1
|
Zhu T, Shen D, Cai X, Jin Y, Tu H, Wang S, Pan Q. The causal relationship between gut microbiota and preterm birth: a two-sample Mendelian randomization study. J Matern Fetal Neonatal Med 2025; 38:2432528. [PMID: 39721770 DOI: 10.1080/14767058.2024.2432528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 11/07/2024] [Accepted: 11/14/2024] [Indexed: 12/28/2024]
Abstract
BACKGROUND Preterm birth, a significant global health concern, has been associated with alterations in the gut microbiota. However, the causal nature of this relationship remains uncertain due to the limitations inherent in observational studies. PURPOSE To investigate the potential causal relationship between gut microbiota imbalances and preterm birth. METHODS We conducted a two-sample Mendelian randomization (MR) study using genome-wide association study (GWAS) data from the MiBioGen consortium focusing on microbiota and preterm birth. Single nucleotide polymorphisms (SNPs) associated with the microbiota were selected as instrumental variables. The inverse variance weighting (IVW) method was used to estimate causality. We confirmed pleiotropy and identified and excluded outlier SNPs using MR-PRESSO and MR-Egger regression. Cochran's Q test was applied to assess heterogeneity among SNPs, and a leave-one-out analysis was performed to evaluate the influence of individual SNPs on overall estimates. RESULTS Our findings provide evidence for a causal link between specific components of the gut microbiota and preterm birth, with the identification of relevant metabolites. CONCLUSION This study highlights the causal role of gut microbiota imbalances in preterm birth, offering novel insights into the development of preterm birth and potential targets for prevention strategies.
Collapse
Affiliation(s)
- Tao Zhu
- Department of Clinical Laboratory, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Dandan Shen
- Department of Laboratory Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiao Cai
- Department of Clinical Laboratory, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yuanling Jin
- Department of Clinical Laboratory, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Haixia Tu
- Department of Clinical Laboratory, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shouxing Wang
- Department of Clinical Laboratory, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qianglong Pan
- Department of Clinical Laboratory, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
2
|
Deshpande G, Das S, Roy AE, Ratnaparkhi GS. A face-off between Smaug and Caspar modulates primordial germ cell count and identity in Drosophila embryos. Fly (Austin) 2025; 19:2438473. [PMID: 39718186 DOI: 10.1080/19336934.2024.2438473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/26/2024] [Accepted: 12/01/2024] [Indexed: 12/25/2024] Open
Abstract
Proper formation and specification of Primordial Germ Cells (PGCs) is of special significance as they gradually transform into Germline Stem Cells (GSCs) that are ultimately responsible for generating the gametes. Intriguingly, not only the PGCs constitute the only immortal cell type but several specific determinants also underlying PGC specification such as Vasa, Nanos and Germ-cell-less are conserved through evolution. In Drosophila melanogaster, PGC formation and specification depends on two independent factors, the maternally deposited specialized cytoplasm (or germ plasm) enriched in germline determinants, and the mechanisms that execute the even partitioning of these determinants between the daughter cells. Prior work has shown that Oskar protein is necessary and sufficient to assemble the functional germ plasm, whereas centrosomes associated with the nuclei that invade the germ plasm are responsible for its equitable distribution. Our recent data suggests that Caspar, the Drosophila orthologue of human Fas-associated factor-1 (FAF1) is a novel regulator that modulates both mechanisms that underlie the determination of PGC fate. Consistently, early blastoderm embryos derived from females compromised for caspar display reduced levels of Oskar and defective centrosomes.
Collapse
Affiliation(s)
- Girish Deshpande
- Department of Biology, Indian Institute of Science Education & Research, Pune, India
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Subhradip Das
- Department of Biology, Indian Institute of Science Education & Research, Pune, India
| | - Adheena Elsa Roy
- Department of Biology, Indian Institute of Science Education & Research, Pune, India
| | - Girish S Ratnaparkhi
- Department of Biology, Indian Institute of Science Education & Research, Pune, India
| |
Collapse
|
3
|
Yang Y, Zhong Y, Chen L. EIciRNAs in focus: current understanding and future perspectives. RNA Biol 2025; 22:1-12. [PMID: 39711231 DOI: 10.1080/15476286.2024.2443876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 11/14/2024] [Accepted: 12/09/2024] [Indexed: 12/24/2024] Open
Abstract
Circular RNAs (circRNAs) are a unique class of covalently closed single-stranded RNA molecules that play diverse roles in normal physiology and pathology. Among the major types of circRNA, exon-intron circRNA (EIciRNA) distinguishes itself by its sequence composition and nuclear localization. Recent RNA-seq technologies and computational methods have facilitated the detection and characterization of EIciRNAs, with features like circRNA intron retention (CIR) and tissue-specificity being characterized. EIciRNAs have been identified to exert their functions via mechanisms such as regulating gene transcription, and the physiological relevance of EIciRNAs has been reported. Within this review, we present a summary of the current understanding of EIciRNAs, delving into their identification and molecular functions. Additionally, we emphasize factors regulating EIciRNA biogenesis and the physiological roles of EIciRNAs based on recent research. We also discuss the future challenges in EIciRNA exploration, underscoring the potential for novel functions and functional mechanisms of EIciRNAs for further investigation.
Collapse
Affiliation(s)
- Yan Yang
- Department of Cardiology, The First Affiliated Hospital of USTC, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
- Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, China
| | - Yinchun Zhong
- Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, China
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Liang Chen
- Department of Cardiology, The First Affiliated Hospital of USTC, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
4
|
Zhang L, Fang L, Zou J, Zhou D, Xie H, Chen A, Wu Q. Causal associations of metabolic dysfunction-associated steatotic liver disease with gestational hypertension and preeclampsia: a two-sample Mendelian randomization study. Hypertens Pregnancy 2025; 44:2441862. [PMID: 39704480 DOI: 10.1080/10641955.2024.2441862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 12/08/2024] [Indexed: 12/21/2024]
Abstract
BACKGROUND Hypertensive disorders of pregnancy (HDPs), which include gestational hypertension (GH) and preeclampsia (PE), are the primary causes of maternal morbidity and mortality worldwide. Recent studies have found a correlation between metabolic dysfunction-associated steatotic liver disease (MASLD) and HDPs, but the causality of this association remains to be identified. Therefore, this study aims to evaluate the causal relationship between MASLD and HDPs through Mendelian randomization (MR) analysis. METHODS The summary statistics from genome-wide association studies were employed to conduct a two-sample MR analysis. Five complementary MR methods, including inverse variance weighting (IVW), MR-Egger, weighted median, simple mode and weighted mode were performed to assess the causality of MASLD on GH and PE. Furthermore, we conducted various sensitivity analyses to ensure the stability and reliability of the results. RESULTS Genetically predicted MASLD significantly increased the risk of GH (IVW: OR = 1.138, 95% CI: 1.062-1.220, p < 0.001), while there was little evidence of a causal relationship between MASLD and PE (IVW: OR = 0.980, 95% CI: 0.910-1.056, p = 0.594). The sensitivity analyses indicated no presence of heterogeneity and horizontal pleiotropy. CONCLUSION This MR study provided evidence supporting the causal effect of MASLD on GH. Our findings underscore the significance of providing more intensive prenatal care and early intervention for pregnant women with MASLD to prevent potential adverse obstetric outcomes.
Collapse
Affiliation(s)
- Lu Zhang
- School of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Liang Fang
- Department of Gastroenterology, Huanggang Central Hospital of Yangtze University, Huanggang, China
| | - Jiahua Zou
- Department of Oncology, Huanggang Central Hospital of Yangtze University, Huanggang, China
| | - Dong Zhou
- Department of Oncology, Huanggang Central Hospital of Yangtze University, Huanggang, China
| | - Haonan Xie
- School of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Aihua Chen
- Department of Gastroenterology, China Resources & WISCO General Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Qingming Wu
- School of Medicine, Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
5
|
Tian YL, Liu X, Yang MY, Wu YH, Yin FQ, Zhang ZT, Zhang C. Association between caffeine intake and fat free mass index: a retrospective cohort study. J Int Soc Sports Nutr 2025; 22:2445607. [PMID: 39706596 DOI: 10.1080/15502783.2024.2445607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND Caffeine, identified as a central nervous system stimulant in foods, beverages (coffee, tea, chocolate), and medications, has been focused on its ergogenic properties, enhancing physical performance. The aim of this study was to investigate the association between the caffeine intake (from coffee) and fat-free mass index (FFMI). MATERIALS AND METHODS We carried out a cohort study that included 3,466 women and 3,145 men aged ≥20 years who were intaking caffeine. Caffeine intake from coffee were obtained from two 24-hour dietary recall interviews. The FFMI was calculated as FFM (kg) divided by height in m2. The caffeine intake was classified into quartiles and combined into 4 groups. Multiple linear regression model analysis and multiple logistic regression model analysis were used to assess associations between the caffeine and FFMI adjusted for potential confounders. RESULTS Among the 2,427 participants, males accounted for 52.4%, and females 47.6%. In multiple linear regression model, Model 1 (unadjusted Model (p = 0.041)) and Model 2 (adjusted for age, race, and BMI (p = 0.006)) in women showed a significant relationship between caffeine intake and FFMI. In multivariable models, caffeine intake and FFMI were significantly different (p < 0.05). In sex subgroups, among females, each quartile of caffeine intake was positively correlated with FFMI levels in the average FFMI group in Model 3 (p < 0.001). In age subgroups, each quartile of caffeine intake was positively correlated with FFMI levels in the average FFMI group in Model 3 for individuals aged 20-40 (p = 0.039) and those aged above 40 (p = 0.016). In drinking status subgroups, if they drunk alcohol, each quartile was positively correlated with FFMI levels in the average FFMI group in Model 3 (p < 0.001). CONCLUSION Caffeine intake was mainly positively associated with FFMI, especially in women with above levels of FFMI. Longitudinal studies and randomized controlled trials are needed to establish causality and provide evidence-based recommendations regarding caffeine intake to optimize muscle health.
Collapse
Affiliation(s)
- Ya-Lan Tian
- Center for Evidence-Based Medicine and Clinical Research, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
- School of Nursing, Hubei University of Medicine, Shiyan, Hubei, China
| | - Xin Liu
- Center for Evidence-Based Medicine and Clinical Research, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Meng-Yao Yang
- Center for Evidence-Based Medicine and Clinical Research, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
- School of Nursing, Hubei University of Medicine, Shiyan, Hubei, China
| | - Yu-Han Wu
- Center for Evidence-Based Medicine and Clinical Research, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
- School of Nursing, Hubei University of Medicine, Shiyan, Hubei, China
| | - Fu-Qiang Yin
- Center for Evidence-Based Medicine and Clinical Research, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Zhen-Tong Zhang
- Center for Evidence-Based Medicine and Clinical Research, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
- School of Nursing, Hubei University of Medicine, Shiyan, Hubei, China
| | - Chao Zhang
- Center for Evidence-Based Medicine and Clinical Research, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| |
Collapse
|
6
|
Victor Atoki A, Aja PM, Shinkafi TS, Ondari EN, Adeniyi AI, Fasogbon IV, Dangana RS, Shehu UU, Akin-Adewumi A. Exploring the versatility of Drosophila melanogaster as a model organism in biomedical research: a comprehensive review. Fly (Austin) 2025; 19:2420453. [PMID: 39722550 DOI: 10.1080/19336934.2024.2420453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 10/16/2024] [Accepted: 10/16/2024] [Indexed: 12/28/2024] Open
Abstract
Drosophila melanogaster is a highly versatile model organism that has profoundly advanced our understanding of human diseases. With more than 60% of its genes having human homologs, Drosophila provides an invaluable system for modelling a wide range of pathologies, including neurodegenerative disorders, cancer, metabolic diseases, as well as cardiac and muscular conditions. This review highlights key developments in utilizing Drosophila for disease modelling, emphasizing the genetic tools that have transformed research in this field. Technologies such as the GAL4/UAS system, RNA interference (RNAi) and CRISPR-Cas9 have enabled precise genetic manipulation, with CRISPR-Cas9 allowing for the introduction of human disease mutations into orthologous Drosophila genes. These approaches have yielded critical insights into disease mechanisms, identified novel therapeutic targets and facilitated both drug screening and toxicological studies. Articles were selected based on their relevance, impact and contribution to the field, with a particular focus on studies offering innovative perspectives on disease mechanisms or therapeutic strategies. Our findings emphasize the central role of Drosophila in studying complex human diseases, underscoring its genetic similarities to humans and its effectiveness in modelling conditions such as Alzheimer's disease, Parkinson's disease and cancer. This review reaffirms Drosophila's critical role as a model organism, highlighting its potential to drive future research and therapeutic advancements.
