1
|
Zhou M, Liu Y, Li C, Yang X, Ji C, Li W, Song M, Yang Z, Liu G, Liang X, Liang J, Zhang B, Wang L. INSL3 promotes macrophage polarization to an immunosuppressive phenotype via the cAMP downstream signaling pathway and Akt/mTOR pathway. Int Immunopharmacol 2025; 154:114540. [PMID: 40168802 DOI: 10.1016/j.intimp.2025.114540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/11/2025] [Accepted: 03/20/2025] [Indexed: 04/03/2025]
Abstract
Insulin-like peptide 3 (INSL3) is a small peptide hormone produced almost exclusively by testicular Leydig cells in males and thus serves as an essential biomarker of the maturation and functionality of these cells. Accumulated evidence suggests that INSL3 is a crucial factor affecting testicular descent during fetal development by regulating the growth of the gubernaculum. However, the physiological roles of INSL3 in adults remain unclear. Here, we reported that relaxin family peptide 2 (RXFP2), the receptor of INSL3, is expressed on macrophages, and treatment with INSL3 can promote M2 macrophage polarization via the Akt/mTOR/S6K and PKA/CREB pathways. In addition, INSL3 can inhibit macrophage phagocytosis and promote their migration via the Epac and PKA signaling pathways, respectively. These findings reveal a new role for INSL3 in regulating macrophage function and shed new light on our understanding of the role of INSL3 in adulthood.
Collapse
Affiliation(s)
- Mengting Zhou
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Yi Liu
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Cuiping Li
- Laboratory medicine department, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xizhong Yang
- Department of Spine Surgery, Qingdao Haici Medical Group, Qingdao, China
| | - Cuijie Ji
- Department of Spine Surgery, Qingdao Haici Medical Group, Qingdao, China
| | - Wei Li
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Meiying Song
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Zijie Yang
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Guixian Liu
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Xinping Liang
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Jie Liang
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Bei Zhang
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, China.
| | - Luoyang Wang
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, China; Department of Spine Surgery, Qingdao Haici Medical Group, Qingdao, China.
| |
Collapse
|
2
|
Jing T, Tang D. Intratumoral microbiota: a new force in the development and treatment of esophageal cancer. Clin Transl Oncol 2025; 27:1921-1932. [PMID: 39455494 DOI: 10.1007/s12094-024-03757-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 10/04/2024] [Indexed: 10/28/2024]
Abstract
Esophageal cancer (EC) ranks among the most prevalent cancers worldwide, with a particularly high incidence in the Asian population. Due to the inconspicuous nature of early symptoms, patients with esophageal cancer are typically diagnosed in the middle to late stages, resulting in suboptimal overall treatment outcomes. Consequently, there is an urgent need to explore and refine therapeutic strategies. Microorganisms have been identified in numerous tumor tissues, including EC, and these microorganisms are referred to as the intratumoral microbiome. Intratumoral microbiota and their metabolic byproducts can influence the progression and treatment of esophageal cancer through various mechanisms, such as modulating tumor cell metabolism and local immune responses. Therefore, the intratumoral microbiota may potentially serve as a target for the treatment of esophageal cancer. This review delineates the composition, origin, and diagnostic significance of intratumoral microbiota in esophageal cancer tissue, and discusses the mechanisms by which intratumoral microbiota contribute to the onset of esophageal cancer. In addition, the impact of intratumoral microbiota on the treatment of esophageal cancer and its intervention measures are also addressed.
Collapse
Affiliation(s)
- Tianyang Jing
- Clinical Medical College, Yangzhou University, Yangzhou, 22500, Jiangsu Province, China
| | - Dong Tang
- Department of General Surgery, Institute of General Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou, 225000, China.
| |
Collapse
|
3
|
Archavlis E, Palombi D, Konstantinidis D, Carvi Y Nievas M, Trobisch P, Stoyanova II. Pathophysiologic Mechanisms of Severe Spinal Cord Injury and Neuroplasticity Following Decompressive Laminectomy and Expansive Duraplasty: A Systematic Review. Neurol Int 2025; 17:57. [PMID: 40278428 DOI: 10.3390/neurolint17040057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 04/06/2025] [Accepted: 04/10/2025] [Indexed: 04/26/2025] Open
Abstract
BACKGROUND Severe spinal cord injury (SCI) represents a debilitating condition with long-term physical and socioeconomic impacts. Understanding the pathophysiology of SCI and therapeutic interventions such as decompressive laminectomy and expansive duraplasty is crucial for optimizing patient outcomes. OBJECTIVE This systematic review explores the pathophysiology of SCI and evaluates evidence linking decompressive laminectomy and duraplasty to improved neuroplasticity and recovery. METHODS A comprehensive search was conducted in PubMed, Web of Science, and Cochrane Library for studies on decompressive surgery in SCI. Inclusion criteria were original articles investigating pathophysiology, neuroplasticity mechanisms, or surgical outcomes. Data on pathophysiological changes, molecular markers, and functional outcomes were extracted. RESULTS From 1240 initial articles, 43 studies were included, encompassing both animal models and human clinical data. Findings highlighted the role of inflammatory cascades, blood-spinal cord barrier disruption, and neurotrophic factor modulation in recovery. Decompressive duraplasty was associated with improved intrathecal pressure (ITP) management and neuroplasticity markers, such as BDNF and GAP-43. CONCLUSIONS This review underscores the therapeutic potential of decompressive laminectomy and duraplasty in SCI. While evidence suggests benefits in promoting neuroplasticity, further research is needed to elucidate molecular mechanisms and refine interventions.
Collapse
Affiliation(s)
- Eleftherios Archavlis
- Interdisciplinary Spine Center and Department of Neurosurgery, Elisabethen Hospital, 60487 Frankfurt, Germany
- School of Health, IU University of Applied Sciences, 53604 Bad Honnef, Germany
- School of Medicine, Frankfurt Branch, European University Cyprus, 60487 Frankfurt, Germany
| | - Davide Palombi
- Neurosurgery Section, Department of Neuroscience, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00136 Rom, Italy
| | - Dimitrios Konstantinidis
- Interdisciplinary Spine Center and Department of Neurosurgery, Elisabethen Hospital, 60487 Frankfurt, Germany
| | - Mario Carvi Y Nievas
- School of Medicine, Frankfurt Branch, European University Cyprus, 60487 Frankfurt, Germany
| | - Per Trobisch
- Department of Spine Surgery, Eifelklinik St. Brigida, 52152 Simmerath, Germany
| | - Irina I Stoyanova
- School of Medicine, Frankfurt Branch, European University Cyprus, 60487 Frankfurt, Germany
| |
Collapse
|
4
|
Sheng S, Guo J, Lu C, Hu X. Non-coding RNAs in thoracic disease: Barrett's esophagus and esophageal adenocarcinoma. Clin Chim Acta 2025; 571:120242. [PMID: 40074193 DOI: 10.1016/j.cca.2025.120242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/08/2025] [Accepted: 03/09/2025] [Indexed: 03/14/2025]
Abstract
Esophageal adenocarcinoma (EAC) is a highly aggressive malignancy with increasing incidence and poor survival rates, primarily due to late-stage diagnosis. This cancer often develops from Barrett's Esophagus (BE), a precancerous condition linked to chronic gastroesophageal reflux disease (GERD). The transition from BE to EAC is a complex multistep process involving numerous genetic, epigenetic, and molecular changes that lead to the malignant transformation of the esophageal epithelium. Despite advancements in understanding the molecular mechanisms underlying EAC, early detection and effective treatment options remain limited, highlighting an urgent need for innovative diagnostic and therapeutic strategies. Recent research has focused on non-coding RNAs (ncRNAs), which play crucial roles in regulating gene expression and cellular processes relevant to cancer progression. Various types of ncRNAs, including microRNAs, long non-coding RNAs, and circular RNAs, have been implicated in the development of BE and EAC by modulating key signaling pathways such as Wnt/β-catenin and NF-κB. Additionally, ncRNAs are stable in biological fluids, presenting opportunities for their use as non-invasive biomarkers for early detection and monitoring of EAC. This review aims to elucidate the involvement of ncRNAs in the progression from BE to EAC, their potential as therapeutic targets, and their emerging roles in intercellular communication. We will also discuss the challenges in translating ncRNA research into clinical applications, emphasizing their promise in revolutionizing early detection and treatment strategies for EAC.
Collapse
Affiliation(s)
- Siyuan Sheng
- Department of Medicine, Hunan University of Arts and Science, Changde, Hunan Province 415000, China.
| | - Jianhui Guo
- Spine Surgery of Changde Second People's Hospital, Changde, Hunan Province 415000, China
| | - Chuangang Lu
- Sanya Central Hospital, Sanya, Hainan Province 572000, China
| | - Xia Hu
- Department of Medicine, Hunan University of Arts and Science, Changde, Hunan Province 415000, China
| |
Collapse
|
5
|
Hochstadt J, Martínez Pacheco S, Casanova-Acebes M. Embracing diversity: macrophage complexity in cancer. Trends Cancer 2025; 11:351-364. [PMID: 39753470 DOI: 10.1016/j.trecan.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/27/2024] [Accepted: 12/04/2024] [Indexed: 04/11/2025]
Abstract
Macrophages are myeloid cells that receive, integrate, and respond to tumoral cues. Tumors evolve and are shaped by macrophages, with tumor-associated macrophage (TAM)-tumor sculpting capacities going beyond an increase in their cellular mass. Longitudinal and local heterogeneity of TAM states is now possible with the use of single-cell and spatial transcriptomics. However, understanding TAM biology and its fundamental functional programs is still challenging, probably because of the lack of models that fully integrate TAM complexity. Here, we aim to review TAM diversity not only at the level of single-cell phenotypes but also by integrating complex physiological signals that determine their complexity and plasticity in tumors.
Collapse
Affiliation(s)
- Jan Hochstadt
- Cancer Immunity Laboratory, Molecular Oncology Program, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Sarai Martínez Pacheco
- Cancer Immunity Laboratory, Molecular Oncology Program, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - María Casanova-Acebes
- Cancer Immunity Laboratory, Molecular Oncology Program, Spanish National Cancer Research Center (CNIO), Madrid, Spain.
| |
Collapse
|
6
|
Tan F, Zheng Y, Wang C, Huang J, Liu X, Su W, Chen X, Yang Z. Effects of Chenpi Jiaosu on serum metabolites and intestinal microflora in a dyslipidemia population: a randomized controlled pilot trial. Front Endocrinol (Lausanne) 2025; 16:1552117. [PMID: 40225325 PMCID: PMC11985429 DOI: 10.3389/fendo.2025.1552117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Accepted: 02/10/2025] [Indexed: 04/15/2025] Open
Abstract
Introduction Dyslipidemia is a critical risk factor for atherosclerosis and cardiovascular/cerebrovascular events, necessitating effective long-term management. However, conventional lipid-lowering drugs such as statins and fibrates are limited by adverse effects, including hepatotoxicity and myopathy, which restrict their prolonged use. Traditional Chinese medicine (TCM) and natural health products offer potential alternatives with multi-target mechanisms and improved safety profiles. Tangerine Peel Enzyme Drink (CPJS), a fermented health product derived from tangerine peel, has demonstrated lipid-modulating properties. This study aimed to evaluate the efficacy and safety of CPJS in improving dyslipidemia and explore its underlying metabolic and microbiological mechanisms. Methods A randomized, double-blind, parallel-controlled clinical trial was conducted with 72 participants (55 completers). Participants were divided into CPJS and control groups, receiving an 8-week intervention. Primary outcomes included changes in body weight and serum triglycerides (TG), while safety was assessed via liver/kidney function, creatine kinase, blood, and urine tests. Serum metabolomics (93 differential metabolites identified) and intestinal microbiota analysis were performed to elucidate metabolic pathways and microbial shifts. KEGG enrichment analysis mapped metabolites to biological pathways, such as lipid and amino acid metabolism. Results The CPJS group exhibited significant reductions in body weight and TG levels post-intervention (p < 0.05), with no adverse effects observed in safety biomarkers. Metabolomic profiling revealed alterations in fatty acyl, glycerophospholipid, and organic acid metabolites, indicating CPJS modulates lipid metabolism and energy homeostasis. KEGG analysis linked these changes to pathways including triglyceride degradation and amino acid metabolism. Additionally, CPJS increased specific gut microbial taxa associated with lipid regulation, suggesting a microbiome-mediated mechanism. Discussion CPJS demonstrates efficacy in improving dyslipidemia through dual mechanisms: direct modulation of triglyceride metabolism and indirect regulation via gut microbiota. Its safety profile aligns with findings from natural products like Cyclocarya paliurus and tempeh, which mitigate lipid abnormalities without hepatotoxicity. The multi-target action of CPJS mirrors TCM principles, where compounds like quercetin and flavonoids in CPJS may synergistically inhibit cholesterol synthesis and enhance lipid clearance. However, further research is needed to isolate active components and validate microbial contributions. Compared to synthetic drugs, CPJS offers a safer adjunct therapy, addressing limitations of current pharmacotherapies. Future studies should explore dose-response relationships and long-term outcomes in diverse populations.
Collapse
Affiliation(s)
- Fei Tan
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuying Zheng
- Guangdong Engineering Research Center of Commercialization of Medical Institution Preparations and Traditional Chinese Medicines, Engineering Technology Research Center of Commercialization of Linnan Special Medical Institution Preparations, Experimental Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Clinical Research Academy of Chinese Medicine, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Engineering Research Center of Commercialization of Medical Institution Preparations and Traditional Chinese Medicines, Guangzhou, China
- Guangdong Engineering Technology Research Center of Commercialization of Linnan Special Medical Institution Preparations, Guangzhou, China
| | - Chengcheng Wang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiaying Huang
- The TCM Department of Longyuan Daguan Community Health Service Center, Shenzhen Longgang Orthopaedics Hospital, Shenzhen, China
| | - Xin Liu
- Production department, Guangzhou Baiyunshan Guanghua Pharmaceutical co, LTD, Guangzhou, China
| | - Weiwei Su
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xinyan Chen
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhimin Yang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
7
|
Rodrigues FG, Ormanji MS, Meca R, Montenegro H, Cuppari L, de Borst MH, Heilberg IP. Effects of a high-fat diet on gut microbiota and possible implications for bone health in male Wistar rats. Lipids 2025. [PMID: 40103344 DOI: 10.1002/lipd.12440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 02/25/2025] [Accepted: 02/26/2025] [Indexed: 03/20/2025]
Abstract
Diet plays an important role in the composition of gut microbiota. Emerging research suggests that bone homeostasis can also be influenced by the gut microbiota. The aim of this study was to assess possible alterations in gut microbiota in an experimental obesity model induced by a high-fat diet (HFD) and the possible effects on parameters of bone metabolism and remodeling. Male Wistar rats were fed a HFD (60% lipids) or standard (control) diet for 14 weeks. Biochemical and hormonal parameters, bone histomorphometry, bone protein levels, and gut microbiota composition were analyzed. HFD animals exhibited a greater gut microbiota α-diversity represented by the Shannon Index and an increased relative abundance of the Proteobacteria phylum. Histomorphometry detected lower bone formation in the HFD group, accompanied by increased levels of serum and bone leptin and FGF-23 (fibroblast growth factor-23). The Shannon Index was correlated directly with bone FGF-23 (R 0.96, p = 0.04) and inversely with the osteoblastic surface (R -0.95, p = 0.04). The present study disclosed a significant increase in gut microbiota α-diversity and relative abundance of Proteobacteria phylum in obese animals fed a high-fat diet in parallel with increased levels of bone and serum leptin and FGF-23 and lower bone formation. The associations of Shannon Index with bone levels of FGF-23 and reduced osteoblastic surface suggest a link between HFD-induced higher gut microbiota diversity and low bone formation.
Collapse
Affiliation(s)
- Fernanda Guedes Rodrigues
- Nutrition Post Graduation Program, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
- Department of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | | | - Renata Meca
- Nephrology Division, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | | | - Lilian Cuppari
- Nutrition Post Graduation Program, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
- Nephrology Division, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Martin H de Borst
- Department of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Ita Pfeferman Heilberg
- Nutrition Post Graduation Program, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
- Nephrology Division, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| |
Collapse
|
8
|
Beglarian E, Chen JC, Li Z, Costello E, Wang H, Hampson H, Alderete TL, Chen Z, Valvi D, Rock S, Chen W, Rianon N, Aung MT, Gilliland FD, Goran MI, McConnell R, Eckel SP, Lee M, Conti DV, Goodrich JA, Chatzi L. Proteins and pathways involved in inflammation are longitudinally associated with total body bone mineral density among primarily Hispanic overweight/obese adolescents and young adults. J Bone Miner Res 2025; 40:372-381. [PMID: 39808688 PMCID: PMC11909736 DOI: 10.1093/jbmr/zjaf002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 12/16/2024] [Accepted: 01/12/2025] [Indexed: 01/16/2025]
Abstract
BMD, an important marker of bone health, is regulated by a complex interaction of proteins. Plasma proteomic analyses can contribute to identification of proteins associated with changes in BMD. This may be especially informative in stages of bone accrual and peak BMD achievement (ie, adolescence and young adulthood), but existing research has focused on older adults. This analysis in the Study of Latino Adolescents at Risk for Type 2 Diabetes (SOLAR; n = 304; baseline age 8-13, 100% Hispanic) explored associations between baseline proteins (n = 653 proteins) measured with Olink plasma protein profiling and repeated annual DXA measures of BMD (average of 3.2 visits per participant). Covariate-adjusted linear mixed effect regression models were applied to estimate longitudinal protein-BMD associations using an adjusted p value cutoff (p < .00068). Identified proteins were imported into the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database to determine significantly enriched protein pathways. Forty-four proteins, many of which are involved in inflammatory processes, were associated with longitudinal changes in total body BMD, including several proteins previously linked to bone health such as osteopontin (SPP1) and microfibrillar-associated protein 5 (MFAP5; both p < .00068). These 44 proteins were associated with enrichment of pathways including PI3K-Akt signaling pathway and cytokine-cytokine receptor interaction, supporting results from existing proteomics analyses in older adults. To evaluate whether protein associations were consistent into young adulthood, linear mixed effect models were repeated in a young adult cohort (n = 169; baseline age 17-22; 62.1% Hispanic) with 346 available overlapping Olink protein measures. While there were no significant overlapping longitudinal protein associations between the cohorts, these findings suggest differences in protein regulation at different ages and provide novel insight on longitudinal protein associations with BMD in overweight/obese adolescents and young adults of primarily Hispanic origin, which may inform the development of biomarkers for bone health in youth.
