1
|
Yang H, Xia Y, Ma Y, Gao M, Hou S, Xu S, Wang Y. Inhibition of the cGAS-STING pathway: contributing to the treatment of cerebral ischemia-reperfusion injury. Neural Regen Res 2025; 20:1900-1918. [PMID: 38993125 DOI: 10.4103/nrr.nrr-d-24-00015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 05/02/2024] [Indexed: 07/13/2024] Open
Abstract
The cGAS-STING pathway plays an important role in ischemia-reperfusion injury in the heart, liver, brain, and kidney, but its role and mechanisms in cerebral ischemia-reperfusion injury have not been systematically reviewed. Here, we outline the components of the cGAS-STING pathway and then analyze its role in autophagy, ferroptosis, cellular pyroptosis, disequilibrium of calcium homeostasis, inflammatory responses, disruption of the blood-brain barrier, microglia transformation, and complement system activation following cerebral ischemia-reperfusion injury. We further analyze the value of cGAS-STING pathway inhibitors in the treatment of cerebral ischemia-reperfusion injury and conclude that the pathway can regulate cerebral ischemia-reperfusion injury through multiple mechanisms. Inhibition of the cGAS-STING pathway may be helpful in the treatment of cerebral ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Hang Yang
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong Province, China
| | - Yulei Xia
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong Province, China
| | - Yue Ma
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong Province, China
| | - Mingtong Gao
- Department of Emergency, The Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, China
| | - Shuai Hou
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong Province, China
| | - Shanshan Xu
- Department of Emergency, The Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, China
| | - Yanqiang Wang
- Department of Neurology II, The Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, China
| |
Collapse
|
2
|
Ning W, Lv S, Wang Q, Xu Y. The pivotal role of microglia in injury and the prognosis of subarachnoid hemorrhage. Neural Regen Res 2025; 20:1829-1848. [PMID: 38993136 DOI: 10.4103/nrr.nrr-d-24-00241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/25/2024] [Indexed: 07/13/2024] Open
Abstract
Subarachnoid hemorrhage leads to a series of pathological changes, including vascular spasm, cellular apoptosis, blood-brain barrier damage, cerebral edema, and white matter injury. Microglia, which are the key immune cells in the central nervous system, maintain homeostasis in the neural environment, support neurons, mediate apoptosis, participate in immune regulation, and have neuroprotective effects. Increasing evidence has shown that microglia play a pivotal role in the pathogenesis of subarachnoid hemorrhage and affect the process of injury and the prognosis of subarachnoid hemorrhage. Moreover, microglia play certain neuroprotective roles in the recovery phase of subarachnoid hemorrhage. Several approaches aimed at modulating microglia function are believed to attenuate subarachnoid hemorrhage injury. This provides new targets and ideas for the treatment of subarachnoid hemorrhage. However, an in-depth and comprehensive summary of the role of microglia after subarachnoid hemorrhage is still lacking. This review describes the activation of microglia after subarachnoid hemorrhage and their roles in the pathological processes of vasospasm, neuroinflammation, neuronal apoptosis, blood-brain barrier disruption, cerebral edema, and cerebral white matter lesions. It also discusses the neuroprotective roles of microglia during recovery from subarachnoid hemorrhage and therapeutic advances aimed at modulating microglial function after subarachnoid hemorrhage. Currently, microglia in subarachnoid hemorrhage are targeted with TLR inhibitors, nuclear factor-κB and STAT3 pathway inhibitors, glycine/tyrosine kinases, NLRP3 signaling pathway inhibitors, Gasdermin D inhibitors, vincristine receptor α receptor agonists, ferroptosis inhibitors, genetic modification techniques, stem cell therapies, and traditional Chinese medicine. However, most of these are still being evaluated at the laboratory stage. More clinical studies and data on subarachnoid hemorrhage are required to improve the treatment of subarachnoid hemorrhage.
Collapse
Affiliation(s)
- Wenjing Ning
- Department of Rehabilitation, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong Province, China
| | - Shi Lv
- Department of Rehabilitation, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong Province, China
| | - Qian Wang
- Department of Central Laboratory, The Affiliated Taian City Central Hospital of Qingdao University, Taian, Shandong Province, China
| | - Yuzhen Xu
- Department of Rehabilitation, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong Province, China
| |
Collapse
|
3
|
Bhusal A, Lee WH, Suk K. PGLYRP1 protein as a novel mediator of cellular dialogue in neuroinflammation. Neural Regen Res 2025; 20:1993-1994. [PMID: 39254554 DOI: 10.4103/nrr.nrr-d-24-00424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/02/2024] [Indexed: 09/11/2024] Open
Affiliation(s)
- Anup Bhusal
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea (Bhusal A, Suk K)
- BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, Republic of Korea (Bhusal A, Suk K)
- Brain Science and Engineering Institute, Kyungpook National University, Daegu, Republic of Korea (Bhusal A, Lee WH, Suk K)
| | - Won-Ha Lee
- School of Life Sciences, BK21 plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea (Lee WH)
- Brain Science and Engineering Institute, Kyungpook National University, Daegu, Republic of Korea (Bhusal A, Lee WH, Suk K)
| | - Kyoungho Suk
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea (Bhusal A, Suk K)
- BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, Republic of Korea (Bhusal A, Suk K)
- Brain Science and Engineering Institute, Kyungpook National University, Daegu, Republic of Korea (Bhusal A, Lee WH, Suk K)
| |
Collapse
|
4
|
Ye J, Duan C, Han J, Chen J, Sun N, Li Y, Yuan T, Peng D. Peripheral mitochondrial DNA as a neuroinflammatory biomarker for major depressive disorder. Neural Regen Res 2025; 20:1541-1554. [PMID: 38934398 DOI: 10.4103/nrr.nrr-d-23-01878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024] Open
Abstract
In the pathogenesis of major depressive disorder, chronic stress-related neuroinflammation hinders favorable prognosis and antidepressant response. Mitochondrial DNA may be an inflammatory trigger, after its release from stress-induced dysfunctional central nervous system mitochondria into peripheral circulation. This evidence supports the potential use of peripheral mitochondrial DNA as a neuroinflammatory biomarker for the diagnosis and treatment of major depressive disorder. Herein, we critically review the neuroinflammation theory in major depressive disorder, providing compelling evidence that mitochondrial DNA release acts as a critical biological substrate, and that it constitutes the neuroinflammatory disease pathway. After its release, mitochondrial DNA can be carried in the exosomes and transported to extracellular spaces in the central nervous system and peripheral circulation. Detectable exosomes render encaged mitochondrial DNA relatively stable. This mitochondrial DNA in peripheral circulation can thus be directly detected in clinical practice. These characteristics illustrate the potential for mitochondrial DNA to serve as an innovative clinical biomarker and molecular treatment target for major depressive disorder. This review also highlights the future potential value of clinical applications combining mitochondrial DNA with a panel of other biomarkers, to improve diagnostic precision in major depressive disorder.
