451
|
Abstract
PURPOSE OF REVIEW To summarize the molecular and clinical findings of KMT2B-related dystonia (DYT-KMT2B), a newly identified genetic dystonia syndrome. RECENT FINDINGS Since first described in 2016, 66 different KMT2B-affecting variants, encompassing a set of frameshift, nonsense, splice-site, missense, and deletion mutations, have been reported in 76 patients. Most mutations are de novo and expected to mediate epigenetic dysregulation by inducing KMT2B haploinsufficiency. DYT-KMT2B is characterized phenotypically by limb-onset childhood dystonia that tends to spread progressively, resulting in generalized dystonia with cranio-cervical involvement. Co-occuring signs such as intellectual disability are frequently observed. Sustained response to deep brain stimulation (DBS), including restoration of independent ambulation, is seen in 93% (27/29) of patients. DYT-KMT2B is emerging as a prevalent monogenic dystonia. Childhood-onset dystonia presentations should prompt a search for KMT2B mutations, preferentially via next-generation-sequencing and genomic-array technologies, to enable specific counseling and treatment. Prospective multicenter studies are desirable to establish KMT2B mutational status as a DBS outcome predictor.
Collapse
Affiliation(s)
- Michael Zech
- Institut für Neurogenomik, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764, Munich, Neuherberg, Germany.,Institut für Humangenetik, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Daniel D Lam
- Institut für Neurogenomik, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764, Munich, Neuherberg, Germany
| | - Juliane Winkelmann
- Institut für Neurogenomik, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764, Munich, Neuherberg, Germany. .,Institut für Humangenetik, Klinikum rechts der Isar, Technische Universität München, Munich, Germany. .,Lehrstuhl für Neurogenetik, Technische Universität München, Munich, Germany. .,Munich Cluster for Systems Neurology, SyNergy, Munich, Germany.
| |
Collapse
|
452
|
Finding Diagnostically Useful Patterns in Quantitative Phenotypic Data. Am J Hum Genet 2019; 105:933-946. [PMID: 31607427 PMCID: PMC6848993 DOI: 10.1016/j.ajhg.2019.09.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 09/13/2019] [Indexed: 12/11/2022] Open
Abstract
Trio-based whole-exome sequence (WES) data have established confident genetic diagnoses in ∼40% of previously undiagnosed individuals recruited to the Deciphering Developmental Disorders (DDD) study. Here we aim to use the breadth of phenotypic information recorded in DDD to augment diagnosis and disease variant discovery in probands. Median Euclidean distances (mEuD) were employed as a simple measure of similarity of quantitative phenotypic data within sets of ≥10 individuals with plausibly causative de novo mutations (DNM) in 28 different developmental disorder genes. 13/28 (46.4%) showed significant similarity for growth or developmental milestone metrics, 10/28 (35.7%) showed similarity in HPO term usage, and 12/28 (43%) showed no phenotypic similarity. Pairwise comparisons of individuals with high-impact inherited variants to the 32 individuals with causative DNM in ANKRD11 using only growth z-scores highlighted 5 likely causative inherited variants and two unrecognized DNM resulting in an 18% diagnostic uplift for this gene. Using an independent approach, naive Bayes classification of growth and developmental data produced reasonably discriminative models for the 24 DNM genes with sufficiently complete data. An unsupervised naive Bayes classification of 6,993 probands with WES data and sufficient phenotypic information defined 23 in silico syndromes (ISSs) and was used to test a “phenotype first” approach to the discovery of causative genotypes using WES variants strictly filtered on allele frequency, mutation consequence, and evidence of constraint in humans. This highlighted heterozygous de novo nonsynonymous variants in SPTBN2 as causative in three DDD probands.
Collapse
|
453
|
Sifuentes-Dominguez LF, Li H, Llano E, Liu Z, Singla A, Patel AS, Kathania M, Khoury A, Norris N, Rios JJ, Starokadomskyy P, Park JY, Gopal P, Liu Q, Tan S, Chan L, Ross T, Harrison S, Venuprasad K, Baker LA, Jia D, Burstein E. SCGN deficiency results in colitis susceptibility. eLife 2019; 8:49910. [PMID: 31663849 PMCID: PMC6839920 DOI: 10.7554/elife.49910] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 10/27/2019] [Indexed: 12/18/2022] Open
Abstract
Inflammatory bowel disease (IBD) affects 1.5–3.0 million people in the United States. IBD is genetically determined and many common risk alleles have been identified. Yet, a large proportion of genetic predisposition remains unexplained. In this study, we report the identification of an ultra rare missense variant (NM_006998.3:c.230G > A;p.Arg77His) in the SCGN gene causing Mendelian early-onset ulcerative colitis. SCGN encodes a calcium sensor that is exclusively expressed in neuroendocrine lineages, including enteroendocrine cells and gut neurons. SCGN interacts with the SNARE complex, which is required for vesicle fusion with the plasma membrane. We show that the SCGN mutation identified impacted the localization of the SNARE complex partner, SNAP25, leading to impaired hormone release. Finally, we show that mouse models of Scgn deficiency recapitulate impaired hormone release and susceptibility to DSS-induced colitis. Altogether, these studies demonstrate that functional deficiency in SCGN can result in intestinal inflammation and implicates the neuroendocrine cellular compartment in IBD.
Collapse
Affiliation(s)
| | - Haiying Li
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, United States
| | - Ernesto Llano
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, United States
| | - Zhe Liu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, China
| | - Amika Singla
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, United States
| | - Ashish S Patel
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, United States
| | - Mahesh Kathania
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, United States
| | - Areen Khoury
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, United States
| | - Nicholas Norris
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, United States
| | - Jonathan J Rios
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, United States.,McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, United States.,Seay Center for Musculoskeletal Research, Texas Scottish Rite Hospital for Children, Dallas, United States
| | - Petro Starokadomskyy
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, United States
| | - Jason Y Park
- McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Pathology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Purva Gopal
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Qi Liu
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, United States
| | - Shuai Tan
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, United States.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, China
| | - Lillienne Chan
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, United States
| | - Theodora Ross
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, United States
| | - Steven Harrison
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, United States
| | - K Venuprasad
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, United States
| | - Linda A Baker
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Da Jia
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, China
| | - Ezra Burstein
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, United States
| |
Collapse
|
454
|
Hensel CH, Vanzo RJ, Martin MM, Ling L, Aliaga SM, Bui M, Francis DI, Twede H, Field MH, Morison JW, Amor DJ, Godler DE. Abnormally Methylated FMR1 in Absence of a Detectable Full Mutation in a U.S.A Patient Cohort Referred for Fragile X Testing. Sci Rep 2019; 9:15315. [PMID: 31653898 PMCID: PMC6814816 DOI: 10.1038/s41598-019-51618-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 09/30/2019] [Indexed: 12/11/2022] Open
Abstract
In 2016, Methylation-Specific Quantitative Melt Analysis (MS-QMA) on 3,340 male probands increased diagnostic yield from 1.60% to 1.84% for fragile X syndrome (FXS) using a pooling approach. In this study probands from Lineagen (UT, U.S.A.) of both sexes were screened using MS-QMA without sample pooling. The cohorts included: (i) 279 probands with no FXS full mutation (FM: CGG > 200) detected by AmplideX CGG sizing; (ii) 374 negative and 47 positive controls. MS-QMA sensitivity and specificity in controls approached 100% for both sexes. For male probands with no FM detected by standard testing (n = 189), MS-QMA identified abnormal DNA methylation (mDNA) in 4% normal size (NS: < 44 CGGs), 6% grey zone (CGG 45–54) and 12% premutation (CGG 54–199) alleles. The abnormal mDNA was confirmed by AmplideX methylation sensitive (m)PCR and EpiTYPER tests. In contrast, no abnormal mDNA was detected in 89 males with NS alleles from the general population. For females, 11% of 43 probands with NS alleles by the AmplideX sizing assay had abnormal mDNA by MS-QMA, with FM / NS mosaicism confirmed by AmplideX mPCR. FMR1 MS-QMA analysis can cost-effectively screen probands of both sexes for methylation and FM mosaicism that may be missed by standard testing.
Collapse
Affiliation(s)
| | - Rena J Vanzo
- Lineagen, Inc., Salt Lake City, UT, United States of America
| | - Megan M Martin
- Lineagen, Inc., Salt Lake City, UT, United States of America
| | - Ling Ling
- Diagnosis and Development, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, Australia
| | - Solange M Aliaga
- Diagnosis and Development, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, Australia
| | - Minh Bui
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, VIC, Australia
| | - David I Francis
- Victorian Clinical Genetics Services and Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, Australia
| | - Hope Twede
- Lineagen, Inc., Salt Lake City, UT, United States of America
| | - Michael H Field
- Genetics of Learning Disability Service (GOLD service), Hunter Genetics, Newcastle, NSW, Australia
| | - Jonathon W Morison
- Business Development and Legal Office, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, Australia
| | - David J Amor
- Faculty of Medicine, Dentistry and Health Sciences, Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia.,Neurodisability and Rehabilitation Research Group, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, Australia
| | - David E Godler
- Diagnosis and Development, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, Australia. .,Faculty of Medicine, Dentistry and Health Sciences, Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
455
|
Kang SK, Vanoye CG, Misra SN, Echevarria DM, Calhoun JD, O'Connor JB, Fabre KL, McKnight D, Demmer L, Goldenberg P, Grote LE, Thiffault I, Saunders C, Strauss KA, Torkamani A, van der Smagt J, van Gassen K, Carson RP, Diaz J, Leon E, Jacher JE, Hannibal MC, Litwin J, Friedman NR, Schreiber A, Lynch B, Poduri A, Marsh ED, Goldberg EM, Millichap JJ, George AL, Kearney JA. Spectrum of K V 2.1 Dysfunction in KCNB1-Associated Neurodevelopmental Disorders. Ann Neurol 2019; 86:899-912. [PMID: 31600826 DOI: 10.1002/ana.25607] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 09/16/2019] [Accepted: 09/16/2019] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Pathogenic variants in KCNB1, encoding the voltage-gated potassium channel KV 2.1, are associated with developmental and epileptic encephalopathy (DEE). Previous functional studies on a limited number of KCNB1 variants indicated a range of molecular mechanisms by which variants affect channel function, including loss of voltage sensitivity, loss of ion selectivity, and reduced cell-surface expression. METHODS We evaluated a series of 17 KCNB1 variants associated with DEE or other neurodevelopmental disorders (NDDs) to rapidly ascertain channel dysfunction using high-throughput functional assays. Specifically, we investigated the biophysical properties and cell-surface expression of variant KV 2.1 channels expressed in heterologous cells using high-throughput automated electrophysiology and immunocytochemistry-flow cytometry. RESULTS Pathogenic variants exhibited diverse functional defects, including altered current density and shifts in the voltage dependence of activation and/or inactivation, as homotetramers or when coexpressed with wild-type KV 2.1. Quantification of protein expression also identified variants with reduced total KV 2.1 expression or deficient cell-surface expression. INTERPRETATION Our study establishes a platform for rapid screening of KV 2.1 functional defects caused by KCNB1 variants associated with DEE and other NDDs. This will aid in establishing KCNB1 variant pathogenicity and the mechanism of dysfunction, which will enable targeted strategies for therapeutic intervention based on molecular phenotype. ANN NEUROL 2019;86:899-912.
Collapse
Affiliation(s)
- Seok Kyu Kang
- Departments of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Carlos G Vanoye
- Departments of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Sunita N Misra
- Departments of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL.,Departments of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL.,Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL
| | - Dennis M Echevarria
- Departments of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Jeffrey D Calhoun
- Departments of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - John B O'Connor
- Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL
| | - Katarina L Fabre
- Departments of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | | | - Laurie Demmer
- Department of Pediatrics, Atrium Health's Levine Children's Hospital, Charlotte, NC
| | - Paula Goldenberg
- Medical Genetics, Massachusetts General Hospital for Children, Harvard Medical School, Boston, MA
| | - Lauren E Grote
- Division of Clinical Genetics, Children's Mercy Hospital, Kansas City, MO.,University of Missouri-Kansas City School of Medicine, Kansas City, MO
| | - Isabelle Thiffault
- University of Missouri-Kansas City School of Medicine, Kansas City, MO.,Center for Pediatric Genomic Medicine, Children's Mercy Hospital, Kansas City, MO.,Department of Pathology and Laboratory Medicine, Children's Mercy Hospital, Kansas City, MO
| | - Carol Saunders
- University of Missouri-Kansas City School of Medicine, Kansas City, MO.,Center for Pediatric Genomic Medicine, Children's Mercy Hospital, Kansas City, MO.,Department of Pathology and Laboratory Medicine, Children's Mercy Hospital, Kansas City, MO
| | | | - Ali Torkamani
- Scripps Translational Science Institute and Scripps Research Institute, La Jolla, CA
| | - Jasper van der Smagt
- Department of Genetics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Koen van Gassen
- Department of Genetics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Robert P Carson
- Monroe Carell Jr Children's Hospital at Vanderbilt, Nashville, TN
| | - Jullianne Diaz
- Rare Disease Institute, Children's National Medical Center, Washington, DC
| | - Eyby Leon
- Rare Disease Institute, Children's National Medical Center, Washington, DC
| | - Joseph E Jacher
- Division of Pediatric Genetics, Metabolism, and Genomic Medicine, University of Michigan, Ann Arbor, MI
| | - Mark C Hannibal
- Division of Pediatric Genetics, Metabolism, and Genomic Medicine, University of Michigan, Ann Arbor, MI
| | - Jessica Litwin
- University of California, San Francisco Benioff Children's Hospital, San Francisco, CA
| | | | | | - Bryan Lynch
- Department of Paediatric Neurology and Clinical Neurophysiology, Children's University Hospital, Dublin, Ireland
| | - Annapurna Poduri
- Epilepsy Genetics Program, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Eric D Marsh
- Division of Child Neurology, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Ethan M Goldberg
- Division of Child Neurology, Children's Hospital of Philadelphia, Philadelphia, PA
| | - John J Millichap
- Departments of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL.,Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL.,Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Alfred L George
- Departments of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Jennifer A Kearney
- Departments of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL
| |
Collapse
|
456
|
Mohammadi P, Castel SE, Cummings BB, Einson J, Sousa C, Hoffman P, Donkervoort S, Jiang Z, Mohassel P, Foley AR, Wheeler HE, Im HK, Bonnemann CG, MacArthur DG, Lappalainen T. Genetic regulatory variation in populations informs transcriptome analysis in rare disease. Science 2019; 366:351-356. [PMID: 31601707 PMCID: PMC6814274 DOI: 10.1126/science.aay0256] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 09/24/2019] [Indexed: 12/13/2022]
Abstract
Transcriptome data can facilitate the interpretation of the effects of rare genetic variants. Here, we introduce ANEVA (analysis of expression variation) to quantify genetic variation in gene dosage from allelic expression (AE) data in a population. Application of ANEVA to the Genotype-Tissues Expression (GTEx) data showed that this variance estimate is robust and correlated with selective constraint in a gene. Using these variance estimates in a dosage outlier test (ANEVA-DOT) applied to AE data from 70 Mendelian muscular disease patients showed accuracy in detecting genes with pathogenic variants in previously resolved cases and led to one confirmed and several potential new diagnoses. Using our reference estimates from GTEx data, ANEVA-DOT can be incorporated in rare disease diagnostic pipelines to use RNA-sequencing data more effectively.
