1
|
Liu C, Guo S, Liu R, Guo M, Wang Q, Chai Z, Xiao B, Ma C. Fasudil-modified macrophages reduce inflammation and regulate the immune response in experimental autoimmune encephalomyelitis. Neural Regen Res 2024; 19:671-679. [PMID: 37721300 DOI: 10.4103/1673-5374.379050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023] Open
Abstract
Multiple sclerosis is characterized by demyelination and neuronal loss caused by inflammatory cell activation and infiltration into the central nervous system. Macrophage polarization plays an important role in the pathogenesis of experimental autoimmune encephalomyelitis, a traditional experimental model of multiple sclerosis. This study investigated the effect of Fasudil on macrophages and examined the therapeutic potential of Fasudil-modified macrophages in experimental autoimmune encephalomyelitis. We found that Fasudil induced the conversion of macrophages from the pro-inflammatory M1 type to the anti-inflammatory M2 type, as shown by reduced expression of inducible nitric oxide synthase/nitric oxide, interleukin-12, and CD16/32 and increased expression of arginase-1, interleukin-10, CD14, and CD206, which was linked to inhibition of Rho kinase activity, decreased expression of toll-like receptors, nuclear factor-κB, and components of the mitogen-activated protein kinase signaling pathway, and generation of the pro-inflammatory cytokines tumor necrosis factor-α, interleukin-1β, and interleukin-6. Crucially, Fasudil-modified macrophages effectively decreased the impact of experimental autoimmune encephalomyelitis, resulting in later onset of disease, lower symptom scores, less weight loss, and reduced demyelination compared with unmodified macrophages. In addition, Fasudil-modified macrophages decreased interleukin-17 expression on CD4+ T cells and CD16/32, inducible nitric oxide synthase, and interleukin-12 expression on F4/80+ macrophages, as well as increasing interleukin-10 expression on CD4+ T cells and arginase-1, CD206, and interleukin-10 expression on F4/80+ macrophages, which improved immune regulation and reduced inflammation. These findings suggest that Fasudil-modified macrophages may help treat experimental autoimmune encephalomyelitis by inducing M2 macrophage polarization and inhibiting the inflammatory response, thereby providing new insight into cell immunotherapy for multiple sclerosis.
Collapse
Affiliation(s)
- Chunyun Liu
- Institute of Brain Science, Shanxi Datong University, Datong, Shanxi Province, China
| | - Shangde Guo
- Institute of Brain Science, Shanxi Datong University, Datong, Shanxi Province, China
| | - Rong Liu
- Institute of Brain Science, Shanxi Datong University, Datong, Shanxi Province, China
| | - Minfang Guo
- Institute of Brain Science, Shanxi Datong University, Datong, Shanxi Province, China
| | - Qing Wang
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine/Research Center of Neurobiology, Shanxi University of Chinese Medicine, Taiyuan, Shanxi Province, China
| | - Zhi Chai
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine/Research Center of Neurobiology, Shanxi University of Chinese Medicine, Taiyuan, Shanxi Province, China
| | - Baoguo Xiao
- Institute of Neurology, Huashan Hospital, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Cungen Ma
- Institute of Brain Science, Shanxi Datong University, Datong; The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine/Research Center of Neurobiology, Shanxi University of Chinese Medicine, Taiyuan, Shanxi Province, China
| |
Collapse
|
2
|
Jia J, Zhang S, Ma L, Wang S, Shen C, She Y. Gold nanobipyramid colorimetric sensing array for the differentiation of strong aroma-type baijiu with different geographical origins. Food Chem 2024; 432:137197. [PMID: 37633142 DOI: 10.1016/j.foodchem.2023.137197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/10/2023] [Accepted: 08/16/2023] [Indexed: 08/28/2023]
Abstract
It is of great significance to quickly and effectively distinguish strong aroma-type baijiu (SAB) with the largest baijiu market share and the most extensive production regions. Colorimetric sensor arrays based on gold nanobipyramids (AuNBPs) with extraordinary plasmonic properties were constructed for the differentiation of SAB from different geographical origins. The sensing strategy was based on silver deposition on different morphologies of AuNBPs under different reducing conditions containing amino or hydroxyl groups. The deposition process can be effective for distinguishing differences in baijiu due to the chemical interaction between the trace ingredients in baijiu and reductants. The colorimetric sensor arrays were implemented for the response of the main ingredients and further used for the differentiation of SAB from different regions by linear discriminant analysis. The results showed that the sensing strategy had excellent performance in distinguishing SAB from different origins, and provides a promising application strategy for baijiu quality control.
Collapse
Affiliation(s)
- Junjie Jia
- Luzhou Pinchuang Technology Co. Ltd., National Engineering Research Center of Solid-State Brewing, Luzhou 646000, China; Luzhou Laojiao Co. Ltd., Luzhou 646000, China; College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Suyi Zhang
- Luzhou Pinchuang Technology Co. Ltd., National Engineering Research Center of Solid-State Brewing, Luzhou 646000, China; Luzhou Laojiao Co. Ltd., Luzhou 646000, China.
| | - Long Ma
- Luzhou Pinchuang Technology Co. Ltd., National Engineering Research Center of Solid-State Brewing, Luzhou 646000, China; Luzhou Laojiao Co. Ltd., Luzhou 646000, China
| | - Songtao Wang
- Luzhou Pinchuang Technology Co. Ltd., National Engineering Research Center of Solid-State Brewing, Luzhou 646000, China; Luzhou Laojiao Co. Ltd., Luzhou 646000, China.
| | - Caihong Shen
- Luzhou Pinchuang Technology Co. Ltd., National Engineering Research Center of Solid-State Brewing, Luzhou 646000, China; Luzhou Laojiao Co. Ltd., Luzhou 646000, China
| | - Yuanbin She
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China.
| |
Collapse
|
3
|
Wei X, Song W, Fan Y, Sun Y, Li Z, Chen S, Shi J, Zhang D, Zou X, Xu X. A SERS aptasensor based on a flexible substrate for interference-free detection of carbendazim in apple. Food Chem 2024; 431:137120. [PMID: 37582324 DOI: 10.1016/j.foodchem.2023.137120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 08/17/2023]
Abstract
Non-destructive and interference-free monitoring of pesticide residue on the surface of fruits is still a challenge. Herein, a SERS aptasensor based on a flexible substrate was established for effective carbendazim (CBZ) detection on apple peel. In this sensor, electrospun PVDF/CQDs film served as a flexible supporting substrate. AuNS@Ag was liquid-liquid self-assembled on the PVDF/CQDs film to form a uniform and highly active SERS substrate. During the detection process, aptamers specifically capture the CBZ molecules, while nitrile-mediated Raman tag (MMBN) linked to AuNPs provided optical anti-interference signals. The results showed that the developed sensor had high sensitivity, selectivity, reproducibility, and stability for CBZ detection. Importantly, the flexibility of the SERS substrate helped the sensor realize non-invasive CBZ detection at a concentration as low as 1.20 ng/cm2 on apple peel, which is much lower than the maximum residue limits of CBZ in apples.
Collapse
Affiliation(s)
- Xiaoou Wei
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Wenjun Song
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Yushan Fan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Yue Sun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Zhihua Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Shiqi Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China; Key Laboratory of Condiment Supervision Technology for State Market Regulation, Chongqing 401121, PR China
| | - Jiyong Shi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Di Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China; Key Laboratory of Condiment Supervision Technology for State Market Regulation, Chongqing 401121, PR China.
| | - Xiaobo Zou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Xuechao Xu
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, PR China
| |
Collapse
|
4
|
Li R, Zhu L, Yang M, Liu A, Xu W, He P. Silver nanocluster-based aptasensor for the label-free and enzyme-free detection of ochratoxin A. Food Chem 2024; 431:137126. [PMID: 37579613 DOI: 10.1016/j.foodchem.2023.137126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 06/03/2023] [Accepted: 08/07/2023] [Indexed: 08/16/2023]
Abstract
Mycotoxin contamination in cereal is a global concern, threatening food safety and human health, necessitating the development of rapid on-site methods. Here, a label- and enzyme-free biosensor was developed based on aptamer-regulated DNA-silver nanoclusters (AgNCs) for rapid detection of ochratoxin A (OTA). A novel DNA-templated AgNCs emitting strong red fluorescence was designed and synthesized in this study. The partial sequence of the DNA template was selected from the complementary OTA aptamer (Apt-OTA) sequence, which can quench fluorescence from the AgNCs via hybridization in the absence of OTA. In the presence of OTA, the high OTA-Aptamer affinity prevented the Apt-OTA from quenching the AgNCs, resulting in "turn on" of the fluorescence. This biosensor eliminated the use of costly reagents, complex pretreatments, and sophisticated equipment, which could realize the point-of-care testing (POCT) of OTA with a limit of detection (LOD) of 1.3 nM and a detection time of 45 min.
Collapse
Affiliation(s)
- Runxian Li
- State Key Laboratory of Animal Nutrition, Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing 100193, China
| | - Longjiao Zhu
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing 100191, China
| | - Min Yang
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing 100191, China
| | - Anguo Liu
- State Key Laboratory of Animal Nutrition, Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing 100193, China
| | - Wentao Xu
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing 100191, China
| | - Pingli He
- State Key Laboratory of Animal Nutrition, Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing 100193, China.
| |
Collapse
|
5
|
Yan X, Chen K, Jia H, Zhao Q, Du G, Guo Q, Chen H, Yuan Y, Yue T. Infiltration of porcine pancreatic lipase into magnetic hierarchical mesoporous UiO-66-NH 2 metal-organic frameworks for efficient detoxification of patulin from apple juice. Food Chem 2024; 431:137172. [PMID: 37603997 DOI: 10.1016/j.foodchem.2023.137172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 07/27/2023] [Accepted: 08/14/2023] [Indexed: 08/23/2023]
Abstract
Patulin (PAT) is a mycotoxin known to globally contaminate fruits. The economic losses and health hazards caused by PAT desires a safe and efficient strategy for detoxifying PAT. Here, a magnetic core-shell hierarchical mesoporous metal-organic framework (Fe3O4@HMUiO-66-NH2) was synthesized via a salt-assisted nanoemulsion guided assembly method. This mesoporous structure (centered at 4.25 nm) allowed porcine pancreatic lipase (PPL) to infiltrate into the MOF shell at an immobilized amount of 255 mg/g, providing protection for PPL and enabling rapid separation and recovery. Compared with free PPL, PPL/Fe3O4@HMUiO-66-NH2 at 70 °C possessed 4.7 folds improved thermal stability in terms of half-life. The detoxification rates of immobilized enzyme for PAT in neutral water, acidic water, and apple juice were 99.6%, 60.9%, and 52.6%, respectively. Moreover, the so designed PPL/Fe3O4@HMUiO-66-NH2 showed extraordinary storage stability, reusability, and biocompatibility. Crucially, the quality of apple juice did not change significantly after PPL/Fe3O4@HMUiO-66-NH2 treatment, which facilitated its application in apple juice. The magnetic core-shell mesoporous structure along with the revealed mechanism of immobilized enzyme detoxification of PAT provide tremendous opportunity for designing a safe and efficient PAT detoxification method.
Collapse
Affiliation(s)
- Xiaohai Yan
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling 712100, China
| | - Ke Chen
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling 712100, China
| | - Hang Jia
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling 712100, China
| | - Qiannan Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling 712100, China
| | - Gengan Du
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling 712100, China
| | - Qi Guo
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling 712100, China
| | - Hong Chen
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling 712100, China
| | - Yahong Yuan
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling 712100, China; College of Food Science and Technology, Northwest University, Xi'an 710067, China.
| | - Tianli Yue
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling 712100, China; College of Food Science and Technology, Northwest University, Xi'an 710067, China.
| |
Collapse
|
6
|
Tewari D, Bawari S, Sah AN, Sharma H, Joshi BC, Gupta P, Sharma VK. Himalayan Pyracantha crenulata (D.Don) M.Roem. leaf and fruit extracts alleviate algesia through COX-2 and Mu-opioid receptor mediated pathways. J Ethnopharmacol 2024; 318:117004. [PMID: 37544342 DOI: 10.1016/j.jep.2023.117004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/30/2023] [Accepted: 08/02/2023] [Indexed: 08/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Pyracantha crenulata (D.Don) M.Roem., a plant of high nutritional and medicinal value is traditionally employed for its analgesic property in joint and body pain in the Kumaun region of Western Himalaya. AIM OF THE STUDY To validate the traditional claims for analgesic property of Pyracantha crenulata. METHODS Hydroethanolic extract of P. crenulata leaves and fruits were tested for their analgesic potential in rodent models for algesia by tail immersion test, tail flick test, Eddy's hot plate model, and formalin induced paw irritation test in Wistar rats. Molecular docking and dynamics studies were also performed to understand the possible mechanisms. RESULTS Both P. crenulata fruit extract and leaf extract exhibited significant amelioration in all the tested experimental models of algesia acting through central and peripheral mechanisms. The efficacy in reducing nociception was found comparable to diclofenac that was used as a reference standard. Molecular docking and dynamic simulation studies further established binding affinity of gallic acid (confirmed to be present in P. crenulata leaf extract through HPTLC profiling) with cyclooxygenase-2 (COX-2) and mu-opioid receptors, suggesting the modulatory effect of these extracts on COX-2 and mu-opioid receptors in combating algesia. CONCLUSION P. crenulata extracts produce analgesic effects plausibly through COX-2 and mu-opioid receptor mediated pathways.
Collapse
Affiliation(s)
- Devesh Tewari
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi, 110017, India.
| | - Sweta Bawari
- Amity Institute of Pharmacy, Amity University Campus, Sector-125, Noida, 201301, Gautam Buddha Nagar, Uttar Pradesh, India
| | - Archana N Sah
- Department of Pharmaceutical Sciences, Faculty of Technology, Sir J.C. Bose Technical Campus, Bhimtal, Kumaun University, Nainital, 263136, Uttarakhand, India
| | - Himanshu Sharma
- Central Ayurveda Research Institute Under CCRAS, Gwalior Road, Jhansi, India
| | - Bhuwan Chandra Joshi
- Department of Pharmaceutical Sciences, Faculty of Technology, Sir J.C. Bose Technical Campus, Bhimtal, Kumaun University, Nainital, 263136, Uttarakhand, India
| | - Pawan Gupta
- Department of Pharmaceutical Chemistry, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule, Maharashtra, India.
| | - Vishnu K Sharma
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), Mohali, Punjab, 160062, India.
| |
Collapse
|
7
|
Nazarzadeh Zare E, Khorsandi D, Zarepour A, Yilmaz H, Agarwal T, Hooshmand S, Mohammadinejad R, Ozdemir F, Sahin O, Adiguzel S, Khan H, Zarrabi A, Sharifi E, Kumar A, Mostafavi E, Kouchehbaghi NH, Mattoli V, Zhang F, Jucaud V, Najafabadi AH, Khademhosseini A. Biomedical applications of engineered heparin-based materials. Bioact Mater 2024; 31:87-118. [PMID: 37609108 PMCID: PMC10440395 DOI: 10.1016/j.bioactmat.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/03/2023] [Accepted: 08/01/2023] [Indexed: 08/24/2023] Open
Abstract
Heparin is a negatively charged polysaccharide with various chain lengths and a hydrophilic backbone. Due to its fascinating chemical and physical properties, nontoxicity, biocompatibility, and biodegradability, heparin has been extensively used in different fields of medicine, such as cardiovascular and hematology. This review highlights recent and future advancements in designing materials based on heparin for various biomedical applications. The physicochemical and mechanical properties, biocompatibility, toxicity, and biodegradability of heparin are discussed. In addition, the applications of heparin-based materials in various biomedical fields, such as drug/gene delivery, tissue engineering, cancer therapy, and biosensors, are reviewed. Finally, challenges, opportunities, and future perspectives in preparing heparin-based materials are summarized.
Collapse
Affiliation(s)
| | - Danial Khorsandi
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90024, United States
| | - Atefeh Zarepour
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Sariyer, Istanbul, 34396, Turkey
| | - Hulya Yilmaz
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul, 34956, Turkey
| | - Tarun Agarwal
- Department of Bio-Technology, Koneru Lakshmaiah Education Foundation, Vaddeswaram, AP, India
| | - Sara Hooshmand
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul, 34956, Turkey
| | - Reza Mohammadinejad
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran
| | - Fatma Ozdemir
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul, 34956, Turkey
| | - Onur Sahin
- Department of Basic Pharmacy Sciences, Faculty of Pharmacy, Istinye University, Istanbul, Turkey
| | - Sevin Adiguzel
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul, 34956, Turkey
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan, 23200, Pakistan
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Sariyer, Istanbul, 34396, Turkey
| | - Esmaeel Sharifi
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran
- Institute of Polymers, Composites and Biomaterials - National Research Council (IPCB-CNR), Viale J.F. Kennedy 54 - Mostra D'Oltremare pad. 20, 80125, Naples, Italy
| | - Arun Kumar
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Ebrahim Mostafavi
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Stanford Cardiovascular Institute, Stanford University, School of Medicine, Stanford, CA, 94305, USA
| | | | - Virgilio Mattoli
- Istituto Italiano di Tecnologia, Centre for Materials Interfaces, Viale Rinaldo Piaggio 34, Pontedera, Pisa, 56025, Italy
| | - Feng Zhang
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, Zhejiang, China
| | - Vadim Jucaud
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90024, United States
| | | | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90024, United States
| |
Collapse
|
8
|
Su D, Zhang R, Wang X, Ding Q, Che F, Zhang W, Wu W, Li P, Tang B. A new multi-parameter imaging platform for in vivo drug efficacy evaluation of ischemic stroke. Talanta 2024; 266:125133. [PMID: 37659227 DOI: 10.1016/j.talanta.2023.125133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/06/2023] [Accepted: 08/26/2023] [Indexed: 09/04/2023]
Abstract
Ischemic stroke with high incidence and disability rate severely endangers human health. Current clinical treatment strategies are quite limited, new drugs for ischemic stroke are urgently needed. However, most existing methods for the efficacy evaluation of new drugs possess deficiencies of divorcing from the true biological context, single detection indicator and complex operations, leading to evaluation biases and delaying drug development process. In this work, leveraging the advantages of fluorescence imaging with non-invasive, real-time, in-situ, high selectivity and high sensitivity, a new multi-parameter simultaneous fluorescence imaging platform (MPSFL-Platform) based on two fluorescence materials was constructed to evaluate the efficacy of new drug for ischemic stroke. Through simultaneous fluorescence observing three key indicators of ischemic stroke, malondialdehyde (MDA), formaldehyde (FA), and monoamine oxidase A (MAO-A), the efficacy evaluations of three drugs for ischemic stroke were real-time and in-situ performed. Compared with edaravone and butylphthalide, edaravone dexborneol exhibited better therapeutic effect by using MPSFL-Platform. The successful establishment of MPSFL-Platform is serviceable to accelerate the conduction of preclinical trial and the exploration of pathophysiology mechanism for drugs related to ischemic stroke and other brain diseases, which is perspective to promote the efficiency of new drug development.
Collapse
Affiliation(s)
- Di Su
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan, 250014, Shandong, People's Republic of China
| | - Ran Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan, 250014, Shandong, People's Republic of China
| | - Xin Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan, 250014, Shandong, People's Republic of China.
| | - Qi Ding
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan, 250014, Shandong, People's Republic of China
| | - Feida Che
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan, 250014, Shandong, People's Republic of China
| | - Wen Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan, 250014, Shandong, People's Republic of China
| | - Wei Wu
- Department of Neurology, Qi-Lu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Jinan, 250012, Shandong, People's Republic of China.
| | - Ping Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan, 250014, Shandong, People's Republic of China.
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan, 250014, Shandong, People's Republic of China; Laoshan Laboratory, Qingdao, 266237, Shandong, People's Republic of China.
| |
Collapse
|
9
|
Colliandre L, Muller C. Bayesian Optimization in Drug Discovery. Methods Mol Biol 2024; 2716:101-136. [PMID: 37702937 DOI: 10.1007/978-1-0716-3449-3_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
Drug discovery deals with the search for initial hits and their optimization toward a targeted clinical profile. Throughout the discovery pipeline, the candidate profile will evolve, but the optimization will mainly stay a trial-and-error approach. Tons of in silico methods have been developed to improve and fasten this pipeline. Bayesian optimization (BO) is a well-known method for the determination of the global optimum of a function. In the last decade, BO has gained popularity in the early drug design phase. This chapter starts with the concept of black box optimization applied to drug design and presents some approaches to tackle it. Then it focuses on BO and explains its principle and all the algorithmic building blocks needed to implement it. This explanation aims to be accessible to people involved in drug discovery projects. A strong emphasis is made on the solutions to deal with the specific constraints of drug discovery. Finally, a large set of practical applications of BO is highlighted.
Collapse
|
10
|
Wang Y, Duan H, Yalikun Y, Cheng S, Li M. A pendulum-type electrochemical aptamer-based sensor for continuous, real-time and stable detection of proteins. Talanta 2024; 266:125026. [PMID: 37544252 DOI: 10.1016/j.talanta.2023.125026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/27/2023] [Accepted: 08/01/2023] [Indexed: 08/08/2023]
Abstract
Continuous detection of proteins is crucial for health management and biomedical research. Electrochemical aptamer-based (E-AB) sensor that relies on binding affinity between a recognition oligonucleotide and its specific target is a versatile platform to fulfill this purpose. Yet, the vast majority of E-AB sensors are characterized by voltammetric methods, which suffer from signal drifts and low-frequency data acquisition during continuous operations. To overcome these limitations, we developed a novel E-AB sensor empowered by Gold nanoparticle-DNA Pendulum (GDP). Using chronoamperometric interrogation, the developed sensor enabled drift-resistant, high-frequency, and real-time monitoring of vascular endothelial growth factor (VEGF), a vital signaling protein that regulates angiogenesis, endothelial cell proliferation and vasculogenesis. We assembled VEGF aptamer-anchored GDP probes to a reduced graphene modified electrode, where a fast chronoamperometric current transient occurs as the GDP rapidly transport to the electrode surface. In the presence of target molecules, longer and concentration-dependent time decays were observed because of slower motion of the GDP in its bound state. After optimizing several decisive parameters, including composition ratios of GDP, probe density, and incubation time, the GDP empowered E-AB sensor achieves continuous, selective, and reversible monitoring of VEGF in both phosphate buffered saline (PBS) solutions and artificial urine with a wide detection range from 13 fM to 130 nM. Moreover, the developed sensor acquires signals on a millisecond timescale, and remains resistant to signal degradation during operation. This study offers a new approach to designing E-AB architectures for continuous biomolecular monitoring.
Collapse
Affiliation(s)
- Yizhou Wang
- School of Engineering, Macquarie University, Sydney, 2109, NSW, Australia
| | - Haowei Duan
- School of Engineering, Macquarie University, Sydney, 2109, NSW, Australia
| | - Yaxiaer Yalikun
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 630-0192, Ikoma, Japan
| | - Shaokoon Cheng
- School of Engineering, Macquarie University, Sydney, 2109, NSW, Australia
| | - Ming Li
- School of Engineering, Macquarie University, Sydney, 2109, NSW, Australia.
| |
Collapse
|
11
|
Eremina OE, Yarenkov NR, Bikbaeva GI, Kapitanova OO, Samodelova MV, Shekhovtsova TN, Kolesnikov IE, Syuy AV, Arsenin AV, Volkov VS, Tselikov GI, Novikov SM, Manshina AA, Veselova IA. Silver nanoparticle-based SERS sensors for sensitive detection of amyloid-β aggregates in biological fluids. Talanta 2024; 266:124970. [PMID: 37536108 DOI: 10.1016/j.talanta.2023.124970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 07/11/2023] [Accepted: 07/18/2023] [Indexed: 08/05/2023]
Abstract
One of the hallmarks of Alzheimer's disease (AD) pathogenesis is the production, aggregation, and deposition of amyloid-β (Aβ) peptide. Surface-enhanced Raman spectroscopy (SERS) is a promising analytical technique capable of providing valuable information on chemical composition and molecule conformations in biological samples. However, one of the main challenges for introducing the SERS technique into the practice is preparation of scalable and at the same time stable nanostructured sensors with uniform spatial distribution of nanoparticles. Herein, we propose SERS platforms for reproducible, sensitive, label-free quantification of amyloid-β aggregates for short-wavelength - 532 and 633 nm - lasers. A SERS sensor - based on silver nanoparticles immobilized into a chitosan film (AgNP/CS) - provided a uniform distribution of AgNPs from a colloidal suspension across the SERS sensor, resulting in nanomolar limits of detection (LODs) for Aβ42 aggregates with a portable 532 nm laser. The laser-induced deposition was used to obtain denser periodic plasmonic sensors (AgNP/LID) with a uniform nanoparticle distribution. The AgNP/LID SERS sensor allowed for 15 pM LOD for Aβ42 aggregates with 633 nm laser. Notably, both nanostructured substrates allowed to distinguish amyloid aggregates from monomers. Therefore, our approach demonstrated applicability of SERS for detection of macromolecular volumetric objects as amyloid-β aggregates for fundamental biological studies as well as for "point-of-care" diagnostics and screening for early stages of neurodegenerative diseases.
Collapse
Affiliation(s)
- Olga E Eremina
- Chemistry Department, Lomonosov Moscow State University, Moscow, Russia.
| | - Nikita R Yarenkov
- Chemistry Department, Lomonosov Moscow State University, Moscow, Russia
| | - Gulia I Bikbaeva
- Institute of Chemistry, Saint-Petersburg State University, Saint-Petersburg, Russia
| | - Olesya O Kapitanova
- Chemistry Department, Lomonosov Moscow State University, Moscow, Russia; Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | | | | | - Ilya E Kolesnikov
- Center for Optical and Laser Materials Research, Research Park, Saint-Petersburg State University, Saint-Petersburg, Russia
| | - Alexander V Syuy
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, Dolgoprudny, Russia; Institute of High Technologies and Advanced Materials of the Far Eastern Federal University, Vladivostok, Russia
| | - Aleksey V Arsenin
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, Dolgoprudny, Russia; Emerging Technologies Research Center, XPANCEO, Dubai, United Arab Emirates
| | - Valentyn S Volkov
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, Dolgoprudny, Russia; Laboratory of Advanced Functional Materials, Yerevan State University, Yerevan, Armenia
| | - Gleb I Tselikov
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Sergey M Novikov
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Alina A Manshina
- Institute of Chemistry, Saint-Petersburg State University, Saint-Petersburg, Russia
| | - Irina A Veselova
- Chemistry Department, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
12
|
Xiong F, Zhang T, Ma J, Jia Q. Dual-ligand hydrogen-bonded organic framework: Tailored for mono-phosphopeptides and glycopeptides analysis. Talanta 2024; 266:125068. [PMID: 37574607 DOI: 10.1016/j.talanta.2023.125068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/06/2023] [Accepted: 08/08/2023] [Indexed: 08/15/2023]
Abstract
Hydrogen-bonded organic frameworks (HOFs) have emerged as a promising class of materials for applications of separation and enrichment. Utilizing multiple-ligands to construct HOFs is a promising avenue towards the development of structurally stable and functionally diverse frameworks, offering opportunities to create customized binding sites for selective recognition of biomolecules. In recent years, due to the crucial role that protein post-translational modifications (PTMs) play in maintaining protein function and regulating signaling pathways, and the growing recognition of the extensive cross-talk that can occur between PTMs, simultaneous analysis of different types of PTMs represents a requirement of a new generation of enrichment materials. Here, for the first attempt, we report a dual-ligand HOF constructed from borate anion and guanidinium cation for the simultaneous identification of glycopeptides and phosphopeptides, especially mono-phosphopeptides. According to theoretical calculations, the HOF functional sites display a synergistic "matching" effect with mono-phosphopeptides, resulting in a stronger enrichment effect for mono-phosphopeptides as compared to multi-phosphopeptides. Also, due to its high hydrophilicity and boronate affinity, this material can efficiently capture glycoproteins. HOF is set to become an active research direction in the development of highly efficient simultaneous protein enrichment materials, and offers a new approach for comprehensive PTMs analysis.
Collapse
Affiliation(s)
- Fangfang Xiong
- College of Chemistry, Jilin University, Changchun 130012, China
| | - Te Zhang
- China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Jiutong Ma
- College of Chemistry, Jilin University, Changchun 130012, China
| | - Qiong Jia
- College of Chemistry, Jilin University, Changchun 130012, China; Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, College of Life Sciences, Jilin University, Changchun 130012, China.
| |
Collapse
|
13
|
Jiang X, Zhang X, Guo C, Ou L. Antifouling modification for high-performance isolation of circulating tumor cells. Talanta 2024; 266:125048. [PMID: 37579675 DOI: 10.1016/j.talanta.2023.125048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/22/2023] [Accepted: 08/05/2023] [Indexed: 08/16/2023]
Abstract
Circulating tumor cells (CTCs), which shed from solid tumor tissue into blood circulatory system, have attracted wide attention as a biomarker in the early diagnosis and prognosis of cancer. Given their potential significance in clinics, many platforms have been developed to separate CTCs. However, the high-performance isolation of CTCs remains significant challenges including achieving the sensitivity and specificity necessary due to their extreme rarity and severe biofouling in blood, such as billions of background cells and various proteins. With the advancement of CTCs detection technologies in recent years, the highly efficient and highly specific detection platforms for CTCs have gradually been developed, resulting in improving CTC capture efficiency, purity and sensitivity. In this review, we systematically describe the current strategies with surface modifications by utilizing the antifouling property of polymer, peptide, protein and cell membrane for high-performance enrichment of CTCs. To wrap up, we discuss the substantial challenges facing by current technologies and the potential directions for future research and development.
Collapse
Affiliation(s)
- Xinbang Jiang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, 300071, China
| | - Xiangyun Zhang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, 300071, China
| | - Chen Guo
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, 300071, China
| | - Lailiang Ou
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
14
|
Sirousi Z, Khoshbin Z, Ramezani M, Alibolandi M, Abnous K, Taghdisi SM. A robust tag-free aptasensor for fluorescent detection of kanamycin assisted by signal intensification potency of rolling circle amplification. Talanta 2024; 266:125014. [PMID: 37541003 DOI: 10.1016/j.talanta.2023.125014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/22/2023] [Accepted: 07/28/2023] [Indexed: 08/06/2023]
Abstract
Rolling circle amplification (RCA) process as an excellent DNA amplifier strategy possesses the merits of high performance and easy operation. In this research, a sensitive RCA-based fluorescent aptasensor was fabricated for the detection of kanamycin residues in food. The aptasensing approach consisted of two main steps; immobilization of biotinylated kanamycin aptamer on streptavidin magnetic beads (SMB) and separation of free complementary strands (CS) from the SMB-aptamer/kanamycin at the first step. For the second step, RCA procedure was applied as signal magnifier and SYBR Green was added as fluorescent indicator dye. The linear relation between the aptasensor response and kanamycin concentration was obtained from 5 nM to 100 nM with the detection limit of 1.93 nM (S/N = 3). The aptasensor displayed satisfactory selectivity among other antibiotics. The developed aptasensor is reliable for monitoring kanamycin in milk as a common foodstuff.
Collapse
Affiliation(s)
- Zahra Sirousi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Khoshbin
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
15
|
Xu Z, Chen Y, Wang R, Chen M, Zhang J, Cheng Y, Yao B, Yao L, Xu J, Chen W. Preparation of size-tunable Fe 3O 4 magnetic nanoporous carbon composites by MOF pyrolysis regulation for magnetic resonance sensing of aflatoxin B 1 with excellent anti-matrix effect. Food Chem 2024; 430:137061. [PMID: 37562264 DOI: 10.1016/j.foodchem.2023.137061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 07/24/2023] [Accepted: 07/28/2023] [Indexed: 08/12/2023]
Abstract
Magnetic nanoporous materials represent a new emerging category of magnetic materials for construction of magnetic resonance sensors. In this study, we adopted the metal-organic framework materials, MIL-101(Fe), as the precursor to prepare series nanoporous-carbon-Fe3O4 (NPC-Fe3O4) composites. Results showed that Fe3O4 were uniformly distributed in MIL-101(Fe) and the size of MNP was precisely tuned at different pyrolysis temperatures, conferring the optimal NPC-Fe3O4-450 °C composite with dramatically improved T2 relaxivity. The NPC-Fe3O4-450 °C composite was modified with antibodies and antigens, respectively, for detection of aflatoxin B1 in various food samples with complicated matrix. Range from 0.010 ng mL-1 to 2.0 ng mL-1, extreme low detection limit of 5.0 pg mL-1, and satisfied recoveries were successfully achieved, indicating excellent anti-matrix effect. These findings offer a new dimension to engineer novel magnetic materials with improved relaxivity for simple and easy sensing of food hazards in complicated food matrix without any purification or separation procedures.
Collapse
Affiliation(s)
- Zhou Xu
- College of Chemistry and Food Engineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Yanqiu Chen
- College of Chemistry and Food Engineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Rong Wang
- College of Chemistry and Food Engineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Maolong Chen
- College of Chemistry and Food Engineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Jian Zhang
- College of Automotive and Mechanical Engineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Yunhui Cheng
- College of Chemistry and Food Engineering, Changsha University of Science & Technology, Changsha 410114, China.
| | - Bangben Yao
- Engineering Research Center of Bio-process, MOE, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; Anhui Province Institute of Product Quality Supervision & Inspection, Hefei, 230051, China
| | - Li Yao
- College of Chemistry and Food Engineering, Changsha University of Science & Technology, Changsha 410114, China; Engineering Research Center of Bio-process, MOE, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Jianguo Xu
- Engineering Research Center of Bio-process, MOE, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Wei Chen
- Engineering Research Center of Bio-process, MOE, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China.
| |
Collapse
|
16
|
Liu W, Zhu C, Gao S, Ma K, Zhang S, Du Q, Sui K, Liu C, Chi Z. A biosensor encompassing fusarinine C-magnetic nanoparticles and aptamer-red/green carbon dots for dual-channel fluorescent and RGB discrimination of Campylobacter and Aliarcobacter. Talanta 2024; 266:125085. [PMID: 37619471 DOI: 10.1016/j.talanta.2023.125085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/29/2023] [Accepted: 08/15/2023] [Indexed: 08/26/2023]
Abstract
The diarrhea pathogens Campylobacter and Aliarcobacter are similar in morphology and their leading symptoms, making them difficult to be differentially diagnosed. Herein, we report a biosensor with two modules to differentiate the genera-representative species of C. jejuni and A. butzleri. Module 1 was fusarinine C-decorated magnetic nanoparticles; module 2 consisted of C. jejuni-specific aptamer modified with red-emitting carbon dots (CDs) and A. butzleri-specific aptamer-modified green-emitting CDs, consisting non-interfering dual-fluorescence detection channels. Module 1 was used to selectively capture C. jejuni and A. butzleri from an un-cultured sample, and the specific CDs in module 2 would then recognize and bind to their counterpart bacteria when subjected to the collected module 1-bacteria complex. By measuring the fluorescence intensities from the CDs-bound bacteria, the abundance of each bacterium could be differentially indicated. This biosensor exhibited a wide detection range of up to 1 × 107 CFU/mL and the lowest limit of detection (LOD) of 1 CFU/mL, for each bacterium. Thus, the biosensor with dual-fluorescent channels facilitated a culture-independent, ultrasensitive and discriminative detection of C. jejuni and A. butzleri. Remarkably, this fluorescent detection could be transformed into RGB color indication to render the visual discrimination. After the biosensor was coupled with microfluidics, a biosensing platform was developed, which could render fluorescent and RGB differentiation of the two bacteria in human stool or chicken broilers, achieving a LOD of 5 CFU/mL and turnaround time of 65 min. This work established the first biosensor-based methodology for the discriminative detection of Campylobacter and Aliarcobacter in real samples.
Collapse
Affiliation(s)
- Weixing Liu
- College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, 266003, Qingdao, China
| | - Chengrui Zhu
- Haide College, Ocean University of China, No. 238 Songling Road, 266100, Qingdao, China
| | - Shaoqian Gao
- Haide College, Ocean University of China, No. 238 Songling Road, 266100, Qingdao, China
| | - Keran Ma
- Haide College, Ocean University of China, No. 238 Songling Road, 266100, Qingdao, China
| | - Shangxian Zhang
- Haide College, Ocean University of China, No. 238 Songling Road, 266100, Qingdao, China
| | - Qingbao Du
- College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, 266003, Qingdao, China; Qingdao Sinova-HK Biotechnology Co., Ltd, No. 5138 Haixi Middle Road, 266423, Qingdao, China
| | - Kangmin Sui
- Qingdao Municipal Hospital, University of Health and Rehabilitation Science, No. 5 Donghai Middle Road, 266071, Qingdao, China.
| | - Chenguang Liu
- College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, 266003, Qingdao, China
| | - Zhe Chi
- College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, 266003, Qingdao, China.
| |
Collapse
|
17
|
Liu H, Shen W, Liu W, Yang Z, Yin D, Xiao C. From oncolytic peptides to oncolytic polymers: A new paradigm for oncotherapy. Bioact Mater 2024; 31:206-230. [PMID: 37637082 PMCID: PMC10450358 DOI: 10.1016/j.bioactmat.2023.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 07/18/2023] [Accepted: 08/08/2023] [Indexed: 08/29/2023] Open
Abstract
Traditional cancer therapy methods, especially those directed against specific intracellular targets or signaling pathways, are not powerful enough to overcome tumor heterogeneity and therapeutic resistance. Oncolytic peptides that can induce membrane lysis-mediated cancer cell death and subsequent anticancer immune responses, has provided a new paradigm for cancer therapy. However, the clinical application of oncolytic peptides is always limited by some factors such as unsatisfactory bio-distribution, poor stability, and off-target toxicity. To overcome these limitations, oncolytic polymers stand out as prospective therapeutic materials owing to their high stability, chemical versatility, and scalable production capacity, which has the potential to drive a revolution in cancer treatment. This review provides an overview of the mechanism and structure-activity relationship of oncolytic peptides. Then the oncolytic peptides-mediated combination therapy and the nano-delivery strategies for oncolytic peptides are summarized. Emphatically, the current research progress of oncolytic polymers has been highlighted. Lastly, the challenges and prospects in the development of oncolytic polymers are discussed.
Collapse
Affiliation(s)
- Hanmeng Liu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Wei Shen
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, Anhui, 230012, China
- Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei, Anhui, 230012, China
| | - Wanguo Liu
- Department of Orthopaedic Surgery, China-Japan Union Hospital, Jilin University, Changchun, 130033, China
| | - Zexin Yang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Dengke Yin
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
- Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei, Anhui, 230012, China
| | - Chunsheng Xiao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| |
Collapse
|
18
|
Yilmaz E, Yavuz E. Use of transition metal dichalcogenides (TMDs) in analytical sample preparation applications. Talanta 2024; 266:125086. [PMID: 37633038 DOI: 10.1016/j.talanta.2023.125086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 08/10/2023] [Accepted: 08/15/2023] [Indexed: 08/28/2023]
Abstract
Since the discovery of graphene, nano-sized two-dimensional (2D) transition metal dichalcogenides (TMDs) such as MoS2, MoSe2, MoTe2, NbS2, NbSe2, WS2, WSe2, TaS2 and TaSe2, which have been classified as next-generation nanomaterials resembling graphene (G) have complementary basic properties with those of graphene in terms of their practical applications. TMDs are attracting great attention due to their attractive physical, chemical and electronic properties. Despite being overshadowed by graphene in terms of frequency of use, TMDs have been used frequently in many areas in recent years instead of carbon-based materials such as graphene (G), graphene oxide (GO), carbon nanotubes (CNTs) and nanodiamonds (NDs). It is seen that the first and frequent uses of TMDs, which are classified as new generation materials, are in the fields of catalysis, electronic applications, hydrogen production processes and energy storage, but it has been used as an adsorbent in sample preparation techniques in recent years. Similar to graphene, layers of TMDs are held together by weak van der Waals interactions. The sandwiched layers of TMDs provide sufficient and effective interlayer spaces so that foreign molecules, ions and atoms can easily enter these spaces between the layers. Intermolecular interactions increase with the entry of different materials into these spaces, and thus, high activity, adsorption capacity and efficiency are obtained in adsorption-based analytical sample preparation methods. Although there are about 35 research articles using TMDs, which are classified as promising materials in analytical sample preparation techniques, no review studies have been found. This review, which was designed with this awareness, contains important informations on the properties of metal dichalcogenides, their production methods and their use in analytical sample preparation techniques.
Collapse
Affiliation(s)
- Erkan Yilmaz
- Technology Research & Application Center (TAUM), Erciyes University, 38039, Kayseri, Turkey; ERNAM-Erciyes University, Nanotechnology Application and Research Center, 38039, Kayseri, Turkey; Erciyes University, Faculty of Pharmacy, Department of Analytical Chemistry, 38039, Kayseri, Turkey; ChemicaMed Chemical Inc., Erciyes University Technology Development Zone, 38039 Kayseri, Turkey.
| | - Emre Yavuz
- Erzincan Binali Yildirim University, Cayirli Vocational School, Department of Medical Services and Technicians, 24503, Erzincan, Turkey.
| |
Collapse
|
19
|
Yin J, Xie L. Highly selective chiral molecules detection by terahertz SWNT-based metamaterials. Talanta 2024; 266:124907. [PMID: 37478762 DOI: 10.1016/j.talanta.2023.124907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/28/2023] [Accepted: 07/01/2023] [Indexed: 07/23/2023]
Abstract
The selectively effective behavior of chiral molecules may have deleterious consequences on nontarget organisms and the surrounding ecosystem. Therefore, detecting enantiomers in minute concentrations is essential to prevent undesired side effects. The majority of approaches, including chiral coupling in the shortwave band with sophisticated fabrication and eluting molecules based on the time signal, are incapable of achieving rapid chiral detection. In this study, we use chemically modified single-wall carbon nanotubes (SWNT) as metamaterials to increase sensitivity in the THz region while using it as the chiral stationary phase to selectively bundle one of two enantiomers. We identify chiral molecules by detecting the optical response of chemically modified SWNT-based metamaterials. The measured spectra, in particular, show very selective indications in the spectral region directly associated with distinct chiral responses, which is caused by the difference in binding forces between chemically modified SWNTs and chiral molecules. In addition, we demonstrated that the desired resonance for aqueous sensing was enveloped resonance as opposed to that with a high quality factor, which was sought for drip-dry detection. Our findings provide a simple platform for highly selectively sensing chiral compounds.
Collapse
Affiliation(s)
- Jifan Yin
- School of Biosystems Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China; Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Lijuan Xie
- School of Biosystems Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China; Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, 866 Yuhangtang Road, Hangzhou, 310058, China.
| |
Collapse
|
20
|
Zhou Y, Chen Q, Huang G, Huang S, Lin C, Lin X, Xie Z. Oriented-aptamer encoded magnetic nanosensor with laser-induced fluorescence for ultrasensitive test of okadaic acid. Talanta 2024; 266:124984. [PMID: 37549567 DOI: 10.1016/j.talanta.2023.124984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/19/2023] [Accepted: 07/23/2023] [Indexed: 08/09/2023]
Abstract
Okadaic acid (OA) biotoxin acts a well-established inhibitor of protein phosphatase even a tumor promoter of human being, arouse great attention in safety monitoring. However, the powerful and convenient nanosensing technologies for addressing the demands such as rapidity, high sensitivity, and stability in the in-field test of OA shellfish toxin is still scarce. Herein, a high-performance magnetic biometric nanosensor (MBNS) integrating oriented aptamers and ultrasensitive laser-induced fluorescence (LIF) was firstly proposed for the in-field detection of trace OA in seafoods. High-density aptamers hybridized with FAM-labeled cDNA were tethered to the surface of AuNPs on magnetic MIL-101@Fe3O4, and then finely regulated by mercaptohexyl alcohol (MCH) to be orderly assembled, as was successfully utilized to engineer an active biological nanosensor for highly specific recognition of OA. Aptamers anchored on magnetic Fe3O4@MOF@AuNPs activate a biometric microreactor of OA, in which the superior LIF properties, conformation regulation of aptamer, and the specific recognition using aptamer genes were adopted. The magnetic nanosensor with an excellent specificity and super sensitivity for OA analysis was achieved within 20 min. Moreover, the content of captured OA could facilely be recorded by measuring the fluorescence intensity, and the limit of detection (LOD) and limit of quantitation of OA (LOQ) reached 0.015 and 0.050 ng/mL respectively, which was far better than most aptamer-based biometric sensing methods. The feasibility for accurate test of trace OA toxin in the fortified shellfish samples was validated with the recovery yields of 88.2-107.5% and RSD of 0.5-7.6%, respectively. The result demonstrated that the oriented-aptamer encoded MNS had significant practical values in rapid and ultrasensitive detection of OA biotoxin and the related safety applications.
Collapse
|