Collapse
Affiliation(s)
- Emily Beglarian
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90032, United States
| | - Jiawen Carmen Chen
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90032, United States
| | - Zhenjiang Li
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90032, United States
| | - Elizabeth Costello
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90032, United States
| | - Hongxu Wang
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90032, United States
| | - Hailey Hampson
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90032, United States
| | - Tanya L Alderete
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, United States
| | - Zhanghua Chen
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90032, United States
| | - Damaskini Valvi
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Sarah Rock
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90032, United States
| | - Wu Chen
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90032, United States
| | - Nahid Rianon
- Department of Internal Medicine, UTHealth McGovern Medical School, Houston, TX 77030, United States
| | - Max T Aung
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90032, United States
| | - Frank D Gilliland
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90032, United States
| | - Michael I Goran
- Department of Pediatrics, Children’s Hospital Los Angeles, The Saban Research Institute, Los Angeles, CA 90027, United States
| | - Rob McConnell
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90032, United States
| | - Sandrah P Eckel
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90032, United States
| | - Miryoung Lee
- Department of Epidemiology, School of Public Health, University of Texas Health Science Center at Houston, Brownsville, TX 77030, United States
| | - David V Conti
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90032, United States
| | - Jesse A Goodrich
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90032, United States
| | - Lida Chatzi
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90032, United States
| |
Collapse
|
9
|
Smith AN, Nagrabski S, Baker L, Kramer AH, Sharp DJ, Byrnes KR. Fidgetin-like 2 knockdown increases acute neuroinflammation and improves recovery in a rat model of spinal cord injury. J Neuroinflammation 2025; 22:73. [PMID: 40065364 PMCID: PMC11895163 DOI: 10.1186/s12974-025-03344-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 01/10/2025] [Indexed: 03/14/2025] Open
Abstract
Spinal cord injury (SCI) can cause permanent dysfunction proceeding from multifaceted neuroinflammatory processes that contribute to damage and repair. Fidgetin-like 2 (FL2), a microtubule-severing enzyme that negatively regulates axon growth, microglial functions, and wound healing, has emerged as a potential therapeutic target for central nervous system injuries and neuroinflammation. To test the hypothesis that FL2 knockdown increases acute neuroinflammation and improves recovery after SCI, we examined the effects of nanoparticle-encapsulated FL2 siRNA treatment after a moderate contusion SCI in rats. SCI significantly increased FL2 expression in the lesion site and rostral to the lesion 1 day post-injury (dpi). A single treatment of FL2 siRNA after injury led to modestly improved locomotor recovery consistent with the preservation of corticospinal tract function, accompanied by reduced inflammation and increased presence of oligodendrocytes. In determining the acute effects of treatment, RNA sequencing and gene set enrichment analyses revealed that FL2 siRNA modulates early cellular responses, including chemokine signaling, both pro- and anti-inflammatory immune reactions, and neurotransmitter signaling pathways at 1, 4, and 7 dpi. Follow-up analyses at 4 dpi using dual in situ hybridization and immunohistochemistry demonstrated that SCI increased FL2 mRNA and that FL2 was colocalized with microglia/macrophages. FL2 downregulation resulted in a marked accumulation of microglia at the lesion site, accompanied by increased inflammatory markers (IL-1β, TGF-β1, and CD68). The results suggest SCI induces an increase in FL2 expression that undermines acute inflammatory responses as well as spinal cord integrity and growth. Overall, our study suggests that targeting FL2 holds promise as a therapeutic strategy for treating SCI.
Collapse
Affiliation(s)
- Austin N Smith
- Neuroscience Program, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Samantha Nagrabski
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | | | | | - David J Sharp
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Kimberly R Byrnes
- Neuroscience Program, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.
| |
Collapse
|
10
|
Li XH, Qian SD, Chen D, Li ZZ, Chen KY, Pan YP, Lv XH, Jia RQ, Yu XF. A new mechanism in steroid-induced osteonecrosis of the femoral head and the protective role of simvastatin. Exp Cell Res 2025; 446:114471. [PMID: 39978720 DOI: 10.1016/j.yexcr.2025.114471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 02/16/2025] [Accepted: 02/16/2025] [Indexed: 02/22/2025]
Abstract
OBJECTIVE Steroid-induced osteonecrosis of the femoral head (SONFH) is a debilitating bone condition associated with femoral head collapse and hip joint dysfunction. The pathogenesis of SONFH is still not fully elucidated. This study aims to explore the role of mitochondrial cardiolipin metabolism disruption in SONFH and the potential protective effects of simvastatin (SIM). METHODS Osteoblasts were cultured in vitro under high concentrations of dexamethasone (DEX) to mimic the effects of glucocorticoid exposure seen in SONFH. Mitochondrial structural changes and cardiolipin distribution were examined using transmission electron microscopy and confocal microscopy. Osteoblast proliferation and apoptosis were assessed using CCK-8 assays and flow cytometry. Mitochondrial cardiolipin content was quantified by ELISA, while cytochrome c (Cyt-c) expression was measured through Western blotting. Mitochondrial staining with NAO was analyzed using confocal microscopy and flow cytometry. RESULTS DEX exposure led to mitochondrial cardiolipin metabolism disorder and redistribution, resulting in significant mitochondrial structural damage. This disruption was associated with increased release of Cyt-c into the cytoplasm, which correlated with heightened osteoblast apoptosis. SIM treatment mitigated these effects, reducing osteoblast apoptosis by preserving mitochondrial function and modulating cardiolipin content and distribution. CONCLUSION This study demonstrates, for the first time, that glucocorticoid-induced disruptions in mitochondrial cardiolipin metabolism contribute to the pathogenesis of SONFH by inducing Cyt-c release and subsequent osteoblast apoptosis. SIM exerts a protective effect by preserving mitochondrial integrity and function, offering a potential therapeutic avenue for treating hormone-induced osteoblast damage in SONFH.
Collapse
Affiliation(s)
- Xu-Huan Li
- Affiliated Rehabilitation Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Shi-da Qian
- Affiliated Rehabilitation Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China; Institute of Orthopaedics, Huizhou Central People's Hospital, Huizhou, Guangdong, China
| | - Dan Chen
- First Affiliated Hospital of Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Zhou-Zhou Li
- Affiliated Rehabilitation Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China; Rehabilitation College of Nanchang University, Nanchang, Jiangxi, China
| | - Kai-Yun Chen
- Affiliated Rehabilitation Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Yong-Ping Pan
- Affiliated Rehabilitation Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Xiu-Hua Lv
- Institute of Orthopaedics, Huizhou Central People's Hospital, Huizhou, Guangdong, China
| | - Run-Qing Jia
- Department of Biology, Faculty of Environment and Life, Beijing University of Technology, Beijing, China.
| | - Xue-Feng Yu
- Affiliated Rehabilitation Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.
| |
Collapse
|
11
|
Alizadeh M, Ghasemi H, Bazhan D, Mohammadi Bolbanabad N, Rahdan F, Arianfar N, Vahedi F, Khatami SH, Taheri-Anganeh M, Aiiashi S, Armand N. MicroRNAs in disease States. Clin Chim Acta 2025; 569:120187. [PMID: 39938625 DOI: 10.1016/j.cca.2025.120187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 02/08/2025] [Accepted: 02/08/2025] [Indexed: 02/14/2025]
Abstract
This review highlights the role of miRNAs in various diseases affecting major organ systems. miRNAs are small, non-coding RNA molecules that regulate numerous genes. Dysregulation of miRNAs is linked to many pathological conditions due to their involvement in gene silencing and cellular pathways. We discuss miRNA expression patterns, their physiological and pathological roles, and how changes in miRNA levels contribute to disease. Notably, miRNAs like miR-499 and miR-21 are implicated in heart failure and atherosclerosis. miRNA dysregulation is also associated with colorectal and gastric cancers, influencing tumorigenesis and chemoresistance. In neurological diseases, miRNAs exhibit diverse profiles that affect neurodevelopment and degeneration. Additionally, miRNAs modulate cell function in reproductive organs, impacting fertility and cancer progression. miRNAs such as miR-192 and miR-204 serve as biomarkers for nephropathy and acute kidney injury. These miRNAs are involved in skeletal muscle diseases, contributing to conditions like osteoporosis and sarcopenia. miRNAs function as oncogenes or tumor suppressors in cancer, highlighting their potential in diagnostics and therapy. Further research is needed to develop miRNA-based diagnostics and treatments.
Collapse
Affiliation(s)
- Mehdi Alizadeh
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hassan Ghasemi
- Research Center for Environmental Contaminants (RCEC), Abadan University of Medical Sciences, Abadan, Iran
| | - Donya Bazhan
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Fereshteh Rahdan
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Narges Arianfar
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farzaneh Vahedi
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Seyyed Hossein Khatami
- Student Research Committee, Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mortaza Taheri-Anganeh
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| | - Saleh Aiiashi
- Abadan University of Medical Sciences, Abadan, Iran.
| | - Nezam Armand
- Dietary Supplements and Probiotic Research Center, Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|
12
|
Fu Z, Jiang Z, Zhao F, Gou T, Jiang L. Causal association between gastroesophageal reflux disease and sepsis, and the mediating role of gut bacterial abundance, a Mendelian randomization study. Medicine (Baltimore) 2025; 104:e41631. [PMID: 39993106 PMCID: PMC11857025 DOI: 10.1097/md.0000000000041631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 02/03/2025] [Accepted: 02/04/2025] [Indexed: 02/26/2025] Open
Abstract
Gastroesophageal reflux disease (GERD), akin to sepsis, is mediated by inflammatory reactions and exhibits a strong correlation with intestinal dysbiosis. We sought to examine whether these associations reflect causality using the Mendelian randomization (MR) mediation analysis. Genetic data were obtained from genome-wide association studies. Two-sample MR were performed to evaluate the causal association, accompanied by sensitivity analyses. Reverse direction MR was undertaken to assess the potential for reverse causation. Then, mediation analysis was performed to evaluate the mediating effect of gut bacterial pathway abundance in this relationship. Genetic predisposition to GERD was significantly associated with sepsis [inverse variance weighting: odds ratio = 1.366, P = 2.13E-09, 95% confidence interval [CI] 1.233-1.513] and sepsis-related 28-day mortality (inverse variance weighting: odds ratio = 1.412, P = 6.64E-03, 95% CI 1.101-1.812). There is no convincing evidence for reverse causation. Gut bacterial pathway abundance (ARO.PWY..chorismate.biosynthesis.I) mediates the effect of GERD on sepsis (β = 0.036, 95% CI 0.004-0.067, P = .025), accounting for 11.406% of the total effect; Gut bacterial pathway abundance (PWY.7219..adenosine.ribonucleotides.de.novo.biosynthesis) mediates the effect of GERD on sepsis (β = 0.026, 95% CI -0.003 to 0.056, P = .083), accounting for 8.486% of the total effect; gut bacterial pathway abundance (ARO.PWY..chorismate.biosynthesis.I) mediates the effect of GERD on sepsis (28-day death) (β = 0.079, 95% CI 0.005-0.153, P = .036), accounting for 22.890% of the total effect; gut bacterial pathway abundance (TRNA.CHARGING.PWY..tRNA.charging) mediates the effect of GERD on sepsis (28-day death) (β = -0.066, 95% CI -0.140 to 0.007, P = .078), accounting for -19.171% of the total effect. The present MR study supported GERD as a causal risk factor of sepsis and sepsis-related 28-day mortality. Three specific gut bacterial pathway abundances were identified that played a partial mediating role in the aforementioned causal relationship between GERD and sepsis.
Collapse
Affiliation(s)
- Zengyan Fu
- Department of Emergency Medicine, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Zhenhong Jiang
- Department of Emergency Medicine, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Fei Zhao
- Department of Emergency Medicine, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Tao Gou
- Department of Emergency Medicine, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Le Jiang
- Department of Emergency Medicine, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
13
|
Ticinesi A, Siniscalchi C, Meschi T, Nouvenne A. Gut microbiome and bone health: update on mechanisms, clinical correlations, and possible treatment strategies. Osteoporos Int 2025; 36:167-191. [PMID: 39643654 DOI: 10.1007/s00198-024-07320-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 11/12/2024] [Indexed: 12/09/2024]
Abstract
The intestinal microbiome is increasingly regarded as a relevant modulator of the pathophysiology of several age-related conditions, including frailty, sarcopenia, and cognitive decline. Aging is in fact associated with alteration of the equilibrium between symbiotic bacteria and opportunistic pathogens, leading to dysbiosis. The microbiome is able to regulate intestinal permeability and systemic inflammation, has a central role in intestinal amino acid metabolism, and produces a large number of metabolites and byproducts, with either beneficial or detrimental consequences for the host physiology. Recent evidence, from both preclinical animal models and clinical studies, suggests that these microbiome-centered pathways could contribute to bone homeostasis, regulating the balance between osteoblast and osteoclast function. In this systematic review, we provide an overview of the mechanisms involved in the gut-bone axis, with a particular focus on microbiome function and microbiome-derived mediators including short-chain fatty acids. We also review the current evidence linking gut microbiota dysbiosis with osteopenia and osteoporosis, and the results of the intervention studies on pre-, pro-, or post-biotics targeting bone mineral density loss in both animal models and human beings, indicating knowledge gaps and highlighting possible avenues for future research.
Collapse
Affiliation(s)
- Andrea Ticinesi
- Department of Medicine and Surgery, University of Parma, Via Antonio Gramsci 14, 43126, Parma, Italy.
- Microbiome Research Hub, University of Parma, Parma, Italy.
- Department of Continuity of Care and Multicomplexity, Parma University-Hospital, Parma, Italy.
| | - Carmine Siniscalchi
- Department of Continuity of Care and Multicomplexity, Parma University-Hospital, Parma, Italy
| | - Tiziana Meschi
- Department of Medicine and Surgery, University of Parma, Via Antonio Gramsci 14, 43126, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
- Department of Continuity of Care and Multicomplexity, Parma University-Hospital, Parma, Italy
| | - Antonio Nouvenne
- Department of Medicine and Surgery, University of Parma, Via Antonio Gramsci 14, 43126, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
- Department of Continuity of Care and Multicomplexity, Parma University-Hospital, Parma, Italy
| |
Collapse
|
14
|
Chen WJ, Wang XL, Wang YF, Liu DM, Yue MY, Wei J, Li J, Chen TT, Tu HJ. LPL-RH suppresses bone loss in ovariectomised rat models. BMC Microbiol 2024; 24:545. [PMID: 39732687 DOI: 10.1186/s12866-024-03683-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 11/29/2024] [Indexed: 12/30/2024] Open
Abstract
BACKGROUND Evidence has revealed that oestrogen deprivation-induced osteolysis is microbiota-dependent and can be treated by probiotics. However, the underlying mechanism require further investigation. This study aims to provide additional evidence supporting the use of probiotics as an adjuvant treatment and to explore the pathophysiology of oestrogen-deprived osteolysis. METHODS Forty-five SD rats were randomly divided into five groups (n = 9). Rats from four groups were ovariectomised and treated with NS, calcium, probiotics, or calcium + probiotics, while one group underwent a sham operation and was treated with NS. The osteometabolic effects were evaluated, and the mechanistic role of the probiotic supplement was explored. RESULTS Intragastric administration of Bifidobacterium animalis subsp. lactis LPL-RH (LPL-RH) markedly suppressed osteoclastic activation and bone calcium loss by downregulating TRAP enzymatic activity, the OPG/RANKL ratio, and the downstream signalling pathway RANKL/TRAF6/NF-κB/NFATc1/TRAP in ovariectomised SD rats. LPL-RH also reduced CD4+IL-17 A+ TH17 cells in the bone marrow, the pro-osteoclastogenic cytokine IL-17 A, pro-inflammatory molecules (LPS), and its binding protein (LBP) in the blood. LPL-RH restored intestinal ZO-1, occludin, claudin 2, claudin 12, and claudin 15, which improved ileal histopathology, reduced ileal oxidative stress, and attenuated the LPS-responsive TLR4/MyD88/NF-κB pathway. Furthermore, 16 S rRNA sequencing revealed that LPL-RH altered the faecal microbiome by reducing the relative abundance of S24-7 at the family level and promoting Prevotella and Bacteroides at the genus level. CONCLUSION Collectively, LPL-RH suppressed osteoclastogenesis and osteolysis by modulating type 17 immunity and gut microbiome.
