1
|
|
Genchi L, Laptenok SP, Liberale C. Background signals in stimulated Raman scattering microscopy and current solutions to avoid them. Adv Phys X 2023;8. [DOI: 10.1080/23746149.2023.2176258] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 02/16/2023]
|
2
|
|
Aida MS, Alonizan N, Zarrad B, Hjiri M. Influence of plant extract on the homogeneous and heterogeneous green chemistry synthesis of nanostructured ZnO. J TAIBAH UNIV SCI 2023;17. [DOI: 10.1080/16583655.2023.2179819] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 02/27/2023] Open
|
3
|
|
Yang W, Peng Z, Wang G. An overview: metal-based inhibitors of urease. J Enzyme Inhib Med Chem 2023;38:361-375. [DOI: 10.1080/14756366.2022.2150182] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 12/03/2022] Open
|
4
|
|
Cao M, Nie S, Wang J, Zhang Q, Xu Z, Gong C, Liu H. Biomass-Based Anion Exchange Membranes Using Poly (Ionic Liquid) Filled Bacterial Cellulose with Superior Ionic Conductivity and Significantly Improved Strength. J NAT FIBERS 2023;20. [DOI: 10.1080/15440478.2023.2181272] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 02/27/2023]
|
5
|
|
Rahidul Hassan H. A review on different arsenic removal techniques used for decontamination of drinking water. ENV POLLUT BIOAVAIL 2023;35. [DOI: 10.1080/26395940.2023.2165964] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 01/21/2023]
|
6
|
|
Wang Y, Li C, Qiao Z, Wei C, Zheng X. The effect of adding tiny granules on the adsorption characteristics of granulated coal. ENERG SOURCE PART A 2023;45:777-787. [DOI: 10.1080/15567036.2023.2172104] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 02/08/2023]
|
7
|
|
Dong P, Lv H, Jia W, Liu J, Wang S, Li X, Hu J, Zhao L, Shi Y. Polysaccharide dextran-based conjugate for selective co-delivery of two synergistic drugs docetaxel and docosahexaenoic acid to tumor cells. Drug Deliv 2023;30:40-50. [DOI: 10.1080/10717544.2022.2152133] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 12/04/2022] Open
|
8
|
|
Hossain MI, Mansour S. A critical overview of thin films coating technologies for energy applications. Cogent Engineering 2023;10. [DOI: 10.1080/23311916.2023.2179467] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 03/05/2023] Open
|
9
|
|
Ouyang Y, Wang F, Zhang M, Qin Y, Tan Y, Ji W, Song F. Atom electronics in single-molecule transistors: single-atom access and manipulation. Adv Phys X 2023;8. [DOI: 10.1080/23746149.2023.2165148] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 01/18/2023]
|
10
|
|
Abdoon FM, Hasan HM, Salman SA, Ameen ST, Birhan M. Exploiting of green synthesized silver nanoparticles using Capparis spinosa L. Fruit for spectrophotometric determination of diphenhydramine HCl in pure forms and commercial products. J EXP NANOSCI 2023;18. [DOI: 10.1080/17458080.2022.2161525] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 01/03/2023] Open
|
11
|
|
Sipos A, Kim K, Sioutas C, Crandall ED. Kinetics of autophagic activity in nanoparticle-exposed lung adenocarcinoma (A549) cells. Autophagy Reports 2023;2. [DOI: 10.1080/27694127.2023.2186568] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 03/17/2023]
|
12
|
|
Mendes PCD, Song Y, Ma W, Gani TZH, Lim KH, Kawi S, Kozlov SM. Opportunities in the design of metal@oxide core-shell nanoparticles. Adv Phys X 2023;8. [DOI: 10.1080/23746149.2023.2175623] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 03/06/2023]
|
13
|
|
Thomas OE, Oduwole RT, Akin-taylor A. Comparison of the DNA-binding interactions of 5-hydroxymethylfurfural and its synthesized derivative, 5, 5’[oxy-bis(methylene)]bis-2-furfural: experimental, DFT and docking studies. J TAIBAH UNIV SCI 2023;17. [DOI: 10.1080/16583655.2023.2183705] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 03/06/2023] Open
|
14
|
|
Xue K, Yang C, He Y. A review of technologies for bromide and iodide removal from water. Environmental Technology Reviews 2023;12:129-148. [DOI: 10.1080/21622515.2023.2184275] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 03/07/2023]
|
15
|
|
Liton PB, Boesze-battaglia K, Boulton ME, Boya P, Ferguson TA, Ganley IG, Kauppinnen A, Laurie GW, Mizushima N, Morishita H, Russo R, Sadda J, Shyam R, Sinha D, Thompson DA, Zacks DN. Autophagy in the eye: from physiology to pathophysology. Autophagy Reports 2023;2. [DOI: 10.1080/27694127.2023.2178996] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 03/05/2023]
|
16
|
|
Ali A, Long F, Shen PK. Innovative Strategies for Overall Water Splitting Using Nanostructured Transition Metal Electrocatalysts. ELECTROCHEM ENERGY R 2023;6. [DOI: 10.1007/s41918-022-00136-8] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 11/28/2022]
|
17
|
|
Liu JY, Guo HY, Quan ZS, Shen QK, Cui H, Li X. Research progress of natural products and their derivatives against Alzheimer's disease. J Enzyme Inhib Med Chem 2023;38:2171026. [PMID: 36803484 DOI: 10.1080/14756366.2023.2171026] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 02/22/2023] Open
Abstract
Alzheimer's disease (AD), a persistent neurological dysfunction, has an increasing prevalence with the aging of the world and seriously threatens the health of the elderly. Although there is currently no effective treatment for AD, researchers have not given up, and are committed to exploring the pathogenesis of AD and possible therapeutic drugs. Natural products have attracted considerable attention owing to their unique advantages. One molecule can interact with multiple AD-related targets, thus having the potential to be developed in a multi-target drug. In addition, they are amenable to structural modifications to increase interaction and decrease toxicity. Therefore, natural products and their derivatives that ameliorate pathological changes in AD should be intensively and extensively studied. This review mainly presents research on natural products and their derivatives for the treatment of AD.
Collapse
|
18
|
|
Eghbali A, Karafi MR, Sadeghi MH. The Effects of Current Density, Cell Potential, Time, Salinity, Electrode Diameter, and Material on Microwave-Assisted Saline Water Electrolysis: An Experimental Study. Water Conserv Sci Eng 2023;8:13. [DOI: 10.1007/s41101-023-00186-z] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 03/09/2023]
|
19
|
|
Batool S, Sohail S, Ud Din F, Alamri AH, Alqahtani AS, Alshahrani MA, Alshehri MA, Choi HG. A detailed insight of the tumor targeting using nanocarrier drug delivery system. Drug Deliv 2023;30:2183815. [PMID: 36866455 DOI: 10.1080/10717544.2023.2183815] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/04/2023] Open
Abstract
Human struggle against the deadly disease conditions is continued since ages. The contribution of science and technology in fighting against these diseases cannot be ignored exclusively due to the invention of novel procedure and products, extending their size ranges from micro to nano. Recently nanotechnology has been gaining more consideration for its ability to diagnose and treat different cancers. Different nanoparticles have been used to evade the issues related with conservative anticancer delivery systems, including their nonspecificity, adverse effects and burst release. These nanocarriers including, solid lipid nanoparticles (SLNs), liposomes, nano lipid carriers (NLCs), nano micelles, nanocomposites, polymeric and magnetic nanocarriers, have brought revolutions in antitumor drug delivery. Nanocarriers improved the therapeutic efficacy of anticancer drugs with better accumulation at the specific site with sustained release, improved bioavailability and apoptosis of the cancer cells while bypassing the normal cells. In this review, the cancer targeting techniques and surface modification on nanoparticles are discussed briefly with possible challenges and opportunities. It can be concluded that understanding the role of nanomedicine in tumor treatment is significant, and therefore, the modern progressions in this arena is essential to be considered for a prosperous today and an affluent future of tumor patients.
Collapse
|
20
|
|
Legname G. Copper coordination modulates prion conversion and infectivity in mammalian prion proteins. Prion 2023;17:1-6. [PMID: 36597284 DOI: 10.1080/19336896.2022.2163835] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 01/05/2023] Open
Abstract
In mammals the cellular form of the prion protein (PrPC) is a ubiquitous protein involved in many relevant functions in the central nervous system. In addition to its physiological functions PrPC plays a central role in a group of invariably fatal neurodegenerative disorders collectively called prion diseases. In fact, the protein is a substrate in a process in which it converts into an infectious and pathological form denoted as prion. The protein has a unique primary structure where the unstructured N-terminal moiety possesses characteristic sequences wherein histidines are able to coordinate metal ions, in particular copper ions. These sequences are called octarepeats for their characteristic length. Moreover, a non-octarepeat fifth-copper binding site is present where copper coordination seems to control infectivity. In this review, I will argue that these sequences may play a significant role in modulating prion conversion and replication.
Collapse
|
21
|
|
Doronin FA, Rytikov GO, Evdokimov AG, Ruduak YV, Nazarov VG. The synergistic effect of bulk-surface modification onto the wear resistance of the ultrahigh molecular weight polyethylene. POLYM POLYM COMPOS 2023;31:096739112211501. [DOI: 10.1177/09673911221150132] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 01/26/2023]
Abstract
The paper investigates the effect of bulk and surface modification on the adhesive and tribological properties of ultra-high molecular weight polyethylene (UHMWPE) and shows that bulk modification with nano- and micro-sized modifiers (montmorillonite, shungite, exfoliated graphite) mainly reduces the friction coefficient but leads to a decrease in the wear resistance of the corresponding composites. It is found that gas-phase surface fluorination provides an increase in the wear resistance of experimental samples in all cases due to a combination of nanotexturing and chemomorphological transformations of the surface layers of the modified polymers. The significant dependence of the nanotexture on the technique and mode of modification is demonstrated using the original approaches to the quantitative characterization of the experimental samples’ surfaces’ scanning electron microscopy-images (formed with the scanning electron microscope). It is shown that the surface fluorination not only makes possible to significantly compensate for the increase of the friction coefficient of bulk-modified UHMWPE in comparison with the original one but also provides a nonlinear multiplicative increase in the wear resistance.
Collapse
|
22
|
|
Zheng H, Li M, Wu L, Liu W, Liu Y, Gao J, Lu Z. Progress in the application of hydrogels in immunotherapy of gastrointestinal tumors. Drug Deliv 2023;30:2161670. [PMID: 36587630 DOI: 10.1080/10717544.2022.2161670] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 01/03/2023] Open
Abstract
Gastrointestinal tumors are the most common cancers with the highest morbidity and mortality worldwide. Surgery accompanied by chemotherapy, radiotherapy and targeted therapy remains the first option for gastrointestinal tumors. However, poor specificity for tumor cells of these postoperative treatments often leads to severe side effects and poor prognosis. Tumor immunotherapy, including checkpoint blockade and tumor vaccines, has developed rapidly in recent years, showing good curative effects and minimal side effects in the treatment of gastrointestinal tumors. National Comprehensive Cancer Network guidelines recommend tumor immunotherapy as part of the treatment of gastrointestinal tumors. However, the heterogeneity of tumor cells, complicacy of the tumor microenvironment and poor tumor immunogenicity hamper the effectiveness of tumor immunotherapy. Hydrogels, defined as three-dimensional, hydrophilic, and water-insoluble polymeric networks, could significantly improve the overall response rate of immunotherapy due to their superior drug loading efficacy, controlled release and drug codelivery ability. In this article, we briefly describe the research progress made in recent years on hydrogel delivery systems in immunotherapy for gastrointestinal tumors and discuss the potential future application prospects and challenges to provide a reference for the clinical application of hydrogels in tumor immunotherapy.
Collapse
|
23
|
|
Yin Z, Wang L. Endothelial-to-mesenchymal transition in tumour progression and its potential roles in tumour therapy. Ann Med 2023;55:1058-69. [PMID: 36908260 DOI: 10.1080/07853890.2023.2180155] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/14/2023] Open
Abstract
Tumour-associated endothelial cells (TECs) are a critical stromal cell type in the tumour microenvironment and play central roles in tumour angiogenesis. Notably, TECs have phenotypic plasticity, as they have the potential to transdifferentiate into cells with a mesenchymal phenotype through a process termed endothelial-to-mesenchymal transition (EndoMT). Many studies have reported that EndoMT influences multiple malignant biological properties of tumours, such as abnormal angiogenesis and tumour metabolism, growth, metastasis and therapeutic resistance. Thus, the value of targeting EndoMT in tumour treatment has received increased attention. In this review, we comprehensively explore the phenomenon of EndoMT in the tumour microenvironment and identify influencing factors and molecular mechanisms responsible for EndoMT induction. Furthermore, the pathological functions of EndoMT in tumour progression and potential therapeutic strategies for targeting EndoMT in tumour treatment are also discussed to highlight the pivotal roles of EndoMT in tumour progression and therapy.
Collapse
|
24
|
|
Cebrián R, Lucas R, Fernández-Cantos MV, Slot K, Peñalver P, Martínez-García M, Párraga-Leo A, de Paz MV, García F, Kuipers OP, Morales JC. Synthesis and antimicrobial activity of aminoalkyl resveratrol derivatives inspired by cationic peptides. J Enzyme Inhib Med Chem 2023;38:267-81. [PMID: 36600674 DOI: 10.1080/14756366.2022.2146685] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 01/06/2023] Open
Abstract
Antimicrobial resistance is a global concern, far from being resolved. The need of new drugs against new targets is imminent. In this work, we present a family of aminoalkyl resveratrol derivatives with antibacterial activity inspired by the properties of cationic amphipathic antimicrobial peptides. Surprisingly, the newly designed molecules display modest activity against aerobically growing bacteria but show surprisingly good antimicrobial activity against anaerobic bacteria (Gram-negative and Gram-positive) suggesting specificity towards this bacterial group. Preliminary studies into the action mechanism suggest that activity takes place at the membrane level, while no cross-resistance with traditional antibiotics is observed. Actually, some good synergistic relations with existing antibiotics were found against Gram-negative pathogens. However, some cytotoxicity was observed, despite their low haemolytic activity. Our results show the importance of the balance between positively charged moieties and hydrophobicity to improve antimicrobial activity, setting the stage for the design of new drugs based on these molecules.
Collapse
|
25
|
|
Liao Y, Bruzzese PC, Salvadori E, Chiesa M. 17O hyperfine spectroscopy in surface chemistry and catalysis. Journal of Magnetic Resonance Open 2023;16-17:100101. [DOI: 10.1016/j.jmro.2023.100101] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 03/14/2023] Open
|
26
|
|
Silva MMD, Wasserman MAV, Wasserman JCDFA, Pérez DV, Pereira TR, Barreto MB, Santos-oliveira R. Effect of nanomaterials on the bioavailability of metals in sediments from a highly impacted tropical coastal environment. Environmental Nanotechnology, Monitoring & Management 2023;20:100799. [DOI: 10.1016/j.enmm.2023.100799] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 03/06/2023]
|
27
|
|
Swidan MM, Essa BM, Sakr TM. Pristine/folate-functionalized graphene oxide as two intrinsically radioiodinated nano-theranostics: self/dual in vivo targeting comparative study. Cancer Nanotechnol 2023;14:6. [DOI: 10.1186/s12645-023-00157-y] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 02/05/2023] Open
Abstract
Abstract
Background
Nanomedicine offers great potentials for theranostic studies via providing higher efficacy and safety levels. This work aimed to develop and evaluate a new nanoplatform as a tumor theranostic probe.
Results
Carboxyl-functionalized graphene oxide nanosheets (FGO) was well synthesized from graphite powder and then conjugated with folic acid to act as a targeted nano-probe. Full characterization and in vitro cytotoxicity evaluation were conducted; besides, in vivo bio-evaluation was attained via intrinsic radioiodination approach in both normal and tumor-bearing Albino mice. The results indicated that FGO as well as conjugated graphene oxide nanosheets (CGO) are comparatively non-toxic to normal cells even at higher concentrations. Pharmacokinetics of FGO and CGO showed intensive and selective uptake in the tumor sites where CGO showed high T/NT of 7.27 that was 4 folds of FGO at 1 h post injection. Additionally, radioiodinated-CGO (ICGO) had declared a superior prominence over the previously published tumor targeted GO radiotracers regarding the physicochemical properties pertaining ability and tumor accumulation behavior.
Conclusions
In conclusion, ICGO can be used as a selective tumor targeting agent for cancer theranosis with aid of I-131 that has a maximum beta and gamma energies of 606.3 and 364.5 keV, respectively.
Collapse
|
28
|
|
Fang W, Li L, Lin Z, Zhang Y, Jing Z, Li Y, Zhang Z, Hou L, Liang X, Zhang X, Zhang X. Engineered IL-15/IL-15Rα-expressing cellular vesicles promote T cell anti-tumor immunity. Extracellular Vesicle 2023;2:100021. [DOI: 10.1016/j.vesic.2022.100021] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 12/28/2022]
|
29
|
|
Khodair AI, Alzahrani FM, Awad MK, Al-Issa SA, Al-Hazmi GH, Nafie MS. Design, synthesis, molecular modelling and antitumor evaluation of S-glucosylated rhodanines through topo II inhibition and DNA intercalation. J Enzyme Inhib Med Chem 2023;38:2163996. [PMID: 36629439 DOI: 10.1080/14756366.2022.2163996] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 01/12/2023] Open
Abstract
In the present study, 5-arylidene rhodanine derivatives 3a-f, N-glucosylation rhodanine 6, S-glucosylation rhodanine 7, N-glucoside rhodanine 8 and S-glucosylation 5-arylidene rhodanines 13a-c were synthesised and screened for cytotoxicity against a panel of cancer cells with investigating the effective molecular target and mechanistic cell death. The anomers were separated by flash column chromatography and their configurations were assigned by NMR spectroscopy. The stable structures of the compounds under study were modelled on a molecular level, and DFT calculations were carried out at the B3LYP/6-31 + G (d,p) level to examine their electronic and geometric features. A good correlation between the quantum chemical descriptors and experimental observations was found. Interestingly, compound 6 induced potent cytotoxicity against MCF-7, HepG2 and A549 cells, with IC50 values of 11.7, 0.21, and 1.7 µM, compared to Dox 7.67, 8.28, and 6.62 µM, respectively. For the molecular target, compound 6 exhibited topoisomerase II inhibition and DNA intercalation with IC50 values of 6.9 and 19.6 µM, respectively compared to Dox (IC50 = 9.65 and 31.27 µM). Additionally, compound 6 treatmnet significantly activated apoptotic cell death in HepG2 cells by 80.7-fold, it induced total apoptosis by 34.73% (23.07% for early apoptosis, 11.66% for late apoptosis) compared to the untreated control group (0.43%) arresting the cell population at the S-phase by 49.6% compared to control 39.15%. Finally, compound 6 upregulated the apoptosis-related genes, while it inhibted the Bcl-2 expression. Hence, glucosylated rhodanines may serve as a promising drug candidates against cancer with promising topoisomerase II and DNA intercalation.
Collapse
|
30
|
|
Hu Q, Wang Q, Zhang T, Zhao C, Iltaf KH, Liu S, Fukatsu Y. Petrophysical properties of representative geological rocks encountered in carbon storage and utilization. ENERGY REP 2023;9:3661-3682. [DOI: 10.1016/j.egyr.2023.02.020] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 03/05/2023] Open
|
31
|
|
Nayak AK, Ganguli B, Ajayan PM. Advances in electric two-wheeler technologies. ENERGY REP 2023;9:3508-3530. [DOI: 10.1016/j.egyr.2023.02.008] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 02/26/2023] Open
|
32
|
|
Li C, Han Y, Luo X, Qian C, Li Y, Su H, Du G. Immunomodulatory nano-preparations for rheumatoid arthritis. Drug Deliv 2023;30:9-19. [PMID: 36482698 DOI: 10.1080/10717544.2022.2152136] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 12/13/2022] Open
Abstract
Rheumatoid arthritis (RA) is a systemic autoimmune disease (AD) caused by the aberrant attack of the immune system on its own joint tissues. Genetic and environmental factors are the main reasons of immune system impairment and high incidence of RA. Although there are medications on the market that lessen disease activity, there is no known cure for RA, and patients are at risk in varying degrees of systemic immunosuppression. By transporting (encapsulating or surface binding) RA-related self-antigens, nucleic acids, immunomodulators, or cytokines, tolerogenic nanoparticles-also known as immunomodulatory nano-preparations-have the potential to gently regulate local immune responses and ultimately induce antigen-specific immune tolerance. We review the recent advances in immunomodulatory nano-preparations for delivering self-antigen or self-antigen plus immunomodulator, simulating apoptotic cell avatars in vivo, acting as artificial antigen-presenting cells, and based on scaffolds and gels, to provide a reference for developing new immunotherapies for RA.
Collapse
|
33
|
|
Xian S, Zhu J, Wang Y, Song H, Wang H. Oral liposomal delivery of an activatable budesonide prodrug reduces colitis in experimental mice. Drug Deliv 2023;30:2183821. [PMID: 36861451 DOI: 10.1080/10717544.2023.2183821] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/03/2023] Open
Abstract
Inflammatory bowel disease (IBD) is one of the most common intestinal disorders, with increasing global incidence and prevalence. Numerous therapeutic drugs are available but require intravenous administration and are associated with high toxicity and insufficient patient compliance. Here, an oral liposome that entraps the activatable corticosteroid anti-inflammatory budesonide was developed for efficacious and safe IBD therapy. The prodrug was produced via the ligation of budesonide with linoleic acid linked by a hydrolytic ester bond, which was further constrained into lipid constituents to form colloidal stable nanoliposomes (termed budsomes). Chemical modification with linoleic acid augmented the compatibility and miscibility of the resulting prodrug in lipid bilayers to provide protection from the harsh environment of the gastrointestinal tract, while liposomal nanoformulation enables preferential accumulation to inflamed vasculature. Hence, when delivered orally, budsomes exhibited high stability with low drug release in the stomach in the presence of ultra-acidic pH but released active budesonide after accumulation in inflamed intestinal tissues. Notably, oral administration of budsomes demonstrated favorable anti-colitis effect with only ∼7% mouse body weight loss, whereas at least ∼16% weight loss was observed in other treatment groups. Overall, budsomes exhibited higher therapeutic efficiency than free budesonide treatment and potently induced remission of acute colitis without any adverse side effects. These data suggest a new and reliable approach for improving the efficacy of budesonide. Our in vivo preclinical data demonstrate the safety and increased efficacy of the budsome platform for IBD treatment, further supporting clinical evaluation of this orally efficacious budesonide therapeutic.
Collapse
|
34
|
|
Tu Y, Zhang W, Fan G, Zou C, Zhang J, Wu N, Ding J, Zou WQ, Xiao H, Tan S. Paclitaxel-loaded ROS-responsive nanoparticles for head and neck cancer therapy. Drug Deliv 2023;30:2189106. [PMID: 36916054 DOI: 10.1080/10717544.2023.2189106] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/15/2023] Open
Abstract
High intracellular reactive oxygen species (ROS) level is characteristic of cancer cells and could act as a target for the efficient targeted drug delivery for cancer treatment. Consequently, biomaterials that react to excessive levels of ROS are essential for biomedical applications. In this study, a novel ROS-responsive polymer based on D-α-Tocopheryl polyethylene glycol 1000 succinate (TPGS) and poly (β-thioester) (TPGS-PBTE) was synthesized for targeted delivery of the first-line antineoplastic drug, paclitaxel (PTX). The resultant TPGS-PBTE NPs showed good ROS-responsive capability in size change and drug release. Compared to PTX, PTX-loaded nanoparticles (PTX@TPGS-PBTE NPs) showed enhanced cytotoxicity and higher level of apoptosis toward squamous cell carcinoma (SCC-7) cells. Tumor-targeted delivery of the NPs was also observed, especially after being modified with a tumor-targeting peptide, cRGD. Enhanced tumor growth inhibition was also observed in head and neck cancer SCC-7 murine models. In summary, PTX@TPGS-PBTE NPs can achieve good therapeutic effects of PTX against head and neck cancer both in vitro and in vivo, especially when modified by cRGD for active targeting, which enriched the application of ROS responsive system utilized in the delivery of anticancer drugs.
Collapse
|
35
|
|
Li B, Chao Y, Li M, Xiao Y, Li R, Yang K, Cui X, Xu G, Li L, Yang C, Yu Y, Wilkinson DP, Zhang J. A Review of Solid Electrolyte Interphase (SEI) and Dendrite Formation in Lithium Batteries. ELECTROCHEM ENERGY R 2023;6:7. [DOI: 10.1007/s41918-022-00147-5] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 03/06/2023]
|
36
|
|
Zhang S, Ma J, Dong S, Cui G. Designing All-Solid-State Batteries by Theoretical Computation: A Review. ELECTROCHEM ENERGY R 2023;6:4. [DOI: 10.1007/s41918-022-00143-9] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 02/05/2023]
|
37
|
|
Zhang F, Yao Q, Chen X, Zhou H, Zhou M, Li Y, Cheng H. In-depth study of anticancer drug diffusion through a cross-linked -pH-responsive polymeric vesicle membrane. Drug Deliv 2023;30:2162626. [PMID: 36600638 DOI: 10.1080/10717544.2022.2162626] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Download PDF] [Figures] [Indexed: 01/06/2023] Open
Abstract
Post-encapsulation and release of the anticancer drug doxorubicin hydrochloride (DOX·HCl) through cell-like transmission functions of polymeric vesicles were studied using cross-linked pH-responsive polymeric vesicles. The vesicles were fabricated for the first time via the redox-initiated reversible addition-fragmentation chain transfer dispersion polymerization in ethanol-water mixture, using 2-(diisopropylamino)ethyl methacrylate and glycidyl methacrylate, and the vesicle membrane was modified post-cross-linking by using ethylenediamine. A phase diagram was constructed for reproducible fabrication of the polymeric vesicles, and well-shaped vesicles were formed when the target degree of polymerization of the hydrophobic polymer chains was equal to or higher than 50 with solid content in the range of 10-30 wt%. The cross-linked vesicle membrane served as a gate enabling "open" and "closed" states in response to pH stimulation. Up to 50% drug loading efficiency and 39% drug loading content could be achieved, and in vitro release of the DOX-loaded vesicles in aqueous buffer solutions showed a much faster DOX release rate at pH 5.0 than at pH 6.5. The polymeric vesicles were of very low cytotoxicity to A549 cells up to the concentration of 2 mg/mL, and the IC50 of DOX-loaded vesicles were higher than that of the free DOX. The intracellular DOX release study indicated higher cellular uptake capability for DOX-loaded vesicles than that of free DOX.
Collapse
|
38
|
|
England JL. Self-organized computation in the far-from-equilibrium cell. Biophysics Rev 2023;3:041303. [DOI: 10.1063/5.0103151] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 12/24/2022]
Abstract
Recent progress in our understanding of the physics of self-organization in active matter has pointed to the possibility of spontaneous collective behaviors that effectively compute things about the patterns in the surrounding patterned environment. Here, we describe this progress and speculate about its implications for our understanding of the internal organization of the living cell.
Collapse
|
39
|
|
Uzun E, Balabanli DDB, Cevher ŞC. Vascular Endothelial Growth Factor Supplementation Enhance Skin Antioxidant Capacity in Hyperglycemic Rats. GAZI UNIVERSITY JOURNAL OF SCIENCE 2023. [DOI: 10.35378/gujs.1082697] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 02/05/2023]
Abstract
The fundamental reasons for delayed wound healing in diabetic animals include inadequate production of growth factors or their increased devastation. Vascular Growth Factor (VEGF) has a biological role in the healing process of mucosal and skin wounds, especially in the process of new vessel formation. We planned to examine the oxidant-antioxidant events that occur during healing with topical VEGF application in diabetic rats. Experiments were performed 36 adults female Wistar albino rat diabetes induced by streptozotocin. The incisional wounds were made on the dorsal region in the rats. Rats were separated to 3 groups: the untreated (negative control) group (n=12), the chitosan group (n=12), the chitosan + VEGF group (n=12). The treatments were continued for 3 and 7 days, excluding the control and negative control groups. Then, the animals were sacrificed on the 3rd and 7th days of wound healing. Antioxidant and oxidant parameters in skin tissue were measured using biochemical methods. Topical VEGF application was decreased the NOx levels on the 3rd day compared to other groups. Moreover, it increased wound tissue GSH and AA levels, subsequently contributing to the enhance tissue antioxidant capacity. In conclusion, VEGF application increases the antioxidant capacity of the tissue and simultaneously reduces the oxidative stress and thus gives a positive acceleration to the wound healing process.
Collapse
|
40
|
|
Sun B, Zhang Y, Yang B. Computation-aided novel epitope prediction by targeting spike protein's functional dynamics in Omicron. Frigid Zone Medicine 2023;3:1-4. [DOI: 10.2478/fzm-2023-0001] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 01/26/2023]
|
41
|
|
Yu Z, Chen J, Chao D, Sun X, Liu L, Dong S. Study on hydrolase mechanism of copper compound nanoparticles and its application in the evaluation of gut bacteria in aquatic environment. Appl Catal B 2023;330:122639. [DOI: 10.1016/j.apcatb.2023.122639] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 03/17/2023]
|
42
|
|
Zhu S, Zhao B, Li M, Wang H, Zhu J, Li Q, Gao H, Feng Q, Cao X. Microenvironment responsive nanocomposite hydrogel with NIR photothermal therapy, vascularization and anti-inflammation for diabetic infected wound healing. Bioact Mater 2023;26:306-20. [PMID: 36950149 DOI: 10.1016/j.bioactmat.2023.03.005] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/16/2023] Open
Abstract
Bacterial infection, excessive inflammation and damaging blood vessels network are the major factors to delay the healing of diabetic ulcer. At present, most of wound repair materials are passive and can't response to the wound microenvironment, resulting in a low utilization of bioactive substances and hence a poor therapeutic effect. Therefore, it's essential to design an intelligent wound dressing responsive to the wound microenvironment to achieve the release of drugs on-demand on the basis of multifunctionality. In this work, metformin-laden CuPDA NPs composite hydrogel (Met@ CuPDA NPs/HG) was fabricated by dynamic phenylborate bonding of gelatin modified by dopamine (Gel-DA), Cu-loaded polydopamine nanoparticles (CuPDA NPs) with hyaluronic acid modified by phenyl boronate acid (HA-PBA), which possessed good injectability, self-healing, adhesive and DPPH scavenging performance. The slow release of metformin was achieved by the interaction with CuPDA NPs, boric groups (B-N coordination) and the constraint of hydrogel network. Metformin had a pH and glucose responsive release behavior to treat different wound microenvironment intelligently. Moreover, CuPDA NPs endowed the hydrogel excellent photothermal responsiveness to kill bacteria of >95% within 10 min and also the slow release of Cu2+ to protect wound from infection for a long time. Met@ CuPDA NPs/HG also recruited cells to a certain direction and promoted vascularization by releasing Cu2+. More importantly, Met@CuPDA NPs/HG effectively decreased the inflammation by eliminating ROS and inhibiting the activation of NF-κB pathway. Animal experiments demonstrated that Met@CuPDA NPs/HG significantly promoted wound healing of diabetic SD rats by killing bacteria, inhibiting inflammation, improving angiogenesis and accelerating the deposition of ECM and collagen. Therefore, Met@CuPDA NPs/HG had a great application potential for diabetic wound healing.
Collapse
|
43
|
|
Wu Z, Shen J, Li W, Li J, Xia D, Xu D, Zhang S, Zhu Y. Electron self-sufficient core-shell BiOCl@Fe-BiOCl nanosheets boosting Fe(III)/Fe(II) recycling and synergetic photocatalysis-Fenton for enhanced degradation of phenol. Appl Catal B 2023;330:122642. [DOI: 10.1016/j.apcatb.2023.122642] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 03/17/2023]
|
44
|
|
Qian S, Lin HA, Pan Q, Zhang S, Zhang Y, Geng Z, Wu Q, He Y, Zhu B. Chemically revised conducting polymers with inflammation resistance for intimate bioelectronic electrocoupling. Bioact Mater 2023;26:24-51. [PMID: 36875055 DOI: 10.1016/j.bioactmat.2023.02.010] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Download PDF] [Figures] [Indexed: 02/23/2023] Open
Abstract
Conducting polymers offer attractive mixed ionic-electronic conductivity, tunable interfacial barrier with metal, tissue matchable softness, and versatile chemical functionalization, making them robust to bridge the gap between brain tissue and electronic circuits. This review focuses on chemically revised conducting polymers, combined with their superior and controllable electrochemical performance, to fabricate long-term bioelectronic implants, addressing chronic immune responses, weak neuron attraction, and long-term electrocommunication instability challenges. Moreover, the promising progress of zwitterionic conducting polymers in bioelectronic implants (≥4 weeks stable implantation) is highlighted, followed by a comment on their current evolution toward selective neural coupling and reimplantable function. Finally, a critical forward look at the future of zwitterionic conducting polymers for in vivo bioelectronic devices is provided.
Collapse
|
45
|
|
Fan W, Zeng L, Wang T. Uncertainty quantification in molecular property prediction through spherical mixture density networks. Eng Appl Artif Intell 2023;123:106180. [DOI: 10.1016/j.engappai.2023.106180] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 03/28/2023]
|
46
|
|
Wang K, Chen Y, Zhang L, Zhang Q, Cheng Z, Su Y, Shen F, Han X. One step hot-pressing method for hybrid Li metal anode of solid-state lithium metal batteries. J MATER SCI TECHNOL 2023;153:32-40. [DOI: 10.1016/j.jmst.2022.12.055] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 03/12/2023]
|
47
|
|
Pang L, Lin Q, Zhao S, Zheng H, Li C, Zhang J, Sun C, Chen L, Li F. Data quality assessment for studies investigating microplastics and nanoplastics in food products: Are current data reliable? Front Environ Sci Eng 2023;17:94. [DOI: 10.1007/s11783-023-1694-0] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 03/08/2023]
|
48
|
|
Sa N, Wu M, Wang H. Review of the role of ionic liquids in two-dimensional materials. FRONT PHYS-BEIJING 2023;18:43601. [DOI: 10.1007/s11467-023-1258-6] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 03/05/2023]
|
49
|
|
Yang B, Zhang W, Zheng W. Unlocking the full energy densities of carbon-based supercapacitors. Mater Res Lett 2023;11:517-546. [DOI: 10.1080/21663831.2023.2183783] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 03/09/2023] Open
|
50
|
|
Wang C, Sun Y, Wang L, Feng W, Miao Y, Yu M, Wang Y, Gao X, Zhao Q, Ding Z, Feng Z, Yu S, Yang J, Hu Y, Wu J. Oxidative carbonylation of methane to acetic acid on an Fe-modified ZSM-5 zeolite. Appl Catal B 2023;329:122549. [DOI: 10.1016/j.apcatb.2023.122549] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 03/05/2023]
|