1
|
Yuasa-Kawada J, Kinoshita-Kawada M, Hiramoto M, Yamagishi S, Mishima T, Yasunaga S, Tsuboi Y, Hattori N, Wu JY. Neuronal guidance signaling in neurodegenerative diseases: Key regulators that function at neuron-glia and neuroimmune interfaces. Neural Regen Res 2026; 21:612-635. [PMID: 39995079 DOI: 10.4103/nrr.nrr-d-24-01330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 01/27/2025] [Indexed: 02/26/2025] Open
Abstract
The nervous system processes a vast amount of information, performing computations that underlie perception, cognition, and behavior. During development, neuronal guidance genes, which encode extracellular cues, their receptors, and downstream signal transducers, organize neural wiring to generate the complex architecture of the nervous system. It is now evident that many of these neuroguidance cues and their receptors are active during development and are also expressed in the adult nervous system. This suggests that neuronal guidance pathways are critical not only for neural wiring but also for ongoing function and maintenance of the mature nervous system. Supporting this view, these pathways continue to regulate synaptic connectivity, plasticity, and remodeling, and overall brain homeostasis throughout adulthood. Genetic and transcriptomic analyses have further revealed many neuronal guidance genes to be associated with a wide range of neurodegenerative and neuropsychiatric disorders. Although the precise mechanisms by which aberrant neuronal guidance signaling drives the pathogenesis of these diseases remain to be clarified, emerging evidence points to several common themes, including dysfunction in neurons, microglia, astrocytes, and endothelial cells, along with dysregulation of neuron-microglia-astrocyte, neuroimmune, and neurovascular interactions. In this review, we explore recent advances in understanding the molecular and cellular mechanisms by which aberrant neuronal guidance signaling contributes to disease pathogenesis through altered cell-cell interactions. For instance, recent studies have unveiled two distinct semaphorin-plexin signaling pathways that affect microglial activation and neuroinflammation. We discuss the challenges ahead, along with the therapeutic potentials of targeting neuronal guidance pathways for treating neurodegenerative diseases. Particular focus is placed on how neuronal guidance mechanisms control neuron-glia and neuroimmune interactions and modulate microglial function under physiological and pathological conditions. Specifically, we examine the crosstalk between neuronal guidance signaling and TREM2, a master regulator of microglial function, in the context of pathogenic protein aggregates. It is well-established that age is a major risk factor for neurodegeneration. Future research should address how aging and neuronal guidance signaling interact to influence an individual's susceptibility to various late-onset neurological diseases and how the progression of these diseases could be therapeutically blocked by targeting neuronal guidance pathways.
Collapse
Affiliation(s)
| | | | | | - Satoru Yamagishi
- Department of Optical Neuroanatomy, Institute of Photonics Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Takayasu Mishima
- Division of Neurology, Department of Internal Medicine, Sakura Medical Center, Toho University, Sakura, Japan
| | - Shin'ichiro Yasunaga
- Department of Biochemistry, Fukuoka University Faculty of Medicine, Fukuoka, Japan
| | - Yoshio Tsuboi
- Department of Neurology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Jane Y Wu
- Department of Neurology, Center for Genetic Medicine, Lurie Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
2
|
Wu S, Chen J. Is age-related myelinodegenerative change an initial risk factor of neurodegenerative diseases? Neural Regen Res 2026; 21:648-658. [PMID: 40326982 DOI: 10.4103/nrr.nrr-d-24-00848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 11/25/2024] [Indexed: 05/07/2025] Open
Abstract
Myelination, the continuous ensheathment of neuronal axons, is a lifelong process in the nervous system that is essential for the precise, temporospatial conduction of action potentials between neurons. Myelin also provides intercellular metabolic support to axons. Even minor disruptions in the integrity of myelin can impair neural performance and increase susceptibility to neurological diseases. In fact, myelin degeneration is a well-known neuropathological condition that is associated with normal aging and several neurodegenerative diseases, including multiple sclerosis and Alzheimer's disease. In the central nervous system, compact myelin sheaths are formed by fully mature oligodendrocytes. However, the entire oligodendrocyte lineage is susceptible to changes in the biological microenvironment and other risk factors that arise as the brain ages. In addition to their well-known role in action potential propagation, oligodendrocytes also provide intercellular metabolic support to axons by transferring energy metabolites and delivering exosomes. Therefore, myelin degeneration in the aging central nervous system is a significant contributor to the development of neurodegenerative diseases. Interventions that mitigate age-related myelin degeneration can improve neurological function in aging individuals. In this review, we investigate the changes in myelin that are associated with aging and their underlying mechanisms. We also discuss recent advances in understanding how myelin degeneration in the aging brain contributes to neurodegenerative diseases and explore the factors that can prevent, slow down, or even reverse age-related myelin degeneration. Future research will enhance our understanding of how reducing age-related myelin degeneration can be used as a therapeutic target for delaying or preventing neurodegenerative diseases.
Collapse
Affiliation(s)
- Shuangchan Wu
- Sanhang Institute for Brain Science and Technology (SiBST), School of Medical Research, Northwestern Polytechnical University, Xi'an, Shaanxi Province, China
- Shenzhen Research Institute of Northwestern Polytechnical University, Shenzhen, Guangdong Province, China
| | - Jun Chen
- Sanhang Institute for Brain Science and Technology (SiBST), School of Medical Research, Northwestern Polytechnical University, Xi'an, Shaanxi Province, China
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| |
Collapse
|
3
|
Chen X, Lai J, Wu Z, Chen J, Yang B, Chen C, Ding C. Fat mass and obesity-mediated N 6 -methyladenosine modification modulates neuroinflammatory responses after traumatic brain injury. Neural Regen Res 2026; 21:730-741. [PMID: 39248160 DOI: 10.4103/nrr.nrr-d-23-01854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 05/24/2024] [Indexed: 09/10/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202602000-00042/figure1/v/2025-05-05T160104Z/r/image-tiff The neuroinflammatory response mediated by microglial activation plays an important role in the secondary nerve injury of traumatic brain injury. The post-transcriptional modification of N 6 -methyladenosine is ubiquitous in the immune response of the central nervous system. The fat mass and obesity-related protein catalyzes the demethylation of N 6 -methyladenosine modifications on mRNA and is widely expressed in various tissues, participating in the regulation of multiple diseases' biological processes. However, the role of fat mass and obesity in microglial activation and the subsequent neuroinflammatory response after traumatic brain injury is unclear. In this study, we found that the expression of fat mass and obesity was significantly down-regulated in both lipopolysaccharide-treated BV2 cells and a traumatic brain injury mouse model. After fat mass and obesity interference, BV2 cells exhibited a pro-inflammatory phenotype as shown by the increased proportion of CD11b + /CD86 + cells and the secretion of pro-inflammatory cytokines. Fat mass and obesity-mediated N 6 -methyladenosine demethylation accelerated the degradation of ADAM17 mRNA, while silencing of fat mass and obesity enhanced the stability of ADAM17 mRNA. Therefore, down-regulation of fat mass and obesity expression leads to the abnormally high expression of ADAM17 in microglia. These results indicate that the activation of microglia and neuroinflammatory response regulated by fat mass and obesity-related N 6 -methyladenosine modification plays an important role in the pro-inflammatory process of secondary injury following traumatic brain injury.
Collapse
Affiliation(s)
- Xiangrong Chen
- Department of Neurosurgery, Second Clinical Medical College, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Jinqing Lai
- Department of Neurosurgery, Second Clinical Medical College, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Zhe Wu
- Department of Neurosurgery, Second Clinical Medical College, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Jianlong Chen
- Department of Neurosurgery, Second Clinical Medical College, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Baoya Yang
- Department of Neurosurgery, Second Clinical Medical College, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Chunnuan Chen
- Department of Neurology, Second Clinical Medical College, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Chenyu Ding
- Department of Neurosurgery, Neurosurgery Research Institute, National Regional Medical Center, Binhai Campus, First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian Province, China
| |
Collapse
|
4
|
Desai M, Gulati K, Agrawal M, Ghumra S, Sahoo PK. Stress granules: Guardians of cellular health and triggers of disease. Neural Regen Res 2026; 21:588-597. [PMID: 39995077 DOI: 10.4103/nrr.nrr-d-24-01196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 01/15/2025] [Indexed: 02/26/2025] Open
Abstract
Stress granules are membraneless organelles that serve as a protective cellular response to external stressors by sequestering non-translating messenger RNAs (mRNAs) and regulating protein synthesis. Stress granules formation mechanism is conserved across species, from yeast to mammals, and they play a critical role in minimizing cellular damage during stress. Composed of heterogeneous ribonucleoprotein complexes, stress granules are enriched not only in mRNAs but also in noncoding RNAs and various proteins, including translation initiation factors and RNA-binding proteins. Genetic mutations affecting stress granule assembly and disassembly can lead to abnormal stress granule accumulation, contributing to the progression of several diseases. Recent research indicates that stress granule dynamics are pivotal in determining their physiological and pathological functions, with acute stress granule formation offering protection and chronic stress granule accumulation being detrimental. This review focuses on the multifaceted roles of stress granules under diverse physiological conditions, such as regulation of mRNA transport, mRNA translation, apoptosis, germ cell development, phase separation processes that govern stress granule formation, and their emerging implications in pathophysiological scenarios, such as viral infections, cancer, neurodevelopmental disorders, neurodegeneration, and neuronal trauma.
Collapse
Affiliation(s)
- Meghal Desai
- Department of Biological Sciences, Rutgers University - Newark, Newark, NJ, USA
| | - Keya Gulati
- College of Science and Liberal Arts, New Jersey Institute of Technology, Newark, NJ, USA
| | - Manasi Agrawal
- Department of Biological Sciences, Rutgers University - Newark, Newark, NJ, USA
| | - Shruti Ghumra
- Department of Biological Sciences, Rutgers University - Newark, Newark, NJ, USA
| | - Pabitra K Sahoo
- Department of Biological Sciences, Rutgers University - Newark, Newark, NJ, USA
| |
Collapse
|
5
|
Yao L, Cai X, Yang S, Song Y, Xing L, Li G, Cui Z, Chen J. A single-cell landscape of the regenerating spinal cord of zebrafish. Neural Regen Res 2026; 21:780-789. [PMID: 40326988 DOI: 10.4103/nrr.nrr-d-24-01163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 03/03/2025] [Indexed: 05/07/2025] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202602000-00046/figure1/v/2025-05-05T160104Z/r/image-tiff Unlike mammals, zebrafish possess a remarkable ability to regenerate their spinal cord after injury, making them an ideal vertebrate model for studying regeneration. While previous research has identified key cell types involved in this process, the underlying molecular and cellular mechanisms remain largely unexplored. In this study, we used single-cell RNA sequencing to profile distinct cell populations at different stages of spinal cord injury in zebrafish. Our analysis revealed that multiple subpopulations of neurons showed persistent activation of genes associated with axonal regeneration post injury, while molecular signals promoting growth cone collapse were inhibited. Radial glial cells exhibited significant proliferation and differentiation potential post injury, indicating their intrinsic roles in promoting neurogenesis and axonal regeneration, respectively. Additionally, we found that inflammatory factors rapidly decreased in the early stages following spinal cord injury, creating a microenvironment permissive for tissue repair and regeneration. Furthermore, oligodendrocytes lost maturity markers while exhibiting increased proliferation following injury. These findings demonstrated that the rapid and orderly regulation of inflammation, as well as the efficient proliferation and redifferentiation of new neurons and glial cells, enabled zebrafish to reconstruct the spinal cord. This research provides new insights into the cellular transitions and molecular programs that drive spinal cord regeneration, offering promising avenues for future research and therapeutic strategies.
Collapse
Affiliation(s)
- Lei Yao
- Department of Anesthesiology, Affiliated Hospital 2 of Nantong University, Nantong, Jiangsu Province, China
| | - Xinyi Cai
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, Jiangsu Province, China
| | - Saishuai Yang
- Department of Anesthesiology, Affiliated Hospital 2 of Nantong University, Nantong, Jiangsu Province, China
| | - Yixing Song
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, Jiangsu Province, China
| | - Lingyan Xing
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, Jiangsu Province, China
| | - Guicai Li
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, Jiangsu Province, China
| | - Zhiming Cui
- Department of Spine Surgery, Affiliated Hospital 2 of Nantong University, Nantong, Jiangsu Province, China
- Research Institute for Spine and Spinal Cord Disease of Nantong University, Nantong, Jiangsu Province, China
| | - Jiajia Chen
- Department of Spine Surgery, Affiliated Hospital 2 of Nantong University, Nantong, Jiangsu Province, China
- Research Institute for Spine and Spinal Cord Disease of Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
6
|
Saiyisan A, Zeng S, Zhang H, Wang Z, Wang J, Cai P, Huang J. Chemical exchange saturation transfer MRI for neurodegenerative diseases: An update on clinical and preclinical studies. Neural Regen Res 2026; 21:553-568. [PMID: 39885672 DOI: 10.4103/nrr.nrr-d-24-01246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 01/09/2025] [Indexed: 02/01/2025] Open
Abstract
Chemical exchange saturation transfer magnetic resonance imaging is an advanced imaging technique that enables the detection of compounds at low concentrations with high sensitivity and spatial resolution and has been extensively studied for diagnosing malignancy and stroke. In recent years, the emerging exploration of chemical exchange saturation transfer magnetic resonance imaging for detecting pathological changes in neurodegenerative diseases has opened up new possibilities for early detection and repetitive scans without ionizing radiation. This review serves as an overview of chemical exchange saturation transfer magnetic resonance imaging with detailed information on contrast mechanisms and processing methods and summarizes recent developments in both clinical and preclinical studies of chemical exchange saturation transfer magnetic resonance imaging for Alzheimer's disease, Parkinson's disease, multiple sclerosis, and Huntington's disease. A comprehensive literature search was conducted using databases such as PubMed and Google Scholar, focusing on peer-reviewed articles from the past 15 years relevant to clinical and preclinical applications. The findings suggest that chemical exchange saturation transfer magnetic resonance imaging has the potential to detect molecular changes and altered metabolism, which may aid in early diagnosis and assessment of the severity of neurodegenerative diseases. Although promising results have been observed in selected clinical and preclinical trials, further validations are needed to evaluate their clinical value. When combined with other imaging modalities and advanced analytical methods, chemical exchange saturation transfer magnetic resonance imaging shows potential as an in vivo biomarker, enhancing the understanding of neuropathological mechanisms in neurodegenerative diseases.
Collapse
Affiliation(s)
- Ahelijiang Saiyisan
- Department of Diagnostic Radiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Shihao Zeng
- Department of Diagnostic Radiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Huabin Zhang
- Department of Diagnostic Radiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, Anhui Province, China
| | - Ziyan Wang
- Department of Diagnostic Radiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Jiawen Wang
- Department of Diagnostic Radiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Pei Cai
- Department of Diagnostic Radiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Jianpan Huang
- Department of Diagnostic Radiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
- Tam Wing Fan Neuroimaging Research Laboratory, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| |
Collapse
|
7
|
Chen Z, Yang Y, Peng C, Zhou Z, Wang F, Miao C, Li X, Wang M, Feng S, Chen T, Chen R, Liang Z. Mendelian randomisation studies for causal inference in chronic obstructive pulmonary disease: A narrative review. Pulmonology 2025; 31:2470556. [PMID: 39996617 DOI: 10.1080/25310429.2025.2470556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 02/14/2025] [Indexed: 02/26/2025] Open
Abstract
BACKGROUND AND OBJECTIVE Most non-randomised controlled trials are unable to establish clear causal relationships in chronic obstructive pulmonary disease (COPD) due to the presence of confounding factors. This review summarises the evidence that the Mendelian randomisation method can be a powerful tool for performing causal inferences in COPD. METHODS A non-systematic search of English-language scientific literature was performed on PubMed using the following keywords: 'Mendelian randomisation', 'COPD', 'lung function', and 'GWAS'. No date restrictions were applied. The types of articles selected included randomised controlled trials, cohort studies, observational studies, and reviews. RESULTS Mendelian randomisation is becoming an increasingly popular method for identifying the risk factors of COPD. Recent Mendelian randomisation studies have revealed some risk factors for COPD, such as club cell secretory protein-16, impaired kidney function, air pollutants, asthma, and depression. In addition, Mendelian randomisation results suggest that genetically predicted factors such as PM2.5, inflammatory cytokines, growth differentiation factor 15, docosahexaenoic acid, and testosterone may have causal relationships with lung function. CONCLUSION Mendelian randomisation is a robust method for performing causal inferences in COPD research as it reduces the impact of confounding factors.