Collapse
Affiliation(s)
- Wen-Jie Chen
- Departments of Geriatrics, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, P. R. China
- National Engineering Research Centre of Bioengineering Drugs and Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, 330031, P. R. China
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang, 330031, P. R. China
| | - Xin-Liang Wang
- National Engineering Research Centre of Bioengineering Drugs and Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, 330031, P. R. China
| | - Yu-Fan Wang
- National Engineering Research Centre of Bioengineering Drugs and Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, 330031, P. R. China
| | - Ding-Ming Liu
- National Engineering Research Centre of Bioengineering Drugs and Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, 330031, P. R. China
| | - Meng-Yun Yue
- National Engineering Research Centre of Bioengineering Drugs and Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, 330031, P. R. China
| | - Jing Wei
- National Engineering Research Centre of Bioengineering Drugs and Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, 330031, P. R. China
| | - Jian Li
- The Key Laboratory of Hematology of Jiangxi Province, The Department of Hematology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, P. R. China
| | - Ting-Tao Chen
- Departments of Geriatrics, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, P. R. China.
- National Engineering Research Centre of Bioengineering Drugs and Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, 330031, P. R. China.
| | - Huai-Jun Tu
- Departments of Geriatrics, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, P. R. China.
| |
Collapse
|
15
|
Yan Y, Wang J, Wang Y, Wu W, Chen W. Research on Lipidomic Profiling and Biomarker Identification for Osteonecrosis of the Femoral Head. Biomedicines 2024; 12:2827. [PMID: 39767733 PMCID: PMC11673004 DOI: 10.3390/biomedicines12122827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/03/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
Objectives: Abnormal lipid metabolism is increasingly recognized as a contributing factor to the development of osteonecrosis of the femoral head (ONFH). This study aimed to explore the lipidomic profiles of ONFH patients, focusing on distinguishing between traumatic ONFH (TONFH) and non-traumatic ONFH (NONFH) subtypes and identifying potential biomarkers for diagnosis and understanding pathogenesis. Methods: Plasma samples were collected from 92 ONFH patients (divided into TONFH and NONFH subtypes) and 33 healthy normal control (NC) participants. Lipidomic profiling was performed using ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). Data analysis incorporated a machine learning-based feature selection method, least absolute shrinkage and selection operator (LASSO) regression, to identify significant lipid biomarkers. Results: Distinct lipidomic signatures were observed in both TONFH and NONFH groups compared to the NC group. LASSO regression identified 11 common lipid biomarkers that signify shared metabolic disruptions in both ONFH subtypes, several of which exhibited strong diagnostic performance with areas under the curve (AUCs) > 0.7. Additionally, subtype-specific lipid markers unique to TONFH and NONFH were identified, providing insights into the differential pathophysiological mechanisms underlying these subtypes. Conclusions: This study highlights the importance of lipidomic profiling in understanding ONFH-associated metabolic disorders and demonstrates the utility of machine learning approaches, such as LASSO regression, in high-dimensional data analysis. These findings not only improve disease characterization but also facilitate the discovery of diagnostic and mechanistic biomarkers, paving the way for more personalized therapeutic strategies in ONFH.
Collapse
Affiliation(s)
- Yuzhu Yan
- Department of Laboratory Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
- Clinical Laboratory of Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, China
| | - Jihan Wang
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China
| | - Yangyang Wang
- School of Electronics and Information, Northwestern Polytechnical University, Xi’an 710129, China
| | - Wenjing Wu
- Department of Laboratory Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
| | - Wei Chen
- Department of Laboratory Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
| |
Collapse
|
16
|
Li L, Zhao S, Leng Z, Chen S, Shi Y, Shi L, Li J, Mao K, Tang H, Meng B, Wang Y, Shang G, Liu H. Pathological mechanisms and related markers of steroid-induced osteonecrosis of the femoral head. Ann Med 2024; 56:2416070. [PMID: 39529511 PMCID: PMC11559024 DOI: 10.1080/07853890.2024.2416070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Osteonecrosis of the femoral head (ONFH) is a refractory orthopedic disease with a high disability rate. Long-term administration of steroids is the most common pathogenic factor for non-traumatic ONFH. Early diagnosis of steroid-induced osteonecrosis of the femoral head (SONFH) is difficult and mainly depends on imaging. OBJECTIVES The objectives of this review were to examine the pathological mechanisms of SONFH, summarize related markers of SONFH, and identify areas for future studies. METHODS We reviewed studies on pathological mechanisms and related markers of SONFH and discussed the relationship between them, as well as clinical applications and the outlook of potential markers. RESULTS The pathological mechanisms of SONFH included decreased osteogenesis, lipid accumulation, increased intraosseous pressure, and microcirculation disruption. Differential proteomics and genomics play crucial roles in the occurrence, progression, and outcome of SONFH, providing novel insights into SONFH. Additionally, the biological functions of mesenchymal stem cells (MSCs) and exosomes (Exos) in SONFH have attracted increasing attention. CONCLUSIONS The pathological mechanisms of SONFH are complex. The related markers mentioned in the current review can predict the occurrence and progression of SONFH, which will help provide effective early clinical prevention and treatment strategies for SONFH.
Collapse
Affiliation(s)
- Longyu Li
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shangkun Zhao
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zikuan Leng
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Songfeng Chen
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yifang Shi
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lijun Shi
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jinfeng Li
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Keya Mao
- Department of Orthopedics, The Chinese PLA General Hospital, Beijing, China
| | - Hai Tang
- Department of Orthopedics, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Bin Meng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yisheng Wang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guowei Shang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hongjian Liu
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
17
|
Barchi A, Massimino L, Mandarino FV, Vespa E, Sinagra E, Almolla O, Passaretti S, Fasulo E, Parigi TL, Cagliani S, Spanò S, Ungaro F, Danese S. Microbiota profiling in esophageal diseases: Novel insights into molecular staining and clinical outcomes. Comput Struct Biotechnol J 2024; 23:626-637. [PMID: 38274997 PMCID: PMC10808859 DOI: 10.1016/j.csbj.2023.12.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/22/2023] [Accepted: 12/23/2023] [Indexed: 01/27/2024] Open
Abstract
Gut microbiota is recognized nowadays as one of the key players in the development of several gastro-intestinal diseases. The first studies focused mainly on healthy subjects with staining of main bacterial species via culture-based techniques. Subsequently, lots of studies tried to focus on principal esophageal disease enlarged the knowledge on esophageal microbial environment and its role in pathogenesis. Gastro Esophageal Reflux Disease (GERD), the most widespread esophageal condition, seems related to a certain degree of mucosal inflammation, via interleukin (IL) 8 potentially enhanced by bacterial components, lipopolysaccharide (LPS) above all. Gram- bacteria, producing LPS), such as Campylobacter genus, have been found associated with GERD. Barrett esophagus (BE) seems characterized by a Gram- and microaerophils-shaped microbiota. Esophageal cancer (EC) development leads to an overturn in the esophageal environment with the shift from an oral-like microbiome to a prevalently low-abundant and low-diverse Gram--shaped microbiome. Although underinvestigated, also changes in the esophageal microbiome are associated with rare chronic inflammatory or neuropathic disease pathogenesis. The paucity of knowledge about the microbiota-driven mechanisms in esophageal disease pathogenesis is mainly due to the scarce sensitivity of sequencing technology and culture methods applied so far to study commensals in the esophagus. However, the recent advances in molecular techniques, especially with the advent of non-culture-based genomic sequencing tools and the implementation of multi-omics approaches, have revolutionized the microbiome field, with promises of implementing the current knowledge, discovering more mechanisms underneath, and giving insights into the development of novel therapies aimed to re-establish the microbial equilibrium for ameliorating esophageal diseases..
Collapse
Affiliation(s)
- Alberto Barchi
- Gastroenterology and Digestive Endoscopy, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Luca Massimino
- Gastroenterology and Digestive Endoscopy, IRCCS Ospedale San Raffaele, Milan, Italy
| | | | - Edoardo Vespa
- Gastroenterology and Digestive Endoscopy, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Emanuele Sinagra
- Gastroenterology & Endoscopy Unit, Fondazione Istituto G. Giglio, Cefalù, Italy
| | - Omar Almolla
- Università Vita-Salute San Raffaele, Faculty of Medicine, Milan, Italy
| | - Sandro Passaretti
- Gastroenterology and Digestive Endoscopy, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Ernesto Fasulo
- Gastroenterology and Digestive Endoscopy, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Tommaso Lorenzo Parigi
- Gastroenterology and Digestive Endoscopy, IRCCS Ospedale San Raffaele, Milan, Italy
- Università Vita-Salute San Raffaele, Faculty of Medicine, Milan, Italy
| | - Stefania Cagliani
- Università Vita-Salute San Raffaele, Faculty of Medicine, Milan, Italy
| | - Salvatore Spanò
- Gastroenterology and Digestive Endoscopy, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Federica Ungaro
- Gastroenterology and Digestive Endoscopy, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Silvio Danese
- Gastroenterology and Digestive Endoscopy, IRCCS Ospedale San Raffaele, Milan, Italy
- Università Vita-Salute San Raffaele, Faculty of Medicine, Milan, Italy
| |
Collapse
|
18
|
Liu X, Li B, Liang L, Han J, Mai S, Liu L. From microbes to medicine: harnessing the power of the microbiome in esophageal cancer. Front Immunol 2024; 15:1450927. [PMID: 39600698 PMCID: PMC11588724 DOI: 10.3389/fimmu.2024.1450927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 10/21/2024] [Indexed: 11/29/2024] Open
Abstract
Esophageal cancer (EC) is a malignancy with a high incidence and poor prognosis, significantly influenced by dysbiosis in the esophageal, oral, and gut microbiota. This review provides an overview of the roles of microbiota dysbiosis in EC pathogenesis, emphasizing their impact on tumor progression, drug efficacy, biomarker discovery, and therapeutic interventions. Lifestyle factors like smoking, alcohol consumption, and betel nut use are major contributors to dysbiosis and EC development. Recent studies utilizing advanced sequencing have revealed complex interactions between microbiota dysbiosis and EC, with oral pathogens such as Porphyromonas gingivalis and Fusobacterium nucleatum promoting inflammation and suppressing immune responses, thereby driving carcinogenesis. Altered esophageal microbiota, characterized by reduced beneficial bacteria and increased pathogenic species, further exacerbate local inflammation and tumor growth. Gut microbiota dysbiosis also affects systemic immunity, influencing chemotherapy and immunotherapy efficacy, with certain bacteria enhancing or inhibiting treatment responses. Microbiota composition shows potential as a non-invasive biomarker for early detection, prognosis, and personalized therapy. Novel therapeutic strategies targeting the microbiota-such as probiotics, dietary modifications, and fecal microbiota transplantation-offer promising avenues to restore balance and improve treatment efficacy, potentially enhancing patient outcomes. Integrating microbiome-focused strategies into current therapeutic frameworks could improve EC management, reduce adverse effects, and enhance patient survival. These findings highlight the need for further research into microbiota-tumor interactions and microbial interventions to transform EC treatment and prevention, particularly in cases of late-stage diagnosis and poor treatment response.
Collapse
Affiliation(s)
- Xiaoyan Liu
- Department of Gastroenterology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Bang Li
- Department of Gastroenterology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Liping Liang
- Department of Gastroenterology and Hepatology, Guangzhou Key Laboratory of Digestive Diseases, Guangzhou Digestive Disease Center, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Jimin Han
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Shijie Mai
- Department of Thoracic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Le Liu
- Integrated Clinical Microecology Center, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| |
Collapse
|
19
|
Wang XY, Zhang RZ, Wang YK, Pan S, Yun SM, Li JJ, Xu YJ. An updated overview of the search for biomarkers of osteoporosis based on human proteomics. J Orthop Translat 2024; 49:37-48. [PMID: 39430131 PMCID: PMC11488448 DOI: 10.1016/j.jot.2024.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/21/2024] [Accepted: 08/21/2024] [Indexed: 10/22/2024] Open
Abstract
Osteoporosis is a chronic metabolic disease that increases bone fragility and, leads to severe osteoporotic fractures. In recent years, the use of high-throughput omics to explore physiological and pathological biomarkers related to bone metabolism has gained popularity. In this review, we first briefly review the technical approaches of proteomics. Additionally, we summarize the relevant literature in the last decade to provide a comprehensive overview of advances in human proteomics related to osteoporosis. We describe the specific roles of various proteins related to human bone metabolism, highlighting their potential as biomarkers for risk assessment, early diagnosis and disease course monitoring in osteoporosis. Finally, we outline the main challenges currently faced by human proteomics in the field of osteoporosis and offer suggestions to address these challenges, to inspire the search for novel osteoporosis biomarkers and a foundation for their clinical translation. In conclusion, proteomics is a powerful tool for discovering osteoporosis-related biomarkers, which can not only provide risk assessment, early diagnosis and disease course monitoring, but also reveal the underlying mechanisms of disease and provide key information for personalized treatment. The translational potential of this article This review provides an insightful summary of recent human-based studies on osteoporosis-associated proteomics, which can aid the search for novel osteoporosis biomarkers based on human proteomics and the clinical translation of research results.
Collapse
Affiliation(s)
- Xiong-Yi Wang
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Rui-Zhi Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yi-Ke Wang
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Sheng Pan
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Si-Min Yun
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jun-Jie Li
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - You-Jia Xu
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
20
|
Zheng Y, Li J, Li Y, Wang J, Suo C, Jiang Y, Jin L, Xu K, Chen X. Plasma proteomic profiles reveal proteins and three characteristic patterns associated with osteoporosis: A prospective cohort study. J Adv Res 2024:S2090-1232(24)00474-0. [PMID: 39490735 DOI: 10.1016/j.jare.2024.10.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 10/12/2024] [Accepted: 10/16/2024] [Indexed: 11/05/2024] Open
Abstract
INTRODUCTION Exploration of plasma proteins associated with osteoporosis can offer insights into its pathological development, identify novel biomarkers for screening high-risk populations, and facilitate the discovery of effective therapeutic targets. OBJECTIVES The present study aimed to identify potential proteins associated with osteoporosis and to explore the underlying mechanisms from a proteomic perspective. METHODS The study included 42,325 participants without osteoporosis in the UK Biobank (UKB), of whom 1,477 developed osteoporosis during the follow-up. We used Cox regression and Mendelian randomization analysis to examine the association between plasma proteins and osteoporosis. Machine learning was utilized to explore proteins with strong predictive power for osteoporosis risk. RESULTS Of 2,919 plasma proteins, we identified 134 significantly associated with osteoporosis, with sclerostin (SOST), adiponectin (ADIPOQ), and creatine kinase B-type (CKB) exhibiting strong associations. Twelve of these proteins showed significant associations with bone mineral density (BMD) T-score at the femoral neck, lumbar spine, and total body. Mendelian randomization further supported causal relationships between 17 plasma proteins and osteoporosis. Moreover, follitropin subunit beta (FSHB), SOST, and ADIPOQ demonstrated high importance in predictive modeling. Utilizing a predictive model built with 10 proteins, we achieved relatively accurate prediction of osteoporosis onset up to 5 years in advance (AUC = 0.803). Finally, we identified three osteoporosis-related protein modules associated with immunity, lipid metabolism, and follicle-stimulating hormone (FSH) regulation from a network perspective, elucidating their mediating roles between various risk factors (smoking, sleep, physical activity, polygenic risk score (PRS), and menopause) and osteoporosis. CONCLUSION We identified several proteins associated with osteoporosis and highlighted the role of plasma proteins in influencing its progression through three primary pathways: immunity, lipid metabolism, and FSH regulation. This provides further insights into the distinct molecular patterns and pathogenesis of bone loss and may contribute to strengthening early diagnosis and long-term monitoring of the condition.