Collapse
Affiliation(s)
- Jinmei Ye
- Division of Mood Disorder, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cong Duan
- Division of Mood Disorder, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiaxin Han
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Jinrong Chen
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Ning Sun
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Yuan Li
- Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, National Center for Mental Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tifei Yuan
- Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, National Center for Mental Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Daihui Peng
- Division of Mood Disorder, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
5
|
Zheng Y, Ren Z, Liu Y, Yan J, Chen C, He Y, Shi Y, Cheng F, Wang Q, Li C, Wang X. T cell interactions with microglia in immune-inflammatory processes of ischemic stroke. Neural Regen Res 2025; 20:1277-1292. [PMID: 39075894 DOI: 10.4103/nrr.nrr-d-23-01385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 03/07/2024] [Indexed: 07/31/2024] Open
Abstract
The primary mechanism of secondary injury after cerebral ischemia may be the brain inflammation that emerges after an ischemic stroke, which promotes neuronal death and inhibits nerve tissue regeneration. As the first immune cells to be activated after an ischemic stroke, microglia play an important immunomodulatory role in the progression of the condition. After an ischemic stroke, peripheral blood immune cells (mainly T cells) are recruited to the central nervous system by chemokines secreted by immune cells in the brain, where they interact with central nervous system cells (mainly microglia) to trigger a secondary neuroimmune response. This review summarizes the interactions between T cells and microglia in the immune-inflammatory processes of ischemic stroke. We found that, during ischemic stroke, T cells and microglia demonstrate a more pronounced synergistic effect. Th1, Th17, and M1 microglia can co-secrete pro-inflammatory factors, such as interferon-γ, tumor necrosis factor-α, and interleukin-1β, to promote neuroinflammation and exacerbate brain injury. Th2, Treg, and M2 microglia jointly secrete anti-inflammatory factors, such as interleukin-4, interleukin-10, and transforming growth factor-β, to inhibit the progression of neuroinflammation, as well as growth factors such as brain-derived neurotrophic factor to promote nerve regeneration and repair brain injury. Immune interactions between microglia and T cells influence the direction of the subsequent neuroinflammation, which in turn determines the prognosis of ischemic stroke patients. Clinical trials have been conducted on the ways to modulate the interactions between T cells and microglia toward anti-inflammatory communication using the immunosuppressant fingolimod or overdosing with Treg cells to promote neural tissue repair and reduce the damage caused by ischemic stroke. However, such studies have been relatively infrequent, and clinical experience is still insufficient. In summary, in ischemic stroke, T cell subsets and activated microglia act synergistically to regulate inflammatory progression, mainly by secreting inflammatory factors. In the future, a key research direction for ischemic stroke treatment could be rooted in the enhancement of anti-inflammatory factor secretion by promoting the generation of Th2 and Treg cells, along with the activation of M2-type microglia. These approaches may alleviate neuroinflammation and facilitate the repair of neural tissues.
Collapse
Affiliation(s)
- Yuxiao Zheng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Zilin Ren
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Ying Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Juntang Yan
- Library, Beijing University of Chinese Medicine, Beijing, China
| | - Congai Chen
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yanhui He
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yuyu Shi
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Fafeng Cheng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Qingguo Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Changxiang Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xueqian Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
6
|
Weng C, Groh AMR, Yaqubi M, Cui QL, Stratton JA, Moore GRW, Antel JP. Heterogeneity of mature oligodendrocytes in the central nervous system. Neural Regen Res 2025; 20:1336-1349. [PMID: 38934385 DOI: 10.4103/nrr.nrr-d-24-00055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Mature oligodendrocytes form myelin sheaths that are crucial for the insulation of axons and efficient signal transmission in the central nervous system. Recent evidence has challenged the classical view of the functionally static mature oligodendrocyte and revealed a gamut of dynamic functions such as the ability to modulate neuronal circuitry and provide metabolic support to axons. Despite the recognition of potential heterogeneity in mature oligodendrocyte function, a comprehensive summary of mature oligodendrocyte diversity is lacking. We delve into early 20 th -century studies by Robertson and Río-Hortega that laid the foundation for the modern identification of regional and morphological heterogeneity in mature oligodendrocytes. Indeed, recent morphologic and functional studies call into question the long-assumed homogeneity of mature oligodendrocyte function through the identification of distinct subtypes with varying myelination preferences. Furthermore, modern molecular investigations, employing techniques such as single cell/nucleus RNA sequencing, consistently unveil at least six mature oligodendrocyte subpopulations in the human central nervous system that are highly transcriptomically diverse and vary with central nervous system region. Age and disease related mature oligodendrocyte variation denotes the impact of pathological conditions such as multiple sclerosis, Alzheimer's disease, and psychiatric disorders. Nevertheless, caution is warranted when subclassifying mature oligodendrocytes because of the simplification needed to make conclusions about cell identity from temporally confined investigations. Future studies leveraging advanced techniques like spatial transcriptomics and single-cell proteomics promise a more nuanced understanding of mature oligodendrocyte heterogeneity. Such research avenues that precisely evaluate mature oligodendrocyte heterogeneity with care to understand the mitigating influence of species, sex, central nervous system region, age, and disease, hold promise for the development of therapeutic interventions targeting varied central nervous system pathology.
Collapse
Affiliation(s)
- Chao Weng
- Neuroimmunology Unit, Montreal Neurological Institute-Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Adam M R Groh
- Neuroimmunology Unit, Montreal Neurological Institute-Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Moein Yaqubi
- Neuroimmunology Unit, Montreal Neurological Institute-Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Qiao-Ling Cui
- Neuroimmunology Unit, Montreal Neurological Institute-Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Jo Anne Stratton
- Neuroimmunology Unit, Montreal Neurological Institute-Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - G R Wayne Moore
- Neuroimmunology Unit, Montreal Neurological Institute-Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Jack P Antel
- Neuroimmunology Unit, Montreal Neurological Institute-Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| |
Collapse
|
7
|
Liu Z, Pan C, Huang H. The role of axon guidance molecules in the pathogenesis of epilepsy. Neural Regen Res 2025; 20:1244-1257. [PMID: 39075893 DOI: 10.4103/nrr.nrr-d-23-01620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 02/21/2024] [Indexed: 07/31/2024] Open
Abstract
Current treatments for epilepsy can only manage the symptoms of the condition but cannot alter the initial onset or halt the progression of the disease. Consequently, it is crucial to identify drugs that can target novel cellular and molecular mechanisms and mechanisms of action. Increasing evidence suggests that axon guidance molecules play a role in the structural and functional modifications of neural networks and that the dysregulation of these molecules is associated with epilepsy susceptibility. In this review, we discuss the essential role of axon guidance molecules in neuronal activity in patients with epilepsy as well as the impact of these molecules on synaptic plasticity and brain tissue remodeling. Furthermore, we examine the relationship between axon guidance molecules and neuroinflammation, as well as the structural changes in specific brain regions that contribute to the development of epilepsy. Ample evidence indicates that axon guidance molecules, including semaphorins and ephrins, play a fundamental role in guiding axon growth and the establishment of synaptic connections. Deviations in their expression or function can disrupt neuronal connections, ultimately leading to epileptic seizures. The remodeling of neural networks is a significant characteristic of epilepsy, with axon guidance molecules playing a role in the dynamic reorganization of neural circuits. This, in turn, affects synapse formation and elimination. Dysregulation of these molecules can upset the delicate balance between excitation and inhibition within a neural network, thereby increasing the risk of overexcitation and the development of epilepsy. Inflammatory signals can regulate the expression and function of axon guidance molecules, thus influencing axonal growth, axon orientation, and synaptic plasticity. The dysregulation of neuroinflammation can intensify neuronal dysfunction and contribute to the occurrence of epilepsy. This review delves into the mechanisms associated with the pathogenicity of axon guidance molecules in epilepsy, offering a valuable reference for the exploration of therapeutic targets and presenting a fresh perspective on treatment strategies for this condition.
