1
|
Han T, Xu Y, Sun L, Hashimoto M, Wei J. Microglial response to aging and neuroinflammation in the development of neurodegenerative diseases. Neural Regen Res 2024; 19:1241-1248. [PMID: 37905870 DOI: 10.4103/1673-5374.385845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 07/17/2023] [Indexed: 11/02/2023] Open
Abstract
ABSTRACT Cellular senescence and chronic inflammation in response to aging are considered to be indicators of brain aging; they have a great impact on the aging process and are the main risk factors for neurodegeneration. Reviewing the microglial response to aging and neuroinflammation in neurodegenerative diseases will help understand the importance of microglia in neurodegenerative diseases. This review describes the origin and function of microglia and focuses on the role of different states of the microglial response to aging and chronic inflammation on the occurrence and development of neurodegenerative diseases, including Alzheimer's disease, Huntington's chorea, and Parkinson's disease. This review also describes the potential benefits of treating neurodegenerative diseases by modulating changes in microglial states. Therefore, inducing a shift from the neurotoxic to neuroprotective microglial state in neurodegenerative diseases induced by aging and chronic inflammation holds promise for the treatment of neurodegenerative diseases in the future.
Collapse
Affiliation(s)
- Tingting Han
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng, Henan Province, China
| | - Yuxiang Xu
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng, Henan Province, China
| | - Lin Sun
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng, Henan Province, China
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan Province, China
| | - Makoto Hashimoto
- Department of Basic Technology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Jianshe Wei
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng, Henan Province, China
| |
Collapse
|
2
|
Lian J, Liu W, Hu Q, Zhang X. Succinylation modification: a potential therapeutic target in stroke. Neural Regen Res 2024; 19:781-787. [PMID: 37843212 PMCID: PMC10664134 DOI: 10.4103/1673-5374.382229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/27/2023] [Accepted: 06/26/2023] [Indexed: 10/17/2023] Open
Abstract
Stroke is a leading cause of mortality and disability worldwide. Ischemic cell death triggered by the compromised supply of blood oxygen and glucose is one of the major pathophysiology of stroke-induced brain injury. Impaired mitochondrial energy metabolism is observed minutes after stroke and is closely associated with the progression of neuropathology. Recently, a new type of post-translational modification, known as lysine succinylation, has been recognized to play a significant role in mitochondrial energy metabolism after ischemia. However, the role of succinylation modification in cell metabolism after stroke and its regulation are not well understood. We aimed to review the effects of succinylation on energy metabolism, reactive oxygen species generation, and neuroinflammation, as well as Sirtuin 5 mediated desuccinylation after stroke. We also highlight the potential of targeting succinylation/desuccinylation as a promising strategy for the treatment of stroke. The succinylation level is dynamically regulated by the nonenzymatic or enzymatic transfer of a succinyl group to a protein on lysine residues and the removal of succinyl catalyzed by desuccinylases. Mounting evidence has suggested that succinylation can regulate the metabolic pathway through modulating the activity or stability of metabolic enzymes. Sirtuins, especially Sirtuin 5, are characterized for their desuccinylation activity and have been recognized as a critical regulator of metabolism through desuccinylating numerous metabolic enzymes. Imbalance between succinylation and desuccinylation has been implicated in the pathophysiology of stroke. Pharmacological agents that enhance the activity of Sirtuin 5 have been employed to promote desuccinylation and improve mitochondrial metabolism, and neuroprotective effects of these agents have been observed in experimental stroke studies. However, their therapeutic efficacy in stroke patients should be validated.