Collapse
Affiliation(s)
- Pejman Mohammadi
- New York Genome Center, New York, NY, USA.
- Department of Systems Biology, Columbia University, New York, NY, USA
- Scripps Research Translational Institute, La Jolla, CA, USA
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Stephane E Castel
- New York Genome Center, New York, NY, USA
- Department of Systems Biology, Columbia University, New York, NY, USA
| | - Beryl B Cummings
- Analytical and Translation Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jonah Einson
- New York Genome Center, New York, NY, USA
- Department of Systems Biology, Columbia University, New York, NY, USA
| | - Christina Sousa
- Scripps Research Translational Institute, La Jolla, CA, USA
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Paul Hoffman
- New York Genome Center, New York, NY, USA
- Department of Systems Biology, Columbia University, New York, NY, USA
| | - Sandra Donkervoort
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Zhuoxun Jiang
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Payam Mohassel
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - A Reghan Foley
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Heather E Wheeler
- Department of Biology, Loyola University Chicago, Chicago, IL, USA
- Department of Computer Science, Loyola University Chicago, Chicago, IL, USA
| | - Hae Kyung Im
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Carsten G Bonnemann
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Daniel G MacArthur
- Analytical and Translation Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Tuuli Lappalainen
- New York Genome Center, New York, NY, USA.
- Department of Systems Biology, Columbia University, New York, NY, USA
| |
Collapse
|
457
|
Nader CP, Cidem A, Verrills NM, Ammit AJ. Protein phosphatase 2A (PP2A): a key phosphatase in the progression of chronic obstructive pulmonary disease (COPD) to lung cancer. Respir Res 2019; 20:222. [PMID: 31623614 PMCID: PMC6798356 DOI: 10.1186/s12931-019-1192-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 09/20/2019] [Indexed: 02/06/2023] Open
Abstract
Lung cancer (LC) has the highest relative risk of development as a comorbidity of chronic obstructive pulmonary disease (COPD). The molecular mechanisms that mediate chronic inflammation and lung function impairment in COPD have been identified in LC. This suggests the two diseases are more linked than once thought. Emerging data in relation to a key phosphatase, protein phosphatase 2A (PP2A), and its regulatory role in inflammatory and tumour suppression in both disease settings suggests that it may be critical in the progression of COPD to LC. In this review, we uncover the importance of the functional and active PP2A holoenzyme in the context of both diseases. We describe PP2A inactivation via direct and indirect means and explore the actions of two key PP2A endogenous inhibitors, cancerous inhibitor of PP2A (CIP2A) and inhibitor 2 of PP2A (SET), and the role they play in COPD and LC. We explain how dysregulation of PP2A in COPD creates a favourable inflammatory micro-environment and promotes the initiation and progression of tumour pathogenesis. Finally, we highlight PP2A as a druggable target in the treatment of COPD and LC and demonstrate the potential of PP2A re-activation as a strategy to halt COPD disease progression to LC. Although further studies are required to elucidate if PP2A activity in COPD is a causal link for LC progression, studies focused on the potential of PP2A reactivating agents to reduce the risk of LC formation in COPD patients will be pivotal in improving clinical outcomes for both COPD and LC patients in the future.
Collapse
Affiliation(s)
- Cassandra P Nader
- Woolcock Emphysema Centre, Woolcock Institute of Medical Research, University of Sydney, Sydney, NSW, Australia
| | - Aylin Cidem
- Woolcock Emphysema Centre, Woolcock Institute of Medical Research, University of Sydney, Sydney, NSW, Australia
| | - Nicole M Verrills
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, 2308, Australia
- Priority Research Centre for Cancer Research, Innovation & Translation, Faculty of Health & Medicine, Hunter Medical Research Institute, New Lambton Heights, NSW, 2305, Australia
| | - Alaina J Ammit
- Woolcock Emphysema Centre, Woolcock Institute of Medical Research, University of Sydney, Sydney, NSW, Australia.
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia.
| |
Collapse
|
458
|
Povysil G, Petrovski S, Hostyk J, Aggarwal V, Allen AS, Goldstein DB. Rare-variant collapsing analyses for complex traits: guidelines and applications. Nat Rev Genet 2019; 20:747-759. [PMID: 31605095 DOI: 10.1038/s41576-019-0177-4] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2019] [Indexed: 12/11/2022]
Abstract
The first phase of genome-wide association studies (GWAS) assessed the role of common variation in human disease. Advances optimizing and economizing high-throughput sequencing have enabled a second phase of association studies that assess the contribution of rare variation to complex disease in all protein-coding genes. Unlike the early microarray-based studies, sequencing-based studies catalogue the full range of genetic variation, including the evolutionarily youngest forms. Although the experience with common variants helped establish relevant standards for genome-wide studies, the analysis of rare variation introduces several challenges that require novel analysis approaches.
Collapse
Affiliation(s)
- Gundula Povysil
- Institute for Genomic Medicine, Columbia University Irving Medical Center, Columbia University, New York, NY, USA
| | - Slavé Petrovski
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK.,Department of Medicine, The University of Melbourne, Austin Health and Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Joseph Hostyk
- Institute for Genomic Medicine, Columbia University Irving Medical Center, Columbia University, New York, NY, USA
| | - Vimla Aggarwal
- Institute for Genomic Medicine, Columbia University Irving Medical Center, Columbia University, New York, NY, USA
| | - Andrew S Allen
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, USA
| | - David B Goldstein
- Institute for Genomic Medicine, Columbia University Irving Medical Center, Columbia University, New York, NY, USA.
| |
Collapse
|
459
|
Tan Y, Jiang L, Wang K, Fang H. I3: A Self-organising Learning Workflow for Intuitive Integrative Interpretation of Complex Genetic Data. GENOMICS, PROTEOMICS & BIOINFORMATICS 2019; 17:503-510. [PMID: 31765831 PMCID: PMC7056857 DOI: 10.1016/j.gpb.2018.10.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 07/18/2018] [Accepted: 10/06/2018] [Indexed: 11/01/2022]
Abstract
We propose a computational workflow (I3) for intuitive integrative interpretation of complex genetic data mainly building on the self-organising principle. We illustrate the use in interpreting genetics of gene expression and understanding genetic regulators of protein phenotypes, particularly in conjunction with information from human population genetics and/or evolutionary history of human genes. We reveal that loss-of-function intolerant genes tend to be depleted of tissue-sharing genetics of gene expression in brains, and if highly expressed, have broad effects on the protein phenotypes studied. We suggest that this workflow presents a general solution to the challenge of complex genetic data interpretation. I3 is available at http://suprahex.r-forge.r-project.org/I3.html.
Collapse
Affiliation(s)
- Yun Tan
- State Key Laboratory of Medical Genomics and Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Lulu Jiang
- Bristol Renal, School of Clinical Sciences, University of Bristol, Bristol BS1 3NY, UK
| | - Kankan Wang
- State Key Laboratory of Medical Genomics and Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Hai Fang
- State Key Laboratory of Medical Genomics and Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK.
| |
Collapse
|
460
|
Yamamoto T, Imaizumi T, Yamamoto-Shimojima K, Lu Y, Yanagishita T, Shimada S, Chong PF, Kira R, Ueda R, Ishiyama A, Takeshita E, Momosaki K, Ozasa S, Akiyama T, Kobayashi K, Oomatsu H, Kitahara H, Yamaguchi T, Imai K, Kurahashi H, Okumura A, Oguni H, Seto T, Okamoto N. Genomic backgrounds of Japanese patients with undiagnosed neurodevelopmental disorders. Brain Dev 2019; 41:776-782. [PMID: 31171384 DOI: 10.1016/j.braindev.2019.05.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 05/08/2019] [Accepted: 05/21/2019] [Indexed: 01/07/2023]
Abstract
BACKGROUND Recently, many genes related to neurodevelopmental disorders have been identified by high-throughput genomic analysis; however, a comprehensive understanding of the mechanism underlying neurodevelopmental disorders remains to be established. To further understand these underlying mechanisms, we performed a comprehensive genomic analysis of patients with undiagnosed neurodevelopmental disorders. METHODS Genomic analysis using next-generation sequencing with a targeted panel was performed for a total of 133 Japanese patients (male/female, 81/52) with previously undiagnosed neurodevelopmental disorders, including developmental delay (DD), intellectual disability (ID), autism spectrum disorder (ASD), and epilepsy. Genomic copy numbers were also analyzed using the eXome Hidden Markov Model (XHMM). RESULTS Thirty-nine patients (29.3%) exhibited pathogenic or likely pathogenic findings with single-gene variants or chromosomal aberrations. Among them, 20 patients were presented here. Pathogenic or likely pathogenic variants were identified in 18 genes, including ACTG1, CACNA1A, CHD2, CDKL5, DNMT3A, EHMT1, GABRB3, GABRG2, GRIN2B, KCNQ3, KDM5C, MED13L, SCN2A, SHANK3, SMARCA2, STXBP1, SYNGAP1, and TBL1XR1. CONCLUSION A diagnostic yield of 29.3% in this study was nearly the same as that previously reported from other countries. Thus, we suggest that there is no difference in genomic backgrounds in Japanese patients with undiagnosed neurodevelopmental disabilities. Although most of the patients possessed de novo variants, one of the patients showed an X-linked inheritance pattern. As X-linked recessive disorders exhibit the possibility of recurrent occurrence in the family, comprehensive molecular diagnosis is important for genetic counseling.
Collapse
Affiliation(s)
- Toshiyuki Yamamoto
- Institute of Medical Genetics, Tokyo Women's Medical University, Tokyo, Japan; Tokyo Women's Medical University Institute of Integrated Medical Sciences, Tokyo, Japan.
| | - Taichi Imaizumi
- Institute of Medical Genetics, Tokyo Women's Medical University, Tokyo, Japan; Department of Pediatrics, St. Mariannna University School of Medicine, Kawasaki, Japan
| | - Keiko Yamamoto-Shimojima
- Institute of Medical Genetics, Tokyo Women's Medical University, Tokyo, Japan; Tokyo Women's Medical University Institute of Integrated Medical Sciences, Tokyo, Japan
| | - Yongping Lu
- Institute of Medical Genetics, Tokyo Women's Medical University, Tokyo, Japan
| | - Tomoe Yanagishita
- Institute of Medical Genetics, Tokyo Women's Medical University, Tokyo, Japan; Department of Pediatrics, Tokyo Women's Medical University, Tokyo, Japan
| | - Shino Shimada
- Department of Pediatrics, Tokyo Women's Medical University, Tokyo, Japan
| | - Pin Fee Chong
- Department of Pediatric Neurology, Fukuoka Children's Hospital, Fukuoka, Japan
| | - Ryutaro Kira
- Department of Pediatric Neurology, Fukuoka Children's Hospital, Fukuoka, Japan
| | - Riyo Ueda
- Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Akihiko Ishiyama
- Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Eri Takeshita
- Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Ken Momosaki
- Department of Pediatrics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Shiro Ozasa
- Department of Pediatrics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Tomoyuki Akiyama
- Department of Child Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Katsuhiro Kobayashi
- Department of Child Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hiroo Oomatsu
- Department of Pediatrics, National Epilepsy Center, NHO Shizuoka Institute of Epilepsy and Neurological Disorders, Japan
| | - Hikaru Kitahara
- Department of Pediatrics, National Epilepsy Center, NHO Shizuoka Institute of Epilepsy and Neurological Disorders, Japan
| | - Tokito Yamaguchi
- Department of Pediatrics, National Epilepsy Center, NHO Shizuoka Institute of Epilepsy and Neurological Disorders, Japan
| | - Katsumi Imai
- Department of Pediatrics, National Epilepsy Center, NHO Shizuoka Institute of Epilepsy and Neurological Disorders, Japan
| | | | - Akihisa Okumura
- Department of Pediatrics, Aichi Medical University, Nagakute, Japan
| | - Hirokazu Oguni
- Department of Pediatrics, Tokyo Women's Medical University, Tokyo, Japan
| | - Toshiyuki Seto
- Department of Pediatrics, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Nobuhiko Okamoto
- Department of Medical Genetics, Osaka Women's and Children's Hospital, Izumi, Japan
| |
Collapse
|
461
|
Yang Y, Xu L, Yu Z, Huang H, Yang L. Clinical and genetic analysis of ZTTK syndrome caused by SON heterozygous mutation c.394C>T. Mol Genet Genomic Med 2019; 7:e953. [PMID: 31557424 PMCID: PMC6825855 DOI: 10.1002/mgg3.953] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 08/11/2019] [Accepted: 08/12/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The present study aims to summarize the clinical and genetic characteristics of ZTTK syndrome. METHODS The clinical and genetic data of a Chinese girl with severe growth and development delay, intellectual disability, and facial features were analyzed. Original articles on ZTTK syndrome published up to November 20l8 were identified from PubMed, Human Gene Mutation Database, Online Mendelian Inheritance in Man, China National Knowledge Infrastructure, and WanFang databases using the keywords "ZTTK syndrome" and "SON". RESULTS The patient was born small for gestational age, and had poor academic performance, delayed language development, and motor retardation. The patient's height was 113 cm (less than -3 SD), and had moles on the back skin and possessed facial features. A novel heterozygous mutation c.394C>T (p.Q132X) of SON was found in this patient, but the parents were normal. CONCLUSION The patient's clinical phenotype was consistent with ZTTK syndrome. The novel heterozygous mutation c.394C>T (p.Q132X) of SON was its pathogenic mutation, which has not been reported at home and abroad.
Collapse
Affiliation(s)
- Yu Yang
- Department of Endocrinology, Metabolism, and Genetics, Affiliated Children's Hospital of Nanchang university, Nanchang shi, Jiangxi Sheng, people's Republic of China, Nanchang, Jiangxi, China
| | - Lei Xu
- Department of Endocrinology, Metabolism, and Genetics, Affiliated Children's Hospital of Nanchang university, Nanchang shi, Jiangxi Sheng, people's Republic of China, Nanchang, Jiangxi, China
| | - Zhen Yu
- Department of Endocrinology, Metabolism, and Genetics, Affiliated Children's Hospital of Nanchang university, Nanchang shi, Jiangxi Sheng, people's Republic of China, Nanchang, Jiangxi, China
| | - Hui Huang
- Central Laboratory, Non-directly Affiliated Hospital of Nanchang University, Jiangxi Provincial Children's Hospital, Nanchang, Jiangxi, China
| | - Li Yang
- Department of Endocrinology, Metabolism, and Genetics, Affiliated Children's Hospital of Nanchang university, Nanchang shi, Jiangxi Sheng, people's Republic of China, Nanchang, Jiangxi, China
| |
Collapse
|
462
|
Shields JN, Hales EC, Ranspach LE, Luo X, Orr S, Runft D, Dombkowski A, Neely MN, Matherly LH, Taub J, Baker TR, Thummel R. Exposure of Larval Zebrafish to the Insecticide Propoxur Induced Developmental Delays that Correlate with Behavioral Abnormalities and Altered Expression of hspb9 and hspb11. TOXICS 2019; 7:E50. [PMID: 31546644 PMCID: PMC6958418 DOI: 10.3390/toxics7040050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/11/2019] [Accepted: 09/18/2019] [Indexed: 12/13/2022]
Abstract
Recent studies suggest that organophosphates and carbamates affect human fetal development, resulting in neurological and growth impairment. However, these studies are conflicting and the extent of adverse effects due to pesticide exposure warrants further investigation. In the present study, we examined the impact of the carbamate insecticide propoxur on zebrafish development. We found that propoxur exposure delays embryonic development, resulting in three distinct developmental stages: no delay, mild delay, or severe delay. Interestingly, the delayed embryos all physically recovered 5 days after exposure, but behavioral analysis revealed persistent cognitive deficits at later stages. Microarray analysis identified 59 genes significantly changed by propoxur treatment, and Ingenuity Pathway Analysis revealed that these genes are involved in cancer, organismal abnormalities, neurological disease, and hematological system development. We further examined hspb9 and hspb11 due to their potential roles in zebrafish development and found that propoxur increases expression of these small heat shock proteins in all of the exposed animals. However, we discovered that less significant increases were associated with the more severely delayed phenotype. This raises the possibility that a decreased ability to upregulate these small heat shock proteins in response to propoxur exposure may cause embryos to be more severely delayed.