Collapse
Affiliation(s)
- Zheng Liu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| | | | | |
Collapse
|
8
|
Gao M, Dong Q, Zou D, Yang Z, Guo L, Xu R. Induced neural stem cells regulate microglial activation through Akt-mediated upregulation of CXCR4 and Crry in a mouse model of closed head injury. Neural Regen Res 2025; 20:1416-1430. [PMID: 38934402 DOI: 10.4103/nrr.nrr-d-23-01495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 01/27/2024] [Indexed: 06/28/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202505000-00025/figure1/v/2024-07-28T173839Z/r/image-tiff Microglial activation that occurs rapidly after closed head injury may play important and complex roles in neuroinflammation-associated neuronal damage and repair. We previously reported that induced neural stem cells can modulate the behavior of activated microglia via CXCL12/CXCR4 signaling, influencing their activation such that they can promote neurological recovery. However, the mechanism of CXCR4 upregulation in induced neural stem cells remains unclear. In this study, we found that nuclear factor-κB activation induced by closed head injury mouse serum in microglia promoted CXCL12 and tumor necrosis factor-α expression but suppressed insulin-like growth factor-1 expression. However, recombinant complement receptor 2-conjugated Crry (CR2-Crry) reduced the effects of closed head injury mouse serum-induced nuclear factor-κB activation in microglia and the levels of activated microglia, CXCL12, and tumor necrosis factor-α. Additionally, we observed that, in response to stimulation (including stimulation by CXCL12 secreted by activated microglia), CXCR4 and Crry levels can be upregulated in induced neural stem cells via the interplay among CXCL12/CXCR4, Crry, and Akt signaling to modulate microglial activation. In agreement with these in vitro experimental results, we found that Akt activation enhanced the immunoregulatory effects of induced neural stem cell grafts on microglial activation, leading to the promotion of neurological recovery via insulin-like growth factor-1 secretion and the neuroprotective effects of induced neural stem cell grafts through CXCR4 and Crry upregulation in the injured cortices of closed head injury mice. Notably, these beneficial effects of Akt activation in induced neural stem cells were positively correlated with the therapeutic effects of induced neural stem cells on neuronal injury, cerebral edema, and neurological disorders post-closed head injury. In conclusion, our findings reveal that Akt activation may enhance the immunoregulatory effects of induced neural stem cells on microglial activation via upregulation of CXCR4 and Crry, thereby promoting induced neural stem cell-mediated improvement of neuronal injury, cerebral edema, and neurological disorders following closed head injury.
Collapse
Affiliation(s)
- Mou Gao
- Department of Neurosurgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing, China
| | - Qin Dong
- Department of Neurology, Fu Xing Hospital, Capital Medical University, Beijing, China
| | - Dan Zou
- Department of Neurosurgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China
| | - Zhijun Yang
- Department of Neurosurgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China
| | - Lili Guo
- Department of Neurosurgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China
| | - Ruxiang Xu
- Department of Neurosurgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China
| |
Collapse
|
9
|
Luo W, Xu C, Li L, Ji Y, Wang Y, Li Y, Ye Y. Perfluoropentane-based oxygen-loaded nanodroplets reduce microglial activation through metabolic reprogramming. Neural Regen Res 2025; 20:1178-1191. [PMID: 38989955 PMCID: PMC11438333 DOI: 10.4103/nrr.nrr-d-23-01299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 02/05/2024] [Indexed: 07/12/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202504000-00032/figure1/v/2024-07-06T104127Z/r/image-tiff Microglia, the primary immune cells within the brain, have gained recognition as a promising therapeutic target for managing neurodegenerative diseases within the central nervous system, including Parkinson's disease. Nanoscale perfluorocarbon droplets have been reported to not only possess a high oxygen-carrying capacity, but also exhibit remarkable anti-inflammatory properties. However, the role of perfluoropentane in microglia-mediated central inflammatory reactions remains poorly understood. In this study, we developed perfluoropentane-based oxygen-loaded nanodroplets (PFP-OLNDs) and found that pretreatment with these droplets suppressed the lipopolysaccharide-induced activation of M1-type microglia in vitro and in vivo, and suppressed microglial activation in a mouse model of Parkinson's disease. Microglial suppression led to a reduction in the inflammatory response, oxidative stress, and cell migration capacity in vitro. Consequently, the neurotoxic effects were mitigated, which alleviated neuronal degeneration. Additionally, ultrahigh-performance liquid chromatography-tandem mass spectrometry showed that the anti-inflammatory effects of PFP-OLNDs mainly resulted from the modulation of microglial metabolic reprogramming. We further showed that PFP-OLNDs regulated microglial metabolic reprogramming through the AKT-mTOR-HIF-1α pathway. Collectively, our findings suggest that the novel PFP-OLNDs constructed in this study alleviate microglia-mediated central inflammatory reactions through metabolic reprogramming.