Collapse
Affiliation(s)
- Yi Zheng
- State Key Laboratory of Genetic Engineering, Zhangjiang Fudan International Innovation Center, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| | - Jincheng Li
- State Key Laboratory of Genetic Engineering, Zhangjiang Fudan International Innovation Center, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| | - Yucan Li
- State Key Laboratory of Genetic Engineering, Zhangjiang Fudan International Innovation Center, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| | - Jiacheng Wang
- Department of Epidemiology, School of Public Health, and the Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China
| | - Chen Suo
- Department of Biostatistics, School of Public Health, and the Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China; Fudan University Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China
| | - Yanfeng Jiang
- State Key Laboratory of Genetic Engineering, Zhangjiang Fudan International Innovation Center, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, China; Fudan University Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China
| | - Li Jin
- State Key Laboratory of Genetic Engineering, Zhangjiang Fudan International Innovation Center, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, China; Fudan University Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China
| | - Kelin Xu
- Department of Biostatistics, School of Public Health, and the Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China; Fudan University Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China.
| | - Xingdong Chen
- State Key Laboratory of Genetic Engineering, Zhangjiang Fudan International Innovation Center, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, China; Fudan University Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China; National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China; Yiwu Research Institute of Fudan University, Yiwu, Zhejiang, China.
| |
Collapse
|
21
|
Stepanova N. Dyslipidemia in Peritoneal Dialysis: Implications for Peritoneal Membrane Function and Patient Outcomes. Biomedicines 2024; 12:2377. [PMID: 39457689 PMCID: PMC11505255 DOI: 10.3390/biomedicines12102377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Dyslipidemia is a common metabolic complication in patients undergoing peritoneal dialysis (PD) and has traditionally been viewed primarily in terms of cardiovascular risk. Current guidelines do not recommend initiating lipid-lowering therapy in dialysis patients due to insufficient evidence of its benefits on cardiovascular mortality. However, the impact of dyslipidemia in PD patients may extend beyond cardiovascular concerns, influencing PD-related outcomes such as the peritoneal ultrafiltration rate, residual kidney function, PD technique survival, and overall mortality. This review challenges the traditional perspective by discussing dyslipidemia's potential role in PD-related complications, which may account for the observed link between dyslipidemia and increased all-cause mortality in PD patients. It explores the pathophysiology of dyslipidemia in PD, the molecular mechanisms linking dyslipidemia to peritoneal membrane dysfunction, and summarizes clinical evidence supporting this hypothesis. In addition, this paper examines the potential for therapeutic strategies to manage dyslipidemia to improve peritoneal membrane function and patient outcomes. The review calls for future research to investigate dyslipidemia as a potential contributor to peritoneal membrane dysfunction and to develop targeted interventions for PD patients.
Collapse
Affiliation(s)
- Natalia Stepanova
- State Institution “O.O. Shalimov National Scientific Center of Surgery and Transplantology, National Academy of Medical Science of Ukraine”, 03126 Kyiv, Ukraine;
- Medical Center “Nephrocenter”, 03057 Kyiv, Ukraine
| |
Collapse
|
22
|
Chen T, Meng F, Wang N, Hao Y, Fu L. The Characteristics of Gut Microbiota and Its Relation with Diet in Postmenopausal Osteoporosis. Calcif Tissue Int 2024; 115:393-404. [PMID: 39060403 DOI: 10.1007/s00223-024-01260-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024]
Abstract
The gut microbiome is linked to osteoporosis. Previous clinical studies showed inconsistent results. This study aimed to characterize the gut microbiota feature and reveal its relation with diet in postmenopausal osteoporosis. Fifty-five postmenopausal women with osteoporosis (Op group) and forty-four age-matched postmenopausal women (normal bone mineral density, Con group) were included in this study. Fecal microbiota was collected and analyzed by shallow shotgun sequencing. Food frequency questionnaires were collected from both groups, and Spearman analysis was used to clarify its correlation with gut microbiota. A total of 2671 species from 29 phyla, 292 families, 152 orders, 80 classes were detected in the study. The two groups had no significant difference in the α and β diversity (p > 0.05). At the genus level, Anaerostipes was enriched in Op group (p < 0.05). At species level, Methanobrevibacter smithii, Bifidobacterium animalis, Rhodococcus defluvii, Lactobacillus plantarum, and Carnobacterium mobile were enriched in the Op group, while Bacillus luciferensis, Acetivibrio cellulolyticus, Citrobacter amalonaticus, and Bifidobacterium breve were differentially enriched in the Con group. Food frequency questionnaire showed that postmenopausal women with osteoporosis intaked more red meat, beer, white and red wine (p < 0.05), and the Con group had more yogurt, fruit, and tea consumption. Red meat consumption had a significant negative correlation with Streptosporangiales (p < 0.01) and Actinomadura (p < 0.05). Fruits intake negatively correlated with Nocardiaceae, Rhodococcus, and Rhodococcus defluvii (p < 0.05). More yogurt intake was consistently correlated with a greater abundance of Streptosporangiales. This study suggests that gut microbiota is significantly altered in the postmenopausal osteoporosis population at genus and species levels, and specific dietary intake might relate to these changes.
Collapse
Affiliation(s)
- Tinglong Chen
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Fan Meng
- Shanghai Huangpu District Waitan Community Health Service Center, Shanghai, 200011, China
| | - Ning Wang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Yongqiang Hao
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Lingjie Fu
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China.
| |
Collapse
|
23
|
Wu S, Xia Z, Wei L, Ji J, Zhang Y, Huang D. Secreted protein TNA: a promising biomarker for understanding the adipose-bone axis and its impact on bone metabolism. J Orthop Surg Res 2024; 19:610. [PMID: 39342371 PMCID: PMC11437659 DOI: 10.1186/s13018-024-05089-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 09/17/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND Osteoporosis (OP) is a systemic bone disease characterized by reduced bone mass and deterioration of bone microstructure, leading to increased bone fragility. Platelets can take up and release cytokines, and a high platelet count has been associated with low bone density. Obesity is strongly associated with OP, and adipose tissue can influence platelet function by secreting adipokines. However, the biological relationship between these factors remains unclear. METHODS We conducted differential analysis to identify OP platelet-related plasma proteins. And, making comprehensive analysis, including functional enrichment, protein-protein interaction network analysis, and Friends analysis. The key protein, Tetranectin (TNA/CLEC3B), was identified through screening. Then, we analyzed TNA's potential roles in osteogenic and adipogenic differentiation using multiple RNA-seq data sets and validated its effect on osteoclast differentiation and bone resorption function through in vitro experiments. RESULTS Six OP-platelet-related proteins were identified via differential analysis. Then, we screened the key protein TNA, which was found to be highly expressed in adipose tissue. RNA-seq data suggested that TNA may promote early osteoblast differentiation. In vitro experiments showed that knockdown of TNA expression significantly increased the expression of osteoclast markers, thereby promoting osteoclast differentiation and bone resorption. CONCLUSIONS We identified TNA as a secreted protein that inhibits osteoclast differentiation and bone resorption. While, it potentially promoted early osteoblast differentiation from bioinformatic results. TNA may play a role in bone metabolism through the adipose-bone axis.
Collapse
Affiliation(s)
- Shaobo Wu
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Zhihao Xia
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, China
| | - Liangliang Wei
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, China
| | - Jiajia Ji
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, China
| | - Yan Zhang
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Dageng Huang
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, China.
| |
Collapse
|
24
|
Moe KT, Tan KSW. Mechanistic Insights on Microbiota-Mediated Development and Progression of Esophageal Cancer. Cancers (Basel) 2024; 16:3305. [PMID: 39409925 PMCID: PMC11475040 DOI: 10.3390/cancers16193305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/18/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Esophageal cancer (EC) is one of the most common malignant tumors worldwide, and its two major types, esophageal adenocarcinoma (EAC) and esophageal squamous cell carcinoma (ESCC), present a severe global public health problem with an increasing incidence and mortality. Established risk factors include smoking, alcohol consumption, and dietary habits, but recent research has highlighted the substantial role of oral microbiota in EC pathogenesis. This review explores the intricate relationship between the microbiome and esophageal carcinogenesis, focusing on the following eight significant mechanisms: chronic inflammation, microbial dysbiosis, production of carcinogenic metabolites, direct interaction with epithelial cells, epigenetic modifications, interaction with gastroesophageal reflux disease (GERD), metabolic changes, and angiogenesis. Certain harmful bacteria, such as Porphyromonas gingivalis and Fusobacterium nucleatum, are specifically implicated in sustaining irritation and tumor progression through pathways including NF-κB and NLRP3 inflammasome. Additionally, the review explores how microbial byproducts, including short-chain fatty acids (SCFAs) and reactive oxygen species (ROS), contribute to DNA harm and disease advancement. Furthermore, the impact of reflux on microbiota composition and its role in esophageal carcinogenesis is evaluated. By combining epidemiological data with mechanistic understanding, this review underscores the potential to target the microbiota-immune system interplay for novel therapeutic and diagnostic strategies to prevent and treat esophageal cancer.
Collapse
Affiliation(s)
- Kyaw Thu Moe
- Biomedical Sciences, Newcastle University Medicine Malaysia, Iskandar Puteri 79200, Johor, Malaysia
| | - Kevin Shyong-Wei Tan
- Laboratory of Molecular and Cellular Parasitology, Health Longevity Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive, Singapore 117545, Singapore
| |
Collapse
|
25
|
Liu A, Tian B, Qiu C, Su KJ, Jiang L, Zhao C, Song M, Liu Y, Qu G, Zhou Z, Zhang X, Gnanesh SSM, Thumbigere-Math V, Luo Z, Tian Q, Zhang LS, Wu C, Ding Z, Shen H, Deng HW. Multi-View Integrative Approach For Imputing Short-Chain Fatty Acids and Identifying Key factors predicting Blood SCFA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.25.614767. [PMID: 39386638 PMCID: PMC11463355 DOI: 10.1101/2024.09.25.614767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Short-chain fatty acids (SCFAs) are the main metabolites produced by bacterial fermentation of dietary fiber within gastrointestinal tract. SCFAs produced by gut microbiotas (GMs) are absorbed by host, reach bloodstream, and are distributed to different organs, thus influencing host physiology. However, due to the limited budget or the poor sensitivity of instruments, most studies on GMs have incomplete blood SCFA data, limiting our understanding of the metabolic processes within the host. To address this gap, we developed an innovative multi-task multi-view integrative approach (M2AE, Multi-task Multi-View Attentive Encoders), to impute blood SCFA levels using gut metagenomic sequencing (MGS) data, while taking into account the intricate interplay among the gut microbiome, dietary features, and host characteristics, as well as the nuanced nature of SCFA dynamics within the body. Here, each view represents a distinct type of data input (i.e., gut microbiome compositions, dietary features, or host characteristics). Our method jointly explores both view-specific representations and cross-view correlations for effective predictions of SCFAs. We applied M2AE to two in-house datasets, which both include MGS and blood SCFAs profiles, host characteristics, and dietary features from 964 subjects and 171 subjects, respectively. Results from both of two datasets demonstrated that M2AE outperforms traditional regression-based and neural-network based approaches in imputing blood SCFAs. Furthermore, a series of gut bacterial species (e.g., Bacteroides thetaiotaomicron and Clostridium asparagiforme), host characteristics (e.g., race, gender), as well as dietary features (e.g., intake of fruits, pickles) were shown to contribute greatly to imputation of blood SCFAs. These findings demonstrated that GMs, dietary features and host characteristics might contribute to the complex biological processes involved in blood SCFA productions. These might pave the way for a deeper and more nuanced comprehension of how these factors impact human health.
Collapse
Affiliation(s)
- Anqi Liu
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA, USA
| | - Bo Tian
- Center for System Biology, Data Sciences, and Reproductive Health, School of Basic Medical Science, Central South University, Yuelu, Changsha, P.R. China
| | - Chuan Qiu
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA, USA
| | - Kuan-Jui Su
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA, USA
| | - Lindong Jiang
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA, USA
| | - Chen Zhao
- College of Computing and Software Engineering, Kennesaw State University, GA, USA
| | - Meng Song
- College of Science, Xi'an Shiyou University, Xi'an, P.R. China
| | - Yong Liu
- Center for System Biology, Data Sciences, and Reproductive Health, School of Basic Medical Science, Central South University, Yuelu, Changsha, P.R. China
| | - Gang Qu
- Department of Biomedical Engineering, Tulane University, New Orleans, Louisiana, USA
| | - Ziyu Zhou
- School of Science and Engineering, Tulane University, New Orleans, LA, USA
| | - Xiao Zhang
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA, USA
| | - Shashank Sajjan Mungasavalli Gnanesh
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA, USA
| | - Vivek Thumbigere-Math
- Division of Periodontics, University of Maryland Baltimore School of Dentistry, Baltimore, USA
| | - Zhe Luo
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA, USA
| | - Qing Tian
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA, USA
| | - Li-Shu Zhang
- School of Physical Science and Engineering, College of Life Sciences and Bioengineering, Beijing Jiaotong University, Beijing, China
| | - Chong Wu
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, USA
| | - Zhengming Ding
- School of Science and Engineering, Tulane University, New Orleans, LA, USA
| | - Hui Shen
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA, USA
| | - Hong-Wen Deng
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA, USA
| |
Collapse
|
26
|
Luo K, Zeng W, Li Q, Zhang Y, Liu S, Liu X, Liu S. Causal effects of specific gut microbiota on spinal stenosis diseases: a two-sample mendelian randomization study. Front Genet 2024; 15:1400847. [PMID: 39399222 PMCID: PMC11467959 DOI: 10.3389/fgene.2024.1400847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 09/16/2024] [Indexed: 10/15/2024] Open
Abstract
Background Although recent observational studies and clinical trials have indicated a strong association between the gut microbiota and spinal stenosis diseases, the causal relationship between them remains unclear. Methods Based on large-scale genome-wide association studies, we employed two-sample Mendelian randomization (MR) to analyse the causal relationships between the gut microbiota (GM) and 3 spinal stenosis diseases: adolescent idiopathic scoliosis (AIS), lumbar spondylolisthesis (LS), and spinal stenosis (SS). MR analysis was performed using the inverse variance weighting (IVW) method as the primary approach, supplemented by MR‒Egger regression, weighted median, and weighted mode analyses. MR-PRESSO and MR‒Egger regression were employed to assess horizontal pleiotropy. Cochran's Q test was used to evaluate heterogeneity. Further leave-one-out sensitivity analysis was conducted to ascertain the reliability of the causal relationships. Results The IVW method identified 9 gut microbiota taxa (9 genera) that were causally related to AIS, 14 taxa (4 phyla, 2 classes, 2 orders, 1 family, and 5 genera) to LS, and 4 taxa (2 classes, 1 order, and 1 genus) to SS. The Cochrane Q test results did not indicate heterogeneity. Moreover, both the MR‒Egger intercept test and the MR-PRESSO global test demonstrated that our findings were robust against potential horizontal pleiotropy. Furthermore, leave-one-out analysis provided additional evidence supporting the reliability of our identified causal relationships. Conclusion Our findings have substantiated the potential causal impact of specific GM taxa on AIS, LS, and SS, thereby offering novel insights into the mechanisms mediated by the gut microbiota in these three diseases and laying the foundation for targeted preventive measures in further research.
Collapse
Affiliation(s)
- Kaihang Luo
- Department of Spinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Weizheng Zeng
- Department of Spinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qiushuang Li
- Department of Spinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yuliang Zhang
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, Guangzhou, China
| | - Shengkai Liu
- Department of Spinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xizhe Liu
- Department of Spinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shaoyu Liu
- Department of Spinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
27
|
Hao L, Yan Y, Huang G, Li H. From gut to bone: deciphering the impact of gut microbiota on osteoporosis pathogenesis and management. Front Cell Infect Microbiol 2024; 14:1416739. [PMID: 39386168 PMCID: PMC11461468 DOI: 10.3389/fcimb.2024.1416739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 09/06/2024] [Indexed: 10/12/2024] Open
Abstract
Osteoporosis (OP) is characterized by decreased bone mineral density (BMD) and increased fracture risk, poses a significant global health burden. Recent research has shed light on the bidirectional relationship between gut microbiota (GM) and bone health, presenting a novel avenue for understanding OP pathogenesis and developing targeted therapeutic interventions. This review provides a comprehensive overview of the GM-bone axis, exploring the impact of GM on OP development and management. We elucidate established risk factors and pathogenesis of OP, delve into the diversity and functional changes of GM in OP. Furthermore, we examine experimental evidence and clinical observations linking alterations in GM composition or function with variations in BMD and fracture risk. Mechanistic insights into microbial mediators of bone health, such as microbial metabolites and products, are discussed. Therapeutic implications, including GM-targeted interventions and dietary strategies, are also explored. Finally, we identify future research directions and challenges in translating these findings into clinical practice.
Collapse
Affiliation(s)
- Linjie Hao
- Department of Joint Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Yuzhu Yan
- Clinical Laboratory of Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Guilin Huang
- Department of Joint Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Hui Li
- Department of Joint Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
28
|
Su SH, Mitani Y, Li T, Sachdeva U, Flashner S, Klein-Szanto A, Dunbar KJ, Abrams J, Nakagawa H, Gabre J. Lactate Suppresses Growth of Esophageal Adenocarcinoma Patient-Derived Organoids through Alterations in Tumor NADH/NAD+ Redox State. Biomolecules 2024; 14:1195. [PMID: 39334961 PMCID: PMC11430592 DOI: 10.3390/biom14091195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
Barrett's esophagus (BE) is a common precancerous lesion that can progress to esophageal adenocarcinoma (EAC). There are significant alterations in the esophageal microbiome in the progression from healthy esophagus to BE to EAC, including an increased abundance of a variety of lactate-producing bacteria and an increase of lactate in the tumor microenvironment, as predicted by metabolic modeling. The role of bacterial lactate in EAC is unknown. Here, we utilize patient-derived organoid (PDO) models of EAC and demonstrate that lactate inhibits the growth and proliferation of EAC PDOs through alterations in the tumor NADH/NAD+ redox state. Further RNA sequencing of EAC PDOs identifies ID1 and RSAD2 as potential regulatory molecules crucial in mediating lactate's ability to suppress glycolysis and proliferation. Gene ontology analysis also identifies the activation of inflammatory and immunological pathways in addition to alterations in the metabolic pathways in EAC PDOs exposed to lactate, suggesting a multi-faceted role for lactate in the pathogenesis of EAC.