Collapse
Affiliation(s)
- Jeremiah N Shields
- Institute of Environmental Health Sciences, Center for Urban Responses to Environmental Stressors, Wayne State University, Detroit, MI 48201, USA.
| | - Eric C Hales
- Barbara Ann Karmanos Cancer Institute, Detroit, MI, 48201, USA.
| | - Lillian E Ranspach
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | - Xixia Luo
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | - Steven Orr
- Barbara Ann Karmanos Cancer Institute, Detroit, MI, 48201, USA.
| | - Donna Runft
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA.
| | - Alan Dombkowski
- Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | - Melody N Neely
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA.
| | - Larry H Matherly
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | - Jeffrey Taub
- Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | - Tracie R Baker
- Institute of Environmental Health Sciences, Center for Urban Responses to Environmental Stressors, Wayne State University, Detroit, MI 48201, USA.
- Department of Pharmacology, Wayne State University, Detroit, MI 48201, USA.
| | - Ryan Thummel
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| |
Collapse
|
463
|
Matsumura K, Baba M, Nagayasu K, Yamamoto K, Kondo M, Kitagawa K, Takemoto T, Seiriki K, Kasai A, Ago Y, Hayata-Takano A, Shintani N, Kuriu T, Iguchi T, Sato M, Takuma K, Hashimoto R, Hashimoto H, Nakazawa T. Autism-associated protein kinase D2 regulates embryonic cortical neuron development. Biochem Biophys Res Commun 2019; 519:626-632. [PMID: 31540692 DOI: 10.1016/j.bbrc.2019.09.048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 09/12/2019] [Indexed: 12/26/2022]
Abstract
Autism spectrum disorder (ASD) is a heterogeneous neurodevelopmental disorder, characterized by impaired social interaction, repetitive behavior and restricted interests. Although the molecular etiology of ASD remains largely unknown, recent studies have suggested that de novo mutations are significantly involved in the risk of ASD. We and others recently identified spontaneous de novo mutations in PKD2, a protein kinase D family member, in sporadic ASD cases. However, the biological significance of the de novo PKD2 mutations and the role of PKD2 in brain development remain unclear. Here, we performed functional analysis of PKD2 in cortical neuron development using in utero electroporation. PKD2 is highly expressed in cortical neural stem cells in the developing cortex and regulates cortical neuron development, including the neuronal differentiation of neural stem cells and migration of newborn neurons. Importantly, we determined that the ASD-associated de novo mutations impair the kinase activity of PKD2, suggesting that the de novo PKD2 mutations can be a risk factor for the disease by loss of function of PKD2. Our current findings provide novel insight into the molecular and cellular pathogenesis of ASD.
Collapse
Affiliation(s)
- Kensuke Matsumura
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan; Interdisciplinary Program for Biomedical Sciences, Institute for Transdisciplinary Graduate Degree Programs, Osaka University, Suita, Osaka, 565-0871, Japan; Research Fellowships for Young Scientists of the Japan Society for the Promotion of Science, Chiyoda-ku, Tokyo, 102-0083, Japan
| | - Masayuki Baba
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Kazuki Nagayasu
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Kana Yamamoto
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Momoka Kondo
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Kohei Kitagawa
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Tomoya Takemoto
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Kaoru Seiriki
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan; Interdisciplinary Program for Biomedical Sciences, Institute for Transdisciplinary Graduate Degree Programs, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Atsushi Kasai
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Yukio Ago
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan; Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Atsuko Hayata-Takano
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan; United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Suita, Osaka, 565-0871, Japan
| | - Norihito Shintani
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Toshihiko Kuriu
- Osaka Medical College, Research and Development Center, Takatsuki, Osaka, 569-8686, Japan
| | - Tokuichi Iguchi
- Department of Anatomy and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Makoto Sato
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Suita, Osaka, 565-0871, Japan; Department of Anatomy and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan; Research Center for Child Mental Development, University of Fukui, Yoshida-gun, Fukui, 910-1193, Japan
| | - Kazuhiro Takuma
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Suita, Osaka, 565-0871, Japan; Department of Pharmacology, Graduate School of Dentistry, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Ryota Hashimoto
- Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Tokyo, 187-8553, Japan; Osaka University, Suita, Osaka, 565-0871, Japan
| | - Hitoshi Hashimoto
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan; United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Suita, Osaka, 565-0871, Japan; Division of Bioscience, Institute for Datability Science, Osaka University, Suita, Osaka, 565-0871, Japan; Transdimensional Life Imaging Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka, 565-0871, Japan; Department of Molecular Pharmaceutical Science, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan.
| | - Takanobu Nakazawa
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan; Department of Pharmacology, Graduate School of Dentistry, Osaka University, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
464
|
Sekiguchi F, Tsurusaki Y, Okamoto N, Teik KW, Mizuno S, Suzumura H, Isidor B, Ong WP, Haniffa M, White SM, Matsuo M, Saito K, Phadke S, Kosho T, Yap P, Goyal M, Clarke LA, Sachdev R, McGillivray G, Leventer RJ, Patel C, Yamagata T, Osaka H, Hisaeda Y, Ohashi H, Shimizu K, Nagasaki K, Hamada J, Dateki S, Sato T, Chinen Y, Awaya T, Kato T, Iwanaga K, Kawai M, Matsuoka T, Shimoji Y, Tan TY, Kapoor S, Gregersen N, Rossi M, Marie-Laure M, McGregor L, Oishi K, Mehta L, Gillies G, Lockhart PJ, Pope K, Shukla A, Girisha KM, Abdel-Salam GMH, Mowat D, Coman D, Kim OH, Cordier MP, Gibson K, Milunsky J, Liebelt J, Cox H, El Chehadeh S, Toutain A, Saida K, Aoi H, Minase G, Tsuchida N, Iwama K, Uchiyama Y, Suzuki T, Hamanaka K, Azuma Y, Fujita A, Imagawa E, Koshimizu E, Takata A, Mitsuhashi S, Miyatake S, Mizuguchi T, Miyake N, Matsumoto N. Genetic abnormalities in a large cohort of Coffin-Siris syndrome patients. J Hum Genet 2019; 64:1173-1186. [PMID: 31530938 DOI: 10.1038/s10038-019-0667-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/13/2019] [Accepted: 08/25/2019] [Indexed: 01/15/2023]
Abstract
Coffin-Siris syndrome (CSS, MIM#135900) is a congenital disorder characterized by coarse facial features, intellectual disability, and hypoplasia of the fifth digit and nails. Pathogenic variants for CSS have been found in genes encoding proteins in the BAF (BRG1-associated factor) chromatin-remodeling complex. To date, more than 150 CSS patients with pathogenic variants in nine BAF-related genes have been reported. We previously reported 71 patients of whom 39 had pathogenic variants. Since then, we have recruited an additional 182 CSS-suspected patients. We performed comprehensive genetic analysis on these 182 patients and on the previously unresolved 32 patients, targeting pathogenic single nucleotide variants, short insertions/deletions and copy number variations (CNVs). We confirmed 78 pathogenic variations in 78 patients. Pathogenic variations in ARID1B, SMARCB1, SMARCA4, ARID1A, SOX11, SMARCE1, and PHF6 were identified in 48, 8, 7, 6, 4, 1, and 1 patients, respectively. In addition, we found three CNVs including SMARCA2. Of particular note, we found a partial deletion of SMARCB1 in one CSS patient and we thoroughly investigated the resulting abnormal transcripts.
Collapse
Affiliation(s)
- Futoshi Sekiguchi
- Department of Human Genetics, Graduate school of medicine, Yokohama City University, Yokohama, Japan
| | - Yoshinori Tsurusaki
- Department of Human Genetics, Graduate school of medicine, Yokohama City University, Yokohama, Japan.,Faculty of Nutritional Science, Sagami Women's University, Sagamihara, Kanagawa, Japan
| | - Nobuhiko Okamoto
- Department of Medical Genetics, Osaka Women's and Children's Hospital, Osaka, Japan
| | - Keng Wee Teik
- Department of Genetics, Hospital Kuala Lumpur, Kuala Lumpur, Malaysia
| | - Seiji Mizuno
- Department of Clinical Genetics, Central Hospital, Aichi Developmental Disability Center, Kasugai, Japan
| | - Hiroshi Suzumura
- Department of Pediatrics, Dokkyo Medical University, Tochigi, Japan
| | | | - Winnie Peitee Ong
- Department of Genetics, Hospital Kuala Lumpur, Kuala Lumpur, Malaysia
| | - Muzhirah Haniffa
- Department of Genetics, Hospital Kuala Lumpur, Kuala Lumpur, Malaysia
| | - Susan M White
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Mari Matsuo
- Institute of Medical Genetics, Tokyo Women's Medical University, Tokyo, Japan
| | - Kayoko Saito
- Institute of Medical Genetics, Tokyo Women's Medical University, Tokyo, Japan
| | - Shubha Phadke
- Department of Medical Genetics, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Tomoki Kosho
- Department of Medical Genetics, Shinshu University School of Medicine, Matsumoto, Japan
| | - Patrick Yap
- Genetic Health Service New Zealand, Auckland, New Zealand.,Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Manisha Goyal
- Rare Disease Clinic, J K Lone Hospital, SMS Medical College, Jaipur, Rajasthan, India
| | - Lorne A Clarke
- British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Rani Sachdev
- Centre for Clinical Genetics, Sydney Children's Hospital, Randwick, NSW, Australia
| | - George McGillivray
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Australia
| | - Richard J Leventer
- Royal Children's Hospital Department of Neurology, Murdoch Children's Research Institute and University of Melbourne Department of Pediatrics, Parkville, 3052, Australia
| | - Chirag Patel
- Genetic Health Queensland, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
| | | | - Hitoshi Osaka
- Department of Pediatrics, Jichi Medical University, Tochigi, Japan
| | - Yoshiya Hisaeda
- Department of Neonatology, Japanese Red Cross Medical Center, Tokyo, Japan
| | - Hirofumi Ohashi
- Division of Medical Genetics, Saitama Children's Medical Center, Saitama, Japan
| | - Kenji Shimizu
- Division of Medical Genetics, Saitama Children's Medical Center, Saitama, Japan
| | - Keisuke Nagasaki
- Department of Homeostatic Regulation and Development, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Junpei Hamada
- Department of Pediatrics, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Sumito Dateki
- Department of Pediatrics, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Takashi Sato
- Asahikawa-Kosei General Hospital, Hokkaido, Japan
| | - Yasutsugu Chinen
- Department of Child Health and Welfare, Graduate School of Medicine, University of the Ryukyus, Nishihara, Japan
| | - Tomonari Awaya
- Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takeo Kato
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kougoro Iwanaga
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masahiko Kawai
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takashi Matsuoka
- Department of General Pediatrics, Okinawa Prefectural Nanbu Medical Center and Children's Medical Center, Okinawa, Japan
| | - Yoshikazu Shimoji
- Department of General Pediatrics, Okinawa Prefectural Nanbu Medical Center and Children's Medical Center, Okinawa, Japan
| | - Tiong Yang Tan
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Seema Kapoor
- Division of Genetics, Department of Pediatrics, Maulana Azad Medical College, New Delhi, India
| | | | - Massimiliano Rossi
- Hospices Civils de Lyon, Service de Génétique, Centre de Référence Anomalies du Développement, and INSERM U1028, CNRS UMR5292, CRNL, GENDEV Team, UCBL1, Bron, France
| | - Mathieu Marie-Laure
- Hospices Civils de Lyon, Service de Génétique, Centre de Référence Anomalies du Développement, and INSERM U1028, CNRS UMR5292, CRNL, GENDEV Team, UCBL1, Bron, France
| | - Lesley McGregor
- South Australian Clinical Genetics Service, SA Pathology, Women's and Children's Hospital, Adelaide, Australia
| | - Kimihiko Oishi
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lakshmi Mehta
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Greta Gillies
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute, Victoria, Australia
| | - Paul J Lockhart
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute, Victoria, Australia
| | - Kate Pope
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute, Victoria, Australia
| | - Anju Shukla
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Katta Mohan Girisha
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Ghada M H Abdel-Salam
- Department of Clinical Genetics, Human Genetics and Genome Research Division, National Research Centre, Cairo, Egypt
| | - David Mowat
- Department of Medical Genetics, Sydney Children's Hospital, Sydney, NSW, Australia
| | - David Coman
- Department of Paediatrics, The Wesley Hospital, Brisbane, QLD, Australia
| | - Ok Hwa Kim
- Department of Radiology, Ajou University Hospital, Suwon, Korea
| | | | - Kate Gibson
- Genetic Health Service New Zealand, Christchurch Hospital, Christchurch, New Zealand
| | | | - Jan Liebelt
- South Australian Clinical Genetics Services, Women's and Children's Hospital, North Adelaide, Australia
| | - Helen Cox
- West Midlands Regional Genetics Service, Birmingham Women's NHS Foundation Trust, Birmingham Women's Hospital, Edgbaston, Birmingham, B15 2TG, UK
| | - Salima El Chehadeh
- Service de Genetique Medicale, Hopital de Hautepierre, Strasbourg, France
| | | | - Ken Saida
- Department of Human Genetics, Graduate school of medicine, Yokohama City University, Yokohama, Japan
| | - Hiromi Aoi
- Department of Human Genetics, Graduate school of medicine, Yokohama City University, Yokohama, Japan.,Department of Obstetrics and Gynecology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Gaku Minase
- Department of Human Genetics, Graduate school of medicine, Yokohama City University, Yokohama, Japan
| | - Naomi Tsuchida
- Department of Human Genetics, Graduate school of medicine, Yokohama City University, Yokohama, Japan
| | - Kazuhiro Iwama
- Department of Human Genetics, Graduate school of medicine, Yokohama City University, Yokohama, Japan
| | - Yuri Uchiyama
- Department of Human Genetics, Graduate school of medicine, Yokohama City University, Yokohama, Japan.,Department of Oncology, Yokohama City University Graduate School of Medicine, Yokohama, Japan.,Clinical Genetics Department, Yokohama City University Hospital, Yokohama, Kanagawa, Japan
| | - Toshifumi Suzuki
- Department of Human Genetics, Graduate school of medicine, Yokohama City University, Yokohama, Japan.,Department of Obstetrics and Gynecology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Kohei Hamanaka
- Department of Human Genetics, Graduate school of medicine, Yokohama City University, Yokohama, Japan
| | - Yoshiteru Azuma
- Department of Human Genetics, Graduate school of medicine, Yokohama City University, Yokohama, Japan
| | - Atsushi Fujita
- Department of Human Genetics, Graduate school of medicine, Yokohama City University, Yokohama, Japan
| | - Eri Imagawa
- Department of Human Genetics, Graduate school of medicine, Yokohama City University, Yokohama, Japan.,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Eriko Koshimizu
- Department of Human Genetics, Graduate school of medicine, Yokohama City University, Yokohama, Japan
| | - Atsushi Takata
- Department of Human Genetics, Graduate school of medicine, Yokohama City University, Yokohama, Japan
| | - Satomi Mitsuhashi
- Department of Human Genetics, Graduate school of medicine, Yokohama City University, Yokohama, Japan
| | - Satoko Miyatake
- Department of Human Genetics, Graduate school of medicine, Yokohama City University, Yokohama, Japan.,Clinical Genetics Department, Yokohama City University Hospital, Yokohama, Kanagawa, Japan
| | - Takeshi Mizuguchi
- Department of Human Genetics, Graduate school of medicine, Yokohama City University, Yokohama, Japan
| | - Noriko Miyake
- Department of Human Genetics, Graduate school of medicine, Yokohama City University, Yokohama, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Graduate school of medicine, Yokohama City University, Yokohama, Japan.
| |
Collapse
|
465
|
|
466
|
Bamshad MJ, Nickerson DA, Chong JX. Mendelian Gene Discovery: Fast and Furious with No End in Sight. Am J Hum Genet 2019; 105:448-455. [PMID: 31491408 DOI: 10.1016/j.ajhg.2019.07.011] [Citation(s) in RCA: 174] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 07/16/2019] [Indexed: 10/26/2022] Open
Abstract
Gene discovery for Mendelian conditions (MCs) offers a direct path to understanding genome function. Approaches based on next-generation sequencing applied at scale have dramatically accelerated gene discovery and transformed genetic medicine. Finding the genetic basis of ∼6,000-13,000 MCs yet to be delineated will require both technical and computational innovation, but will rely to a larger extent on meaningful data sharing.