Collapse
Affiliation(s)
- Wanxian Luo
- Department of Medicine Ultrasonics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Chuanhui Xu
- Institute of Neuroscience, Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Linxi Li
- Institute of Neuroscience, Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Yunxiang Ji
- Institute of Neuroscience, Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Yezhong Wang
- Institute of Neuroscience, Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Yingjia Li
- Department of Medicine Ultrasonics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Yongyi Ye
- Institute of Neuroscience, Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| |
Collapse
|
10
|
Zhang G, Yao Q, Long C, Yi P, Song J, Wu L, Wan W, Rao X, Lin Y, Wei G, Ying J, Hua F. Infiltration by monocytes of the central nervous system and its role in multiple sclerosis: reflections on therapeutic strategies. Neural Regen Res 2025; 20:779-793. [PMID: 38886942 PMCID: PMC11433895 DOI: 10.4103/nrr.nrr-d-23-01508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/12/2023] [Accepted: 02/18/2024] [Indexed: 06/20/2024] Open
Abstract
Mononuclear macrophage infiltration in the central nervous system is a prominent feature of neuroinflammation. Recent studies on the pathogenesis and progression of multiple sclerosis have highlighted the multiple roles of mononuclear macrophages in the neuroinflammatory process. Monocytes play a significant role in neuroinflammation, and managing neuroinflammation by manipulating peripheral monocytes stands out as an effective strategy for the treatment of multiple sclerosis, leading to improved patient outcomes. This review outlines the steps involved in the entry of myeloid monocytes into the central nervous system that are targets for effective intervention: the activation of bone marrow hematopoiesis, migration of monocytes in the blood, and penetration of the blood-brain barrier by monocytes. Finally, we summarize the different monocyte subpopulations and their effects on the central nervous system based on phenotypic differences. As activated microglia resemble monocyte-derived macrophages, it is important to accurately identify the role of monocyte-derived macrophages in disease. Depending on the roles played by monocyte-derived macrophages at different stages of the disease, several of these processes can be interrupted to limit neuroinflammation and improve patient prognosis. Here, we discuss possible strategies to target monocytes in neurological diseases, focusing on three key aspects of monocyte infiltration into the central nervous system, to provide new ideas for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Guangyong Zhang
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, Jiangxi Province, China
| | - Qing Yao
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, Jiangxi Province, China
| | - Chubing Long
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, Jiangxi Province, China
| | - Pengcheng Yi
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, Jiangxi Province, China
| | - Jiali Song
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, Jiangxi Province, China
| | - Luojia Wu
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, Jiangxi Province, China
| | - Wei Wan
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, Jiangxi Province, China
| | - Xiuqin Rao
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, Jiangxi Province, China
| | - Yue Lin
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, Jiangxi Province, China
| | - Gen Wei
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, Jiangxi Province, China
| | - Jun Ying
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, Jiangxi Province, China
| | - Fuzhou Hua
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| |
Collapse
|
11
|
Wang Y, Zhang X, Biverstål H, Bazan NG, Tan S, Li N, Ohshima M, Schultzberg M, Li X. Pro-resolving lipid mediator reduces amyloid-β42-induced gene expression in human monocyte-derived microglia. Neural Regen Res 2025; 20:873-886. [PMID: 38886959 PMCID: PMC11433908 DOI: 10.4103/nrr.nrr-d-23-01688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 03/25/2024] [Accepted: 05/06/2024] [Indexed: 06/20/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202503000-00031/figure1/v/2024-06-17T092413Z/r/image-tiff Specialized pro-resolving lipid mediators including maresin 1 mediate resolution but the levels of these are reduced in Alzheimer's disease brain, suggesting that they constitute a novel target for the treatment of Alzheimer's disease to prevent/stop inflammation and combat disease pathology. Therefore, it is important to clarify whether they counteract the expression of genes and proteins induced by amyloid-β. With this objective, we analyzed the relevance of human monocyte-derived microglia for in vitro modeling of neuroinflammation and its resolution in the context of Alzheimer's disease and investigated the pro-resolving bioactivity of maresin 1 on amyloid-β42-induced Alzheimer's disease-like inflammation. Analysis of RNA-sequencing data and secreted proteins in supernatants from the monocyte-derived microglia showed that the monocyte-derived microglia resembled Alzheimer's disease-like neuroinflammation in human brain microglia after incubation with amyloid-β42. Maresin 1 restored homeostasis by down-regulating inflammatory pathway related gene expression induced by amyloid-β42 in monocyte-derived microglia, protection of maresin 1 against the effects of amyloid-β42 is mediated by a re-balancing of inflammatory transcriptional networks in which modulation of gene transcription in the nuclear factor-kappa B pathway plays a major part. We pinpointed molecular targets that are associated with both neuroinflammation in Alzheimer's disease and therapeutic targets by maresin 1. In conclusion, monocyte-derived microglia represent a relevant in vitro microglial model for studies on Alzheimer's disease-like inflammation and drug response for individual patients. Maresin 1 ameliorates amyloid-β42-induced changes in several genes of importance in Alzheimer's disease, highlighting its potential as a therapeutic target for Alzheimer's disease.
Collapse
Affiliation(s)
- Ying Wang
- Department of Neurobiology, Care Sciences & Society, Division of Neurogeriatrics, Karolinska Institutet, Stockholm, Sweden
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Xiang Zhang
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Henrik Biverstål
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Nicolas G. Bazan
- Neuroscience Center of Excellence, Louisiana State University, New Orleans, LA, USA
| | - Shuai Tan
- Department of Medicine, Solna, Clinical Pharmacology Group, Karolinska University Hospital, Stockholm, Sweden
| | - Nailin Li
- Department of Medicine, Solna, Clinical Pharmacology Group, Karolinska University Hospital, Stockholm, Sweden
| | - Makiko Ohshima
- Department of Neurobiology, Care Sciences & Society, Division of Neurogeriatrics, Karolinska Institutet, Stockholm, Sweden
| | - Marianne Schultzberg
- Department of Neurobiology, Care Sciences & Society, Division of Neurogeriatrics, Karolinska Institutet, Stockholm, Sweden
| | - Xiaofei Li
- Department of Neurobiology, Care Sciences & Society, Division of Neurogeriatrics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
12
|
Zhang Y, Chen Y, Zhuang C, Qi J, Zhao RC, Wang J. Lipid droplets in the nervous system: involvement in cell metabolic homeostasis. Neural Regen Res 2025; 20:740-750. [PMID: 38886939 PMCID: PMC11433920 DOI: 10.4103/nrr.nrr-d-23-01401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 01/20/2024] [Indexed: 06/20/2024] Open
Abstract
Lipid droplets serve as primary storage organelles for neutral lipids in neurons, glial cells, and other cells in the nervous system. Lipid droplet formation begins with the synthesis of neutral lipids in the endoplasmic reticulum. Previously, lipid droplets were recognized for their role in maintaining lipid metabolism and energy homeostasis; however, recent research has shown that lipid droplets are highly adaptive organelles with diverse functions in the nervous system. In addition to their role in regulating cell metabolism, lipid droplets play a protective role in various cellular stress responses. Furthermore, lipid droplets exhibit specific functions in neurons and glial cells. Dysregulation of lipid droplet formation leads to cellular dysfunction, metabolic abnormalities, and nervous system diseases. This review aims to provide an overview of the role of lipid droplets in the nervous system, covering topics such as biogenesis, cellular specificity, and functions. Additionally, it will explore the association between lipid droplets and neurodegenerative disorders. Understanding the involvement of lipid droplets in cell metabolic homeostasis related to the nervous system is crucial to determine the underlying causes and in exploring potential therapeutic approaches for these diseases.
