France
| | - Karin Seron
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL, Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Thierry Hennebelle
- Univ. Lille, INRA, YNCREA, Univ. Artois, Univ. Littoral Côte d'Opale, EA 7394-ICV-Institut Charles Viollette, F-59000, Lille, France
| |
Collapse
|
20
|
Lin CK, Tseng CK, Wu YH, Lin CY, Huang CH, Wang WH, Liaw CC, Chen YH, Lee JC. Prostasin Impairs Epithelial Growth Factor Receptor Activation to Suppress Dengue Virus Propagation. J Infect Dis 2020; 219:1377-1388. [PMID: 30476206 DOI: 10.1093/infdis/jiy677] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 11/21/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Dengue virus (DENV), a common and widely spread arbovirus, causes life-threatening diseases, such as dengue hemorrhagic fever or dengue shock syndrome. There is currently no effective therapeutic or preventive treatment for DENV infection. METHODS Next-generation sequencing analysis revealed that prostasin expression was decreased upon DENV infection. Prostasin expression levels were confirmed by real-time quantitative polymerase chain reaction in patients with dengue fever and a DENV-infected mice model. Short hairpin RNA against EGFR and LY294002 were used to investigate the molecular mechanism. RESULTS Based on clinical studies, we first found relatively low expression of prostasin, a glycosylphosphatidyl inositol-anchored membrane protease, in blood samples from patients with dengue fever compared with healthy individuals and a high correlation of prostasin expression and DENV-2 RNA copy number. DENV infection significantly decreased prostasin RNA levels of in vivo and in vitro models. By contrast, exogenous expression of prostasin could protect ICR suckling mice from life-threatening DENV-2 infection. Mechanistic studies showed that inhibition of DENV propagation by prostasin was due to reducing expression of epithelial growth factor receptor, leading to suppression of the Akt/NF-κB-mediated cyclooxygenase-2 signaling pathway. CONCLUSION Our results demonstrate that prostasin expression is a noteworthy clinical feature and a potential therapeutic target against DENV infection.
Collapse
Affiliation(s)
- Chun-Kuang Lin
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Chin-Kai Tseng
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Hsuan Wu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chun-Yu Lin
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Taiwan.,School of Medicine, Graduate Institute of Medicine, Sepsis Research Center, Center for Dengue Fever Control and Research, Kaohsiung Medical University, Taiwan
| | - Chung-Hao Huang
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Taiwan.,School of Medicine, Graduate Institute of Medicine, Sepsis Research Center, Center for Dengue Fever Control and Research, Kaohsiung Medical University, Taiwan
| | - Weng-Hung Wang
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Taiwan
| | - Chih-Chuang Liaw
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-Sen University, Kaohsiung, Taiwan.,Department of Marine Biotechnology and Resources, College of Marine Sciences, National Sun Yat-Sen University, Kaohsiung
| | - Yen-Hsu Chen
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Taiwan.,School of Medicine, Graduate Institute of Medicine, Sepsis Research Center, Center for Dengue Fever Control and Research, Kaohsiung Medical University, Taiwan.,Department of Biological Science and Technology, College of Biological Science and Technology, National Chiao Tung University, HsinChu.,Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Taiwan
| | - Jin-Ching Lee
- Department of Medical Research, Kaohsiung Medical University Hospital, Taiwan.,Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Taiwan.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Taiwan.,PhD program in Life Sciences, College of Life Science, Kaohsiung Medical University, Taiwan
| |
Collapse
|
21
|
Chen WC, Wei CK, Lee JC. MicroRNA-let-7c suppresses hepatitis C virus replication by targeting Bach1 for induction of haem oxygenase-1 expression. J Viral Hepat 2019; 26:655-665. [PMID: 30706605 DOI: 10.1111/jvh.13072] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 12/17/2018] [Accepted: 01/05/2019] [Indexed: 12/26/2022]
Abstract
MicroRNAs are small noncoding RNAs that are central factors between hepatitis C virus (HCV) and host cellular factors for viral replication and liver disease progression, including liver fibrosis, cirrhosis and hepatocellular carcinoma. In the present study, we found that overexpressing miR-let-7c markedly reduced HCV replication because it induced haem oxygenase-1 (HO-1) expression by targeting HO-1 transcriptional repressor Bach1, ultimately leading to stimulating an antiviral interferon response and blockade of HCV viral protease activity. In contrast, the antiviral actions of miR-let-7c were attenuated by miR-let-7c inhibitor treatment, exogenously expressing Bach1 or suppressing HO-1 activity and expression. A proposed model indicates a key role for miR-let-7c targeting Bach1 to transactivate HO-1-mediated antiviral actions against HCV. miR-let-7c may serve as an attractive target for antiviral development.
Collapse
Affiliation(s)
- Wei-Chun Chen
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chih-Ku Wei
- Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jin-Ching Lee
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan.,PhD Program in Life Sciences, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
22
|
Mhillaj E, Tarozzi A, Pruccoli L, Cuomo V, Trabace L, Mancuso C. Curcumin and Heme Oxygenase: Neuroprotection and Beyond. Int J Mol Sci 2019; 20:E2419. [PMID: 31100781 PMCID: PMC6567096 DOI: 10.3390/ijms20102419] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/10/2019] [Accepted: 05/14/2019] [Indexed: 12/17/2022] Open
Abstract
Curcumin is a natural polyphenol component of Curcuma longa Linn, which is currently considered one of the most effective nutritional antioxidants for counteracting free radical-related diseases. Several experimental data have highlighted the pleiotropic neuroprotective effects of curcumin, due to its activity in multiple antioxidant and anti-inflammatory pathways involved in neurodegeneration. Although its poor systemic bioavailability after oral administration and low plasma concentrations represent restrictive factors for curcumin therapeutic efficacy, innovative delivery formulations have been developed in order to overwhelm these limitations. This review provides a summary of the main findings involving the heme oxygenase/biliverdin reductase system as a valid target in mediating the potential neuroprotective properties of curcumin. Furthermore, pharmacokinetic properties and concerns about curcumin's safety profile have been addressed.
Collapse
Affiliation(s)
- Emanuela Mhillaj
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy.
- Università Cattolica del Sacro Cuore, 00168 Rome, Italy.
| | - Andrea Tarozzi
- Department for Life Quality Studies, Alma Mater Studiorum, University of Bologna, 47900 Rimini, Italy.
| | - Letizia Pruccoli
- Department for Life Quality Studies, Alma Mater Studiorum, University of Bologna, 47900 Rimini, Italy.
| | - Vincenzo Cuomo
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, 00185 Rome, Italy.
| | - Luigia Trabace
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy.
| | - Cesare Mancuso
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy.
- Università Cattolica del Sacro Cuore, 00168 Rome, Italy.
| |
Collapse
|
23
|
Praditya D, Kirchhoff L, Brüning J, Rachmawati H, Steinmann J, Steinmann E. Anti-infective Properties of the Golden Spice Curcumin. Front Microbiol 2019; 10:912. [PMID: 31130924 PMCID: PMC6509173 DOI: 10.3389/fmicb.2019.00912] [Citation(s) in RCA: 164] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 04/10/2019] [Indexed: 01/02/2023] Open
Abstract
The search for novel anti-infectives is one of the most important challenges in natural product research, as diseases caused by bacteria, viruses, and fungi are influencing the human society all over the world. Natural compounds are a continuing source of novel anti-infectives. Accordingly, curcumin, has been used for centuries in Asian traditional medicine to treat various disorders. Numerous studies have shown that curcumin possesses a wide spectrum of biological and pharmacological properties, acting, for example, as anti-inflammatory, anti-angiogenic and anti-neoplastic, while no toxicity is associated with the compound. Recently, curcumin’s antiviral and antibacterial activity was investigated, and it was shown to act against various important human pathogens like the influenza virus, hepatitis C virus, HIV and strains of Staphylococcus, Streptococcus, and Pseudomonas. Despite the potency, curcumin has not yet been approved as a therapeutic antiviral agent. This review summarizes the current knowledge and future perspectives of the antiviral, antibacterial, and antifungal effects of curcumin.