Collapse
Affiliation(s)
- Jie Lian
- Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenwu Liu
- Department of Diving and Hyperbaric Medicine, Naval Medical Center, Naval Medical University, Shanghai, China
| | - Qin Hu
- Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaohua Zhang
- Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
3
|
Vasikaran S, Thambiah SC, Tan RZ, Loh TP. The Use of Bone-Turnover Markers in Asia-Pacific Populations. Ann Lab Med 2024; 44:126-134. [PMID: 37869778 PMCID: PMC10628755 DOI: 10.3343/alm.2023.0214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 08/03/2023] [Accepted: 09/14/2023] [Indexed: 10/24/2023] Open
Abstract
Bone-turnover marker (BTM) measurements in the blood or urine reflect the bone-remodeling rate and may be useful for studying and clinically managing metabolic bone diseases. Substantial evidence supporting the diagnostic use of BTMs has accumulated in recent years, together with the publication of several guidelines. Most clinical trials and observational and reference-interval studies have been performed in the Northern Hemisphere and have mainly involved Caucasian populations. This review focuses on the available data for populations from the Asia-Pacific region and offers guidance for using BTMs as diagnostic biomarkers in these populations. The procollagen I N-terminal propeptide and β-isomerized C-terminal telopeptide of type-I collagen (measured in plasma) are reference BTMs used for investigating osteoporosis in clinical settings. Premenopausal reference intervals (established for use with Asia-Pacific populations) and reference change values and treatment targets (used to monitor osteoporosis treatment) help guide the management of osteoporosis. Measuring BTMs that are not affected by renal failure, such as the bone-specific isoenzyme alkaline phosphatase and tartrate-resistant acid phosphatase 5b, may be advantageous for patients with advanced chronic kidney disease. Further studies of the use of BTMs in individuals with metabolic bone disease, coupled with the harmonization of commercial assays to provide equivalent results, will further enhance their clinical applications.
Collapse
Affiliation(s)
- Samuel Vasikaran
- Department of Clinical Biochemistry, Fiona Stanley Hospital, Perth, Australia
| | - Subashini C. Thambiah
- Department of Pathology, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Rui Zhen Tan
- Engineering Cluster, Singapore Institute of Technology, Singapore
| | - Tze Ping Loh
- Department of Laboratory Medicine, National University Hospital, Singapore
| | | |
Collapse
|
4
|
Sharma G, Sultana A, Abdullah KM, Pothuraju R, Nasser MW, Batra SK, Siddiqui JA. Epigenetic regulation of bone remodeling and bone metastasis. Semin Cell Dev Biol 2024; 154:275-285. [PMID: 36379849 PMCID: PMC10175516 DOI: 10.1016/j.semcdb.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/28/2022] [Accepted: 11/02/2022] [Indexed: 11/13/2022]
Abstract
Bone remodeling is a continuous and dynamic process of bone formation and resorption to maintain its integrity and homeostasis. Bone marrow is a source of various cell lineages, including osteoblasts and osteoclasts, which are involved in bone formation and resorption, respectively, to maintain bone homeostasis. Epigenetics is one of the elementary regulations governing the physiology of bone remodeling. Epigenetic modifications, mainly DNA methylation, histone modifications, and non-coding RNAs, regulate stable transcriptional programs without causing specific heritable alterations. DNA methylation in CpG-rich promoters of the gene is primarily correlated with gene silencing, and histone modifications are associated with transcriptional activation/inactivation. However, non-coding RNAs regulate the metastatic potential of cancer cells to metastasize at secondary sites. Deregulated or altered epigenetic modifications are often seen in many cancers and interwound with bone-specific tropism and cancer metastasis. Histone acetyltransferases, histone deacetylase, and DNA methyltransferases are promising targets in epigenetically altered cancer. High throughput epigenome mapping and targeting specific epigenetics modifiers will be helpful in the development of personalized epi-drugs for advanced and bone metastasis cancer patients. This review aims to discuss and gather more knowledge about different epigenetic modifications in bone remodeling and metastasis. Further, it provides new approaches for targeting epigenetic changes and therapy research.
Collapse
Affiliation(s)
- Gunjan Sharma
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Ashrafi Sultana
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - K M Abdullah
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Ramesh Pothuraju
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Mohd Wasim Nasser
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Surinder Kumar Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Jawed Akhtar Siddiqui
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
5
|
Ma JY, Xia TJ, Li S, Yin S, Luo SM, Li G. Germline cell de novo mutations and potential effects of inflammation on germline cell genome stability. Semin Cell Dev Biol 2024; 154:316-327. [PMID: 36376195 DOI: 10.1016/j.semcdb.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/05/2022] [Accepted: 11/06/2022] [Indexed: 11/13/2022]
Abstract
Uncontrolled pathogenic genome mutations in germline cells might impair adult fertility, lead to birth defects or even affect the adaptability of a species. Understanding the sources of DNA damage, as well as the features of damage response in germline cells are the overarching tasks to reduce the mutations in germline cells. With the accumulation of human genome data and genetic reports, genome variants formed in germline cells are being extensively explored. However, the sources of DNA damage, the damage repair mechanisms, and the effects of DNA damage or mutations on the development of germline cells are still unclear. Besides exogenous triggers of DNA damage such as irradiation and genotoxic chemicals, endogenous exposure to inflammation may also contribute to the genome instability of germline cells. In this review, we summarized the features of de novo mutations and the specific DNA damage responses in germline cells and explored the possible roles of inflammation on the genome stability of germline cells.
Collapse
Affiliation(s)
- Jun-Yu Ma
- Fertility Preservation Lab, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China.
| | - Tian-Jin Xia
- Fertility Preservation Lab, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China; College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Shuai Li
- Center for Clinical Epidemiology and Methodology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Shen Yin
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China.
| | - Shi-Ming Luo
- Fertility Preservation Lab, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China.
| | - Guowei Li
- Center for Clinical Epidemiology and Methodology, Guangdong Second Provincial General Hospital, Guangzhou, China.
| |
Collapse
|
6
|
Zheng CY, Yu YX, Cao SY, Bai X. Epigenetics of inflammation in hypothalamus pituitary gonadal and neuroendocrine disorders. Semin Cell Dev Biol 2024; 154:340-345. [PMID: 37142487 DOI: 10.1016/j.semcdb.2023.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/01/2023] [Accepted: 04/01/2023] [Indexed: 05/06/2023]
Abstract
The hormone producing hypothalamus, pituitary and gonadal are arranged in hierarchy to form the hypothalamic-pituitary-gonadal axis (HPG axis). The axis is neuroendocrine in nature and releases hormones in response to the inputs from nervous systems. The axis maintains homeostasis and ensures smooth body functions, particularly those related to growth and reproduction. A deregulated HPG axis, such as observed under inflammation and other conditions, is therefore associated with several disorders such as polycystic ovary syndrome, functional hypothalamic amenorrhea etc. Several factors, both genetic as well as environmental, in addition to aging, obesity etc. affect HPG axis with resulting effects on puberty, sexual maturation and reproductive health. More research is now indicative of a role of epigenetics in mediating these HPG-affecting factors. Hypothalamus-secreted gonadotropin-releasing hormone is important for eventual release of sex hormones and it is subjected to several neuronal and epigenetic regulations. Gene promoter methylation as well as histone methylations and acetylations form the backbone of epigenetic regulation of HPG-axis, as the incoming reports suggest. Epigenetic events also mediate several feedback mechanisms within HPG axis and between HPG axis and the central nervous system. In addition, data is emerging for a role of non-coding RNAs, particularly the miRNAs, in regulation and normal functioning of HPG axis. Thus, the epigenetic interactions need better understanding to understand the functioning and regulation of HPG axis.
Collapse
Affiliation(s)
- Chun-Yang Zheng
- Embryo Laboratory, Jinghua Hospital of Shenyang, No. 83, Zhongshan Road, Heping District, Shenyang 110000, Liaoning Province, China
| | - Yue-Xin Yu
- Department of Reproductive Medicine, General Hospital of Northern Theater Command, No. 5, Guangrong Street, Heping District, Shenyang 110000, Liaoning Province, China
| | - Shi-Yue Cao
- Department of Reproductive Medicine, General Hospital of Northern Theater Command, No. 5, Guangrong Street, Heping District, Shenyang 110000, Liaoning Province, China
| | - Xue Bai
- Department of Reproductive Medicine, General Hospital of Northern Theater Command, No. 5, Guangrong Street, Heping District, Shenyang 110000, Liaoning Province, China.
| |
Collapse
|
7
|
Bastien AJ, Ho AS. Surgical Management of Substernal Thyroid Goiters. Otolaryngol Clin North Am 2024; 57:39-52. [PMID: 37652811 DOI: 10.1016/j.otc.2023.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Substernal thyroid goiters can present with progressive symptoms involving compression of vital structures such as the esophagus, trachea, or large vessels. A multidisciplinary approach is critical when diagnosing and treating these patients. This article discusses patient presentation, workup, and management options for patients with substernal goiter as well as surgical pearls to minimize risk of complications.
Collapse
Affiliation(s)
- Amanda J Bastien
- Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Allen S Ho
- Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
8
|
Nason-Tomaszewski CE, Thomas EE, Matera DL, Baker BM, Shikanov A. Extracellular matrix-templating fibrous hydrogels promote ovarian tissue remodeling and oocyte growth. Bioact Mater 2024; 32:292-303. [PMID: 37876554 PMCID: PMC10590725 DOI: 10.1016/j.bioactmat.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 08/14/2023] [Accepted: 10/01/2023] [Indexed: 10/26/2023] Open
Abstract
Synthetic matrices which mimic the extracellular composition of native tissue create a comprehensive model for studying development and disease. Here, we have engineered a composite material which retains cell-secreted ECM for the culture of ovarian follicles by embedding electrospun dextran fibers functionalized with basement membrane binder (BMB) peptide in PEG hydrogels. In the presence of ECM-sequestering fibers, encapsulated immature primordial follicles and ovarian stromal cells aggregated into large organoid-like structures with dense deposition of laminin, perlecan, and collagen I, leading to steroidogenesis and significantly greater rates of oocyte survival and growth. We determined that cell aggregation restored key cell-cell interactions critical for oocyte survival, whereas oocyte growth was dependent on cell-matrix interactions achieved in the presence of BMB. Here we have shown that sequestration and retention of cell-secreted ECM along synthetic fibers mimics fibrous ECM structure and restores the cell-cell and cell-matrix interactions critical for engineering an artificial ovary.
Collapse
Affiliation(s)
| | - Emily E. Thomas
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Daniel L. Matera
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Brendon M. Baker
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ariella Shikanov
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI 48109, USA
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
9
|
Lee SH, Jung EM. Adverse effects of early-life stress: focus on the rodent neuroendocrine system. Neural Regen Res 2024; 19:336-341. [PMID: 37488887 PMCID: PMC10503627 DOI: 10.4103/1673-5374.377587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/28/2023] [Accepted: 04/24/2023] [Indexed: 07/26/2023] Open
Abstract
Early-life stress is associated with a high prevalence of mental illnesses such as post-traumatic stress disorders, attention-deficit/hyperactivity disorder, schizophrenia, and anxiety or depressive behavior, which constitute major public health problems. In the early stages of brain development after birth, events such as synaptogenesis, neuron maturation, and glial differentiation occur in a highly orchestrated manner, and external stress can cause adverse long-term effects throughout life. Our body utilizes multifaceted mechanisms, including neuroendocrine and neurotransmitter signaling pathways, to appropriately process external stress. Newborn individuals first exposed to early-life stress deploy neurogenesis as a stress-defense mechanism; however, in adulthood, early-life stress induces apoptosis of mature neurons, activation of immune responses, and reduction of neurotrophic factors, leading to anxiety, depression, and cognitive and memory dysfunction. This process involves the hypothalamus-pituitary-adrenal axis and neurotransmitters secreted by the central nervous system, including norepinephrine, dopamine, and serotonin. The rodent early-life stress model is generally used to experimentally assess the effects of stress during neurodevelopment. This paper reviews the use of the early-life stress model and stress response mechanisms of the body and discusses the experimental results regarding how early-life stress mediates stress-related pathways at a high vulnerability of psychiatric disorder in adulthood.
Collapse
Affiliation(s)
- Seung Hyun Lee
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan, Republic of Korea
| | - Eui-Man Jung
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan, Republic of Korea
| |
Collapse
|
10
|
Chormey DS, Zaman BT, Kustanto TB, Erarpat Bodur S, Bodur S, Er EÖ, Bakırdere S. Deep eutectic solvents for the determination of endocrine disrupting chemicals. Talanta 2024; 268:125340. [PMID: 37948953 DOI: 10.1016/j.talanta.2023.125340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 11/12/2023]
Abstract
The harmful effects of endocrine disrupting chemicals (EDCs) to humans and other organisms in the environment have been well established over the years, and more studies are ongoing to classify other chemicals that have the potential to alter or disrupt the regular function of the endocrine system. In addition to toxicological studies, analytical detection systems are progressively being improved to facilitate accurate determination of EDCs in biological, environmental and food samples. Recent microextraction methods have focused on the use of green chemicals that are safe for analytical applications, and present very low or no toxicity upon disposal. Deep eutectic solvents (DESs) have emerged as one of the viable alternatives to the conventional hazardous solvents, and their unique properties make them very useful in different applications. Notably, the use of renewable sources to prepare DESs leads to highly biodegradable products that mitigate negative ecological impacts. This review presents an overview of both organic and inorganic EDCs and their ramifications on human health. It also presents the fundamental principles of liquid phase and solid phase microextraction methods, and gives a comprehensive account of the use of DESs for the determination of EDCs in various samples.
Collapse
Affiliation(s)
- Dotse Selali Chormey
- Yıldız Technical University, Department of Chemistry, 34220, İstanbul, Turkiye; Neutec Pharmaceutical, Yıldız Technical University Teknopark, 34220, İstanbul, Turkiye.
| | - Buse Tuğba Zaman
- Yıldız Technical University, Department of Chemistry, 34220, İstanbul, Turkiye
| | - Tülay Borahan Kustanto
- Yıldız Technical University, Department of Chemistry, 34220, İstanbul, Turkiye; Neutec Pharmaceutical, Yıldız Technical University Teknopark, 34220, İstanbul, Turkiye
| | - Sezin Erarpat Bodur
- Yıldız Technical University, Department of Chemistry, 34220, İstanbul, Turkiye
| | - Süleyman Bodur
- Yıldız Technical University, Department of Chemistry, 34220, İstanbul, Turkiye; İstinye University, Faculty of Pharmacy, Department of Analytical Chemistry, 34010, İstanbul, Turkiye; İstinye University, Scientific and Technological Research Application and Research Center, 34010, İstanbul, Turkiye
| | - Elif Özturk Er
- İstanbul Technical University, Department of Chemical Engineering, 34469, İstanbul, Turkiye
| | - Sezgin Bakırdere
- Yıldız Technical University, Department of Chemistry, 34220, İstanbul, Turkiye; Turkish Academy of Sciences (TÜBA), Vedat Dalokay Street, No: 112, 06670, Çankaya, 06670, Ankara, Turkiye.
| |
Collapse
|
11
|
Chen L, Yang G, Qu F. Advances of aptamer-based small-molecules sensors in body fluids detection. Talanta 2024; 268:125348. [PMID: 37925822 DOI: 10.1016/j.talanta.2023.125348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/07/2023]
Abstract
The field of aptamer-based sensing has evolved considerably over the past three decades. The aptamer sensor-based detection of small-molecule targets in body fluids is designed for real-time or rapid, low-cost, non- or minimally invasive tracking and diagnosis of human health status. It can be achieved by specifically monitoring biomarkers or metabolites excreted from various body fluids, including blood, urine, cerebrospinal fluid, saliva, ect. This article reviews a comprehensive collection of aptamer-based sensors for detecting small-molecule in various body fluids. A comparative analysis of aptamer features, emerging chemistry, advanced sensing materials, transduction techniques, and detection performance is conducted, and the strengths and pitfalls of each approach are discussed. Finally, the development process and application challenges of aptamer-based sensors in the detection of small-molecule in body fluids are presented and discussed.
Collapse
Affiliation(s)
- Li Chen
- School of Life Science, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Ge Yang
- CAMS Key Laboratory of Antiviral Drug Research, Beijing Key Laboratory of Antimicrobial Agents, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Feng Qu
- School of Life Science, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, 100081, China.
| |
Collapse
|
12
|
Salman HR, Alzubaidy AA, Abbas AH, Mohammad HA. Attenuated effects of topical vinpocetine in an imiquimod-induced mouse model of psoriasis. J Taibah Univ Med Sci 2024; 19:35-53. [PMID: 37868105 PMCID: PMC10585306 DOI: 10.1016/j.jtumed.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 08/11/2023] [Accepted: 09/09/2023] [Indexed: 10/24/2023] Open
Abstract
Psoriasis is an uncontrolled, long-lasting inflammatory dermatosis distinguished by thickened, erythematous, and flaky skin lesions. Massive amounts of inflammatory cytokines are produced when immune system imbalances are driven by genetic and environmental triggers. Vinpocetine (VNP), a man-made analogue of the compound vincamine found in the dwarf periwinkle herb, has robust anti-inflammatory, immunomodulatory, and anti-oxidative effects; alleviates the epidermal penetration of immune cells, such as eosinophils and neutrophils; and abolishes the generation of pro-inflammatory molecules. Objective This study was aimed at exploring the effects of long-term topical VNP, both alone and co-administered with clobetasol propionate, in an imiquimod-induced mouse model of psoriasiform dermatitis. Methods The study protocol consisted of 48 Swiss albino mice, randomly divided into six groups of eight mice each. In group I, petroleum jelly was administered daily for 8 days. In group II, imiquimod was administered topically at 62.5 mg daily for 8 days. In groups III, VI, V, and VI, 0.05% clobetasol propionate, 1% VNP, 3% VNP, and 3% VNP plus 0.05% clobetasol were administered topically for an additional 8 days after the induction, thus resulting in a total trial length of 16 days. Results Topical VNP at various doses alleviated the severity of imiquimod-induced psoriatic lesions-including erythema, silvery-white scaling, and thickening-and reversed the histopathological abnormalities. Moreover, imiquimod-exposed animals treated with VNP showed markedly diminished concentrations of inflammatory biomarkers, including tumour necrosis factor-α, interleukin (IL)-8, IL-17A, IL-23, IL-37, nuclear factor-kappa B (NF-κB), and transforming growth factor-β1. Conclusion This research provides new evidence that VNP, alone and in combination with clobetasol, may serve as a potential adjuvant for long-term management of autoimmune and autoinflammatory skin diseases, particularly psoriasis, by attenuating psoriatic lesion severity, suppressing cytokine generation, and limiting NF-κB-mediated inflammation.
Collapse
Affiliation(s)
- Hayder R. Salman
- Al-Mustaqbal University, College of Pharmacy, Department of Pharmacology, Hillah, Babylon, Iraq
- Al-Nahrain University, College of Medicine, Department of Pharmacology, Baghdad, Iraq
| | - Adeeb A. Alzubaidy
- University of Warith Al-Anbiyaa, College of Medicine, Department of Pharmacology, Karbala, Iraq
| | - Alaa H. Abbas
- Al-Nahrain University, College of Medicine, Department of Pharmacology, Baghdad, Iraq
| | - Hussein A. Mohammad
- University of Al-Qadisiyah, College of Pharmacy, Department of Pharmaceutics, Al Diwaniya, Al-Qadisiyah Province, Iraq
| |
Collapse
|
13
|
Liu Y, Zhao J, Mu X, Deng J, Wu X, He W, Liu Y, Gu R, Han F, Nie X. Asiaticoside-nitric oxide promoting diabetic wound healing through the miRNA-21-5p/TGF-β1/SMAD7/TIMP3 signaling pathway. J Ethnopharmacol 2024; 319:117266. [PMID: 37783408 DOI: 10.1016/j.jep.2023.117266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/20/2023] [Accepted: 09/29/2023] [Indexed: 10/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Centella asiatica (L.) Urban is an ethnobotanical herb. The main bioactive components of Centella asiatica are pentacyclic triterpenoid glycosides, namely asiaticoside and hydroxyasiaticoside. Asiaticoside possess a diverse array of pharmacological properties, such as wound-healing, anti-inflammatory, antioxidant, anti-allergic, antidepressant, anxiolytic, anti-fibrotic, antibacterial, anti-arthritic, anti-tumor, and immunomodulatory activities. AIM OF THE STUDY The purpose of this inv |