Collapse
Affiliation(s)
| | - Patrick Maduabuchi Aja
- Department of Biochemistry, Kampala International University, Ishaka, Uganda
- Department of Biochemistry, Faculty of Science, Ebonyi State University, Abakaliki, Nigeria
| | | | - Erick Nyakundi Ondari
- Department of Biochemistry, Kampala International University, Ishaka, Uganda
- School of Pure and Applied Sciences, Department of Biological Sciences, Kisii University, Kisii, Kenya
| | | | | | | | - Umar Uthman Shehu
- Department of Physiology, Kampala International University, Ishaka, Uganda
| | | |
Collapse
|
7
|
Mazzoleni S, Busnelli M, Bassani S. The complex role of protocadherin-19 in brain function: a focus on the oxytocin system. Neural Regen Res 2025; 20:3211-3212. [PMID: 39715087 DOI: 10.4103/nrr.nrr-d-24-00847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 09/19/2024] [Indexed: 12/25/2024] Open
Affiliation(s)
- Sara Mazzoleni
- CNR Institute of Neuroscience, Vedano al Lambro, Italy (Mazzoleni S, Busnelli M, Bassani S)
| | - Marta Busnelli
- CNR Institute of Neuroscience, Vedano al Lambro, Italy (Mazzoleni S, Busnelli M, Bassani S)
- NeuroMi Milan Center for Neuroscience, Milan, Italy (Busnelli M, Bassani S)
| | - Silvia Bassani
- CNR Institute of Neuroscience, Vedano al Lambro, Italy (Mazzoleni S, Busnelli M, Bassani S)
- NeuroMi Milan Center for Neuroscience, Milan, Italy (Busnelli M, Bassani S)
| |
Collapse
|
8
|
Qin Y, Zhu W, Guo T, Zhang Y, Xing T, Yin P, Li S, Li XJ, Yang S. Reduced mesencephalic astrocyte-derived neurotrophic factor expression by mutant androgen receptor contributes to neurodegeneration in a model of spinal and bulbar muscular atrophy pathology. Neural Regen Res 2025; 20:2655-2666. [PMID: 38934406 DOI: 10.4103/nrr.nrr-d-23-01666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 02/08/2024] [Indexed: 06/28/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202509000-00027/figure1/v/2024-11-05T132919Z/r/image-tiff Spinal and bulbar muscular atrophy is a neurodegenerative disease caused by extended CAG trinucleotide repeats in the androgen receptor gene, which encodes a ligand-dependent transcription factor. The mutant androgen receptor protein, characterized by polyglutamine expansion, is prone to misfolding and forms aggregates in both the nucleus and cytoplasm in the brain in spinal and bulbar muscular atrophy patients. These aggregates alter protein-protein interactions and compromise transcriptional activity. In this study, we reported that in both cultured N2a cells and mouse brain, mutant androgen receptor with polyglutamine expansion causes reduced expression of mesencephalic astrocyte-derived neurotrophic factor. Overexpression of mesencephalic astrocyte-derived neurotrophic factor ameliorated the neurotoxicity of mutant androgen receptor through the inhibition of mutant androgen receptor aggregation. Conversely, knocking down endogenous mesencephalic astrocyte-derived neurotrophic factor in the mouse brain exacerbated neuronal damage and mutant androgen receptor aggregation. Our findings suggest that inhibition of mesencephalic astrocyte-derived neurotrophic factor expression by mutant androgen receptor is a potential mechanism underlying neurodegeneration in spinal and bulbar muscular atrophy.
Collapse
Affiliation(s)
- Yiyang Qin
- Guangdong Key Laboratory of Non-human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-HongKong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong Province, China
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Su C, Huang T, Zhang M, Zhang Y, Zeng Y, Chen X. Glucocorticoid receptor signaling in the brain and its involvement in cognitive function. Neural Regen Res 2025; 20:2520-2537. [PMID: 39248182 DOI: 10.4103/nrr.nrr-d-24-00355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 07/06/2024] [Indexed: 09/10/2024] Open
Abstract
The hypothalamic-pituitary-adrenal axis regulates the secretion of glucocorticoids in response to environmental challenges. In the brain, a nuclear receptor transcription factor, the glucocorticoid receptor, is an important component of the hypothalamic-pituitary-adrenal axis's negative feedback loop and plays a key role in regulating cognitive equilibrium and neuroplasticity. The glucocorticoid receptor influences cognitive processes, including glutamate neurotransmission, calcium signaling, and the activation of brain-derived neurotrophic factor-mediated pathways, through a combination of genomic and non-genomic mechanisms. Protein interactions within the central nervous system can alter the expression and activity of the glucocorticoid receptor, thereby affecting the hypothalamic-pituitary-adrenal axis and stress-related cognitive functions. An appropriate level of glucocorticoid receptor expression can improve cognitive function, while excessive glucocorticoid receptors or long-term exposure to glucocorticoids may lead to cognitive impairment. Patients with cognitive impairment-associated diseases, such as Alzheimer's disease, aging, depression, Parkinson's disease, Huntington's disease, stroke, and addiction, often present with dysregulation of the hypothalamic-pituitary-adrenal axis and glucocorticoid receptor expression. This review provides a comprehensive overview of the functions of the glucocorticoid receptor in the hypothalamic-pituitary-adrenal axis and cognitive activities. It emphasizes that appropriate glucocorticoid receptor signaling facilitates learning and memory, while its dysregulation can lead to cognitive impairment. This provides clues about how glucocorticoid receptor signaling can be targeted to overcome cognitive disability-related disorders.
Collapse
Affiliation(s)
- Chonglin Su
- Brain Science and Advanced Technology Institute, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | | | | | | | | | | |
Collapse
|
10
|
Goncalves K, Przyborski S. Modulation of the Nogo signaling pathway to overcome amyloid-β-mediated neurite inhibition in human pluripotent stem cell-derived neurites. Neural Regen Res 2025; 20:2645-2654. [PMID: 39105379 DOI: 10.4103/nrr.nrr-d-23-01628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 07/09/2024] [Indexed: 08/07/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202509000-00026/figure1/v/2024-11-05T132919Z/r/image-tiff Neuronal cell death and the loss of connectivity are two of the primary pathological mechanisms underlying Alzheimer's disease. The accumulation of amyloid-β peptides, a key hallmark of Alzheimer's disease, is believed to induce neuritic abnormalities, including reduced growth, extension, and abnormal growth cone morphology, all of which contribute to decreased connectivity. However, the precise cellular and molecular mechanisms governing this response remain unknown. In this study, we used an innovative approach to demonstrate the effect of amyloid-β on neurite dynamics in both two-dimensional and three-dimensional culture systems, in order to provide more physiologically relevant culture geometry. We utilized various methodologies, including the addition of exogenous amyloid-β peptides to the culture medium, growth substrate coating, and the utilization of human-induced pluripotent stem cell technology, to investigate the effect of endogenous amyloid-β secretion on neurite outgrowth, thus paving the way for potential future applications in personalized medicine. Additionally, we also explore the involvement of the Nogo signaling cascade in amyloid-β-induced neurite inhibition. We demonstrate that inhibition of downstream ROCK and RhoA components of the Nogo signaling pathway, achieved through modulation with Y-27632 (a ROCK inhibitor) and Ibuprofen (a Rho A inhibitor), respectively, can restore and even enhance neuronal connectivity in the presence of amyloid-β. In summary, this study not only presents a novel culture approach that offers insights into the biological process of neurite growth and inhibition, but also proposes a specific mechanism for reduced neural connectivity in the presence of amyloid-β peptides, along with potential intervention points to restore neurite growth. Thereby, we aim to establish a culture system that has the potential to serve as an assay for measuring preclinical, predictive outcomes of drugs and their ability to promote neurite outgrowth, both generally and in a patient-specific manner.
Collapse
Affiliation(s)
| | - Stefan Przyborski
- Department of Biosciences, Durham University, Durham, UK
- Reprocell Europe Ltd., Glasgow, UK
| |
Collapse
|
11
|
Xu S, Jia J, Mao R, Cao X, Xu Y. Mitophagy in acute central nervous system injuries: regulatory mechanisms and therapeutic potentials. Neural Regen Res 2025; 20:2437-2453. [PMID: 39248161 DOI: 10.4103/nrr.nrr-d-24-00432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/22/2024] [Indexed: 09/10/2024] Open
Abstract
Acute central nervous system injuries, including ischemic stroke, intracerebral hemorrhage, subarachnoid hemorrhage, traumatic brain injury, and spinal cord injury, are a major global health challenge. Identifying optimal therapies and improving the long-term neurological functions of patients with acute central nervous system injuries are urgent priorities. Mitochondria are susceptible to damage after acute central nervous system injury, and this leads to the release of toxic levels of reactive oxygen species, which induce cell death. Mitophagy, a selective form of autophagy, is crucial in eliminating redundant or damaged mitochondria during these events. Recent evidence has highlighted the significant role of mitophagy in acute central nervous system injuries. In this review, we provide a comprehensive overview of the process, classification, and related mechanisms of mitophagy. We also highlight the recent developments in research into the role of mitophagy in various acute central nervous system injuries and drug therapies that regulate mitophagy. In the final section of this review, we emphasize the potential for treating these disorders by focusing on mitophagy and suggest future research paths in this area.
Collapse
Affiliation(s)
- Siyi Xu
- Department of Neurology, Nanjing Drum Tower Hospital, Clinical College of Jiangsu University, Nanjing, Jiangsu Province, China
| | - Junqiu Jia
- Department of Neurology, Nanjing Drum Tower Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Nanjing, Jiangsu Province, China
| | - Rui Mao
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, China
| | - Xiang Cao
- Department of Neurology, Nanjing Drum Tower Hospital, Clinical College of Jiangsu University, Nanjing, Jiangsu Province, China
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, China
- State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, Jiangsu Province, China
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu Province, China
- Nanjing Neurology Medical Center, Nanjing, Jiangsu Province, China
| | - Yun Xu
- Department of Neurology, Nanjing Drum Tower Hospital, Clinical College of Jiangsu University, Nanjing, Jiangsu Province, China
- Department of Neurology, Nanjing Drum Tower Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Nanjing, Jiangsu Province, China
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, China
- State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, Jiangsu Province, China
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu Province, China
- Nanjing Neurology Medical Center, Nanjing, Jiangsu Province, China
| |
Collapse
|
12
|
Pradeepkiran JA, Rawat P, Reddy AP, Orlov E, Reddy PH. Small molecule inhibitor DDQ-treated hippocampal neuronal cells show improved neurite outgrowth and synaptic branching. Neural Regen Res 2025; 20:2624-2632. [PMID: 38902281 DOI: 10.4103/nrr.nrr-d-24-00157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/03/2024] [Indexed: 06/22/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202509000-00024/figure1/v/2024-11-05T132919Z/r/image-tiff The process of neurite outgrowth and branching is a crucial aspect of neuronal development and regeneration. Axons and dendrites, sometimes referred to as neurites, are extensions of a neuron's cellular body that are used to start networks. Here we explored the effects of diethyl (3,4-dihydroxyphenethylamino)(quinolin-4-yl) methylphosphonate (DDQ) on neurite developmental features in HT22 neuronal cells. In this work, we examined the protective effects of DDQ on neuronal processes and synaptic outgrowth in differentiated HT22 cells expressing mutant Tau (mTau) cDNA. To investigate DDQ characteristics, cell viability, biochemical, molecular, western blotting, and immunocytochemistry were used. Neurite outgrowth is evaluated through the segmentation and measurement of neural processes. These neural processes can be seen and measured with a fluorescence microscope by manually tracing and measuring the length of the neurite growth. These neuronal processes can be observed and quantified with a fluorescent microscope by manually tracing and measuring the length of the neuronal HT22. DDQ-treated mTau-HT22 cells (HT22 cells transfected with cDNA mutant Tau) were seen to display increased levels of synaptophysin, MAP-2, and β-tubulin. Additionally, we confirmed and noted reduced levels of both total and p-Tau, as well as elevated levels of microtubule-associated protein 2, β-tubulin, synaptophysin, vesicular acetylcholine transporter, and the mitochondrial biogenesis protein-peroxisome proliferator-activated receptor-gamma coactivator-1α. In mTau-expressed HT22 neurons, we observed DDQ enhanced the neurite characteristics and improved neurite development through increased synaptic outgrowth. Our findings conclude that mTau-HT22 (Alzheimer's disease) cells treated with DDQ have functional neurite developmental characteristics. The key finding is that, in mTau-HT22 cells, DDQ preserves neuronal structure and may even enhance nerve development function with mTau inhibition.
Collapse
Affiliation(s)
| | - Priyanka Rawat
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Department of Nutritional Sciences, College of Human Sciences, Texas Tech University, Lubbock, TX, USA
| | - Arubala P Reddy
- Department of Nutritional Sciences, College of Human Sciences, Texas Tech University, Lubbock, TX, USA
| | - Erika Orlov
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Department of Nutritional Sciences, College of Human Sciences, Texas Tech University, Lubbock, TX, USA
- Department of Pharmacology & Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Department of Speech, Language and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Department of Public Health, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| |
Collapse
|
13
|
Hayat M, Syed RA, Qaiser H, Uzair M, Al-Regaiey K, Khallaf R, Albassam LAM, Kaleem I, Wang X, Wang R, Bhatti MS, Bashir S. Decoding molecular mechanisms: brain aging and Alzheimer's disease. Neural Regen Res 2025; 20:2279-2299. [PMID: 39104174 DOI: 10.4103/nrr.nrr-d-23-01403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 07/04/2024] [Indexed: 08/07/2024] Open
Abstract
The complex morphological, anatomical, physiological, and chemical mechanisms within the aging brain have been the hot topic of research for centuries. The aging process alters the brain structure that affects functions and cognitions, but the worsening of such processes contributes to the pathogenesis of neurodegenerative disorders, such as Alzheimer's disease. Beyond these observable, mild morphological shifts, significant functional modifications in neurotransmission and neuronal activity critically influence the aging brain. Understanding these changes is important for maintaining cognitive health, especially given the increasing prevalence of age-related conditions that affect cognition. This review aims to explore the age-induced changes in brain plasticity and molecular processes, differentiating normal aging from the pathogenesis of Alzheimer's disease, thereby providing insights into predicting the risk of dementia, particularly Alzheimer's disease.