Collapse
Affiliation(s)
- Zizheng Chen
- Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Clinical Medicine, Guangzhou Medical University, Guangzhou, China
| | - Yuqiong Yang
- Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Chusheng Peng
- Department of Clinical Medicine, Guangzhou Medical University, Guangzhou, China
| | - Zifei Zhou
- Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Clinical Medicine, Guangzhou Medical University, Guangzhou, China
| | - Fengyan Wang
- Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Clinical Medicine, Guangzhou Medical University, Guangzhou, China
| | - Chengyu Miao
- Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Clinical Medicine, Guangzhou Medical University, Guangzhou, China
| | - Xueping Li
- Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Clinical Medicine, Guangzhou Medical University, Guangzhou, China
| | - Mingdie Wang
- Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Clinical Medicine, Guangzhou Medical University, Guangzhou, China
| | - Shengchuan Feng
- Department of Clinical Medicine, Guangzhou Medical University, Guangzhou, China
| | - Tingnan Chen
- Department of Clinical Medicine, Guangzhou Medical University, Guangzhou, China
| | - Rongchang Chen
- Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Respiratory and Critical Care Medicine, Hetao Institute of Guangzhou National Laboratory, Shenzhen, Guangdong, China
| | - Zhenyu Liang
- Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Clinical Medicine, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
8
|
Martín-González E, Hernández-Pérez JM, Pérez JAP, Pérez-García J, Herrera-Luis E, González-Pérez R, González-González O, Mederos-Luis E, Sánchez-Machín I, Poza-Guedes P, Sardón O, Corcuera P, Cruz MJ, González-Barcala FJ, Martínez-Rivera C, Mullol J, Muñoz X, Olaguibel JM, Plaza V, Quirce S, Valero A, Sastre J, Korta-Murua J, Del Pozo V, Lorenzo-Díaz F, Villar J, Pino-Yanes M, González-Carracedo MA. Alpha-1 antitrypsin deficiency and Pi*S and Pi*Z SERPINA1 variants are associated with asthma exacerbations. Pulmonology 2025; 31:2416870. [PMID: 37236906 DOI: 10.1016/j.pulmoe.2023.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 05/04/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
INTRODUCTION AND OBJECTIVES Asthma is a chronic inflammatory disease of the airways. Asthma patients may experience potentially life-threatening episodic flare-ups, known as exacerbations, which may significantly contribute to the asthma burden. The Pi*S and Pi*Z variants of the SERPINA1 gene, which usually involve alpha-1 antitrypsin (AAT) deficiency, had previously been associated with asthma. The link between AAT deficiency and asthma might be represented by the elastase/antielastase imbalance. However, their role in asthma exacerbations remains unknown. Our objective was to assess whether SERPINA1 genetic variants and reduced AAT protein levels are associated with asthma exacerbations. MATERIALS AND METHODS In the discovery analysis, SERPINA1 Pi*S and Pi*Z variants and serum AAT levels were analyzed in 369 subjects from La Palma (Canary Islands, Spain). As replication, genomic data from two studies focused on 525 Spaniards and publicly available data from UK Biobank, FinnGen, and GWAS Catalog (Open Targets Genetics) were analyzed. The associations between SERPINA1 Pi*S and Pi*Z variants and AAT deficiency with asthma exacerbations were analyzed with logistic regression models, including age, sex, and genotype principal components as covariates. RESULTS In the discovery, a significant association with asthma exacerbations was found for both Pi*S (odds ratio [OR]=2.38, 95% confidence interval [CI]= 1.40-4.04, p-value=0.001) and Pi*Z (OR=3.49, 95%CI=1.55-7.85, p-value=0.003)Likewise, AAT deficiency was associated with a higher risk for asthma exacerbations (OR=5.18, 95%CI=1.58-16.92, p-value=0.007) as well as AAT protein levels (OR= 0.72, 95%CI=0.57-0.91, p-value=0.005). The Pi*Z association with exacerbations was replicated in samples from Spaniards with two generations of Canary Islander origin (OR=3.79, p-value=0.028), and a significant association with asthma hospitalizations was found in the Finnish population (OR=1.12, p-value=0.007). CONCLUSIONS AAT deficiency could be a potential therapeutic target for asthma exacerbations in specific populations.
Collapse
Affiliation(s)
- Elena Martín-González
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna (ULL), 38200 La Laguna, Tenerife, Spain
| | - José M Hernández-Pérez
- Department of Respiratory Medicine, Hospital Universitario de N.S de Candelaria, 38010 Santa Cruz de Tenerife, Spain
- Respiratory Medicine, Hospital Universitario de La Palma, 38713 Breña Alta, Santa Cruz de Tenerife, Spain
| | - José A Pérez Pérez
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna (ULL), 38200 La Laguna, Tenerife, Spain
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL), La Laguna, Tenerife, Spain
| | - Javier Pérez-García
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna (ULL), 38200 La Laguna, Tenerife, Spain
| | - Esther Herrera-Luis
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna (ULL), 38200 La Laguna, Tenerife, Spain
| | - Ruperto González-Pérez
- Allergy Department, Hospital Universitario de Canarias, 38320 La Laguna, Tenerife, Spain
- Severe Asthma Unit, Allergy Department, Hospital Universitario de Canarias, 38320 La Laguna, Spain
| | | | - Elena Mederos-Luis
- Allergy Department, Hospital Universitario de Canarias, 38320 La Laguna, Tenerife, Spain
| | | | - Paloma Poza-Guedes
- Allergy Department, Hospital Universitario de Canarias, 38320 La Laguna, Tenerife, Spain
- Severe Asthma Unit, Allergy Department, Hospital Universitario de Canarias, 38320 La Laguna, Spain
| | - Olaia Sardón
- Division of Pediatric Respiratory Medicine, Hospital Universitario Donostia, San Sebastián, Spain
- Department of Pediatrics, University of the Basque Country (UPV/EHU), San Sebastián, Spain
| | - Paula Corcuera
- Division of Pediatric Respiratory Medicine, Hospital Universitario Donostia, San Sebastián, Spain
| | - María J Cruz
- Department of Respiratory Medicine, Hospital Vall d'Hebron, Barcelona, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Francisco J González-Barcala
- Department of Respiratory Medicine, Complejo Hospitalario Universitario de Santiago, Santiago de Compostela, La Coruña, Spain
| | - Carlos Martínez-Rivera
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
- Department of Respiratory Medicine, Hospital Germans Trias i Pujol, Badalona, Barcelona, Spain
| | - Joaquim Mullol
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
- Rhinology Unit & Smell Clinic, ENT Department, Clinical and Experimental Respiratory Immunoallergy (IDIBAPS), Universitat de Barcelona, Barcelona, Spain
| | - Xavier Muñoz
- Department of Respiratory Medicine, Hospital Vall d'Hebron, Barcelona, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - José M Olaguibel
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
- Department of Allergy, Hospital Universitario de Navarra, Pamplona, Navarra, Spain
| | - Vicente Plaza
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
- Department of Respiratory Medicine, Hospital de la Santa Creu i Sant Pau, Instituto de Investigación Biomédica Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - Santiago Quirce
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
- Department of Allergy, Hospital Universitario La Paz, IdiPAZ, Madrid, Spain
| | - Antonio Valero
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
- Allergy Unit & Severe Asthma Unit, Pneumonology and Allergy Department, Hospital Clínic, IDIBAPS, Universitat de Barcelona, Barcelona, Spain
| | - Joaquín Sastre
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
- Department of Allergy, Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain
| | - Javier Korta-Murua
- Division of Pediatric Respiratory Medicine, Hospital Universitario Donostia, San Sebastián, Spain
| | - Victoria Del Pozo
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
- Department of Immunology, Instituto de Investigación Sanitaria Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain
| | - Fabián Lorenzo-Díaz
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna (ULL), 38200 La Laguna, Tenerife, Spain
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL), La Laguna, Tenerife, Spain
| | - Jesús Villar
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
- Multidisciplinary Organ Dysfunction Evaluation Research Network (MODERN), Research Unit, Hospital Universitario Dr. Negrín, Las Palmas de Gran Canaria, Spain
| | - María Pino-Yanes
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna (ULL), 38200 La Laguna, Tenerife, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna (ULL), San Cristóbal de La Laguna, Tenerife, Spain
| | - Mario A González-Carracedo
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna (ULL), 38200 La Laguna, Tenerife, Spain
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL), La Laguna, Tenerife, Spain
| |
Collapse
|
9
|
Zhu T, Shen D, Cai X, Jin Y, Tu H, Wang S, Pan Q. The causal relationship between gut microbiota and preterm birth: a two-sample Mendelian randomization study. J Matern Fetal Neonatal Med 2025; 38:2432528. [PMID: 39721770 DOI: 10.1080/14767058.2024.2432528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 11/07/2024] [Accepted: 11/14/2024] [Indexed: 12/28/2024]
Abstract
BACKGROUND Preterm birth, a significant global health concern, has been associated with alterations in the gut microbiota. However, the causal nature of this relationship remains uncertain due to the limitations inherent in observational studies. PURPOSE To investigate the potential causal relationship between gut microbiota imbalances and preterm birth. METHODS We conducted a two-sample Mendelian randomization (MR) study using genome-wide association study (GWAS) data from the MiBioGen consortium focusing on microbiota and preterm birth. Single nucleotide polymorphisms (SNPs) associated with the microbiota were selected as instrumental variables. The inverse variance weighting (IVW) method was used to estimate causality. We confirmed pleiotropy and identified and excluded outlier SNPs using MR-PRESSO and MR-Egger regression. Cochran's Q test was applied to assess heterogeneity among SNPs, and a leave-one-out analysis was performed to evaluate the influence of individual SNPs on overall estimates. RESULTS Our findings provide evidence for a causal link between specific components of the gut microbiota and preterm birth, with the identification of relevant metabolites. CONCLUSION This study highlights the causal role of gut microbiota imbalances in preterm birth, offering novel insights into the development of preterm birth and potential targets for prevention strategies.
Collapse
Affiliation(s)
- Tao Zhu
- Department of Clinical Laboratory, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Dandan Shen
- Department of Laboratory Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiao Cai
- Department of Clinical Laboratory, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yuanling Jin
- Department of Clinical Laboratory, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Haixia Tu
- Department of Clinical Laboratory, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shouxing Wang
- Department of Clinical Laboratory, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qianglong Pan
- Department of Clinical Laboratory, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
10
|
Choi JC. Perinuclear organelle trauma at the nexus of cardiomyopathy pathogenesis arising from loss of function LMNA mutation. Nucleus 2025; 16:2449500. [PMID: 39789731 PMCID: PMC11730615 DOI: 10.1080/19491034.2024.2449500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/22/2024] [Accepted: 12/30/2024] [Indexed: 01/12/2025] Open
Abstract
Over the past 25 years, nuclear envelope (NE) perturbations have been reported in various experimental models with mutations in the LMNA gene. Although the hypothesis that NE perturbations from LMNA mutations are a fundamental feature of striated muscle damage has garnered wide acceptance, the molecular sequalae provoked by the NE damage and how they underlie disease pathogenesis such as cardiomyopathy (LMNA cardiomyopathy) remain poorly understood. We recently shed light on one such consequence, by employing a cardiomyocyte-specific Lmna deletion in vivo in the adult heart. We observed extensive NE perturbations prior to cardiac function deterioration with collateral damage in the perinuclear space. The Golgi is particularly affected, leading to cytoprotective stress responses that are likely disrupted by the progressive deterioration of the Golgi itself. In this review, we discuss the etiology of LMNA cardiomyopathy with perinuclear 'organelle trauma' as the nexus between NE damage and disease pathogenesis.
Collapse
Affiliation(s)
- Jason C. Choi
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
11
|
Shan Y, Hu H, Yang A, Zhao W, Chu Y. An integrative approach to identifying NPC1 as a susceptibility gene for gestational diabetes mellitus. J Matern Fetal Neonatal Med 2025; 38:2445665. [PMID: 39746811 DOI: 10.1080/14767058.2024.2445665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 12/16/2024] [Indexed: 01/04/2025]
Abstract
OBJECTIVE The objective of this study was to identify a novel gene and its potential mechanisms associated with susceptibility to gestational diabetes mellitus (GDM) through an integrative approach. METHODS We analyzed data from genome-wide association studies (GWAS) of GDM in the FinnGen R11 dataset (16,802 GDM cases and 237,816 controls) and Genotype Tissue Expression v8 expression quantitative trait locus data. We used summary-data-based Mendelian randomization to determine associations between transcript levels and phenotypes, transcriptome-wide association studies to provide insights into gene-trait associations, multi-marker analysis of genomic annotation to perform gene-based analysis, genome-wide complex trait analysis-multivariate set-based association test-combo to determine gene prioritization, and polygenic priority scores to prioritize the causal genes to screen candidate genes. Subsequent Mendelian randomization analysis was performed to infer causality between the candidate genes and GDM and phenome-wide association study (PheWAS) analysis was used to explore the associations between selected genes and other characteristics. Furthermore, to gain a deeper understanding of the functional implications of these susceptibility genes, GeneMANIA analysis was used to determine the fundamental biological functions of the therapeutic targets and protein-protein interaction network analysis was performed to identify intracellular protein interactions. RESULTS We identified two novel susceptibility genes associated with GDM: NPC1 and KIAA1191. Magnetic resonance imaging revealed a strong correlation between NPC1 expression levels and a lower incidence of GDM (odds ratio: 0.922, 95% confidence interval: 0.866-0.981, p = 0.011). PheWAS at the gene level indicated that NPC1 was not associated with any other trait. The biological significance of this gene was evidenced by its strong association with sterol metabolism. CONCLUSION Our study identified NPC1 as a novel gene whose predicted expression level is linked to a reduced risk of GDM, providing new insights into the genetic framework of this disease.
Collapse
Affiliation(s)
- Yuping Shan
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hong Hu
- Clinical medicine, Nantong University, Nantong, China
| | - Anning Yang
- Department of Obstetrics and Gynecology, Qingdao Eighth People's Hospital, Qingdao, China
| | - Wendi Zhao
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yijing Chu
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
12
|
Zhao W, Lin L, Kelly KM, Opsasnick LA, Needham BL, Liu Y, Sen S, Smith JA. Epigenome-wide association study of perceived discrimination in the Multi-Ethnic Study of Atherosclerosis (MESA). Epigenetics 2025; 20:2445447. [PMID: 39825881 DOI: 10.1080/15592294.2024.2445447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 12/11/2024] [Accepted: 12/16/2024] [Indexed: 01/20/2025] Open
Abstract
Perceived discrimination, recognized as a chronic psychosocial stressor, has adverse consequences on health. DNA methylation (DNAm) may be a potential mechanism by which stressors get embedded into the human body at the molecular level and subsequently affect health outcomes. However, relatively little is known about the effects of perceived discrimination on DNAm. To identify the DNAm sites across the epigenome that are associated with discrimination, we conducted epigenome-wide association analyses (EWAS) of three discrimination measures (everyday discrimination, race-related major discrimination, and non-race-related major discrimination) in 1,151 participants, including 565 non-Hispanic White, 221 African American, and 365 Hispanic individuals, from the Multi-Ethnic Study of Atherosclerosis (MESA). We conducted both race/ethnicity-stratified analyses as well as trans-ancestry meta-analyses. At false discovery rate of 10%, 7 CpGs and 4 differentially methylated regions (DMRs) containing 11 CpGs were associated with perceived discrimination exposures in at least one racial/ethnic group or in meta-analysis. Identified CpGs and/or nearby genes have been implicated in cellular development pathways, transcription factor binding, cancer and multiple autoimmune and/or inflammatory diseases. Of the identified CpGs (7 individual CpGs and 11 within DMRs), two CpGs and one CpG within a DMR were associated with expression of cis genes NDUFS5, AK1RIN1, NCF4 and ADSSL1. Our study demonstrated the potential influence of discrimination on DNAm and subsequent gene expression.