Collapse
Affiliation(s)
- Steven H. Su
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
- Columbia University Herbert Irving Comprehensive Cancer Center, New York, NY 10032, USA
| | - Yosuke Mitani
- Columbia University Herbert Irving Comprehensive Cancer Center, New York, NY 10032, USA
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
- Columbia University Digestive and Liver Diseases Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Tianxia Li
- Columbia University Herbert Irving Comprehensive Cancer Center, New York, NY 10032, USA
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
- Columbia University Digestive and Liver Diseases Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Uma Sachdeva
- Division of Thoracic Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Samuel Flashner
- Columbia University Herbert Irving Comprehensive Cancer Center, New York, NY 10032, USA
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
- Columbia University Digestive and Liver Diseases Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Andres Klein-Szanto
- Histopathology Facility, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Karen J. Dunbar
- Columbia University Herbert Irving Comprehensive Cancer Center, New York, NY 10032, USA
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
- Columbia University Digestive and Liver Diseases Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Julian Abrams
- Columbia University Herbert Irving Comprehensive Cancer Center, New York, NY 10032, USA
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
- Columbia University Digestive and Liver Diseases Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Hiroshi Nakagawa
- Columbia University Herbert Irving Comprehensive Cancer Center, New York, NY 10032, USA
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
- Columbia University Digestive and Liver Diseases Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Joel Gabre
- Columbia University Herbert Irving Comprehensive Cancer Center, New York, NY 10032, USA
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
- Columbia University Digestive and Liver Diseases Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
29
|
Gowkielewicz M, Lipka A, Zdanowski W, Waśniewski T, Majewska M, Carlberg C. Anti-Müllerian hormone: biology and role in endocrinology and cancers. Front Endocrinol (Lausanne) 2024; 15:1468364. [PMID: 39351532 PMCID: PMC11439669 DOI: 10.3389/fendo.2024.1468364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 08/29/2024] [Indexed: 10/04/2024] Open
Abstract
Anti-Müllerian hormone (AMH) is a peptide belonging to the transforming growth factor beta superfamily and acts exclusively through its receptor type 2 (AMHR2). From the 8th week of pregnancy, AMH is produced by Sertoli cells, and from the 23rd week of gestation, it is produced by granulosa cells of the ovary. AMH plays a critical role in regulating gonadotropin secretion, ovarian tissue responsiveness to pituitary hormones, and the pathogenesis of polycystic ovarian syndrome. It inhibits the transition from primordial to primary follicles and is considered the best marker of ovarian reserve. Therefore, measuring AMH concentration of the hormone is valuable in managing assisted reproductive technologies. AMH was initially discovered through its role in the degeneration of Müllerian ducts in male fetuses. However, due to its ability to inhibit the cell cycle and induce apoptosis, it has also garnered interest in oncology. For example, antibodies targeting AMHR2 are being investigated for their potential in diagnosing and treating various cancers. Additionally, AMH is present in motor neurons and functions as a protective and growth factor. Consequently, it is involved in learning and memory processes and may support the treatment of Alzheimer's disease. This review aims to provide a comprehensive overview of the biology of AMH and its role in both endocrinology and oncology.
Collapse
Affiliation(s)
- Marek Gowkielewicz
- Department of Gynecology and Obstetrics, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Aleksandra Lipka
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Wojciech Zdanowski
- Department of Gynecology and Obstetrics, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Tomasz Waśniewski
- Department of Gynecology and Obstetrics, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Marta Majewska
- Department of Human Physiology and Pathophysiology, School of Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Carsten Carlberg
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
- School of Medicine, Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
30
|
Qian ST, Zhao HY, Xie FF, Liu QS, Cai DL. Streptococcus anginosus in the development and treatment of precancerous lesions of gastric cancer. World J Gastrointest Oncol 2024; 16:3771-3780. [PMID: 39350992 PMCID: PMC11438778 DOI: 10.4251/wjgo.v16.i9.3771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/22/2024] [Accepted: 06/06/2024] [Indexed: 09/09/2024] Open
Abstract
The microbiota is strongly association with cancer. Studies have shown significant differences in the gastric microbiota between patients with gastric cancer (GC) patients and noncancer patients, suggesting that the microbiota may play a role in the development of GC. Although Helicobacter pylori (H. pylori) infection is widely recognized as a primary risk factor for GC, recent studies based on microbiota sequencing technology have revealed that non-H. pylori microbes also have a significant impact on GC. A recent study discovered that Streptococcus anginosus (S. anginosus) is more prevalent in the gastric mucosa of patients with GC than in that of those without GC. S. anginosus infection can spontaneously induce chronic gastritis, mural cell atrophy, mucoid chemotaxis, and heterotrophic hyperplasia, which promote the development of precancerous lesions of GC (PLGC). S. anginosus also disrupts the gastric barrier function, promotes the proliferation of GC cells, and inhibits apoptosis. However, S. anginosus is underrepresented in the literature. Recent reports suggest that it may cause precancerous lesions, indicating its emerging pathogenicity. Modern novel molecular diagnostic techniques, such as polymerase chain reaction, genetic testing, and Ultrasensitive Chromosomal Aneuploidy Detection, can be used to gastric precancerous lesions via microbial markers. Therefore, we present a concise summary of the relationship between S. anginosus and PLGC. Our aim was to further investigate new methods of preventing and treating PLGC by exploring the pathogenicity of S. anginosus on PLGC.
Collapse
Affiliation(s)
- Su-Ting Qian
- Department of Digestive, Hangzhou Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Hangzhou 310007, Zhejiang Province, China
| | - Hao-Yu Zhao
- Department of Digestive, Hangzhou Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Hangzhou 310007, Zhejiang Province, China
| | - Fei-Fei Xie
- Department of Digestive, Hangzhou Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Hangzhou 310007, Zhejiang Province, China
| | - Qing-Sheng Liu
- Science and Education Section, Hangzhou Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Hangzhou 310007, Zhejiang Province, China
| | - Dan-Li Cai
- Intensive Care Unit, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 311122, Zhejiang Province, China
| |
Collapse
|
31
|
Katamesh BE, Futela P, Vincent A, Thilagar B, Whipple M, Hassan AR, Abuelazm M, Nanda S, Anstine C, Singla A. Navigating the Proteomic Landscape of Menopause: A Review. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1473. [PMID: 39336514 PMCID: PMC11434514 DOI: 10.3390/medicina60091473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/23/2024] [Accepted: 08/31/2024] [Indexed: 09/30/2024]
Abstract
Background and Objectives: Proteomics encompasses the exploration of protein composition, regulation, function, and pathways. Its influence spans diverse clinical fields and holds promise in addressing various women's health conditions, including cancers, osteoporosis, and cardiovascular disorders. However, no comprehensive summary of proteomics and menopausal health exists. Our objective was to summarize proteomic profiles associated with diseases and disorders in peri- and postmenopausal women. Materials and Methods: We conducted a comprehensive search of databases including PubMed, Google Scholar, the Cochrane database, Elsevier, and ScienceDirect until 2022. A total of 253 studies were identified, and 41 studies met the inclusion criteria to identify data of interest. These included the study design, disease, and proteomics/proteins of significance, as described by the authors. Results: The 41 studies covered diverse areas, including bone disorders (10 studies), cardiovascular diseases (5 studies), oncological malignancies (10 studies), and various conditions, such as obesity, nonalcoholic liver disease, the effects of hormone replacement therapy, and neurological diseases (16 studies). The results of our study indicate that proteomic profiles correlate with heart disease in peri- and postmenopausal women, with distinct sex differences. Furthermore, proteomic profiles significantly differ between women with and without osteoporosis. Additionally, patients with breast, ovarian, and endometrial cancer exhibit notable variations in proteomic profiles compared to those without these conditions. Conclusions: Proteomics has the potential to enhance risk assessment and disease monitoring in peri- and postmenopausal women. By analyzing unique protein profiles, clinicians can identify individuals with heightened susceptibility to specific diseases or those already affected by established conditions. This review suggests that there is sufficient preliminary data related to proteomics in peri- and postmenopausal women for early identification of cardiovascular disease, osteoporosis, and cancers, disease monitoring, and tailoring individualized therapies. Rigorous validation studies involving large populations are essential before drawing definitive conclusions regarding the clinical applicability of proteomic findings.
Collapse
Affiliation(s)
- Basant E Katamesh
- Division of General Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Pragyat Futela
- Division of General Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Internal Medicine, Metro Health Medical Center, Cleveland, OH 44109, USA
| | - Ann Vincent
- Division of General Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Bright Thilagar
- Division of General Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Mary Whipple
- School of Nursing, University of Minnesota, Minneapolis, MN 55455, USA
| | - Abdul Rhman Hassan
- Department of Ophthalmology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | | | - Sanjeev Nanda
- Division of General Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Christopher Anstine
- Division of General Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Abhinav Singla
- Division of General Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
32
|
Lai J, Gong L, Liu Y, Zhang X, Liu W, Han M, Zhou D, Shi S. Associations between gut microbiota and osteoporosis or osteopenia in a cohort of Chinese Han youth. Sci Rep 2024; 14:20948. [PMID: 39251661 PMCID: PMC11385745 DOI: 10.1038/s41598-024-71731-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 08/30/2024] [Indexed: 09/11/2024] Open
Abstract
Osteoporosis (OP) is a common metabolic bone disease characterized by low bone mass and microstructural deterioration of bone. Changes in the composition and structure of gut microbiota (GM) are related to changes of bone mass and bone microstructure. However, the relationship between GM and bone mineral density (BMD) is complex, and data are especially scarce for Chinese Han youth. Therefore, 62 Chinese Han youth participants were recruited. Furthermore, according to the T-score evaluation criteria of the World Health Organization (WHO), we divided the BMD levels of participants into three groups: osteoporosis\BDL, osteopenia\BDM, normal bone density\BDH, and the associations between GM community and BMD groups were conducted. According to alpha and beta diversity analysis, significant differences were found in the microbial richness and composition between groups. The dominant phyla of GM in a cohort of Chinese Han youth were Bacteroidota (50.6%) and Firmicutes (41.6%). Anaerobic microorganisms, such as g_Faecalibacterium and g_Megamonas, account for the largest proportion in the gut, which were mainly Firmicutes phylum. The dominant genera and species in the three BMD groups were g_Prevotella, g_Bacteroides, g_Faecalibacterium, g_Megamonas, s_Prevotella copri, s_unclassified_g_Faecalibacterium, s_unclassified_g_Prevotella, s_unclassified_g_Bacteroides and s_Bacteroides plebeius. g_Faecalibacterium, g_Bacteroides and g_Ruminococcus differed between the BDH and BDL groups as well as between the BDH and BDM groups. LEfSe showed three genus communities and eight species communities were enriched in the three BMD groups, respectively. The associations between microbial relative abundance and T-score was not statistically significant by Spearman and regression analysis. In conclusion, the alpha diversity indexes in the BDH group were higher than in the BDL group, and several taxa were identified that may be the targets for diagnosis and therapy of OP.
Collapse
Affiliation(s)
- Junren Lai
- Anhui Province Key Laboratory of the Biodiversity Study and Ecology Conservation in Southwest Anhui College of Life Sciences, Anqing Normal University, 246133, Anqing, Anhui, People's Republic of China
| | - Li Gong
- Anhui Province Key Laboratory of the Biodiversity Study and Ecology Conservation in Southwest Anhui College of Life Sciences, Anqing Normal University, 246133, Anqing, Anhui, People's Republic of China
| | - Yan Liu
- Anhui Province Key Laboratory of the Biodiversity Study and Ecology Conservation in Southwest Anhui College of Life Sciences, Anqing Normal University, 246133, Anqing, Anhui, People's Republic of China
| | - Xuelian Zhang
- Anhui Province Key Laboratory of the Biodiversity Study and Ecology Conservation in Southwest Anhui College of Life Sciences, Anqing Normal University, 246133, Anqing, Anhui, People's Republic of China
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, 14430, Urumqi, Xinjiang, People's Republic of China
| | - Wenqi Liu
- Anhui Province Key Laboratory of the Biodiversity Study and Ecology Conservation in Southwest Anhui College of Life Sciences, Anqing Normal University, 246133, Anqing, Anhui, People's Republic of China
| | - Meng Han
- Anhui Province Key Laboratory of the Biodiversity Study and Ecology Conservation in Southwest Anhui College of Life Sciences, Anqing Normal University, 246133, Anqing, Anhui, People's Republic of China
| | - Duoqi Zhou
- Anhui Province Key Laboratory of the Biodiversity Study and Ecology Conservation in Southwest Anhui College of Life Sciences, Anqing Normal University, 246133, Anqing, Anhui, People's Republic of China.
- School of Life Sciences, 1318 North jixian Road, 246133, Anqing, Anhui, People's Republic of China.
| | - Shuiqin Shi
- Anhui Province Key Laboratory of the Biodiversity Study and Ecology Conservation in Southwest Anhui College of Life Sciences, Anqing Normal University, 246133, Anqing, Anhui, People's Republic of China.
- School of Life Sciences, 1318 North jixian Road, 246133, Anqing, Anhui, People's Republic of China.
| |
Collapse
|
33
|
Li Y, Liu Y, Li Y, Cao Y, Zhang H, Yuan P, Dong B, Shen L. Integrated lipidomics and network pharmacology analysis to determine how Gu Fu Sheng Capsule improves lipid metabolism in rats with steroid-induced osteonecrosis of the femoral head. J Tradit Complement Med 2024. [DOI: 10.1016/j.jtcme.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025] Open
|
34
|
Furuta S. Microbiome-Stealth Regulator of Breast Homeostasis and Cancer Metastasis. Cancers (Basel) 2024; 16:3040. [PMID: 39272898 PMCID: PMC11394247 DOI: 10.3390/cancers16173040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024] Open
Abstract
Cumulative evidence attests to the essential roles of commensal microbes in the physiology of hosts. Although the microbiome has been a major research subject since the time of Luis Pasteur and William Russell over 140 years ago, recent findings that certain intracellular bacteria contribute to the pathophysiology of healthy vs. diseased tissues have brought the field of the microbiome to a new era of investigation. Particularly, in the field of breast cancer research, breast-tumor-resident bacteria are now deemed to be essential players in tumor initiation and progression. This is a resurrection of Russel's bacterial cause of cancer theory, which was in fact abandoned over 100 years ago. This review will introduce some of the recent findings that exemplify the roles of breast-tumor-resident microbes in breast carcinogenesis and metastasis and provide mechanistic explanations for these phenomena. Such information would be able to justify the utility of breast-tumor-resident microbes as biomarkers for disease progression and therapeutic targets.
Collapse
Affiliation(s)
- Saori Furuta
- MetroHealth Medical Center, Case Western Reserve University School of Medicine, 2500 MetroHealth Drive, Cleveland, OH 44109, USA;
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| |
Collapse
|
35
|
Zhao G, Wang Q, Duan N, Zhang K, Li Z, Sun L, Lu Y. Potential drug targets for osteoporosis identified: A Mendelian randomization study. Heliyon 2024; 10:e36566. [PMID: 39253131 PMCID: PMC11382026 DOI: 10.1016/j.heliyon.2024.e36566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 08/09/2024] [Accepted: 08/19/2024] [Indexed: 09/11/2024] Open
Abstract
Background Osteoporosis is a prevalent global health condition, primarily affecting the aging population, and several therapies for osteoporosis have been widely used. However, available drugs for osteoporosis are far from satisfactory because they cannot alleviate disease progression. This study aimed to explore potential drug targets for osteoporosis through Mendelian randomization analysis. Methods Using cis-expression quantitative trait loci (cis-eQTL) data of druggable genes and two genome-wide association studies (GWAS) datasets related to osteoporosis (UK Biobank and FinnGen cohorts), we employed mendelian randomization (MR) analysis to identify the druggable genes with causal relationships with osteoporosis. Subsequently, a series of follow-up analyses were conducted, such as colocalization analysis, cell-type specificity analysis, and correlation analysis with risk factors. The association between potential drug targets and osteoporosis was validated by qRT-PCR. Results Six druggable genes with causal relationships with osteoporosis were identified and successfully replicated, including ACPP, DNASE1L3, IL32, PPOX, ST6GAL1, and TGM3. Cell-type specificity analysis revealed that PPOX and ST6GAL1 were expressed in all cell types in the bone samples, while IL32, ACPP, DNASE1L3, and TGM3 were expressed in specific cell types. The GWAS data showed there were seven risk factors for osteoporosis, including vitamin D deficiency, COPD, physical activity, BMI, MMP-9, ALP and PTH. Furthermore, ACPP was associated with vitamin D deficiency and COPD; DNASE1L3 was linked to physical activity; IL32 correlated with BMI and MMP-9; and ST6GAL1 was related to ALP, physical activity, and MMP-9. Among these risk factors, only MMP-9 had a high genetic correlation with osteoporosis. The results of qRT-PCR demonstrated that IL32 was upregulated while ST6GAL1 was downregulated in peripheral blood of osteoporosis patients. Conclusion Our findings suggested that those six druggable genes offer potential drug targets for osteoporosis and require further clinical investigation, especially IL32 and ST6GAL1.