Collapse
Affiliation(s)
- Mahnoor Hayat
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Rafay Ali Syed
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Hammad Qaiser
- Department of Biological Sciences, Faculty of Basic & Applied Sciences, International Islamic University Islamabad (IIUI), Islamabad, Pakistan
| | - Mohammad Uzair
- Department of Bioengineering, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
| | - Khalid Al-Regaiey
- Department of Physiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Roaa Khallaf
- Department of Neurology, Neuroscience Center, King Fahad Specialist Hospital, Dammam, Saudi Arabia
| | | | - Imdad Kaleem
- Department of Biosciences, Commission on Science and Technology for Sustainable Development in the South (COMSATS University), Islamabad, Pakistan
| | - Xueyi Wang
- Department of Psychiatry, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
- Mental Health Institute of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Ran Wang
- Department of Psychiatry, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
- Mental Health Institute of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Mehwish S Bhatti
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
| | - Shahid Bashir
- Neuroscience Center, King Fahad Specialist Hospital Dammam, Dammam, Saudi Arabia
| |
Collapse
|
14
|
Song R, Yin S, Wu J, Yan J. Neuronal regulated cell death in aging-related neurodegenerative diseases: key pathways and therapeutic potentials. Neural Regen Res 2025; 20:2245-2263. [PMID: 39104166 DOI: 10.4103/nrr.nrr-d-24-00025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 06/18/2024] [Indexed: 08/07/2024] Open
Abstract
Regulated cell death (such as apoptosis, necroptosis, pyroptosis, autophagy, cuproptosis, ferroptosis, disulfidptosis) involves complex signaling pathways and molecular effectors, and has been proven to be an important regulatory mechanism for regulating neuronal aging and death. However, excessive activation of regulated cell death may lead to the progression of aging-related diseases. This review summarizes recent advances in the understanding of seven forms of regulated cell death in age-related diseases. Notably, the newly identified ferroptosis and cuproptosis have been implicated in the risk of cognitive impairment and neurodegenerative diseases. These forms of cell death exacerbate disease progression by promoting inflammation, oxidative stress, and pathological protein aggregation. The review also provides an overview of key signaling pathways and crosstalk mechanisms among these regulated cell death forms, with a focus on ferroptosis, cuproptosis, and disulfidptosis. For instance, FDX1 directly induces cuproptosis by regulating copper ion valency and dihydrolipoamide S-acetyltransferase aggregation, while copper mediates glutathione peroxidase 4 degradation, enhancing ferroptosis sensitivity. Additionally, inhibiting the Xc- transport system to prevent ferroptosis can increase disulfide formation and shift the NADP + /NADPH ratio, transitioning ferroptosis to disulfidptosis. These insights help to uncover the potential connections among these novel regulated cell death forms and differentiate them from traditional regulated cell death mechanisms. In conclusion, identifying key targets and their crosstalk points among various regulated cell death pathways may aid in developing specific biomarkers to reverse the aging clock and treat age-related neurodegenerative conditions.
Collapse
Affiliation(s)
- Run Song
- Department of Neurology, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan Province, China
- Neuromolecular Biology Laboratory, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan Province, China
| | - Shiyi Yin
- Department of Neurology, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan Province, China
- Neuromolecular Biology Laboratory, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan Province, China
| | - Jiannan Wu
- Neuromolecular Biology Laboratory, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan Province, China
| | - Junqiang Yan
- Department of Neurology, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan Province, China
- Neuromolecular Biology Laboratory, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan Province, China
| |
Collapse
|
15
|
Yin L, Xu Y, Mu J, Leng Y, Ma L, Zheng Y, Li R, Wang Y, Li P, Zhu H, Wang D, Li J. CNKSR2 interactome analysis indicates its association with the centrosome/microtubule system. Neural Regen Res 2025; 20:2420-2432. [PMID: 39359098 DOI: 10.4103/nrr.nrr-d-23-01725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 03/04/2024] [Indexed: 10/04/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202508000-00031/figure1/v/2024-09-30T120553Z/r/image-tiff The protein connector enhancer of kinase suppressor of Ras 2 (CNKSR2), present in both the postsynaptic density and cytoplasm of neurons, is a scaffolding protein with several protein-binding domains. Variants of the CNKSR2 gene have been implicated in neurodevelopmental disorders, particularly intellectual disability, although the precise mechanism involved has not yet been fully understood. Research has demonstrated that CNKSR2 plays a role in facilitating the localization of postsynaptic density protein complexes to the membrane, thereby influencing synaptic signaling and the morphogenesis of dendritic spines. However, the function of CNKSR2 in the cytoplasm remains to be elucidated. In this study, we used immunoprecipitation and high-resolution liquid chromatography-mass spectrometry to identify the interactors of CNKSR2. Through a combination of bioinformatic analysis and cytological experiments, we found that the CNKSR2 interactors were significantly enriched in the proteome of the centrosome. We also showed that CNKSR2 interacted with the microtubule protein DYNC1H1 and with the centrosome marker CEP290. Subsequent colocalization analysis confirmed the centrosomal localization of CNKSR2. When we downregulated CNKSR2 expression in mouse neuroblastoma cells (Neuro 2A), we observed significant changes in the expression of numerous centrosomal genes. This manipulation also affected centrosome-related functions, including cell size and shape, cell proliferation, and motility. Furthermore, we found that CNKSR2 interactors were highly enriched in de novo variants associated with intellectual disability and autism spectrum disorder. Our findings establish a connection between CNKSR2 and the centrosome, and offer new insights into the underlying mechanisms of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Lin Yin
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, Qingdao, Shandong Province, China
- School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China
| | - Yalan Xu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, Qingdao, Shandong Province, China
- School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China
| | - Jie Mu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, Qingdao, Shandong Province, China
- College of Life Sciences, and School of Pharmacy, Medical College, Qingdao University, Qingdao, Shandong Province, China
| | - Yu Leng
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, Qingdao, Shandong Province, China
- School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China
| | - Lei Ma
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, Qingdao, Shandong Province, China
- School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China
| | - Yu Zheng
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, Qingdao, Shandong Province, China
- School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China
- Department of Urology, Qingdao Municipal Hospital Affiliated to Qingdao University, Qingdao, Shandong Province, China
| | - Ruizhi Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, Qingdao, Shandong Province, China
- School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China
| | - Yin Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, Qingdao, Shandong Province, China
| | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, Qingdao, Shandong Province, China
| | - Hai Zhu
- Department of Urology, Qingdao Municipal Hospital Affiliated to Qingdao University, Qingdao, Shandong Province, China
| | - Dong Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, Qingdao, Shandong Province, China
| | - Jing Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, Qingdao, Shandong Province, China
| |
Collapse
|
16
|
Qiu R, Yang M, Jin X, Liu J, Wang W, Zhang X, Han J, Lei B. AAV2-PDE6B restores retinal structure and function in the retinal degeneration 10 mouse model of retinitis pigmentosa by promoting phototransduction and inhibiting apoptosis. Neural Regen Res 2025; 20:2408-2419. [PMID: 39359097 DOI: 10.4103/nrr.nrr-d-23-01301] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 01/30/2024] [Indexed: 10/04/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202508000-00030/figure1/v/2024-09-30T120553Z/r/image-tiff Retinitis pigmentosa is a group of inherited diseases that lead to retinal degeneration and photoreceptor cell death. However, there is no effective treatment for retinitis pigmentosa caused by PDE6B mutation. Adeno-associated virus (AAV)-mediated gene therapy is a promising strategy for treating retinitis pigmentosa. The aim of this study was to explore the molecular mechanisms by which AAV2-PDE6B rescues retinal function. To do this, we injected retinal degeneration 10 (rd10) mice subretinally with AAV2-PDE6B and assessed the therapeutic effects on retinal function and structure using dark- and light-adapted electroretinogram, optical coherence tomography, and immunofluorescence. Data-independent acquisition-mass spectrometry-based proteomic analysis was conducted to investigate protein expression levels and pathway enrichment, and the results from this analysis were verified by real-time polymerase chain reaction and western blotting. AAV2-PDE6B injection significantly upregulated PDE6β expression, preserved electroretinogram responses, and preserved outer nuclear layer thickness in rd10 mice. Differentially expressed proteins between wild-type and rd10 mice were closely related to visual perception, and treating rd10 mice with AAV2-PDE6B restored differentially expressed protein expression to levels similar to those seen in wild-type mice. Kyoto Encyclopedia of Genes and Genome analysis showed that the differentially expressed proteins whose expression was most significantly altered by AAV2-PDE6B injection were enriched in phototransduction pathways. Furthermore, the phototransduction-related proteins Pde6α, Rom1, Rho, Aldh1a1, and Rbp1 exhibited opposite expression patterns in rd10 mice with or without AAV2-PDE6B treatment. Finally, Bax/Bcl-2, p-ERK/ERK, and p-c-Fos/c-Fos expression levels decreased in rd10 mice following AAV2-PDE6B treatment. Our data suggest that AAV2-PDE6B-mediated gene therapy promotes phototransduction and inhibits apoptosis by inhibiting the ERK signaling pathway and upregulating Bcl-2/Bax expression in retinitis pigmentosa.
Collapse
Affiliation(s)
- Ruiqi Qiu
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Eye Institute, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan Province, China
| | - Mingzhu Yang
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Eye Institute, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan Province, China
| | - Xiuxiu Jin
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Eye Institute, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan Province, China
- Branch of National Clinical Research Center for Ocular Disease, Henan Provincial People's Hospital, Zhengzhou, Henan Province, China
| | - Jingyang Liu
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Eye Institute, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan Province, China
| | - Weiping Wang
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Eye Institute, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan Province, China
| | - Xiaoli Zhang
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Jinfeng Han
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Bo Lei
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Eye Institute, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan Province, China
- Branch of National Clinical Research Center for Ocular Disease, Henan Provincial People's Hospital, Zhengzhou, Henan Province, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan Province, China
| |
Collapse
|
17
|
Chen Y, Deng H, Zhang N. Autophagy-targeting modulation to promote peripheral nerve regeneration. Neural Regen Res 2025; 20:1864-1882. [PMID: 39254547 DOI: 10.4103/nrr.nrr-d-23-01948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/29/2024] [Indexed: 09/11/2024] Open
Abstract
Nerve regeneration following traumatic peripheral nerve injuries and neuropathies is a complex process modulated by diverse factors and intricate molecular mechanisms. Past studies have focused on factors that stimulate axonal outgrowth and myelin regeneration. However, recent studies have highlighted the pivotal role of autophagy in peripheral nerve regeneration, particularly in the context of traumatic injuries. Consequently, autophagy-targeting modulation has emerged as a promising therapeutic approach to enhancing peripheral nerve regeneration. Our current understanding suggests that activating autophagy facilitates the rapid clearance of damaged axons and myelin sheaths, thereby enhancing neuronal survival and mitigating injury-induced oxidative stress and inflammation. These actions collectively contribute to creating a favorable microenvironment for structural and functional nerve regeneration. A range of autophagy-inducing drugs and interventions have demonstrated beneficial effects in alleviating peripheral neuropathy and promoting nerve regeneration in preclinical models of traumatic peripheral nerve injuries. This review delves into the regulation of autophagy in cell types involved in peripheral nerve regeneration, summarizing the potential drugs and interventions that can be harnessed to promote this process. We hope that our review will offer novel insights and perspectives on the exploitation of autophagy pathways in the treatment of peripheral nerve injuries and neuropathies.
Collapse
Affiliation(s)
- Yan Chen
- Department of Obstetrics and Gynecology, West China Second Hospital, Sichuan University, Chengdu, Sichuan Province, China
- Key Laboratory of Birth Defects and Women and Children's Diseases, Ministry of Education, Sichuan University, Chengdu, Sichuan Province, China
- Laboratory of Reproductive Endocrinology and Reproductive Regulation, Sichuan University, Chengdu, Sichuan Province, China
| | - Hongxia Deng
- Key Laboratory of Birth Defects and Women and Children's Diseases, Ministry of Education, Sichuan University, Chengdu, Sichuan Province, China
- Laboratory of Reproductive Endocrinology and Reproductive Regulation, Sichuan University, Chengdu, Sichuan Province, China
| | - Nannan Zhang
- Key Laboratory of Birth Defects and Women and Children's Diseases, Ministry of Education, Sichuan University, Chengdu, Sichuan Province, China
- National Center for Birth Defect Monitoring, West China Second University Hospital, Sichuan University, Chengdu, Sichuan Province, China
| |
Collapse
|
18
|
Xing X, Liu X, Li X, Li M, Wu X, Huang X, Xu A, Liu Y, Zhang J. Insights into spinal muscular atrophy from molecular biomarkers. Neural Regen Res 2025; 20:1849-1863. [PMID: 38934395 DOI: 10.4103/nrr.nrr-d-24-00067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/11/2024] [Indexed: 06/28/2024] Open
Abstract
Spinal muscular atrophy is a devastating motor neuron disease characterized by severe cases of fatal muscle weakness. It is one of the most common genetic causes of mortality among infants aged less than 2 years. Biomarker research is currently receiving more attention, and new candidate biomarkers are constantly being discovered. This review initially discusses the evaluation methods commonly used in clinical practice while briefly outlining their respective pros and cons. We also describe recent advancements in research and the clinical significance of molecular biomarkers for spinal muscular atrophy, which are classified as either specific or non-specific biomarkers. This review provides new insights into the pathogenesis of spinal muscular atrophy, the mechanism of biomarkers in response to drug-modified therapies, the selection of biomarker candidates, and would promote the development of future research. Furthermore, the successful utilization of biomarkers may facilitate the implementation of gene-targeting treatments for patients with spinal muscular atrophy.
Collapse
Affiliation(s)
- Xiaodong Xing
- Department of Clinical Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Xinzhu Liu
- Department of Clinical Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiandeng Li
- Department of Clinical Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Mi Li
- Department of Clinical Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xian Wu
- Department of Clinical Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Xiaohui Huang
- Department of Clinical Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ajing Xu
- Department of Clinical Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Liu
- Department of Clinical Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian Zhang
- Department of Clinical Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
19
|
Maejima I, Sato K. New aspects of a small GTPase RAB35 in brain development and function. Neural Regen Res 2025; 20:1971-1980. [PMID: 39254551 DOI: 10.4103/nrr.nrr-d-23-01543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 12/30/2023] [Indexed: 09/11/2024] Open
Abstract
In eukaryotic cells, organelles in the secretory, lysosomal, and endocytic pathways actively exchange biological materials with each other through intracellular membrane trafficking, which is the process of transporting the cargo of proteins, lipids, and other molecules to appropriate compartments via transport vesicles or intermediates. These processes are strictly regulated by various small GTPases such as the RAS-like in rat brain (RAB) protein family, which is the largest subfamily of the RAS superfamily. Dysfunction of membrane trafficking affects tissue homeostasis and leads to a wide range of diseases, including neurological disorders and neurodegenerative diseases. Therefore, it is important to understand the physiological and pathological roles of RAB proteins in brain function. RAB35, a member of the RAB family, is an evolutionarily conserved protein in metazoans. A wide range of studies using cultured mammalian cells and model organisms have revealed that RAB35 mediates various processes such as cytokinesis, endocytic recycling, actin bundling, and cell migration. RAB35 is also involved in neurite outgrowth and turnover of synaptic vesicles. We generated brain-specific Rab35 knockout mice to study the physiological roles of RAB35 in brain development and function. These mice exhibited defects in anxiety-related behaviors and spatial memory. Strikingly, RAB35 is required for the precise positioning of pyramidal neurons during hippocampal development, and thereby for normal hippocampal lamination. In contrast, layer formation in the cerebral cortex occurred superficially, even in the absence of RAB35, suggesting a predominant role for RAB35 in hippocampal development rather than in cerebral cortex development. Recent studies have suggested an association between RAB35 and neurodegenerative diseases, including Parkinson's disease and Alzheimer's disease. In this review, we provide an overview of the current understanding of subcellular functions of RAB35. We also provide insights into the physiological role of RAB35 in mammalian brain development and function, and discuss the involvement of RAB35 dysfunction in neurodegenerative diseases.
Collapse
Affiliation(s)
- Ikuko Maejima
- Laboratory of Molecular Traffic, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | | |
Collapse
|
20
|
Ambrosini E, Lanciotti A, Brignone MS. Calcium-sensitive protein MLC1 as a possible modulator of the astrocyte functional state. Neural Regen Res 2025; 20:2008-2010. [PMID: 39254561 DOI: 10.4103/nrr.nrr-d-24-00471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 06/04/2024] [Indexed: 09/11/2024] Open
Affiliation(s)
- Elena Ambrosini
- Department of Neuroscience, Istituto Superiore di Sanità, Rome, Italy
| | | | | |
Collapse
|
21
|
Brown SJ, Yáñez-Muñoz RJ, Fuller HR. Gene therapy for spinal muscular atrophy: perspectives on the possibility of optimizing SMN1 delivery to correct all neurological and systemic perturbations. Neural Regen Res 2025; 20:2011-2012. [PMID: 39254562 DOI: 10.4103/nrr.nrr-d-24-00504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 06/26/2024] [Indexed: 09/11/2024] Open
Affiliation(s)
- Sharon J Brown
- School of Pharmacy and Bioengineering, Keele University, Keele, UK (Brown SJ, Fuller HR)
- Wolfson Center for Inherited Neuromuscular Disease, TORCH Building, RJAH Orthopaedic Hospital, Oswestry, UK (Brown SJ, Fuller HR)
| | - Rafael J Yáñez-Muñoz
- AGCTlab.org, Center of Gene and Cell Therapy, Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham, UK (Yáñez-Muñoz RJ)
| | - Heidi R Fuller
- School of Pharmacy and Bioengineering, Keele University, Keele, UK (Brown SJ, Fuller HR)
- Wolfson Center for Inherited Neuromuscular Disease, TORCH Building, RJAH Orthopaedic Hospital, Oswestry, UK (Brown SJ, Fuller HR)
| |
Collapse
|
22
|
Li Y, Xue J, Ma Y, Ye K, Zhao X, Ge F, Zheng F, Liu L, Gao X, Wang D, Xia Q. The complex roles of m 6 A modifications in neural stem cell proliferation, differentiation, and self-renewal and implications for memory and neurodegenerative diseases. Neural Regen Res 2025; 20:1582-1598. [PMID: 38845217 DOI: 10.4103/nrr.nrr-d-23-01872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/25/2024] [Indexed: 08/07/2024] Open
Abstract
N6-methyladenosine (m 6 A), the most prevalent and conserved RNA modification in eukaryotic cells, profoundly influences virtually all aspects of mRNA metabolism. mRNA plays crucial roles in neural stem cell genesis and neural regeneration, where it is highly concentrated and actively involved in these processes. Changes in m 6 A modification levels and the expression levels of related enzymatic proteins can lead to neurological dysfunction and contribute to the development of neurological diseases. Furthermore, the proliferation and differentiation of neural stem cells, as well as nerve regeneration, are intimately linked to memory function and neurodegenerative diseases. This paper presents a comprehensive review of the roles of m 6 A in neural stem cell proliferation, differentiation, and self-renewal, as well as its implications in memory and neurodegenerative diseases. m 6 A has demonstrated divergent effects on the proliferation and differentiation of neural stem cells. These observed contradictions may arise from the time-specific nature of m 6 A and its differential impact on neural stem cells across various stages of development. Similarly, the diverse effects of m 6 A on distinct types of memory could be attributed to the involvement of specific brain regions in memory formation and recall. Inconsistencies in m 6 A levels across different models of neurodegenerative disease, particularly Alzheimer's disease and Parkinson's disease, suggest that these disparities are linked to variations in the affected brain regions. Notably, the opposing changes in m 6 A levels observed in Parkinson's disease models exposed to manganese compared to normal Parkinson's disease models further underscore the complexity of m 6 A's role in neurodegenerative processes. The roles of m 6 A in neural stem cell proliferation, differentiation, and self-renewal, and its implications in memory and neurodegenerative diseases, appear contradictory. These inconsistencies may be attributed to the time-specific nature of m 6 A and its varying effects on distinct brain regions and in different environments.
Collapse
Affiliation(s)
- Yanxi Li
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
- College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Jing Xue
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
- College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Yuejia Ma
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
- College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Ke Ye
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
- College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Xue Zhao
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
- College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Fangliang Ge
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
- College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Feifei Zheng
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
- College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Lulu Liu
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
- College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Xu Gao
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
- College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
- Basic Medical Institute, Heilongjiang Academy of Medical Sciences, Harbin, Heilongjiang Province, China
- Key Laboratory of Heilongjiang Province for Genetically Modified Animals, Harbin Medical University, Harbin, Heilongjiang Province, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, Heilongjiang Province, China
| | - Dayong Wang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
- College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, Heilongjiang Province, China
| | - Qing Xia
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
23
|
Yashaswini C, Kiran NS, Chatterjee A. Zebrafish navigating the metabolic maze: insights into human disease - assets, challenges and future implications. J Diabetes Metab Disord 2025; 24:3. [PMID: 39697864 PMCID: PMC11649609 DOI: 10.1007/s40200-024-01539-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 09/26/2024] [Indexed: 12/20/2024]
Abstract
Zebrafish (Danio rerio) have become indispensable models for advancing our understanding of multiple metabolic disorders such as obesity, diabetes mellitus, dyslipidemia, and metabolic syndrome. This review provides a comprehensive analysis of zebrafish as a powerful tool for dissecting the genetic and molecular mechanisms of these diseases, focusing on key genes, like pparγ, lepr, ins, and srebp. Zebrafish offer distinct advantages, including genetic tractability, optical transparency in early development, and the conservation of key metabolic pathways with humans. Studies have successfully used zebrafish to uncover conserved metabolic mechanisms, identify novel disease pathways, and facilitate high-throughput screening of potential therapeutic compounds. The review also highlights the novelty of using zebrafish to model multifactorial metabolic disorders, addressing challenges such as interspecies differences in metabolism and the complexity of human metabolic disease etiology. Moving forward, future research will benefit from integrating advanced omics technologies to map disease-specific molecular signatures, applying personalized medicine approaches to optimize treatments, and utilizing computational models to predict therapeutic outcomes. By embracing these innovative strategies, zebrafish research has the potential to revolutionize the diagnosis, treatment, and prevention of metabolic disorders, offering new avenues for translational applications. Continued interdisciplinary collaboration and investment in zebrafish-based studies will be crucial to fully harnessing their potential for advancing therapeutic development.
Collapse
Affiliation(s)
- Chandrashekar Yashaswini
- Department of Biotechnology, School of Applied Sciences, REVA University, Bengaluru, Karnataka 560064 India
| | | | - Ankita Chatterjee
- Department of Biotechnology, School of Applied Sciences, REVA University, Bengaluru, Karnataka 560064 India
| |
Collapse
|
24
|
Najafi G, Niknam N, Afshari M, Hasanzad M. Genotype frequency analysis of rs2025804 LEPR genetic variant in Iranian population. J Diabetes Metab Disord 2025; 24:29. [PMID: 39735171 PMCID: PMC11680522 DOI: 10.1007/s40200-024-01534-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/09/2024] [Indexed: 12/31/2024]
Abstract
Objectives The LEPR gene is a key focus in obesity research, with studies linking its polymorphisms to various diseases like polycystic ovarian syndrome and energy intake disorders. This study aims to investigate the prevalence of the rs2025804 variant within LEPR and its distribution among healthy individuals across diverse ethnic groups in Iran. Methods The frequency of the rs2025804 genotype in the LEPR gene was analyzed in 1142 healthy adults representing different ethnicities in Iran. Saliva samples were randomly collected, and genomic DNA was extracted using a standard kit. Genotyping was performed using the Illumina Infinium Global Screening Array-24 BeadChip. Genotype and allele frequencies were calculated using SPSS software version 22, with a 95% confidence level. Results Among the 1142 individuals surveyed across 29 provinces, 683 (59.81%) had genotype AA, 408 (35.73%) had genotype AG, and 51 (4.47%) had genotype GG. The allele frequencies for A and G were found to be 1774 (77.67%) and 510 (22.32%), respectively. Our findings show a unique allele distribution compared to other ethnic groups, with genotype AA being the most prevalent (59.81%), followed by AG (35.73%) and GG (4.47%). Allele frequencies are A (77.67%) and G (22.32%). Conclusions This study documents the genotype and allele frequencies of rs2025804 in the LEPR gene among healthy Iranians for the first time. Routine LEPR genotyping could potentially serve as a screening tool for obesity-related disorders, given these results. This enhances our understanding of genetic diversity and holds promise for targeted healthcare interventions.
Collapse
Affiliation(s)
- Ghazal Najafi
- Medical Genomics Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran, 1916893813 Iran
| | - Negar Niknam
- Department of Pharmacoeconomics and Pharmaceutical Administration, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- LifeandMe, Inc., Tehran, Iran
| | - Mahdi Afshari
- Department of Community Medicine, Zabol University of Medical Sciences, Zabol, Iran
| | - Mandana Hasanzad
- Personalized Medicine Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, No. 10- Jalal -e-Ale-Ahmad Street, Chamran Highway, Tehran, 1411713119 Iran
| |
Collapse
|
25
|
Junaid M, Lee EJ, Lim SB. Single-cell and spatial omics: exploring hypothalamic heterogeneity. Neural Regen Res 2025; 20:1525-1540. [PMID: 38993130 DOI: 10.4103/nrr.nrr-d-24-00231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/03/2024] [Indexed: 07/13/2024] Open
Abstract
Elucidating the complex dynamic cellular organization in the hypothalamus is critical for understanding its role in coordinating fundamental body functions. Over the past decade, single-cell and spatial omics technologies have significantly evolved, overcoming initial technical challenges in capturing and analyzing individual cells. These high-throughput omics technologies now offer a remarkable opportunity to comprehend the complex spatiotemporal patterns of transcriptional diversity and cell-type characteristics across the entire hypothalamus. Current single-cell and single-nucleus RNA sequencing methods comprehensively quantify gene expression by exploring distinct phenotypes across various subregions of the hypothalamus. However, single-cell/single-nucleus RNA sequencing requires isolating the cell/nuclei from the tissue, potentially resulting in the loss of spatial information concerning neuronal networks. Spatial transcriptomics methods, by bypassing the cell dissociation, can elucidate the intricate spatial organization of neural networks through their imaging and sequencing technologies. In this review, we highlight the applicative value of single-cell and spatial transcriptomics in exploring the complex molecular-genetic diversity of hypothalamic cell types, driven by recent high-throughput achievements.
Collapse
Affiliation(s)
- Muhammad Junaid
- Department of Biochemistry & Molecular Biology, Ajou University School of Medicine, Suwon, South Korea
- Department of Biomedical Sciences, Graduate School of Ajou University, Suwon, South Korea
| | - Eun Jeong Lee
- Department of Biomedical Sciences, Graduate School of Ajou University, Suwon, South Korea
- Department of Brain Science, Ajou University School of Medicine, Suwon, South Korea
| | - Su Bin Lim
- Department of Biochemistry & Molecular Biology, Ajou University School of Medicine, Suwon, South Korea
- Department of Biomedical Sciences, Graduate School of Ajou University, Suwon, South Korea
| |
Collapse
|
26
|
Chen Z, Li XJ. Targeting cholesterol trafficking to mitigate axonal degeneration in hereditary spastic paraplegia. Neural Regen Res 2025; 20:1397-1398. [PMID: 39075901 PMCID: PMC11624880 DOI: 10.4103/nrr.nrr-d-24-00138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/18/2024] [Accepted: 05/07/2024] [Indexed: 07/31/2024] Open
Affiliation(s)
- Zhenyu Chen
- Department of Biomedical Sciences, University of Illinois College of Medicine Rockford, Rockford, IL, USA; Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Xue-Jun Li
- Department of Biomedical Sciences, University of Illinois College of Medicine Rockford, Rockford, IL, USA; Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
27
|
Qiu Q, Yang M, Gong D, Liang H, Chen T. Potassium and calcium channels in different nerve cells act as therapeutic targets in neurological disorders. Neural Regen Res 2025; 20:1258-1276. [PMID: 38845230 PMCID: PMC11624876 DOI: 10.4103/nrr.nrr-d-23-01766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/18/2024] [Accepted: 04/07/2024] [Indexed: 07/31/2024] Open
Abstract
The central nervous system, information integration center of the body, is mainly composed of neurons and glial cells. The neuron is one of the most basic and important structural and functional units of the central nervous system, with sensory stimulation and excitation conduction functions. Astrocytes and microglia belong to the glial cell family, which is the main source of cytokines and represents the main defense system of the central nervous system. Nerve cells undergo neurotransmission or gliotransmission, which regulates neuronal activity via the ion channels, receptors, or transporters expressed on nerve cell membranes. Ion channels, composed of large transmembrane proteins, play crucial roles in maintaining nerve cell homeostasis. These channels are also important for control of the membrane potential and in the secretion of neurotransmitters. A variety of cellular functions and life activities, including functional regulation of the central nervous system, the generation and conduction of nerve excitation, the occurrence of receptor potential, heart pulsation, smooth muscle peristalsis, skeletal muscle contraction, and hormone secretion, are closely related to ion channels associated with passive transmembrane transport. Two types of ion channels in the central nervous system, potassium channels and calcium channels, are closely related to various neurological disorders, including Alzheimer's disease, Parkinson's disease, and epilepsy. Accordingly, various drugs that can affect these ion channels have been explored deeply to provide new directions for the treatment of these neurological disorders. In this review, we focus on the functions of potassium and calcium ion channels in different nerve cells and their involvement in neurological disorders such as Parkinson's disease, Alzheimer's disease, depression, epilepsy, autism, and rare disorders. We also describe several clinical drugs that target potassium or calcium channels in nerve cells and could be used to treat these disorders. We concluded that there are few clinical drugs that can improve the pathology these diseases by acting on potassium or calcium ions. Although a few novel ion-channel-specific modulators have been discovered, meaningful therapies have largely not yet been realized. The lack of target-specific drugs, their requirement to cross the blood-brain barrier, and their exact underlying mechanisms all need further attention. This review aims to explain the urgent problems that need research progress and provide comprehensive information aiming to arouse the research community's interest in the development of ion channel-targeting drugs and the identification of new therapeutic targets for that can increase the cure rate of nervous system diseases and reduce the occurrence of adverse reactions in other systems.
Collapse
Affiliation(s)
- Qing Qiu
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu Province, China
- Jiangsu Province Key Laboratory of Inflammation and Molecular Drug Target, Nantong, Jiangsu Province, China
| | - Mengting Yang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu Province, China
- Jiangsu Province Key Laboratory of Inflammation and Molecular Drug Target, Nantong, Jiangsu Province, China
| | - Danfeng Gong
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu Province, China
- Jiangsu Province Key Laboratory of Inflammation and Molecular Drug Target, Nantong, Jiangsu Province, China
| | - Haiying Liang
- Department of Pharmacy, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, Fujian Province, China
| | - Tingting Chen
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu Province, China
- Jiangsu Province Key Laboratory of Inflammation and Molecular Drug Target, Nantong, Jiangsu Province, China
| |
Collapse
|
28
|
Qiao L, Lin X, Liu H, Xiang R, Zhan J, Deng F, Bao M, He H, Wen X, Deng H, Wang X, He Y, Yang Z, Han J. T-2 toxin induces cardiac fibrosis by causing metabolic disorders and up-regulating Sirt3/FoxO3α/MnSOD signaling pathway-mediated oxidative stress. J Environ Sci (China) 2025; 150:532-544. [PMID: 39306426 DOI: 10.1016/j.jes.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 09/25/2024]
Abstract
T-2 toxin, an omnipresent environmental contaminant, poses a serious risk to the health of humans and animals due to its pronounced cardiotoxicity. This study aimed to elucidate the molecular mechanism of cardiac tissue damage by T-2 toxin. Twenty-four male Sprague-Dawley rats were orally administered T-2 toxin through gavage for 12 weeks at the dose of 0, 10, and 100 nanograms per gram body weight per day (ng/(g·day)), respectively. Morphological, pathological, and ultrastructural alterations in cardiac tissue were meticulously examined. Non-targeted metabolomics analysis was employed to analyze alterations in cardiac metabolites. The expression of the Sirt3/FoxO3α/MnSOD signaling pathway and the level of oxidative stress markers were detected. The results showed that exposure to T-2 toxin elicited myocardial tissue disorders, interstitial hemorrhage, capillary dilation, and fibrotic damage. Mitochondria were markedly impaired, including swelling, fusion, matrix degradation, and membrane damage. Metabonomics analysis unveiled that T-2 toxin could cause alterations in cardiac metabolic profiles as well as in the Sirt3/FoxO3α/MnSOD signaling pathway. T-2 toxin could inhibit the expressions of the signaling pathway and elevate the level of oxidative stress. In conclusion, the T-2 toxin probably induces cardiac fibrotic impairment by affecting amino acid and choline metabolism as well as up-regulating oxidative stress mediated by the Sirt3/FoxO3α/MnSOD signaling pathway. This study is expected to provide targets for preventing and treating T-2 toxin-induced cardiac fibrotic injury.
Collapse
Affiliation(s)
- Lichun Qiao
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China; Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an 712000, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an 710061, China
| | - Xue Lin
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China; Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an 712000, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an 710061, China
| | - Haobiao Liu
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China; Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an 712000, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an 710061, China
| | - Rongqi Xiang
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China; Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an 712000, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an 710061, China
| | - Jingming Zhan
- Department of Radiological Medicine and Environmental Medicine, China Institute of Radiation Protection, Taiyuan 030006, China
| | - Feidan Deng
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China; Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an 712000, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an 710061, China
| | - Miaoye Bao
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China; Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an 712000, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an 710061, China
| | - Huifang He
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China; Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an 712000, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an 710061, China
| | - Xinyue Wen
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China; Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an 712000, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an 710061, China
| | - Huan Deng
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China; Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an 712000, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an 710061, China
| | - Xining Wang
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China; Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an 712000, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an 710061, China
| | - Yujie He
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China; Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an 712000, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an 710061, China
| | - Zhihao Yang
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China; Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an 712000, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an 710061, China
| | - Jing Han
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China; Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an 712000, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an 710061, China; Key Laboratory of Environment and Genes Related to Diseases, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China.
| |
Collapse
|
29
|
Piñeiro-Llanes J, Suzuki-Hatano S, Jain A, Venigalla S, Kamat M, Basso KB, Cade WT, Simmons CS, Pacak CA. Rescue of mitochondrial dysfunction through alteration of extracellular matrix composition in barth syndrome cardiac fibroblasts. Biomaterials 2025; 315:122922. [PMID: 39509858 PMCID: PMC11625619 DOI: 10.1016/j.biomaterials.2024.122922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/24/2024] [Accepted: 10/24/2024] [Indexed: 11/15/2024]
Abstract
Fibroblast-ECM (dys)regulation is associated with a plethora of diseases. The ECM acts as a reservoir of inflammatory factors and cytokines that mediate molecular mechanisms within cardiac cell populations. The role of ECM-mitochondria crosstalk in the development and progression of cardiac disorders remains uncertain. We evaluated the influence of ECM produced by stromal cells from patients with the mitochondrial cardiomyopathy (Barth syndrome, BTHS) and unaffected healthy controls on cardiac fibroblast (CF) metabolic function. To do this, cell-derived matrices CDMs were generated from BTHS and healthy human pluripotent stem cell-derived CFs (hPSC-CF) and used as cell culture substrates. BTHS CDMs negatively impacted the mitochondrial function of healthy hPSC-CFs while healthy CDMs improved mitochondrial function in BTHS hPSC-CFs. Mass spectrometry comparisons identified 5 matrisome proteins differentially expressed in BTHS compared to healthy CDM. Our results highlight a key role for the ECM in disease through its impact on mitochondrial function.
Collapse
Affiliation(s)
- Janny Piñeiro-Llanes
- J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, 32611, USA.
| | - Silveli Suzuki-Hatano
- Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL, 32610, USA.
| | - Ananya Jain
- J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, 32611, USA.
| | - Sree Venigalla
- Department of Neurology and Greg Marzolf Jr. Muscular Dystrophy Center, University of Minnesota Medical School, Minneapolis, 55455, USA.
| | - Manasi Kamat
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA.
| | - Kari B Basso
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA.
| | - William T Cade
- Doctor of Physical Therapy Division, Duke University, Durham, NC, 27710, USA.
| | - Chelsey S Simmons
- J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, 32611, USA; Department of Mechanical and Aerospace Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, 32611, USA.
| | - Christina A Pacak
- Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL, 32610, USA; Department of Neurology and Greg Marzolf Jr. Muscular Dystrophy Center, University of Minnesota Medical School, Minneapolis, 55455, USA.
| |
Collapse
|
30
|
Locatelli M, Farina C. Role of copper in central nervous system physiology and pathology. Neural Regen Res 2025; 20:1058-1068. [PMID: 38989937 PMCID: PMC11438321 DOI: 10.4103/nrr.nrr-d-24-00110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/21/2024] [Accepted: 04/23/2024] [Indexed: 07/12/2024] Open
Abstract
Copper is a transition metal and an essential element for the organism, as alterations in its homeostasis leading to metal accumulation or deficiency have pathological effects in several organs, including the central nervous system. Central copper dysregulations have been evidenced in two genetic disorders characterized by mutations in the copper-ATPases ATP7A and ATP7B, Menkes disease and Wilson's disease, respectively, and also in multifactorial neurological disorders such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and multiple sclerosis. This review summarizes current knowledge about the role of copper in central nervous system physiology and pathology, reports about unbalances in copper levels and/or distribution under disease, describes relevant animal models for human disorders where copper metabolism genes are dysregulated, and discusses relevant therapeutic approaches modulating copper availability. Overall, alterations in copper metabolism may contribute to the etiology of central nervous system disorders and represent relevant therapeutic targets to restore tissue homeostasis.
Collapse
Affiliation(s)
- Martina Locatelli
- Institute of Experimental Neurology, Division of Neuroscience, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Cinthia Farina
- Institute of Experimental Neurology, Division of Neuroscience, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
31
|
Liu Y, Huang W, Wen J, Xiong X, Xu T, Wang Q, Chen X, Zhao X, Li S, Li X, Yang W. Differential distribution of PINK1 and Parkin in the primate brain implies distinct roles. Neural Regen Res 2025; 20:1124-1134. [PMID: 38989951 PMCID: PMC11438320 DOI: 10.4103/nrr.nrr-d-23-01140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 12/09/2023] [Indexed: 07/12/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202504000-00028/figure1/v/2024-07-06T104127Z/r/image-tiff The vast majority of in vitro studies have demonstrated that PINK1 phosphorylates Parkin to work together in mitophagy to protect against neuronal degeneration. However, it remains largely unclear how PINK1 and Parkin are expressed in mammalian brains. This has been difficult to address because of the intrinsically low levels of PINK1 and undetectable levels of phosphorylated Parkin in small animals. Understanding this issue is critical for elucidating the in vivo roles of PINK1 and Parkin. Recently, we showed that the PINK1 kinase is selectively expressed as a truncated form (PINK1-55) in the primate brain. In the present study, we used multiple antibodies, including our recently developed monoclonal anti-PINK1, to validate the selective expression of PINK1 in the primate brain. We found that PINK1 was stably expressed in the monkey brain at postnatal and adulthood stages, which is consistent with the findings that depleting PINK1 can cause neuronal loss in developing and adult monkey brains. PINK1 was enriched in the membrane-bound fractionations, whereas Parkin was soluble with a distinguishable distribution. Immunofluorescent double staining experiments showed that PINK1 and Parkin did not colocalize under physiological conditions in cultured monkey astrocytes, though they did colocalize on mitochondria when the cells were exposed to mitochondrial stress. These findings suggest that PINK1 and Parkin may have distinct roles beyond their well-known function in mitophagy during mitochondrial damage.
Collapse
Affiliation(s)
- Yanting Liu
- Guangdong Key Laboratory of Non-human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University, Jinan University, Guangzhou, Guangdong Province, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Schreiber J, Rotard L, Tourneur Y, Lafoux A, Berthier C, Allard B, Huchet C, Jacquemond V. Reduced voltage-activated Ca2+ release flux in muscle fibers from a rat model of Duchenne dystrophy. J Gen Physiol 2025; 157:e202413588. [PMID: 39718509 DOI: 10.1085/jgp.202413588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/14/2024] [Accepted: 12/06/2024] [Indexed: 12/25/2024] Open
Abstract
The potential pathogenic role of disturbed Ca2+ homeostasis in Duchenne muscular dystrophy (DMD) remains a complex, unsettled issue. We used muscle fibers isolated from 3-mo-old DMDmdx rats to further investigate the case. Most DMDmdx fibers exhibited no sign of trophic or morphology distinction as compared with WT fibers and mitochondria and t-tubule membrane networks also showed no stringent discrepancy. Under voltage clamp, values for holding current were similar in the two groups, whereas values for capacitance were larger in DMDmdx fibers, suggestive of enhanced amount of t-tubule membrane. The Ca2+ current density across the channel carried by the EC coupling voltage sensor (CaV1.1) was unchanged. The maximum rate of voltage-activated sarcoplasmic reticulum (SR) Ca2+ release was reduced by 25% in the DMDmdx fibers, with no change in voltage dependency. Imaging resting Ca2+ revealed rare spontaneous local SR Ca2+ release events with no sign of elevated activity in DMDmdx fibers. Under current clamp, DMDmdx fibers generated similar trains of action potentials as WT fibers. Results suggest that reduced peak amplitude of SR Ca2+ release is an inherent feature of this DMD model, likely contributing to muscle weakness. This occurs despite a preserved amount of releasable Ca2+ and with no change in excitability, CaV1.1 channel activity, and SR Ca2+ release at rest. Although we cannot exclude that fibers from the 3-mo-old animals do not yet display a fully developed disease phenotype, results provide limited support for pathomechanistic concepts frequently associated with DMD such as membrane fragility, excessive Ca2+ entry, or enhanced SR Ca2+ leak.
Collapse
Affiliation(s)
- Jonathan Schreiber
- University Lyon, Université Claude Bernard Lyon 1, CNRS UMR-5261, INSERM U-1315, Institut NeuroMyoGène - Pathophysiology and Genetics of Neuron and Muscle , Lyon, France
| | - Ludivine Rotard
- University Lyon, Université Claude Bernard Lyon 1, CNRS UMR-5261, INSERM U-1315, Institut NeuroMyoGène - Pathophysiology and Genetics of Neuron and Muscle , Lyon, France
| | - Yves Tourneur
- UFPE Department Nutrição, Cidade Universitária, Recife, Brazil
| | - Aude Lafoux
- Therassay Platform, CAPACITES, Nantes Université , Nantes, France
| | - Christine Berthier
- University Lyon, Université Claude Bernard Lyon 1, CNRS UMR-5261, INSERM U-1315, Institut NeuroMyoGène - Pathophysiology and Genetics of Neuron and Muscle , Lyon, France
| | - Bruno Allard
- University Lyon, Université Claude Bernard Lyon 1, CNRS UMR-5261, INSERM U-1315, Institut NeuroMyoGène - Pathophysiology and Genetics of Neuron and Muscle , Lyon, France
| | - Corinne Huchet
- Therassay Platform, CAPACITES, Nantes Université , Nantes, France
- Nantes Gene Therapy Laboratory, Nantes Université, INSERM UMR TARGET 1089, Nantes, France
| | - Vincent Jacquemond
- University Lyon, Université Claude Bernard Lyon 1, CNRS UMR-5261, INSERM U-1315, Institut NeuroMyoGène - Pathophysiology and Genetics of Neuron and Muscle , Lyon, France
| |
Collapse
|
33
|
El Mossadeq L, Bellutti L, Le Borgne R, Canman JC, Pintard L, Verbavatz JM, Askjaer P, Dumont J. An interkinetic envelope surrounds chromosomes between meiosis I and II in C. elegans oocytes. J Cell Biol 2025; 224:e202403125. [PMID: 39724138 DOI: 10.1083/jcb.202403125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 09/24/2024] [Accepted: 11/18/2024] [Indexed: 12/28/2024] Open
Abstract
At the end of cell division, the nuclear envelope reassembles around the decondensing chromosomes. Female meiosis culminates in two consecutive cell divisions of the oocyte, meiosis I and II, which are separated by a brief transition phase known as interkinesis. Due to the absence of chromosome decondensation and the suppression of genome replication during interkinesis, it has been widely assumed that the nuclear envelope does not reassemble between meiosis I and II. By analyzing interkinesis in C. elegans oocytes, we instead show that an atypical structure made of two lipid bilayers, which we termed the interkinetic envelope, surrounds the surface of the segregating chromosomes. The interkinetic envelope shares common features with the nuclear envelope but also exhibits specific characteristics that distinguish it, including its lack of continuity with the endoplasmic reticulum, unique protein composition, assembly mechanism, and function in chromosome segregation. These distinct attributes collectively define the interkinetic envelope as a unique and specialized structure that has been previously overlooked.
Collapse
Affiliation(s)
| | - Laura Bellutti
- Université Paris Cité, CNRS, Institut Jacques Monod , Paris, France
| | - Rémi Le Borgne
- Université Paris Cité, CNRS, Institut Jacques Monod , Paris, France
| | - Julie C Canman
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Lionel Pintard
- Université Paris Cité, CNRS, Institut Jacques Monod , Paris, France
| | | | - Peter Askjaer
- Andalusian Center for Developmental Biology, CSIC/JA/Universidad Pablo de Olavide , Seville, Spain
| | - Julien Dumont
- Université Paris Cité, CNRS, Institut Jacques Monod , Paris, France
| |
Collapse
|
34
|
Trelford CB, Shepherd TG. Insights into targeting LKB1 in tumorigenesis. Genes Dis 2025; 12:101402. [PMID: 39735555 PMCID: PMC11681833 DOI: 10.1016/j.gendis.2024.101402] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/03/2024] [Accepted: 06/22/2024] [Indexed: 12/31/2024] Open
Abstract
Genetic alterations to serine-threonine kinase 11 (STK11) have been implicated in Peutz-Jeghers syndrome and tumorigenesis. Further exploration of the context-specific roles of liver kinase B1 (LKB1; encoded by STK11) observed that it regulates AMP-activated protein kinase (AMPK) and AMPK-related kinases. Given that both migration and proliferation are enhanced with the loss of LKB1 activity combined with the prevalence of STK11 genetic alterations in cancer biopsies, LKB1 was marked as a tumor suppressor. However, the role of LKB1 in tumorigenesis is paradoxical as LKB1 activates autophagy and reactive oxygen species scavenging while dampening anoikis, which contribute to cancer cell survival. Due to the pro-tumorigenic properties of LKB1, targeting LKB1 pathways is now relevant for cancer treatment. With the recent successes of targeting LKB1 signaling in research and clinical settings, and enhanced cytotoxicity of chemical compounds in LKB1-deficient tumors, there is now a need for LKB1 inhibitors. However, validating LKB1 inhibitors is challenging as LKB1 adaptor proteins, nucleocytoplasmic shuttling, and splice variants all manipulate LKB1 activity. Furthermore, STE-20-related kinase adaptor protein (STRAD) and mouse protein 25 dictate LKB1 cellular localization and kinase activity. For these reasons, prior to assessing the efficacy and potency of pharmacological candidates, the functional status of LKB1 needs to be defined. Therefore, to improve the understanding of LKB1 in physiology and oncology, this review highlights the role of LKB1 in tumorigenesis and addresses the therapeutic relevancy of LKB1 inhibitors.
Collapse
Affiliation(s)
- Charles B. Trelford
- The Mary & John Knight Translational Ovarian Cancer Research Unit, London Regional Cancer Program, London, ON N6A 4L6, Canada
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 3K7, Canada
| | - Trevor G. Shepherd
- The Mary & John Knight Translational Ovarian Cancer Research Unit, London Regional Cancer Program, London, ON N6A 4L6, Canada
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 3K7, Canada
- Department of Oncology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 3K7, Canada
- Department of Obstetrics and Gynaecology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 3K7, Canada
| |
Collapse
|
35
|
An Z, Jiang A, Chen J. Toward understanding the role of genomic repeat elements in neurodegenerative diseases. Neural Regen Res 2025; 20:646-659. [PMID: 38886931 PMCID: PMC11433896 DOI: 10.4103/nrr.nrr-d-23-01568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/21/2023] [Accepted: 03/02/2024] [Indexed: 06/20/2024] Open
Abstract
Neurodegenerative diseases cause great medical and economic burdens for both patients and society; however, the complex molecular mechanisms thereof are not yet well understood. With the development of high-coverage sequencing technology, researchers have started to notice that genomic repeat regions, previously neglected in search of disease culprits, are active contributors to multiple neurodegenerative diseases. In this review, we describe the association between repeat element variants and multiple degenerative diseases through genome-wide association studies and targeted sequencing. We discuss the identification of disease-relevant repeat element variants, further powered by the advancement of long-read sequencing technologies and their related tools, and summarize recent findings in the molecular mechanisms of repeat element variants in brain degeneration, such as those causing transcriptional silencing or RNA-mediated gain of toxic function. Furthermore, we describe how in silico predictions using innovative computational models, such as deep learning language models, could enhance and accelerate our understanding of the functional impact of repeat element variants. Finally, we discuss future directions to advance current findings for a better understanding of neurodegenerative diseases and the clinical applications of genomic repeat elements.
Collapse
Affiliation(s)
- Zhengyu An
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Aidi Jiang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Jingqi Chen
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
- MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Zhangjiang Fudan International Innovation Center, Shanghai, China
| |
Collapse
|
36
|
Zhang Y, Chen Y, Zhuang C, Qi J, Zhao RC, Wang J. Lipid droplets in the nervous system: involvement in cell metabolic homeostasis. Neural Regen Res 2025; 20:740-750. [PMID: 38886939 PMCID: PMC11433920 DOI: 10.4103/nrr.nrr-d-23-01401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 01/20/2024] [Indexed: 06/20/2024] Open
Abstract
Lipid droplets serve as primary storage organelles for neutral lipids in neurons, glial cells, and other cells in the nervous system. Lipid droplet formation begins with the synthesis of neutral lipids in the endoplasmic reticulum. Previously, lipid droplets were recognized for their role in maintaining lipid metabolism and energy homeostasis; however, recent research has shown that lipid droplets are highly adaptive organelles with diverse functions in the nervous system. In addition to their role in regulating cell metabolism, lipid droplets play a protective role in various cellular stress responses. Furthermore, lipid droplets exhibit specific functions in neurons and glial cells. Dysregulation of lipid droplet formation leads to cellular dysfunction, metabolic abnormalities, and nervous system diseases. This review aims to provide an overview of the role of lipid droplets in the nervous system, covering topics such as biogenesis, cellular specificity, and functions. Additionally, it will explore the association between lipid droplets and neurodegenerative disorders. Understanding the involvement of lipid droplets in cell metabolic homeostasis related to the nervous system is crucial to determine the underlying causes and in exploring potential therapeutic approaches for these diseases.
Collapse
Affiliation(s)
- Yuchen Zhang
- School of Life Sciences, Shanghai University, Shanghai, China
- School of Medicine, Shanghai University, Shanghai, China
| | - Yiqing Chen
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Cheng Zhuang
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Jingxuan Qi
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Robert Chunhua Zhao
- School of Life Sciences, Shanghai University, Shanghai, China
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
- Center of Excellence in Tissue Engineering, Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory of New Drug Development and Clinical Trial of Stem Cell Therapy, Beijing, China
| | - Jiao Wang
- School of Life Sciences, Shanghai University, Shanghai, China
| |
Collapse
|
37
|
Liu X, Gu L, Hao C, Xu W, Leng F, Zhang P, Li W. Systematic assessment of structural variant annotation tools for genomic interpretation. Life Sci Alliance 2025; 8:e202402949. [PMID: 39658089 PMCID: PMC11632063 DOI: 10.26508/lsa.202402949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 11/30/2024] [Accepted: 12/02/2024] [Indexed: 12/12/2024] Open
Abstract
Structural variants (SVs) over 50 base pairs play a significant role in phenotypic diversity and are associated with various diseases, but their analysis is complex and resource-intensive. Numerous computational tools have been developed for SV prioritization, yet their effectiveness in biomedicine remains unclear. Here we benchmarked eight widely used SV prioritization tools, categorized into knowledge-driven (AnnotSV, ClassifyCNV) and data-driven (CADD-SV, dbCNV, StrVCTVRE, SVScore, TADA, XCNV) groups in accordance with the ACMG guidelines. We assessed their accuracy, robustness, and usability across diverse genomic contexts, biological mechanisms and computational efficiency using seven carefully curated independent datasets. Our results revealed that both groups of methods exhibit comparable effectiveness in predicting SV pathogenicity, although performance varies among tools, emphasizing the importance of selecting the appropriate tool based on specific research purposes. Furthermore, we pinpointed the potential improvement of expanding these tools for future applications. Our benchmarking framework provides a crucial evaluation method for SV analysis tools, offering practical guidance for biomedical research and facilitating the advancement of better genomic research tools.
Collapse
Affiliation(s)
- Xuanshi Liu
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute; MOE Key Laboratory of Major Diseases in Children; Genetics and Birth Defects Control Center, National Center for Children's Health; Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Lei Gu
- Epigenetics Laboratory, Max-Planck Institute for Heart and Lung Research, Cardiopulmonary Institute, Bad Nauheim, Germany
| | - Chanjuan Hao
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute; MOE Key Laboratory of Major Diseases in Children; Genetics and Birth Defects Control Center, National Center for Children's Health; Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Wenjian Xu
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute; MOE Key Laboratory of Major Diseases in Children; Genetics and Birth Defects Control Center, National Center for Children's Health; Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Fei Leng
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute; MOE Key Laboratory of Major Diseases in Children; Genetics and Birth Defects Control Center, National Center for Children's Health; Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Peng Zhang
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute; MOE Key Laboratory of Major Diseases in Children; Genetics and Birth Defects Control Center, National Center for Children's Health; Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Wei Li
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute; MOE Key Laboratory of Major Diseases in Children; Genetics and Birth Defects Control Center, National Center for Children's Health; Beijing Children's Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
38
|
Li D, Zeng L, Zhang W, Wang Q, Wu J, Zhu C, Meng Z. Multi-omics study of sex in greater amberjack (Seriola dumerili): Identifying related genes, analyzing sex-biased expression, and developing sex-specific markers. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2025; 53:101364. [PMID: 39612541 DOI: 10.1016/j.cbd.2024.101364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/17/2024] [Accepted: 11/19/2024] [Indexed: 12/01/2024]
Abstract
The greater amberjack (Seriola dumerili) is a valuable marine fish with significant breeding potential, but does not exhibit clear sexual dimorphism in morphology. Sex research and the development of sex identification technology are important for breeding purposes. Through genome-wide association analysis (GWAS), we identified one significant sex-related SNP and 18 candidate sex-related SNPs, then obtained one significant sex-related gene (hsd17β1) and 20 candidate sex-related genes (hmbox1, ahcyl1, pdzd2, etc.). Key sex-biased genes (sox2, dmrt2, hsd17β3, rnf145, foxo3, etc.) were identified in mature gonads by transcriptome analysis. These genes are important in greater amberjack sex determination and gonad development. In addition, we developed classical PCR and kompetitive allele-specific PCR (KASP) primers to identify the sex of greater amberjack, with an accuracy of 94.87 % and 100 %, respectively. The sex-specific markers can effectively determine the gender of greater amberjack and evaluate the sex ratio and reproductive potential of the breeding population.
Collapse
Affiliation(s)
- Duo Li
- School of Life Sciences, State Key Laboratory of Biocontrol, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory of Aquatic Economic Animals, Sun Yat-sen University, Guangzhou 510275, China
| | - Leilei Zeng
- School of Life Sciences, State Key Laboratory of Biocontrol, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory of Aquatic Economic Animals, Sun Yat-sen University, Guangzhou 510275, China
| | - Weiwei Zhang
- School of Life Sciences, State Key Laboratory of Biocontrol, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory of Aquatic Economic Animals, Sun Yat-sen University, Guangzhou 510275, China
| | - Qinghua Wang
- School of Life Sciences, State Key Laboratory of Biocontrol, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory of Aquatic Economic Animals, Sun Yat-sen University, Guangzhou 510275, China
| | - Jinhui Wu
- Agro-Tech Extension Center of Guangdong Province, Guangzhou 510520, China
| | - Chunhua Zhu
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524025, China; Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish, Species, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zining Meng
- School of Life Sciences, State Key Laboratory of Biocontrol, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory of Aquatic Economic Animals, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
39
|
Pabon A, Bhupana JN, Wong CO. Crosstalk between degradation and bioenergetics: how autophagy and endolysosomal processes regulate energy production. Neural Regen Res 2025; 20:671-681. [PMID: 38886933 PMCID: PMC11433889 DOI: 10.4103/nrr.nrr-d-23-02095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/08/2024] [Accepted: 03/30/2024] [Indexed: 06/20/2024] Open
Abstract
Cells undergo metabolic reprogramming to adapt to changes in nutrient availability, cellular activity, and transitions in cell states. The balance between glycolysis and mitochondrial respiration is crucial for energy production, and metabolic reprogramming stipulates a shift in such balance to optimize both bioenergetic efficiency and anabolic requirements. Failure in switching bioenergetic dependence can lead to maladaptation and pathogenesis. While cellular degradation is known to recycle precursor molecules for anabolism, its potential role in regulating energy production remains less explored. The bioenergetic switch between glycolysis and mitochondrial respiration involves transcription factors and organelle homeostasis, which are both regulated by the cellular degradation pathways. A growing body of studies has demonstrated that both stem cells and differentiated cells exhibit bioenergetic switch upon perturbations of autophagic activity or endolysosomal processes. Here, we highlighted the current understanding of the interplay between degradation processes, specifically autophagy and endolysosomes, transcription factors, endolysosomal signaling, and mitochondrial homeostasis in shaping cellular bioenergetics. This review aims to summarize the relationship between degradation processes and bioenergetics, providing a foundation for future research to unveil deeper mechanistic insights into bioenergetic regulation.
Collapse
Affiliation(s)
- Angelid Pabon
- Department of Biological Sciences, Rutgers University, Newark, NJ, USA
| | | | - Ching-On Wong
- Department of Biological Sciences, Rutgers University, Newark, NJ, USA
| |
Collapse
|
40
|
Helmold BR, Ahrens A, Fitzgerald Z, Ozdinler PH. Spastin and alsin protein interactome analyses begin to reveal key canonical pathways and suggest novel druggable targets. Neural Regen Res 2025; 20:725-739. [PMID: 38886938 PMCID: PMC11433914 DOI: 10.4103/nrr.nrr-d-23-02068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/18/2024] [Accepted: 04/05/2024] [Indexed: 06/20/2024] Open
Abstract
Developing effective and long-term treatment strategies for rare and complex neurodegenerative diseases is challenging. One of the major roadblocks is the extensive heterogeneity among patients. This hinders understanding the underlying disease-causing mechanisms and building solutions that have implications for a broad spectrum of patients. One potential solution is to develop personalized medicine approaches based on strategies that target the most prevalent cellular events that are perturbed in patients. Especially in patients with a known genetic mutation, it may be possible to understand how these mutations contribute to problems that lead to neurodegeneration. Protein-protein interaction analyses offer great advantages for revealing how proteins interact, which cellular events are primarily involved in these interactions, and how they become affected when key genes are mutated in patients. This line of investigation also suggests novel druggable targets for patients with different mutations. Here, we focus on alsin and spastin, two proteins that are identified as "causative" for amyotrophic lateral sclerosis and hereditary spastic paraplegia, respectively, when mutated. Our review analyzes the protein interactome for alsin and spastin, the canonical pathways that are primarily important for each protein domain, as well as compounds that are either Food and Drug Administration-approved or are in active clinical trials concerning the affected cellular pathways. This line of research begins to pave the way for personalized medicine approaches that are desperately needed for rare neurodegenerative diseases that are complex and heterogeneous.
Collapse
Affiliation(s)
- Benjamin R. Helmold
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Angela Ahrens
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Zachary Fitzgerald
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - P. Hande Ozdinler
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Center for Molecular Innovation and Drug Discovery, Center for Developmental Therapeutics, Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA
- Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Feinberg School of Medicine, Les Turner ALS Center at Northwestern University, Chicago, IL, USA
| |
Collapse
|
41
|
Yang C, Gao J, Gong K, Ma Q, Chen G. Comprehensive analysis of hub mRNA, lncRNA and miRNA, and associated ceRNA networks implicated in cobia (Rachycentron canadum) scales under hypoosmotic adaption. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2025; 53:101353. [PMID: 39586219 DOI: 10.1016/j.cbd.2024.101353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/26/2024] [Accepted: 11/02/2024] [Indexed: 11/27/2024]
Abstract
Salinity plays a vital role in fish aquaculture, profoundly influencing the growth and development of fish. Scales, as the protective outer layer of fish, function as a critical defense against external factors. In this study, we employed transcriptome sequencing to analyze the ceRNA expression profiles to reveal the effect of salinity acclimation on transcriptional expression changes in the scales of cobia (Rachycentron canadum). The results revealed that after being exposed to a salinity level of 15 ‰ for just one day (1D), a total of 407 mRNAs/genes were significantly regulated; 66 miRNAs were respectively significantly regulated; and 109 target genes of the differentially expressed miRNAs were significantly regulated; a total of 185 differently expressed lncRNAs and 292 differently expressed target genes (DetGenes) of differently expressed lncRNAs were also identified. After 7 days (7D), a total of 2195 mRNAs/genes were found to be significantly regulated and 82 miRNAs were significantly regulated; among the target genes of the differentially expressed miRNAs, 245 were regulated. Moreover, 438 differently expressed lncRNAs and 681 DetGenes of these lncRNAs were identified. Subsequent analysis through GO, KEGG pathway, in 1D vs. CG (control group), DeGenes, which first respond to changes in salinity, are mainly involved in negative regulation of macrophage differentiation, negative regulation of granulocyte differentiation and negative regulation of phagocytosis, and are mainly related to biological processes related to the immune function of fish. After a 7-day process, DeGenes were enriched in the collagen fibril organization, regulation of nodal signaling pathway and cell recognition biology processes. These biological processes are not only related to the immune function of fish, but more importantly, to the physiological structure of fish. By analyzing the co down-regulated miRNAs of 1D vs. CG, as well as 7D vs. CG, the functions of these miRNAs are mainly related to bone differentiation and development. In addition,ceRNA network uncovered that the effect of salinity is temporal. The first competing lncRNAs mainly regulated genes related to physiological processes and biological development, while target genes related to immunity and body defense were less competitive. On the contrary, after a period of salinity treatment, the types of competing lncRNAs involved changed.
Collapse
Affiliation(s)
- Changgeng Yang
- Life Science & Technology School, Lingnan Normal University, Zhanjiang 524048, China
| | - Jingyi Gao
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Kailin Gong
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Qian Ma
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Gang Chen
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| |
Collapse
|
42
|
Lima BA, Pais AC, Dupont J, Dias P, Custódio N, Sousa AB, Carmo-Fonseca M, Carvalho C. Genetic modulation of RNA splicing rescues BRCA2 function in mutant cells. Life Sci Alliance 2025; 8:e202402845. [PMID: 39741007 DOI: 10.26508/lsa.202402845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 01/02/2025] Open
Abstract
Variants in the hereditary cancer-associated BRCA1 and BRCA2 genes can alter RNA splicing, producing transcripts that encode internally truncated yet potentially functional proteins. However, few studies have quantitatively analyzed variant-specific splicing isoforms. Here, we investigated cells heterozygous and homozygous for the BRCA2:c.681+5G>C variant. Using droplet digital RT-PCR, we identified two variant-specific mRNA isoforms. The predominant transcript is out-of-frame, contains a premature termination codon, and is degraded via the nonsense-mediated mRNA decay pathway. In addition, we detected a novel minor isoform encoding an internally truncated protein lacking non-essential domains. Homozygous mutant cells expressed low levels of BRCA2 protein and were defective in DNA repair. Using CRISPR-Cas9 gene editing, we induced the production of in-frame transcripts in mutant cells, which resulted in increased protein expression, enhanced RAD51 focus formation, and reduced chromosomal breaks after exposure to genotoxic agents. Our findings highlight the therapeutic potential of splicing modulation to restore BRCA2 function in mutant cells, offering a promising strategy to prevent cancer development.
Collapse
Affiliation(s)
| | | | - Juliette Dupont
- Serviço de Genética, Unidade Local de Saúde Santa Maria, Centro Académico de Medicina de Lisboa, Lisboa, Portugal
| | - Patrícia Dias
- Serviço de Genética, Unidade Local de Saúde Santa Maria, Centro Académico de Medicina de Lisboa, Lisboa, Portugal
| | - Noélia Custódio
- Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
- https://ror.org/0346k0491 GIMM - Gulbenkian Institute for Molecular Medicine, Lisbon, Portugal
| | - Ana Berta Sousa
- Serviço de Genética, Unidade Local de Saúde Santa Maria, Centro Académico de Medicina de Lisboa, Lisboa, Portugal
| | - Maria Carmo-Fonseca
- Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
- https://ror.org/0346k0491 GIMM - Gulbenkian Institute for Molecular Medicine, Lisbon, Portugal
| | - Célia Carvalho
- Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
- https://ror.org/0346k0491 GIMM - Gulbenkian Institute for Molecular Medicine, Lisbon, Portugal
| |
Collapse
|
43
|
Ng N, Newbery M, Miles N, Ooi L. Mitochondrial therapeutics and mitochondrial transfer for neurodegenerative diseases and aging. Neural Regen Res 2025; 20:794-796. [PMID: 38886943 PMCID: PMC11433913 DOI: 10.4103/nrr.nrr-d-23-02106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 04/22/2024] [Indexed: 06/20/2024] Open
Affiliation(s)
- Neville Ng
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | | | | | | |
Collapse
|
44
|
Wu F, Ji X, Shen M, Cheng P, Feng S, Gao Y, Liu W, Chen J, Li S, Zhang X, Chen Q. Whole exome sequencing identifies KCNH7 variants associated with epilepsy in children. Genes Dis 2025; 12:101322. [PMID: 39634124 PMCID: PMC11615581 DOI: 10.1016/j.gendis.2024.101322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/28/2024] [Indexed: 12/07/2024] Open
Affiliation(s)
- Fan Wu
- Department of Neurology, Children's Hospital Capital Institute of Pediatrics, Beijing 100020, China
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Xinna Ji
- Department of Neurology, Children's Hospital Capital Institute of Pediatrics, Beijing 100020, China
| | - Mengxiao Shen
- Department of Neurology, Children's Hospital Capital Institute of Pediatrics, Beijing 100020, China
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Peidi Cheng
- Department of Neurology, Children's Hospital Capital Institute of Pediatrics, Beijing 100020, China
| | - Shuo Feng
- Department of Neurology, Children's Hospital Capital Institute of Pediatrics, Beijing 100020, China
| | - Yanyan Gao
- Department of Neurology, Children's Hospital Capital Institute of Pediatrics, Beijing 100020, China
| | - Wanting Liu
- Department of Neurology, Children's Hospital Capital Institute of Pediatrics, Beijing 100020, China
| | - Jinxiao Chen
- Department of Neurology, Children's Hospital Capital Institute of Pediatrics, Beijing 100020, China
| | - Shupin Li
- Department of Neurology, Children's Hospital Capital Institute of Pediatrics, Beijing 100020, China
| | - Xue Zhang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Qian Chen
- Department of Neurology, Children's Hospital Capital Institute of Pediatrics, Beijing 100020, China
| |
Collapse
|
45
|
Sola-Sevilla N, Garmendia-Berges M, Mera-Delgado MC, Puerta E. Context-dependent role of sirtuin 2 in inflammation. Neural Regen Res 2025; 20:682-694. [PMID: 38886935 PMCID: PMC11433891 DOI: 10.4103/nrr.nrr-d-23-02063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/30/2024] [Indexed: 06/20/2024] Open
Abstract
Sirtuin 2 is a member of the sirtuin family nicotinamide adenine dinucleotide (NAD+)-dependent deacetylases, known for its regulatory role in different processes, including inflammation. In this context, sirtuin 2 has been involved in the modulation of key inflammatory signaling pathways and transcription factors by deacetylating specific targets, such as nuclear factor κB and nucleotide-binding oligomerization domain-leucine-rich-repeat and pyrin domain-containing protein 3 (NLRP3). However, whether sirtuin 2-mediated pathways induce a pro- or an anti-inflammatory response remains controversial. Sirtuin 2 has been implicated in promoting inflammation in conditions such as asthma and neurodegenerative diseases, suggesting that its inhibition in these conditions could be a potential therapeutic strategy. Conversely, arthritis and type 2 diabetes mellitus studies suggest that sirtuin 2 is essential at the peripheral level and, thus, its inhibition in these pathologies would not be recommended. Overall, the precise role of sirtuin 2 in inflammation appears to be context-dependent, and further investigation is needed to determine the specific molecular mechanisms and downstream targets through which sirtuin 2 influences inflammatory processes in various tissues and pathological conditions. The present review explores the involvement of sirtuin 2 in the inflammation associated with different pathologies to elucidate whether its pharmacological modulation could serve as an effective strategy for treating this prevalent symptom across various diseases.