Collapse
|
467
|
Aldinger KA, Timms AE, Thomson Z, Mirzaa GM, Bennett JT, Rosenberg AB, Roco CM, Hirano M, Abidi F, Haldipur P, Cheng CV, Collins S, Park K, Zeiger J, Overmann LM, Alkuraya FS, Biesecker LG, Braddock SR, Cathey S, Cho MT, Chung BHY, Everman DB, Zarate YA, Jones JR, Schwartz CE, Goldstein A, Hopkin RJ, Krantz ID, Ladda RL, Leppig KA, McGillivray BC, Sell S, Wusik K, Gleeson JG, Nickerson DA, Bamshad MJ, Gerrelli D, Lisgo SN, Seelig G, Ishak GE, Barkovich AJ, Curry CJ, Glass IA, Millen KJ, Doherty D, Dobyns WB. Redefining the Etiologic Landscape of Cerebellar Malformations. Am J Hum Genet 2019; 105:606-615. [PMID: 31474318 PMCID: PMC6731369 DOI: 10.1016/j.ajhg.2019.07.019] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 07/26/2019] [Indexed: 11/15/2022] Open
Abstract
Cerebellar malformations are diverse congenital anomalies frequently associated with developmental disability. Although genetic and prenatal non-genetic causes have been described, no systematic analysis has been performed. Here, we present a large-exome sequencing study of Dandy-Walker malformation (DWM) and cerebellar hypoplasia (CBLH). We performed exome sequencing in 282 individuals from 100 families with DWM or CBLH, and we established a molecular diagnosis in 36 of 100 families, with a significantly higher yield for CBLH (51%) than for DWM (16%). The 41 variants impact 27 neurodevelopmental-disorder-associated genes, thus demonstrating that CBLH and DWM are often features of monogenic neurodevelopmental disorders. Though only seven monogenic causes (19%) were identified in more than one individual, neuroimaging review of 131 additional individuals confirmed cerebellar abnormalities in 23 of 27 genetic disorders (85%). Prenatal risk factors were frequently found among individuals without a genetic diagnosis (30 of 64 individuals [47%]). Single-cell RNA sequencing of prenatal human cerebellar tissue revealed gene enrichment in neuronal and vascular cell types; this suggests that defective vasculogenesis may disrupt cerebellar development. Further, de novo gain-of-function variants in PDGFRB, a tyrosine kinase receptor essential for vascular progenitor signaling, were associated with CBLH, and this discovery links genetic and non-genetic etiologies. Our results suggest that genetic defects impact specific cerebellar cell types and implicate abnormal vascular development as a mechanism for cerebellar malformations. We also confirmed a major contribution for non-genetic prenatal factors in individuals with cerebellar abnormalities, substantially influencing diagnostic evaluation and counseling regarding recurrence risk and prognosis.
Collapse
Affiliation(s)
- Kimberly A Aldinger
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Andrew E Timms
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Zachary Thomson
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Ghayda M Mirzaa
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA; Department of Pediatrics, University of Washington, Seattle, WA 98105, USA
| | - James T Bennett
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98101, USA; Department of Pediatrics, University of Washington, Seattle, WA 98105, USA
| | - Alexander B Rosenberg
- Department of Electrical Engineering, University of Washington, Seattle, WA 98105, USA
| | - Charles M Roco
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA
| | - Matthew Hirano
- Department of Electrical Engineering, University of Washington, Seattle, WA 98105, USA
| | - Fatima Abidi
- Greenwood Genetic Center, Greenwood, SC 29646, USA
| | - Parthiv Haldipur
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Chi V Cheng
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Sarah Collins
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Kaylee Park
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Jordan Zeiger
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Lynne M Overmann
- Institute of Genetic Medicine, Newcastle University, International Centre for life, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK
| | - Fowzan S Alkuraya
- Department of Genetics, King Faisal Specialist Hospital Research Center, Riyadh, 11211, Saudi Arabia
| | - Leslie G Biesecker
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892 USA
| | - Stephen R Braddock
- Department of Pediatrics, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Sara Cathey
- Greenwood Genetic Center, Greenwood, SC 29646, USA
| | | | - Brian H Y Chung
- Department of Pediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | | | - Yuri A Zarate
- Section of Genetics and Metabolism, University of Arkansas for Medical Sciences, Little Rock, AR, 72202, USA
| | | | | | - Amy Goldstein
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA; The Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Robert J Hopkin
- Division of Human Genetics, Department of Pediatrics, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Ian D Krantz
- The Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA; Division of Human Genetics and Molecular Biology, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104 USA
| | - Roger L Ladda
- Department of Pediatrics, Milton S Hershey Medical Center, Hershey, PA 17033, USA; Departments of Pathology, Milton S Hershey Medical Center, Hershey, PA 17033, USA
| | - Kathleen A Leppig
- Genetic Services, Kaiser Permanente Washington, Seattle, WA 98112, USA
| | - Barbara C McGillivray
- Department of Medical Genetics, Children's and Women's Health Centre of British Columbia, Vancouver, BC V6H 3N1, Canada
| | - Susan Sell
- Department of Pediatrics, Milton S Hershey Medical Center, Hershey, PA 17033, USA
| | - Katherine Wusik
- Division of Human Genetics, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Joseph G Gleeson
- Department of Neurosciences, Howard Hughes Medical Institute, University of California, San Diego, La Jolla, CA 92093, USA
| | - Deborah A Nickerson
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA; University of Washington Center for Mendelian Genomics, Seattle, WA 98195, USA
| | - Michael J Bamshad
- Department of Pediatrics, University of Washington, Seattle, WA 98105, USA; Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA; University of Washington Center for Mendelian Genomics, Seattle, WA 98195, USA
| | - Dianne Gerrelli
- University College London Institute of Child Health, London WC1N 1EH, UK
| | - Steven N Lisgo
- Institute of Genetic Medicine, Newcastle University, International Centre for life, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK
| | - Georg Seelig
- Department of Electrical Engineering, University of Washington, Seattle, WA 98105, USA; Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, WA 98195, USA
| | - Gisele E Ishak
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA; Department of Radiology, University of Washington, Seattle, WA 98195, USA
| | - A James Barkovich
- Departments of Radiology, Neurology, Pediatrics, and Neurosurgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Cynthia J Curry
- Genetic Medicine, Department of Pediatrics, University of California San Francisco, Fresno, CA, 93701, USA
| | - Ian A Glass
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA; Department of Pediatrics, University of Washington, Seattle, WA 98105, USA
| | - Kathleen J Millen
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA; Department of Pediatrics, University of Washington, Seattle, WA 98105, USA
| | - Dan Doherty
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA; Department of Pediatrics, University of Washington, Seattle, WA 98105, USA
| | - William B Dobyns
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA; Department of Pediatrics, University of Washington, Seattle, WA 98105, USA; Department of Neurology, University of Washington, Seattle, WA 98105, USA.
| |
Collapse
|
468
|
Nakajima R, Takao K, Hattori S, Shoji H, Komiyama NH, Grant SGN, Miyakawa T. Comprehensive behavioral analysis of heterozygous Syngap1 knockout mice. Neuropsychopharmacol Rep 2019; 39:223-237. [PMID: 31323176 PMCID: PMC7292322 DOI: 10.1002/npr2.12073] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/19/2019] [Accepted: 06/19/2019] [Indexed: 12/23/2022] Open
Abstract
AIMS Synaptic Ras GTPase-activating protein 1 (SYNGAP1) regulates synaptic plasticity through AMPA receptor trafficking. SYNGAP1 mutations have been found in human patients with intellectual disability (ID) and autism spectrum disorder (ASD). Almost every individual with SYNGAP1-related ID develops epilepsy, and approximately 50% have ASD. SYNGAP1-related ID is estimated to account for at least 1% of ID cases. In mouse models with Syngap1 mutations, strong cognitive and affective dysfunctions have been reported, yet some findings are inconsistent across studies. To further understand the behavioral significance of the SYNGAP1 gene, we assessed various domains of behavior in Syngap1 heterozygous mutant mice using a behavioral test battery. METHODS Male mice with a heterozygous mutation in the Syngap1 gene (Syngap1-/+ mice) created by Seth Grant's group were subjected to a battery of comprehensive behavioral tests, which examined general health, and neurological screens, rotarod, hot plate, open field, light/dark transition, elevated plus maze, social interaction, prepulse inhibition, Porsolt forced swim, tail suspension, gait analysis, T-maze, Y-maze, Barnes maze, contextual and cued fear conditioning, and home cage locomotor activity. To control for type I errors due to multiple-hypothesis testing, P-values below the false discovery rate calculated by the Benjamini-Hochberg method were considered as study-wide statistically significant. RESULTS Syngap1-/+ mice showed increased locomotor activity, decreased prepulse inhibition, and impaired working and reference spatial memory, consistent with preceding studies. Impairment of context fear memory and increased startle reflex in Syngap1 mutant mice could not be reproduced. Significant decreases in sensitivity to painful stimuli and impaired motor function were observed in Syngap1-/+ mice. Decreased anxiety-like behavior and depression-like behavior were noted, although increased locomotor activity is a potential confounding factor of these phenotypes. Increased home cage locomotor activity indicated hyperlocomotor activity not only in specific behavioral test conditions but also in familiar environments. CONCLUSION In Syngap1-/+ mice, we could reproduce most of the previously reported cognitive and emotional deficits. The decreased sensitivity to painful stimuli and impaired motor function that we found in Syngap1-/+ mice are consistent with the common characteristics of patients with SYNGAP-related ID. We further confirmed that the Syngap1 heterozygote mouse recapitulates the symptoms of ID and ASD patients.
Collapse
Affiliation(s)
- Ryuichi Nakajima
- Division of Systems Medical Science, Institute for Comprehensive Medical ScienceFujita Health UniversityToyoakeJapan
| | - Keizo Takao
- Division of Animal Resources and Development, Life Science Research CenterUniversity of ToyamaToyamaJapan
- Section of Behavior Patterns, Center for Genetic Analysis of BehaviorNational Institute for Physiological SciencesOkazakiJapan
| | - Satoko Hattori
- Division of Systems Medical Science, Institute for Comprehensive Medical ScienceFujita Health UniversityToyoakeJapan
| | - Hirotaka Shoji
- Division of Systems Medical Science, Institute for Comprehensive Medical ScienceFujita Health UniversityToyoakeJapan
| | - Noboru H. Komiyama
- Centre for Clinical Brain Sciences, The Patrick Wild Centre for Research into Autism, Fragile X Syndrome & Intellectual DisabilitiesThe University of EdinburghEdinburghUK
| | - Seth G. N. Grant
- Genes to Cognition Program, Centre for Clinical Brain SciencesUniversity of EdinburghEdinburghUK
| | - Tsuyoshi Miyakawa
- Division of Systems Medical Science, Institute for Comprehensive Medical ScienceFujita Health UniversityToyoakeJapan
- Section of Behavior Patterns, Center for Genetic Analysis of BehaviorNational Institute for Physiological SciencesOkazakiJapan
| |
Collapse
|
469
|
Lin Y, Gao H, Lin C, Chen Y, Zhou S, Lin W, Zheng Z, Li X, Li M, Fu Q. Biochemical, Clinical, and Genetic Characteristics of Short/Branched Chain Acyl-CoA Dehydrogenase Deficiency in Chinese Patients by Newborn Screening. Front Genet 2019; 10:802. [PMID: 31555323 PMCID: PMC6727870 DOI: 10.3389/fgene.2019.00802] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 07/31/2019] [Indexed: 11/13/2022] Open
Abstract
Short/branched chain acyl-CoA dehydrogenase deficiency (SBCADD) is an autosomal recessive disorder of impaired isoleucine catabolism caused by mutations in the ACADSB gene. There are limited SBCADD cases worldwide and to date no Chinese patients with SBCADD have been reported. The aim of this study was to investigate the biochemical, clinical information, and genotypes of twelve patients with SBCADD in China for the first time. The estimated incidence of SBCADD was 1 in 30,379 in Quanzhou, China. The initial newborn screening (NBS) results revealed that all patients showed slightly or moderately elevated C5 concentrations with C5/C2 and C5/C3 ratios in the reference range, which has the highest risk of being missed. All patients who underwent urinary organic acid analysis showed elevation of 2-methylburtyrylglycine in urine. All patients were asymptomatic at diagnosis, and had normal growth and development during follow-up. Eight different variants in the ACADSB gene, including five previously unreported variants were identified, namely c.596A > G (p.Tyr199Cys), c.653T > C (p.Leu218Pro), c.746del (p.Pro249Leufs*15), c.886G > T (p.Gly296*) and c.923G > A (p.Cys308Tyr). The most common variant was c.1165A > G (33.3%), followed by c.275C > G (20.8%). All previously unreported variants may cause structural damage and dysfunction of SBCAD, as predicted by bioinformatics analysis. Thus, our findings indicate that SBCADD may be more frequent in the Chinese population than previously thought and newborn screening, combined with genetic testing is important for timely diagnosis. Although the clinical course of Chinese patients with SBCADD is likely benign, longitudinal follow-up may be helpful to better understand the natural history of SBCADD.