Collapse
Affiliation(s)
- Dimas Praditya
- Department of Molecular and Medical Virology, Ruhr-University Bochum, Bochum, Germany.,Institute of Experimental Virology, Twincore - Centre for Experimental and Clinical Infection Research, A Joint Venture Between the Medical School Hannover and The Helmholtz Centre for Infection Research, Hanover, Germany.,Research Center for Biotechnology, Indonesian Institute of Science, Cibinong, Indonesia
| | - Lisa Kirchhoff
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Janina Brüning
- Department of Molecular and Medical Virology, Ruhr-University Bochum, Bochum, Germany
| | - Heni Rachmawati
- School of Pharmacy, Bandung Institute of Technology, Bandung, Indonesia.,Research Center for Nanosciences and Nanotechnology, Bandung Institute of Technology, Bandung, Indonesia
| | - Joerg Steinmann
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.,Institute of Clinical Hygiene, Medical Microbiology and Infectiology, Klinikum Nürnberg, Paracelsus Medical University, Nuremberg, Germany
| | - Eike Steinmann
- Department of Molecular and Medical Virology, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
24
|
Patel SS, Acharya A, Ray RS, Agrawal R, Raghuwanshi R, Jain P. Cellular and molecular mechanisms of curcumin in prevention and treatment of disease. Crit Rev Food Sci Nutr 2019; 60:887-939. [PMID: 30632782 DOI: 10.1080/10408398.2018.1552244] [Citation(s) in RCA: 229] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Curcumin is a naturally occurring polyphenolic compound present in rhizome of Curcuma longa belonging to the family zingiberaceae. Growing experimental evidence revealed that curcumin exhibit multitarget biological implications signifying its crucial role in health and disease. The current review highlights the recent progress and mechanisms underlying the wide range of pharmacological effects of curcumin against numerous diseases like neuronal, cardiovascular, metabolic, kidney, endocrine, skin, respiratory, infectious, gastrointestinal diseases and cancer. The ability of curcumin to modulate the functions of multiple signal transductions are linked with attenuation of acute and chronic diseases. Numerous preclinical and clinical studies have revealed that curcumin modulates several molecules in cell signal transduction pathway including PI3K, Akt, mTOR, ERK5, AP-1, TGF-β, Wnt, β-catenin, Shh, PAK1, Rac1, STAT3, PPARγ, EBPα, NLRP3 inflammasome, p38MAPK, Nrf2, Notch-1, AMPK, TLR-4 and MyD-88. Curcumin has a potential to prevent and/or manage various diseases due to its anti-inflammatory, anti-oxidant and anti-apoptotic properties with an excellent safety profile. In contrast, the anti-cancer effects of curcumin are reflected due to induction of growth arrest and apoptosis in various premalignant and malignant cells. This review also carefully emphasized the pharmacokinetics of curcumin and its interaction with other drugs. Clinical studies have shown that curcumin is safe at the doses of 12 g/day but exhibits poor systemic bioavailability. The use of adjuvant like piperine, liposomal curcumin, curcumin nanoparticles and curcumin phospholipid complex has shown enhanced bioavailability and therapeutic potential. Further studies are warranted to prove the potential of curcumin against various ailments.
Collapse
Affiliation(s)
- Sita Sharan Patel
- Department of Pharmacy, Sagar Institute of Research and Technology, Bhopal, India
| | - Ashish Acharya
- Department of Pharmacy, Sagar Institute of Research and Technology, Bhopal, India
| | - R S Ray
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Ritesh Agrawal
- Department of Pharmacy, Sagar Institute of Research and Technology, Bhopal, India
| | - Ramsaneh Raghuwanshi
- Department of Pharmacy, Sagar Institute of Research and Technology, Bhopal, India
| | - Priyal Jain
- Department of Pharmacy, Sagar Institute of Research and Technology, Bhopal, India
| |
Collapse
|
25
|
Li H, Huang MH, Jiang JD, Peng ZG. Hepatitis C: From inflammatory pathogenesis to anti-inflammatory/hepatoprotective therapy. World J Gastroenterol 2018; 24:5297-5311. [PMID: 30598575 PMCID: PMC6305530 DOI: 10.3748/wjg.v24.i47.5297] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/27/2018] [Accepted: 12/01/2018] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) infection commonly causes progressive liver diseases that deteriorate from chronic inflammation to fibrosis, cirrhosis and even to hepatocellular carcinoma. A long-term, persistent and uncontrolled inflammatory response is a hallmark of these diseases and further leads to hepatic injury and more severe disease progression. The levels of inflammatory cytokines and chemokines change with the states of infection and treatment, and therefore, they may serve as candidate biomarkers for disease progression and therapeutic effects. The mechanisms of HCV-induced inflammation involve classic pathogen pattern recognition, inflammasome activation, intrahepatic inflammatory cascade response, and oxidative and endoplasmic reticulum stress. Direct-acting antivirals (DAAs) are the first-choice therapy for effectively eliminating HCV, but DAAs alone are not sufficient to block the uncontrolled inflammation and severe liver injury in HCV-infected individuals. Some patients who achieve a sustained virologic response after DAA therapy are still at a long-term risk for progression to liver cirrhosis and hepatocellular carcinoma. Therefore, coupling with anti-inflammatory/hepatoprotective agents with anti-HCV effects is a promising therapeutic regimen for these patients during or after treatment with DAAs. In this review, we discuss the relationship between inflammatory mediators and HCV infection, summarize the mechanisms of HCV-induced inflammation, and describe the potential roles of anti-inflammatory/hepatoprotective drugs with anti-HCV activity in the treatment of advanced HCV infection.
Collapse
Affiliation(s)
- Hu Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Meng-Hao Huang
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Jian-Dong Jiang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zong-Gen Peng
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
26
|
|
27
|
Reddy BU, Mullick R, Kumar A, Sharma G, Bag P, Roy CL, Sudha G, Tandon H, Dave P, Shukla A, Srinivasan P, Nandhitha M, Srinivasan N, Das S. A natural small molecule inhibitor corilagin blocks HCV replication and modulates oxidative stress to reduce liver damage. Antiviral Res 2018. [DOI: 10.1016/j.antiviral.2017.12.004 pmid: 29224736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
28
|
Inhibition of EV71 by curcumin in intestinal epithelial cells. PLoS One 2018; 13:e0191617. [PMID: 29370243 PMCID: PMC5784943 DOI: 10.1371/journal.pone.0191617] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 01/08/2018] [Indexed: 01/26/2023] Open
Abstract
EV71 is a positive-sense single-stranded RNA virus that belongs to the Picornaviridae family. EV71 infection may cause various symptoms ranging from hand-foot-and-mouth disease to neurological pathological conditions such as aseptic meningitis, ataxia, and acute transverse myelitis. There is currently no effective treatment or vaccine available. Various compounds have been examined for their ability to restrict EV71 replication. However, most experiments have been performed in rhabdomyosarcoma or Vero cells. Since the gastrointestinal tract is the entry site for this pathogen, we anticipated that orally ingested agents may exert beneficial effects by decreasing virus replication in intestinal epithelial cells. In this study, curcumin (diferuloylmethane, C21H20O6), an active ingredient of turmeric (Curcuma longa Linn) with anti-cancer properties, was investigated for its anti-enterovirus activity. We demonstrate that curcumin treatment inhibits viral translation and increases host cell viability. Curcumin does not exert its anti-EV71 effects by modulating virus attachment or virus internal ribosome entry site (IRES) activity. Furthermore, curcumin-mediated regulation of mitogen-activated protein kinase (MAPK) signaling pathways is not involved. We found that protein kinase C delta (PKCδ) plays a role in virus translation in EV71-infected intestinal epithelial cells and that curcumin treatment decreases the phosphorylation of this enzyme. In addition, we show evidence that curcumin also limits viral translation in differentiated human intestinal epithelial cells. In summary, our data demonstrate the anti-EV71 properties of curcumin, suggesting that ingestion of this phytochemical may protect against enteroviral infections.
Collapse
|
29
|
|
30
|
Reddy BU, Mullick R, Kumar A, Sharma G, Bag P, Roy CL, Sudha G, Tandon H, Dave P, Shukla A, Srinivasan P, Nandhitha M, Srinivasan N, Das S. A natural small molecule inhibitor corilagin blocks HCV replication and modulates oxidative stress to reduce liver damage. Antiviral Res 2017; 150:47-59. [PMID: 29224736 DOI: 10.1016/j.antiviral.2017.12.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 12/01/2017] [Accepted: 12/06/2017] [Indexed: 02/07/2023]
Abstract
Hepatitis C virus (HCV) infection causes chronic liver disease, which often leads to hepatocellular carcinoma. Earlier, we have demonstrated anti-HCV property of the methanolic extract of Phyllanthus amarus, an age-old folk-medicine against viral hepatitis. Here, we report identification of a principal bioactive component 'corilagin', which showed significant inhibition of the HCV key enzymes, NS3 protease and NS5B RNA-dependent-RNA-polymerase. This pure compound could effectively inhibit viral replication in the infectious cell culture system, displayed strong antioxidant activity by blocking HCV induced generation of reactive oxygen species and suppressed up-regulation of NOX4 and TGF-β mRNA levels. Oral administration of corilagin in BALB/c mice demonstrated its better tolerability and systemic bioavailability. More importantly, corilagin could restrict serum HCV RNA levels, decrease collagen deposition and hepatic cell denaturation in HCV infected chimeric mice harbouring human hepatocytes. Taken together, results provide a basis towards developing a pure natural drug as an alternate therapeutic strategy for restricting viral replication and prevent liver damage towards better management of HCV induced pathogenesis.
Collapse
Affiliation(s)
- B Uma Reddy
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, India
| | - Ranajoy Mullick
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, India
| | - Anuj Kumar
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, India
| | - Geetika Sharma
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, India
| | - Paromita Bag
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, India
| | - Chaitrali Laha Roy
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, India
| | - Govindarajan Sudha
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, India
| | - Himani Tandon
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, India
| | - Pratik Dave
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, India
| | - Ashutosh Shukla
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, India
| | - Priyanka Srinivasan
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, India
| | - Madhusudhan Nandhitha
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, India
| | | | - Saumitra Das
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|
31
|
Abstract
Hepatitis C virus (HCV) infection leads to severe liver diseases including hepatocellular carcinoma (HCC). Phosphatase and tensin homolog deleted on chromosome 10 (PTEN), a tumour suppressor, is frequently mutated or deleted in HCC tumors. PTEN has previously been demonstrated to inhibit HCV secretion. In this study, we determined the effects of PTEN on the other steps in HCV life cycle, including entry, translation, and replication. We showed that PTEN inhibits HCV entry through its lipid phosphatase activity. PTEN has no effect on HCV RNA translation. PTEN decreases HCV replication and the protein phosphatase activity of PTEN is essential for this function. PTEN interacts with the HCV core protein and requires R50 in domain I of HCV core and PTEN residues 1–185 for this interaction. This interaction is required for PTEN-mediated inhibition of HCV replication. This gives rise to a reduction in PTEN levels and intracellular lipid abundance, which may in turn regulate HCV replication. HCV core domain I protein increases the lipid phosphatase activity of PTEN in an in vitro assay, suggesting that HCV infection can also regulate PTEN. Taken together, our results demonstrated an important regulatory role of PTEN in the HCV life cycle.
Collapse
|
32
|
Farquhar MJ, Humphreys IS, Rudge SA, Wilson GK, Bhattacharya B, Ciaccia M, Hu K, Zhang Q, Mailly L, Reynolds GM, Ashcroft M, Balfe P, Baumert TF, Roessler S, Wakelam MJO, McKeating JA. Autotaxin-lysophosphatidic acid receptor signalling regulates hepatitis C virus replication. J Hepatol 2017; 66:919-929. [PMID: 28126468 DOI: 10.1016/j.jhep.2017.01.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 12/09/2016] [Accepted: 01/08/2017] [Indexed: 12/19/2022]
Abstract
BACKGROUND & AIMS Chronic hepatitis C is a global health problem with an estimated 170 million hepatitis C virus (HCV) infected individuals at risk of progressive liver disease and hepatocellular carcinoma (HCC). Autotaxin (ATX, gene name: ENPP2) is a phospholipase with diverse roles in the physiological and pathological processes including inflammation and oncogenesis. Clinical studies have reported increased ATX expression in chronic hepatitis C, however, the pathways regulating ATX and its role in the viral life cycle are not well understood. METHODS In vitro hepatocyte and ex vivo liver culture systems along with chimeric humanized liver mice and HCC tissue enabled us to assess the interplay between ATX and the HCV life cycle. RESULTS HCV infection increased hepatocellular ATX RNA and protein expression. HCV infection stabilizes hypoxia inducible factors (HIFs) and we investigated a role for these transcription factors to regulate ATX. In vitro studies show that low oxygen increases hepatocellular ATX expression and transcriptome analysis showed a positive correlation between ATX mRNA levels and hypoxia gene score in HCC tumour tissue associated with HCV and other aetiologies. Importantly, inhibiting ATX-lysophosphatidic acid (LPA) signalling reduced HCV replication, demonstrating a positive role for this phospholipase in the viral life cycle. LPA activates phosphoinositide-3-kinase that stabilizes HIF-1α and inhibiting the HIF signalling pathway abrogates the pro-viral activity of LPA. CONCLUSIONS Our data support a model where HCV infection increases ATX expression which supports viral replication and HCC progression. LAY SUMMARY Chronic hepatitis C is a global health problem with infected individuals at risk of developing liver disease that can progress to hepatocellular carcinoma. Autotaxin generates the biologically active lipid lysophosphatidic acid that has been reported to play a tumorigenic role in a wide number of cancers. In this study we show that hepatitis C virus infection increases autotaxin expression via hypoxia inducible transcription factor and provides an environment in the liver that promotes fibrosis and liver injury. Importantly, we show a new role for lysophosphatidic acid in positively regulating hepatitis C virus replication.
Collapse
Affiliation(s)
- Michelle J Farquhar
- Viral Hepatitis Laboratory, Centre for Human Virology, University of Birmingham, UK
| | - Isla S Humphreys
- Viral Hepatitis Laboratory, Centre for Human Virology, University of Birmingham, UK
| | | | - Garrick K Wilson
- Viral Hepatitis Laboratory, Centre for Human Virology, University of Birmingham, UK
| | | | | | - Ke Hu
- Viral Hepatitis Laboratory, Centre for Human Virology, University of Birmingham, UK
| | | | - Laurent Mailly
- INSERM U1110, University of Strasbourg, 3 Rue Koeberlé, F-67000 Strasbourg, France
| | - Gary M Reynolds
- NIHR Liver Biomedical Research Unit, University of Birmingham, Birmingham, UK
| | | | - Peter Balfe
- Viral Hepatitis Laboratory, Centre for Human Virology, University of Birmingham, UK
| | - Thomas F Baumert
- INSERM U1110, University of Strasbourg, 3 Rue Koeberlé, F-67000 Strasbourg, France
| | - Stephanie Roessler
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | | | - Jane A McKeating
- Viral Hepatitis Laboratory, Centre for Human Virology, University of Birmingham, UK.
| |
Collapse
|
33
|
Tietcheu Galani BR, Njouom R, Moundipa PF. Hepatitis C in Cameroon: What is the progress from 2001 to 2016? J Transl Int Med 2016; 4:162-169. [PMID: 28191540 DOI: 10.1515/jtim-2016-0037] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Chronic hepatitis C is a major public health problem in sub-Saharan countries and particularly in Cameroon where the prevalence rate is around 7.6% in the age group of 55-59 years. Recent investigations into this infection allowed defining a national seroprevalence, characterizing virological and biological profiles of infected patients and identifying medicinal plants of potential interest in hepatitis C therapy. However, in Cameroon, no existing report currently presents a good overview of hepatitis C research in relation to these parameters. This review seeks to discuss major findings published since 2001 that have significantly advanced our understanding of the epidemiology and treatment of hepatitis C in Cameroonian patients and highlight the major challenges that remain to overcome. We performed a systematic search in Pubmed and Google Scholar. Studies evaluating prevalence, treatment, coinfection, and genetic diversity of HCV infection in Cameroon were included. Studies suggest that HCV prevalence in Cameroon would be low (around 1.1%) with a lot of disparities according to regions and age of participants. Elders, pregnant women, blood donors, health care workers, patients on hemodialysis, and homozygous sickle cell patients have been identified as risk groups. Moreover, HCV/HBV coinfection was found more prevalent than HCV/HIV coinfection. Phylogenic studies reported circulation of three main genotypes such genotypes 1, 2, and 4 but little is known about antiviral candidates from the Cameroonian pharmacopeia. In conclusion, some epidemiological data prove that hepatitis C in Cameroon is well known but efforts are still necessary to prevent or control this infection.
Collapse
Affiliation(s)
- Borris Rosnay Tietcheu Galani
- Laboratory of Applied Biochemistry, Department of Biological Sciences, Faculty of Science, University of Ngaoundere, PO Box 454 Ngaoundere, Ngaoundere, Cameroon, Cameroon; Laboratory of Pharmacology and Toxicology, Department of Biochemistry, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
| | - Richard Njouom
- Virology Unit, Centre Pasteur du Cameroun, Yaoundé, Cameroun
| | - Paul Fewou Moundipa
- Laboratory of Pharmacology and Toxicology, Department of Biochemistry, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
| |
Collapse
|
34
|
Chen WC, Tseng CK, Chen BH, Lin CK, Lee JC. Grape Seed Extract Attenuates Hepatitis C Virus Replication and Virus-Induced Inflammation. Front Pharmacol 2016; 7:490. [PMID: 28066241 PMCID: PMC5174132 DOI: 10.3389/fphar.2016.00490] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 11/29/2016] [Indexed: 12/28/2022] Open
Abstract
Hepatitis C virus (HCV) infection is a causative factor leading to hepatocellular carcinoma due to chronic inflammation and cirrhosis. The aim of the study was first to explore the effects of grape seed extract (GSE) in HCV replication, and then to study mechanisms. The results indicated that a GSE treatment showed significant anti-HCV activity and suppressed HCV-elevated cyclooxygenase-2 (COX-2) expression. In contrast, exogenous COX-2 expression gradually attenuated antiviral effects of GSE, suggesting that GSE inhibited HCV replication by suppressing an aberrant COX-2 expression caused by HCV, which was correlated with the inactivation of IKK-regulated NF-κB and MAPK/ERK/JNK signaling pathways. In addition, GSE also attenuated HCV-induced inflammatory cytokine gene expression. Notably, a combined administration of GSE with interferon or other FDA-approved antiviral drugs revealed a synergistic anti-HCV effect. Collectively, these findings demonstrate the possibility of developing GSE as a dietary supplement to treat patients with a chronic HCV infection.
Collapse
Affiliation(s)
- Wei-Chun Chen
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University Kaohsiung, Taiwan
| | - Chin-Kai Tseng
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung UniversityTainan, Taiwan; Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung UniversityTainan, Taiwan
| | - Bing-Hung Chen
- Department of Biotechnology, College of Life Science, Kaohsiung Medical UniversityKaohsiung, Taiwan; Institute of Biomedical Science, National Sun Yat-Sen UniversityKaohsiung, Taiwan
| | - Chun-Kuang Lin
- Doctoral Degree Program in Marine Biotechnology, College of Marine Sciences, National Sun Yat-Sen University Kaohsiung, Taiwan
| | - Jin-Ching Lee
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical UniversityKaohsiung, Taiwan; Department of Biotechnology, College of Life Science, Kaohsiung Medical UniversityKaohsiung, Taiwan; Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical UniversityKaohsiung, Taiwan; Research Center for Natural Products and Drug Development, Kaohsiung Medical UniversityKaohsiung, Taiwan
| |
Collapse
|
35
|
Ma LL, Wang HQ, Wu P, Hu J, Yin JQ, Wu S, Ge M, Sun WF, Zhao JY, Aisa HA, Li YH, Jiang JD. Rupestonic acid derivative YZH-106 suppresses influenza virus replication by activation of heme oxygenase-1-mediated interferon response. Free Radic Biol Med 2016; 96:347-61. [PMID: 27107768 DOI: 10.1016/j.freeradbiomed.2016.04.021] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Revised: 03/21/2016] [Accepted: 04/18/2016] [Indexed: 12/31/2022]
Abstract
Given the limitation of available antiviral drugs and vaccines, there remains to be a pressing need for novel anti-influenza drugs. Rupestonic acid derivatives were reported to have an anti-influenza virus activity, but their mechanism remains to be elucidated. Herein, we aim to evaluate the antiviral activity of YZH-106, a rupestonic acid derivative, against a broad-spectrum of influenza viruses and to dissect its antiviral mechanisms. Our results demonstrated that YZH-106 exhibited a broad-spectrum antiviral activity against influenza viruses, including drug-resistant strains in vitro. Furthermore, YZH-106 provided partial protection of the mice to Influenza A virus (IAV) infection, as judged by decreased viral load in lungs, improved lung pathology, reduced body weight loss and partial survival benefits. Mechanistically, YZH-106 induced p38 MAPK and ERK1/2 phosphorylation, which led to the activation of erythroid 2-related factor 2 (Nrf2) that up-regulated heme oxygenase-1 (HO-1) expression in addition to other genes. HO-1 inhibited IAV replication by activation of type I IFN expression and subsequent induction of IFN-stimulated genes (ISGs), possibly in a HO-1 enzymatic activity-independent manner. These results suggest that YZH-106 inhibits IAV by up-regulating HO-1-mediated IFN response. HO-1 is thus a promising host target for antiviral therapeutics against influenza and other viral infectious diseases.
Collapse
Affiliation(s)
- Lin-Lin Ma
- Beijing Key Laboratory of Anti-infective Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Hui-Qiang Wang
- Beijing Key Laboratory of Anti-infective Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ping Wu
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jin Hu
- Beijing Key Laboratory of Anti-infective Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jin-Qiu Yin
- Beijing Key Laboratory of Anti-infective Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Shuo Wu
- Beijing Key Laboratory of Anti-infective Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Miao Ge
- Beijing Key Laboratory of Anti-infective Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Wen-Fang Sun
- Beijing Key Laboratory of Anti-infective Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jiang-Yu Zhao
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Xinjiang 830011, China
| | - Haji Akber Aisa
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Xinjiang 830011, China
| | - Yu-Huan Li
- Beijing Key Laboratory of Anti-infective Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Jian-Dong Jiang
- Beijing Key Laboratory of Anti-infective Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
36
|
Scharn CR, Collins AC, Nair VR, Stamm CE, Marciano DK, Graviss EA, Shiloh MU. Heme Oxygenase-1 Regulates Inflammation and Mycobacterial Survival in Human Macrophages during Mycobacterium tuberculosis Infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2016; 196:4641-9. [PMID: 27183573 PMCID: PMC4875857 DOI: 10.4049/jimmunol.1500434] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 03/22/2016] [Indexed: 12/17/2022]
Abstract
Mycobacterium tuberculosis, the causative agent of tuberculosis, is responsible for 1.5 million deaths annually. We previously showed that M. tuberculosis infection in mice induces expression of the CO-producing enzyme heme oxygenase (HO1) and that CO is sensed by M. tuberculosis to initiate a dormancy program. Further, mice deficient in HO1 succumb to M. tuberculosis infection more readily than do wild-type mice. Although mouse macrophages control intracellular M. tuberculosis infection through several mechanisms, such as NO synthase, the respiratory burst, acidification, and autophagy, how human macrophages control M. tuberculosis infection remains less well understood. In this article, we show that M. tuberculosis induces and colocalizes with HO1 in both mouse and human tuberculosis lesions in vivo, and that M. tuberculosis induces and colocalizes with HO1 during primary human macrophage infection in vitro. Surprisingly, we find that chemical inhibition of HO1 both reduces inflammatory cytokine production by human macrophages and restricts intracellular growth of mycobacteria. Thus, induction of HO1 by M. tuberculosis infection may be a mycobacterial virulence mechanism to enhance inflammation and bacterial growth.
Collapse
Affiliation(s)
- Caitlyn R Scharn
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Angela C Collins
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Vidhya R Nair
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Chelsea E Stamm
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Denise K Marciano
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Edward A Graviss
- Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Houston, TX 77030; and
| | - Michael U Shiloh
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390; Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| |
Collapse
|
37
|
Al-Rasheed NM, Fadda LM, Ali HM, Abdel Baky NA, El-Orabi NF, Al-Rasheed NM, Yacoub HI. New mechanism in the modulation of carbon tetrachloride hepatotoxicity in rats using different natural antioxidants. Toxicol Mech Methods 2016; 26:243-50. [DOI: 10.3109/15376516.2016.1159769] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
38
|
Yu JS, Chen WC, Tseng CK, Lin CK, Hsu YC, Chen YH, Lee JC. Sulforaphane Suppresses Hepatitis C Virus Replication by Up-Regulating Heme Oxygenase-1 Expression through PI3K/Nrf2 Pathway. PLoS One 2016; 11:e0152236. [PMID: 27023634 PMCID: PMC4811417 DOI: 10.1371/journal.pone.0152236] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 03/10/2016] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) infection-induced oxidative stress is a major risk factor for the development of HCV-associated liver disease. Sulforaphane (SFN) is an antioxidant phytocompound that acts against cellular oxidative stress and tumorigenesis. However, there is little known about its anti-viral activity. In this study, we demonstrated that SFN significantly suppressed HCV protein and RNA levels in HCV replicon cells and infectious system, with an IC50 value of 5.7 ± 0.2 μM. Moreover, combination of SFN with anti-viral drugs displayed synergistic effects in the suppression of HCV replication. In addition, we found nuclear factor erythroid 2-related factor 2 (Nrf2)/HO-1 induction in response to SFN and determined the signaling pathways involved in this process, including inhibition of NS3 protease activity and induction of IFN response. In contrast, the anti-viral activities were attenuated by knockdown of HO-1 with specific inhibitor (SnPP) and shRNA, suggesting that anti-HCV activity of SFN is dependent on HO-1 expression. Otherwise, SFN stimulated the phosphorylation of phosphoinositide 3-kinase (PI3K) leading Nrf2-mediated HO-1 expression against HCV replication. Overall, our results indicated that HO-1 is essential in SFN-mediated anti-HCV activity and provide new insights in the molecular mechanism of SFN in HCV replication.
Collapse
Affiliation(s)
- Jung-Sheng Yu
- Department of Chinese Medicine, Chi Mei Medical Center, Tainan, 71004, Taiwan
- Graduate Institute of Integrated Medicine, China Medical University, Taichung, 40402, Taiwan
| | - Wei-Chun Chen
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chin-Kai Tseng
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chun-Kuang Lin
- Doctoral Degree Program in Marine Biotechnology, College of Marine Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Yao-Chin Hsu
- Department of Chinese Medicine, Chi Mei Medical Center, Tainan, 71004, Taiwan
| | - Yen-Hsu Chen
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- School of Medicine, Graduate Institute of Medicine, Sepsis Research Center, Center for Dengue Fever Control and Research, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Biological Science and Technology, College of Biological Science and Technology, National Chiao Tung University, HsinChu, Taiwan
- Center for Infectious Disease and Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan
- * E-mail: (J-CL); (Y-HC)
| | - Jin-Ching Lee
- Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
- Research Center for Natural Products and Drug Development, Kaohsiung Medical University, Kaohsiung, Taiwan
- * E-mail: (J-CL); (Y-HC)
| |
Collapse
|
39
|
Khaya grandifoliola C.DC: a potential source of active ingredients against hepatitis C virus in vitro. Arch Virol 2016; 161:1169-81. [PMID: 26843184 DOI: 10.1007/s00705-016-2771-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Accepted: 01/24/2016] [Indexed: 01/11/2023]
Abstract
In this study, we examined the antiviral properties of Khaya grandifoliola C.DC (Meliaceae) on the hepatitis C virus (HCV) life cycle in vitro and identified some of the chemical constituents contained in the fraction with the most antiviral activity. Dried bark powder was extracted by maceration in a methylene chloride/methanol (MCM) system (50:50; v/v) and separated on silica gel by flash chromatography. Infection and replication rates in Huh-7 cells were investigated by luciferase reporter assay and indirect immunofluorescence assay using subgenomic replicons, HCV pseudotyped particles, and cell-culture-derived HCV (HCVcc), respectively. Cell viability was assessed by MTT assay, and cellular gene expression was analysed by qRT-PCR. The chemical composition of the fraction with the most antiviral activity was analysed by coupled gas chromatography and mass spectrometry (GC-MS). Five fractions of different polarities (F0-F100) were obtained from the MCM extract. One fraction (KgF25) showed the strongest antiviral effect on LucUbiNeoET replicons at nontoxic concentrations. Tested at 100 µg/mL, KgF25 had a high inhibitory effect on HCV replication, comparable to that of 0.01 µM daclatasvir or 1 µM telaprevir. This fraction also inhibited HCVcc infection by mostly targeting the entry step. KgF25 inhibited HCV entry in a pan-genotypic manner by directly inactivating free viral particles. Its antiviral effects were mediated by the transcriptional upregulation of the haem oxygenase-1 gene and interferon antiviral response. Three constituents, namely, benzene, 1,1'-(oxydiethylidene)bis (1), carbamic acid, (4-methylphenyl)-, 1-phenyl (2), and 6-phenyl, 4-(1'-oxyethylphenyl) hexene (3), were identified from the active fraction KgF25 by GC-MS. Khaya grandifoliola contains ingredients capable of acting on different steps of the HCV life cycle.
Collapse
|
40
|
Domitrović R, Potočnjak I. A comprehensive overview of hepatoprotective natural compounds: mechanism of action and clinical perspectives. Arch Toxicol 2015; 90:39-79. [DOI: 10.1007/s00204-015-1580-z] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 08/11/2015] [Indexed: 12/22/2022]
|
41
|
Kumari N, Kulkarni AA, Lin X, McLean C, Ammosova T, Ivanov A, Hipolito M, Nekhai S, Nwulia E. Inhibition of HIV-1 by curcumin A, a novel curcumin analog. Drug Des Devel Ther 2015; 9:5051-60. [PMID: 26366056 PMCID: PMC4562762 DOI: 10.2147/dddt.s86558] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Despite the remarkable success of combination antiretroviral therapy at curtailing HIV progression, emergence of drug-resistant viruses, chronic low-grade inflammation, and adverse effects of combination antiretroviral therapy treatments, including metabolic disorders collectively present the impetus for development of newer and safer antiretroviral drugs. Curcumin, a phytochemical compound, was previously reported to have some in vitro anti-HIV and anti-inflammatory activities, but poor bioavailability has limited its clinical utility. To circumvent the bioavailability problem, we derivatized curcumin to sustain retro-aldol decomposition at physiological pH. The lead compound derived, curcumin A, showed increased stability, especially in murine serum where it was stable for up to 25 hours, as compared to curcumin that only had a half-life of 10 hours. Both curcumin and curcumin A showed similar inhibition of one round of HIV-1 infection in cultured lymphoblastoid (also called CEM) T cells (IC50=0.7 μM). But in primary peripheral blood mononuclear cells, curcumin A inhibited HIV-1 more potently (IC50=2 μM) compared to curcumin (IC50=12 μM). Analysis of specific steps of HIV-1 replication showed that curcumin A inhibited HIV-1 reverse transcription, but had no effect on HIV-1 long terminal repeat basal or Tat-induced transcription, or NF-κB-driven transcription at low concentrations that affected reverse transcription. Finally, we showed curcumin A induced expression of HO-1 and decreased cell cycle progression of T cells. Our findings thus indicate that altering the core structure of curcumin could yield more stable compounds with potent antiretroviral and anti-inflammatory activities.
Collapse
Affiliation(s)
- Namita Kumari
- Translational Neuroscience Laboratory, Howard University, Washington, DC, USA
- Department of Medicine, Center for Sickle Cell Disease, College of Medicine, Howard University, Washington, DC, USA
| | | | - Xionghao Lin
- Department of Medicine, Center for Sickle Cell Disease, College of Medicine, Howard University, Washington, DC, USA
| | - Charlee McLean
- Translational Neuroscience Laboratory, Howard University, Washington, DC, USA
| | - Tatiana Ammosova
- Department of Medicine, Center for Sickle Cell Disease, College of Medicine, Howard University, Washington, DC, USA
| | - Andrey Ivanov
- Department of Medicine, Center for Sickle Cell Disease, College of Medicine, Howard University, Washington, DC, USA
| | - Maria Hipolito
- Translational Neuroscience Laboratory, Howard University, Washington, DC, USA
| | - Sergei Nekhai
- Department of Medicine, Center for Sickle Cell Disease, College of Medicine, Howard University, Washington, DC, USA
| | - Evaristus Nwulia
- Translational Neuroscience Laboratory, Howard University, Washington, DC, USA
| |
Collapse
|
42
|
Bactericidal activity of curcumin I is associated with damaging of bacterial membrane. PLoS One 2015; 10:e0121313. [PMID: 25811596 PMCID: PMC4374920 DOI: 10.1371/journal.pone.0121313] [Citation(s) in RCA: 352] [Impact Index Per Article: 39.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 01/30/2015] [Indexed: 01/26/2023] Open
Abstract
Curcumin, an important constituent of turmeric, is known for various biological activities, primarily due to its antioxidant mechanism. The present study focused on the antibacterial activity of curcumin I, a significant component of commercial curcumin, against four genera of bacteria, including those that are Gram-positive (Staphylococcus aureus and Enterococcus faecalis) and Gram-negative (Escherichia coli and Pseudomonas aeruginosa). These represent prominent human pathogens, particularly in hospital settings. Our study shows the strong antibacterial potential of curcumin I against all the tested bacteria from Gram-positive as well as Gram-negative groups. The integrity of the bacterial membrane was checked using two differential permeabilization indicating fluorescent probes, namely, propidium iodide and calcein. Both the membrane permeabilization assays confirmed membrane leakage in Gram-negative and Gram-positive bacteria on exposure to curcumin I. In addition, scanning electron microscopy and fluorescence microscopy were employed to confirm the membrane damages in bacterial cells on exposure to curcumin I. The present study confirms the broad-spectrum antibacterial nature of curcumin I, and its membrane damaging property. Findings from this study could provide impetus for further research on curcumin I regarding its antibiotic potential against rapidly emerging bacterial pathogens.
Collapse
|
43
|
Involvement of ERK pathway in interferon alpha-mediated antiviral activity against hepatitis C virus. Cytokine 2015; 72:17-24. [DOI: 10.1016/j.cyto.2014.11.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 11/23/2014] [Accepted: 11/26/2014] [Indexed: 01/19/2023]
|
44
|
Qin Y, Lin L, Chen Y, Wu S, Si X, Wu H, Zhai X, Wang Y, Tong L, Pan B, Zhong X, Wang T, Zhao W, Zhong Z. Curcumin inhibits the replication of enterovirus 71 in vitro. Acta Pharm Sin B 2014; 4:284-94. [PMID: 26579397 PMCID: PMC4629085 DOI: 10.1016/j.apsb.2014.06.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 06/06/2014] [Accepted: 06/20/2014] [Indexed: 11/16/2022] Open
Abstract
Human enterovirus 71 (EV71) is the main causative pathogen of hand, foot, and mouth disease (HFMD) in children. The epidemic of HFMD has been a public health problem in Asia-Pacific region for decades, and no vaccine and effective antiviral medicine are available. Curcumin has been used as a traditional medicine for centuries to treat a diversity of disorders including viral infections. In this study, we demonstrated that curcumin showed potent antiviral effect again EV71. In Vero cells infected with EV71, the addition of curcumin significantly suppressed the synthesis of viral RNA, the expression of viral protein, and the overall production of viral progeny. Similar with the previous reports, curcumin reduced the production of ROS induced by viral infection. However, the antioxidant property of curcumin did not contribute to its antiviral activity, since N-acetyl-l-cysteine, the potent antioxidant failed to suppress viral replication. This study also showed that extracellular signal-regulated kinase (ERK) was activated by either viral infection or curcumin treatment, but the activated ERK did not interfere with the antiviral effect of curcumin, indicating ERK is not involved in the antiviral mechanism of curcumin. Unlike the previous reports that curcumin inhibited protein degradation through ubiquitin–proteasome system (UPS), we found that curcumin had no impact on UPS in control cells. However, curcumin did reduce the activity of proteasomes which was increased by viral infection. In addition, the accumulation of the short-lived proteins, p53 and p21, was increased by the treatment of curcumin in EV71-infected cells. We further probed the antiviral mechanism of curcumin by examining the expression of GBF1 and PI4KB, both of which are required for the formation of viral replication complex. We found that curcumin significantly reduced the level of both proteins. Moreover, the decreased expression of either GBF1 or PI4KB by the application of siRNAs was sufficient to suppress viral replication. We also demonstrated that curcumin showed anti-apoptotic activity at the early stage of viral infection. The results of this study provide solid evidence that curcumin has potent anti-EV71 activity. Whether or not the down-regulated GBF1 and PI4KB by curcumin contribute to its antiviral effect needs further studies.
Collapse
Key Words
- Apoptosis
- CVB, coxsackieviurs B
- Curcumin
- DCFH-DA, dichloro-dihydro-fluorescein diacetate
- ERK, extracellular signal-regulated kinase
- EV71, enterovirus 71
- Enterovirus 71
- GBF1
- GBF1, Golgi brefeldin A resistant guanine nucleotide exchange factor 1
- GEF, guanine nucleotide exchange factor
- HBV, hepatitis B virus
- HCV, hepatitis C virus
- HFMD, hand, foot, and mouth disease
- HIV, human immunodeficiency virus
- HPV, human papillomavirus
- NAC, N-acetyl-l-cysteine
- PARP-1, poly(ADP-ribose) polymerase
- PGC-1α, peroxisome proliferator-activated receptor-gamma co-activator 1 alpha
- PI4KB
- PI4KB, phosphatidylinositol 4-kinase class III catalytic subunit β
- PI4P, phosphatidylinositol 4-phosphate
- ROS, reactive oxygen species
- SLLVY-AMC, succinyl-Leu-Leu-Val-Tyr-7-amino-4-methylcoumarin
- UPS, ubiquitin–proteasome system
- Ubiquitin–proteasome system
- Viral replication
- p.i., post-infection
- siRNA, small interfering RNA
Collapse
|
45
|
Galani Tietcheu BR, Sass G, Njayou NF, Mkounga P, Tiegs G, Moundipa PF. Anti-Hepatitis C Virus Activity of Crude Extract and Fractions of Entada africana in Genotype 1b Replicon Systems. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2014; 42:853-68. [DOI: 10.1142/s0192415x14500542] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Entada africana (Ea) is a medicinal plant from the family of Fabaceae, used in Western and Central Africa regions to treat liver diseases. Antiviral properties of this plant were reported against Hepatitis B virus, while effects against Hepatitis C virus (HCV) remained unknown. This study reports for the first time, the effects of Ea crude extract and fractions on HCV replication. Furthermore, the effect of one Ea fraction on the transcriptional expression of two interferon-stimulated genes (ISGs) was also investigated. A methylene chloride–methanol (MCM) stem bark crude extract and different MCM fractions (EaF0, EaF5, EaF10, EaF25, and EaF100) were prepared and tested on LucUbiNeo-ET and Huh 5.15 cells lines used as genotype 1b (GT1b) replicon systems. The cells were incubated with crude extract and fractions at various concentrations. Then, the antiviral activity was assessed by luciferase reporter assay and the cell viability by MTT assay. Gene expression was also analyzed using quantitative real time RT-PCR. Results showed that the Ea crude extract dose-dependently inhibited HCV replication after 24 and 72 h of incubation. The MCM fraction (EaF10) exhibited the strongest anti-HCV properties with an IC50 = 0.453 ± 0.00117 mg/ml and no reduction of cell viability at antiviral concentrations. This fraction also significantly induced the expression of heme oxygenase-1 (HO-1) (5.36-fold), and 2′-5′ oligoadenylate synthetase-3 (OAS-3) by 4.46-fold after 6 h and 2.31-fold after 24 h at the mRNA levels. Taken altogether, these results suggest that Ea may contain ingredients that indirectly regulate HCV replication.
Collapse
Affiliation(s)
- Borris Rosnay Galani Tietcheu
- Laboratory of Pharmacology and Toxicology, University of Yaoundé I, Yaoundé, Cameroon
- Department of Biological Sciences, Faculty of Science, University of Ngaoundéré, Ngaoundéré, Cameroon
- Institute for Experimental Immunology and Hepatology, Center for Experimental Medicine, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Gabriele Sass
- Institute for Experimental Immunology and Hepatology, Center for Experimental Medicine, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Nico Frederic Njayou
- Laboratory of Pharmacology and Toxicology, University of Yaoundé I, Yaoundé, Cameroon
| | - Pierre Mkounga
- Department of Organic Chemistry, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
| | - Gisa Tiegs
- Institute for Experimental Immunology and Hepatology, Center for Experimental Medicine, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Paul Fewou Moundipa
- Laboratory of Pharmacology and Toxicology, University of Yaoundé I, Yaoundé, Cameroon
| |
Collapse
|
46
|
Anggakusuma, Colpitts CC, Schang LM, Rachmawati H, Frentzen A, Pfaender S, Behrendt P, Brown RJP, Bankwitz D, Steinmann J, Ott M, Meuleman P, Rice CM, Ploss A, Pietschmann T, Steinmann E. Turmeric curcumin inhibits entry of all hepatitis C virus genotypes into human liver cells. Gut 2014; 63:1137-49. [PMID: 23903236 DOI: 10.1136/gutjnl-2012-304299] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Hepatitis C virus (HCV) infection causes severe liver disease and affects more than 160 million individuals worldwide. People undergoing liver organ transplantation face universal re-infection of the graft. Therefore, affordable antiviral strategies targeting the early stages of infection are urgently needed to prevent the recurrence of HCV infection. The aim of the study was to determine the potency of turmeric curcumin as an HCV entry inhibitor. DESIGN The antiviral activity of curcumin and its derivatives was evaluated using HCV pseudo-particles (HCVpp) and cell-culture-derived HCV (HCVcc) in hepatoma cell lines and primary human hepatocytes. The mechanism of action was dissected using R18-labelled virions and a membrane fluidity assay. RESULTS Curcumin treatment had no effect on HCV RNA replication or viral assembly/release. However, co-incubation of HCV with curcumin potently inhibited entry of all major HCV genotypes. Similar antiviral activities were also exerted by other curcumin derivatives but not by tetrahydrocurcumin, suggesting the importance of α,β-unsaturated ketone groups for the antiviral activity. Expression levels of known HCV receptors were unaltered, while pretreating the virus with the compound reduced viral infectivity without viral lysis. Membrane fluidity experiments indicated that curcumin affected the fluidity of the HCV envelope resulting in impairment of viral binding and fusion. Curcumin has also been found to inhibit cell-to-cell transmission and to be effective in combination with other antiviral agents. CONCLUSIONS Turmeric curcumin inhibits HCV entry independently of the genotype and in primary human hepatocytes by affecting membrane fluidity thereby impairing virus binding and fusion.
Collapse
|
47
|
Lv Y, Lei N, Wang D, An Z, Li G, Han F, Liu H, Liu L. Protective effect of curcumin against cytomegalovirus infection in Balb/c mice. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2014; 37:1140-1147. [PMID: 24802527 DOI: 10.1016/j.etap.2014.04.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 04/04/2014] [Accepted: 04/11/2014] [Indexed: 06/03/2023]
Abstract
Curcumin has been found to suppress the activity of human cytomegalovirus (HCMV) in vitro, whereas its protective effects against HCMV infection in vivo remain unclear. In this study, we aimed to investigate the protective effects of curcumin against HCMV infection in Balb/c mice. Mice were randomly divided into the control, model, model+ganciclovir (positive control), and model+high-dose, model+middle-dose, and model+low-dose curcumin groups. In the model groups, each mouse was given HCMV by tail injection intravenously. Positive control animals were given ganciclovir. Animals in the curcumin treatment groups were given different concentrations of curcumin. The anti-HCMV activities of ganciclovir and curcumin were assessed by serological examination and pathology. Ganciclovir and curcumin treatment reduced the HCMV IgM level and HCMV DNA load; decreased the serum levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), creatine kinase (CK), and lactate dehydrogenase (LDH) as well as tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) generation in infected mice. These treatments also suppressed malondialdehyde (MDA) content and upregulated superoxide dismutase (SOD) and glutathione (GSH) levels. In addition, both treatments prevented pathological changes of the lung, kidney, liver, and heart tissues in infected mice. Our findings indicate that curcumin protected Balb/c mice against HCMV infection possibly by its anti-inflammatory and antioxidant effects.
Collapse
Affiliation(s)
- Yali Lv
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, PR China
| | - Ning Lei
- General Hospital of the Second Artillery, Beijing 100088, PR China
| | - Dan Wang
- General Hospital of the Second Artillery, Beijing 100088, PR China
| | - Zhuoling An
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, PR China
| | - Guangrun Li
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, PR China
| | - Feifei Han
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, PR China
| | - He Liu
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, PR China
| | - Lihong Liu
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, PR China.
| |
Collapse
|
48
|
Carreño V. Review article: management of chronic hepatitis C in patients with contraindications to anti-viral therapy. Aliment Pharmacol Ther 2014; 39:148-62. [PMID: 24279580 DOI: 10.1111/apt.12562] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 08/13/2013] [Accepted: 11/05/2013] [Indexed: 12/15/2022]
Abstract
BACKGROUND There are patients with chronic hepatitis C who are not eligible for the current interferon-based therapies or refuse to be treated due to secondary effects. AIM To provide information on alternative treatments for the management of these patients. METHODS A PubMed search was performed to identify relevant literature. Search terms included hepatitis C virus, anti-inflammatory treatment, antioxidant, natural products and alternative treatment, alone or in combination. Additional publications were identified using the references cited by primary and review articles. RESULTS Several approaches, such as iron depletion (phlebotomy), treatment with ursodeoxycholic acid or glycyrrhizin, have anti-inflammatory and/or anti-fibrotic effects. Life interventions like weight loss, exercise and coffee consumption are associated with a biochemical improvement. Other alternatives (ribavirin monotherapy, amantadine, silibinin, vitamin supplementation, etc.) do not have any beneficial effect or need to be tested in larger clinical studies. CONCLUSION There are therapeutic strategies and lifestyle interventions that can be used to improve liver damage in patients with chronic hepatitis C who cannot receive or refuse interferon-based treatments.
Collapse
Affiliation(s)
- V Carreño
- Fundación Estudio Hepatitis Virales, Madrid, Spain
| |
Collapse
|
49
|
Nabavi SF, Daglia M, Moghaddam AH, Habtemariam S, Nabavi SM. Curcumin and Liver Disease: from Chemistry to Medicine. Compr Rev Food Sci Food Saf 2013; 13:62-77. [DOI: 10.1111/1541-4337.12047] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 09/23/2013] [Indexed: 02/06/2023]
Affiliation(s)
- Seyed Fazel Nabavi
- Applied Biotechnology Research Center; Baqiyatallah Univ. of Medical Sciences; Tehran Iran
| | - Maria Daglia
- Dept. of Drug Sciences; Univ. of Pavia, Medicinal Chemistry and Pharmaceutical Technology Section; via Taramelli 12 27100 Pavia Italy
| | - Akbar Hajizadeh Moghaddam
- Amol Univ. of Special Modern Technologies; Amol Iran
- Dept. of Biology; Faculty of basic science; Univ. of Mazandaran; Babolsar Iran
| | - Solomon Habtemariam
- Pharmacognosy Research Laboratories; Medway School of Science, Univ. of Greenwich; Central Ave. Chatham-Maritime Kent ME4 4TB U.K
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center; Baqiyatallah Univ. of Medical Sciences; Tehran Iran
| |
Collapse
|
50
|
Velusami CC, Boddapati SR, Hongasandra Srinivasa S, Richard EJ, Joseph JA, Balasubramanian M, Agarwal A. Safety evaluation of turmeric polysaccharide extract: assessment of mutagenicity and acute oral toxicity. BIOMED RESEARCH INTERNATIONAL 2013; 2013:158348. [PMID: 24455673 PMCID: PMC3877592 DOI: 10.1155/2013/158348] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 11/26/2013] [Accepted: 11/26/2013] [Indexed: 12/21/2022]
Abstract
Curcuma longa Linn. (Zingiberaceae) commonly known as turmeric has long been used for centuries as a spice and household remedy. The present study was carried out to assess the possible mutagenic potential and acute oral toxicity of polysaccharide extract of turmeric rhizome (NR-INF-02) using standard tests. The standard battery of in vitro genotoxicity tests, bacterial reverse mutation test (BRMT), chromosome aberration (CA), and micronucleus (MN) tests were employed to assess the possible mutagenic activity of NR-INF-02 (Turmacin). The results showed no mutagenic effect with NR-INF-02 up to a dose of 5000 µg/mL in BRMT. The results on CA and MN tests revealed the non clastogenic activity of NR-INF-02 in a dose range of 250.36 to 2500 µg/mL with and without metabolic activation (S9). In acute oral toxicity study, NR-INF-02 was found to be safe up to 5 g/kg body weight in Wistar rats. Overall, results indicated that polysaccharide extract of C. longa was found to be genotoxically safe and also exhibited maximum tolerable dose of more than 5 g/kg rat body weight.
Collapse
Affiliation(s)
- Chandrasekaran Chinampudur Velusami
- R&D Centre, Natural Remedies Private Limited, 5B, Veerasandra Indl. Area, 19th K. M. Stone, Hosur Road, Electronic City Post, Bangalore 560100, Karnataka, India
| | - Srinivasa Rao Boddapati
- R&D Centre, Natural Remedies Private Limited, 5B, Veerasandra Indl. Area, 19th K. M. Stone, Hosur Road, Electronic City Post, Bangalore 560100, Karnataka, India
| | - Srikanth Hongasandra Srinivasa
- R&D Centre, Natural Remedies Private Limited, 5B, Veerasandra Indl. Area, 19th K. M. Stone, Hosur Road, Electronic City Post, Bangalore 560100, Karnataka, India
| | - Edwin Jothie Richard
- R&D Centre, Natural Remedies Private Limited, 5B, Veerasandra Indl. Area, 19th K. M. Stone, Hosur Road, Electronic City Post, Bangalore 560100, Karnataka, India
| | - Joshua Allan Joseph
- R&D Centre, Natural Remedies Private Limited, 5B, Veerasandra Indl. Area, 19th K. M. Stone, Hosur Road, Electronic City Post, Bangalore 560100, Karnataka, India
| | - Murali Balasubramanian
- R&D Centre, Natural Remedies Private Limited, 5B, Veerasandra Indl. Area, 19th K. M. Stone, Hosur Road, Electronic City Post, Bangalore 560100, Karnataka, India
| | - Amit Agarwal
- R&D Centre, Natural Remedies Private Limited, 5B, Veerasandra Indl. Area, 19th K. M. Stone, Hosur Road, Electronic City Post, Bangalore 560100, Karnataka, India
| |
Collapse
|