Collapse
Affiliation(s)
- Guolong Zhao
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiaotong University, 555 Youyi East Road, Xi'an, 710054, Shaan'xi Province, China
| | - Qian Wang
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiaotong University, 555 Youyi East Road, Xi'an, 710054, Shaan'xi Province, China
| | - Ning Duan
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiaotong University, 555 Youyi East Road, Xi'an, 710054, Shaan'xi Province, China
| | - Kun Zhang
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiaotong University, 555 Youyi East Road, Xi'an, 710054, Shaan'xi Province, China
| | - Zhong Li
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiaotong University, 555 Youyi East Road, Xi'an, 710054, Shaan'xi Province, China
| | - Liang Sun
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiaotong University, 555 Youyi East Road, Xi'an, 710054, Shaan'xi Province, China
| | - Yao Lu
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiaotong University, 555 Youyi East Road, Xi'an, 710054, Shaan'xi Province, China
| |
Collapse
|
36
|
Qi X, Sun H, Liu J, Cong M, Zhang X, Yan Y, Xia Z, Liu T, Zhao J. Phenylethanol Glycoside from Cistanche tubulosa Attenuates BSA-Induced Liver Fibrosis in Rats by Modulating the Gut Microbiota-Liver Axis. Pharmaceuticals (Basel) 2024; 17:1149. [PMID: 39338312 PMCID: PMC11435394 DOI: 10.3390/ph17091149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/01/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
This study aimed to investigate the effect of phenylethanol glycoside from Cistanche tubulosa (CPhGs) on the prevention of bovine serum albumin (BSA)-induced hepatic fibrosis in rats. Investigation of the mechanisms of the anti-hepatic fibrosis effect was focused on CPhGs' influence on the "gut-liver" regulation, including the gut microbiota, intestinal barrier, systemic lipopolysaccharide (LPS) concentration, and LPS-related signaling pathway. The results show that CPhGs restored the diversity of gut microbiota, increased the relative abundance of Bacteroidetes, and decreased the relative abundance of Firmicutes and Proteobacteria in the fibrotic rats. In addition, CPhGs promoted the enrichment of probiotics such as Blautia, Oscillospira, Ruminococcus, Odoribacter, Bacteroides, and Parabacteroides in intestines of these rats. Furthermore, CPhGs reduced histopathological injury in the intestine and restored the tight junctions of the intestine by increasing the expression of ZO-1, occludin, and E-cadherin. CPhGs efficiently reduced serum LPS and liver lipopolysaccharide-binding protein (LBP) levels and inhibited the LPS-TLR4/MyD88/NF-κB pathway, which is related to protein expression in the liver. Correlation analysis confirmed that these beneficial bacteria were negatively associated with pathological damage, while LPS and harmful bacteria were positively associated with liver injury. Our fecal microbiota transplantation (FMT) experiment confirmed that gut microbiota is an important part of disease progression and that CPhGs is useful for the prevention and treatment of hepatic fibrosis. Our data demonstrate that the anti-hepatic fibrosis mechanism of CPhGs was mediated by regulation of the "gut-liver" axis. These results can stimulate consideration for its use in clinical practices.
Collapse
Affiliation(s)
- Xinxin Qi
- School of Public Health, Xinjiang Medical University, Urumqi 830011, China
| | - Hongguang Sun
- School of Public Health, Xinjiang Medical University, Urumqi 830011, China
| | - Jincun Liu
- School of Public Health, Xinjiang Medical University, Urumqi 830011, China
| | - Meili Cong
- School of Public Health, Xinjiang Medical University, Urumqi 830011, China
- Animal Laboratory Center, Xinjiang Medical University, Urumqi 830017, China
| | - Xinxuan Zhang
- School of Public Health, Xinjiang Medical University, Urumqi 830011, China
| | - Yuxin Yan
- School of Public Health, Xinjiang Medical University, Urumqi 830011, China
| | - Zhaolin Xia
- School of Public Health, Xinjiang Medical University, Urumqi 830011, China
| | - Tao Liu
- School of Public Health, Xinjiang Medical University, Urumqi 830011, China
| | - Jun Zhao
- School of Public Health, Xinjiang Medical University, Urumqi 830011, China
- Xinjiang Key Laboratory for Uighur Medicine, Institute of Materia Medica of Xinjiang, Urumqi 830004, China
| |
Collapse
|
37
|
Javed U, Podury S, Kwon S, Liu M, Kim DH, Fallahzadeh A, Li Y, Khan AR, Francois F, Schwartz T, Zeig-Owens R, Grunig G, Veerappan A, Zhou J, Crowley G, Prezant DJ, Nolan A. Biomarkers of Airway Disease, Barrett's and Underdiagnosed Reflux Noninvasively (BAD-BURN) in World Trade Center exposed firefighters: a case-control observational study protocol. BMC Gastroenterol 2024; 24:255. [PMID: 39123126 PMCID: PMC11312152 DOI: 10.1186/s12876-024-03294-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 06/12/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND Particulate matter exposure (PM) is a cause of aerodigestive disease globally. The destruction of the World Trade Center (WTC) exposed first responders and inhabitants of New York City to WTC-PM and caused obstructive airways disease (OAD), gastroesophageal reflux disease (GERD) and Barrett's Esophagus (BE). GERD not only diminishes health-related quality of life but also gives rise to complications that extend beyond the scope of BE. GERD can incite or exacerbate allergies, sinusitis, bronchitis, and asthma. Disease features of the aerodigestive axis can overlap, often necessitating more invasive diagnostic testing and treatment modalities. This presents a need to develop novel non-invasive biomarkers of GERD, BE, airway hyperreactivity (AHR), treatment efficacy, and severity of symptoms. METHODS Our observational case-cohort study will leverage the longitudinally phenotyped Fire Department of New York (FDNY)-WTC exposed cohort to identify Biomarkers of Airway Disease, Barrett's and Underdiagnosed Reflux Noninvasively (BAD-BURN). Our study population consists of n = 4,192 individuals from which we have randomly selected a sub-cohort control group (n = 837). We will then recruit subgroups of i. AHR only ii. GERD only iii. BE iv. GERD/BE and AHR overlap or v. No GERD or AHR, from the sub-cohort control group. We will then phenotype and examine non-invasive biomarkers of these subgroups to identify under-diagnosis and/or treatment efficacy. The findings may further contribute to the development of future biologically plausible therapies, ultimately enhance patient care and quality of life. DISCUSSION Although many studies have suggested interdependence between airway and digestive diseases, the causative factors and specific mechanisms remain unclear. The detection of the disease is further complicated by the invasiveness of conventional GERD diagnosis procedures and the limited availability of disease-specific biomarkers. The management of reflux is important, as it directly increases risk of cancer and negatively impacts quality of life. Therefore, it is vital to develop novel noninvasive disease markers that can effectively phenotype, facilitate early diagnosis of premalignant disease and identify potential therapeutic targets to improve patient care. TRIAL REGISTRATION Name of Primary Registry: "Biomarkers of Airway Disease, Barrett's and Underdiagnosed Reflux Noninvasively (BADBURN)". Trial Identifying Number: NCT05216133 . Date of Registration: January 31, 2022.
Collapse
Affiliation(s)
- Urooj Javed
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, New York University Grossman School of Medicine (NYUGSoM), New Bellevue, 16 North Room 20 (Lab), 462 1st Avenue, New York, NY, 10016, USA
| | - Sanjiti Podury
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, New York University Grossman School of Medicine (NYUGSoM), New Bellevue, 16 North Room 20 (Lab), 462 1st Avenue, New York, NY, 10016, USA
| | - Sophia Kwon
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, New York University Grossman School of Medicine (NYUGSoM), New Bellevue, 16 North Room 20 (Lab), 462 1st Avenue, New York, NY, 10016, USA
| | - Mengling Liu
- Department of Population Health, Division of Biostatistics, NYUGSoM, New York, NY, USA
| | - Daniel H Kim
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, New York University Grossman School of Medicine (NYUGSoM), New Bellevue, 16 North Room 20 (Lab), 462 1st Avenue, New York, NY, 10016, USA
| | - Aida Fallahzadeh
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, New York University Grossman School of Medicine (NYUGSoM), New Bellevue, 16 North Room 20 (Lab), 462 1st Avenue, New York, NY, 10016, USA
| | - Yiwei Li
- Department of Population Health, Division of Biostatistics, NYUGSoM, New York, NY, USA
| | - Abraham R Khan
- Center for Esophageal Health, NYUGSoM, New York, NY, 10016, USA
- Department of Medicine, Division of Gastroenterology, NYUGSoM, New York, NY, 10016, USA
| | - Fritz Francois
- Department of Medicine, Division of Gastroenterology, NYUGSoM, New York, NY, 10016, USA
| | - Theresa Schwartz
- Fire Department of New York, Bureau of Health Services, Brooklyn, NY, 1120, USA
| | - Rachel Zeig-Owens
- Fire Department of New York, Bureau of Health Services, Brooklyn, NY, 1120, USA
| | - Gabriele Grunig
- Department of Medicine, Division of Environmental Medicine, NYUGSoM, New York, NY, 10010, USA
| | - Arul Veerappan
- Department of Medicine, Division of Environmental Medicine, NYUGSoM, New York, NY, 10010, USA
| | - Joanna Zhou
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, New York University Grossman School of Medicine (NYUGSoM), New Bellevue, 16 North Room 20 (Lab), 462 1st Avenue, New York, NY, 10016, USA
| | - George Crowley
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, New York University Grossman School of Medicine (NYUGSoM), New Bellevue, 16 North Room 20 (Lab), 462 1st Avenue, New York, NY, 10016, USA
| | - David J Prezant
- Fire Department of New York, Bureau of Health Services, Brooklyn, NY, 1120, USA
| | - Anna Nolan
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, New York University Grossman School of Medicine (NYUGSoM), New Bellevue, 16 North Room 20 (Lab), 462 1st Avenue, New York, NY, 10016, USA.
- Fire Department of New York, Bureau of Health Services, Brooklyn, NY, 1120, USA.
- Department of Medicine, Division of Environmental Medicine, NYUGSoM, New York, NY, 10010, USA.
| |
Collapse
|
38
|
Xue X, Wang S, Li Y, Liu Z, Zhang J, Hu Z, Fan C, Zhang X, Li H, Li J. A comparative study of sampling methods in the detection of esophageal cancer-related microbiota. Microbiol Spectr 2024; 12:e0038924. [PMID: 38980013 PMCID: PMC11302015 DOI: 10.1128/spectrum.00389-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 06/11/2024] [Indexed: 07/10/2024] Open
Abstract
Esophageal cancer (EC) is a multifaceted disease. Our understanding of the involvement of esophageal microbiota in its pathogenesis and progression is limited, which is due to the lack of proper endoscopic sampling methods. Hereby, we conducted a comparative analysis of paired samples obtained through endoscopic brushing and cytosponge, aiming at assessing the feasibility of using cytosponge as a minimally invasive sampling way for studying esophageal microbiota. Our findings suggest that cytosponge sampling yielded significantly superior community richness and diversity compared to endoscopic brushing in both controls (non-cancerous) and EC individuals. The analysis of beta-diversity revealed distinct microbial community pattern in the genus diversity between the two sampling methods, underscoring the importance of selecting appropriate sampling methods to effectively characterize the esophageal microbiota. Specifically, Lactococcus and Serratia showed higher abundance in the samples collected by endoscopic brushing, while Alloprevotella and Leptotrichia were more enriched in the samples collected by cytosponge. These differences in dominant microbes were associated with metabolic pathways that particularly were related to host inflammation, such as pyruvate and glucose metabolisms. Notably, the phylogenetic levels of the microbiota indicated varied explanatory power for different detection purposes. This study underscores the substantial impact of sampling method selection on the acquisition of esophageal microbiota associated with the EC development, encompassing considerations of both abundance and diversity. This highlights the significance of selecting an appropriate sampling method for investigating the esophageal microbial status and studying the micro-environment in EC-related individuals. IMPORTANCE This study addresses a critical issue in esophageal cancer study by comparing two different sampling methods, endoscopic brushing and cytosponge, for investigating the esophageal microbiota. Our work highlights the suitability of the cytosponge technique as a minimally invasive sampling method for studying the esophageal microbiota and emphasizes the importance of selecting an appropriate sampling method to characterize the microbial community. Our findings have significant implications for advancing the understanding of the role of the esophageal microbiota in cancer development and will inform future research and clinical approaches in this field.
Collapse
Affiliation(s)
- Xia Xue
- Department of Molecular Pathology, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
- Henan Key Laboratory of Helicobacter pylori & Microbiota and Gastrointestinal Cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Siyu Wang
- Department of Molecular Pathology, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Yi Li
- Henan Key Laboratory of Helicobacter pylori & Microbiota and Gastrointestinal Cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhenzhen Liu
- Department of Endoscopy Center, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Jun Zhang
- Department of Endoscopy Center, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Ziqing Hu
- Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, South Bend, Indiana, USA
| | - Chengcheng Fan
- Department of Radiation Oncology, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Xiaojuan Zhang
- Scientific Research and Discipline Management Office, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Hongle Li
- Department of Molecular Pathology, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Jun Li
- Department of Molecular Pathology, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
39
|
Deng J, Huang Y, Yu K, Luo H, Zhou D, Li D. Changes in the gut microbiome of patients with esophageal cancer: A systematic review and meta-analysis based on 16S gene sequencing technology. Microb Pathog 2024; 193:106784. [PMID: 38971508 DOI: 10.1016/j.micpath.2024.106784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/25/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
BACKGROUND Esophageal cancer (EC) possesses a high degree of malignancy and exhibits poor therapeutic outcomes and prognosis. However, its pathogenesis remains unclear. With the development of macrogene sequencing technology, changes in the intestinal flora have been found to be highly related to the development of EC, although discrepancies and controversies remain in this research area. MATERIALS AND METHODS We comprehensively searched the PubMed, EMBASE, and Cochrane's Central Controlled Trials Register and the Scientific Network's database search projects based on systematically reviewed preferred reporting projects and meta-analyses. We used Engauge Digitizer for data extraction and Stata 15.1 for data analysis. In addition, we used the Newcastle-Ottawa Scale for grade grading and forest and funnel plots, sensitivity, and Egger and Beggar tests to evaluate the risk of bias. RESULTS This study included 10 studies that assessed stool, tumor, and nontumor esophageal mucosa (gastroscopy and surgical resection) samples from 527 individuals, including 273 patients with EC and 254 healthy control group. We observed remarkable differences in microbial diversity in EC patients compared to healthy controls. The Chao1 index (46.01 vs. 42.67) was significantly increased in EC patients, whereas the Shannon index (14.90 vs. 19.05), ACE (39.24 vs. 58.47), and OTUs(28.93 vs. 70.10) were significantly lower. At the phylum level, the abundance of Bacteroidetes (37.89 vs. 32.77) increased significantly, whereas that of Firmicutes (37.63 vs. 38.72) decreased significantly; the abundance of Clostridium and Verruciformis increased, while that of Actinobacteria and Proteobacteria decreased to varying degrees. The abundance of Bacteroides (8.60 vs. 15.10) and Streptococcaceae (15.08 vs. 27.05) significantly reduced in EC. CONCLUSIONS According to our meta-analysis, in patients with EC, the Chao1 index increased, whereas the Shannon and the OTUs decreased. At the phylum level, the abundance of Firmicutes decreased significantly, whereas that of Bacteroidetes and Proteobacteria increased significantly. At the genus/family level, the abundance of Bacteroidaceae, Prevotellaceae and Streptococcaceae decreased significantly, whereas that of Veillonellaceae increased. This meta-analysis identified changes in gut microbiota in patients with EC; however, its conclusions were inconsistent.
Collapse
Affiliation(s)
- Jieyin Deng
- The Affiliated Hospital, Southwest Medical University, Luzhou 611630, China; Department of General Medicine, General Hospital of PLA Western Theater Command, Chengdu 610083, China
| | - Ye Huang
- Department of Nursing, Nursing School, Chengdu Medical College, Chengdu 610083, China
| | - Ke Yu
- Department of General Medicine, General Hospital of PLA Western Theater Command, Chengdu 610083, China
| | - Hong Luo
- Department of Oncology, General Hospital of PLA Western Theater Command, Chengdu 610083, China
| | - Daijun Zhou
- Department of Oncology, General Hospital of PLA Western Theater Command, Chengdu 610083, China.
| | - Dong Li
- The Affiliated Hospital, Southwest Medical University, Luzhou 611630, China; Department of Oncology, General Hospital of PLA Western Theater Command, Chengdu 610083, China.
| |
Collapse
|
40
|
Yue C, Ma M, Guo J, Li H, Yang Y, Liu Y, Xu B. Altered gut microbe metabolites in patients with alcohol‑induced osteonecrosis of the femoral head: An integrated omics analysis. Exp Ther Med 2024; 28:311. [PMID: 38873043 PMCID: PMC11170330 DOI: 10.3892/etm.2024.12599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 03/19/2024] [Indexed: 06/15/2024] Open
Abstract
Excessive alcohol consumption is considered to be a major risk factor of alcohol-induced osteonecrosis of the femoral head (AONFH). The gut microbiota (GM) has been reported to aid in the regulation of human physiology and its composition can be altered by alcohol consumption. The aim of the present study was to improve the understanding of the GM and its metabolites in patients with AONFH. Metabolomic sequencing and 16S rDNA analysis of fecal samples were performed using liquid chromatography-mass spectrometry to characterize the GM of patients with AONFH and healthy normal controls (NCs). Metagenomic sequencing of fecal samples was performed to identify whether GM changes on the species level were associated with the expression of gut bacteria genes or their associated functions in patients with AONFH. The abundance of 58 genera was found to differ between the NC group and the AONFH group. Specifically, Klebsiella, Holdemanella, Citrobacter and Lentilactobacillus were significantly more abundant in the AONFH group compared with those in the NC group. Metagenomic sequencing demonstrated that the majority of the bacterial species that exhibited significantly different abundance in patients with AONFH belonged to the genus Pseudomonas. Fecal metabolomic analysis demonstrated that several metabolites were present at significantly different concentrations in the AONFH group compared with those in the NC group. These metabolites were products of vitamin B6 metabolism, retinol metabolism, pentose and glucuronate interconversions and glycerophospholipid metabolism. In addition, these changes in metabolite levels were observed to be associated with the altered abundance of specific bacterial species, such as Basidiobolus, Mortierella, Phanerochaete and Ceratobasidium. According to the results of the present study, a comprehensive landscape of the GM and metabolites in patients with AONFH was revealed, suggesting the existence of interplay between the gut microbiome and metabolome in AONFH pathogenesis.