Collapse
Affiliation(s)
- Yuchen Zhang
- School of Life Sciences, Shanghai University, Shanghai, China
- School of Medicine, Shanghai University, Shanghai, China
| | - Yiqing Chen
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Cheng Zhuang
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Jingxuan Qi
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Robert Chunhua Zhao
- School of Life Sciences, Shanghai University, Shanghai, China
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
- Center of Excellence in Tissue Engineering, Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory of New Drug Development and Clinical Trial of Stem Cell Therapy, Beijing, China
| | - Jiao Wang
- School of Life Sciences, Shanghai University, Shanghai, China
| |
Collapse
|
13
|
Gao M, Wang X, Su S, Feng W, Lai Y, Huang K, Cao D, Wang Q. Meningeal lymphatic vessel crosstalk with central nervous system immune cells in aging and neurodegenerative diseases. Neural Regen Res 2025; 20:763-778. [PMID: 38886941 PMCID: PMC11433890 DOI: 10.4103/nrr.nrr-d-23-01595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 12/22/2023] [Indexed: 06/20/2024] Open
Abstract
Meningeal lymphatic vessels form a relationship between the nervous system and periphery, which is relevant in both health and disease. Meningeal lymphatic vessels not only play a key role in the drainage of brain metabolites but also contribute to antigen delivery and immune cell activation. The advent of novel genomic technologies has enabled rapid progress in the characterization of myeloid and lymphoid cells and their interactions with meningeal lymphatic vessels within the central nervous system. In this review, we provide an overview of the multifaceted roles of meningeal lymphatic vessels within the context of the central nervous system immune network, highlighting recent discoveries on the immunological niche provided by meningeal lymphatic vessels. Furthermore, we delve into the mechanisms of crosstalk between meningeal lymphatic vessels and immune cells in the central nervous system under both homeostatic conditions and neurodegenerative diseases, discussing how these interactions shape the pathological outcomes. Regulation of meningeal lymphatic vessel function and structure can influence lymphatic drainage, cerebrospinal fluid-borne immune modulators, and immune cell populations in aging and neurodegenerative disorders, thereby playing a key role in shaping meningeal and brain parenchyma immunity.
Collapse
Affiliation(s)
- Minghuang Gao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Xinyue Wang
- The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Shijie Su
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Weicheng Feng
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Yaona Lai
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Kongli Huang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Dandan Cao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Qi Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| |
Collapse
|
14
|
Li Y, Xu X, Wu X, Li J, Chen S, Chen D, Li G, Tang Z. Cell polarization in ischemic stroke: molecular mechanisms and advances. Neural Regen Res 2025; 20:632-645. [PMID: 38886930 PMCID: PMC11433909 DOI: 10.4103/nrr.nrr-d-23-01336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/23/2023] [Accepted: 12/18/2023] [Indexed: 06/20/2024] Open
Abstract
Ischemic stroke is a cerebrovascular disease associated with high mortality and disability rates. Since the inflammation and immune response play a central role in driving ischemic damage, it becomes essential to modulate excessive inflammatory reactions to promote cell survival and facilitate tissue repair around the injury site. Various cell types are involved in the inflammatory response, including microglia, astrocytes, and neutrophils, each exhibiting distinct phenotypic profiles upon stimulation. They display either proinflammatory or anti-inflammatory states, a phenomenon known as 'cell polarization.' There are two cell polarization therapy strategies. The first involves inducing cells into a neuroprotective phenotype in vitro, then reintroducing them autologously. The second approach utilizes small molecular substances to directly affect cells in vivo. In this review, we elucidate the polarization dynamics of the three reactive cell populations (microglia, astrocytes, and neutrophils) in the context of ischemic stroke, and provide a comprehensive summary of the molecular mechanisms involved in their phenotypic switching. By unraveling the complexity of cell polarization, we hope to offer insights for future research on neuroinflammation and novel therapeutic strategies for ischemic stroke.
Collapse
Affiliation(s)
- Yuanwei Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xiaoxiao Xu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xuan Wu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Jiarui Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Shiling Chen
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Danyang Chen
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Gaigai Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Zhouping Tang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
15
|
Omotoso MO, Est-Witte SE, Shannon SR, Li S, Nair NM, Neshat SY, Kang SS, Tzeng SY, Green JJ, Schneck JP. Alginate-based artificial antigen presenting cells expand functional CD8 + T cells with memory characteristics for adoptive cell therapy. Biomaterials 2025; 313:122773. [PMID: 39217794 PMCID: PMC11423771 DOI: 10.1016/j.biomaterials.2024.122773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 07/23/2024] [Accepted: 08/24/2024] [Indexed: 09/04/2024]
Abstract
The development of artificial Antigen Presenting Cells (aAPCs) has led to improvements in adoptive T cell therapy (ACT), an immunotherapy, for cancer treatment. aAPCs help to streamline the consistent production and expansion of T cells, thus reducing the time and costs associated with ACT. However, several issues still exist with ACT, such as insufficient T cell potency, which diminishes the translational potential for ACT. While aAPCs have been used primarily to increase production efficiency of T cells for ACT, the intrinsic properties of a biomaterial-based aAPC may affect T cell phenotype and function. In CD8+ T cells, reactive oxygen species (ROS) and oxidative stress accumulation can activate Forkhead box protein O1 (FOXO1) to transcribe antioxidants which reduce ROS and improve memory formation. Alginate, a biocompatible and antioxidant rich biomaterial, is promising for incorporation into an aAPC formulation to modulate T cell phenotype. To investigate its utility, a novel alginate-based aAPC platform was developed that preferentially expanded CD8+ T cells with memory related features. Alginate-based aAPCs allowed for greater control of CD8+ T cell qualities, including, significantly improved in vivo persistence and augmented in vivo anti-tumor T cell responses.
Collapse
Affiliation(s)
- Mary O Omotoso
- Department of Biomedical Engineering, School of Medicine, USA; Institute for Cell Engineering, School of Medicine, USA; Department of Pathology, School of Medicine, USA
| | - Savannah E Est-Witte
- Department of Biomedical Engineering, School of Medicine, USA; Translational Tissue Engineering Center, USA; Institute for NanoBioTechnology, USA
| | - Sydney R Shannon
- Department of Biomedical Engineering, School of Medicine, USA; Department of Pathology, School of Medicine, USA; Translational Tissue Engineering Center, USA; Institute for NanoBioTechnology, USA
| | - Shuyi Li
- Department of Pathology, School of Medicine, USA; Institute for NanoBioTechnology, USA
| | - Nina M Nair
- Department of Biomedical Engineering, Whiting School of Engineering, USA
| | - Sarah Y Neshat
- Department of Biomedical Engineering, School of Medicine, USA; Translational Tissue Engineering Center, USA; Institute for NanoBioTechnology, USA
| | - Si-Sim Kang
- Department of Pathology, School of Medicine, USA
| | - Stephany Y Tzeng
- Translational Tissue Engineering Center, USA; Department of Biomedical Engineering, Whiting School of Engineering, USA; Johns Hopkins Translational ImmunoEngineering Center, USA
| | - Jordan J Green
- Department of Biomedical Engineering, School of Medicine, USA; Translational Tissue Engineering Center, USA; Institute for NanoBioTechnology, USA; Johns Hopkins Translational ImmunoEngineering Center, USA.