Collapse
Affiliation(s)
- Yiming Lin
- Neonatal Disease Screening Center, Quanzhou Maternal and Children's Hospital, Quanzhou, China
| | - Hongzhi Gao
- Department of Central Laboratory, 2nd Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Chunmei Lin
- Neonatal Disease Screening Center, Quanzhou Maternal and Children's Hospital, Quanzhou, China
| | - Yanru Chen
- Neonatal Disease Screening Center, Quanzhou Maternal and Children's Hospital, Quanzhou, China
| | - Shuang Zhou
- Department of Central Laboratory, 2nd Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Weihua Lin
- Neonatal Disease Screening Center, Quanzhou Maternal and Children's Hospital, Quanzhou, China
| | - Zhenzhu Zheng
- Neonatal Disease Screening Center, Quanzhou Maternal and Children's Hospital, Quanzhou, China
| | - Xiaoqing Li
- Department of Neonatal Intensive Care Unit, Quanzhou Maternal and Children's Hospital Quanzhou, China
| | - Min Li
- Zhejiang Biosan Biochemical Technologies Co., Ltd, Hangzhou, China
| | - Qingliu Fu
- Neonatal Disease Screening Center, Quanzhou Maternal and Children's Hospital, Quanzhou, China
| |
Collapse
|
470
|
Agarwal M, Johnston MV, Stafstrom CE. SYNGAP1 mutations: Clinical, genetic, and pathophysiological features. Int J Dev Neurosci 2019; 78:65-76. [PMID: 31454529 DOI: 10.1016/j.ijdevneu.2019.08.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 08/13/2019] [Accepted: 08/23/2019] [Indexed: 01/23/2023] Open
Abstract
SYNGAP1 is a gene that encodes the cytosolic protein SYNGAP1 (SYNaptic GTPase Activating Protein), an essential component of the postsynaptic density at excitatory glutamatergic neurons. SYNGAP1 plays critical roles in synaptic development, structure, function, and plasticity. Mutations in SYNGAP1 result in a neurodevelopmental disorder termed Mental retardation-type 5 (MRD5, OMIM #612621) with a phenotype consisting of intellectual disability, motor impairments, and epilepsy, attesting to the importance of this protein for normal brain development. Here we review the clinical and pathophysiological aspects of SYNGAP1 mutations with a focus on their effect on synaptogenesis, neural circuit function, and cellular plasticity. We conclude by comparing the molecular pathogenesis of SYNGAP1 mutations with those of another neurodevelopmental disorder that affects dendritic function and cellular plasticity, fragile X syndrome. Insights into the molecular similarities and differences underlying these disorders could lead to rationale therapy development.
Collapse
Affiliation(s)
- Mudit Agarwal
- All India Institute of Medical Sciences, New Delhi, India
| | - Michael V Johnston
- Department of Neurology and Developmental Medicine, The Kennedy Krieger Institute, Baltimore, MD, United States
| | - Carl E Stafstrom
- Division of Pediatric Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
471
|
Feliciano P, Zhou X, Astrovskaya I, Turner TN, Wang T, Brueggeman L, Barnard R, Hsieh A, Snyder LG, Muzny DM, Sabo A, Gibbs RA, Eichler EE, O’Roak BJ, Michaelson JJ, Volfovsky N, Shen Y, Chung WK. Exome sequencing of 457 autism families recruited online provides evidence for autism risk genes. NPJ Genom Med 2019; 4:19. [PMID: 31452935 PMCID: PMC6707204 DOI: 10.1038/s41525-019-0093-8] [Citation(s) in RCA: 153] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 07/11/2019] [Indexed: 12/30/2022] Open
Abstract
Autism spectrum disorder (ASD) is a genetically heterogeneous condition, caused by a combination of rare de novo and inherited variants as well as common variants in at least several hundred genes. However, significantly larger sample sizes are needed to identify the complete set of genetic risk factors. We conducted a pilot study for SPARK (SPARKForAutism.org) of 457 families with ASD, all consented online. Whole exome sequencing (WES) and genotyping data were generated for each family using DNA from saliva. We identified variants in genes and loci that are clinically recognized causes or significant contributors to ASD in 10.4% of families without previous genetic findings. In addition, we identified variants that are possibly associated with ASD in an additional 3.4% of families. A meta-analysis using the TADA framework at a false discovery rate (FDR) of 0.1 provides statistical support for 26 ASD risk genes. While most of these genes are already known ASD risk genes, BRSK2 has the strongest statistical support and reaches genome-wide significance as a risk gene for ASD (p-value = 2.3e-06). Future studies leveraging the thousands of individuals with ASD who have enrolled in SPARK are likely to further clarify the genetic risk factors associated with ASD as well as allow accelerate ASD research that incorporates genetic etiology.
Collapse
Affiliation(s)
| | - Xueya Zhou
- Department of Systems Biology, Columbia University, New York, NY 10032 USA
| | | | - Tychele N. Turner
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195 USA
| | - Tianyun Wang
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195 USA
| | - Leo Brueggeman
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA 52242 USA
| | - Rebecca Barnard
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR 97239 USA
| | - Alexander Hsieh
- Department of Systems Biology, Columbia University, New York, NY 10032 USA
| | | | - Donna M. Muzny
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030 USA
| | - Aniko Sabo
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030 USA
| | - Richard A. Gibbs
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030 USA
| | - Evan E. Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195 USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195 USA
| | - Brian J. O’Roak
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR 97239 USA
| | - Jacob J. Michaelson
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA 52242 USA
| | | | - Yufeng Shen
- Department of Systems Biology, Columbia University, New York, NY 10032 USA
| | - Wendy K. Chung
- Simons Foundation, New York, NY 10010 USA
- Department of Pediatrics, Columbia University Medical Center, New York, NY 10032 USA
| |
Collapse
|
472
|
Ibaraki K, Hamada N, Iwamoto I, Ito H, Kawamura N, Morishita R, Tabata H, Nagata KI. Expression Analyses of POGZ, A Responsible Gene for Neurodevelopmental Disorders, during Mouse Brain Development. Dev Neurosci 2019; 41:139-148. [DOI: 10.1159/000502128] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 07/15/2019] [Indexed: 11/19/2022] Open
Abstract
POGZ is a heterochromatin protein 1 α-binding protein and regulates gene expression. On the other hand, accumulating pieces of evidence indicate that the POGZ gene abnormalities are involved in various neurodevelopmental disorders. In this study, we prepared a specific antibody against POGZ, anti-POGZ, and carried out biochemical and morphological characterization with mouse brain tissues. Western blotting analyses revealed that POGZ is expressed strongly at embryonic day 13 and then gradually decreased throughout the brain development process. In immunohistochemical analyses, POGZ was found to be enriched in cerebrocortical and hippocampal neurons in the early developmental stage. The nuclear expression was also detected in Purkinje cells in cerebellum at postnatal day (P)7 and P15 but disappeared at P30. In primary cultured hippocampal neurons, while POGZ was distributed mainly in the nucleus, it was also visualized in axon and dendrites with partial localization at synapses in consistency with the results obtained in biochemical fractionation analyses. The obtained results suggest that POGZ takes part in the regulation of synaptic function as well as gene expression during brain development.
Collapse
|
473
|
Holland KD, Bouley TM, Horn PS. Location: A surrogate for personalized treatment of sodium channelopathies. Ann Neurol 2019; 84:1-9. [PMID: 30048009 DOI: 10.1002/ana.25268] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 05/23/2018] [Accepted: 05/31/2018] [Indexed: 11/11/2022]
Abstract
Voltage-gated sodium channels have been implicated in numerous inherited paroxysmal disorders of the nervous system, muscle, and heart. Our goal is to provide a framework that helps neurologists understand the clinical and treatment implications of sodium channel variants they encounter in clinical practice. This will be accomplished through our objectives of (1) recognizing the relationship between location of a missense sodium channel gene variant and its effect on channel function, and (2) categorizing clinical phenotype based on functional effect of a variant. The relationship between location, function, and treatment response is also discussed. These interactions can be illustrated by the sodium channelopathies seen in people with epilepsy but generalize beyond that disorder. Ann Neurol 2018;83:1-9.
Collapse
Affiliation(s)
- Katherine D Holland
- Division of Child Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Thomas M Bouley
- McMicken College of Arts and Sciences, University of Cincinnati, Cincinnati, OH
| | - Paul S Horn
- Division of Child Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| |
Collapse
|
474
|
Gao F, Elliott NJ, Ho J, Sharp A, Shokhirev MN, Hargreaves DC. Heterozygous Mutations in SMARCA2 Reprogram the Enhancer Landscape by Global Retargeting of SMARCA4. Mol Cell 2019; 75:891-904.e7. [PMID: 31375262 PMCID: PMC7291823 DOI: 10.1016/j.molcel.2019.06.024] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 04/24/2019] [Accepted: 06/18/2019] [Indexed: 12/22/2022]
Abstract
Mammalian SWI/SNF complexes are multi-subunit chromatin remodeling complexes associated with an ATPase (either SMARCA4 or SMARCA2). Heterozygous mutations in the SMARCA2 ATPase cause Nicolaides-Baraitser syndrome (NCBRS), an intellectual disability syndrome associated with delayed speech onset. We engineered human embryonic stem cells (hESCs) to carry NCBRS-associated heterozygous SMARCA2 K755R or R1159Q mutations. While SMARCA2 mutant hESCs were phenotypically normal, differentiation to neural progenitors cells (NPCs) was severely impaired. We find that SMARCA2 mutations cause enhancer reorganization with loss of SOX3-dependent neural enhancers and prominent emergence of astrocyte-specific de novo enhancers. Changes in chromatin accessibility at enhancers were associated with an increase in SMARCA2 binding and retargeting of SMARCA4. We show that the AP-1 family member FRA2 is aberrantly overexpressed in SMARCA2 mutant NPCs, where it functions as a pioneer factor at de novo enhancers. Together, our results demonstrate that SMARCA2 mutations cause impaired differentiation through enhancer reprogramming via inappropriate targeting of SMARCA4.
Collapse
Affiliation(s)
- Fangjian Gao
- Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Nicholas J Elliott
- Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Josephine Ho
- Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Alexzander Sharp
- Biological Sciences Graduate Program, University of California, San Diego, La Jolla, CA 92037, USA
| | - Maxim N Shokhirev
- Razavi Newman Integrative Genomics and Bioinformatics Core, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Diana C Hargreaves
- Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| |
Collapse
|
475
|
Taylor J, Craft J, Blair E, Wordsworth S, Beeson D, Chandratre S, Cossins J, Lester T, Németh AH, Ormondroyd E, Patel SY, Pagnamenta AT, Taylor JC, Thomson KL, Watkins H, Wilkie AOM, Knight JC. Implementation of a genomic medicine multi-disciplinary team approach for rare disease in the clinical setting: a prospective exome sequencing case series. Genome Med 2019; 11:46. [PMID: 31345272 PMCID: PMC6659244 DOI: 10.1186/s13073-019-0651-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 06/10/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND A multi-disciplinary approach to promote engagement, inform decision-making and support clinicians and patients is increasingly advocated to realise the potential of genome-scale sequencing in the clinic for patient benefit. Here we describe the results of establishing a genomic medicine multi-disciplinary team (GM-MDT) for case selection, processing, interpretation and return of results. METHODS We report a consecutive case series of 132 patients (involving 10 medical specialties with 43.2% cases having a neurological disorder) undergoing exome sequencing over a 10-month period following the establishment of the GM-MDT in a UK NHS tertiary referral hospital. The costs of running the MDT are also reported. RESULTS In total 76 cases underwent exome sequencing following triage by the GM-MDT with a clinically reportable molecular diagnosis in 24 (31.6%). GM-MDT composition, operation and rationale for whether to proceed to sequencing are described, together with the health economics (cost per case for the GM-MDT was £399.61), the utility and informativeness of exome sequencing for molecular diagnosis in a range of traits, the impact of choice of sequencing strategy on molecular diagnostic rates and challenge of defining pathogenic variants. In 5 cases (6.6%), an alternative clinical diagnosis was indicated by sequencing results. Examples were also found where findings from initial genetic testing were reconsidered in the light of exome sequencing including TP63 and PRKAG2 (detection of a partial exon deletion and a mosaic missense pathogenic variant respectively); together with tissue-specific mosaicism involving a cytogenetic abnormality following a normal prenatal array comparative genomic hybridization. CONCLUSIONS This consecutive case series describes the results and experience of a multidisciplinary team format that was found to promote engagement across specialties and facilitate return of results to the responsible clinicians.
Collapse
Affiliation(s)
- John Taylor
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Jude Craft
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Edward Blair
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Sarah Wordsworth
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
- National Institute for Health Research Biomedical Research Centre, Oxford, UK
| | - David Beeson
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Saleel Chandratre
- Children’s Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Judith Cossins
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Tracy Lester
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Andrea H. Németh
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Nuffield Department of Clinical Neurosciences, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Elizabeth Ormondroyd
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- National Institute for Health Research Biomedical Research Centre, Oxford, UK
| | - Smita Y. Patel
- National Institute for Health Research Biomedical Research Centre, Oxford, UK
- Department of Clinical Immunology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Alistair T. Pagnamenta
- National Institute for Health Research Biomedical Research Centre, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Jenny C. Taylor
- National Institute for Health Research Biomedical Research Centre, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Kate L. Thomson
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Hugh Watkins
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- National Institute for Health Research Biomedical Research Centre, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Andrew O. M. Wilkie
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- National Institute for Health Research Biomedical Research Centre, Oxford, UK
| | - Julian C. Knight
- National Institute for Health Research Biomedical Research Centre, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| |
Collapse
|
476
|
Hoffmann A, Spengler D. Chromatin Remodeling Complex NuRD in Neurodevelopment and Neurodevelopmental Disorders. Front Genet 2019; 10:682. [PMID: 31396263 PMCID: PMC6667665 DOI: 10.3389/fgene.2019.00682] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 07/01/2019] [Indexed: 01/22/2023] Open
Abstract
The nucleosome remodeling and deacetylase (NuRD) complex presents one of the major chromatin remodeling complexes in mammalian cells. Here, we discuss current evidence for NuRD's role as an important epigenetic regulator of gene expression in neural stem cell (NSC) and neural progenitor cell (NPC) fate decisions in brain development. With the formation of the cerebellar and cerebral cortex, NuRD facilitates experience-dependent cerebellar plasticity and regulates additionally cerebral subtype specification and connectivity in postmitotic neurons. Consistent with these properties, genetic variation in NuRD's subunits emerges as important risk factor in common polygenic forms of neurodevelopmental disorders (NDDs) and neurodevelopment-related psychiatric disorders such as schizophrenia (SCZ) and bipolar disorder (BD). Overall, these findings highlight the critical role of NuRD in chromatin regulation in brain development and in mental health and disease.