Collapse
Affiliation(s)
- Noemí Sola-Sevilla
- Department of Pharmaceutical Sciences, Division of Pharmacology, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Maider Garmendia-Berges
- Department of Pharmaceutical Sciences, Division of Pharmacology, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
| | - MCarmen Mera-Delgado
- Department of Pharmaceutical Sciences, Division of Pharmacology, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
| | - Elena Puerta
- Department of Pharmaceutical Sciences, Division of Pharmacology, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| |
Collapse
|
46
|
Arora S, Nagarkar P, D'Souza JS. Recombinant human FOXJ1 protein binds DNA, forms higher-order oligomers, has gel-shifting domains and contains intrinsically disordered regions. Protein Expr Purif 2025; 227:106622. [PMID: 39549898 DOI: 10.1016/j.pep.2024.106622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/06/2024] [Accepted: 11/10/2024] [Indexed: 11/18/2024]
Abstract
Forkhead box protein J1 (FOXJ1) is the key transcriptional regulator during the conversion of mammalian primary cilium with a 9 + 0 architecture to the motile (9 + 2) one. The nucleotide sequences of the full-length and DNA-binding domain (DBD) of the open reading frame (ORF) were isolated and expressed into E. coli as 6xHis-tagged proteins. Upon induction, the DBD formed inclusion bodies that solubilized with 8 M urea. No induction of 6xHis-FOXJ1 protein was seen despite sub-cloning into several expression vectors and E. coli host strains. To improve induction and solubility, the 6xHis tag was substituted with Glutathione S-transferase (GST), and weak induction was seen in E. coli BL21(DE3). The GST-FOXJ1 showed anomalous migration on denaturing gel electrophoresis (AM-DRE), migrating at approximately 83 kDa instead of its calculated molecular weight (Mr) of 72.4 kDa. It was also unstable and led to degradation products. The 6xHis tag was substituted with Glutathione S-transferase (GST) to improve induction and solubility. Codon-optimization improved the induction, but the protein still showed AM-DRE and instability. It seemed that the recombinant protein was either toxic or posed a metabolic burden to the E. coli cells or, once produced was prone to degradation due mainly to the lack of post-translational modification (PTM). This process is required for some eukaryotic proteins after they are manufactured in the ribosomal factory. Both the purified recombinant proteins exhibited cysteine-induced oligomerization via the formation of disulphide bridges since this was reduced using dithiothreitol (DTT). Both were equally functional as these individually bound to an oligonucleotide, a consensus DNA-binding sequence for FOX proteins. Further, the recombinant polypeptides corresponding to the C-terminus and N-terminus show anomalies indicating that the highly acidic residues (known as polyacidic gel-shifting domains) in these polypeptides contribute to the AM-DRE. We demonstrate for the first time that the recombinant HsFOXJ1 and its DBD bind to DNA, its polyacidic gel-shifting domains are the reason for the AM-DRE, is unstable leading to degradation products, exhibits cysteine-induced oligomerization and harbours intrinsically disordered regions.
Collapse
Affiliation(s)
- Shashank Arora
- School of Biological Sciences, UM-DAE Center for Excellence in Basic Sciences, University of Mumbai, Kalina Campus, Santacruz (E), Mumbai, 400098, India
| | - Pawan Nagarkar
- School of Biological Sciences, UM-DAE Center for Excellence in Basic Sciences, University of Mumbai, Kalina Campus, Santacruz (E), Mumbai, 400098, India
| | - Jacinta S D'Souza
- School of Biological Sciences, UM-DAE Center for Excellence in Basic Sciences, University of Mumbai, Kalina Campus, Santacruz (E), Mumbai, 400098, India.
| |
Collapse
|
47
|
Nakagawa K, Kodama K, Nagata W, Takahashi S, Satoh Y, Ishizuka T. Molecular hydrogen inhibits neuroinflammation and ameliorates depressive-like behaviors and short-term cognitive impairment in senescence-accelerated mouse prone 8 mice. Behav Brain Res 2025; 478:115330. [PMID: 39522774 DOI: 10.1016/j.bbr.2024.115330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 10/11/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND AND AIMS Neuroinflammation, a low-grade chronic inflammation of the central nervous system, is linked to age-related neuropsychiatric disorders such as senile depression and Alzheimer's disease. Recent studies have explored controlling neuroinflammation as a novel treatment strategy. Molecular hydrogen shows anti-inflammatory effects. However, its impacts on neuroinflammation and age-related neuropsychiatric disorders remain unelucidated. We investigated molecular hydrogen's effects on microglial activation, neuroinflammation, depressive-like behavior, and short-term cognitive decline in senescence-accelerated mouse-prone 8 (SAMP8) mice. METHODS Six-week-old SAMP8 or senescence-accelerated mouse-resistant 1 (SAMR1) mice received hydrogen-rich jelly (HRJ) or placebo jelly (PJ) from six weeks of age for 26-28 weeks. Depressive-like behavior was assessed using tail suspension and forced swimming tests, while cognitive function was evaluated using the Y-maze and object recognition tests. Brain tissues were used for immunohistochemical studies or to measure pro-inflammatory cytokine levels via enzyme-linked immunosorbent assay (ELISA). RESULTS HRJ intake reduced immobility time in both tail suspension and forced swimming tests and enhanced visual cognitive and spatial working memory in SAMP8 mice. Additionally, HRJ intake suppressed the 8-hydroxy-2'-deoxyguanosine (8-OHdG), Iba1, and cleaved caspase 3 expression levels in the medial prefrontal cortex and hippocampal dentate gyrus. Furthermore, HRJ intake significantly lowered IL-6 levels in brain tissues of SAMP8 mice. CONCLUSIONS These findings suggest that molecular hydrogen treatment may regulate neuroinflammation induced by activated microglia and improve depressive-like behavior and short-term cognitive impairment in SAMP8 mice.
Collapse
Affiliation(s)
- Keiichi Nakagawa
- Department of Pharmacology, National Defense Medical College, Tokorozawa, Saitama 359-0042, Japan
| | - Kayoko Kodama
- Department of Pharmacology, National Defense Medical College, Tokorozawa, Saitama 359-0042, Japan
| | - Wataru Nagata
- Department of Pharmacology, National Defense Medical College, Tokorozawa, Saitama 359-0042, Japan
| | - Sayaka Takahashi
- Department of Pharmacology, National Defense Medical College, Tokorozawa, Saitama 359-0042, Japan
| | - Yasushi Satoh
- Department of Biochemistry, National Defense Medical College, Tokorozawa, Saitama 359-0042, Japan
| | - Toshiaki Ishizuka
- Department of Pharmacology, National Defense Medical College, Tokorozawa, Saitama 359-0042, Japan.
| |
Collapse
|
48
|
Wang SY, Wang JH, Chen RK, Yuan Z, Cui H, Wei B, Cui JX. Mapping the landscape of gastric signet ring cell carcinoma: Overcoming hurdles and charting new paths for advancement. World J Clin Oncol 2025; 16:98983. [DOI: 10.5306/wjco.v16.i2.98983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/26/2024] [Accepted: 11/13/2024] [Indexed: 12/11/2024] Open
Abstract
BACKGROUND In recent years, the global prevalence of gastric cancer (GC) has witnessed a progressive decrease, accompanied by a step-growth in the incidence of gastric signet ring cell carcinoma (GSRCC). As precision medicine concepts progress, GSRCC, a distinct sub-type of GC, has drawn considerable attention from researchers. However, there still persist some controversies regarding the associated research findings.
AIM To summarize the current obstacles and potential future directions for research on GSRCC.
METHODS To begin with, all literature related to GSRCC published from January 1, 2004 to December 31, 2023 was subjected to bibliometric analysis in this article. Additionally, this paper analyzed the research data using CiteSpace, GraphPad Prism v8.0.2, and VOSviewer, which was obtained from the Web of Science Core Collection database. The analysis results were visually represented.
RESULTS This study provided a comprehensive overview of the statistical characteristics of the 995 English articles related to GSRCC, including cited references, authors, journals, countries, institutions, and keywords. The popular keywords and clusters contain "prognosis", "survival", "expression", "histology", and "chemotherapy".
CONCLUSION The prognosis, precise definition and classification, as well as chemoresistance of GSRCC, continue to be crucial areas of ongoing research, whose directions are closely tied to advancements in molecular biology research on GSRCC.
Collapse
Affiliation(s)
- Shu-Yuan Wang
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Jing-Hang Wang
- School of Medicine, Nankai University, Tianjin 300071, China
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Run-Kai Chen
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Zhen Yuan
- School of Medicine, Nankai University, Tianjin 300071, China
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Hao Cui
- School of Medicine, Nankai University, Tianjin 300071, China
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Bo Wei
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Jian-Xin Cui
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
49
|
Kim D, Shin Y, Baek YW, Kang H, Lim J, Bae ON. The effect of biocide chloromethylisothiazolinone/methylisothiazolinone (CMIT/MIT) mixture on C2C12 muscle cell damage attributed to mitochondrial reactive oxygen species overproduction and autophagy activation. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2025; 88:137-151. [PMID: 39446036 DOI: 10.1080/15287394.2024.2420083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
The mixture of 5-chloro-2-methyl-4-isothiazolin-3-one and 2-methyl-4-isothiazolin-3-one (CMIT/MIT) is a biocide widely used as a preservative in various commercial products. This biocide has also been used as an active ingredient in humidifier disinfectants in South Korea, resulting in serious health effects among users. Recent evidence suggests that the underlying mechanism of CMIT/MIT-initiated toxicity might be associated with defects in mitochondrial functions. The aim of this study was to utilize the C2C12 skeletal muscle model to investigate the effects of CMIT/MIT on mitochondrial function and relevant molecular pathways associated with skeletal muscle dysfunction. Data demonstrated that exposure to CMIT/MIT during myogenic differentiation induced significant mitochondrial excess production of reactive oxygen species (ROS) and a decrease in intracellular ATP levels. Notably, CMIT/MIT significantly inhibited mitochondrial oxidative phosphorylation (Oxphos) and reduced mitochondrial mass at a lower concentration than the biocide amount, which diminished the viability of myotubes. CMIT/MIT induced activation of autophagy flux and decreased protein expression levels of myosin heavy chain (MHC). Taken together, CMIT/MIT exposure produced damage in C2C12 myotubes by impairing mitochondrial bioenergetics and activating autophagy. Our findings contribute to an increased understanding of the underlying mechanisms associated with CMIT/MIT-induced adverse skeletal muscle health effects.
Collapse
Affiliation(s)
- Donghyun Kim
- College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University ERICA Campus, Ansan, South Korea
| | - Yusun Shin
- College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University ERICA Campus, Ansan, South Korea
| | - Yong-Wook Baek
- Humidifier Disinfectant Health Center, Environmental Health Research, National Institute of Environmental Research, Incheon, Republic of Korea
| | - HanGoo Kang
- Humidifier Disinfectant Health Center, Environmental Health Research, National Institute of Environmental Research, Incheon, Republic of Korea
| | - Jungyun Lim
- Humidifier Disinfectant Health Center, Environmental Health Research, National Institute of Environmental Research, Incheon, Republic of Korea
| | - Ok-Nam Bae
- College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University ERICA Campus, Ansan, South Korea
| |
Collapse
|
50
|
Yu H, Ren K, Jin Y, Zhang L, Liu H, Huang Z, Zhang Z, Chen X, Yang Y, Wei Z. Mitochondrial DAMPs: Key mediators in neuroinflammation and neurodegenerative disease pathogenesis. Neuropharmacology 2025; 264:110217. [PMID: 39557152 DOI: 10.1016/j.neuropharm.2024.110217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/02/2024] [Accepted: 11/13/2024] [Indexed: 11/20/2024]
Abstract
Neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS) are increasingly linked to mitochondrial dysfunction and neuroinflammation. Central to this link are mitochondrial damage-associated molecular patterns (mtDAMPs), including mitochondrial DNA, ATP, and reactive oxygen species, released during mitochondrial stress or damage. These mtDAMPs activate inflammatory pathways, such as the NLRP3 inflammasome and cGAS-STING, contributing to the progression of neurodegenerative diseases. This review delves into the mechanisms by which mtDAMPs drive neuroinflammation and discusses potential therapeutic strategies targeting these pathways to mitigate neurodegeneration. Additionally, it explores the cross-talk between mitochondria and the immune system, highlighting the complex interplay that exacerbates neuronal damage. Understanding the role of mtDAMPs could pave the way for novel treatments aimed at modulating neuroinflammation and slowing disease progression, ultimately improving patient outcome.
Collapse
Affiliation(s)
- Haihan Yu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
| | - Kaidi Ren
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
| | - Yage Jin
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
| | - Li Zhang
- Key Clinical Laboratory of Henan Province, Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
| | - Hui Liu
- Henan Key Laboratory of Immunology and Targeted Drug, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, PR China
| | - Zhen Huang
- Henan Key Laboratory of Immunology and Targeted Drug, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, PR China
| | - Ziheng Zhang
- College of Life Sciences, Xinjiang University, Urumqi, Xinjiang, 830046, PR China
| | - Xing Chen
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China.
| | - Yang Yang
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China.
| | - Ziqing Wei
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China.
| |
Collapse
|