| | - Jonathan P Schneck
- Department of Biomedical Engineering, School of Medicine, USA; Institute for Cell Engineering, School of Medicine, USA; Department of Pathology, School of Medicine, USA; Johns Hopkins Translational ImmunoEngineering Center, USA; Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
16
|
Zha X, Zheng G, Skutella T, Kiening K, Unterberg A, Younsi A. Microglia: a promising therapeutic target in spinal cord injury. Neural Regen Res 2025; 20:454-463. [PMID: 38819048 PMCID: PMC11317945 DOI: 10.4103/nrr.nrr-d-23-02044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/23/2024] [Accepted: 03/22/2024] [Indexed: 06/01/2024] Open
Abstract
Microglia are present throughout the central nervous system and are vital in neural repair, nutrition, phagocytosis, immunological regulation, and maintaining neuronal function. In a healthy spinal cord, microglia are accountable for immune surveillance, however, when a spinal cord injury occurs, the microenvironment drastically changes, leading to glial scars and failed axonal regeneration. In this context, microglia vary their gene and protein expression during activation, and proliferation in reaction to the injury, influencing injury responses both favorably and unfavorably. A dynamic and multifaceted injury response is mediated by microglia, which interact directly with neurons, astrocytes, oligodendrocytes, and neural stem/progenitor cells. Despite a clear understanding of their essential nature and origin, the mechanisms of action and new functions of microglia in spinal cord injury require extensive research. This review summarizes current studies on microglial genesis, physiological function, and pathological state, highlights their crucial roles in spinal cord injury, and proposes microglia as a therapeutic target.
Collapse
Affiliation(s)
- Xiaowei Zha
- Department of Neurosurgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Guoli Zheng
- Department of Neurosurgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Thomas Skutella
- Department of Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Karl Kiening
- Department of Neurosurgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Andreas Unterberg
- Department of Neurosurgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Alexander Younsi
- Department of Neurosurgery, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
17
|
Ghahramani Almanghadim H, Karimi B, Valizadeh S, Ghaedi K. Biological functions and affected signaling pathways by Long Non-Coding RNAs in the immune system. Noncoding RNA Res 2025; 10:70-90. [PMID: 39315339 PMCID: PMC11417496 DOI: 10.1016/j.ncrna.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/14/2024] [Accepted: 09/01/2024] [Indexed: 09/25/2024] Open
Abstract
Recently, the various regulative functions of long non-coding RNAs (LncRNAs) have been well determined. Recently, the vital role of LncRNAs as gene regulators has been identified in the immune system, especially in the inflammatory response. All cells of the immune system are governed by a complex and ever-changing gene expression program that is regulated through both transcriptional and post-transcriptional processes. LncRNAs regulate gene expression within the cell nucleus by influencing transcription or through post-transcriptional processes that affect the splicing, stability, or translation of messenger RNAs (mRNAs). Recent studies in immunology have revealed substantial alterations in the expression of lncRNAs during the activation of the innate immune system as well as the development, differentiation, and activation of T cells. These lncRNAs regulate key aspects of immune function, including the manufacturing of inflammatory molecules, cellular distinction, and cell movement. They do this by modulating protein-protein interactions or through base pairing with RNA and DNA. Here we review the current understanding of the mechanism of action of lncRNAs as novel immune-related regulators and their impact on physiological and pathological processes related to the immune system, including autoimmune diseases. We also highlight the emerging pattern of gene expression control in important research areas at the intersection between immunology and lncRNA biology.
Collapse
Affiliation(s)
| | - Bahareh Karimi
- Department of Cellular and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Sepehr Valizadeh
- Department of Internal Medicine, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kamran Ghaedi
- Department of Cell and Molecular Biology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| |
Collapse
|
18
|
Zhang Y, Zhao Y, An C, Guo Y, Ma Y, Shao F, Zhang Y, Sun K, Cheng F, Ren C, Zhang L, Sun B, Zhang Y, Wang H. Material-driven immunomodulation and ECM remodeling reverse pulmonary fibrosis by local delivery of stem cell-laden microcapsules. Biomaterials 2025; 313:122757. [PMID: 39178558 DOI: 10.1016/j.biomaterials.2024.122757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/13/2024] [Accepted: 08/15/2024] [Indexed: 08/26/2024]
Abstract
Recent progress in stem cell therapy has demonstrated the therapeutic potential of intravenous stem cell infusions for treating the life-threatening lung disease of pulmonary fibrosis (PF). However, it is confronted with limitations, such as a lack of control over cellular function and rapid clearance by the host after implantation. In this study, we developed an innovative PF therapy through tracheal administration of microfluidic-templated stem cell-laden microcapsules, which effectively reversed the progression of inflammation and fibrotic injury. Our findings highlight that hydrogel microencapsulation can enhance the persistence of donor mesenchymal stem cells (MSCs) in the host while driving MSCs to substantially augment their therapeutic functions, including immunoregulation and matrix metalloproteinase (MMP)-mediated extracellular matrix (ECM) remodeling. We revealed that microencapsulation activates the MAPK signaling pathway in MSCs to increase MMP expression, thereby degrading overexpressed collagen accumulated in fibrotic lungs. Our research demonstrates the potential of hydrogel microcapsules to enhance the therapeutic efficacy of MSCs through cell-material interactions, presenting a promising yet straightforward strategy for designing advanced stem cell therapies for fibrotic diseases.
Collapse
Affiliation(s)
- Yujie Zhang
- MOE Key Laboratory of Bio-Intelligent Manufacturing, Dalian Key Laboratory of Artificial Organ and Regenerative Medicine, School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, PR China
| | - Yuan Zhao
- MOE Key Laboratory of Bio-Intelligent Manufacturing, Dalian Key Laboratory of Artificial Organ and Regenerative Medicine, School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, PR China
| | - Chuanfeng An
- MOE Key Laboratory of Bio-Intelligent Manufacturing, Dalian Key Laboratory of Artificial Organ and Regenerative Medicine, School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, PR China
| | - Yiyang Guo
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian, 116024, PR China; School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024, Dalian, PR China
| | - Yubin Ma
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian, 116024, PR China; School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024, Dalian, PR China
| | - Fei Shao
- MOE Key Laboratory of Bio-Intelligent Manufacturing, Dalian Key Laboratory of Artificial Organ and Regenerative Medicine, School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, PR China
| | - Yonggang Zhang
- MOE Key Laboratory of Bio-Intelligent Manufacturing, Dalian Key Laboratory of Artificial Organ and Regenerative Medicine, School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, PR China
| | - Kai Sun
- MOE Key Laboratory of Bio-Intelligent Manufacturing, Dalian Key Laboratory of Artificial Organ and Regenerative Medicine, School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, PR China
| | - Fang Cheng
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian, 116024, PR China
| | - Changle Ren
- Faculty of Medicine, Dalian University of Technology, Dalian, 116023, PR China; Department of Joint Surgery, Dalian Municipal Central Hospital, Dalian, 116044, PR China
| | - Lijun Zhang
- Third People's Hospital of Dalian, Dalian Eye Hospital, Dalian, 116024, PR China
| | - Bingbing Sun
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian, 116024, PR China; School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024, Dalian, PR China
| | - Yang Zhang
- School of Dentistry, Health Science Center, Shenzhen University, Shenzhen, 518015, PR China
| | - Huanan Wang
- MOE Key Laboratory of Bio-Intelligent Manufacturing, Dalian Key Laboratory of Artificial Organ and Regenerative Medicine, School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, PR China; State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian, 116024, PR China.