Collapse
Affiliation(s)
| | - Dietmar Spengler
- Epigenomics of Early Life, Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| |
Collapse
|
477
|
Pathogenic Variants in STXBP1 and in Genes for GABAa Receptor Subunities Cause Atypical Rett/Rett-like Phenotypes. Int J Mol Sci 2019; 20:ijms20153621. [PMID: 31344879 PMCID: PMC6696386 DOI: 10.3390/ijms20153621] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/16/2019] [Accepted: 07/19/2019] [Indexed: 12/19/2022] Open
Abstract
Rett syndrome (RTT) is a neurodevelopmental disorder, affecting 1 in 10,000 girls. Intellectual disability, loss of speech and hand skills with stereotypies, seizures and ataxia are recurrent features. Stringent diagnostic criteria distinguish classical Rett, caused by a MECP2 pathogenic variant in 95% of cases, from atypical girls, 40-73% carrying MECP2 variants, and rarely CDKL5 and FOXG1 alterations. A large fraction of atypical and RTT-like patients remain without genetic cause. Next Generation Sequencing (NGS) targeted to multigene panels/Whole Exome Sequencing (WES) in 137 girls suspected for RTT led to the identification of a de novo variant in STXBP1 gene in four atypical RTT and two RTT-like girls. De novo pathogenic variants-one in GABRB2 and, for first time, one in GABRG2-were disclosed in classic and atypical RTT patients. Interestingly, the GABRG2 variant occurred at low rate percentage in blood and buccal swabs, reinforcing the relevance of mosaicism in neurological disorders. We confirm the role of STXBP1 in atypical RTT/RTT-like patients if early psychomotor delay and epilepsy before 2 years of age are observed, indicating its inclusion in the RTT diagnostic panel. Lastly, we report pathogenic variants in Gamma-aminobutyric acid-A (GABAa) receptors as a cause of atypical/classic RTT phenotype, in accordance with the deregulation of GABAergic pathway observed in MECP2 defective in vitro and in vivo models.
Collapse
|
478
|
Andrade A, Brennecke A, Mallat S, Brown J, Gomez-Rivadeneira J, Czepiel N, Londrigan L. Genetic Associations between Voltage-Gated Calcium Channels and Psychiatric Disorders. Int J Mol Sci 2019; 20:E3537. [PMID: 31331039 PMCID: PMC6679227 DOI: 10.3390/ijms20143537] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/12/2019] [Accepted: 07/13/2019] [Indexed: 12/23/2022] Open
Abstract
Psychiatric disorders are mental, behavioral or emotional disorders. These conditions are prevalent, one in four adults suffer from any type of psychiatric disorders world-wide. It has always been observed that psychiatric disorders have a genetic component, however, new methods to sequence full genomes of large cohorts have identified with high precision genetic risk loci for these conditions. Psychiatric disorders include, but are not limited to, bipolar disorder, schizophrenia, autism spectrum disorder, anxiety disorders, major depressive disorder, and attention-deficit and hyperactivity disorder. Several risk loci for psychiatric disorders fall within genes that encode for voltage-gated calcium channels (CaVs). Calcium entering through CaVs is crucial for multiple neuronal processes. In this review, we will summarize recent findings that link CaVs and their auxiliary subunits to psychiatric disorders. First, we will provide a general overview of CaVs structure, classification, function, expression and pharmacology. Next, we will summarize tools to study risk loci associated with psychiatric disorders. We will examine functional studies of risk variations in CaV genes when available. Finally, we will review pharmacological evidence of the use of CaV modulators to treat psychiatric disorders. Our review will be of interest for those studying pathophysiological aspects of CaVs.
Collapse
Affiliation(s)
- Arturo Andrade
- Department of Biological Sciences, University of New Hampshire, Durham, NH 03824, USA.
| | - Ashton Brennecke
- Department of Biological Sciences, University of New Hampshire, Durham, NH 03824, USA
| | - Shayna Mallat
- Department of Biological Sciences, University of New Hampshire, Durham, NH 03824, USA
| | - Julian Brown
- Department of Biological Sciences, University of New Hampshire, Durham, NH 03824, USA
| | | | - Natalie Czepiel
- Department of Biological Sciences, University of New Hampshire, Durham, NH 03824, USA
| | - Laura Londrigan
- Department of Biological Sciences, University of New Hampshire, Durham, NH 03824, USA
| |
Collapse
|
479
|
Martin AR, Daly MJ, Robinson EB, Hyman SE, Neale BM. Predicting Polygenic Risk of Psychiatric Disorders. Biol Psychiatry 2019; 86:97-109. [PMID: 30737014 PMCID: PMC6599546 DOI: 10.1016/j.biopsych.2018.12.015] [Citation(s) in RCA: 156] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 11/18/2018] [Accepted: 12/08/2018] [Indexed: 12/27/2022]
Abstract
Genetics provides two major opportunities for understanding human disease-as a transformative line of etiological inquiry and as a biomarker for heritable diseases. In psychiatry, biomarkers are very much needed for both research and treatment, given the heterogenous populations identified by current phenomenologically based diagnostic systems. To date, however, useful and valid biomarkers have been scant owing to the inaccessibility and complexity of human brain tissue and consequent lack of insight into disease mechanisms. Genetic biomarkers are therefore especially promising for psychiatric disorders. Genome-wide association studies of common diseases have matured over the last decade, generating the knowledge base for increasingly informative individual-level genetic risk prediction. In this review, we discuss fundamental concepts involved in computing genetic risk with current methods, strengths and weaknesses of various approaches, assessments of utility, and applications to various psychiatric disorders and related traits. Although genetic risk prediction has become increasingly straightforward to apply and common in published studies, there are important pitfalls to avoid. At present, the clinical utility of genetic risk prediction is still low; however, there is significant promise for future clinical applications as the ancestral diversity and sample sizes of genome-wide association studies increase. We discuss emerging data and methods aimed at improving the value of genetic risk prediction for disentangling disease mechanisms and stratifying subjects for epidemiological and clinical studies. For all applications, it is absolutely critical that polygenic risk prediction is applied with appropriate methodology and control for confounding to avoid repeating some mistakes of the candidate gene era.
Collapse
Affiliation(s)
- Alicia R Martin
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts; Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, Massachusetts; Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, Massachusetts.
| | - Mark J Daly
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts; Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, Massachusetts; Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Elise B Robinson
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts; Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, Massachusetts; Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, Massachusetts; Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Steven E Hyman
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, Massachusetts; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts
| | - Benjamin M Neale
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts; Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, Massachusetts; Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| |
Collapse
|
480
|
Paternal-age-related de novo mutations and risk for five disorders. Nat Commun 2019; 10:3043. [PMID: 31292440 PMCID: PMC6620346 DOI: 10.1038/s41467-019-11039-6] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 06/05/2019] [Indexed: 02/08/2023] Open
Abstract
There are established associations between advanced paternal age and offspring risk for psychiatric and developmental disorders. These are commonly attributed to genetic mutations, especially de novo single nucleotide variants (dnSNVs), that accumulate with increasing paternal age. However, the actual magnitude of risk from such mutations in the male germline is unknown. Quantifying this risk would clarify the clinical significance of delayed paternity. Using parent-child trio whole-exome-sequencing data, we estimate the relationship between paternal-age-related dnSNVs and risk for five disorders: autism spectrum disorder (ASD), congenital heart disease, neurodevelopmental disorders with epilepsy, intellectual disability and schizophrenia (SCZ). Using Danish registry data, we investigate whether epidemiologic associations between each disorder and older fatherhood are consistent with the estimated role of dnSNVs. We find that paternal-age-related dnSNVs confer a small amount of risk for these disorders. For ASD and SCZ, epidemiologic associations with delayed paternity reflect factors that may not increase with age. Advanced paternal age associates with increased risk for psychiatric and developmental disorders in offspring. Here, Taylor et al. utilize parent-child trio exome sequencing data sets to estimate the contribution of paternal age-related de novo mutations to multiple disorders, including heart disease and schizophrenia.
Collapse
|
481
|
Kumagai K, Hanada K. Structure, functions and regulation of CERT, a lipid-transfer protein for the delivery of ceramide at the ER-Golgi membrane contact sites. FEBS Lett 2019; 593:2366-2377. [PMID: 31254361 DOI: 10.1002/1873-3468.13511] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/26/2019] [Accepted: 06/26/2019] [Indexed: 12/17/2022]
Abstract
The inter-organelle transport of lipids must be regulated to ensure appropriate lipid composition of each organelle. In mammalian cells, ceramide synthesised in the endoplasmic reticulum (ER) is transported to the trans-Golgi regions, where ceramide is converted to sphingomyelin (SM) with the concomitant production of diacylglycerol. Ceramide transport protein (CERT) transports ceramide from the ER to the trans-Golgi regions at the ER-Golgi membrane contact sites (MCS). The function of CERT is down-regulated by multisite phosphorylation of a serine-repeat motif (SRM) and up-regulated by phosphorylation of serine 315 in CERT. Multisite phosphorylation of the SRM is primed by protein kinase D, which is activated by diacylglycerol. The function of CERT is regulated by a phosphorylation-dependent feedback mechanism in response to cellular requirements of SM. CERT-dependent ceramide transport is also affected by the pool of phosphatidylinositol (PtdIns)-4-phosphate (PtdIns(4)P) in the trans-Golgi regions, while the PtdIns(4)P pool is regulated by PtdIns-4-kinases and oxysterol-binding protein. The ER-Golgi MCS may serve as inter-organelle communication zones, in which many factors work in concert to serve as an extensive rheostat of SM, diacylglycerol, cholesterol and PtdIns(4)P.
Collapse
Affiliation(s)
- Keigo Kumagai
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kentaro Hanada
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
482
|
Clinically-relevant postzygotic mosaicism in parents and children with developmental disorders in trio exome sequencing data. Nat Commun 2019; 10:2985. [PMID: 31278258 PMCID: PMC6611863 DOI: 10.1038/s41467-019-11059-2] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 06/12/2019] [Indexed: 12/22/2022] Open
Abstract
Mosaic genetic variants can have major clinical impact. We systematically analyse trio exome sequence data from 4,293 probands from the DDD Study with severe developmental disorders for pathogenic postzygotic mosaicism (PZM) in the child or a clinically-unaffected parent, and use ultrahigh-depth sequencing to validate candidate mosaic variants. We observe that levels of mosaicism for small genetic variants are usually equivalent in both saliva and blood and ~3% of causative de novo mutations exhibit PZM; this is an important observation, as the sibling recurrence risk is extremely low. We identify parental PZM in 21 trios (0.5% of trios), resulting in a substantially increased sibling recurrence risk in future pregnancies. Together, these forms of mosaicism account for 40 (1%) diagnoses in our cohort. Likely child-PZM mutations occur equally on both parental haplotypes, and the penetrance of detectable mosaic pathogenic variants overall is likely to be less than half that of constitutive variants.
Collapse
|
483
|
Hu H, Kahrizi K, Musante L, Fattahi Z, Herwig R, Hosseini M, Oppitz C, Abedini SS, Suckow V, Larti F, Beheshtian M, Lipkowitz B, Akhtarkhavari T, Mehvari S, Otto S, Mohseni M, Arzhangi S, Jamali P, Mojahedi F, Taghdiri M, Papari E, Soltani Banavandi MJ, Akbari S, Tonekaboni SH, Dehghani H, Ebrahimpour MR, Bader I, Davarnia B, Cohen M, Khodaei H, Albrecht B, Azimi S, Zirn B, Bastami M, Wieczorek D, Bahrami G, Keleman K, Vahid LN, Tzschach A, Gärtner J, Gillessen-Kaesbach G, Varaghchi JR, Timmermann B, Pourfatemi F, Jankhah A, Chen W, Nikuei P, Kalscheuer VM, Oladnabi M, Wienker TF, Ropers HH, Najmabadi H. Genetics of intellectual disability in consanguineous families. Mol Psychiatry 2019; 24:1027-1039. [PMID: 29302074 DOI: 10.1038/s41380-017-0012-2] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 10/19/2017] [Accepted: 10/30/2017] [Indexed: 01/17/2023]
Abstract
Autosomal recessive (AR) gene defects are the leading genetic cause of intellectual disability (ID) in countries with frequent parental consanguinity, which account for about 1/7th of the world population. Yet, compared to autosomal dominant de novo mutations, which are the predominant cause of ID in Western countries, the identification of AR-ID genes has lagged behind. Here, we report on whole exome and whole genome sequencing in 404 consanguineous predominantly Iranian families with two or more affected offspring. In 219 of these, we found likely causative variants, involving 77 known and 77 novel AR-ID (candidate) genes, 21 X-linked genes, as well as 9 genes previously implicated in diseases other than ID. This study, the largest of its kind published to date, illustrates that high-throughput DNA sequencing in consanguineous families is a superior strategy for elucidating the thousands of hitherto unknown gene defects underlying AR-ID, and it sheds light on their prevalence.
Collapse
Affiliation(s)
- Hao Hu
- Max-Planck-Institute for Molecular Genetics, 14195, Berlin, Germany.,Guangzhou Women and Children's Medical Center, 510623, Guangzhou, China
| | - Kimia Kahrizi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, 19857, Iran
| | - Luciana Musante
- Max-Planck-Institute for Molecular Genetics, 14195, Berlin, Germany
| | - Zohreh Fattahi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, 19857, Iran
| | - Ralf Herwig
- Max-Planck-Institute for Molecular Genetics, 14195, Berlin, Germany
| | - Masoumeh Hosseini
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, 19857, Iran
| | - Cornelia Oppitz
- IMP-Research Institute of Molecular Pathology, 1030, Vienna, Austria
| | - Seyedeh Sedigheh Abedini
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, 19857, Iran
| | - Vanessa Suckow
- Max-Planck-Institute for Molecular Genetics, 14195, Berlin, Germany
| | - Farzaneh Larti
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, 19857, Iran
| | - Maryam Beheshtian
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, 19857, Iran
| | | | - Tara Akhtarkhavari
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, 19857, Iran
| | - Sepideh Mehvari
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, 19857, Iran
| | - Sabine Otto
- Max-Planck-Institute for Molecular Genetics, 14195, Berlin, Germany
| | - Marzieh Mohseni
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, 19857, Iran
| | - Sanaz Arzhangi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, 19857, Iran
| | - Payman Jamali
- Shahrood Genetic Counseling Center, Welfare Office, Semnan, 36156, Iran
| | - Faezeh Mojahedi
- Mashhad Medical Genetic Counseling Center, Mashhad, 91767, Iran
| | - Maryam Taghdiri
- Shiraz Genetic Counseling Center, Welfare Office, Shiraz, Iran
| | - Elaheh Papari
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, 19857, Iran
| | | | - Saeide Akbari
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, 19857, Iran
| | - Seyed Hassan Tonekaboni
- Pediatric Neurology Research Center, Mofid Children's Hospital, Shahid Beheshti University of Medical Sciences, Tehran, 15468, Iran
| | - Hossein Dehghani
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, 19857, Iran
| | - Mohammad Reza Ebrahimpour
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, 19857, Iran
| | - Ingrid Bader
- Kinderzentrum München, Technische Universität München, 81377, München, Germany
| | - Behzad Davarnia
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, 19857, Iran
| | - Monika Cohen
- Children's Center Munich, 81377, Munich, Germany
| | - Hossein Khodaei
- Meybod Genetics Research Center, Welfare Organization, Yazd, 89651, Iran
| | - Beate Albrecht
- Institute of Human Genetics, University Hospital Essen, 45122, Essen, Germany
| | - Sarah Azimi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, 19857, Iran
| | - Birgit Zirn
- Genetikum Counseling Center, 70173, Stuttgart, Germany
| | - Milad Bastami
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, 19857, Iran
| | - Dagmar Wieczorek
- Institute of Human Genetics and Anthropology, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Gholamreza Bahrami
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, 19857, Iran
| | - Krystyna Keleman
- IMP-Research Institute of Molecular Pathology, 1030, Vienna, Austria.,Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA, 20147, USA
| | - Leila Nouri Vahid
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, 19857, Iran
| | - Andreas Tzschach
- Max-Planck-Institute for Molecular Genetics, 14195, Berlin, Germany.,Institute of Clinical Genetics, Technische Universität Dresden, Dresden, Germany
| | - Jutta Gärtner
- University Medical Center, Georg August University Göttingen, 37075, Göttingen, Germany
| | | | | | - Bernd Timmermann
- Max-Planck-Institute for Molecular Genetics, 14195, Berlin, Germany
| | | | - Aria Jankhah
- Shiraz Genetic Counseling Center, Shiraz, 71346, Iran
| | - Wei Chen
- Berlin Institute for Medical Systems Biology, Max Delbrueck Center for Molecular Medicine, 13125, Berlin, Germany
| | - Pooneh Nikuei
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | | | - Morteza Oladnabi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, 19857, Iran
| | - Thomas F Wienker
- Max-Planck-Institute for Molecular Genetics, 14195, Berlin, Germany
| | - Hans-Hilger Ropers
- Max-Planck-Institute for Molecular Genetics, 14195, Berlin, Germany. .,Institute of Human Genetics, University Medicine, Mainz, Germany.