Collapse
Affiliation(s)
- Wei Zhao
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Lisha Lin
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Kristen M Kelly
- Institute for Behavioral Genetics, University of Colorado, Boulder, CO, USA
| | - Lauren A Opsasnick
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Belinda L Needham
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Yongmei Liu
- Department of Medicine, Divisions of Cardiology and Neurology, Duke University Medical Center, Durham, NC, USA
| | - Srijan Sen
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA
| | - Jennifer A Smith
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
13
|
Zeng R, Jiang R, Huang W, Wu H, Zhuo Z, Yang Q, Li J, Leung FW, Sha W, Chen H. Evaluation of causal relationships between genetic liability to inflammatory bowel disease and autism spectrum disorder by Mendelian randomization analysis. DIALOGUES IN CLINICAL NEUROSCIENCE 2025; 27:26-34. [PMID: 39901313 PMCID: PMC11795766 DOI: 10.1080/19585969.2025.2460798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 01/16/2025] [Accepted: 01/27/2025] [Indexed: 02/05/2025]
Abstract
BACKGROUND Emerging observational studies have indicated the association between autism spectrum disorder (ASD) and IBD, including Crohn's disease (CD) and ulcerative colitis (UC), whereas the causality remains unknown. METHODS Summary-level data from large-scale genome-wide association (GWAS) studies of IBD and ASD were retrieved. Mendelian randomisation analyses were performed with a series of sensitivity tests. RESULTS Genetic predisposition to ASD was not associated with the risk of IBD (odds ratio [OR] = 0.99, 95% confidence interval [CI = 0.91-1.06, p = 0.70; OR [95% CI]: 1.03 [0.93-1.13], p = 0.58 for CD; OR [95% CI]: 0.96 [0.87-1.05], p = 0.37 for UC) in the IIBDGC dataset. In the FinnGen dataset, their causal effects were unfounded (OR [95% CI]: 1.04 [0.94-1.15], p = 0.49 for IBD; OR [95% CI]: 1.08 [0.89-1.31], p = 0.42 for CD; OR [95% CI]: 1.00 [0.88-1.13], p = 0.95 for UC). In the meta-analysis of two datasets, the OR was 1.01 (95% CI 0.96-1.07, p = 0.45). For the risk of ASD under genetic liability to IBD, the OR from meta-analysis was 1.03 (95% CI 1.01-1.05, p = 0.01). CONCLUSION Our findings indicate genetic predisposition to ASD might not increase the risk of IBD, whereas genetic liability to IBD is associated with an increased risk of ASD. Further investigations using more powerful datasets are warranted.
Collapse
Affiliation(s)
- Ruijie Zeng
- Department of Gastroenterology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Rui Jiang
- Department of Gastroenterology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Wentao Huang
- Department of Gastroenterology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Huihuan Wu
- Department of Gastroenterology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Zewei Zhuo
- Department of Gastroenterology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
| | - Qi Yang
- Department of Gastroenterology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Jingwei Li
- Department of Gastroenterology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Felix W. Leung
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Sepulveda Ambulatory Care Center, Veterans Affairs Greater Los Angeles Healthcare System, North Hills, CA, USA
| | - Weihong Sha
- Department of Gastroenterology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
| | - Hao Chen
- Department of Gastroenterology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
14
|
Nair A, Khanna J, Kler J, Ragesh R, Sengupta K. Nuclear envelope and chromatin choreography direct cellular differentiation. Nucleus 2025; 16:2449520. [PMID: 39943681 PMCID: PMC11834525 DOI: 10.1080/19491034.2024.2449520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/28/2024] [Accepted: 12/30/2024] [Indexed: 02/20/2025] Open
Abstract
The nuclear envelope plays an indispensable role in the spatiotemporal organization of chromatin and transcriptional regulation during the intricate process of cell differentiation. This review outlines the distinct regulatory networks between nuclear envelope proteins, transcription factors and epigenetic modifications in controlling the expression of cell lineage-specific genes during differentiation. Nuclear lamina with its associated nuclear envelope proteins organize heterochromatin via Lamina-Associated Domains (LADs), proximal to the nuclear periphery. Since nuclear lamina is mechanosensitive, we critically examine the impact of extracellular forces on differentiation outcomes. The nuclear envelope is spanned by nuclear pore complexes which, in addition to their central role in transport, are associated with chromatin organization. Furthermore, mutations in the nuclear envelope proteins disrupt differentiation, resulting in developmental disorders. Investigating the underlying nuclear envelope controlled regulatory mechanisms of chromatin remodelling during lineage commitment will accelerate our fundamental understanding of developmental biology and regenerative medicine.
Collapse
Affiliation(s)
- Anjitha Nair
- Chromosome Biology Lab (CBL), Indian Institute of Science Education and Research (IISER) Pune, Maharashtra, India
| | - Jayati Khanna
- Chromosome Biology Lab (CBL), Indian Institute of Science Education and Research (IISER) Pune, Maharashtra, India
| | - Jashan Kler
- Chromosome Biology Lab (CBL), Indian Institute of Science Education and Research (IISER) Pune, Maharashtra, India
| | - Rohith Ragesh
- Chromosome Biology Lab (CBL), Indian Institute of Science Education and Research (IISER) Pune, Maharashtra, India
| | - Kundan Sengupta
- Chromosome Biology Lab (CBL), Indian Institute of Science Education and Research (IISER) Pune, Maharashtra, India
| |
Collapse
|
15
|
Deshpande G, Das S, Roy AE, Ratnaparkhi GS. A face-off between Smaug and Caspar modulates primordial germ cell count and identity in Drosophila embryos. Fly (Austin) 2025; 19:2438473. [PMID: 39718186 DOI: 10.1080/19336934.2024.2438473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/26/2024] [Accepted: 12/01/2024] [Indexed: 12/25/2024] Open
Abstract
Proper formation and specification of Primordial Germ Cells (PGCs) is of special significance as they gradually transform into Germline Stem Cells (GSCs) that are ultimately responsible for generating the gametes. Intriguingly, not only the PGCs constitute the only immortal cell type but several specific determinants also underlying PGC specification such as Vasa, Nanos and Germ-cell-less are conserved through evolution. In Drosophila melanogaster, PGC formation and specification depends on two independent factors, the maternally deposited specialized cytoplasm (or germ plasm) enriched in germline determinants, and the mechanisms that execute the even partitioning of these determinants between the daughter cells. Prior work has shown that Oskar protein is necessary and sufficient to assemble the functional germ plasm, whereas centrosomes associated with the nuclei that invade the germ plasm are responsible for its equitable distribution. Our recent data suggests that Caspar, the Drosophila orthologue of human Fas-associated factor-1 (FAF1) is a novel regulator that modulates both mechanisms that underlie the determination of PGC fate. Consistently, early blastoderm embryos derived from females compromised for caspar display reduced levels of Oskar and defective centrosomes.
Collapse
Affiliation(s)
- Girish Deshpande
- Department of Biology, Indian Institute of Science Education & Research, Pune, India
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Subhradip Das
- Department of Biology, Indian Institute of Science Education & Research, Pune, India
| | - Adheena Elsa Roy
- Department of Biology, Indian Institute of Science Education & Research, Pune, India
| | - Girish S Ratnaparkhi
- Department of Biology, Indian Institute of Science Education & Research, Pune, India
| |
Collapse
|
16
|
Wang S, Li B, Xu M, Chen C, Liu Z, Ji Y, Qian S, Liu K, Sun G. Aberrant regional neural fluctuations and functional connectivity in insomnia comorbid depression revealed by resting-state functional magnetic resonance imaging. Cogn Neurodyn 2025; 19:8. [PMID: 39780909 PMCID: PMC11704111 DOI: 10.1007/s11571-024-10206-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 05/15/2024] [Accepted: 09/03/2024] [Indexed: 01/11/2025] Open
Abstract
Insomnia is a common mental illness seriously affecting people lives, that might progress to major depression. However, the neural mechanism of patients with CID comorbid MDD remain unclear. Combining fractional amplitude of low-frequency fluctuation (fALFF) and seed-based functional connectivity (FC), this study investigated abnormality in local and long-range neural activity of patients with CID comorbid MDD. Here, we acquired resting-state blood oxygenation level dependent (BOLD) data from 57 patients with CID comorbid MDD and 57 healthy controls (HC). Compared with the controls, patients with CID comorbid MDD exhibited abnormal functional activity in posterior cerebral cortex related to the visual cortex, including the middle occipital gyrus (MOG), the cuneus and the lingual gyrus, specifically, lower fALFF values in the right MOG, left cuneus, and right postcentral gyrus, increased FC between the right MOG and the left cerebellum, and decreased FC between the right MOG and the right lingual gyrus. Neuropsychological correlation analysis revealed that the decreased fALFF in the right MOG was negatively correlated with all the neuropsychological scores of insomnia and depression, reflecting common relationships with symptoms of CID and MDD. While the decreased fALFF of the left cuneus was distinctly correlated with the scores of depression related scales. The decreased FC between the right MOG and the right lingual gyrus was distinctly correlated with the scores of insomnia related scales. This study not only widened neuroimaging evidence that associated with insomnia and depressive symptoms of patients with CID comorbid MDD, but also provided new potential targets for clinical treatment.
Collapse
Affiliation(s)
- Shuang Wang
- Postgraduate Training Base of the 960th Hospital of People’s Liberation Army Joint Logistic Support Force, Jinzhou Medical University, Jinzhou, China
| | - Bo Li
- Department of Radiology, The 960th Hospital of People’s Liberation Army Joint Logistic Support Force, Jinan, China
| | - Minghe Xu
- Postgraduate Training Base of the 960th Hospital of People’s Liberation Army Joint Logistic Support Force, Jinzhou Medical University, Jinzhou, China
| | - Chunlian Chen
- Postgraduate Training Base of the 960th Hospital of People’s Liberation Army Joint Logistic Support Force, Jinzhou Medical University, Jinzhou, China
| | - Zhe Liu
- Department of Radiology, The 960th Hospital of People’s Liberation Army Joint Logistic Support Force, Jinan, China
| | - Yuqing Ji
- Department of Radiology, The 960th Hospital of People’s Liberation Army Joint Logistic Support Force, Jinan, China
| | - Shaowen Qian
- Department of Radiology, The 960th Hospital of People’s Liberation Army Joint Logistic Support Force, Jinan, China
| | - Kai Liu
- Department of Radiology, The 960th Hospital of People’s Liberation Army Joint Logistic Support Force, Jinan, China
| | - Gang Sun
- Department of Radiology, The 960th Hospital of People’s Liberation Army Joint Logistic Support Force, Jinan, China
| |
Collapse
|
17
|
Liu X, Pan X. ALKBH3-mediated m1A demethylation promotes the malignant progression of acute myeloid leukemia by regulating ferroptosis through the upregulation of ATF4 expression. Hematology 2025; 30:2451446. [PMID: 39803678 DOI: 10.1080/16078454.2025.2451446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 01/05/2025] [Indexed: 05/02/2025] Open
Abstract
To investigate the role of ALKBH3 in acute myeloid leukemia (AML), we constructed an animal model of xenotransplantation of AML. Our study demonstrated that ALKBH3-mediated m1A demethylation inhibits ferroptosis in KG-1 cells by increasing ATF4 expression, thus promoting the development of AML. These findings suggest that reducing ALKBH3 expression may be a potential strategy to mitigate AML progression. Background: Acute myeloid leukemia (AML) is characterized by the unrestrained proliferation of myeloid cells. Studies have shown that ALKBH3 is upregulated in most tumors, but the role of ALKBH3 in AML remains unclear.Methods: In this study, we investigated the function of ALKBH3 in AML cells (KG-1) by immunofluorescence, ELISA, flow cytometry, HE staining, and Western blotting.Results: Our results revealed that ALKBH3 is upregulated in AML and that the downregulation of ALKBH3 inhibited KG-1 cell proliferation and promoted cell apoptosis; at the same time, ALKBH3 upregulated ATF4 expression through m1A demethylation, and the knockdown of ATF4 resulted in increased ferrous iron content; TFR1, ACSL4, and PTGS2 expression; and ROS and MDA levels, whereas SOD and GSH levels and the expression levels of ATF4, SLC7A11, GPX4, and FTH1 decreased in KG-1 cells, thereby promoting ferroptosis. Mechanistically, ALKBH3-mediated m1A demethylation suppressed ferroptosis in KG-1 cells by increasing ATF4 expression, thereby promoting the development of AML.Conclusions: Our study indicated that reducing the expression of ALKBH3 might be a potential target for improving AML symptoms.
Collapse
Affiliation(s)
- Xin Liu
- Clinical College of the 920th Hospital of Kunming Medical University, Kunming, Yunnan Province, People's Republic of China
| | - Xinghua Pan
- The Basic Medical Laboratory of the 920th Hospital of Joint Logistics Support Force of PLA, The Transfer Medicine Key Laboratory of Cell Therapy Technology of Yunan Province, The Integrated Engineering Laboratory of Cell Biological Medicine of State and Regions, Kunming, Yunnan Province, People's Republic of China
| |
Collapse
|
18
|
Chen J, Zhao H, He Y, Lin C, Wang Y. Bidirectional Mendelian Randomization analysis of iron status and uremia: no evidence of a causal relationship. Ren Fail 2025; 47:2488138. [PMID: 40302360 PMCID: PMC12044911 DOI: 10.1080/0886022x.2025.2488138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 03/19/2025] [Accepted: 03/29/2025] [Indexed: 05/02/2025] Open
Abstract
Iron status and uremia have been linked, but the causality remains ambiguous. This bidirectional study aimed to explore the causal association between genetically predicted iron status and uremia. Utilizing summary data from genome-wide association studies (GWAS) of iron status and uremia, a two-sample Mendelian Randomization (MR) design was employed. Iron status was assessed through serum iron (SI), serum ferritin (SF), total iron-binding capacity (TIBC), and transferrin saturation (TS), while uremia included renal failure and dialysis. The primary analysis was conducted using the Inverse Variance Weighted (IVW) method. Additional MR evaluation included the weighted median, weighted mode, simple mode, and MR-Egger regression methods. Sensitivity analysis included MR-Egger for pleiotropy, MR-PRESSO for detecting outliers, Cochran's Q test for heterogeneity, and leave-one-out analysis for robustness. Genetically determined iron status did not have a causal effect on the risk of uremia (renal failure or dialysis). The primary IVW results indicated no statistically significant relationship between iron status and uremia (all p > 0.05). Consistent results were found through various methods. Similarly, there were no significant causal effects of uremia on iron status (all p > 0.05). Heterogeneity was observed in some associations, but pleiotropy was generally not evident. This bidirectional MR study provides no evidence for a causal relationship between genetically predicted iron status and the risk of uremia. These findings challenge prior observational associations and highlight the need for further mechanistic and interventional studies to elucidate the complex interplay between iron metabolism and kidney disease.