Collapse
Affiliation(s)
- Chen Yue
- Evidence Based Medicine Center, Luoyang Orthopedic-Traumatological Hospital of Henan Province, Luoyang, Henan 471002, P.R. China
| | - Maoxiao Ma
- Department of Orthopedics, Luoyang Orthopedic-Traumatological Hospital of Henan Province, Luoyang, Henan 471002, P.R. China
| | - Jiayi Guo
- Department of Orthopedics, Luoyang Orthopedic-Traumatological Hospital of Henan Province, Luoyang, Henan 471002, P.R. China
| | - Hongjun Li
- Department of Orthopedics, Luoyang Orthopedic-Traumatological Hospital of Henan Province, Luoyang, Henan 471002, P.R. China
| | - Yuxia Yang
- Department of Orthopedics, Luoyang Orthopedic-Traumatological Hospital of Henan Province, Luoyang, Henan 471002, P.R. China
| | - Youwen Liu
- Department of Orthopedics, Luoyang Orthopedic-Traumatological Hospital of Henan Province, Luoyang, Henan 471002, P.R. China
| | - Bin Xu
- Department of Orthopedics, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, P.R. China
| |
Collapse
|
41
|
Wong MW, Lo IH, Wu WK, Liu PY, Yang YT, Chen CY, Wu MS, Wong SH, Lei WY, Yi CH, Liu TT, Hung JS, Liang SW, Gyawali CP, Chen CL. Impact of Esophageal Motility on Microbiome Alterations in Symptomatic Gastroesophageal Reflux Disease Patients With Negative Endoscopy: Exploring the Role of Ineffective Esophageal Motility and Contraction Reserve. J Neurogastroenterol Motil 2024; 30:332-342. [PMID: 38972868 PMCID: PMC11238106 DOI: 10.5056/jnm22191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 03/20/2023] [Accepted: 05/01/2023] [Indexed: 07/09/2024] Open
Abstract
Background/Aims Ineffective esophageal motility (IEM) is common in patients with gastroesophageal reflux disease (GERD) and can be associated with poor esophageal contraction reserve on multiple rapid swallows. Alterations in the esophageal microbiome have been reported in GERD, but the relationship to presence or absence of contraction reserve in IEM patients has not been evaluated. We aim to investigate whether contraction reserve influences esophageal microbiome alterations in patients with GERD and IEM. Methods We prospectively enrolled GERD patients with normal endoscopy and evaluated esophageal motility and contraction reserve with multiple rapid swallows during high-resolution manometry. The esophageal mucosa was biopsied for DNA extraction and 16S ribosomal RNA gene V3-V4 (Illumina)/full-length (Pacbio) amplicon sequencing analysis. Results Among the 56 recruited patients, 20 had normal motility (NM), 19 had IEM with contraction reserve (IEM-R), and 17 had IEM without contraction reserve (IEM-NR). Esophageal microbiome analysis showed a significant decrease in microbial richness in patients with IEM-NR when compared to NM. The beta diversity revealed different microbiome profiles between patients with NM or IEM-R and IEM-NR (P = 0.037). Several esophageal bacterial taxa were characteristic in patients with IEM-NR, including reduced Prevotella spp. and Veillonella dispar, and enriched Fusobacterium nucleatum. In a microbiome-based random forest model for predicting IEM-NR, an area under the receiver operating characteristic curve of 0.81 was yielded. Conclusions In symptomatic GERD patients with normal endoscopic findings, the esophageal microbiome differs based on contraction reserve among IEM. Absent contraction reserve appears to alter the physiology and microbiota of the esophagus.
Collapse
Affiliation(s)
- Ming-Wun Wong
- Department of Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation and Tzu Chi University, Hualien, Taiwan
- School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien, Taiwan
| | - I-Hsuan Lo
- Department of Internal Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Wei-Kai Wu
- Department of Internal Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
- Departments of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
- Departments of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Po-Yu Liu
- Department of Internal Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yu-Tang Yang
- Department of Internal Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chun-Yao Chen
- Department of Life Sciences, Tzu Chi University, Hualien, Taiwan
| | - Ming-Shiang Wu
- Department of Internal Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
- Departments of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Sunny H Wong
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Wei-Yi Lei
- Department of Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation and Tzu Chi University, Hualien, Taiwan
| | - Chih-Hsun Yi
- Department of Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation and Tzu Chi University, Hualien, Taiwan
| | - Tso-Tsai Liu
- Department of Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation and Tzu Chi University, Hualien, Taiwan
| | - Jui-Sheng Hung
- Department of Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation and Tzu Chi University, Hualien, Taiwan
| | - Shu-Wei Liang
- Department of Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation and Tzu Chi University, Hualien, Taiwan
| | - C Prakash Gyawali
- Division of Gastroenterology, Washington University School of Medicine, St Louis, MI, USA
| | - Chien-Lin Chen
- Department of Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation and Tzu Chi University, Hualien, Taiwan
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
42
|
Yu YL, Martens DS, An DW, Chori B, Latosinska A, Siwy J, Odili AN, Stolarz-Skrzypek K, Maestre GE, Asayama K, Li Y, Verhamme P, Allegaert K, Mischak H, Nawrot TS, Staessen JA. Osteoporosis in Relation to a Bone-Related Aging Biomarker Derived from the Urinary Proteomic Profile: A Population Study. Aging Dis 2024; 16:AD.2024.0303. [PMID: 39122459 PMCID: PMC11745457 DOI: 10.14336/ad.2024.0303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/03/2024] [Indexed: 08/12/2024] Open
Abstract
Screening for and prevention of osteoporosis and osteoporotic fractures is imperative, given the high burden on individuals and society. This study constructed and validated an aging-related biomarker derived from the urinary proteomic profile (UPP) indicative of osteoporosis (UPPost-age). In a prospective population study done in northern Belgium (1985-2019), participants were invited for a follow-up examination in 2005-2010 and participants in the 2005-2010 examination again invited in 2009-2013. Participants in both the 2005-2010 and 2009-2013 examinations (n = 519) constituted the derivation (2005-2016 data) and time-shifted validation (2009-2013 data) datasets; 187 participants with only 2005-2010 data formed the synchronous validation dataset. The UPP was assessed by capillary electrophoresis coupled with mass spectrometry. Analyses focused on 2372 sequenced urinary peptides (101 proteins) with key roles in maintaining the integrity of bone tissue. In multivariable analyses with correction for multiple testing, chronological age was associated with 99 urinary peptides (16 proteins). Peptides derived from IGF2 and MGP were upregulated in women compared to men, whereas COL1A2, COL3A1, COL5A2, COL10A1 and COL18A1 were downregulated. Via application of a 1000-fold bootstrapped elastic regression procedure, finally, 29 peptides (10 proteins) constituted the UPPost-age biomarker, replicated across datasets. In cross-sectional analyses of 2009-2013 data (n = 706), the body-height-to-arm-span ratio, an osteoporosis marker, was negatively associated with UPPost-age (p&;lt0.0001). Over 4.89 years (median), the 10-year risk of osteoporosis associated with chronological age and UPPost-age (53 cases including 37 fractures in 706 individuals) increased by 21% and 36% (p ≤ 0.044). Among 357 women, the corresponding estimates were 55% and 60% for incident osteoporosis (37 cases; p ≤ 0.0003) and 42% and 44% for osteoporotic fractures (25 cases; p ≤ 0.017). In conclusion, an aging-related UPP signature with focus on peptide fragments derived from bone-related proteins is associated with osteoporosis risk and available for clinical and trial research.
Collapse
Affiliation(s)
- Yu-Ling Yu
- Research Unit Environment and Health, KU Leuven Department of Public Health and Primary Care, University of Leuven, Leuven, Belgium.
- Non-Profit Research Association Alliance for the Promotion of Preventive Medicine, Mechelen, Belgium.
| | - Dries S. Martens
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium.
| | - De-Wei An
- Research Unit Environment and Health, KU Leuven Department of Public Health and Primary Care, University of Leuven, Leuven, Belgium.
- Non-Profit Research Association Alliance for the Promotion of Preventive Medicine, Mechelen, Belgium.
- Department of Cardiovascular Medicine, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Babangida Chori
- Non-Profit Research Association Alliance for the Promotion of Preventive Medicine, Mechelen, Belgium.
- Doctoral School for Health and Life Sciences, Hasselt University, Diepenbeek, Belgium.
- Center for Environmental Sciences, Hasselt University, Diepenbeek, Belgium.
- Department of Medicine, Federal Medical Center Jabi, Abuja, Nigeria.
| | | | | | | | - Katarzyna Stolarz-Skrzypek
- Non-Profit Research Association Alliance for the Promotion of Preventive Medicine, Mechelen, Belgium.
- First Department of Cardiology, Interventional Electrocardiology and Hypertension, Jagiellonian University, Kraków, Poland.
| | - Gladys E. Maestre
- Non-Profit Research Association Alliance for the Promotion of Preventive Medicine, Mechelen, Belgium.
- Department of Neurosciences and Department of Human Genetics, University of Texas Rio Grande Valley School of Medicine, Brownsville, Texas, USA.
- Alzheimer’s Disease Resource Center for Minority Aging Research, University of Texas Rio Grande Valley, Brownsville, Texas, US.
| | - Kei Asayama
- Non-Profit Research Association Alliance for the Promotion of Preventive Medicine, Mechelen, Belgium.
- Department of Hygiene and Public Health, Teikyo University School of Medicine, Tokyo, Japan.
- Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium.
| | - Yan Li
- Non-Profit Research Association Alliance for the Promotion of Preventive Medicine, Mechelen, Belgium.
- Department of Cardiovascular Medicine, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Peter Verhamme
- Center for Molecular and Vascular Biology, KU Leuven Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium.
| | - Karel Allegaert
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium.
- KU Leuven Department of Development and Regeneration, KU Leuven, Leuven, Belgium.
- Department of Hospital Pharmacy, Erasmus Medical Center, Rotterdam, the Netherlands.
| | | | - Tim S. Nawrot
- Research Unit Environment and Health, KU Leuven Department of Public Health and Primary Care, University of Leuven, Leuven, Belgium.
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium.
| | - Jan A. Staessen
- Non-Profit Research Association Alliance for the Promotion of Preventive Medicine, Mechelen, Belgium.
- Department of Cardiovascular Medicine, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
- Biomedical Sciences Group, Faculty of Medicine, University of Leuven, Leuven, Belgium.
| |
Collapse
|
43
|
Becerra-Cervera A, Argoty-Pantoja AD, Aparicio-Bautista DI, López-Montoya P, Rivera-Paredez B, Hidalgo-Bravo A, Velázquez-Cruz R. Proteomic Biomarkers Associated with Low Bone Mineral Density: A Systematic Review. Int J Mol Sci 2024; 25:7526. [PMID: 39062769 PMCID: PMC11277462 DOI: 10.3390/ijms25147526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/07/2024] [Accepted: 07/07/2024] [Indexed: 07/28/2024] Open
Abstract
Osteoporosis is a globally relevant public health issue. Our study aimed to summarize the knowledge on the proteomic biomarkers for low bone mineral density over the last years. We conducted a systematic review following the PRISMA guidelines; the scoured databases were PubMed, Web of Sciences, Scopus, and EBSCO, from inception to 2 June 2023. A total of 610 relevant studies were identified and 33 were assessed for eligibility. Finally, 29 studies met the criteria for this systematic review. The risk of bias was evaluated using the Joanna Briggs Institute Critical Appraisal Checklist tool. From the studies selected, 154 proteins were associated with changes of bone mineral density, from which only 10 were reported in at least two articles. The protein-protein network analysis indicated potential biomarkers involved in the skeletal system, immune system process, regulation of protein metabolic process, regulation of signaling, transport, cellular component assembly, cell differentiation, hemostasis, and extracellular matrix organization. Mass spectrometry-based proteomic profiling has allowed the discovery of new biomarkers with diagnostic potential. However, it is necessary to compare and validate the potential biomarkers in different populations to determine their association with bone metabolism and evaluate their translation to the clinical management of osteoporosis.
Collapse
Affiliation(s)
- Adriana Becerra-Cervera
- Genomics of Bone Metabolism Laboratory, National Institute of Genomic Medicine (INMEGEN), Mexico City 14610, Mexico; (A.B.-C.); (D.I.A.-B.); (P.L.-M.)
- National Council of Humanities, Science and Technology (CONAHCYT), Mexico City 03940, Mexico
| | - Anna D. Argoty-Pantoja
- Research Center in Policies, Population and Health, School of Medicine, National Autonomous University of Mexico (UNAM), Mexico City 04510, Mexico; (A.D.A.-P.); (B.R.-P.)
| | - Diana I. Aparicio-Bautista
- Genomics of Bone Metabolism Laboratory, National Institute of Genomic Medicine (INMEGEN), Mexico City 14610, Mexico; (A.B.-C.); (D.I.A.-B.); (P.L.-M.)
| | - Priscilla López-Montoya
- Genomics of Bone Metabolism Laboratory, National Institute of Genomic Medicine (INMEGEN), Mexico City 14610, Mexico; (A.B.-C.); (D.I.A.-B.); (P.L.-M.)
| | - Berenice Rivera-Paredez
- Research Center in Policies, Population and Health, School of Medicine, National Autonomous University of Mexico (UNAM), Mexico City 04510, Mexico; (A.D.A.-P.); (B.R.-P.)
| | - Alberto Hidalgo-Bravo
- Department of Genomic Medicine, National Institute of Rehabilitation, Mexico City 14389, Mexico;
| | - Rafael Velázquez-Cruz
- Genomics of Bone Metabolism Laboratory, National Institute of Genomic Medicine (INMEGEN), Mexico City 14610, Mexico; (A.B.-C.); (D.I.A.-B.); (P.L.-M.)
| |
Collapse
|
44
|
Wang X, Cheng Z, Tai W, Shi M, Ayazi M, Liu Y, Sun L, Yu C, Fan Z, Guo B, He X, Sun D, Young W, Ren Y. Targeting foamy macrophages by manipulating ABCA1 expression to facilitate lesion healing in the injured spinal cord. Brain Behav Immun 2024; 119:431-453. [PMID: 38636566 DOI: 10.1016/j.bbi.2024.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 04/03/2024] [Accepted: 04/16/2024] [Indexed: 04/20/2024] Open
Abstract
Spinal cord injury (SCI) triggers a complex cascade of events, including myelin loss, neuronal damage, neuroinflammation, and the accumulation of damaged cells and debris at the injury site. Infiltrating bone marrow derived macrophages (BMDMϕ) migrate to the epicenter of the SCI lesion, where they engulf cell debris including abundant myelin debris to become pro-inflammatory foamy macrophages (foamy Mϕ), participate neuroinflammation, and facilitate the progression of SCI. This study aimed to elucidate the cellular and molecular mechanisms underlying the functional changes in foamy Mϕ and their potential implications for SCI. Contusion at T10 level of the spinal cord was induced using a New York University (NYU) impactor (5 g rod from a height of 6.25 mm) in male mice. ABCA1, an ATP-binding cassette transporter expressed by Mϕ, plays a crucial role in lipid efflux from foamy cells. We observed that foamy Mϕ lacking ABCA1 exhibited increased lipid accumulation and a higher presence of lipid-accumulated foamy Mϕ as well as elevated pro-inflammatory response in vitro and in injured spinal cord. We also found that both genetic and pharmacological enhancement of ABCA1 expression accelerated lipid efflux from foamy Mϕ, reduced lipid accumulation and inhibited the pro-inflammatory response of foamy Mϕ, and accelerated clearance of cell debris and necrotic cells, which resulted in functional recovery. Our study highlights the importance of understanding the pathologic role of foamy Mϕ in SCI progression and the potential of ABCA1 as a therapeutic target for modulating the inflammatory response, promoting lipid metabolism, and facilitating functional recovery in SCI.
Collapse
Affiliation(s)
- Xi Wang
- W. M. Keck Center for Collaborative Neuroscience, Rutgers, State University of New Jersey, New Brunswick, NJ 08854, USA; Institute of Neurosciences, Fourth Military Medical University, Xi'an 710032, China; College of Life Sciences and Medicine, Northwest University, Xi'an 710069, China.
| | - Zhijian Cheng
- Department of Biomedical Sciences, Florida State University College of Medicine, 1115 West Call Street, Tallahassee, FL 32306, USA
| | - Wenjiao Tai
- Department of Biomedical Sciences, Florida State University College of Medicine, 1115 West Call Street, Tallahassee, FL 32306, USA
| | - Mingjun Shi
- Department of Biomedical Sciences, Florida State University College of Medicine, 1115 West Call Street, Tallahassee, FL 32306, USA
| | - Maryam Ayazi
- Department of Biomedical Sciences, Florida State University College of Medicine, 1115 West Call Street, Tallahassee, FL 32306, USA
| | - Yang Liu
- Department of Biomedical Sciences, Florida State University College of Medicine, 1115 West Call Street, Tallahassee, FL 32306, USA
| | - Li Sun
- Department of Biomedical Sciences, Florida State University College of Medicine, 1115 West Call Street, Tallahassee, FL 32306, USA
| | - Caiyong Yu
- Institute of Neurosciences, Fourth Military Medical University, Xi'an 710032, China
| | - Zhongmin Fan
- Department of Critical Care Medicine and Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Xi'an 710032, China
| | - Bin Guo
- Department of Pathology, Guizhou Medical University, Guiyang 550025, China
| | - Xijing He
- Department of Orthopedics, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Dongming Sun
- W. M. Keck Center for Collaborative Neuroscience, Rutgers, State University of New Jersey, New Brunswick, NJ 08854, USA
| | - Wise Young
- W. M. Keck Center for Collaborative Neuroscience, Rutgers, State University of New Jersey, New Brunswick, NJ 08854, USA
| | - Yi Ren
- W. M. Keck Center for Collaborative Neuroscience, Rutgers, State University of New Jersey, New Brunswick, NJ 08854, USA; Department of Biomedical Sciences, Florida State University College of Medicine, 1115 West Call Street, Tallahassee, FL 32306, USA.
| |
Collapse
|
45
|
Ray AK, Shukla A, Yadav A, Kaur U, Singh AK, Mago P, Bhavesh NS, Chaturvedi R, Tandon R, Shalimar, Kumar A, Malik MZ. A Comprehensive Pilot Study to Elucidate the Distinct Gut Microbial Composition and Its Functional Significance in Cardio-Metabolic Disease. Biochem Genet 2024:10.1007/s10528-024-10847-w. [PMID: 38839647 DOI: 10.1007/s10528-024-10847-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/21/2024] [Indexed: 06/07/2024]
Abstract
Cardio-metabolic disease is a significant global health challenge with increasing prevalence. Recent research underscores the disruption of gut microbial balance as a key factor in disease susceptibility. We aimed to characterize the gut microbiota composition and function in cardio-metabolic disease and healthy controls. For this purpose, we collected stool samples of 18 subjects (12 diseased, 6 healthy) and we performed metagenomics analysis and functional prediction using QIIME2 and PICRUSt. Furthermore, we carried out assessments of microbe-gene interactions, gene ontology, and microbe-disease associations. Our findings revealed distinct microbial patterns in the diseased group, particularly evident in lower taxonomic levels with significant variations in 14 microbial features. The diseased cohort exhibited an enrichment of Lachnospiraceae family, correlating with obesity, insulin resistance, and metabolic disturbances. Conversely, reduced levels of Clostridium, Gemmiger, and Ruminococcus genera indicated a potential inflammatory state, linked to compromised butyrate production and gut permeability. Functional analyses highlighted dysregulated pathways in amino acid metabolism and energy equilibrium, with perturbations correlating with elevated branch-chain amino acid levels-a known contributor to insulin resistance and type 2 diabetes. These findings were consistent across biomarker assessments, microbe-gene associations, and gene ontology analyses, emphasizing the intricate interplay between gut microbial dysbiosis and cardio-metabolic disease progression. In conclusion, our study unveils significant shifts in gut microbial composition and function in cardio-metabolic disease, emphasizing the broader implications of microbial dysregulation. Addressing gut microbial balance emerges as a crucial therapeutic target in managing cardio-metabolic disease burden.
Collapse
Affiliation(s)
- Ashwini Kumar Ray
- Department of Environmental Studies, University of Delhi, New Delhi, India.
| | - Avaneesh Shukla
- Department of Environmental Studies, University of Delhi, New Delhi, India
| | - Alka Yadav
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Urvinder Kaur
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Alok Kumar Singh
- Department of Zoology, Ramjas College, University of Delhi, New Delhi, India
| | - Payal Mago
- Shaheed Rajguru College of Applied Sciences for Women, University of Delhi, New Delhi, India
- Campus of Open Learning, University of Delhi, New Delhi, India
| | - Neel Sarovar Bhavesh
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Rupesh Chaturvedi
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Ravi Tandon
- Laboratory of AIDS Research and Immunology, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Shalimar
- Department of Gastroenterology, All India Institute of Medical Science, New Delhi, India
| | - Abhishek Kumar
- Manipal Academy of Higher Education (MAHE), Manipal, India
- Institute of Bioinformatics, International Technology Park, Whitefield, Bangalore, India
| | - Md Zubbair Malik
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Kuwait City, Kuwait.
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
46
|
Wu Z, Guo J, Zhang Z, Gao S, Huang M, Wang Y, Zhang Y, Li Q, Li J. Bacteroidetes promotes esophageal squamous carcinoma invasion and metastasis through LPS-mediated TLR4/Myd88/NF-κB pathway and inflammatory changes. Sci Rep 2024; 14:12827. [PMID: 38834834 PMCID: PMC11150411 DOI: 10.1038/s41598-024-63774-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/02/2024] [Indexed: 06/06/2024] Open
Abstract
Gut microbiota plays a crucial role in gastrointestinal tumors. Additionally, gut microbes influence the progression of esophageal cancer. However, the major bacterial genera that affect the invasion and metastasis of esophageal cancer remain unknown, and the underlying mechanisms remain unclear. Here, we investigated the gut flora and metabolites of patients with esophageal squamous cell carcinoma and found abundant Bacteroides and increased secretion and entry of the surface antigen lipopolysaccharide (LPS) into the blood, causing inflammatory changes in the body. We confirmed these results in a mouse model of 4NQO-induced esophageal carcinoma in situ and further identified epithelial-mesenchymal transition (EMT) occurrence and TLR4/Myd88/NF-κB pathway activation in mouse esophageal tumors. Additionally, in vitro experiments revealed that LPS from Bacteroides fragile promoted esophageal cancer cell proliferation, migration, and invasion, and induced EMT by activating the TLR4/Myd88/NF-κB pathway. These results reveal that Bacteroides are closely associated with esophageal cancer progression through a higher inflammatory response level and signaling pathway activation that are both common to inflammation and tumors induced by LPS, providing a new biological target for esophageal cancer prevention or treatment.
Collapse
Affiliation(s)
- Zhongbing Wu
- College of Integrated Chinese and Western Medicine, Hebei Medical University, Shijiazhuang, 050017, China
| | - Jianxin Guo
- College of Integrated Chinese and Western Medicine, Hebei Medical University, Shijiazhuang, 050017, China
| | - Zhenhan Zhang
- College of Integrated Chinese and Western Medicine, Hebei Medical University, Shijiazhuang, 050017, China
| | - Shuang Gao
- College of Integrated Chinese and Western Medicine, Hebei Medical University, Shijiazhuang, 050017, China
| | - Ming Huang
- College of Integrated Chinese and Western Medicine, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yu Wang
- College of Integrated Chinese and Western Medicine, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yushuang Zhang
- The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, China
| | - Qinghuan Li
- Department of Traditional Chinese Medicine, ShiJiaZhuang Medical College, Shijiazhuang, 050011, China.
| | - Jing Li
- College of Integrated Chinese and Western Medicine, Hebei Medical University, Shijiazhuang, 050017, China.
- The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, China.
| |
Collapse
|
47
|
Mascaretti F, Haider S, Amoroso C, Caprioli F, Ramai D, Ghidini M. Role of the Microbiome in the Diagnosis and Management of Gastroesophageal Cancers. J Gastrointest Cancer 2024; 55:662-678. [PMID: 38411876 DOI: 10.1007/s12029-024-01021-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2024] [Indexed: 02/28/2024]
Abstract
PURPOSE Stomach and esophageal cancers are among the highest mortality from cancers worldwide. Microbiota has an interplaying role within the human gastrointestinal (GI) tract. Dysbiosis occurs when a disruption of the balance between the microbiota and the host happens. With this narrative review, we discuss the main alterations in the microbiome of gastroesophageal cancer, revealing its potential role in the pathogenesis, early detection, and treatment. RESULTS Helicobacter pylori plays a major role the development of a cascade of preneoplastic conditions ranging from atrophic gastritis to metaplasia and dysplasia, ultimately culminating in gastric cancer, while other pathogenic agents are Fusobacterium nucleatum, Bacteroides fragilis, Escherichia coli, and Lactobacillus. Campylobacter species (spp.)'s role in the progression of esophageal adenocarcinoma may parallel that of Helicobacter pylori in the context of gastric cancer, with other esophageal carcinogenic agents being Escherichia coli, Bacteroides fragilis, and Fusobacterium nucleatum. Moreover, gut microbiome could significantly alter the outcomes of chemotherapy and immunotherapy. The gut microbiome can be modulated through interventions such as antibiotics, probiotics, or prebiotics intake. Fecal microbiota transplantation has emerged as a therapeutic strategy as well. CONCLUSIONS Nowadays, it is widely accepted that changes in the normal gut microbiome causing dysbiosis and immune dysregulation play a role gastroesophageal cancer. Different interventions, including probiotics and prebiotics intake are being developed to improve therapeutic outcomes and mitigate toxicities associated with anticancer treatment. Further studies are required in order to introduce the microbiome among the available tools of precision medicine in the field of anticancer treatment.
Collapse
Affiliation(s)
- Federica Mascaretti
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Salman Haider
- Department of Internal Medicine, Brooklyn Hospital Center, Brooklyn, New York, NY, USA
| | - Chiara Amoroso
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Flavio Caprioli
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Daryl Ramai
- Division of Gastroenterology and Hepatology, University of Utah Health, Salt Lake City, UT, USA
| | - Michele Ghidini
- Medical Oncology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122, Via Sforza 28, Milan, Italy.
| |
Collapse
|
48
|
Ji J, Gu Z, Li N, Dong X, Wang X, Yao Q, Zhang Z, Zhang L, Cao L. Gut microbiota alterations in postmenopausal women with osteoporosis and osteopenia from Shanghai, China. PeerJ 2024; 12:e17416. [PMID: 38832037 PMCID: PMC11146318 DOI: 10.7717/peerj.17416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/28/2024] [Indexed: 06/05/2024] Open
Abstract
Background The importance of the gut microbiota in maintaining bone homeostasis has been increasingly emphasized by recent research. This study aimed to identify whether and how the gut microbiome of postmenopausal women with osteoporosis and osteopenia may differ from that of healthy individuals. Methods Fecal samples were collected from 27 individuals with osteoporosis (OP), 44 individuals with osteopenia (ON), and 23 normal controls (NC). The composition of the gut microbial community was analyzed by 16S rRNA gene sequencing. Results No significant difference was found in the microbial composition between the three groups according to alpha and beta diversity. At the phylum level, Proteobacteria and Fusobacteriota were significantly higher and Synergistota was significantly lower in the ON group than in the NC group. At the genus level, Roseburia, Clostridia_UCG.014, Agathobacter, Dialister and Lactobacillus differed between the OP and NC groups as well as between the ON and NC groups (p < 0.05). Linear discriminant effect size (LEfSe) analysis results showed that one phylum community and eighteen genus communities were enriched in the NC, ON and OP groups, respectively. Spearman correlation analysis showed that the abundance of the Dialister genus was positively correlated with BMD and T score at the lumbar spine (p < 0.05). Functional predictions revealed that pathways relevant to amino acid biosynthesis, vitamin biosynthesis, and nucleotide metabolism were enriched in the NC group. On the other hand, pathways relevant to metabolites degradation and carbohydrate metabolism were mainly enriched in the ON and OP groups respectively. Conclusions Our findings provide new epidemiologic evidence regarding the relationship between the gut microbiota and postmenopausal bone loss, laying a foundation for further exploration of therapeutic targets for the prevention and treatment of postmenopausal osteoporosis (PMO).
Collapse
Affiliation(s)
- Jiaqing Ji
- Department of Orthopedics, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhengrong Gu
- Department of Orthopedics, Luodian Hospital, Baoshan District, Shanghai, China
| | - Na Li
- School of Medicine, Shanghai University, Shanghai, China
| | - Xin Dong
- School of Medicine, Shanghai University, Shanghai, China
| | - Xiong Wang
- Department of Orthopedics, Luodian Hospital, Baoshan District, Shanghai, China
| | - Qiang Yao
- Department of Orthopedics, Luodian Hospital, Baoshan District, Shanghai, China
| | - Zhongxiao Zhang
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Zhang
- Department of Orthopedics, Luodian Hospital, Baoshan District, Shanghai, China
| | - Liehu Cao
- Department of Orthopedics, Luodian Hospital, Baoshan District, Shanghai, China
| |
Collapse
|
49
|
Jalali P, Yaghoobi A, Rezaee M, Zabihi MR, Piroozkhah M, Aliyari S, Salehi Z. Decoding common genetic alterations between Barrett's esophagus and esophageal adenocarcinoma: A bioinformatics analysis. Heliyon 2024; 10:e31194. [PMID: 38803922 PMCID: PMC11128929 DOI: 10.1016/j.heliyon.2024.e31194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 05/12/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024] Open
Abstract
Background Esophageal adenocarcinoma (EAC) is a common cancer with a poor prognosis in advanced stages. Therefore, early EAC diagnosis and treatment have gained attention in recent decades. It has been found that various pathological changes, particularly Barrett's Esophagus (BE), can occur in the esophageal tissue before the development of EAC. In this study, we aimed to identify the molecular contributor in BE to EAC progression by detecting the essential regulatory genes that are differentially expressed in both BE and EAC. Materials and methods We conducted a comprehensive bioinformatics analysis to detect BE and EAC-associated genes. The common differentially expressed genes (DEGs) and common single nucleotide polymorphisms (SNPs) were detected using the GEO and DisGeNET databases, respectively. Then, hub genes and the top modules within the protein-protein interaction network were identified. Moreover, the co-expression network of the top module by the HIPPIE database was constructed. Additionally, the gene regulatory network was constructed based on miRNAs and circRNAs. Lastly, we inspected the DGIdb database for possible interacted drugs. Results Our microarray dataset analysis identified 92 common DEGs between BE and EAC with significant enrichment in skin and epidermis development genes. The study also identified 22 common SNPs between BE and EAC. The top module of PPI network analysis included SCEL, KRT6A, SPRR1A, SPRR1B, SPRR3, PPL, SPRR2B, EVPL, and CSTA. We constructed a ceRNA network involving three specific mRNAs, 23 miRNAs, and 101 selected circRNAs. According to the results from the DGIdb database, TD101 was found to interact with the KRT6A gene. Conclusion The present study provides novel potential candidate genes that may be involved in the molecular association between Esophageal adenocarcinoma and Barrett's Esophagus, resulting in developing the diagnostic tools and therapeutic targets to prevent progression of BE to EAC.
Collapse
Affiliation(s)
- Pooya Jalali
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Yaghoobi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Malihe Rezaee
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zabihi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Moein Piroozkhah
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahram Aliyari
- Division of Applied Bioinformatics, German Cancer Research Center DKFZ Heidelberg, Iran
| | - Zahra Salehi
- Hematology, Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Research Institute for Oncology, Hematology and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
50
|
He Y, Li XY, Hu AQ, Qian D. Salivary microbiome is associated with the response to chemoradiotherapy in initially inoperable patients with esophageal squamous cell carcinoma. J Oral Microbiol 2024; 16:2359887. [PMID: 38813524 PMCID: PMC11134033 DOI: 10.1080/20002297.2024.2359887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/20/2024] [Indexed: 05/31/2024] Open
Abstract
Background The salivary microbiome may interact with chemoradiotherapy through dynamic changes in microbial composition and systemic immunity. We aimed to explore the association between the salivary microbiome and response to chemoradiotherapy in initially inoperable patients with local advanced esophageal squamous cell carcinoma (LAESCC). Methods Salivary and peripheral blood samples were collected before and after chemoradiotherapy. The microbiome and metabolic pathways were analyzed by 16S ribosomal RNA sequencing and liquid chromatography tandem mass spectrometry/Mass spectrometry analyses. Results The salivary microbiome exhibited characteristic variations between patients and healthy controls. A significant correlation was found between Prevotella_salivae, Saccharibacteria_TM7_G3_bacterium_HMT_351, and Veillonellaceae_G1_bacterium_HMT_129 and pathological complete response (pCR) in initially inoperable patients who underwent surgery. The PICRUSt suggested that immune diseases and cell motility were different in tumor compared to normal groups. KEGG enrichment analysis showed enriched lipid metabolism, signal transduction, and membrane transport in the tumor group. CD3+CD8 T cells, IL6, IL10, and IFNγ exhibited an increasing trend during the treatment process of chemoradiotherapy. Conclusions Our study demonstrated that variations in specific saliva taxa associated with host immunomodulatory cells and cytokines could be promising for early efficacy prediction of chemoradiotherapy in initially inoperable patients with LAESCC.
Collapse
Affiliation(s)
- Yuan He
- Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xiao-Yang Li
- Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - An-Qi Hu
- Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Dong Qian
- Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|