| | - Hossein Najmabadi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, 19857, Iran. .,Kariminejad - Najmabadi Pathology & Genetics Centre, Tehran, 14667-13713, Iran.
| |
Collapse
|
484
|
Arranz J, Balducci E, Arató K, Sánchez-Elexpuru G, Najas S, Parras A, Rebollo E, Pijuan I, Erb I, Verde G, Sahun I, Barallobre MJ, Lucas JJ, Sánchez MP, de la Luna S, Arbonés ML. Impaired development of neocortical circuits contributes to the neurological alterations in DYRK1A haploinsufficiency syndrome. Neurobiol Dis 2019; 127:210-222. [PMID: 30831192 PMCID: PMC6753933 DOI: 10.1016/j.nbd.2019.02.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 01/14/2019] [Accepted: 02/27/2019] [Indexed: 12/18/2022] Open
Abstract
Autism spectrum disorders are early onset neurodevelopmental disorders characterized by deficits in social communication and restricted repetitive behaviors, yet they are quite heterogeneous in terms of their genetic basis and phenotypic manifestations. Recently, de novo pathogenic mutations in DYRK1A, a chromosome 21 gene associated to neuropathological traits of Down syndrome, have been identified in patients presenting a recognizable syndrome included in the autism spectrum. These mutations produce DYRK1A kinases with partial or complete absence of the catalytic domain, or they represent missense mutations located within this domain. Here, we undertook an extensive biochemical characterization of the DYRK1A missense mutations reported to date and show that most of them, but not all, result in enzymatically dead DYRK1A proteins. We also show that haploinsufficient Dyrk1a+/- mutant mice mirror the neurological traits associated with the human pathology, such as defective social interactions, stereotypic behaviors and epileptic activity. These mutant mice present altered proportions of excitatory and inhibitory neocortical neurons and synapses. Moreover, we provide evidence that alterations in the production of cortical excitatory neurons are contributing to these defects. Indeed, by the end of the neurogenic period, the expression of developmental regulated genes involved in neuron differentiation and/or activity is altered. Therefore, our data indicate that altered neocortical neurogenesis could critically affect the formation of cortical circuits, thereby contributing to the neuropathological changes in DYRK1A haploinsufficiency syndrome.
Collapse
Affiliation(s)
- Juan Arranz
- Instituto de Biología Molecular de Barcelona (IBMB), CSIC, 08028 Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
| | - Elisa Balducci
- Instituto de Biología Molecular de Barcelona (IBMB), CSIC, 08028 Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
| | - Krisztina Arató
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain; Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology (BIST), 08003 Barcelona, Spain
| | - Gentzane Sánchez-Elexpuru
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain; Department of Neuroscience, Laboratory of Neurology, IIS-Jiménez Díaz Foundation, 28040 Madrid, Spain
| | - Sònia Najas
- Instituto de Biología Molecular de Barcelona (IBMB), CSIC, 08028 Barcelona, Spain
| | - Alberto Parras
- Department of Molecular Neuropathology, Centro de Biología Molecular Severo Ochoa (CBMSO), CSIC/UAM, 28049 Madrid, Spain
| | - Elena Rebollo
- Instituto de Biología Molecular de Barcelona (IBMB), CSIC, 08028 Barcelona, Spain
| | - Isabel Pijuan
- Instituto de Biología Molecular de Barcelona (IBMB), CSIC, 08028 Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
| | - Ionas Erb
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology (BIST), 08003 Barcelona, Spain
| | - Gaetano Verde
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology (BIST), 08003 Barcelona, Spain
| | - Ignasi Sahun
- PCB-PRBB Animal Facility Alliance, 08020 Barcelona, Spain
| | - Maria J Barallobre
- Instituto de Biología Molecular de Barcelona (IBMB), CSIC, 08028 Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
| | - José J Lucas
- Department of Molecular Neuropathology, Centro de Biología Molecular Severo Ochoa (CBMSO), CSIC/UAM, 28049 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Marina P Sánchez
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain; Department of Neuroscience, Laboratory of Neurology, IIS-Jiménez Díaz Foundation, 28040 Madrid, Spain
| | - Susana de la Luna
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain; Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology (BIST), 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| | - Maria L Arbonés
- Instituto de Biología Molecular de Barcelona (IBMB), CSIC, 08028 Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain.
| |
Collapse
|
485
|
Dorkins H. JMG in 2019: looking forward, looking back. J Med Genet 2019; 56:419. [DOI: 10.1136/jmedgenet-2019-106308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 05/29/2019] [Indexed: 11/04/2022]
|
486
|
Bem J, Brożko N, Chakraborty C, Lipiec MA, Koziński K, Nagalski A, Szewczyk ŁM, Wiśniewska MB. Wnt/β-catenin signaling in brain development and mental disorders: keeping TCF7L2 in mind. FEBS Lett 2019; 593:1654-1674. [PMID: 31218672 PMCID: PMC6772062 DOI: 10.1002/1873-3468.13502] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/13/2019] [Accepted: 06/14/2019] [Indexed: 12/12/2022]
Abstract
Canonical Wnt signaling, which is transduced by β-catenin and lymphoid enhancer factor 1/T cell-specific transcription factors (LEF1/TCFs), regulates many aspects of metazoan development and tissue renewal. Although much evidence has associated canonical Wnt/β-catenin signaling with mood disorders, the mechanistic links are still unknown. Many components of the canonical Wnt pathway are involved in cellular processes that are unrelated to classical canonical Wnt signaling, thus further blurring the picture. The present review critically evaluates the involvement of classical Wnt/β-catenin signaling in developmental processes that putatively underlie the pathology of mental illnesses. Particular attention is given to the roles of LEF1/TCFs, which have been discussed surprisingly rarely in this context. Highlighting recent discoveries, we propose that alterations in the activity of LEF1/TCFs, and particularly of transcription factor 7-like 2 (TCF7L2), result in defects previously associated with neuropsychiatric disorders, including imbalances in neurogenesis and oligodendrogenesis, the functional disruption of thalamocortical circuitry and dysfunction of the habenula.
Collapse
Affiliation(s)
- Joanna Bem
- Centre of New TechnologiesUniversity of WarsawPoland
| | - Nikola Brożko
- Centre of New TechnologiesUniversity of WarsawPoland
| | | | | | | | | | | | | |
Collapse
|
487
|
Bem J, Brożko N, Chakraborty C, Lipiec MA, Koziński K, Nagalski A, Szewczyk ŁM, Wiśniewska MB. Wnt/β-catenin signaling in brain development and mental disorders: keeping TCF7L2 in mind. FEBS Lett 2019. [PMID: 31218672 DOI: 10.1002/1873−3468.13502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Canonical Wnt signaling, which is transduced by β-catenin and lymphoid enhancer factor 1/T cell-specific transcription factors (LEF1/TCFs), regulates many aspects of metazoan development and tissue renewal. Although much evidence has associated canonical Wnt/β-catenin signaling with mood disorders, the mechanistic links are still unknown. Many components of the canonical Wnt pathway are involved in cellular processes that are unrelated to classical canonical Wnt signaling, thus further blurring the picture. The present review critically evaluates the involvement of classical Wnt/β-catenin signaling in developmental processes that putatively underlie the pathology of mental illnesses. Particular attention is given to the roles of LEF1/TCFs, which have been discussed surprisingly rarely in this context. Highlighting recent discoveries, we propose that alterations in the activity of LEF1/TCFs, and particularly of transcription factor 7-like 2 (TCF7L2), result in defects previously associated with neuropsychiatric disorders, including imbalances in neurogenesis and oligodendrogenesis, the functional disruption of thalamocortical circuitry and dysfunction of the habenula.
Collapse
Affiliation(s)
- Joanna Bem
- Centre of New Technologies, University of Warsaw, Poland
| | - Nikola Brożko
- Centre of New Technologies, University of Warsaw, Poland
| | | | | | - Kamil Koziński
- Centre of New Technologies, University of Warsaw, Poland
| | | | | | | |
Collapse
|
488
|
Melo Gomes S, Dias C, Omoyinmi E, Compeyrot-Lacassagne S, Klein N, Sebire NJ, Brogan P. Inflammatory Arthritis as a Possible Feature of Coffin-Siris Syndrome. Pediatrics 2019; 144:peds.2018-1741. [PMID: 31243159 DOI: 10.1542/peds.2018-1741] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/14/2019] [Indexed: 11/24/2022] Open
Abstract
Coffin-Siris syndrome (CSS) and Nicolaides-Baraitser syndrome (NBS) are 2 overlapping syndromes caused by mutations in genes of the barrier-to-autointegration factor chromatin-remodeling complex, presenting with multiple malformations and intellectual disability. Musculoskeletal changes such as noninflammatory prominence of interphalangeal joints in hands, feet, and, to a lesser extent, knee joints are common in NBS (up to 85%) and also reported in CSS. We present the case of a 7-year-old boy with polyarthritis of several years' duration (without uveitis), developmental delay, microcephaly, and dysmorphic features reminiscent of NBS. Sanger sequencing of the SMARCA2 gene revealed no mutations. Laboratory test results were normal. With synovial biopsy, we confirmed a chronic inflammatory synovitis. Brain MRI revealed dysgenesis of the corpus callosum. Treatment with methotrexate and, subsequently, etanercept led to significant clinical improvement. Whole-exome sequencing revealed a de novo heterozygous nonsense mutation in the ARID1B gene, resulting in a premature stop codon (c.C5404T; p.R1802×), a genotype consistent with CSS. The absence of significantly raised inflammatory markers and a clinical diagnosis of a genetic syndrome associated with noninflammatory joint changes may have contributed to this patient's polyarthritis being missed for several years. We propose that some patients with CSS may have inflammatory arthritis (with or without coexisting skeletal dysplasia), which may be helped by treatment as described herein. Early recognition and treatment of inflammatory arthritis in CSS would have a significant impact on reducing disease burden and improving quality of life for patients with this rare genetic syndrome.
Collapse
Affiliation(s)
- Sonia Melo Gomes
- Department of Infection, Immunity, and Inflammation, University College London Great Ormond Street Institute of Child Health, London, United Kingdom; .,Departments of Rheumatology
| | - Cristina Dias
- Clinical Genetics, and.,Department of Medical and Molecular Genetics, School of Basic and Medical Biosciences, King's College London, London, United Kingdom; and.,The Francis Crick Institute, London, United Kingdom
| | - Ebun Omoyinmi
- Department of Infection, Immunity, and Inflammation, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | | | - Nigel Klein
- Department of Infection, Immunity, and Inflammation, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Neil J Sebire
- Histopathology, Great Ormond Street Hospital, London, United Kingdom
| | - Paul Brogan
- Department of Infection, Immunity, and Inflammation, University College London Great Ormond Street Institute of Child Health, London, United Kingdom.,Departments of Rheumatology
| |
Collapse
|
489
|
Collins JE, White RJ, Staudt N, Sealy IM, Packham I, Wali N, Tudor C, Mazzeo C, Green A, Siragher E, Ryder E, White JK, Papatheodoru I, Tang A, Füllgrabe A, Billis K, Geyer SH, Weninger WJ, Galli A, Hemberger M, Stemple DL, Robertson E, Smith JC, Mohun T, Adams DJ, Busch-Nentwich EM. Common and distinct transcriptional signatures of mammalian embryonic lethality. Nat Commun 2019; 10:2792. [PMID: 31243271 PMCID: PMC6594971 DOI: 10.1038/s41467-019-10642-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 05/22/2019] [Indexed: 12/20/2022] Open
Abstract
The Deciphering the Mechanisms of Developmental Disorders programme has analysed the morphological and molecular phenotypes of embryonic and perinatal lethal mouse mutant lines in order to investigate the causes of embryonic lethality. Here we show that individual whole-embryo RNA-seq of 73 mouse mutant lines (>1000 transcriptomes) identifies transcriptional events underlying embryonic lethality and associates previously uncharacterised genes with specific pathways and tissues. For example, our data suggest that Hmgxb3 is involved in DNA-damage repair and cell-cycle regulation. Further, we separate embryonic delay signatures from mutant line-specific transcriptional changes by developing a baseline mRNA expression catalogue of wild-type mice during early embryogenesis (4-36 somites). Analysis of transcription outside coding sequence identifies deregulation of repetitive elements in Morc2a mutants and a gene involved in gene-specific splicing. Collectively, this work provides a large scale resource to further our understanding of early embryonic developmental disorders.
Collapse
Affiliation(s)
- John E Collins
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
| | - Richard J White
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - Nicole Staudt
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
| | - Ian M Sealy
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - Ian Packham
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
| | - Neha Wali
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
| | - Catherine Tudor
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
| | - Cecilia Mazzeo
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
| | - Angela Green
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
| | - Emma Siragher
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
| | - Edward Ryder
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
| | - Jacqueline K White
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA
| | - Irene Papatheodoru
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, CB10 1SD, UK
| | - Amy Tang
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, CB10 1SD, UK
| | - Anja Füllgrabe
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, CB10 1SD, UK
| | - Konstantinos Billis
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, CB10 1SD, UK
| | - Stefan H Geyer
- Division of Anatomy, MIC, Medical University of Vienna, Waehringerstr. 13, 1090, Wien, Austria
| | - Wolfgang J Weninger
- Division of Anatomy, MIC, Medical University of Vienna, Waehringerstr. 13, 1090, Wien, Austria
| | - Antonella Galli
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
| | - Myriam Hemberger
- The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK
- Centre for Trophoblast Research, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK
- Departments of Biochemistry & Molecular Biology and Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Derek L Stemple
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
- Camena Bioscience, The Science Village, Chesterford Research Park, Cambridge, CB10 1XL, UK
| | - Elizabeth Robertson
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
| | - James C Smith
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Timothy Mohun
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - David J Adams
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
| | - Elisabeth M Busch-Nentwich
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK.