Collapse
Affiliation(s)
- Jianwei Chen
- Department of General Surgery, Fuzong Clinical Medical College of Fujian Medical University, 900th Hospital of PLA Joint Logistic Support Force, Fuzhou, China
| | - Hu Zhao
- Department of General Surgery, Fuzong Clinical Medical College of Fujian Medical University, 900th Hospital of PLA Joint Logistic Support Force, Fuzhou, China
| | - Yang He
- Department of General Surgery, Fuzong Clinical Medical College of Fujian Medical University, 900th Hospital of PLA Joint Logistic Support Force, Fuzhou, China
| | - Chen Lin
- Department of General Surgery, Fuzong Clinical Medical College of Fujian Medical University, 900th Hospital of PLA Joint Logistic Support Force, Fuzhou, China
| | - Yu Wang
- Department of General Surgery, Fuzong Clinical Medical College of Fujian Medical University, 900th Hospital of PLA Joint Logistic Support Force, Fuzhou, China
| |
Collapse
|
19
|
Leng Y, Zhao Y, Zhou H, Ling X, Wang X, Zhao G, Zhang W. The vestibular and oculomotor dysfunction in Fabry disease: a cohort study in China. Ann Med 2025; 57:2453626. [PMID: 39862133 PMCID: PMC11770862 DOI: 10.1080/07853890.2025.2453626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 01/01/2025] [Accepted: 01/02/2025] [Indexed: 01/30/2025] Open
Abstract
OBJECTIVE Whereas a few studies have evaluated vestibular involvement in Fabry disease (FD), the relationship between vestibular/oculomotor abnormalities and disease-specific biomarkers remain unclear. Therefore, we seek to evaluate these quantitatively and analyze their relationship with disease phenotype and biomarkers in FD. METHODS This cohort study enrolled 37 Chinese FD patients registered in our center. The vestibular/oculomotor examinations were performed, including the videonystagmography, the caloric test and the video head-impulse test. Statistical analyses were made between different subgroups of patients. RESULTS Visuo-oculomotor dysfunctions were found in 30/37 (81.1%) patients. Vestibulo-oculomotor dysfunctions were revealed in 9/22 (40.9%) patients. Statistical tests showed: (1) significantly higher Mainz Severity Score Index in patients with prolonged saccade latency [20(18,33) VS 13(9,22), p = 0.008] and vestibulo-oculomotor dysfunction [23(20,31) VS 9(5.5,12.5), p = 0.024], (2) significantly higher total small-vessel disease score in subgroups with prolonged saccade latency [2.5(1,3.5) VS 1(0,2), p = 0.038], defective smooth pursuit [3(2,4) VS 1(0,2), p = 0.003], defective optokinetic nystagmus [4(2,4) VS 1(0.2), p = 0.009] and vestibulo-oculomotor dysfunction [1(1,3) VS 0(0,1), p = 0.028], (3) significantly lower α-Gal A activity (μmol/L/h) in subgroups with defective saccades [0.44(0.25,1.93) VS 1.85(0.75,5.52), p = 0.015] and defective smooth pursuit [0.30(0.17,0.44) VS 0.96(0.39,2.40), p = 0.008], and (4) significantly elevated plasma globotriaosylsphingosine (ng/ml) in patients with defective saccades [74.16(11.05,89.18) VS 10.64(7.08,36.32), p = 0.034], than in patients without those abnormalities. CONCLUSION A high incidence of extensive vestibular and oculomotor dysfunction was observed in patients with FD, with the neuro-otological dysfunction being closely related to the disease burden and biomarkers like α-Gal A activity and lyso-Gb3.
Collapse
Affiliation(s)
- Yinglin Leng
- Department of Neurology, Peking University First Hospital, China
| | - Yawen Zhao
- Department of Neurology, Peking University First Hospital, China
| | - Hong Zhou
- Department of Neurology, Peking University First Hospital, China
| | - Xia Ling
- Department of Neurology, Peking University First Hospital, China
| | - Xia Wang
- Department of Neurology, Peking University First Hospital, China
| | - Guiping Zhao
- Department of Neurology, Peking University First Hospital, China
| | - Wei Zhang
- Department of Neurology, Peking University First Hospital, China
- Beijing Key Laboratory of Neurovascular Diseases, China
| |
Collapse
|
20
|
Yi J, Jiang C, Xia L. Mediated roles of oxidative stress and kidney function to leukocyte telomere length and prognosis in chronic kidney disease. Ren Fail 2025; 47:2464828. [PMID: 40011224 DOI: 10.1080/0886022x.2025.2464828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 02/03/2025] [Accepted: 02/04/2025] [Indexed: 02/28/2025] Open
Abstract
BACKGROUND Few studies have focused on the correlation between leukocyte telomere length (LTL) and cancer-related mortality or identified potential factors that mediate the relationship between LTL and mortality among chronic kidney disease (CKD) patients. Our study aimed to explore the associations between LTL and all-cause and cause-specific mortality and to identify the underlying mediators. METHODS CKD patients were obtained from the National Health and Nutrition Examination Survey (NHANES) 1999-2002. Cox regression analysis and restricted cubic spline analysis were used to explore the associations between LTL and all-cause or specific-cause mortality and their nonlinear connections. Stratified analyses were executed to assess the relationships among the different subgroups. The latent mediated factors were confirmed using mediation analysis. Sensitivity analyses were used to evaluate the robustness of our findings. RESULTS Longer LTL associated with the lower risk of all-cause mortality, cardiovascular disease (CVD) and cancer-related mortality, and U-shaped relationships were detected. Patients younger than 65 years with greater LTL or who had hypertension had better prognoses. Age and history of hypertension were associated with LTL and overall mortality. In addition, estimated glomerular filtration rate (eGFR), albumin, and total bilirubin mediated the association, and the proportions of indirect effects were 7.81%, 3.77%, and 2.50%, respectively. Six sensitivity analyses confirmed the robustness of our findings. CONCLUSIONS This study revealed that LTL was a protective factor for survival among patients with CKD and emphasized the mediating roles of oxidative stress and kidney function.
Collapse
Affiliation(s)
- Jiahong Yi
- Department of VIP Region, Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| | - Chang Jiang
- Department of VIP Region, Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| | - Liangping Xia
- Department of VIP Region, Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| |
Collapse
|
21
|
Sharma NK, Singh P, Saha B, Bhardwaj A, Iquebal MA, Pal Y, Nayan V, Jaiswal S, Giri SK, Legha RA, Bhattacharya TK, Kumar D, Rai A. Genome wide landscaping of copy number variations for horse inter-breed variability. Anim Biotechnol 2025; 36:2446251. [PMID: 39791493 DOI: 10.1080/10495398.2024.2446251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 12/18/2024] [Indexed: 01/12/2025]
Abstract
Copy number variations (CNVs) have become widely acknowledged as a significant source of genomic variability and phenotypic variance. To understand the genetic variants in horses, CNVs from six Indian horse breeds, namely, Manipuri, Zanskari, Bhutia, Spiti, Kathiawari and Marwari were discovered using Axiom™ Equine Genotyping Array. These breeds differed in agro-climatic adaptation with distinct phenotypic characters. A total of 2668 autosomal CNVs and 381 CNV regions (CNVRs) were identified with PennCNV tool. DeepCNV was employed to re-validate to get 883 autosomal CNVs, of which 9.06% were singleton type. A total of 180 CNVRs were identified after DeepCNV filtering with the estimated length of 3.12 Kb-4.90 Mb. The functional analysis showed the majority of the CNVRs genes enriched for sensory perception and olfactory receptor activity. An Equine CNVs database, EqCNVdb (http://backlin.cabgrid.res.in/eqcnvdb/) was developed which catalogues detailed information on the horse CNVs, CNVRs and gene content within CNVRs. Also, three random CNVRs were validated with real-time polymerase chain reaction. These findings will aid in the understanding the horse genome and serve as a preliminary foundation for future CNV association research with commercially significant equine traits. The identification of CNVs and CNVRs would lead to better insights into genetic basis of important traits.
Collapse
Affiliation(s)
- Nitesh Kumar Sharma
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
- The Graduate School, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Prashant Singh
- ICAR-National Research Centre on Equines, Hisar, Haryana, India
| | - Bibek Saha
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | | | - Mir Asif Iquebal
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Yash Pal
- ICAR-National Research Centre on Equines, Hisar, Haryana, India
| | - Varij Nayan
- ICAR-Central Institute for Research on Buffaloes, Hisar, Haryana, India
| | - Sarika Jaiswal
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Shiv Kumar Giri
- Department of Biotechnology, Maharaja Agrasen University, Baddi (Solan), Himachal Pradesh, India
| | | | | | - Dinesh Kumar
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Anil Rai
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| |
Collapse
|
22
|
Huang C, Chu LM, Liang B, Wu HL, Li BS, Ren S, Hou ML, Nie HC, Kong LY, Fan LQ, Du J, Zhu WB. Comparative genetic analysis of blood and semen samples in sperm donors from Hunan, China. Ann Med 2025; 57:2447421. [PMID: 39757988 PMCID: PMC11721621 DOI: 10.1080/07853890.2024.2447421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/17/2024] [Accepted: 11/22/2024] [Indexed: 01/07/2025] Open
Abstract
OBJECTIVES At present, most genetic tests or carrier screening are performed with blood samples, and the known carrier rate of disease-causing variants is also derived from blood. For semen donors, what is really passed on to offspring is the pathogenic variant in their sperm. This study aimed to determine whether pathogenic variants identified in the sperm of young semen donors are also present in their blood, and whether matching results for blood are consistent with results for sperm. METHODS We included 40 paired sperm and blood samples from 40 qualified semen donors at the Hunan Province Human Sperm Bank of China. All samples underwent exome sequencing (ES) analysis, and the pathogenicity was assessed according to the American College of Medical Genetics (ACMG) guidelines. Scoring for sperm donation matching, which was based on gene scoring and variant scoring, was also used to assess the consistency of sperm and blood genetic test results. RESULTS A total of 108 pathogenic (P)/likely pathogenic (LP) variants in 82 genes were identified. The highest carrier had 7 variants, and there was also one donor did not carry any P/LP variant. On average, each donor carried 2.7 P/LP variants. Among all the P/LP variants, missense mutation was the dominant type and most of them were located in exonic regions. Chromosome 1 harboured the largest number of variants and no pathogenic copy number variants (CNV) was identified in semen donors. The P/LP variant of all the 40 semen donors was consistent by comparing sperm and blood. Except for one case that was slightly different, the rest simulated matching results for blood were all consistent with results for sperm. CONCLUSIONS It is reasonable to choose either blood or sperm for genetic screening in semen donors.
Collapse
Affiliation(s)
- Chuan Huang
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive & Genetic Hospital of International Trust and Investment Corporation (CITIC)-Xiangya, Changsha, China
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Li-Ming Chu
- Basecare Medical Device Co., Ltd, Suzhou, China
| | - Bo Liang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Hui-Lan Wu
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive & Genetic Hospital of International Trust and Investment Corporation (CITIC)-Xiangya, Changsha, China
| | - Bai-Shun Li
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive & Genetic Hospital of International Trust and Investment Corporation (CITIC)-Xiangya, Changsha, China
| | - Shuai Ren
- Basecare Medical Device Co., Ltd, Suzhou, China
| | | | - Hong-Chuan Nie
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive & Genetic Hospital of International Trust and Investment Corporation (CITIC)-Xiangya, Changsha, China
| | | | - Li-Qing Fan
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive & Genetic Hospital of International Trust and Investment Corporation (CITIC)-Xiangya, Changsha, China
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Juan Du
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive & Genetic Hospital of International Trust and Investment Corporation (CITIC)-Xiangya, Changsha, China
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Wen-Bing Zhu
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive & Genetic Hospital of International Trust and Investment Corporation (CITIC)-Xiangya, Changsha, China
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Sciences, Central South University, Changsha, China
| |
Collapse
|
23
|
Yao YX, Tang C, Si FL, Lv JC, Shi SF, Zhou XJ, Liu LJ, Zhang H. Glucagon-like peptide-1 receptor agonists, inflammation, and kidney diseases: evidence from Mendelian randomization. Ren Fail 2025; 47:2478488. [PMID: 40230199 PMCID: PMC12001840 DOI: 10.1080/0886022x.2025.2478488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 02/21/2025] [Accepted: 02/28/2025] [Indexed: 04/16/2025] Open
Abstract
OBJECTIVE It has been proved that glucagon-like peptide-1 receptor (GLP1R) agonists have positive effects on renal outcomes in diabetic patients. However, it remains unknown whether GLP1R agonists could provide similar protection against other kidney diseases. METHODS We performed two-sample Mendelian randomization (MR) analyses to determine the causal effects of GLP1R agonists on multiple kidney diseases. Exposure to GLP1R agonist was proxied by the available cis-eQTLs for GLP1R. Primary outcomes included the risk assessment for diabetic nephropathy, IgA nephropathy, membranous nephropathy, nephrotic syndrome, chronic kidney disease, acute glomerulonephritis, chronic glomerulonephritis and calculus of kidney/ureter. Type 2 diabetes and body mass index were used as positive control. Two-stage network MR analyses were conducted to assess the mediation effect of inflammatory proteins on the relationships between GLP1R agonists and kidney diseases. RESULTS After meta-analyses of both discovery and validation cohorts, genetically proxied GLP1R agonist was found to significantly associated with a decreased risk of diabetic nephropathy (OR = 0.72, 95%CI = 0.54-0.97, p = 0.031) and IgA nephropathy (OR = 0.58, 95%CI = 0.36-0.94, p = 0.027). Two-stage network MR revealed that there was an indirect effect of GLP1R agonist on IgA nephropathy through signaling lymphocytic activation molecule family member 1 (SLAMF1), with a mediated proportion of 34.27% (95% CI, 1.47-67.03%, p = 0.041) of the total effect. CONCLUSIONS The findings of current study presented genetic proof for the potential protective effects of GLP1R agonists in the development of diabetic nephropathy and IgA nephropathy, offering a novel sight for future mechanistic and clinical applications.
Collapse
Affiliation(s)
- Yu-Xuan Yao
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, China
- Ministry of Education, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Beijing, China
- Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Chen Tang
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, China
- Ministry of Education, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Beijing, China
- Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Feng-Lei Si
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, China
- Ministry of Education, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Beijing, China
- Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Ji-Cheng Lv
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, China
- Ministry of Education, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Beijing, China
- Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Su-Fang Shi
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, China
- Ministry of Education, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Beijing, China
- Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Xu-Jie Zhou
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, China
- Ministry of Education, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Beijing, China
- Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Li-Jun Liu
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, China
- Ministry of Education, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Beijing, China
- Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Hong Zhang
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, China
- Ministry of Education, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Beijing, China
- Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
24
|
Anifandis G, Ioannou D, Kokkali G, Chatzimeletiou K, Messini C, Antonouli S, Tempest HG. Navigating the practical challenges and ethical dilemmas of surplus cryopreserved human embryos. Syst Biol Reprod Med 2025; 71:2449901. [PMID: 39873479 DOI: 10.1080/19396368.2025.2449901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/12/2024] [Accepted: 01/01/2025] [Indexed: 01/30/2025]
Abstract
Cryopreservation, the use of very low temperatures to preserve structurally intact living cells and tissues, has seen exponential growth in the field of in vitro fertilization (IVF). In the last decade, cryopreservation of embryos and freeze-all protocols have become an essential aspect and a prerequisite for a successful IVF outcome. Moreover, vitrification, which is a fast and safe cryopreservation method, has proved to be an effective choice for cryopreserving gametes and embryos. The increasing number of cryopreserved embryos worldwide in cryobanks and IVF clinics is an undisputable fact that raises important physiological, ethical, and moral considerations that merit careful examination and discussion. Many couples utilizing assisted reproduction will have a surplus of cryopreserved embryos, in other words they already have completed their family without exhausting all the embryos that were created and cryopreserved during the process. Additionally, the global IVF market has also experienced significant growth due to various factors, including advancements in technology, increased awareness about infertility treatments, and changing societal norms towards delayed parenthood. Thus, for the foreseeable future the number of cryopreserved embryos, and the phenomenon of surplus embryos will likely remain unresolved. In the present review, following a description of the cryopreservation method and the physiological changes during the cryopreservation of embryos, the bioethical issues raised by the surplus cryopreserved embryos will be discussed alongside possible solutions for resolving this phenomenon.
Collapse
Affiliation(s)
- George Anifandis
- Department of Obstetrics and Gynaecology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Dimitrios Ioannou
- College of Medicine, Department of Basic Sciences, Roseman University of Health Sciences, Las Vegas, NV, USA
| | - Georgia Kokkali
- Reproductive Medicine Unit, Genesis Athens Clinic, Athens, Greece
| | - Katerina Chatzimeletiou
- Unit for Human Reproduction, 1st Department of Obstetrics & Gynaecology, Aristotle University Medical School, Papageorgiou General Hospital, Thessaloniki, Greece
| | - Christina Messini
- Department of Obstetrics and Gynaecology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Sevastiani Antonouli
- Department of Obstetrics and Gynaecology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Helen G Tempest
- College of Medicine, Department of Basic Sciences, Roseman University of Health Sciences, Las Vegas, NV, USA
| |
Collapse
|
25
|
Rodrigues CS, Gaifem J, Pereira MS, Alves MF, Silva M, Padrão N, Cavadas B, Moreira-Barbosa C, Alves I, Marcos-Pinto R, Torres J, Lavelle A, Colombel JF, Sokol H, Pinho SS. Alterations in mucosa branched N-glycans lead to dysbiosis and downregulation of ILC3: a key driver of intestinal inflammation. Gut Microbes 2025; 17:2461210. [PMID: 39918275 PMCID: PMC11810091 DOI: 10.1080/19490976.2025.2461210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/29/2024] [Accepted: 01/13/2025] [Indexed: 02/12/2025] Open
Abstract
The perturbation of the symbiotic relationship between microbes and intestinal immune system contributes to gut inflammation and Inflammatory Bowel Disease (IBD) development. The host mucosa glycans (glycocalyx) creates a major biological interface between gut microorganisms and host immunity that remains ill-defined. Glycans are essential players in IBD immunopathogenesis, even years before disease onset. However, how changes in mucosa glycosylation shape microbiome and how this impact gut immune response and inflammation remains to be clarified. Here, we revealed that alterations in the expression of complex branched N-glycans at gut mucosa surface, modeled in glycoengineered mice, resulted in dysbiosis, with a deficiency in Firmicutes bacteria. Concomitantly, this mucosa N-glycan switch was associated with a downregulation of type 3 innate lymphoid cells (ILC3)-mediated immune response, leading to the transition of ILC3 toward an ILC1 proinflammatory phenotype and increased TNFα production. In addition, we demonstrated that the mucosa glycosylation remodeling through prophylactic supplementation with glycans at steady state was able to restore microbial-derived short-chain fatty acids and microbial sensing (by NOD2 expression) alongside the rescue of the expression of ILC3 module, suppressing intestinal inflammation and controlling disease onset. In a complementary approach, we further showed that IBD patients, often displaying dysbiosis, exhibited a tendency of decreased MGAT5 expression at epithelial cells that was accompanied by reduced ILC3 expression in gut mucosa. Altogether, these results unlock the effects of alterations in mucosa glycome composition in the regulation of the bidirectional crosstalk between microbiota and gut immune response, revealing host branched N-glycans/microbiota/ILC3 axis as an essential pathway in gut homeostasis and in preventing health to intestinal inflammation transition.
Collapse
Affiliation(s)
- Cláudia S. Rodrigues
- Institute for Research and Innovation in Health (i3S), Immunology, Cancer & Glycomedicine Group, University of Porto, Porto, Portugal
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
| | - Joana Gaifem
- Institute for Research and Innovation in Health (i3S), Immunology, Cancer & Glycomedicine Group, University of Porto, Porto, Portugal
| | - Márcia S. Pereira
- Institute for Research and Innovation in Health (i3S), Immunology, Cancer & Glycomedicine Group, University of Porto, Porto, Portugal
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
| | - Maria Francisca Alves
- Institute for Research and Innovation in Health (i3S), Immunology, Cancer & Glycomedicine Group, University of Porto, Porto, Portugal
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
- Faculty of Sciences, University of Porto, Porto, Portugal
| | - Mariana Silva
- Institute for Research and Innovation in Health (i3S), Immunology, Cancer & Glycomedicine Group, University of Porto, Porto, Portugal
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
| | - Nuno Padrão
- Institute for Research and Innovation in Health (i3S), Immunology, Cancer & Glycomedicine Group, University of Porto, Porto, Portugal
- Faculty of Medicine, University of Porto, Porto, Portugal
| | - Bruno Cavadas
- Institute for Research and Innovation in Health (i3S), Immunology, Cancer & Glycomedicine Group, University of Porto, Porto, Portugal
| | | | - Inês Alves
- Institute for Research and Innovation in Health (i3S), Immunology, Cancer & Glycomedicine Group, University of Porto, Porto, Portugal
| | - Ricardo Marcos-Pinto
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
- Department of Gastroenterology, Centro Hospitalar do Porto, Porto, Portugal
- Centro de Investigação em Tecnologias e Serviços de Saúde, University of Porto, Porto, Portugal
| | - Joana Torres
- Division of Gastroenterology, Hospital Beatriz Ângelo, Loures, Portugal
- Faculty of Medicine, University of Lisbon, Lisbon, Portugal
- Division of Gastroenterology, Hospital da Luz, Lisbon, Portugal
| | - Aonghus Lavelle
- Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint-Antoine Hospital, Gastroenterology Department, Sorbonne Université, INSERM, Paris, France
| | - Jean-Frederic Colombel
- Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Harry Sokol
- Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint-Antoine Hospital, Gastroenterology Department, Sorbonne Université, INSERM, Paris, France
- INRAE, AgroParisTech, Micalis Institute, Université Paris-Saclay, Jouy-en-Josas, France
- Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France
| | - Salomé S. Pinho
- Institute for Research and Innovation in Health (i3S), Immunology, Cancer & Glycomedicine Group, University of Porto, Porto, Portugal
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
- Faculty of Medicine, University of Porto, Porto, Portugal
| |
Collapse
|
26
|
Karadayı Ataş P. A novel clustered-based binary grey wolf optimizer to solve the feature selection problem for uncovering the genetic links between non-Hodgkin lymphomas and rheumatologic diseases. Health Inf Sci Syst 2025; 13:34. [PMID: 40321894 PMCID: PMC12048384 DOI: 10.1007/s13755-025-00350-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 04/05/2025] [Indexed: 05/08/2025] Open
Abstract
The growing incidence of Non-Hodgkin lymphomas (NHL) in recent times has brought attention to the need for thorough investigations of their genetic associations with autoimmune and rheumatologic conditions, such as systemic lupus, celiac disease, and Sjögren's syndrome. Our study is the first of its type in this field since it uses machine learning to investigate these relationships in great detail. Firstly, we have developed a new genetic dataset, specifically designed to uncover the genetic intricacies of NHL and rheumatologic diseases, offering unprecedented insights into their molecular mechanisms. Following this, we introduced the Clustered-Based Binary Grey Wolf Optimizer (CB-BGWO), a novel method that significantly revolutionizes the feature selection process in genetic analysis. This optimizer significantly improves the accuracy and efficiency of identifying important genetic variables affecting the interaction between rheumatologic and NHL illnesses. This methodological advance not only increases the analytical power but also creates a new standard for genetic research methods. Our findings address a significant gap in the literature and offer valuable insights that could positively support future treatment strategies and research paths. By illuminating the complex genetic connections between NHL and significant rheumatologic conditions, this work contributes to a better understanding and treatment of these complex diseases.
Collapse
|
27
|
Peng J, Chen H. Comment on "Association of low muscle mass index and sarcopenic obesity with knee osteoarthritis: a systematic review and meta-analysis". J Int Soc Sports Nutr 2025; 22:2470230. [PMID: 40018877 PMCID: PMC11873926 DOI: 10.1080/15502783.2025.2470230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025] Open
Affiliation(s)
- Jinxiang Peng
- Hubei Enshi College, Medical Department, Enshi, China
| | - Haozhu Chen
- Hubei University of Chinese Medicine, College of Acupuncture and Bone Injury, Wuhan, China
| |
Collapse
|
28
|
Wutikeli H, Xie T, Xiong W, Shen Y. ELAV/Hu RNA-binding protein family: key regulators in neurological disorders, cancer, and other diseases. RNA Biol 2025; 22:1-11. [PMID: 40000387 PMCID: PMC11926907 DOI: 10.1080/15476286.2025.2471133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 02/13/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025] Open
Abstract
The ELAV/Hu family represents a crucial group of RNA-binding proteins predominantly expressed in neurons, playing significant roles in mRNA transcription and translation. These proteins bind to AU-rich elements in transcripts to regulate the expression of cytokines, growth factors, and the development and maintenance of neurons. Elav-like RNA-binding proteins exhibit remarkable molecular weight conservation across different species, highlighting their evolutionary conservation. Although these proteins are widely expressed in the nervous system and other cell types, variations in the DNA sequences of the four Elav proteins contribute to their distinct roles in neurological disorders, cancer, and other Diseases . Elavl1, a ubiquitously expressed family member, is integral to processes such as cell growth, ageing, tumorigenesis, and inflammatory diseases. Elavl2, primarily expressed in the nervous and reproductive systems, is critical for central nervous system and retinal development; its dysregulation has been implicated in neurodevelopmental disorders such as autism. Both Elavl3 and Elavl4 are restricted to the nervous system and are involved in neuronal differentiation and excitability. Elavl3 is essential for cerebellar function and has been associated with epilepsy, while Elavl4 is linked to neurodegenerative diseases, including Parkinson's and Alzheimer's diseases. This paper provides a comprehensive review of the ELAV/Hu family's role in nervous system development, neurological disorders, cancer, and other diseases.
Collapse
Affiliation(s)
- Huxitaer Wutikeli
- Eye Center, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - Ting Xie
- Division of Life Science, The Hong Kong University of Science and Technology, Special Administrative Region (SAR), Kowloon, Hong Kong, China
| | - Wenjun Xiong
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Yin Shen
- Eye Center, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
29
|
Xu X, Li Z, Liu H, Huang Z, Xiong T, Tang Y. Gene prediction of the relationship between iron deficiency anemia and immune cells. Hematology 2025; 30:2462857. [PMID: 39957075 DOI: 10.1080/16078454.2025.2462857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 01/27/2025] [Indexed: 02/18/2025] Open
Abstract
BACKGROUND Observational studies have shown a potential link between immune factors and the risk of iron deficiency anemia (IDA), yet the causal relationship between immune cells and IDA remains enigmatic. Herein, we used Mendelian randomization (MR) to assess whether this association is causal. METHODS We selected IDA genetic variants, including 8376 samples and 9810691 single nucleotide polymorphisms, and immune cells from a large open genome-wide association study (GWAS) for a bidirectional MR study. The primary method was inverse variance weighting (IVW), and auxiliary analyses were MR-Egger, weighted median, simple mode and weighted mode. The reliability of the results was subsequently verified by heterogeneity and sensitivity analysis. RESULTS IVW method showed that 19 types of immune cells may be the risk factors of IDA, whereas 15 types of immune cells are the protective factors of IDA. Reverse MR analysis suggested that immune cells from upstream etiology of IDA are not involved in follow-up immune activities. Next, we selected 731 immune cell types as the results. The research revealed that IDA may result in a rise in 23 kinds of immune cells and a reduction in 12 kinds of immune cells. In addition, sensitivity analysis demonstrated no evidence of heterogeneity or horizontal pleiotropy. CONCLUSIONS From a genetic standpoint, our study suggests that specific immune cells may be involved in the occurrence of IDA. Inversely, IDA may also contribute to immune dysfunction, thus guiding future clinical investigations.
Collapse
Affiliation(s)
- Xuanxuan Xu
- Department of Hematology, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, People's Republic of China
| | - Zhixia Li
- Department of Hematology, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, People's Republic of China
| | - Huimin Liu
- Department of Hematology, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, People's Republic of China
| | - Zhiping Huang
- Department of Hematology, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, People's Republic of China
| | - Tao Xiong
- Department of Hematology, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, People's Republic of China
| | - Yuanyan Tang
- Department of Hematology, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, People's Republic of China
| |
Collapse
|
30
|
Hu H, Wan S, Hu Y, Wang Q, Li H, Zhang N. Deciphering the role of APOE in cerebral amyloid angiopathy: from genetic insights to therapeutic horizons. Ann Med 2025; 57:2445194. [PMID: 39745195 DOI: 10.1080/07853890.2024.2445194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/26/2024] [Accepted: 11/29/2024] [Indexed: 01/04/2025] Open
Abstract
Cerebral amyloid angiopathy (CAA), characterized by the deposition of amyloid-β (Aβ) peptides in the walls of medium and small vessels of the brain and leptomeninges, is a major cause of lobar hemorrhage in elderly individuals. Among the genetic risk factors for CAA that continue to be recognized, the apolipoprotein E (APOE) gene is the most significant and prevalent, as its variants have been implicated in more than half of all patients with CAA. While the presence of the APOE ε4 allele markedly increases the risk of CAA, the ε2 allele confers a protective effect relative to the common ε3 allele. These allelic variants encode three APOE isoforms that differ at two amino acid positions. The primary physiological role of APOE is to mediate lipid transport in the brain and periphery; however, it has also been shown to be involved in a wide array of biological functions, particularly those involving Aβ, in which it plays a known role in processing, production, aggregation, and clearance. The challenges posed by the reliance on postmortem histological analyses and the current absence of an effective intervention underscore the urgency for innovative APOE-targeted strategies for diagnosing CAA. This review not only deepens our understanding of the impact of APOE on the pathogenesis of CAA but can also help guide the exploration of targeted therapies, inspiring further research into the therapeutic potential of APOE.
Collapse
Affiliation(s)
- Hantian Hu
- Tianjin Medical University, Tianjin, China
| | - Siqi Wan
- Tianjin Medical University, Tianjin, China
| | - Yuetao Hu
- Tianjin Medical University, Tianjin, China
| | - Qi Wang
- Tianjin Medical University, Tianjin, China
| | - Hanyu Li
- Tianjin Medical University, Tianjin, China
| | - Nan Zhang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
31
|
Rashid A, Munir A, Zahid M, Ullah M, Rehman AU. Exome sequencing identifies a homozygous splice site variant in RP1 as the underlying cause of autosomal recessive retinitis pigmentosa in a Pakistani family. Ann Med 2025; 57:2470953. [PMID: 40029043 DOI: 10.1080/07853890.2025.2470953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 12/12/2024] [Accepted: 02/10/2025] [Indexed: 03/05/2025] Open
Abstract
BACKGROUND Mutations in RP1 gene are the third leading cause of inherited retinal dystrophies (IRDs) in Pakistani families. PATIENTS A two-generation consanguineous Pakistani family underwent both clinical and genetic analyses. Clinical examinations included visual acuity test, visual field, fundoscopy, and ocular coherence tomography (OCT). Whole exome sequencing (WES) was performed on the proband's DNA, and Sanger sequencing was performed to validate the WES findings. Splicing prediction tools such as Human Splicing Finder (HSF), NNSplice predictor, SpliceAI, MaxENTScan, and SpliceRover were used. RESULTS A nuclear family of seven children, comprising five affected individuals (four males and one female) and two healthy siblings, was recruited from northwestern Pakistan. The proband was a 49-years old male who was presented with complaints of decreased visual acuity and night blindness since early childhood. Upon clinical evaluation, the proband appeared to have severely reduced visual acuity of hand movement (HM), bilateral visual field constriction, a waxy pale disc with vascular attenuation, pigmentary bone spicules at the periphery associated with chorioretinal degeneration, diffuse macular atrophy, and horizontal nystagmus in both of his eyes. Exome sequencing (ES) in the proband identified a homozygous splice site variant (NM_006269.2: c.615 + 1G > A) in RP1 gene. In-silico analysis, genotype-phenotype co-segregation study, and literature survey strongly supported the causality of the detected variant. CONCLUSIONS We report a previously known pathogenic splice site variant of RP1 as the underlying cause of early-onset autosomal recessive retinitis pigmentosa (arRP) in a Pakistani family. We contemplate that the detected allele might constitute a mutational hotspot in RP1.
Collapse
Affiliation(s)
- Abdur Rashid
- Department of Zoology, Islamia College University, Peshawar, Pakistan
| | - Asad Munir
- Department of Zoology, Faculty of Biological and Health Sciences, Hazara University, Mansehra, Pakistan
| | - Muhammad Zahid
- Department of Zoology, Islamia College University, Peshawar, Pakistan
| | - Mukhtar Ullah
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland
- Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Atta Ur Rehman
- Department of Zoology, Faculty of Biological and Health Sciences, Hazara University, Mansehra, Pakistan
| |
Collapse
|
32
|
Khulan B, Ye K, Shi MK, Waldman S, Marsh A, Siddiqui T, Okorozo A, Desai A, Patel D, Dobkin J, Sadoughi A, Shah C, Gera S, Peter Y, Liao W, Vijg J, Spivack SD. Normal bronchial field basal cells show persistent methylome-wide impact of tobacco smoking, including in known cancer genes. Epigenetics 2025; 20:2466382. [PMID: 39980243 PMCID: PMC11849931 DOI: 10.1080/15592294.2025.2466382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 01/30/2025] [Accepted: 02/07/2025] [Indexed: 02/22/2025] Open
Abstract
Lung carcinogenesis is causally linked to cigarette smoking, in part by epigenetic changes. We tested whether accumulated epigenetic change in smokers is apparent in bronchial basal cells as cells of origin of squamous cell carcinoma. Using an EM-seq platform covering 53.8 million CpGs (96% of the entire genome) at an average of 7.5 sequencing reads per CpG site at a single base resolution, we evaluated cytology-normal basal cells bronchoscopically brushed from the in situ tobacco smoke-exposed 'bronchial epithelial field' and isolated by short-term primary culture from 54 human subjects. We found that mean methylation was globally lower in ever (former and current) smokers versus never smokers (p = 0.0013) across promoters, CpG shores, exons, introns, 3'-UTRs, and intergenic regions, but not in CpG islands. Among 6mers with dinucleotides flanking CpG, those containing CGCG showed no effect from smoking, while those flanked with TT and AA displayed the strongest effects. At the gene level, smoking-related differences in methylation level were observed in CDKL1, ARTN, EDC3, CYP1B1, FAM131A, and MAGI2. Among candidate cancer genes, smoking reduced the methylation level in KRAS, ROS1, CDKN1A, CHRNB4, and CADM1. We conclude that smoking reduces long-term epigenome-wide methylation in bronchial stem cells, is impacted by the flanking sequence, and persists indefinitely beyond smoking cessation.
Collapse
Affiliation(s)
- Batbayar Khulan
- Department of Pulmonary Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Kenny Ye
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Miao Kevin Shi
- Department of Pulmonary Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Spencer Waldman
- Department of Pulmonary Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ava Marsh
- Department of Pulmonary Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Taha Siddiqui
- Department of Pulmonary Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Aham Okorozo
- Department of Pulmonary Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Aditi Desai
- Department of Pulmonary Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Dhruv Patel
- Department of Pulmonary Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jay Dobkin
- Department of Pulmonary Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ali Sadoughi
- Department of Pulmonary Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Chirag Shah
- Department of Pulmonary Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Shweta Gera
- Department of Pathology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Yakov Peter
- Department of Biology, Lander College, Touro University, NY, USA
| | - Will Liao
- New York Genome Center, New York, NY, USA
| | - Jan Vijg
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Simon D. Spivack
- Department of Pulmonary Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
33
|
Ioannou D, Tempest HG. The genetic basis of male and female infertility. Syst Biol Reprod Med 2025; 71:143-169. [PMID: 40294233 DOI: 10.1080/19396368.2025.2493621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 04/04/2025] [Accepted: 04/10/2025] [Indexed: 04/30/2025]
Abstract
This review provides a comprehensive overview of the genetic factors underlying male and female infertility. Infertility affects an estimated one in six couples worldwide, with both male and female factors contributing equally to its prevalence. Approximately, 50% of infertility cases are attributed to genetic causes. We explore three main categories of genetic causes: chromosomal abnormalities, monogenic disorders, and syndromic conditions. Chromosomal causes, including numerical and structural aberrations, are discussed with a focus on their impact on gametogenesis and reproductive outcomes. We review key monogenic causes of infertility, highlighting recent discoveries in genes critical for gonadal development, gametogenesis, and hormonal regulation. Syndromic conditions affecting fertility are examined, highlighting their impact on reproductive function. Throughout the review, we address the challenges in identifying genetic mechanisms of infertility, particularly focusing on the intricate processes involved in oogenesis and spermatogenesis. We also discuss how advancements in genetic testing, such as next-generation sequencing (NGS) and genome-wide association studies (GWAS), have significantly enhanced our understanding of idiopathic infertility and promise further insights in the future. We also discuss the clinical implications of genetic diagnoses, including the role of preimplantation genetic testing (PGT) and genetic counseling in reproductive medicine. This review synthesizes current knowledge on the genetic basis of infertility, providing a comprehensive overview of chromosomal, monogenic, and syndromic causes. It aims to offer readers a solid foundation for understanding the complex genetic factors underlying reproductive disorders.
Collapse
Affiliation(s)
- Dimitrios Ioannou
- Department of Basic Sciences, College of Medicine, Roseman University of Health Sciences, Las Vegas, NV, USA
| | - Helen G Tempest
- Department of Basic Sciences, College of Medicine, Roseman University of Health Sciences, Las Vegas, NV, USA
| |
Collapse
|
34
|
Xu X, Fei X, Wang H, Wu X, Zhan Y, Li X, Zhou Y, Shu C, He C, Hu Y, Liu J, Lv N, Li N, Zhu Y. Helicobacter pylori infection induces DNA double-strand breaks through the ACVR1/IRF3/POLD1 signaling axis to drive gastric tumorigenesis. Gut Microbes 2025; 17:2463581. [PMID: 39924917 PMCID: PMC11812335 DOI: 10.1080/19490976.2025.2463581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 01/06/2025] [Accepted: 02/02/2025] [Indexed: 02/11/2025] Open
Abstract
Helicobacter pylori (H. pylori) infection plays a pivotal role in gastric carcinogenesis through inflammation-related mechanisms. Activin A receptor type I (ACVR1), known for encoding the type I receptor for bone morphogenetic proteins (BMPs), has been identified as a cancer diver gene across various tumors. However, the specific role of AVCR1 in H. pylori-induced gastric tumorigenesis remains incompletely understood. We conducted a comprehensive analysis of the clinical relevance of ACVR1 by integrating data from public databases and our local collection of human gastric tissues. In vitro cell cultures, patient-derived gastric organoids, and transgenic INS-GAS mouse models were used for Western blot, qRT-PCR, immunofluorescence, immunohistochemistry, luciferase assays, ChIP, and comet assays. Furthermore, to investigate the therapeutic potential, we utilized the ACVR1 inhibitor DM3189 in our in vivo studies. H. pylori infection led to increased expression of ACVR1 in gastric epithelial cells, gastric organoid and gastric mucosa of INS-GAS mice. ACVR1 activation led to DNA double-strand break (DSB) accumulation by inhibiting POLD1, a crucial DNA repair enzyme. The activation of POLD1 was facilitated by the transcription factor IRF3, with identified binding sites. Additionally, treatment with the ACVR1 inhibitor DM3189 significantly ameliorated H. pylori-induced gastric pathology and reduced DNA damage in INS-GAS mice. Immunohistochemistry analysis showed elevated levels of ACVR1 in H. pylori-positive gastritis tissues, showing a negative correlation with POLD1 expression. This study uncovers a novel signaling axis of AVCR1/IRF3/POLD1 in the pathogenesis of H. pylori infection. The upregulation of ACVR1 and the suppression of POLD1 upon H. pylori infection establish a connection between the infection, genomic instability, and the development of gastric carcinogenesis.
Collapse
Affiliation(s)
- Xinbo Xu
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Xiao Fei
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Huan Wang
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Xidong Wu
- Department of Drug Safety Evaluation, Jiangxi Testing Center of Medical Instruments, Nanchang, China
| | - Yuan Zhan
- Department of Pathology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Xin Li
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Yan’an Zhou
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Chunxi Shu
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Cong He
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Yi Hu
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Jianping Liu
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Nonghua Lv
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Nianshuang Li
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Yin Zhu
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
35
|
Ling J, Khan A, Denkewitz M, Maccarana M, Lundkvist Å, Li JP, Li J. Dual roles of exostosin glycosyltransferase 1 in Zika virus infection. Virulence 2025; 16:2458681. [PMID: 39927690 PMCID: PMC11812395 DOI: 10.1080/21505594.2025.2458681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 01/07/2025] [Accepted: 01/19/2025] [Indexed: 02/11/2025] Open
Abstract
Many factors involved in heparan sulfate (HS) biosynthesis and metabolism have been reported to play roles in viral infection. However, the detailed mechanisms are still not fully understood. In this study, we report that exostosin glycosyltransferase 1 (EXT1), the HS polymerase, is a critical regulatory factor for Zika virus (ZIKV) infection. Knocking out EXT1 dramatically restricts ZIKV infection, which is not due to the inhibition of virus entry resulting from HS deficiency, but mediated by the downregulation of autophagy. Induction of autophagy promotes ZIKV infection, and attenuated autophagy is found in distinct EXT1 knockout (EXT1-KO) cell lines. Induction of autophagy by rapamycin can relieve the ZIKV production defect in EXT1-KO cells. While over-expressing EXT1 results in the reduction of ZIKV production by targeting the viral envelope (E) protein and non-structural protein NS3 in a proteasome-dependent degradation manner. The different roles of EXT1 in ZIKV infection are further confirmed by the data that knocking down EXT1 at the early stage of ZIKV infection represses viral infection, whereas the increase of ZIKV infection is observed when knocking down EXT1 at the late stage of viral infection. This study discovers previously unrecognized intricate roles of EXT1 in ZIKV infection.
Collapse
Affiliation(s)
- Jiaxin Ling
- Department of Medical Biochemistry and Microbiology, The Biomedical Center, Uppsala University, Uppsala, Sweden
- Zoonosis Science Center, Uppsala University, Uppsala, Sweden
| | - Asifa Khan
- Department of Medical Biochemistry and Microbiology, The Biomedical Center, Uppsala University, Uppsala, Sweden
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy
| | - Matthias Denkewitz
- Department of Medical Biochemistry and Microbiology, The Biomedical Center, Uppsala University, Uppsala, Sweden
- Institute of Medical Virology, University Hospital Frankfurt, Goethe University,Germany
| | - Marco Maccarana
- Department of Medical Biochemistry and Microbiology, The Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Åke Lundkvist
- Department of Medical Biochemistry and Microbiology, The Biomedical Center, Uppsala University, Uppsala, Sweden
- Zoonosis Science Center, Uppsala University, Uppsala, Sweden
| | - Jin-Ping Li
- Department of Medical Biochemistry and Microbiology, The Biomedical Center, Uppsala University, Uppsala, Sweden
- SciLifeLab Uppsala, Uppsala University, Uppsala, Sweden
| | - Jinlin Li
- Department of Medical Biochemistry and Microbiology, The Biomedical Center, Uppsala University, Uppsala, Sweden
- Zoonosis Science Center, Uppsala University, Uppsala, Sweden
| |
Collapse
|
36
|
Shin J, Bressler J, Grove ML, Brown M, Selvin E, Pankow JS, Fornage M, Morrison AC, Sarnowski C. DNA methylation markers of insulin resistance surrogate measures in the Atherosclerosis Risk in Communities (ARIC) study. Epigenetics 2025; 20:2498857. [PMID: 40327844 DOI: 10.1080/15592294.2025.2498857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 04/03/2025] [Accepted: 04/21/2025] [Indexed: 05/08/2025] Open
Abstract
Insulin resistance (IR) is a risk factor for cardiovascular diseases and type 2 diabetes. Associations between DNA methylation (DNAm) and IR have been less studied in African ancestry (AA) populations than those of European ancestry (EA). We aimed to identify associations between whole blood DNAm and IR in up to 1,811 AA and 964 EA participants from the Atherosclerosis Risk in Communities (ARIC) study. We quantified IR using three surrogate measures: the homeostasis model assessment of insulin resistance (HOMA-IR), the triglyceride-glucose index (TyG), and the triglyceride glucose-body mass index (TyG-BMI). We used ancestry-stratified linear regression models to conduct epigenome-wide association studies of IR, adjusting for batch effects and relevant covariates. Among 484,436 tested CpG sites, 39 were significantly associated with IR, of which 31% (10 in AA and two in EA) were associated with TyG-BMI and not previously reported for IR or related traits. These include a positive association at cg18335991-SEMA7A in AA. SEMA7A inhibits adipogenesis of preadipocytes and lipogenesis of mature adipocytes. DNAm levels at cg18335991 have been reported to be negatively associated with SEMA7A expression in blood. After additionally adjusting for smoking and drinking status, 15 of the 39 significant CpG sites remained significant or suggestive. Our study identified novel IR-associated CpG sites, contributing to a broader understanding of the epigenetic mechanisms underlying IR in diverse populations.
Collapse
Affiliation(s)
- Jeewoen Shin
- Human Genetics Center, Department of Epidemiology, University of Texas Health Science Center at Houston, Houston, School of Public Health, TX, USA
| | - Jan Bressler
- Human Genetics Center, Department of Epidemiology, University of Texas Health Science Center at Houston, Houston, School of Public Health, TX, USA
| | - Megan L Grove
- Human Genetics Center, Department of Epidemiology, University of Texas Health Science Center at Houston, Houston, School of Public Health, TX, USA
| | - Michael Brown
- Human Genetics Center, Department of Epidemiology, University of Texas Health Science Center at Houston, Houston, School of Public Health, TX, USA
| | - Elizabeth Selvin
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - James S Pankow
- Division of Epidemiology and Community Health, University of Minnesota School of Public Health, Minneapolis, MN, USA
| | - Myriam Fornage
- Human Genetics Center, Department of Epidemiology, University of Texas Health Science Center at Houston, Houston, School of Public Health, TX, USA
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Alanna C Morrison
- Human Genetics Center, Department of Epidemiology, University of Texas Health Science Center at Houston, Houston, School of Public Health, TX, USA
| | - Chloé Sarnowski
- Human Genetics Center, Department of Epidemiology, University of Texas Health Science Center at Houston, Houston, School of Public Health, TX, USA
| |
Collapse
|
37
|
Yang Y, Zhong Y, Chen L. EIciRNAs in focus: current understanding and future perspectives. RNA Biol 2025; 22:1-12. [PMID: 39711231 DOI: 10.1080/15476286.2024.2443876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 11/14/2024] [Accepted: 12/09/2024] [Indexed: 12/24/2024] Open
Abstract
Circular RNAs (circRNAs) are a unique class of covalently closed single-stranded RNA molecules that play diverse roles in normal physiology and pathology. Among the major types of circRNA, exon-intron circRNA (EIciRNA) distinguishes itself by its sequence composition and nuclear localization. Recent RNA-seq technologies and computational methods have facilitated the detection and characterization of EIciRNAs, with features like circRNA intron retention (CIR) and tissue-specificity being characterized. EIciRNAs have been identified to exert their functions via mechanisms such as regulating gene transcription, and the physiological relevance of EIciRNAs has been reported. Within this review, we present a summary of the current understanding of EIciRNAs, delving into their identification and molecular functions. Additionally, we emphasize factors regulating EIciRNA biogenesis and the physiological roles of EIciRNAs based on recent research. We also discuss the future challenges in EIciRNA exploration, underscoring the potential for novel functions and functional mechanisms of EIciRNAs for further investigation.
Collapse
Affiliation(s)
- Yan Yang
- Department of Cardiology, The First Affiliated Hospital of USTC, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
- Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, China
| | - Yinchun Zhong
- Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, China
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Liang Chen
- Department of Cardiology, The First Affiliated Hospital of USTC, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
38
|
Akinborewa O, Quattrocelli M. Glucocorticoid receptor epigenetic activity in the heart. Epigenetics 2025; 20:2468113. [PMID: 40007064 DOI: 10.1080/15592294.2025.2468113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/23/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
The glucocorticoid receptor (GR) is a critical nuclear receptor that regulates gene expression in diverse tissues, including the heart, where it plays a key role in maintaining cardiovascular health. GR signaling influences essential processes within cardiomyocytes, including hypertrophy, calcium handling, and metabolic balance, all of which are vital for proper cardiac function. Dysregulation of GR activity has been implicated in various cardiovascular diseases (CVDs), highlighting the potential of GR as a therapeutic target. Remarkably, recent insights into GR's epigenetic regulation and its interaction with circadian rhythms reveal opportunities to optimize therapeutic strategies by aligning glucocorticoid administration with circadian timing. In this review, we provide an overview of the glucocorticoid receptor's role in cardiac physiology, detailing its genomic and non-genomic pathways, interactions with epigenetic and circadian regulatory mechanisms, and implications for cardiovascular disease. By dissecting these molecular interactions, this review outlines the potential of epigenetically informed and circadian-timed interventions that could change the current paradigms of CVD treatments in favor of precise and effective therapies.
Collapse
Affiliation(s)
- Olukunle Akinborewa
- Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pharmacology, Physiology, and Neurobiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Mattia Quattrocelli
- Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
39
|
Zhang Z, Niu J, Sun W, Sun Y, Tan Y, Yu J. Dietary habits and risk of diabetic kidney disease: a two-sample and multivariate Mendelian randomization study. Ren Fail 2025; 47:2438848. [PMID: 40074716 PMCID: PMC11912233 DOI: 10.1080/0886022x.2024.2438848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 11/13/2024] [Accepted: 12/02/2024] [Indexed: 03/14/2025] Open
Abstract
OBJECTIVE We explored the causal relationship between certain dietary habits and the risk of developing diabetic kidney disease (DKD) using two-sample Mendelian randomization and multivariate Mendelian randomization. RESEARCH DESIGN AND METHODS This study is based on pooled data from a genome-wide association study (GWAS) of 83 dietary habits in a European population. We performed a two-sample Mendelian randomization analysis using GAWS data on diabetic nephropathy in a European population. Validation was then performed against positive results (p < 0.05) in different GAWS data on diabetic nephropathy of European origin. Finally, multivariate Mendelian randomization analyses were performed on dietary habits with positive results (p < 0.05) in both datasets and GWAS data on postprandial glucose in the European population. RESULTS This study showed causal relationships between 18 dietary habits and the risk of developing DKD. After validation, causal relationships were found between the risk of DKD and two dietary habits: abstaining from sugar consumption (OR 2.86; 95%CI 1.35, 6.08; p = 0.006) and consuming whole grain/multigrain bread (OR 0.53; 95%CI 0.32, 0.89; p = 0.016). Correcting for the effect of postprandial glucose, the multivariate MR results showed that never eating sugar increased the risk of developing DKD (OR 0.08; 95%CI 0.018, 0.36; p = 0.001), whereas eating whole grain/multigrain bread did not reduce the risk of developing DKD (OR 1.37; 95%CI 0.55, 3.41; p = 0.50). CONCLUSIONS Our MR results suggest a causal relationship between never eating sugar and an increased risk of developing DKD. Therefore, people with diabetes need a reasonable range of sugar intake.
Collapse
Affiliation(s)
- Ziqi Zhang
- Department of Endocrinology, Nanjing Hospital of Chinese Medicine, Nanjing Hospital of Chinese Medicine affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Jieyu Niu
- Department of Traditional Chinese Medicine, Chang'an Town Health Center, Haining City, Zhejiang Province, China
| | - Wenhao Sun
- First School of Clinical Medicine, Nanjing University of Traditional Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Yuqing Sun
- First School of Clinical Medicine, Nanjing University of Traditional Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Ying Tan
- Department of Endocrinology, Jiangsu Provincial Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Jiangyi Yu
- Department of Endocrinology, Jiangsu Provincial Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| |
Collapse
|
40
|
Ma Y, Boycott C, Zhang J, Gomilar R, Yang T, Stefanska B. SIRT1/DNMT3B-mediated epigenetic gene silencing in response to phytoestrogens in mammary epithelial cells. Epigenetics 2025; 20:2473770. [PMID: 40029260 PMCID: PMC11881848 DOI: 10.1080/15592294.2025.2473770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 02/20/2025] [Accepted: 02/24/2025] [Indexed: 03/05/2025] Open
Abstract
We performed an integrated analysis of genome-wide DNA methylation and expression datasets in normal cells and healthy animals exposed to polyphenols with estrogenic activity (i.e. phytoestrogens). We identified that phytoestrogens target genes linked to disrupted cellular homeostasis, e.g. genes limiting DNA break repair (RNF169) or promoting ribosomal biogenesis (rDNA). Existing evidence suggests that DNA methylation may be governed by sirtuin 1 (SIRT1) deacetylase via interactions with DNA methylating enzymes, specifically DNMT3B. Since SIRT1 was reported to be regulated by phytoestrogens, we test whether phytoestrogens suppress genes related to disrupted homeostasis via SIRT1/DNMT3B-mediated transcriptional silencing. Human MCF10A mammary epithelial cells were treated with phytoestrogens, pterostilbene (PTS) or genistein (GEN), followed by analysis of cell growth, DNA methylation, gene expression, and SIRT1/DNMT3B binding. SIRT1 occupancy at the selected phytoestrogen-target genes, RNF169 and rDNA, was accompanied by consistent promoter hypermethylation and gene downregulation in response to GEN, but not PTS. GEN-mediated hypermethylation and SIRT1 binding were linked to a robust DNMT3B enrichment at RNF169 and rDNA promoters. This was not observed in cells exposed to PTS, suggesting a distinct mechanism of action. Although both SIRT1 and DNMT3B bind to RNF169 and rDNA promoters upon GEN, the two proteins do not co-occupy the regions. Depletion of SIRT1 abolishes GEN-mediated decrease in rDNA expression, suggesting SIRT1-dependent epigenetic suppression of rDNA by GEN. These findings enhance our understanding of the role of SIRT1-DNMT3B interplay in epigenetic mechanisms mediating the impact of phytoestrogens on cell biology and cellular homeostasis.
Collapse
Affiliation(s)
- Yuexi Ma
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada
| | - Cayla Boycott
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada
| | - Jiaxi Zhang
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada
| | - Rekha Gomilar
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada
| | - Tony Yang
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada
| | - Barbara Stefanska
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
41
|
Ganglberger M, Koschak A. Exploring the potential for gene therapy in Cav1.4-related retinal channelopathies. Channels (Austin) 2025; 19:2480089. [PMID: 40129245 PMCID: PMC11938310 DOI: 10.1080/19336950.2025.2480089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/07/2025] [Accepted: 03/11/2025] [Indexed: 03/26/2025] Open
Abstract
The visual process begins with photon detection in photoreceptor outer segments within the retina, which processes light signals before transmission to the thalamus and visual cortex. Cav1.4 L-type calcium channels play a crucial role in this process, and dysfunction of these channels due to pathogenic variants in corresponding genes leads to specific manifestations in visual impairments. This review explores the journey from basic research on Cav1.4 L-type calcium channel complexes in retinal physiology and pathophysiology to their potential as gene therapy targets. Moreover, we provide a concise overview of key findings from studies using different animal models to investigate retinal diseases. It will critically examine the constraints these models present when attempting to elucidate retinal channelopathies. Additionally, the paper will explore potential strategies for addressing Cav1.4 channel dysfunction and discuss the current challenges facing gene therapy approaches in this area of research.
Collapse
Affiliation(s)
- Matthias Ganglberger
- Pharmacology and Toxicology, Institute of Pharmacy, University of Innsbruck, Innsbruck, Austria
| | - Alexandra Koschak
- Pharmacology and Toxicology, Institute of Pharmacy, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
42
|
Zhang L, Fang L, Zou J, Zhou D, Xie H, Chen A, Wu Q. Causal associations of metabolic dysfunction-associated steatotic liver disease with gestational hypertension and preeclampsia: a two-sample Mendelian randomization study. Hypertens Pregnancy 2025; 44:2441862. [PMID: 39704480 DOI: 10.1080/10641955.2024.2441862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 12/08/2024] [Indexed: 12/21/2024]
Abstract
BACKGROUND Hypertensive disorders of pregnancy (HDPs), which include gestational hypertension (GH) and preeclampsia (PE), are the primary causes of maternal morbidity and mortality worldwide. Recent studies have found a correlation between metabolic dysfunction-associated steatotic liver disease (MASLD) and HDPs, but the causality of this association remains to be identified. Therefore, this study aims to evaluate the causal relationship between MASLD and HDPs through Mendelian randomization (MR) analysis. METHODS The summary statistics from genome-wide association studies were employed to conduct a two-sample MR analysis. Five complementary MR methods, including inverse variance weighting (IVW), MR-Egger, weighted median, simple mode and weighted mode were performed to assess the causality of MASLD on GH and PE. Furthermore, we conducted various sensitivity analyses to ensure the stability and reliability of the results. RESULTS Genetically predicted MASLD significantly increased the risk of GH (IVW: OR = 1.138, 95% CI: 1.062-1.220, p < 0.001), while there was little evidence of a causal relationship between MASLD and PE (IVW: OR = 0.980, 95% CI: 0.910-1.056, p = 0.594). The sensitivity analyses indicated no presence of heterogeneity and horizontal pleiotropy. CONCLUSION This MR study provided evidence supporting the causal effect of MASLD on GH. Our findings underscore the significance of providing more intensive prenatal care and early intervention for pregnant women with MASLD to prevent potential adverse obstetric outcomes.
Collapse
Affiliation(s)
- Lu Zhang
- School of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Liang Fang
- Department of Gastroenterology, Huanggang Central Hospital of Yangtze University, Huanggang, China
| | - Jiahua Zou
- Department of Oncology, Huanggang Central Hospital of Yangtze University, Huanggang, China
| | - Dong Zhou
- Department of Oncology, Huanggang Central Hospital of Yangtze University, Huanggang, China
| | - Haonan Xie
- School of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Aihua Chen
- Department of Gastroenterology, China Resources & WISCO General Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Qingming Wu
- School of Medicine, Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
43
|
Chen R, Chai X, Zhang Y, Zhou T, Xia Y, Jiang X, Lv B, Zhang J, Zhou L, Tian X, Wang R, Mao L, Zhao F, Zhang H, Hu J, Qiu J, Zou Z, Chen C. Novel role of FTO in regulation of gut-brain communication via Desulfovibrio fairfieldensis-produced hydrogen sulfide under arsenic exposure. Gut Microbes 2025; 17:2438471. [PMID: 39852343 PMCID: PMC11776478 DOI: 10.1080/19490976.2024.2438471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 10/26/2024] [Accepted: 11/26/2024] [Indexed: 01/26/2025] Open
Abstract
Fat mass and obesity-associated protein (FTO) is the key demethylase that reverses the abnormally altered N6-methyladenosine (m6A) modification in eukaryotic cells under environmental pollutants exposure. Arsenic is an environmental metalloid and can cause severe symptoms in human mainly through drinking water. However, there is no specific treatment for its toxic effects due to the uncovered mechanisms. We previously revealed that exposure to arsenic increased the level of m6A via down-regulation of FTO, which might serve as a potential target for intervention against arsenic-related disorders. In this study, our results demonstrated that chronic exposure to arsenic significantly disrupted the intestinal barrier and microenvironment. Also, this administration resulted in the enhancement of m6A modification and the reduction of FTO expression in the intestine. By using both CRISPR/Cas9-based FTO knock-in strategy and adeno-associated virus (AAV)-mediated overexpression of FTO in the intestine, we established for the first time that up-regulation of FTO remarkably ameliorated arsenic-induced disruption of intestinal barriers and altered microenvironment of mice. We also firstly identified a dominant gut microbial species, Desulfovibrio fairfieldensis, which was sharply reduced in arsenic-exposed mice, was able to proceed arsenic-induced neurobehavioral impairments by declining the levels of its major metabolite hydrogen sulfide. Administration of Desulfovibrio fairfieldensis could significantly alleviate the neurotoxicity of arsenic. Intriguingly, the beneficial effects of FTO against arsenic neurotoxicity possibly occurred through a novel gut-brain communication via Desulfovibrio fairfieldensis and its produced hydrogen sulfide. Collectively, these findings will provide new ideas for understanding the mechanisms of arsenic-induced toxic effects from a gut-brain communication perspective, and will assist the development of explicit intervention strategy via regulation of a new potential target FTO for prevention and treatment against arsenic-related both intestinal and neurological disorders.
Collapse
Affiliation(s)
- Ruonan Chen
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Xiaoqin Chai
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Yunxiao Zhang
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Tianxiu Zhou
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Yinyin Xia
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Xuejun Jiang
- Center of Experimental Teaching for Public Health, Experimental Teaching and Management Center, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Bo Lv
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Jun Zhang
- Molecular Biology Laboratory of Respiratory Disease, Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, People’s Republic of China
- Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Lixiao Zhou
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Xin Tian
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ruonan Wang
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Lejiao Mao
- Molecular Biology Laboratory of Respiratory Disease, Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Feng Zhao
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Hongyang Zhang
- Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing, People’s Republic of China
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Jun Hu
- Department of Neurology, Southwest Hospital, Third Military Medical University, Chongqing, People’s Republic of China
| | - Jingfu Qiu
- Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing, People’s Republic of China
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Zhen Zou
- Molecular Biology Laboratory of Respiratory Disease, Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, People’s Republic of China
- Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Chengzhi Chen
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing, People’s Republic of China
- Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing, People’s Republic of China
| |
Collapse
|
44
|
Samant M, Bhat M, Dadachanji R, Sudhakar DVS, Patil A, Mukherjee S. Whole exome sequencing uncovers rare variants associated with PCOS susceptibility in Indian women. Syst Biol Reprod Med 2025; 71:76-89. [PMID: 40085772 DOI: 10.1080/19396368.2025.2471418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/12/2025] [Accepted: 02/19/2025] [Indexed: 03/16/2025]
Abstract
Polycystic ovary syndrome (PCOS) is a complex polygenic endocrinopathy affecting 5-20% of reproductive-age women. Familial studies, candidate gene studies, and GWAS have identified multiple PCOS-associated genetic loci. This study aims to identify the functional variants associated with PCOS. We applied whole exome sequencing (WES) to identify functional variants among eighty-five well-characterized women with PCOS. The annotated variants were filtered based on minor allele frequency and in-silico pathogenicity prediction. We found a significant association of 234 rare pathogenic nonsynonymous variants in 201 genes with PCOS in our study group. These genes are linked to steroid hormone biosynthesis, ovarian steroidogenesis, insulin resistance, and PI3K-Akt signaling pathway which are influential in PCOS pathophysiology. Further, several rare variants were found to be unique to women with and without insulin resistance, and enrichment analysis revealed that carbohydrate and lipid metabolism was especially deranged in insulin-resistant PCOS women. Variants of the steroidogenesis pathway were validated by Sanger sequencing including rs368902124 (CYP19A1), rs143286842 (IGF1R), and rs555458296 (BMP-6). In-silico analysis by DUET showed that these variants destabilized the folding of their corresponding protein. Women carrying these rare variants presented with altered hormonal profiles and clinical signs of hyperandrogenism and hyperinsulinemia, emphasizing their impact on PCOS pathophysiology. Several functional rare variants have been revealed to be associated with increased PCOS risk in the present study thus, expanding the genetic susceptibility landscape of Indian women to PCOS.
Collapse
Affiliation(s)
- Medini Samant
- Department of Molecular Endocrinology, ICMR- National Institute for Research in Reproductive and Child Health, Parel, Mumbai, India
| | - Mahalakshmi Bhat
- Department of Molecular Endocrinology, ICMR- National Institute for Research in Reproductive and Child Health, Parel, Mumbai, India
| | - Roshan Dadachanji
- Department of Molecular Endocrinology, ICMR- National Institute for Research in Reproductive and Child Health, Parel, Mumbai, India
| | - Digumarthi V S Sudhakar
- Genetic Research Centre, ICMR- National Institute for Research in Reproductive and Child Health, Parel, Mumbai, India
| | - Anushree Patil
- Department of Clinical Research, ICMR- National Institute for Research in Reproductive and Child Health, Parel, Mumbai, India
| | - Srabani Mukherjee
- Department of Molecular Endocrinology, ICMR- National Institute for Research in Reproductive and Child Health, Parel, Mumbai, India
| |
Collapse
|
45
|
Manouchehri JM, Datta J, Marcho LM, Stover D, Ganju RK, Ramaswamy B, Carson WE, Mittra A, Zhang X, Schnell PM, Yue Y, Rubinstein MP, Cherian MA. Sulfatase 2 inhibition sensitizes triple-negative breast cancer cells to paclitaxel through augmentation of extracellular ATP. Cancer Biol Ther 2025; 26:2483989. [PMID: 40140347 PMCID: PMC11951697 DOI: 10.1080/15384047.2025.2483989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 01/09/2025] [Accepted: 03/13/2025] [Indexed: 03/28/2025] Open
Abstract
The highest incidence and cancer-related mortality rate among women worldwide is due to breast cancer. Triple-negative breast cancers (TNBC) are associated with more inferior outcomes than other breast cancers because of their progressive nature and the deficit in available therapies. Therefore, there is a need for new therapeutic approaches. Our lab determined that chemotherapy induces the release of extracellular adenosine triphosphate (eATP), and, hence, augments TNBC cells' response to chemotherapy. Despite this, eATP concentrations are restricted by a variety of extracellular ATPases. We propose that, as an ATPase inhibitor, heparan sulfate (HS) would augment eATP concentrations and TNBC vulnerability induced by chemotherapy. Sulfatase 2 (SULF2) removes sulfate from HS, the functional group essential for ATPase inhibition. Consequently, we propose that TNBC cell death and eATP release induced by chemotherapy would be intensified by SULF2 inhibitors. We examined eATP and cell viability in paclitaxel-treated TNBC and nontumorigenic immortal mammary epithelial MCF-10A cells in the presence of OKN-007, a selective SULF2 inhibitor, and/or heparan sodium sulfate. Furthermore, sulfatase 1 (SULF1) and SULF2 protein expressions were ascertained. We found that the expression of SULF2 was greater in TNBC cell lines when compared to MCF-10A cells. The release of eATP and loss of TNBC cell viability induced by chemotherapy was enhanced by OKN-007. The co-treatment of chemotherapy and OKN-007 also attenuated cancer-initiating cells. This data implies that the combination of SULF2 inhibitors with chemotherapy augments eATP and decreases cell viability of TNBC greater than chemotherapy alone.
Collapse
Affiliation(s)
| | - Jharna Datta
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Lynn M. Marcho
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Daniel Stover
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Ramesh K. Ganju
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | | | - William E. Carson
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Arjun Mittra
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Xiaoli Zhang
- College of Nursing, University of South Florida, Tampa, FL, USA
| | | | - Yu Yue
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Mark P. Rubinstein
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Mathew A. Cherian
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
46
|
Gentile GM, Blue RE, Goda GA, Guzman BB, Szymanski RA, Lee EY, Engels NM, Hinkle ER, Wiedner HJ, Bishop AN, Harrison JT, Zhang H, Wehrens XHT, Dominguez D, Giudice J. Alternative splicing of the Snap23 microexon is regulated by MBNL, QKI, and RBFOX2 in a tissue-specific manner and is altered in striated muscle diseases. RNA Biol 2025; 22:1-20. [PMID: 40207498 DOI: 10.1080/15476286.2025.2491160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 03/05/2025] [Accepted: 04/01/2025] [Indexed: 04/11/2025] Open
Abstract
The reprogramming of alternative splicing networks during development is a hallmark of tissue maturation and identity. Alternative splicing of microexons (small, genomic regions ≤ 51 nucleotides) functionally regulate protein-protein interactions in the brain and is altered in several neuronal diseases. However, little is known about the regulation and function of alternatively spliced microexons in striated muscle. Here, we investigated alternative splicing of a microexon in the synaptosome-associated protein 23 (Snap23) encoded gene. We found that inclusion of this microexon is developmentally regulated and tissue-specific, as it occurs exclusively in adult heart and skeletal muscle. The alternative region is highly conserved in mammalian species and encodes an in-frame sequence of 11 amino acids. Furthermore, we showed that alternative splicing of this microexon is mis-regulated in mouse models of heart and skeletal muscle diseases. We identified the RNA-binding proteins (RBPs) quaking (QKI) and RNA binding fox-1 homolog 2 (RBFOX2) as the primary splicing regulators of the Snap23 microexon. We found that QKI and RBFOX2 bind downstream of the Snap23 microexon to promote its inclusion, and this regulation can be escaped when the weak splice donor is mutated to the consensus 5' splice site. Finally, we uncovered the interplay between QKI and muscleblind-like splicing regulator (MBNL) as an additional, but minor layer of Snap23 microexon splicing control. Our results are one of the few reports detailing microexon alternative splicing regulation during mammalian striated muscle development.
Collapse
Affiliation(s)
- Gabrielle M Gentile
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - R Eric Blue
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Grant A Goda
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Bryan B Guzman
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Rachel A Szymanski
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Eunice Y Lee
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Nichlas M Engels
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Emma R Hinkle
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Hannah J Wiedner
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Aubriana N Bishop
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jonathan T Harrison
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Hua Zhang
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Xander H T Wehrens
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Daniel Dominguez
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- RNA Discovery Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jimena Giudice
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- RNA Discovery Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- McAllister Heart Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
47
|
Xu B, Liu Y, Chen G, Jiang P, Qu Y, Wang M, Kao X. Genome-wide analysis of abnormal splicing regulators and alternative splicing involved in immune regulation in systemic lupus erythematosus. Autoimmunity 2025; 58:2448463. [PMID: 39743791 DOI: 10.1080/08916934.2024.2448463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/17/2024] [Accepted: 12/26/2024] [Indexed: 01/04/2025]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease with complex clinical manifestations and no current cure. Alternative splicing (AS) plays a key role in SLE by regulating immune-related genes, but its genome-wide regulatory mechanisms remain unclear. To investigate the involvement of abnormal splicing regulators and AS events in the immune regulation of SLE. Transcriptome data from the SLE dataset GSE162828 were analyzed for differential gene expression and AS events using bioinformatics tools. Immune infiltration analysis was conducted with CIBERSORT, and co-expression of key splicing factors (SFs) and AS events was assessed using SUVA software. A total of 5144 differentially expressed genes and 73 SFs were identified. Significant immune cell differences were observed between SLE and controls, highlighting SFs such as HNRNPDL, RBM47, TIA1, SSB, and DHX15. Eighty-three AS events were identified, with IRF9 and PTPRC emerging as key regulatory events linked to SLE. Dysregulated SFs influence AS in immune-related genes, affecting immune cell composition and SLE progression. These findings offer potential new therapeutic targets for modulating the immune microenvironment in SLE.
Collapse
Affiliation(s)
- Bing Xu
- Department of Rheumatology, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuan Liu
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Guangfeng Chen
- Department of Geriatric Medicine, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ping Jiang
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuan Qu
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Mengjie Wang
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiliang Kao
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
48
|
Bick F, Blanchetot C, Lambrecht BN, Schuijs MJ. Targeting γc family cytokines with biologics: current status and future prospects. MAbs 2025; 17:2468312. [PMID: 39967341 PMCID: PMC11845063 DOI: 10.1080/19420862.2025.2468312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/07/2025] [Accepted: 02/12/2025] [Indexed: 02/20/2025] Open
Abstract
Over the recent decades the market potential of biologics has substantially expanded, and many of the top-selling drugs worldwide are now monoclonal antibodies or antibody-like molecules. The common gamma chain (γc) cytokines, Interleukin (IL-)2, IL-4, IL-7, IL-9, IL-15, and IL-21, play pivotal roles in regulating immune responses, from innate to adaptive immunity. Dysregulation of cell signaling by these cytokines is strongly associated with a range of immunological disorders, which includes cancer as well as autoimmune and inflammatory diseases. Given the essential role of γc cytokines in maintaining immune homeostasis, the development of therapeutic interventions targeting these molecules poses unique challenges. Here, we provide an overview of current biologics targeting either single or multiple γc cytokines or their respective receptor subunits across a spectrum of diseases, primarily focusing on antibodies, antibody-like constructs, and antibody-cytokine fusions. We summarize therapeutic biologics currently in clinical trials, highlighting how they may offer advantages over existing therapies and standard of care, and discuss recent advances in this field. Finally, we explore future directions and the potential of novel therapeutic intervention strategies targeting this cytokine family.
Collapse
Affiliation(s)
- Fabian Bick
- Argenx BV, Zwijnaarde, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
| | | | - Bart N. Lambrecht
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Pulmonary Medicine, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Martijn J. Schuijs
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
| |
Collapse
|
49
|
Shao X, Li N, Liang L, Liu Y, Yan J, Peng Y, Ma P. Diagnostic significance of combined two-dimensional ultrasound and three-dimensional tomographic ultrasound imaging for cleft palate in fetus of 11-13 + 6 weeks: a prospective study. J Matern Fetal Neonatal Med 2025; 38:2463396. [PMID: 39988364 DOI: 10.1080/14767058.2025.2463396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 01/19/2025] [Accepted: 01/31/2025] [Indexed: 02/25/2025]
Abstract
PURPOSE Clinical screening for cleft palate in fetus currently focuses on weeks 20-24. It has been shown that cleft palate can be detected by ultrasound in first-trimester anatomy scan, but there are no large-scale samples to validate. This study was to confirm the ability of combined two-dimensional(2D)-ultrasound and three-dimensional(3D)-tomographic ultrasound imaging (TUI) to safely detect an fetal cleft palate at 11-13 + 6 weeks via large-scale samples. METHODS A prospective study was designed, involving 6870 pregnant women applying 2D-ultrasound transabdominal sweeps of the fetal face in the median sagittal and coronal views of the retronasal triangle with abnormalities of the palatal line detected, followed by an axial view of the superior alveolar eminence and 3D-TUI evaluation. The endpoints were the results of the fetal facial profile assessment for delivery and induction of labor. The accuracy, sensitivity, and specificity of ultrasound for diagnosing a cleft palate at 11-13 + 6 weeks were analyzed. RESULTS Among 6870 fetus, a total of 43 different cleft palate types were diagnosed by 2D-ultrasound in three-sections at the 11-13 + 6 weeks, and a total of 6827 cases were diagnosed of negative for cleft palate. Of the 43 cases diagnosed of positive for cleft palate, three cases were false positives compared to endpoint results, with a correct positive predictive value of 93.0%. Of the 6827 cases diagnosed of negative for cleft palate, five cases were false negatives compared to endpoint results, with a correct negative predictive value of 99.0%. The sensitivity and specificity of 2D-ultrasound screening for cleft palate were 84.4%, and 99.9%, respectively. The 43 cases received 3D-TUI scans, and the results showed that 37 cases of cleft palate detected, with a positive predictive value of 86.0%, which was lower than that of 2D ultrasonography (93.0%) (p < 0.05). CONCLUSION It may be feasible and accurate to diagnose cleft palate in fetus at 11-13 + 6 weeks by using combined 2D three sections ultrasound and 3D-TUI scans.
Collapse
Affiliation(s)
- Xiaoliu Shao
- Department of Ultrasonography, The Fourth Hospital of Shijiazhuang, Shijiazhuang City, Hebei, China
| | - Na Li
- Department of Ultrasonography, The Fourth Hospital of Shijiazhuang, Shijiazhuang City, Hebei, China
| | - Lihua Liang
- Department of Ultrasonography, The Fourth Hospital of Shijiazhuang, Shijiazhuang City, Hebei, China
| | - Yingfeng Liu
- Department of Ultrasonography, The Fourth Hospital of Shijiazhuang, Shijiazhuang City, Hebei, China
| | - Juan Yan
- Department of Ultrasonography, The Fourth Hospital of Shijiazhuang, Shijiazhuang City, Hebei, China
| | - Yanyan Peng
- Department of Ultrasonography, The Fourth Hospital of Shijiazhuang, Shijiazhuang City, Hebei, China
| | - Pei Ma
- Department of Ultrasonography, The Fourth Hospital of Shijiazhuang, Shijiazhuang City, Hebei, China
| |
Collapse
|
50
|
Rojo-Tolosa S, Caballero-Vázquez A, Pineda-Lancheros LE, Sánchez-Martínez JA, González-Gutiérrez MV, Jiménez-Gálvez G, Jiménez-Morales A, Morales-García C. Drug survival of omalizumab in atopic asthma: Impact of clinical and genetic variables. Hum Vaccin Immunother 2025; 21:2488557. [PMID: 40189906 PMCID: PMC12054927 DOI: 10.1080/21645515.2025.2488557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/19/2025] [Accepted: 04/01/2025] [Indexed: 04/23/2025] Open
Abstract
It is estimated that 40-50% of severe asthma has an atopic basis, representing a clinical challenge and a significant economic burden for healthcare systems. The most effective treatment has emerged with the use of biologic therapies such as omalizumab; however, the rate of therapy switching due to loss of efficacy is high, which has a negative impact on the healthcare system. The aim was to evaluate the influence of genetic polymorphisms as predictors of omalizumab survival. We conducted a retrospective observational cohort study of 110 patients with uncontrolled severe allergic asthma treated with omalizumab in a tertiary hospital. We analyzed FCER1A (rs2251746, rs2427837), FCER1B (rs1441586, rs573790, rs1054485, rs569108), C3 (rs2230199), FCGR2A (rs1801274), FCGR2B (rs3219018, rs1050501), FCGR3A (rs10127939, rs396991), IL1RL1 (rs1420101, rs17026974, rs1921622) and GATA2 (rs4857855) by real-time PCR using Taqman probes. Drug survival was defined as the time from initiation to discontinuation of omalizumab. Cox regression analysis adjusted for the presence of respiratory disease, GERD, SAHS and years with asthma showed that the SNPs FCER1B rs573790 - CT (p < .001; HR = 3.38; CI95% = 1.66-6.87), FCGR3A rs10127939-AC (p = .018; HR = 3.85; CI95% = 1.25-11.81) and FCGR3A rs396991-CC (p = .020; HR = 2.23; CI95% = 1.14-4.38) were the independent variables associated with worse survival in patients diagnosed with asthma. A trend toward statistical significance was also found between and FCGR3A rs10127939-CC (p = .080; HR = 0.13; CI95% = 0.01-1.28) and longer drug survival. The results of this study demonstrate the potential influence of the polymorphisms studied on omalizumab survival and the clinical benefit that could be achieved by defining predictive biomarkers of drug survival.
Collapse
Affiliation(s)
- Susana Rojo-Tolosa
- Respiratory Medicine Department, University Hospital Virgen de las Nieves, Granada, Spain
- Pharmacogenetics Unit, Pharmacy Service, University Hospital Virgen de las Nieves, Granada, Spain
- Instituto de Investigación Biosanitaria Ibs, GRANADA, Granada, España
| | - Alberto Caballero-Vázquez
- Respiratory Medicine Department, University Hospital Virgen de las Nieves, Granada, Spain
- Instituto de Investigación Biosanitaria Ibs, GRANADA, Granada, España
| | - Laura E. Pineda-Lancheros
- Instituto de Investigación Biosanitaria Ibs, GRANADA, Granada, España
- Department of Pharmacy, Faculty of Sciences, National University of Colombia, Bogota, Colombia
| | | | | | - Gonzalo Jiménez-Gálvez
- Respiratory Medicine Department, University Hospital Virgen de las Nieves, Granada, Spain
| | - Alberto Jiménez-Morales
- Pharmacogenetics Unit, Pharmacy Service, University Hospital Virgen de las Nieves, Granada, Spain
- Instituto de Investigación Biosanitaria Ibs, GRANADA, Granada, España
| | - Concepción Morales-García
- Respiratory Medicine Department, University Hospital Virgen de las Nieves, Granada, Spain
- Instituto de Investigación Biosanitaria Ibs, GRANADA, Granada, España
| |
Collapse
|