| |
Collapse
|
19
|
Nunes S, Bastos R, Marinho AI, Vieira R, Benício I, de Noronha MA, Lírio S, Brodskyn C, Tavares NM. Recent advances in the development and clinical application of miRNAs in infectious diseases. Noncoding RNA Res 2025; 10:41-54. [PMID: 39296638 PMCID: PMC11406675 DOI: 10.1016/j.ncrna.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 08/06/2024] [Accepted: 09/01/2024] [Indexed: 09/21/2024] Open
Abstract
In the search for new biomarkers and therapeutic targets for infectious diseases, several molecules have been investigated. Small RNAs, known as microRNAs (miRs), are important regulators of gene expression, and have emerged as promising candidates for these purposes. MiRs are a class of small, endogenous non-coding RNAs that play critical roles in several human diseases, including host-pathogen interaction mechanisms. Recently, miRs signatures have been reported in different infectious diseases, opening new perspectives for molecular diagnosis and therapy. MiR profiles can discriminate between healthy individuals and patients, as well as distinguish different disease stages. Furthermore, the possibility of assessing miRs in biological fluids, such as serum and whole blood, renders these molecules feasible for the development of new non-invasive diagnostic and prognostic tools. In this manuscript, we will comprehensively describe miRs as biomarkers and therapeutic targets in infectious diseases and explore how they can contribute to the advance of existing and new tools. Additionally, we will discuss different miR analysis platforms to understand the obstacles and advances of this molecular approach and propose their potential clinical applications and contributions to public health.
Collapse
Affiliation(s)
- Sara Nunes
- Laboratory of Medicine and Precision Public Health (MeSP), Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Bahia, Brazil
| | - Rana Bastos
- Laboratory of Medicine and Precision Public Health (MeSP), Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Bahia, Brazil
- Federal University of Bahia (UFBA), Salvador, Brazil
| | - Ananda Isis Marinho
- Laboratory of Medicine and Precision Public Health (MeSP), Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Bahia, Brazil
- Federal University of Bahia (UFBA), Salvador, Brazil
| | - Raissa Vieira
- Laboratory of Medicine and Precision Public Health (MeSP), Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Bahia, Brazil
- Federal University of Bahia (UFBA), Salvador, Brazil
| | - Ingra Benício
- Laboratory of Medicine and Precision Public Health (MeSP), Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Bahia, Brazil
| | | | - Sofia Lírio
- Laboratory of Medicine and Precision Public Health (MeSP), Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Bahia, Brazil
- Bahiana School of Medicine and Public Health, Salvador, Brazil
| | - Cláudia Brodskyn
- Federal University of Bahia (UFBA), Salvador, Brazil
- Laboratory of Parasite-Host Interaction and Epidemiology (LaIPHE), Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Bahia, Brazil
- Instituto Nacional de Ciência e Tecnologia (INCT) Iii - Instituto de Investigação Em Imunologia, São Paulo, Brazil
| | - Natalia Machado Tavares
- Laboratory of Medicine and Precision Public Health (MeSP), Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Bahia, Brazil
- Federal University of Bahia (UFBA), Salvador, Brazil
- Instituto Nacional de Ciência e Tecnologia (INCT) Iii - Instituto de Investigação Em Imunologia, São Paulo, Brazil
| |
Collapse
|
20
|
Kebriaei A, Besharati R, Namdar Ahmad Abad H, Havakhah S, Khosrojerdi M, Azimian A. The relationship between microRNAs and COVID-19 complications. Noncoding RNA Res 2025; 10:16-24. [PMID: 39296641 PMCID: PMC11406673 DOI: 10.1016/j.ncrna.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/21/2024] Open
Abstract
Over the past three years, since the onset of COVID-19, several scientific studies have concentrated on understanding susceptibility to the virus, the progression of the illness, and possible long-term complexity. COVID-19 is broadly recognized with effects on multiple systems in the body, and various factors related to society, medicine, and genetics/epigenetics may contribute to the intensity and results of the disease. Additionally, a SARS-CoV-2 infection can activate pathological activities and expedite the emergence of existing health issues into clinical problems. Forming easily accessible, distinctive, and permeable biomarkers is essential for categorizing patients, preventing the disease, predicting its course, and tailoring treatments for COVID-19 individually. One promising candidate for such biomarkers is microRNAs, which could serve various purposes in understanding diverse forms of COVID-19, including susceptibility, intensity, disease progression, outcomes, and potential therapeutic options. This review provides an overview of the most significant findings related to the involvement of microRNAs in COVID-19 pathogenesis. Furthermore, it explores the function of microRNAs in a broad span of effects that may arise from accompanying or underlying health status. It underscores the value of comprehending how diverse conditions, such as neurological disorders, diabetes, cardiovascular diseases, and obesity, interact with COVID-19.
Collapse
Affiliation(s)
- Abdollah Kebriaei
- Department of Pathobiology and Laboratory Sciences, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Reza Besharati
- Department of Pathobiology and Laboratory Sciences, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Hasan Namdar Ahmad Abad
- Department of Pathobiology and Laboratory Sciences, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Shahrzad Havakhah
- Department of Physiology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Mahsa Khosrojerdi
- Department of Immunology and Allergy, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Azimian
- Department of Pathobiology and Laboratory Sciences, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| |
Collapse
|
21
|
Yao Q, Wen J, Chen S, Wang Y, Wen X, Wang X, Li C, Zheng C, Li J, Ma Z, Zhan X, Xiao X, Bai Z. Shuangdan Jiedu Decoction improved LPS-induced acute lung injury by regulating both cGAS-STING pathway and inflammasome. JOURNAL OF ETHNOPHARMACOLOGY 2025; 336:118661. [PMID: 39159837 DOI: 10.1016/j.jep.2024.118661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/24/2024] [Accepted: 08/01/2024] [Indexed: 08/21/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Shuangdan Jiedu Decoction (SJD) is a formula composed of six Chinese herbs with heat-removing and detoxifying, antibacterial, and anti-inflammatory effects, which is clinically used in the therapy of various inflammatory diseases of the lungs including COVID-19, but the therapeutic material basis of its action as well as its molecular mechanism are still unclear. AIM OF THE STUDY The study attempted to determine the therapeutic effect of SJD on LPS-induced acute lung injury (ALI), as well as to investigate its mechanism of action and assess its therapeutic potential for the cure of inflammation-related diseases in the clinical setting. MATERIALS AND METHODS We established an ALI model by tracheal drip LPS, and after the administration of SJD, we collected the bronchoalveolar lavage fluid (BALF) and lung tissues of mice and examined the expression of inflammatory factors in them. In addition, we evaluated the effects of SJD on the cyclic guanosine monophosphate-adenosine monophosphate synthase -stimulator of interferon genes (cGAS-STING) and inflammasome by immunoblotting and real-time quantitative polymerase chain reaction (RT-qPCR). RESULTS We demonstrated that SJD was effective in alleviating LPS-induced ALI by suppressing the levels of pro-inflammatory cytokines in the BALF, improving the level of lung histopathology and the number of neutrophils, as well as decreasing the inflammatory factor-associated gene expression. Importantly, we found that SJD could inhibit multiple stimulus-driven activation of cGAS-STING and inflammasome. Further studies showed that the Chinese herbal medicines in SJD had no influence on the cGAS-STING pathway and inflammasome alone at the formulated dose. By increasing the concentration of these herbs, we observed inhibitory effects on the cGAS-STING pathway and inflammasome, and the effect exerted was maximal when the six herbs were combined, indicating that the synergistic effects among these herbs plays a crucial role in the anti-inflammatory effects of SJD. CONCLUSIONS Our research demonstrated that SJD has a favorable protective effect against ALI, and its mechanism of effect may be associated with the synergistic effect exerted between six Chinese medicines to inhibit the cGAS-STING and inflammasome abnormal activation. These results are favorable for the wide application of SJD in the clinic as well as for the development of drugs for ALI from herbal formulas.