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK.
| |
Collapse
|
490
|
De novo variants in CNOT3 cause a variable neurodevelopmental disorder. Eur J Hum Genet 2019; 27:1677-1682. [PMID: 31201375 DOI: 10.1038/s41431-019-0413-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 03/25/2019] [Accepted: 04/06/2019] [Indexed: 12/31/2022] Open
Abstract
As a result of exome-based sequencing work performed by the DDD study, de novo variants in CNOT3 have emerged as a newly recognised cause of a developmental disorder. This paper describes molecular and clinical details of 16 probands with developmental disorders and de novo CNOT3 variants. It is the first such description of the developmental phenotype associated with CNOT3 variants. Eight of these cases were discovered as part of the DDD study, while the other eight were found as a result of large-scale sequencing work performed by other groups. A highly specific phenotype was not recognised in these 16 cases. The most consistent phenotypic features seen in subjects with de novo variants in CNOT3 were hypotonia, relatively small stature, developmental delay, behavioural problems and intellectual disability. There is no easily recognisable facial phenotype, but some common dysmorphic features such as anteverted nares, thin upper lip and low set eyebrows were shared among some of the probands. Haploinsufficiency appears to be the most likely mechanism of action, with eight cases found to have protein-truncating variants. Of the other eight cases (all missense variants), three share an amino acid substitution at the same position which may therefore represent an important functional domain.
Collapse
|
491
|
Wallace A, Caruso P, Karaa A. A Newborn with Severe Ventriculomegaly: Expanding the PPP2R1A Gene Mutation Phenotype. J Pediatr Genet 2019; 8:240-243. [PMID: 31687265 DOI: 10.1055/s-0039-1692414] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 05/03/2019] [Indexed: 10/26/2022]
Abstract
Protein phosphatase 2A (PP2A) is a heterotrimeric protein serine/threonine phosphatase that regulates a diverse range of cellular activities. The PPP2R1A gene on chromosome 19 (19q13.41) encodes the α isoform of the scaffolding subunit of the PP2A holoenzyme, which functions to link the catalytic subunit to the regulatory subunit. Here we present a case of a newborn boy with a novel PPP2R1A gene mutation (c.548G>A; p.Arg183Gln) with severe lateral and third ventriculomegaly, hypoplastic corpus callosum, and pontocerebellar hypoplasia. To our knowledge, this is the sixth case reported in the literature, thus expanding the phenotype of this rare genetic condition.
Collapse
Affiliation(s)
- Alexandra Wallace
- Department of Pediatrics, MassGeneral Hospital for Children, Boston, Massachusetts, United States
| | - Paul Caruso
- Division of Neuroradiology, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States
| | - Amel Karaa
- Genetics Unit, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States
| |
Collapse
|
492
|
Ree R, Geithus AS, Tørring PM, Sørensen KP, Damkjær M, Lynch SA, Arnesen T. A novel NAA10 p.(R83H) variant with impaired acetyltransferase activity identified in two boys with ID and microcephaly. BMC MEDICAL GENETICS 2019; 20:101. [PMID: 31174490 PMCID: PMC6554967 DOI: 10.1186/s12881-019-0803-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 04/08/2019] [Indexed: 12/21/2022]
Abstract
Background N-terminal acetylation is a common protein modification in human cells and is catalysed by N-terminal acetyltransferases (NATs), mostly cotranslationally. The NAA10-NAA15 (NatA) protein complex is the major NAT, responsible for acetylating ~ 40% of human proteins. Recently, NAA10 germline variants were found in patients with the X-linked lethal Ogden syndrome, and in other familial or de novo cases with variable degrees of developmental delay, intellectual disability (ID) and cardiac anomalies. Methods Here we report a novel NAA10 (NM_003491.3) c.248G > A, p.(R83H) missense variant in NAA10 which was detected by whole exome sequencing in two unrelated boys with intellectual disability, developmental delay, ADHD like behaviour, very limited speech and cardiac abnormalities. We employ in vitro acetylation assays to functionally test the impact of this variant on NAA10 enzyme activity. Results Functional characterization of NAA10-R83H by in vitro acetylation assays revealed a reduced enzymatic activity of monomeric NAA10-R83H. This variant is modelled to have an altered charge density in the acetyl-coenzyme A (Ac-CoA) binding region of NAA10. Conclusions We show that NAA10-R83H has a reduced monomeric catalytic activity, likely due to impaired enzyme-Ac-CoA binding. Our data support a model where reduced NAA10 and/or NatA activity cause the phenotypes observed in the two patients. Electronic supplementary material The online version of this article (10.1186/s12881-019-0803-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rasmus Ree
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, NO-5020, Bergen, Norway
| | - Anni Sofie Geithus
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, NO-5020, Bergen, Norway
| | | | | | - Mads Damkjær
- Hans Christian Andersen Children's Hospital, Odense University Hospital, DK-5000, Odense C, Denmark
| | | | - Sally Ann Lynch
- Temple Street Children's Hospital, Temple Street, Dublin, D01 X584, Ireland.
| | - Thomas Arnesen
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, NO-5020, Bergen, Norway. .,Department of Biological Sciences, University of Bergen, NO-5020, Bergen, Norway. .,Department of Surgery, Haukeland University Hospital, NO-5021, Bergen, Norway.
| |
Collapse
|
493
|
Shin W, Kweon H, Kang R, Kim D, Kim K, Kang M, Kim SY, Hwang SN, Kim JY, Yang E, Kim H, Kim E. Scn2a Haploinsufficiency in Mice Suppresses Hippocampal Neuronal Excitability, Excitatory Synaptic Drive, and Long-Term Potentiation, and Spatial Learning and Memory. Front Mol Neurosci 2019; 12:145. [PMID: 31249508 PMCID: PMC6582764 DOI: 10.3389/fnmol.2019.00145] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 05/17/2019] [Indexed: 01/13/2023] Open
Abstract
Nav1.2, a voltage-gated sodium channel subunit encoded by the Scn2a gene, has been implicated in various brain disorders, including epilepsy, autism spectrum disorder, intellectual disability, and schizophrenia. Nav1.2 is known to regulate the generation of action potentials in the axon initial segment and their propagation along axonal pathways. Nav1.2 also regulates synaptic integration and plasticity by promoting back-propagation of action potentials to dendrites, but whether Nav1.2 deletion in mice affects neuronal excitability, synaptic transmission, synaptic plasticity, and/or disease-related animal behaviors remains largely unclear. Here, we report that mice heterozygous for the Scn2a gene (Scn2a+/- mice) show decreased neuronal excitability and suppressed excitatory synaptic transmission in the presence of network activity in the hippocampus. In addition, Scn2a+/- mice show suppressed hippocampal long-term potentiation (LTP) in association with impaired spatial learning and memory, but show largely normal locomotor activity, anxiety-like behavior, social interaction, repetitive behavior, and whole-brain excitation. These results suggest that Nav1.2 regulates hippocampal neuronal excitability, excitatory synaptic drive, LTP, and spatial learning and memory in mice.
Collapse
Affiliation(s)
- Wangyong Shin
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Hanseul Kweon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Ryeonghwa Kang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Doyoun Kim
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon, South Korea
| | - Kyungdeok Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Muwon Kang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Seo Yeong Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Sun Nam Hwang
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon, South Korea
| | - Jin Yong Kim
- Department of Anatomy and Division of Brain Korea 21, Biomedical Science, College of Medicine, Korea University, Seoul, South Korea
| | - Esther Yang
- Department of Anatomy and Division of Brain Korea 21, Biomedical Science, College of Medicine, Korea University, Seoul, South Korea
| | - Hyun Kim
- Department of Anatomy and Division of Brain Korea 21, Biomedical Science, College of Medicine, Korea University, Seoul, South Korea
| | - Eunjoon Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea.,Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon, South Korea
| |
Collapse
|
494
|
Thormann A, Halachev M, McLaren W, Moore DJ, Svinti V, Campbell A, Kerr SM, Tischkowitz M, Hunt SE, Dunlop MG, Hurles ME, Wright CF, Firth HV, Cunningham F, FitzPatrick DR. Flexible and scalable diagnostic filtering of genomic variants using G2P with Ensembl VEP. Nat Commun 2019; 10:2373. [PMID: 31147538 PMCID: PMC6542828 DOI: 10.1038/s41467-019-10016-3] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 04/15/2019] [Indexed: 12/31/2022] Open
Abstract
We aimed to develop an efficient, flexible and scalable approach to diagnostic genome-wide sequence analysis of genetically heterogeneous clinical presentations. Here we present G2P ( www.ebi.ac.uk/gene2phenotype ) as an online system to establish, curate and distribute datasets for diagnostic variant filtering via association of allelic requirement and mutational consequence at a defined locus with phenotypic terms, confidence level and evidence links. An extension to Ensembl Variant Effect Predictor (VEP), VEP-G2P was used to filter both disease-associated and control whole exome sequence (WES) with Developmental Disorders G2P (G2PDD; 2044 entries). VEP-G2PDD shows a sensitivity/precision of 97.3%/33% for de novo and 81.6%/22.7% for inherited pathogenic genotypes respectively. Many of the missing genotypes are likely false-positive pathogenic assignments. The expected number and discriminative features of background genotypes are defined using control WES. Using only human genetic data VEP-G2P performs well compared to other freely-available diagnostic systems and future phenotypic matching capabilities should further enhance performance.
Collapse
Affiliation(s)
- Anja Thormann
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Mihail Halachev
- MRC Institute of Genetics and Molecular Medicine at the University of Edinburgh, Edinburgh, EH4 2XU, UK
- South East Scotland Regional Genetics Services, Western General Hospital, Edinburgh, EH4 2XU, UK
| | - William McLaren
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - David J Moore
- South East Scotland Regional Genetics Services, Western General Hospital, Edinburgh, EH4 2XU, UK
| | - Victoria Svinti
- MRC Institute of Genetics and Molecular Medicine at the University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Archie Campbell
- Centre for Genomic and Experimental Medicine, Institute of Genetics & Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, EH4 2XU, UK
- Usher Institute for Population Health Sciences and Informatics, The University of Edinburgh, Nine Edinburgh BioQuarter, 9 Little France Road, Edinburgh, EH16 4UX, UK
| | - Shona M Kerr
- Centre for Genomic and Experimental Medicine, Institute of Genetics & Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Marc Tischkowitz
- Clinical Genetic Department, Addenbrooke's Hospital Cambridge University Hospitals, Cambridge, CB2 0QQ, UK
| | - Sarah E Hunt
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Malcolm G Dunlop
- MRC Institute of Genetics and Molecular Medicine at the University of Edinburgh, Edinburgh, EH4 2XU, UK
- Edinburgh Cancer Research Centre, Institute of Genetics & Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Matthew E Hurles
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Caroline F Wright
- University of Exeter Medical School, RILD Level 4, Royal Devon & Exeter Hospital, Barrack Road, Exeter, UK
| | - Helen V Firth
- Clinical Genetic Department, Addenbrooke's Hospital Cambridge University Hospitals, Cambridge, CB2 0QQ, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Fiona Cunningham
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK.
| | - David R FitzPatrick
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine at the University of Edinburgh, Edinburgh, EH4 2XU, UK.
| |
Collapse
|
495
|
Taylor SE, O'Connor CM, Wang Z, Shen G, Song H, Leonard D, Sangodkar J, LaVasseur C, Avril S, Waggoner S, Zanotti K, Armstrong AJ, Nagel C, Resnick K, Singh S, Jackson MW, Xu W, Haider S, DiFeo A, Narla G. The Highly Recurrent PP2A Aα-Subunit Mutation P179R Alters Protein Structure and Impairs PP2A Enzyme Function to Promote Endometrial Tumorigenesis. Cancer Res 2019; 79:4242-4257. [PMID: 31142515 DOI: 10.1158/0008-5472.can-19-0218] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 04/12/2019] [Accepted: 05/22/2019] [Indexed: 11/16/2022]
Abstract
Somatic mutation of the protein phosphatase 2A (PP2A) Aα-subunit gene PPP2R1A is highly prevalent in high-grade endometrial carcinoma. The structural, molecular, and biological basis by which the most recurrent endometrial carcinoma-specific mutation site P179 facilitates features of endometrial carcinoma malignancy has yet to be fully determined. Here, we used a series of structural, biochemical, and biological approaches to investigate the impact of the P179R missense mutation on PP2A function. Enhanced sampling molecular dynamics simulations showed that arginine-to-proline substitution at the P179 residue changes the protein's stable conformation profile. A crystal structure of the tumor-derived PP2A mutant revealed marked changes in A-subunit conformation. Binding to the PP2A catalytic subunit was significantly impaired, disrupting holoenzyme formation and enzymatic activity. Cancer cells were dependent on PP2A disruption for sustained tumorigenic potential, and restoration of wild-type Aα in a patient-derived P179R-mutant cell line restored enzyme function and significantly attenuated tumorigenesis and metastasis in vivo. Furthermore, small molecule-mediated therapeutic reactivation of PP2A significantly inhibited tumorigenicity in vivo. These outcomes implicate PP2A functional inactivation as a critical component of high-grade endometrial carcinoma disease pathogenesis. Moreover, they highlight PP2A reactivation as a potential therapeutic strategy for patients who harbor P179R PPP2R1A mutations. SIGNIFICANCE: This study characterizes a highly recurrent, disease-specific PP2A PPP2R1A mutation as a driver of endometrial carcinoma and a target for novel therapeutic development.See related commentary by Haines and Huang, p. 4009.
Collapse
Affiliation(s)
- Sarah E Taylor
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Caitlin M O'Connor
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Zhizhi Wang
- Department of Biological Structure, University of Washington, Seattle, Washington
| | - Guobo Shen
- Department of Biological Structure, University of Washington, Seattle, Washington
| | - Haichi Song
- Department of Pharmaceutical and Biological Chemistry, UCL School of Pharmacy, University College London, London, United Kingdom
| | - Daniel Leonard
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Jaya Sangodkar
- Division of Genetic Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Corinne LaVasseur
- School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Stefanie Avril
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio.,Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio
| | - Steven Waggoner
- Department of Obstetrics and Gynecology, University Hospitals of Cleveland, Cleveland, Ohio
| | - Kristine Zanotti
- Department of Obstetrics and Gynecology, University Hospitals of Cleveland, Cleveland, Ohio
| | - Amy J Armstrong
- Department of Obstetrics and Gynecology, University Hospitals of Cleveland, Cleveland, Ohio
| | - Christa Nagel
- Department of Obstetrics and Gynecology, University Hospitals of Cleveland, Cleveland, Ohio
| | - Kimberly Resnick
- Department of Obstetrics and Gynecology, MetroHealth, Cleveland, Ohio
| | - Sareena Singh
- Department of Obstetrics and Gynecology, Aultman Hospital, Canton, Ohio
| | - Mark W Jackson
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio.,Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio
| | - Wenqing Xu
- Department of Biological Structure, University of Washington, Seattle, Washington
| | - Shozeb Haider
- Department of Pharmaceutical and Biological Chemistry, UCL School of Pharmacy, University College London, London, United Kingdom
| | - Analisa DiFeo
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan.,Department of Pathology, University of Michigan, Ann Arbor, Michigan.,Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Goutham Narla
- Division of Genetic Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan. .,Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
496
|
Alby C, Boutaud L, Bessières B, Serre V, Rio M, Cormier-Daire V, de Oliveira J, Ichkou A, Mouthon L, Gordon CT, Bonnière M, Mechler C, Nitschke P, Bole C, Lyonnet S, Bahi-Buisson N, Boddaert N, