1
|
Alassaf M, Rajan A. Adipocyte metabolic state regulates glial phagocytic function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.24.614765. [PMID: 39386724 PMCID: PMC11463506 DOI: 10.1101/2024.09.24.614765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Obesity and type 2 diabetes are well-established risk factors for neurodegenerative disorders1-4, yet the underlying mechanisms remain poorly understood. The adipocyte-brain axis is crucial for brain function, as adipocytes secrete signaling molecules, including lipids and adipokines, that impinge on neural circuits to regulate feeding and energy expenditure5. Disruptions in the adipocyte-brain axis are associated with neurodegenerative conditions6, but the causal links are not fully understood. Neural debris accumulates with age and injury, and glial phagocytic function is crucial for clearing this debris and maintaining a healthy brain microenvironment7-9. Using adult Drosophila, we investigate how adipocyte metabolism influences glial phagocytic activity in the brain. We demonstrate that a prolonged obesogenic diet increases adipocyte fatty acid oxidation and ketogenesis. Genetic manipulations that mimic obesogenic diet-induced changes in adipocyte lipid and mitochondrial metabolism unexpectedly reduce the expression of the phagocytic receptor Draper in Drosophila microglia-like cells in the brain. We identify Apolpp-the Drosophila equivalent of human apolipoprotein B (ApoB)-as a critical adipocyte-derived signal that regulates glial phagocytosis. Additionally, we show that Lipoprotein Receptor 1 (LpR1), the LDL receptor on phagocytic glia, is required for glial capacity to clear injury-induced neuronal debris. Our findings establish that adipocyte-brain lipoprotein signaling regulates glial phagocytic function, revealing a novel pathway that links adipocyte metabolic disorders with neurodegeneration.
Collapse
Affiliation(s)
- Mroj Alassaf
- Basic Sciences Division, Fred Hutch, Seattle, WA-98109. The USA
| | - Akhila Rajan
- Basic Sciences Division, Fred Hutch, Seattle, WA-98109. The USA
| |
Collapse
|
2
|
Clayworth K, Gilbert M, Auld V. Cell Biology Techniques for Studying Drosophila Peripheral Glial Cells. Cold Spring Harb Protoc 2024; 2024:pdb.top108159. [PMID: 37399179 DOI: 10.1101/pdb.top108159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
Glial cells are essential for the proper development and functioning of the peripheral nervous system (PNS). The ability to study the biology of glial cells is therefore critical for our ability to understand PNS biology and address PNS maladies. The genetic and proteomic pathways underlying vertebrate peripheral glial biology are understandably complex, with many layers of redundancy making it sometimes difficult to study certain facets of PNS biology. Fortunately, many aspects of vertebrate peripheral glial biology are conserved with those of the fruit fly, Drosophila melanogaster With simple and powerful genetic tools and fast generation times, Drosophila presents an accessible and versatile model for studying the biology of peripheral glia. We introduce here three techniques for studying the cell biology of peripheral glia of Drosophila third-instar larvae. With fine dissection tools and common laboratory reagents, third-instar larvae can be dissected, with extraneous tissues removed, revealing the central nervous system (CNS) and PNS to be processed using a standard immunolabeling protocol. To improve the resolution of peripheral nerves in the z-plane, we describe a cryosectioning method to achieve 10- to 20-µm thick coronal sections of whole larvae, which can then be immunolabeled using a modified version of standard immunolabeling techniques. Finally, we describe a proximity ligation assay (PLA) for detecting close proximity between two proteins-thus inferring protein interaction-in vivo in third-instar larvae. These methods, further described in our associated protocols, can be used to improve our understanding of Drosophila peripheral glia biology, and thus our understanding of PNS biology.
Collapse
Affiliation(s)
- Katherine Clayworth
- Department of Zoology, Cell and Developmental Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Mary Gilbert
- Department of Zoology, Cell and Developmental Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Vanessa Auld
- Department of Zoology, Cell and Developmental Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| |
Collapse
|
3
|
Singh A, Abhilasha KV, Acharya KR, Liu H, Nirala NK, Parthibane V, Kunduri G, Abimannan T, Tantalla J, Zhu LJ, Acharya JK, Acharya UR. A nutrient responsive lipase mediates gut-brain communication to regulate insulin secretion in Drosophila. Nat Commun 2024; 15:4410. [PMID: 38782979 PMCID: PMC11116528 DOI: 10.1038/s41467-024-48851-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 05/15/2024] [Indexed: 05/25/2024] Open
Abstract
Pancreatic β cells secrete insulin in response to glucose elevation to maintain glucose homeostasis. A complex network of inter-organ communication operates to modulate insulin secretion and regulate glucose levels after a meal. Lipids obtained from diet or generated intracellularly are known to amplify glucose-stimulated insulin secretion, however, the underlying mechanisms are not completely understood. Here, we show that a Drosophila secretory lipase, Vaha (CG8093), is synthesized in the midgut and moves to the brain where it concentrates in the insulin-producing cells in a process requiring Lipid Transfer Particle, a lipoprotein originating in the fat body. In response to dietary fat, Vaha stimulates insulin-like peptide release (ILP), and Vaha deficiency results in reduced circulatory ILP and diabetic features including hyperglycemia and hyperlipidemia. Our findings suggest Vaha functions as a diacylglycerol lipase physiologically, by being a molecular link between dietary fat and lipid amplified insulin secretion in a gut-brain axis.
Collapse
Affiliation(s)
- Alka Singh
- Department of Molecular, Cell and Cancer Biology, UMass Chan Medical School, Worcester, MA, 01605, USA
| | | | - Kathya R Acharya
- Department of Molecular, Cell and Cancer Biology, UMass Chan Medical School, Worcester, MA, 01605, USA
- Cancer and Developmental Biology Laboratory, National Cancer Institute, Frederick, MD, 21702, USA
- University of Cincinnati College of Medicine, 3230 Eden Ave, Cincinnati, OH, 45267, USA
| | - Haibo Liu
- Department of Molecular, Cell and Cancer Biology, UMass Chan Medical School, Worcester, MA, 01605, USA
| | - Niraj K Nirala
- Program in Molecular Medicine, UMass Chan Medical School, Worcester, MA, 01605, USA
| | - Velayoudame Parthibane
- Cancer and Developmental Biology Laboratory, National Cancer Institute, Frederick, MD, 21702, USA
| | - Govind Kunduri
- Cancer and Developmental Biology Laboratory, National Cancer Institute, Frederick, MD, 21702, USA
| | - Thiruvaimozhi Abimannan
- Cancer and Developmental Biology Laboratory, National Cancer Institute, Frederick, MD, 21702, USA
| | - Jacob Tantalla
- Cancer and Developmental Biology Laboratory, National Cancer Institute, Frederick, MD, 21702, USA
| | - Lihua Julie Zhu
- Department of Molecular, Cell and Cancer Biology, UMass Chan Medical School, Worcester, MA, 01605, USA
| | - Jairaj K Acharya
- Cancer and Developmental Biology Laboratory, National Cancer Institute, Frederick, MD, 21702, USA.
| | - Usha R Acharya
- Cancer and Developmental Biology Laboratory, National Cancer Institute, Frederick, MD, 21702, USA.
| |
Collapse
|
4
|
Krejčová G, Morgantini C, Zemanová H, Lauschke VM, Kovářová J, Kubásek J, Nedbalová P, Kamps‐Hughes N, Moos M, Aouadi M, Doležal T, Bajgar A. Macrophage-derived insulin antagonist ImpL2 induces lipoprotein mobilization upon bacterial infection. EMBO J 2023; 42:e114086. [PMID: 37807855 PMCID: PMC10690471 DOI: 10.15252/embj.2023114086] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 09/06/2023] [Accepted: 09/12/2023] [Indexed: 10/10/2023] Open
Abstract
The immune response is an energy-demanding process that must be coordinated with systemic metabolic changes redirecting nutrients from stores to the immune system. Although this interplay is fundamental for the function of the immune system, the underlying mechanisms remain elusive. Our data show that the pro-inflammatory polarization of Drosophila macrophages is coupled to the production of the insulin antagonist ImpL2 through the activity of the transcription factor HIF1α. ImpL2 production, reflecting nutritional demands of activated macrophages, subsequently impairs insulin signaling in the fat body, thereby triggering FOXO-driven mobilization of lipoproteins. This metabolic adaptation is fundamental for the function of the immune system and an individual's resistance to infection. We demonstrated that analogically to Drosophila, mammalian immune-activated macrophages produce ImpL2 homolog IGFBP7 in a HIF1α-dependent manner and that enhanced IGFBP7 production by these cells induces mobilization of lipoproteins from hepatocytes. Hence, the production of ImpL2/IGFBP7 by macrophages represents an evolutionarily conserved mechanism by which macrophages alleviate insulin signaling in the central metabolic organ to secure nutrients necessary for their function upon bacterial infection.
Collapse
Affiliation(s)
- Gabriela Krejčová
- Department of Molecular Biology and Genetics, Faculty of ScienceUniversity of South BohemiaCeske BudejoviceCzech Republic
| | - Cecilia Morgantini
- Department of Medicine, Integrated Cardio Metabolic Center (ICMC)Karolinska InstitutetHuddingeSweden
| | - Helena Zemanová
- Department of Molecular Biology and Genetics, Faculty of ScienceUniversity of South BohemiaCeske BudejoviceCzech Republic
| | - Volker M Lauschke
- Department of Medicine, Integrated Cardio Metabolic Center (ICMC)Karolinska InstitutetHuddingeSweden
- Dr Margarete Fischer‐Bosch Institute of Clinical PharmacologyStuttgartGermany
- University of TübingenTübingenGermany
| | - Julie Kovářová
- Biology Centre CASInstitute of ParasitologyCeske BudejoviceCzech Republic
| | - Jiří Kubásek
- Department of Experimental Plant Biology, Faculty of ScienceUniversity of South BohemiaCeske BudejoviceCzech Republic
| | - Pavla Nedbalová
- Department of Molecular Biology and Genetics, Faculty of ScienceUniversity of South BohemiaCeske BudejoviceCzech Republic
| | | | - Martin Moos
- Institute of EntomologyBiology Centre CASCeske BudejoviceCzech Republic
| | - Myriam Aouadi
- Department of Medicine, Integrated Cardio Metabolic Center (ICMC)Karolinska InstitutetHuddingeSweden
| | - Tomáš Doležal
- Department of Molecular Biology and Genetics, Faculty of ScienceUniversity of South BohemiaCeske BudejoviceCzech Republic
| | - Adam Bajgar
- Department of Molecular Biology and Genetics, Faculty of ScienceUniversity of South BohemiaCeske BudejoviceCzech Republic
| |
Collapse
|
5
|
Ugrankar-Banerjee R, Tran S, Bowerman J, Kovalenko A, Paul B, Henne WM. The fat body cortical actin network regulates Drosophila inter-organ nutrient trafficking, signaling, and adipose cell size. eLife 2023; 12:e81170. [PMID: 37144872 PMCID: PMC10202455 DOI: 10.7554/elife.81170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 04/25/2023] [Indexed: 05/06/2023] Open
Abstract
Defective nutrient storage and adipocyte enlargement (hypertrophy) are emerging features of metabolic syndrome and type 2 diabetes. Within adipose tissues, how the cytoskeletal network contributes to adipose cell size, nutrient uptake, fat storage, and signaling remain poorly understood. Utilizing the Drosophila larval fat body (FB) as a model adipose tissue, we show that a specific actin isoform-Act5C-forms the cortical actin network necessary to expand adipocyte cell size for biomass storage in development. Additionally, we uncover a non-canonical role for the cortical actin cytoskeleton in inter-organ lipid trafficking. We find Act5C localizes to the FB cell surface and cell-cell boundaries, where it intimately contacts peripheral LDs (pLDs), forming a cortical actin network for cell architectural support. FB-specific loss of Act5C perturbs FB triglyceride (TG) storage and LD morphology, resulting in developmentally delayed larvae that fail to develop into flies. Utilizing temporal RNAi-depletion approaches, we reveal that Act5C is indispensable post-embryogenesis during larval feeding as FB cells expand and store fat. Act5C-deficient FBs fail to grow, leading to lipodystrophic larvae unable to accrue sufficient biomass for complete metamorphosis. In line with this, Act5C-deficient larvae display blunted insulin signaling and reduced feeding. Mechanistically, we also show this diminished signaling correlates with decreased lipophorin (Lpp) lipoprotein-mediated lipid trafficking, and find Act5C is required for Lpp secretion from the FB for lipid transport. Collectively, we propose that the Act5C-dependent cortical actin network of Drosophila adipose tissue is required for adipose tissue size-expansion and organismal energy homeostasis in development, and plays an essential role in inter-organ nutrient transport and signaling.
Collapse
Affiliation(s)
| | - Son Tran
- Department of Cell Biology, UT Southwestern Medical CenterDallasUnited States
| | - Jade Bowerman
- Department of Cell Biology, UT Southwestern Medical CenterDallasUnited States
| | | | - Blessy Paul
- Department of Cell Biology, UT Southwestern Medical CenterDallasUnited States
| | - W Mike Henne
- Department of Cell Biology, UT Southwestern Medical CenterDallasUnited States
| |
Collapse
|
6
|
Li F, Artiushin G, Sehgal A. Modulation of sleep by trafficking of lipids through the Drosophila blood-brain barrier. eLife 2023; 12:e86336. [PMID: 37140181 PMCID: PMC10205086 DOI: 10.7554/elife.86336] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 04/11/2023] [Indexed: 05/05/2023] Open
Abstract
Endocytosis through Drosophila glia is a significant determinant of sleep amount and occurs preferentially during sleep in glia of the blood-brain barrier (BBB). To identify metabolites whose trafficking is mediated by sleep-dependent endocytosis, we conducted metabolomic analysis of flies that have increased sleep due to a block in glial endocytosis. We report that acylcarnitines, fatty acids conjugated to carnitine to promote their transport, accumulate in heads of these animals. In parallel, to identify transporters and receptors whose loss contributes to the sleep phenotype caused by blocked endocytosis, we screened genes enriched in barrier glia for effects on sleep. We find that knockdown of lipid transporters LRP1&2 or of carnitine transporters ORCT1&2 increases sleep. In support of the idea that the block in endocytosis affects trafficking through specific transporters, knockdown of LRP or ORCT transporters also increases acylcarnitines in heads. We propose that lipid species, such as acylcarnitines, are trafficked through the BBB via sleep-dependent endocytosis, and their accumulation reflects an increased need for sleep.
Collapse
Affiliation(s)
- Fu Li
- Howard Hughes Medical Institute and Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Gregory Artiushin
- Howard Hughes Medical Institute and Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Amita Sehgal
- Howard Hughes Medical Institute and Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| |
Collapse
|
7
|
Schoofs A, Pankratz MJ. Neuroscience: Moving thoughts control insulin release. Curr Biol 2023; 33:R274-R276. [PMID: 37040711 DOI: 10.1016/j.cub.2023.02.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Insulin release has mostly been studied in the context of metabolic signals. An electrophysiology approach in Drosophila now reveals regulation of insulin-producing cell activity by neuronal circuits controlling locomotion. Even without actual movement, activating these circuits is sufficient to inhibit neuropeptide release.
Collapse
Affiliation(s)
- Andreas Schoofs
- LIMES Institute, Department of Molecular Brain Physiology and Behavior, University of Bonn, Carl-Troll-Str. 31, 53115 Bonn, Germany
| | - Michael J Pankratz
- LIMES Institute, Department of Molecular Brain Physiology and Behavior, University of Bonn, Carl-Troll-Str. 31, 53115 Bonn, Germany.
| |
Collapse
|
8
|
Contreras EG, Klämbt C. The Drosophila blood-brain barrier emerges as a model for understanding human brain diseases. Neurobiol Dis 2023; 180:106071. [PMID: 36898613 DOI: 10.1016/j.nbd.2023.106071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/24/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
The accurate regulation of the microenvironment within the nervous system is one of the key features characterizing complex organisms. To this end, neural tissue has to be physically separated from circulation, but at the same time, mechanisms must be in place to allow controlled transport of nutrients and macromolecules into and out of the brain. These roles are executed by cells of the blood-brain barrier (BBB) found at the interface of circulation and neural tissue. BBB dysfunction is observed in several neurological diseases in human. Although this can be considered as a consequence of diseases, strong evidence supports the notion that BBB dysfunction can promote the progression of brain disorders. In this review, we compile the recent evidence describing the contribution of the Drosophila BBB to the further understanding of brain disease features in human patients. We discuss the function of the Drosophila BBB during infection and inflammation, drug clearance and addictions, sleep, chronic neurodegenerative disorders and epilepsy. In summary, this evidence suggests that the fruit fly, Drosophila melanogaster, can be successfully employed as a model to disentangle mechanisms underlying human diseases.
Collapse
Affiliation(s)
- Esteban G Contreras
- University of Münster, Institute of Neuro- and Behavioral Biology, Badestr. 9, Münster, Germany.
| | - Christian Klämbt
- University of Münster, Institute of Neuro- and Behavioral Biology, Badestr. 9, Münster, Germany.
| |
Collapse
|
9
|
Akintoye OO, Ajibare AJ, Omotuyi IO. Virgin coconut oil reverses behavioral phenotypes of letrozole-model of PCOS in Wistar rats via modulation of NRF2 upregulation. J Taibah Univ Med Sci 2023; 18:831-841. [PMID: 36852244 PMCID: PMC9957901 DOI: 10.1016/j.jtumed.2022.12.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 12/15/2022] [Accepted: 12/27/2022] [Indexed: 01/07/2023] Open
Abstract
Objectives Polycystic ovarian syndrome (PCOS) is an endocrine disorder associated with insulin resistance, hyperandrogenism, and sub-infertility. Virgin coconut oil (VCO) has been reported to have health benefits, such as anti-inflammatory, anti-oxidant, and antiviral properties. This study investigated the effects of dietary VCO supplementation on memory and cognitive impairment in female rats with letrozole induced PCOS. Methods Thirty female rats were randomly divided into five groups. All rats except controls were treated with letrozole for 21 days to induce PCOS and were subsequently treated for 14 days with 10% VCO, clomiphene (CLO), or VCO + CLO. Three neurobehavioral tests were conducted: elevated plus maze, Y maze, and novel object recognition tests. Results Our results indicated statistically elevated serum concentrations of sex hormones in rats with PCOS, compared with the control and treated groups. In addition, all treated groups showed significant reversal of the low serum concentrations of catalase and down-regulated gene expression of Nrf2 in the hippocampus seen in the PCOS rats. In addition, gene expression of acetylcholine esterase was up-regulated in PCOS rats, and was statistically reverted in the VCO treated groups. Conclusion Anxiety-like behavior and impaired short-term memory were observed in PCOS rats; however, VCO supplementation reversed these effects by modulating the gene expression of Nrf2 and AchE.
Collapse
Affiliation(s)
- Olabode O. Akintoye
- Physiology Department, College of Medicine, Ekiti State University, Ado Ekiti, Nigeria
- Corresponding address: Physiology Department, College of Medicine, Ekiti State University, Ado Ekiti, Nigeria
| | - Ayodeji J. Ajibare
- Physiology Department, College of Medicine, Ekiti State University, Ado Ekiti, Nigeria
| | - Idowu O. Omotuyi
- Pharmacology & Toxicology Department, College of Pharmacy, Afe Babalola University, Ado Ekiti (ABUAD), Nigeria
| |
Collapse
|
10
|
Mmp-induced fat body cell dissociation promotes pupal development and moderately averts pupal diapause by activating lipid metabolism. Proc Natl Acad Sci U S A 2023; 120:e2215214120. [PMID: 36574695 PMCID: PMC9910469 DOI: 10.1073/pnas.2215214120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
In Lepidoptera and Diptera, the fat body dissociates into single cells in nondiapause pupae, but it does not dissociate in diapause pupae until diapause termination. Using the cotton bollworm, Helicoverpa armigera, as a model of pupal diapause insects, we illustrated the catalytic mechanism and physiological importance of fat body cell dissociation in regulating pupal development and diapause. In nondiapause pupae, cathepsin L (CatL) activates matrix metalloproteinases (Mmps) that degrade extracellular matrix proteins and cause fat body cell dissociation. Mmp-induced fat body cell dissociation activates lipid metabolism through transcriptional regulation, and the resulting energetic supplies increase brain metabolic activity (i.e., mitochondria respiration and insulin signaling) and thus promote pupal development. In diapause pupae, low activities of CatL and Mmps prevent fat body cell dissociation and lipid metabolism from occurring, maintaining pupal diapause. Importantly, as demonstrated by chemical inhibitor treatments and CRISPR-mediated gene knockouts, Mmp inhibition delayed pupal development and moderately increased the incidence of pupal diapause, while Mmp stimulation promoted pupal development and moderately averted pupal diapause. This study advances our recent understanding of fat body biology and insect diapause regulation.
Collapse
|
11
|
Kübler IC, Kretzschmar J, Brankatschk M, Sandoval-Guzmán T. Local problems need global solutions: The metabolic needs of regenerating organisms. Wound Repair Regen 2022; 30:652-664. [PMID: 35596643 PMCID: PMC7613859 DOI: 10.1111/wrr.13029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/03/2022] [Accepted: 05/19/2022] [Indexed: 12/01/2022]
Abstract
The vast majority of species that belong to the plant or animal kingdom evolved with two main strategies to counter tissue damage-scar formation and regeneration. Whereas scar formation provides a fast and cost-effective repair to exit life-threatening conditions, complete tissue regeneration is time-consuming and requires vast resources to reinstall functionality of affected organs or structures. Local environments in wound healing are widely studied and findings have provided important biomedical applications. Less well understood are organismic physiological parameters and signalling circuits essential to maintain effective tissue repair. Here, we review accumulated evidence that positions the interplay of local and systemic changes in metabolism as essential variables modulating the injury response. We particularly emphasise the role of lipids and lipid-like molecules as significant components long overlooked.
Collapse
Affiliation(s)
- Ines C. Kübler
- Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
| | - Jenny Kretzschmar
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
| | - Marko Brankatschk
- Department of Molecular, Cell and Developmental Biology, Technische Universität Dresden, Dresden, Germany
| | - Tatiana Sandoval-Guzmán
- Department of Internal Medicine III, Center for Healthy Aging, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden of Helmholtz Centre Munich, University Clinic Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
12
|
Winkler L, Janicke T. Diet quality impairs male and female reproductive performance and affects the opportunity for selection in an insect model. Ecol Evol 2022; 12:e9533. [PMID: 36440316 PMCID: PMC9682208 DOI: 10.1002/ece3.9533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 10/22/2022] [Accepted: 11/01/2022] [Indexed: 09/08/2024] Open
Abstract
Environmental factors can have profound effects on the strength and direction of selection and recent studies suggest that such environment-dependent selection can be sex-specific. Sexual selection theory predicts that male fitness is more condition dependent compared to female fitness, suggesting that male fitness is more sensitive to environmental stress. However, our knowledge about the effect of environmental factors on sex-specific reproductive performance and on sex differences in the opportunity for selection is still very limited. In the present study, we investigated the sex-specific effects of diet quality (yeast deprivation and flour type) in the red flour beetle Tribolium castaneum. Specifically, we manipulated yeast supplementation in wheat and whole-wheat flour in competition assays allowing us to test for sex-specific effects of food quality (i) on reproductive success and (ii) on the opportunity for selection. Our data show that yeast deprivation in wheat flour had significantly negative effects on body mass and reproductive success of both sexes, while high-quality flour (whole-wheat flour) was able to buffer the negative impact to a large extent. Importantly, our data suggest no sex-specific effect of dietary stress on reproductive success because the magnitude of the negative effect of yeast deprivation was similar for males and females. Moreover, our study demonstrates that low food quality inflated the opportunity for selection and did not differ between sexes neither under benign nor stressful dietary conditions. We discuss the implications of our findings for the adaptation to stressful environments.
Collapse
Affiliation(s)
| | - Tim Janicke
- Applied ZoologyTU DresdenDresdenGermany
- Centre d'Écologie Fonctionnelle et ÉvolutiveCNRS, Univ Montpellier, EPHE, IRDMontpellier Cedex 05France
| |
Collapse
|
13
|
Dow JAT, Simons M, Romero MF. Drosophila melanogaster: a simple genetic model of kidney structure, function and disease. Nat Rev Nephrol 2022; 18:417-434. [PMID: 35411063 DOI: 10.1038/s41581-022-00561-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2022] [Indexed: 12/27/2022]
Abstract
Although the genetic basis of many kidney diseases is being rapidly elucidated, their experimental study remains problematic owing to the lack of suitable models. The fruitfly Drosophila melanogaster provides a rapid, ethical and cost-effective model system of the kidney. The unique advantages of D. melanogaster include ease and low cost of maintenance, comprehensive availability of genetic mutants and powerful transgenic technologies, and less onerous regulation, as compared with mammalian systems. Renal and excretory functions in D. melanogaster reside in three main tissues - the transporting renal (Malpighian) tubules, the reabsorptive hindgut and the endocytic nephrocytes. Tubules contain multiple cell types and regions and generate a primary urine by transcellular transport rather than filtration, which is then subjected to selective reabsorption in the hindgut. By contrast, the nephrocytes are specialized for uptake of macromolecules and equipped with a filtering slit diaphragm resembling that of podocytes. Many genes with key roles in the human kidney have D. melanogaster orthologues that are enriched and functionally relevant in fly renal tissues. This similarity has allowed investigations of epithelial transport, kidney stone formation and podocyte and proximal tubule function. Furthermore, a range of unique quantitative phenotypes are available to measure function in both wild type and disease-modelling flies.
Collapse
Affiliation(s)
- Julian A T Dow
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.
| | - Matias Simons
- INSERM UMR1163, Laboratory of Epithelial Biology and Disease, Imagine Institute, Université de Paris, Hôpital Necker-Enfants Malades, Paris, France
- Institute of Human Genetics, University Hospital Heidelberg, Heidelberg, Germany
| | - Michael F Romero
- Department of Physiology and Biomedical Engineering, Division of Nephrology and Hypertension, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| |
Collapse
|
14
|
Texada MJ, Lassen M, Pedersen LH, Koyama T, Malita A, Rewitz K. Insulin signaling couples growth and early maturation to cholesterol intake in Drosophila. Curr Biol 2022; 32:1548-1562.e6. [PMID: 35245460 DOI: 10.1016/j.cub.2022.02.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 12/10/2021] [Accepted: 02/04/2022] [Indexed: 11/28/2022]
Abstract
Nutrition is one of the most important influences on growth and the timing of maturational transitions including mammalian puberty and insect metamorphosis. Childhood obesity is associated with precocious puberty, but the assessment mechanism that links body fat to early maturation is unknown. During development, the intake of nutrients promotes signaling through insulin-like systems that govern the growth of cells and tissues and also regulates the timely production of the steroid hormones that initiate the juvenile-adult transition. We show here that the dietary lipid cholesterol, which is required as a component of cell membranes and as a substrate for steroid biosynthesis, also governs body growth and maturation in Drosophila via promoting the expression and release of insulin-like peptides. This nutritional input acts via the nutrient sensor TOR, which is regulated by the Niemann-Pick-type-C 1 (Npc1) cholesterol transporter, in the glia of the blood-brain barrier and cells of the adipose tissue to remotely drive systemic insulin signaling and body growth. Furthermore, increasing intracellular cholesterol levels in the steroid-producing prothoracic gland strongly promotes endoreduplication, leading to an accelerated attainment of a nutritional checkpoint that normally ensures that animals do not initiate maturation prematurely. These findings, therefore, show that a Npc1-TOR signaling system couples the sensing of the lipid cholesterol with cellular and systemic growth control and maturational timing, which may help explain both the link between cholesterol and cancer as well as the connection between body fat (obesity) and early puberty.
Collapse
Affiliation(s)
- Michael J Texada
- Department of Biology, Section for Cell and Neurobiology, University of Copenhagen, Universitetsparken 15, Building 3, 2100 Copenhagen, Denmark.
| | - Mette Lassen
- Department of Biology, Section for Cell and Neurobiology, University of Copenhagen, Universitetsparken 15, Building 3, 2100 Copenhagen, Denmark
| | - Lisa H Pedersen
- Department of Biology, Section for Cell and Neurobiology, University of Copenhagen, Universitetsparken 15, Building 3, 2100 Copenhagen, Denmark
| | - Takashi Koyama
- Department of Biology, Section for Cell and Neurobiology, University of Copenhagen, Universitetsparken 15, Building 3, 2100 Copenhagen, Denmark
| | - Alina Malita
- Department of Biology, Section for Cell and Neurobiology, University of Copenhagen, Universitetsparken 15, Building 3, 2100 Copenhagen, Denmark
| | - Kim Rewitz
- Department of Biology, Section for Cell and Neurobiology, University of Copenhagen, Universitetsparken 15, Building 3, 2100 Copenhagen, Denmark.
| |
Collapse
|
15
|
Hutfilz C. Endocrine Regulation of Lifespan in Insect Diapause. Front Physiol 2022; 13:825057. [PMID: 35242054 PMCID: PMC8886022 DOI: 10.3389/fphys.2022.825057] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/25/2022] [Indexed: 01/27/2023] Open
Abstract
Diapause is a physiological adaptation to conditions that are unfavorable for growth or reproduction. During diapause, animals become long-lived, stress-resistant, developmentally static, and non-reproductive, in the case of diapausing adults. Diapause has been observed at all developmental stages in both vertebrates and invertebrates. In adults, diapause traits weaken into adaptations such as hibernation, estivation, dormancy, or torpor, which represent evolutionarily diverse versions of the traditional diapause traits. These traits are regulated through modifications of the endocrine program guiding development. In insects, this typically includes changes in molting hormones, as well as metabolic signals that limit growth while skewing the organism's energetic demands toward conservation. While much work has been done to characterize these modifications, the interactions between hormones and their downstream consequences are incompletely understood. The current state of diapause endocrinology is reviewed here to highlight the relevance of diapause beyond its use as a model to study seasonality and development. Specifically, insect diapause is an emerging model to study mechanisms that determine lifespan. The induction of diapause represents a dramatic change in the normal progression of age. Hormones such as juvenile hormone, 20-hydroxyecdysone, and prothoracicotropic hormone are well-known to modulate this plasticity. The induction of diapause-and by extension, the cessation of normal aging-is coordinated by interactions between these pathways. However, research directly connecting diapause endocrinology to the biology of aging is lacking. This review explores connections between diapause and aging through the perspective of endocrine signaling. The current state of research in both fields suggests appreciable overlap that will greatly contribute to our understanding of diapause and lifespan determination.
Collapse
|
16
|
Hara Y, Yamamoto D. Effects of Food and Temperature on Drosophila melanogaster Reproductive Dormancy as Revealed by Quantification of a GFP-Tagged Yolk Protein in the Ovary. Front Physiol 2022; 12:803144. [PMID: 35046840 PMCID: PMC8761905 DOI: 10.3389/fphys.2021.803144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 11/18/2021] [Indexed: 11/25/2022] Open
Abstract
When exposed to harsh environmental conditions, such as food scarcity and/or low temperature, Drosophila melanogaster females enter reproductive dormancy, a metabolic state that enhances stress resistance for survival at the expense of reproduction. Although the absence of egg chambers carrying yolk from the ovary has been used to define reproductive dormancy in this species, this definition is susceptible to false judgements of dormancy events: e.g. a trace amount of yolk could escape visual detection; a fly is judged to be in the non-dormancy state if it has a single yolk-containing egg chamber even when other egg chambers are devoid of yolk. In this study, we propose an alternative method for describing the maturation state of oocytes, in which the amount of yolk in the entire ovary is quantified by the fluorescence intensity derived from GFP, which is expressed as a fusion with the major yolk protein Yp1. We show that yolk deposition increases with temperature with a sigmoidal function, and the quality of food substantially alters the maximum accumulation of yolk attainable at a given temperature. The Yp1::GFP reporter will serve as a reliable tool for quantifying the amount of yolk and provides a new means for defining the dormancy state in D. melanogaster.
Collapse
Affiliation(s)
- Yusuke Hara
- Neuro-ICT Laboratory, Advanced ICT Research, National Institute of Information and Communications Technology, Kobe, Japan
| | - Daisuke Yamamoto
- Neuro-ICT Laboratory, Advanced ICT Research, National Institute of Information and Communications Technology, Kobe, Japan
| |
Collapse
|
17
|
Tong XW, Zhang YT, Yu ZW, Pu SD, Li X, Xu YX, Shan YY, Gao XY. Triglyceride Glucose Index is Related with the Risk of Mild Cognitive Impairment in Type 2 Diabetes. Diabetes Metab Syndr Obes 2022; 15:3577-3587. [PMID: 36426213 PMCID: PMC9680968 DOI: 10.2147/dmso.s389327] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/04/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The triglyceride glucose (TyG) index reflects insulin resistance; the latter being associated with mild cognitive impairment (MCI). OBJECTIVE To investigate the clinical value of the TyG index to identify MCI in patients living with type 2 diabetes (T2D) using a cross-sectional study. METHODS This cross-sectional study was performed on 517 patients with T2D. The diagnosis of MCI was based on criteria established by the National Institute on Aging-Alzheimer's Association workgroup, and patients were divided into the MCI group and the normal cognitive function (NCF) group. The logistic regression analysis determines whether the TyG index is related to MCI. Subsequently, we constructed the receiver operating characteristic curve (ROC) and calculated the area under the curve (AUC). The nomogram model of the influence factor was established and verified. RESULTS Compared to the type 2 diabetes-normal cognitive function (T2D-NCF) group, the MCI subjects were olderand had higher TyG indexes, lower cognitive scores, and lower education levels (p < 0.01). After adjusting for the confounders, the TyG index was associated with MCI (OR = 7.37, 95% CI = 4.72-11.50, p < 0.01), and TyG-BMI was also associated with MCI (OR = 1.02, 95% CI = 1.01-1.02, p<0.01). The TyG index AUC was 0.79 (95% CI = 0.76-0.83). The consistency index of the nomogram was 0. 83[95% CI (0. 79, 0. 86)]. CONCLUSION Our results indicate that the TyG index and TyG-BMI are associated with MCI in T2D patients, and the TyG index is an excellent indicator of the risk of MCI in T2D patients. The nomogram incorporating the TyG index is useful to predict MCI risk in patients with T2D.
Collapse
Affiliation(s)
- Xue-Wei Tong
- First Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| | - Yi-Tong Zhang
- First Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| | - Zi-Wei Yu
- First Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| | - Sheng-Dan Pu
- First Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| | - Xin Li
- First Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| | - Yu-Xin Xu
- First Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| | - Yong-Yan Shan
- First Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| | - Xin-Yuan Gao
- First Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
- Correspondence: Xin-Yuan Gao, Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, People’s Republic of China, Tel +86-18846030512, Email
| |
Collapse
|
18
|
Meschi E, Delanoue R. Adipokine and fat body in flies: Connecting organs. Mol Cell Endocrinol 2021; 533:111339. [PMID: 34082046 DOI: 10.1016/j.mce.2021.111339] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/21/2021] [Accepted: 05/25/2021] [Indexed: 10/21/2022]
Abstract
Under conditions of nutritional and environmental stress, organismal homeostasis is preserved through inter-communication between multiple organs. To do so, higher organisms have developed a system of interorgan communication through which one tissue can affect the metabolism, activity or fate of remote organs, tissues or cells. In this review, we discuss the latest findings emphasizing Drosophila melanogaster as a powerful model organism to study these interactions and may constitute one of the best documented examples depicting the long-distance communication between organs. In flies, the adipose tissue appears to be one of the main organizing centers for the regulation of insect development and behavior: it senses nutritional and hormonal signals and in turn, orchestrates the release of appropriate adipokines. We discuss the nature and the role of recently uncovered adipokines, their regulations by external cues, their secretory routes and their modes of action to adjust developmental growth and timing accordingly. These findings have the potential for identification of candidate factors and signaling pathways that mediate conserved interorgan crosstalk.
Collapse
Affiliation(s)
- Eleonora Meschi
- Centre for Neural Circuit and Behaviour, University of Oxford, Mansfield road, OX3 1SR, Oxford, UK
| | - Renald Delanoue
- University Côte d'Azur, CNRS, Inserm, Institute of Biology Valrose Parc Valrose, 06108, Nice, France.
| |
Collapse
|
19
|
Prince E, Kretzschmar J, Trautenberg LC, Broschk S, Brankatschk M. DIlp7-Producing Neurons Regulate Insulin-Producing Cells in Drosophila. Front Physiol 2021; 12:630390. [PMID: 34385929 PMCID: PMC8353279 DOI: 10.3389/fphys.2021.630390] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 07/02/2021] [Indexed: 11/17/2022] Open
Abstract
Cellular Insulin signaling shows a remarkable high molecular and functional conservation. Insulin-producing cells respond directly to nutritional cues in circulation and receive modulatory input from connected neuronal networks. Neuronal control integrates a wide range of variables including dietary change or environmental temperature. Although it is shown that neuronal input is sufficient to regulate Insulin-producing cells, the physiological relevance of this network remains elusive. In Drosophila melanogaster, Insulin-like peptide7-producing neurons are wired with Insulin-producing cells. We found that the former cells regulate the latter to facilitate larval development at high temperatures, and to regulate systemic Insulin signaling in adults feeding on calorie-rich food lacking dietary yeast. Our results demonstrate a role for neuronal innervation of Insulin-producing cells important for fruit flies to survive unfavorable environmental conditions.
Collapse
Affiliation(s)
- Elodie Prince
- Biotechnologisches Zentrum, Dresden, Germany.,CNRS UMR 7277, Inserm U1091, UNS - Bâtiment Centre de Biochimie, Faculté des Sciences, iBV - Institut de Biologie Valrose, Nice, France
| | | | | | - Susanne Broschk
- Applied Zoology, Faculty of Biology, Technische Universität Dresden, Dresden, Germany
| | | |
Collapse
|
20
|
Kim SK, Tsao DD, Suh GSB, Miguel-Aliaga I. Discovering signaling mechanisms governing metabolism and metabolic diseases with Drosophila. Cell Metab 2021; 33:1279-1292. [PMID: 34139200 PMCID: PMC8612010 DOI: 10.1016/j.cmet.2021.05.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/30/2021] [Accepted: 05/25/2021] [Indexed: 12/18/2022]
Abstract
There has been rapid growth in the use of Drosophila and other invertebrate systems to dissect mechanisms governing metabolism. New assays and approaches to physiology have aligned with superlative genetic tools in fruit flies to provide a powerful platform for posing new questions, or dissecting classical problems in metabolism and disease genetics. In multiple examples, these discoveries exploit experimental advantages as-yet unavailable in mammalian systems. Here, we illustrate how fly studies have addressed long-standing questions in three broad areas-inter-organ signaling through hormonal or neural mechanisms governing metabolism, intestinal interoception and feeding, and the cellular and signaling basis of sexually dimorphic metabolism and physiology-and how these findings relate to human (patho)physiology. The imaginative application of integrative physiology and related approaches in flies to questions in metabolism is expanding, and will be an engine of discovery, revealing paradigmatic features of metabolism underlying human diseases and physiological equipoise in health.
Collapse
Affiliation(s)
- Seung K Kim
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine (Endocrinology), Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Deborah D Tsao
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Greg S B Suh
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea.
| | - Irene Miguel-Aliaga
- MRC London Institute of Medical Sciences, London, UK; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK.
| |
Collapse
|
21
|
Wan B, Belghazi M, Lemauf S, Poirié M, Gatti JL. Proteomics of purified lamellocytes from Drosophila melanogaster HopT um-l identifies new membrane proteins and networks involved in their functions. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 134:103584. [PMID: 34033897 DOI: 10.1016/j.ibmb.2021.103584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 06/12/2023]
Abstract
In healthy Drosophila melanogaster larvae, plasmatocytes and crystal cells account for 95% and 5% of the hemocytes, respectively. A third type of hemocytes, lamellocytes, are rare, but their number increases after oviposition by parasitoid wasps. The lamellocytes form successive layers around the parasitoid egg, leading to its encapsulation and melanization, and finally the death of this intruder. However, the total number of lamellocytes per larva remains quite low even after parasitoid infestation, making direct biochemical studies difficult. Here, we used the HopTum-l mutant strain that constitutively produces large numbers of lamellocytes to set up a purification method and analyzed their major proteins by 2D gel electrophoresis and their plasma membrane surface proteins by 1D SDS-PAGE after affinity purification. Mass spectrometry identified 430 proteins from 2D spots and 344 affinity-purified proteins from 1D bands, for a total of 639 unique proteins. Known lamellocyte markers such as PPO3 and the myospheroid integrin were among the components identified with specific chaperone proteins. Affinity purification detected other integrins, as well as a wide range of integrin-associated proteins involved in the formation and function of cell-cell junctions. Overall, the newly identified proteins indicate that these cells are highly adapted to the encapsulation process (recognition, motility, adhesion, signaling), but may also have several other physiological functions (such as secretion and internalization of vesicles) under different signaling pathways. These results provide the basis for further in vivo and in vitro studies of lamellocytes, including the development of new markers to identify coexisting populations and their respective origins and functions in Drosophila immunity.
Collapse
Affiliation(s)
- Bin Wan
- Université Côte d'Azur, INRAE, CNRS, Institute Sophia-Agrobiotech, Sophia Antipolis, France
| | - Maya Belghazi
- Institute of NeuroPhysiopathology (INP), UMR7051, CNRS, Aix-Marseille Université, Marseille, 13015, France
| | - Séverine Lemauf
- Université Côte d'Azur, INRAE, CNRS, Institute Sophia-Agrobiotech, Sophia Antipolis, France
| | - Marylène Poirié
- Université Côte d'Azur, INRAE, CNRS, Institute Sophia-Agrobiotech, Sophia Antipolis, France
| | - Jean-Luc Gatti
- Université Côte d'Azur, INRAE, CNRS, Institute Sophia-Agrobiotech, Sophia Antipolis, France.
| |
Collapse
|
22
|
Hertenstein H, McMullen E, Weiler A, Volkenhoff A, Becker HM, Schirmeier S. Starvation-induced regulation of carbohydrate transport at the blood-brain barrier is TGF-β-signaling dependent. eLife 2021; 10:e62503. [PMID: 34032568 PMCID: PMC8149124 DOI: 10.7554/elife.62503] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 04/13/2021] [Indexed: 12/15/2022] Open
Abstract
During hunger or malnutrition, animals prioritize alimentation of the brain over other organs to ensure its function and, thus, their survival. This protection, also-called brain sparing, is described from Drosophila to humans. However, little is known about the molecular mechanisms adapting carbohydrate transport. Here, we used Drosophila genetics to unravel the mechanisms operating at the blood-brain barrier (BBB) under nutrient restriction. During starvation, expression of the carbohydrate transporter Tret1-1 is increased to provide more efficient carbohydrate uptake. Two mechanisms are responsible for this increase. Similar to the regulation of mammalian GLUT4, Rab-dependent intracellular shuttling is needed for Tret1-1 integration into the plasma membrane; even though Tret1-1 regulation is independent of insulin signaling. In addition, starvation induces transcriptional upregulation that is controlled by TGF-β signaling. Considering TGF-β-dependent regulation of the glucose transporter GLUT1 in murine chondrocytes, our study reveals an evolutionarily conserved regulatory paradigm adapting the expression of sugar transporters at the BBB.
Collapse
Affiliation(s)
- Helen Hertenstein
- Department of Biology, Institute of Zoology, Technische Universität DresdenDresdenGermany
| | - Ellen McMullen
- Institut für Neuro- und Verhaltensbiologie, WWU MünsterMünsterGermany
| | - Astrid Weiler
- Department of Biology, Institute of Zoology, Technische Universität DresdenDresdenGermany
| | - Anne Volkenhoff
- Department of Biology, Institute of Zoology, Technische Universität DresdenDresdenGermany
| | - Holger M Becker
- Department of Biology, Institute of Zoology, Technische Universität DresdenDresdenGermany
- Division of General Zoology, Department of Biology, University of KaiserslauternKaiserslauternGermany
| | - Stefanie Schirmeier
- Department of Biology, Institute of Zoology, Technische Universität DresdenDresdenGermany
| |
Collapse
|
23
|
Kim JH, Barbagallo B, Annunziato K, Farias-Pereira R, Doherty JJ, Lee J, Zina J, Tindal C, McVey C, Aresco R, Johnstone M, Sant KE, Timme-Laragy A, Park Y, Clark JM. Maternal preconception PFOS exposure of Drosophila melanogaster alters reproductive capacity, development, morphology and nutrient regulation. Food Chem Toxicol 2021; 151:112153. [PMID: 33774094 DOI: 10.1016/j.fct.2021.112153] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/17/2021] [Accepted: 03/19/2021] [Indexed: 10/21/2022]
Abstract
Perfluorooctanesulfonic acid (PFOS) is a persistent synthetic surfactant widely detected in the environment. Developmental PFOS exposures are associated with low birth weight and chronic exposures increase risk for obesity and type 2 diabetes. As an obesogen, PFOS poses a major public health exposure risk and much remains to be understood about the critical windows of exposure and mechanisms impacted, especially during preconception. Here, we leverage evolutionarily conserved pathways and processes in the fruit fly Drosophila melanogaster (wild-type Canton-S and megalin-UAS RNAi transgenic fly lines) to investigate the window of maternal preconception exposure to PFOS on reproductive and developmental toxicity, and examine receptor (megalin)-mediated endocytosis of nutrients and PFOS into the oocyte as a potential mechanism. Preconception exposure to 2 ng PFOS/female resulted in an internal concentration of 0.081 ng/fly over two days post exposure, no mortality and reduced megalin transcription. The number of eggs laid 1-3 days post exposure was reduced and contained 0.018 ng PFOS/egg. Following heat shock, PFOS was significantly reduced in eggs from megalin-knockdown transgenic females. Cholesterol and triglycerides were increased in eggs laid immediately following PFOS exposure by non-heat shocked transgenic females whereas decreased cholesterol and increased protein levels were found in eggs laid by heat shocked transgenic females. Preconception exposure likewise increased cholesterol in early emerging wildtype F1 adults and also resulted in progeny with a substantial developmental delay, a reduction in adult weights, and altered transcription of Drosophila insulin-like peptide genes. These findings support an interaction between PFOS and megalin that interferes with normal nutrient transport during oocyte maturation and embryogenesis, which may be associated with later in life developmental delay and reduced weight.
Collapse
Affiliation(s)
- Ju Hyeon Kim
- Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Belinda Barbagallo
- Department of Biology & Biomedical Sciences, Salve Regina University, Newport, RI, USA
| | - Kate Annunziato
- Department of Environmental Health Sciences, University of Massachusetts, Amherst, MA, USA
| | | | - Jeffery J Doherty
- Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Jonghwa Lee
- Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Jake Zina
- Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Cole Tindal
- Department of Biology & Biomedical Sciences, Salve Regina University, Newport, RI, USA
| | - Cailin McVey
- Department of Biology & Biomedical Sciences, Salve Regina University, Newport, RI, USA
| | - Racheal Aresco
- Department of Biology & Biomedical Sciences, Salve Regina University, Newport, RI, USA
| | - Megan Johnstone
- Department of Biology & Biomedical Sciences, Salve Regina University, Newport, RI, USA
| | - Karilyn E Sant
- Department of Environmental Health Sciences, University of Massachusetts, Amherst, MA, USA; Division of Environmental Health, School of Public Health, San Diego State University, San Diego, CA, USA
| | - Alicia Timme-Laragy
- Department of Environmental Health Sciences, University of Massachusetts, Amherst, MA, USA
| | - Yeonhwa Park
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - John M Clark
- Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, MA, USA.
| |
Collapse
|
24
|
Malita A, Rewitz K. Interorgan communication in the control of metamorphosis. CURRENT OPINION IN INSECT SCIENCE 2021; 43:54-62. [PMID: 33214126 DOI: 10.1016/j.cois.2020.10.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/12/2020] [Accepted: 10/14/2020] [Indexed: 06/11/2023]
Abstract
Steroid hormones control major developmental transitions such as metamorphosis in insects and puberty in mammals. The juvenile must attain a sufficient size before it begins maturation in order to give rise to a properly sized and reproductively fit adult. Studies in the insect Drosophila have begun to reveal a remarkable example of the complex interplay between different organs and the neuroendocrine system that controls the production of the steroid ecdysone, which triggers metamorphosis. This review discusses the inter-organ signals mediating this crosstalk, which allows the neuroendocrine system to assess nutrient availability and growth status of internal organs, ensuring that maturation is initiated at the appropriate time. We discuss how the neuroendocrine system integrates signals from different tissues to coordinate growth and maturation. These studies are still unraveling the organ-to-organ signaling networks that control the timing of metamorphosis, defining important principles underlying the logic of growth and maturation coordination in animals.
Collapse
Affiliation(s)
- Alina Malita
- Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Kim Rewitz
- Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark.
| |
Collapse
|
25
|
Barber TM, Kyrou I, Randeva HS, Weickert MO. Mechanisms of Insulin Resistance at the Crossroad of Obesity with Associated Metabolic Abnormalities and Cognitive Dysfunction. Int J Mol Sci 2021; 22:ijms22020546. [PMID: 33430419 PMCID: PMC7827338 DOI: 10.3390/ijms22020546] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/04/2021] [Accepted: 01/06/2021] [Indexed: 12/19/2022] Open
Abstract
Obesity mediates most of its direct medical sequelae through the development of insulin resistance (IR). The cellular effects of insulin occur through two main postreceptor pathways that are the phosphatidylinositol 3-kinase (PI3-K) and the mitogen-activated protein kinase (MAP-K) pathways. Obesity-related IR implicates the PI3-K pathway that confers the metabolic effects of insulin. Numerous and complex pathogenic pathways link obesity with the development of IR, including chronic inflammation, mitochondrial dysfunction (with the associated production of reactive oxygen species and endoplasmic reticulum stress), gut microbiota dysbiosis and adipose extracellular matrix remodelling. IR itself plays a key role in the development of metabolic dysfunction, including hypertension, dyslipidaemia and dysglycaemia. Furthermore, IR promotes weight gain related to secondary hyperinsulinaemia, with a resulting vicious cycle of worsening IR and its metabolic sequelae. Ultimately, IR underlies obesity-related conditions such as type 2 diabetes mellitus (T2D) and polycystic ovary syndrome (PCOS). IR also underlies many obesity-related malignancies, through the effects of compensatory hyperinsulinaemia on the relatively intact MAP-K insulin pathway, which controls cellular growth processes and mitoses. Furthermore, the emergent data over recent decades support an important role of obesity- and T2D-related central IR in the development of cognitive dysfunction, including effects on hippocampal synaptic plasticity. Importantly, IR is largely reversible through the optimisation of lifestyle factors that include regular engagement in physical activity with the avoidance of sedentariness, improved diet including increased fibre intake and sleep sufficiency. IR lies at the key crossroad between obesity and both metabolic and cognitive dysfunction. Given the importance of IR in the pathogenesis of many 21st century chronic diseases and its eminent reversibility, it is important that we all embrace and facilitate optimised lifestyles to improve the future health and wellbeing of the populace.
Collapse
Affiliation(s)
- Thomas M. Barber
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism, University Hospitals Coventry and Warwickshire, Clifford Bridge Road, Coventry CV2 2DX, UK; (T.M.B.); (I.K.); (H.S.R.)
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV2 2DX, UK
| | - Ioannis Kyrou
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism, University Hospitals Coventry and Warwickshire, Clifford Bridge Road, Coventry CV2 2DX, UK; (T.M.B.); (I.K.); (H.S.R.)
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV2 2DX, UK
- Aston Medical Research Institute, Aston Medical School, College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK
| | - Harpal S. Randeva
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism, University Hospitals Coventry and Warwickshire, Clifford Bridge Road, Coventry CV2 2DX, UK; (T.M.B.); (I.K.); (H.S.R.)
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV2 2DX, UK
- Aston Medical Research Institute, Aston Medical School, College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK
| | - Martin O. Weickert
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism, University Hospitals Coventry and Warwickshire, Clifford Bridge Road, Coventry CV2 2DX, UK; (T.M.B.); (I.K.); (H.S.R.)
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV2 2DX, UK
- Centre for Sport, Exercise and Life Sciences, Faculty of Health & Life Sciences, Coventry University, Coventry CV1 5FB, UK
- Correspondence:
| |
Collapse
|
26
|
Abstract
Lipids exert diverse functions in living organisms. They form cellular membranes, store and transport energy and play signalling roles. Some lipid species function in all of these processes, making them ideal candidates to coordinate metabolism with cellular homeostasis and animal development. This theme was central to Suzanne Eaton's research in the fruit fly, Drosophila Here, we discuss her work on membrane lipid homeostasis in changing environments and on functions for lipids in the Hedgehog signalling pathway. We further highlight lipoproteins as inter-organ carriers of lipids and lipid-linked morphogens, which communicate dietary and developmental signals throughout the organism.
Collapse
Affiliation(s)
- Wilhelm Palm
- Cell and Tumor Biology Program, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Jonathan Rodenfels
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| |
Collapse
|
27
|
Benmimoun B, Papastefanaki F, Périchon B, Segklia K, Roby N, Miriagou V, Schmitt C, Dramsi S, Matsas R, Spéder P. An original infection model identifies host lipoprotein import as a route for blood-brain barrier crossing. Nat Commun 2020; 11:6106. [PMID: 33257684 PMCID: PMC7704634 DOI: 10.1038/s41467-020-19826-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 11/02/2020] [Indexed: 02/06/2023] Open
Abstract
Pathogens able to cross the blood-brain barrier (BBB) induce long-term neurological sequelae and death. Understanding how neurotropic pathogens bypass this strong physiological barrier is a prerequisite to devise therapeutic strategies. Here we propose an innovative model of infection in the developing Drosophila brain, combining whole brain explants with in vivo systemic infection. We find that several mammalian pathogens are able to cross the Drosophila BBB, including Group B Streptococcus (GBS). Amongst GBS surface components, lipoproteins, and in particular the B leucine-rich Blr, are important for BBB crossing and virulence in Drosophila. Further, we identify (V)LDL receptor LpR2, expressed in the BBB, as a host receptor for Blr, allowing GBS translocation through endocytosis. Finally, we show that Blr is required for BBB crossing and pathogenicity in a murine model of infection. Our results demonstrate the potential of Drosophila for studying BBB crossing by pathogens and identify a new mechanism by which pathogens exploit the machinery of host barriers to generate brain infection.
Collapse
Affiliation(s)
- Billel Benmimoun
- Institut Pasteur, Brain Plasticity in Response to the Environment, CNRS, UMR3738, Paris, France
| | - Florentia Papastefanaki
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Department of Neurobiology, Hellenic Pasteur Institute, Athens, Greece
| | - Bruno Périchon
- Unité de Biologie des Bactéries Pathogènes à Gram-positif, Institut Pasteur, CNRS, UMR 2001, Paris, France
| | - Katerina Segklia
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Department of Neurobiology, Hellenic Pasteur Institute, Athens, Greece
| | - Nicolas Roby
- Institut Pasteur, Brain Plasticity in Response to the Environment, CNRS, UMR3738, Paris, France
| | - Vivi Miriagou
- Laboratory of Bacteriology, Department of Microbiology, Hellenic Pasteur Institute, Athens, Greece
| | - Christine Schmitt
- Ultrastructure UTechS Ultrastructural Bioimaging Platform, Institut Pasteur, Paris, France
| | - Shaynoor Dramsi
- Unité de Biologie des Bactéries Pathogènes à Gram-positif, Institut Pasteur, CNRS, UMR 2001, Paris, France
| | - Rebecca Matsas
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Department of Neurobiology, Hellenic Pasteur Institute, Athens, Greece
| | - Pauline Spéder
- Institut Pasteur, Brain Plasticity in Response to the Environment, CNRS, UMR3738, Paris, France.
| |
Collapse
|
28
|
Koyama T, Texada MJ, Halberg KA, Rewitz K. Metabolism and growth adaptation to environmental conditions in Drosophila. Cell Mol Life Sci 2020; 77:4523-4551. [PMID: 32448994 PMCID: PMC7599194 DOI: 10.1007/s00018-020-03547-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 04/19/2020] [Accepted: 05/11/2020] [Indexed: 02/07/2023]
Abstract
Organisms adapt to changing environments by adjusting their development, metabolism, and behavior to improve their chances of survival and reproduction. To achieve such flexibility, organisms must be able to sense and respond to changes in external environmental conditions and their internal state. Metabolic adaptation in response to altered nutrient availability is key to maintaining energy homeostasis and sustaining developmental growth. Furthermore, environmental variables exert major influences on growth and final adult body size in animals. This developmental plasticity depends on adaptive responses to internal state and external cues that are essential for developmental processes. Genetic studies have shown that the fruit fly Drosophila, similarly to mammals, regulates its metabolism, growth, and behavior in response to the environment through several key hormones including insulin, peptides with glucagon-like function, and steroid hormones. Here we review emerging evidence showing that various environmental cues and internal conditions are sensed in different organs that, via inter-organ communication, relay information to neuroendocrine centers that control insulin and steroid signaling. This review focuses on endocrine regulation of development, metabolism, and behavior in Drosophila, highlighting recent advances in the role of the neuroendocrine system as a signaling hub that integrates environmental inputs and drives adaptive responses.
Collapse
Affiliation(s)
- Takashi Koyama
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Michael J Texada
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Kenneth A Halberg
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Kim Rewitz
- Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
29
|
Olademehin OP, Liu C, Rimal B, Adegboyega NF, Chen F, Sim C, Kim SJ. Dsi-RNA knockdown of genes regulated by Foxo reduces glycogen and lipid accumulations in diapausing Culex pipiens. Sci Rep 2020; 10:17201. [PMID: 33057122 PMCID: PMC7560664 DOI: 10.1038/s41598-020-74292-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 09/25/2020] [Indexed: 11/09/2022] Open
Abstract
Culex pipiens is a major carrier of the West Nile Virus, the leading cause of mosquito-borne disease in the continental United States. Cx. pipiens survive overwinter through diapause which is an important survival strategy that is under the control of insulin signaling and Foxo by regulating energy metabolism. Three homologous candidate genes, glycogen synthase (glys), atp-binding cassette transporter (atp), and low-density lipoprotein receptor chaperone (ldlr), that are under the regulation of Foxo transcription factor were identified in Cx. pipiens. To validate the gene functions, each candidate gene was silenced by injecting the target dsi-RNA to female Cx. pipiens during the early phase of diapause. The dsi-RNA injected diapause-destined female post-adult eclosion were fed for 7 days with 10% glucose containing 1% D-[13C6]glucose. The effects of dsi-RNA knockdown on glucose metabolism in intact mosquitoes were monitored using 13C solid-state NMR and ATR-FTIR. Our finding shows that the dsi-RNA knockdown of all three candidate genes suppressed glycogen and lipid biosyntheses resulting in inhibition of long-term carbon energy storage in diapausing females.
Collapse
Affiliation(s)
- Olatunde P Olademehin
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, TX, 76706, USA
| | - Chengyin Liu
- Department of Chemistry, Howard University, 525 College St. N.W., Washington, D.C., 20059, USA
| | - Binayak Rimal
- Institute of Biomedical Studies, Baylor University, One Bear Place #97348, Waco, TX, USA
| | - Nathaniel F Adegboyega
- Department of Environmental Sciences, Southern Illinois University Edwardsville, Edwardsville, IL, 62026, USA
| | - Fu Chen
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20742, USA
| | - Cheolho Sim
- Department of Biology, Baylor University, One Bear Place #97348, Waco, TX, 76706, USA.
| | - Sung Joon Kim
- Department of Chemistry, Howard University, 525 College St. N.W., Washington, D.C., 20059, USA.
| |
Collapse
|
30
|
Texada MJ, Koyama T, Rewitz K. Regulation of Body Size and Growth Control. Genetics 2020; 216:269-313. [PMID: 33023929 PMCID: PMC7536854 DOI: 10.1534/genetics.120.303095] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 06/29/2020] [Indexed: 12/20/2022] Open
Abstract
The control of body and organ growth is essential for the development of adults with proper size and proportions, which is important for survival and reproduction. In animals, adult body size is determined by the rate and duration of juvenile growth, which are influenced by the environment. In nutrient-scarce environments in which more time is needed for growth, the juvenile growth period can be extended by delaying maturation, whereas juvenile development is rapidly completed in nutrient-rich conditions. This flexibility requires the integration of environmental cues with developmental signals that govern internal checkpoints to ensure that maturation does not begin until sufficient tissue growth has occurred to reach a proper adult size. The Target of Rapamycin (TOR) pathway is the primary cell-autonomous nutrient sensor, while circulating hormones such as steroids and insulin-like growth factors are the main systemic regulators of growth and maturation in animals. We discuss recent findings in Drosophila melanogaster showing that cell-autonomous environment and growth-sensing mechanisms, involving TOR and other growth-regulatory pathways, that converge on insulin and steroid relay centers are responsible for adjusting systemic growth, and development, in response to external and internal conditions. In addition to this, proper organ growth is also monitored and coordinated with whole-body growth and the timing of maturation through modulation of steroid signaling. This coordination involves interorgan communication mediated by Drosophila insulin-like peptide 8 in response to tissue growth status. Together, these multiple nutritional and developmental cues feed into neuroendocrine hubs controlling insulin and steroid signaling, serving as checkpoints at which developmental progression toward maturation can be delayed. This review focuses on these mechanisms by which external and internal conditions can modulate developmental growth and ensure proper adult body size, and highlights the conserved architecture of this system, which has made Drosophila a prime model for understanding the coordination of growth and maturation in animals.
Collapse
Affiliation(s)
| | - Takashi Koyama
- Department of Biology, University of Copenhagen, 2100, Denmark
| | - Kim Rewitz
- Department of Biology, University of Copenhagen, 2100, Denmark
| |
Collapse
|
31
|
Miroschnikow A, Schlegel P, Pankratz MJ. Making Feeding Decisions in the Drosophila Nervous System. Curr Biol 2020; 30:R831-R840. [DOI: 10.1016/j.cub.2020.06.036] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
32
|
Nassari S, Del Olmo T, Jean S. Rabs in Signaling and Embryonic Development. Int J Mol Sci 2020; 21:E1064. [PMID: 32033485 PMCID: PMC7037298 DOI: 10.3390/ijms21031064] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 01/29/2020] [Accepted: 02/03/2020] [Indexed: 02/06/2023] Open
Abstract
Rab GTPases play key roles in various cellular processes. They are essential, among other roles, to membrane trafficking and intracellular signaling events. Both trafficking and signaling events are crucial for proper embryonic development. Indeed, embryogenesis is a complex process in which cells respond to various signals and undergo dramatic changes in their shape, position, and function. Over the last few decades, cellular studies have highlighted the novel signaling roles played by Rab GTPases, while numerous studies have shed light on the important requirements of Rab proteins at various steps of embryonic development. In this review, we aimed to generate an overview of Rab contributions during animal embryogenesis. We first briefly summarize the involvement of Rabs in signaling events. We then extensively highlight the contribution of Rabs in shaping metazoan development and conclude with new approaches that will allow investigation of Rab functions in vivo.
Collapse
Affiliation(s)
| | | | - Steve Jean
- Faculté de Médecine et des Sciences de la Santé, Department of Immunology and Cell Biology, Université de Sherbrooke, 3201 Rue Jean Mignault, Sherbrooke, QC J1E 4K8, Canada; (S.N.); (T.D.O.)
| |
Collapse
|
33
|
Li J, Han S, Li H, Udeshi ND, Svinkina T, Mani DR, Xu C, Guajardo R, Xie Q, Li T, Luginbuhl DJ, Wu B, McLaughlin CN, Xie A, Kaewsapsak P, Quake SR, Carr SA, Ting AY, Luo L. Cell-Surface Proteomic Profiling in the Fly Brain Uncovers Wiring Regulators. Cell 2020; 180:373-386.e15. [PMID: 31955847 DOI: 10.1016/j.cell.2019.12.029] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/17/2019] [Accepted: 12/19/2019] [Indexed: 01/12/2023]
Abstract
Molecular interactions at the cellular interface mediate organized assembly of single cells into tissues and, thus, govern the development and physiology of multicellular organisms. Here, we developed a cell-type-specific, spatiotemporally resolved approach to profile cell-surface proteomes in intact tissues. Quantitative profiling of cell-surface proteomes of Drosophila olfactory projection neurons (PNs) in pupae and adults revealed global downregulation of wiring molecules and upregulation of synaptic molecules in the transition from developing to mature PNs. A proteome-instructed in vivo screen identified 20 cell-surface molecules regulating neural circuit assembly, many of which belong to evolutionarily conserved protein families not previously linked to neural development. Genetic analysis further revealed that the lipoprotein receptor LRP1 cell-autonomously controls PN dendrite targeting, contributing to the formation of a precise olfactory map. These findings highlight the power of temporally resolved in situ cell-surface proteomic profiling in discovering regulators of brain wiring.
Collapse
Affiliation(s)
- Jiefu Li
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA.
| | - Shuo Han
- Departments of Genetics, Biology, and Chemistry, Chan Zuckerberg Biohub, Stanford University, Stanford, CA 94305, USA
| | - Hongjie Li
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Namrata D Udeshi
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Tanya Svinkina
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - D R Mani
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Chuanyun Xu
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Ricardo Guajardo
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Qijing Xie
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Tongchao Li
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - David J Luginbuhl
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Bing Wu
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Colleen N McLaughlin
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Anthony Xie
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Pornchai Kaewsapsak
- Departments of Genetics, Biology, and Chemistry, Chan Zuckerberg Biohub, Stanford University, Stanford, CA 94305, USA
| | - Stephen R Quake
- Departments of Bioengineering and Applied Physics, Chan Zuckerberg Biohub, Stanford University, Stanford, CA 94305, USA
| | - Steven A Carr
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Alice Y Ting
- Departments of Genetics, Biology, and Chemistry, Chan Zuckerberg Biohub, Stanford University, Stanford, CA 94305, USA.
| | - Liqun Luo
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
34
|
Vásquez-Procopio J, Osorio B, Cortés-Martínez L, Hernández-Hernández F, Medina-Contreras O, Ríos-Castro E, Comjean A, Li F, Hu Y, Mohr S, Perrimon N, Missirlis F. Intestinal response to dietary manganese depletion inDrosophila. Metallomics 2020; 12:218-240. [DOI: 10.1039/c9mt00218a] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Metabolic adaptations to manganese deficiency.
Collapse
|
35
|
Johnson AA, Stolzing A. The role of lipid metabolism in aging, lifespan regulation, and age-related disease. Aging Cell 2019; 18:e13048. [PMID: 31560163 PMCID: PMC6826135 DOI: 10.1111/acel.13048] [Citation(s) in RCA: 237] [Impact Index Per Article: 47.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 08/11/2019] [Accepted: 09/04/2019] [Indexed: 12/18/2022] Open
Abstract
An emerging body of data suggests that lipid metabolism has an important role to play in the aging process. Indeed, a plethora of dietary, pharmacological, genetic, and surgical lipid‐related interventions extend lifespan in nematodes, fruit flies, mice, and rats. For example, the impairment of genes involved in ceramide and sphingolipid synthesis extends lifespan in both worms and flies. The overexpression of fatty acid amide hydrolase or lysosomal lipase prolongs life in Caenorhabditis elegans, while the overexpression of diacylglycerol lipase enhances longevity in both C. elegans and Drosophila melanogaster. The surgical removal of adipose tissue extends lifespan in rats, and increased expression of apolipoprotein D enhances survival in both flies and mice. Mouse lifespan can be additionally extended by the genetic deletion of diacylglycerol acyltransferase 1, treatment with the steroid 17‐α‐estradiol, or a ketogenic diet. Moreover, deletion of the phospholipase A2 receptor improves various healthspan parameters in a progeria mouse model. Genome‐wide association studies have found several lipid‐related variants to be associated with human aging. For example, the epsilon 2 and epsilon 4 alleles of apolipoprotein E are associated with extreme longevity and late‐onset neurodegenerative disease, respectively. In humans, blood triglyceride levels tend to increase, while blood lysophosphatidylcholine levels tend to decrease with age. Specific sphingolipid and phospholipid blood profiles have also been shown to change with age and are associated with exceptional human longevity. These data suggest that lipid‐related interventions may improve human healthspan and that blood lipids likely represent a rich source of human aging biomarkers.
Collapse
|
36
|
Jülicher F. Suzanne Eaton (1959-2019). Development 2019. [DOI: 10.1242/dev.185538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
Suzanne Eaton, Professor at the Technical University Dresden and Group Leader at the Max Planck Institute of Molecular Cell Biology and Genetics in Dresden, tragically died on 2 July 2019. Suzanne was a remarkable person, both as a scientist and as a human being. Having worked closely with Suzanne for many years, I remember here some of her key scientific contributions.
Collapse
Affiliation(s)
- Frank Jülicher
- Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany
| |
Collapse
|
37
|
Trautenberg LC, Prince E, Maas C, Beier N, Honold F, Grzybek M, Brankatschk M. Selective Phosphorylation of Akt/Protein-Kinase B Isoforms in Response to Dietary Cues. Front Cell Dev Biol 2019; 7:206. [PMID: 31649929 PMCID: PMC6796796 DOI: 10.3389/fcell.2019.00206] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 09/06/2019] [Indexed: 01/22/2023] Open
Abstract
A calorie-rich diet is one reason for the continuous spread of metabolic syndromes in western societies. Smart food design is one powerful tool to prevent metabolic stress, and the search for suitable bioactive additives is a continuous task. The nutrient-sensing insulin pathway is an evolutionary conserved mechanism that plays an important role in metabolism, growth and development. Recently, lipid cues capable to stimulate insulin signaling were identified. However, the mechanistic base of their activity remains obscure to date. We show that specific Akt/Protein-kinase B isoforms are responsive to different calorie-rich diets, and potentiate the activity of the cellular insulin cascade. Our data add a new dimension to existing models and position Drosophila as a powerful tool to study the relation between dietary lipid cues and the insulin-induced cellular signal pathway.
Collapse
Affiliation(s)
| | | | | | | | | | - Michal Grzybek
- Paul Langerhans Institute Dresden of the Helmholtz Zentrum München at the University Hospital and Faculty of Medicine Carl Gustav Carus of TU Dresden, Technische Universität Dresden, Dresden, Germany.,German Center for Diabetes Research (DZD e.V.), Oberschleissheim, Germany
| | | |
Collapse
|
38
|
Matsuo N, Nagao K, Suito T, Juni N, Kato U, Hara Y, Umeda M. Different mechanisms for selective transport of fatty acids using a single class of lipoprotein in Drosophila. J Lipid Res 2019; 60:1199-1211. [PMID: 31085629 DOI: 10.1194/jlr.m090779] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 05/10/2019] [Indexed: 12/16/2022] Open
Abstract
In mammals, lipids are selectively transported to specific sites using multiple classes of lipoproteins. However, in Drosophila, a single class of lipoproteins, lipophorin, carries more than 95% of the lipids in the hemolymph. Although a unique ability of the insect lipoprotein system for cargo transport has been demonstrated, it remains unclear how this single class of lipoproteins selectively transports lipids. In this study, we carried out a comparative analysis of the fatty-acid composition among lipophorin, the CNS, and CNS-derived cell lines and investigated the transport mechanism of fatty acids, particularly focusing on the transport of PUFAs in Drosophila We showed that PUFAs are selectively incorporated into the acyl chains of lipophorin phospholipids and effectively transported to CNS through lipophorin receptor-mediated endocytosis of lipophorin. In addition, we demonstrated that C14 fatty acids are selectively incorporated into the diacylglycerols (DAGs) of lipophorin and that C14 fatty-acid-containing DAGs are spontaneously transferred from lipophorin to the phospholipid bilayer. These results suggest that PUFA-containing phospholipids and C14 fatty-acid-containing DAGs in lipophorin could be transferred to different sites by different mechanisms to selectively transport fatty acids using a single class of lipoproteins.
Collapse
Affiliation(s)
- Naoya Matsuo
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Kohjiro Nagao
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Takuto Suito
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Naoto Juni
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Utako Kato
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Yuji Hara
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan.,AMED-PRIME Japan Agency for Medical Research and Development, Tokyo 100-0004, Japan
| | - Masato Umeda
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| |
Collapse
|
39
|
Meschi E, Léopold P, Delanoue R. An EGF-Responsive Neural Circuit Couples Insulin Secretion with Nutrition in Drosophila. Dev Cell 2019; 48:76-86.e5. [DOI: 10.1016/j.devcel.2018.11.029] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 10/09/2018] [Accepted: 11/14/2018] [Indexed: 01/17/2023]
|
40
|
Abstract
Although Drosophila melanogaster fruit flies are cold-blooded, they can survive a wide range of temperatures. In this issue of Developmental Cell, Brankatschk et al. (2018) discover a mechanism by which flies extend their viable temperature range by altering their diet in response to environmental temperature.
Collapse
|
41
|
Brankatschk M, Gutmann T, Knittelfelder O, Palladini A, Prince E, Grzybek M, Brankatschk B, Shevchenko A, Coskun Ü, Eaton S. A Temperature-Dependent Switch in Feeding Preference Improves Drosophila Development and Survival in the Cold. Dev Cell 2018; 46:781-793.e4. [DOI: 10.1016/j.devcel.2018.05.028] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 03/17/2018] [Accepted: 08/27/2018] [Indexed: 01/01/2023]
|
42
|
Rittschof CC, Schirmeier S. Insect models of central nervous system energy metabolism and its links to behavior. Glia 2017; 66:1160-1175. [DOI: 10.1002/glia.23235] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 08/30/2017] [Accepted: 09/08/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Clare C. Rittschof
- Department of Entomology; College of Agriculture, Food, and the Environment, University of Kentucky; Lexington Kentucky
| | - Stefanie Schirmeier
- Institut für Neuro-und Verhaltensbiologie, University of Münster; Münster Germany
| |
Collapse
|
43
|
Targeting protein function: the expanding toolkit for conditional disruption. Biochem J 2017; 473:2573-89. [PMID: 27574023 PMCID: PMC5003692 DOI: 10.1042/bcj20160240] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 05/20/2016] [Indexed: 01/06/2023]
Abstract
A major objective in biological research is to understand spatial and temporal requirements for any given gene, especially in dynamic processes acting over short periods, such as catalytically driven reactions, subcellular transport, cell division, cell rearrangement and cell migration. The interrogation of such processes requires the use of rapid and flexible methods of interfering with gene function. However, many of the most widely used interventional approaches, such as RNAi or CRISPR (clustered regularly interspaced short palindromic repeats)-Cas9 (CRISPR-associated 9), operate at the level of the gene or its transcripts, meaning that the effects of gene perturbation are exhibited over longer time frames than the process under investigation. There has been much activity over the last few years to address this fundamental problem. In the present review, we describe recent advances in disruption technologies acting at the level of the expressed protein, involving inducible methods of protein cleavage, (in)activation, protein sequestration or degradation. Drawing on examples from model organisms we illustrate the utility of fast-acting techniques and discuss how different components of the molecular toolkit can be employed to dissect previously intractable biochemical processes and cellular behaviours.
Collapse
|
44
|
Delanoue R, Meschi E, Agrawal N, Mauri A, Tsatskis Y, McNeill H, Léopold P. Drosophila insulin release is triggered by adipose Stunted ligand to brain Methuselah receptor. Science 2017; 353:1553-1556. [PMID: 27708106 DOI: 10.1126/science.aaf8430] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 08/24/2016] [Indexed: 12/31/2022]
Abstract
Animals adapt their growth rate and body size to available nutrients by a general modulation of insulin-insulin-like growth factor signaling. In Drosophila, dietary amino acids promote the release in the hemolymph of brain insulin-like peptides (Dilps), which in turn activate systemic organ growth. Dilp secretion by insulin-producing cells involves a relay through unknown cytokines produced by fat cells. Here, we identify Methuselah (Mth) as a secretin-incretin receptor subfamily member required in the insulin-producing cells for proper nutrient coupling. We further show, using genetic and ex vivo organ culture experiments, that the Mth ligand Stunted (Sun) is a circulating insulinotropic peptide produced by fat cells. Therefore, Sun and Mth define a new cross-organ circuitry that modulates physiological insulin levels in response to nutrients.
Collapse
Affiliation(s)
- Renald Delanoue
- Université Côte d'Azur, CNRS, INSERM, Institute of Biology Valrose (iBV), 06100 Nice, France.
| | - Eleonora Meschi
- Université Côte d'Azur, CNRS, INSERM, Institute of Biology Valrose (iBV), 06100 Nice, France
| | - Neha Agrawal
- Université Côte d'Azur, CNRS, INSERM, Institute of Biology Valrose (iBV), 06100 Nice, France
| | - Alessandra Mauri
- Université Côte d'Azur, CNRS, INSERM, Institute of Biology Valrose (iBV), 06100 Nice, France
| | - Yonit Tsatskis
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | - Helen McNeill
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | - Pierre Léopold
- Université Côte d'Azur, CNRS, INSERM, Institute of Biology Valrose (iBV), 06100 Nice, France.
| |
Collapse
|
45
|
Garlapow ME, Everett LJ, Zhou S, Gearhart AW, Fay KA, Huang W, Morozova TV, Arya GH, Turlapati L, St Armour G, Hussain YN, McAdams SE, Fochler S, Mackay TFC. Genetic and Genomic Response to Selection for Food Consumption in Drosophila melanogaster. Behav Genet 2017; 47:227-243. [PMID: 27704301 PMCID: PMC5305434 DOI: 10.1007/s10519-016-9819-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 09/16/2016] [Indexed: 12/21/2022]
Abstract
Food consumption is an essential component of animal fitness; however, excessive food intake in humans increases risk for many diseases. The roles of neuroendocrine feedback loops, food sensing modalities, and physiological state in regulating food intake are well understood, but not the genetic basis underlying variation in food consumption. Here, we applied ten generations of artificial selection for high and low food consumption in replicate populations of Drosophila melanogaster. The phenotypic response to selection was highly asymmetric, with significant responses only for increased food consumption and minimal correlated responses in body mass and composition. We assessed the molecular correlates of selection responses by DNA and RNA sequencing of the selection lines. The high and low selection lines had variants with significantly divergent allele frequencies within or near 2081 genes and 3526 differentially expressed genes in one or both sexes. A total of 519 genes were both genetically divergent and differentially expressed between the divergent selection lines. We performed functional analyses of the effects of RNAi suppression of gene expression and induced mutations for 27 of these candidate genes that have human orthologs and the strongest statistical support, and confirmed that 25 (93 %) affected the mean and/or variance of food consumption.
Collapse
Affiliation(s)
- Megan E Garlapow
- Program in Genetics, North Carolina State University, Raleigh, NC, 27695-7614, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27695-7614, USA
- W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC, 27695-7614, USA
| | - Logan J Everett
- Program in Genetics, North Carolina State University, Raleigh, NC, 27695-7614, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27695-7614, USA
- W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC, 27695-7614, USA
- Initiative for Biological Complexity, North Carolina State University, Raleigh, NC, 27695-7614, USA
| | - Shanshan Zhou
- Program in Genetics, North Carolina State University, Raleigh, NC, 27695-7614, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27695-7614, USA
- W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC, 27695-7614, USA
- Initiative for Biological Complexity, North Carolina State University, Raleigh, NC, 27695-7614, USA
| | - Alexander W Gearhart
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27695-7614, USA
- W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC, 27695-7614, USA
| | - Kairsten A Fay
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27695-7614, USA
- W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC, 27695-7614, USA
| | - Wen Huang
- Program in Genetics, North Carolina State University, Raleigh, NC, 27695-7614, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27695-7614, USA
- W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC, 27695-7614, USA
- Initiative for Biological Complexity, North Carolina State University, Raleigh, NC, 27695-7614, USA
| | - Tatiana V Morozova
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27695-7614, USA
- W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC, 27695-7614, USA
| | - Gunjan H Arya
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27695-7614, USA
- W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC, 27695-7614, USA
| | - Lavanya Turlapati
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27695-7614, USA
- W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC, 27695-7614, USA
| | - Genevieve St Armour
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27695-7614, USA
- W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC, 27695-7614, USA
| | - Yasmeen N Hussain
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27695-7614, USA
- W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC, 27695-7614, USA
| | - Sarah E McAdams
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27695-7614, USA
- W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC, 27695-7614, USA
| | - Sophia Fochler
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27695-7614, USA
- W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC, 27695-7614, USA
- School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Trudy F C Mackay
- Program in Genetics, North Carolina State University, Raleigh, NC, 27695-7614, USA.
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27695-7614, USA.
- W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC, 27695-7614, USA.
- Initiative for Biological Complexity, North Carolina State University, Raleigh, NC, 27695-7614, USA.
| |
Collapse
|
46
|
Weiler A, Volkenhoff A, Hertenstein H, Schirmeier S. Metabolite transport across the mammalian and insect brain diffusion barriers. Neurobiol Dis 2017; 107:15-31. [PMID: 28237316 DOI: 10.1016/j.nbd.2017.02.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 01/02/2017] [Accepted: 02/20/2017] [Indexed: 12/31/2022] Open
Abstract
The nervous system in higher vertebrates is separated from the circulation by a layer of specialized endothelial cells. It protects the sensitive neurons from harmful blood-derived substances, high and fluctuating ion concentrations, xenobiotics or even pathogens. To this end, the brain endothelial cells and their interlinking tight junctions build an efficient diffusion barrier. A structurally analogous diffusion barrier exists in insects, where glial cell layers separate the hemolymph from the neural cells. Both types of diffusion barriers, of course, also prevent influx of metabolites from the circulation. Because neuronal function consumes vast amounts of energy and necessitates influx of diverse substrates and metabolites, tightly regulated transport systems must ensure a constant metabolite supply. Here, we review the current knowledge about transport systems that carry key metabolites, amino acids, lipids and carbohydrates into the vertebrate and Drosophila brain and how this transport is regulated. Blood-brain and hemolymph-brain transport functions are conserved and we can thus use a simple, genetically accessible model system to learn more about features and dynamics of metabolite transport into the brain.
Collapse
Affiliation(s)
- Astrid Weiler
- Institut für Neuro- und Verhaltensbiologie, Universität Münster, Badestr. 9, 48149 Münster, Germany
| | - Anne Volkenhoff
- Institut für Neuro- und Verhaltensbiologie, Universität Münster, Badestr. 9, 48149 Münster, Germany
| | - Helen Hertenstein
- Institut für Neuro- und Verhaltensbiologie, Universität Münster, Badestr. 9, 48149 Münster, Germany
| | - Stefanie Schirmeier
- Institut für Neuro- und Verhaltensbiologie, Universität Münster, Badestr. 9, 48149 Münster, Germany.
| |
Collapse
|
47
|
Caviglia S, Flores-Benitez D, Lattner J, Luschnig S, Brankatschk M. Rabs on the fly: Functions of Rab GTPases during development. Small GTPases 2017; 10:89-98. [PMID: 28118081 PMCID: PMC6380344 DOI: 10.1080/21541248.2017.1279725] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The organization of intracellular transport processes is adapted specifically to different cell types, developmental stages, and physiologic requirements. Some protein traffic routes are universal to all cells and constitutively active, while other routes are cell-type specific, transient, and induced under particular conditions only. Small GTPases of the Rab (Ras related in brain) subfamily are conserved across eukaryotes and regulate most intracellular transit pathways. The complete sets of Rab proteins have been identified in model organisms, and molecular principles underlying Rab functions have been uncovered. Rabs provide intracellular landmarks that define intracellular transport sequences. Nevertheless, it remains a challenge to systematically map the subcellular distribution of all Rabs and their functional interrelations. This task requires novel tools to precisely describe and manipulate the Rab machinery in vivo. Here we discuss recent findings about Rab roles during development and we consider novel approaches to investigate Rab functions in vivo.
Collapse
Affiliation(s)
- Sara Caviglia
- a Danish Stem Cell Center (DanStem), University of Copenhagen , Copenhagen , Denmark.,c Institute of Molecular Life Sciences and Ph.D. Program in Molecular Life Sciences, University of Zurich , Zurich , Switzerland
| | - David Flores-Benitez
- b Max Planck Institute for Cell Biology and Genetics (MPI-CBG) , Dresden , Germany
| | - Johanna Lattner
- b Max Planck Institute for Cell Biology and Genetics (MPI-CBG) , Dresden , Germany
| | - Stefan Luschnig
- c Institute of Molecular Life Sciences and Ph.D. Program in Molecular Life Sciences, University of Zurich , Zurich , Switzerland.,d Institute of Neurobiology and Cluster of Excellence Cells-in-Motion (EXC 1003 - CiM), University of Münster , Münster , Germany
| | - Marko Brankatschk
- e The Biotechnological Center of the TU Dresden (BIOTEC) , Dresden , Germany
| |
Collapse
|
48
|
Au DT, Strickland DK, Muratoglu SC. The LDL Receptor-Related Protein 1: At the Crossroads of Lipoprotein Metabolism and Insulin Signaling. J Diabetes Res 2017; 2017:8356537. [PMID: 28584820 PMCID: PMC5444004 DOI: 10.1155/2017/8356537] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 04/11/2017] [Indexed: 12/30/2022] Open
Abstract
The metabolic syndrome is an escalating worldwide public health concern. Defined by a combination of physiological, metabolic, and biochemical factors, the metabolic syndrome is used as a clinical guideline to identify individuals with a higher risk for type 2 diabetes and cardiovascular disease. Although risk factors for type 2 diabetes and cardiovascular disease have been known for decades, the molecular mechanisms involved in the pathophysiology of these diseases and their interrelationship remain unclear. The LDL receptor-related protein 1 (LRP1) is a large endocytic and signaling receptor that is widely expressed in several tissues. As a member of the LDL receptor family, LRP1 is involved in the clearance of chylomicron remnants from the circulation and has been demonstrated to be atheroprotective. Recently, studies have shown that LRP1 is involved in insulin receptor trafficking and regulation and glucose metabolism. This review summarizes the role of tissue-specific LRP1 in insulin signaling and its potential role as a link between lipoprotein and glucose metabolism in diabetes.
Collapse
Affiliation(s)
- Dianaly T. Au
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Dudley K. Strickland
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Selen C. Muratoglu
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
- *Selen C. Muratoglu:
| |
Collapse
|
49
|
Strigini M, Leulier F. The role of the microbial environment in Drosophila post-embryonic development. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 64:39-52. [PMID: 26827889 DOI: 10.1016/j.dci.2016.01.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 01/19/2016] [Accepted: 01/26/2016] [Indexed: 05/14/2023]
Abstract
Development, growth and maturation of animals are under genetic and environmental control. Multicellular organisms interact throughout their lives with a variety of environment- and body-associated microorganisms. It has now been appreciated that the very conspicuous and varied microbial population associated with the food and the gastro-intestinal tract is a critical factor that can influence growth. Beyond the phenomenology, the mechanisms underlying the beneficial effects of microbes on development are being revealed from studies in Drosophila melanogaster, a particularly well suited system for a mechanistic understanding of host/microbiota interactions. Association of otherwise germ-free eggs with specific bacterial strains isolated from Drosophila gut samples can accelerate growth in larvae raised on restrictive diets. We review advances made possible by the exploitation of such simplified gnotobiotic systems in the search for the genes, molecules and physiological adaptations responsible for this effect in both host and microbes. Transposon mutagenesis and gene-trait match studies in bacteria can identify the key microbial genes and metabolites required for the beneficial effect, acetic acid being one of them. In the fly, functional genomic analysis, transcriptomics and metabolomics point to the modulation of systemic insulin and steroid hormone signalling as well as the regulation of intestinal physiology, including the enhancement of intestinal protease activity, as crucial mediators of the host's response.
Collapse
Affiliation(s)
- Maura Strigini
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique, Université Claude Bernard Lyon 1, Unité Mixte de Recherche 5242, Allée d'Italie 46, F-69364 Lyon, Cedex 07, France.
| | - François Leulier
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique, Université Claude Bernard Lyon 1, Unité Mixte de Recherche 5242, Allée d'Italie 46, F-69364 Lyon, Cedex 07, France.
| |
Collapse
|
50
|
Jékely G, Keijzer F, Godfrey-Smith P. An option space for early neural evolution. Philos Trans R Soc Lond B Biol Sci 2016; 370:rstb.2015.0181. [PMID: 26554049 DOI: 10.1098/rstb.2015.0181] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The origin of nervous systems has traditionally been discussed within two conceptual frameworks. Input-output models stress the sensory-motor aspects of nervous systems, while internal coordination models emphasize the role of nervous systems in coordinating multicellular activity, especially muscle-based motility. Here we consider both frameworks and apply them to describe aspects of each of three main groups of phenomena that nervous systems control: behaviour, physiology and development. We argue that both frameworks and all three aspects of nervous system function need to be considered for a comprehensive discussion of nervous system origins. This broad mapping of the option space enables an overview of the many influences and constraints that may have played a role in the evolution of the first nervous systems.
Collapse
Affiliation(s)
- Gáspár Jékely
- Max Planck Institute for Developmental Biology, Spemannstrasse 35, Tübingen 72076, Germany
| | - Fred Keijzer
- Department of Theoretical Philosophy, University of Groningen, Oude Boteringestraat 52, Groningen 9712 GL, The Netherlands
| | - Peter Godfrey-Smith
- Philosophy Program, The Graduate Center, City University of New York, New York, NY 10016, USA History and Philosophy of Science Unit, University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|