Collapse
Affiliation(s)
- Qing Yao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China; Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, PR China
| | - Jincai Wen
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, PR China
| | - Simin Chen
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, PR China
| | - Yan Wang
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, PR China
| | - Xinru Wen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China; Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, PR China
| | - Xianling Wang
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, PR China
| | - Chengwei Li
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, PR China
| | - Congyang Zheng
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, PR China
| | - Junjie Li
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, PR China
| | - Zhijie Ma
- Department of Pharmacy, Beijing Friendship Hospital, Capital Medical University, 100050, Beijing, PR China
| | - Xiaoyan Zhan
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, PR China; National Key Laboratory of Kidney Diseases, Beijing 100005, PR China.
| | - Xiaohe Xiao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China; Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, PR China; National Key Laboratory of Kidney Diseases, Beijing 100005, PR China.
| | - Zhaofang Bai
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China; Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, PR China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Beijing, 100700, PR China; National Key Laboratory of Kidney Diseases, Beijing 100005, PR China.
| |
Collapse
|
22
|
Huang Y, Zhao P, Zhang X, Fu H, Fu C. Uncovering the pharmacological mechanisms of Patchouli essential oil for treating ulcerative colitis. JOURNAL OF ETHNOPHARMACOLOGY 2025; 336:118737. [PMID: 39182705 DOI: 10.1016/j.jep.2024.118737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/30/2024] [Accepted: 08/23/2024] [Indexed: 08/27/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Pogostemonis Herba has long been used in traditional Chinese medicine to treat inflammatory disorders. Patchouli essential oil (PEO) is the primary component of Pogostemonis Herba, and it has been suggested to offer curative potential when applied to treat ulcerative colitis (UC). However, the pharmacological mechanisms of PEO for treating UC remain to be clarified. AIM OF THE STUDY To elucidate the pharmacological mechanisms of PEO for treating UC. METHODS AND RESULTS In the present study, transcriptomic and network pharmacology approaches were combined to clarify the mechanisms of PEO for treating UC. Our results reveal that rectal PEO administration in UC model mice significantly alleviated symptoms of UC. In addition, PEO effectively suppressed colonic inflammation and oxidative stress. Mechanistically, PEO can ameliorate UC mice by modulating gut microbiota, inhibiting inflammatory targets (OPTC, PTN, IFIT3, EGFR, and TLR4), and inhibiting the PI3K-AKT pathway. Next, the 11 potential bioactive components that play a role in PEO's anti-UC mechanism were identified, and the therapeutic efficacy of the pogostone (a bioactive component) in UC mice was partially validated. CONCLUSION This study highlights the mechanisms through which PEO can treat UC, providing a rigorous scientific foundation for future efforts to develop and apply PEO for treating UC.
Collapse
Affiliation(s)
- You Huang
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, 611137, China
| | - Pengyu Zhao
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xing Zhang
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, 611137, China
| | - Hao Fu
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Chaomei Fu
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, 611137, China.
| |
Collapse
|
23
|
Wang A, Yang X, Lin J, Wang Y, Yang J, Zhang Y, Tian Y, Dong H, Zhang Z, Song R. Si-Ni-San alleviates intestinal and liver damage in ulcerative colitis mice by regulating cholesterol metabolism. JOURNAL OF ETHNOPHARMACOLOGY 2025; 336:118715. [PMID: 39179058 DOI: 10.1016/j.jep.2024.118715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/04/2024] [Accepted: 08/18/2024] [Indexed: 08/26/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Si-Ni-San (SNS), a traditional Chinese medicinal formula derived from Treatise on Febrile Diseases, is considered effective in the treatment of inflammatory bowel diseases based upon thousands of years of clinical practice. However, the bioactive ingredients and underlying mechanisms are still unclear and need further investigation. AIM OF THE STUDY This study aimed to evaluate the effect, explore the bioactive ingredients and the underlying mechanisms of SNS in ameliorating ulcerative colitis (UC) and associated liver injury in dextran sodium sulphate (DSS)-induced mouse colitis models. MATERIALS AND METHODS The effect of SNS (1.5, 3, 6 g/kg) on 3% DSS-induced acute murine colitis was evaluated by disease activity index (DAI), colon length, inflammatory cytokines, hematoxylin-eosin (H&E) staining, tight junction proteins expression, ALT, AST, and oxidative stress indicators. HPLC-ESI-IT/TOF MS was used to analyze the chemical components of SNS and the main xenobiotics in the colon of UC mice after oral administration of SNS. Network pharmacological study was then conducted based on the main xenobiotics. Flow cytometry and immunohistochemistry techniques were used to demonstrate the inhibitory effect of SNS on Th17 cells differentiation and the amelioration of Th17/Treg cell imbalance. LC-MS/MS, Real-time quantitative polymerase chain reaction (RT-qPCR), and western blotting techniques were performed to investigate the oxysterol-Liver X receptor (LXRs) signaling activity in colon. Targeted bile acids metabolomics was conducted to reveal the change of the two major pathways of bile acid synthesis in the liver, and the expression of key metabolic enzymes of bile acids synthesis was characterized by RT-qPCR and western blotting techniques. RESULTS SNS (1.5, 3, 6 g/kg) decreased the DAI scores, protected intestinal mucosa barrier, suppressed the production of pro-inflammatory cytokines, improved hepatic and splenic enlargement and alleviated liver injury in a dose-dependent manner. A total of 22 components were identified in the colon of SNS (6 g/kg) treated colitis mice, and the top 10 components ranked by relative content were regarded as the potential effective chemical components of SNS, and used to conduct network pharmacology research. The efficacy of SNS was mediated by a reduction of Th17 cell differentiation, restoration of Th17/Treg cell homeostasis in the colon and spleen, and the experimental results were consistent with our hypothesis and the biological mechanism predicted by network pharmacology. Mechanistically, SNS regulated the concentration of 25-OHC and 27-OHC by up-regulated CH25H, CYP27A1 protein expression in colon, thus affected the expression and activity of LXR, ultimately impacted Th17 differentiation and Th17/Treg balance. It was also found that SNS repressed the increase of he |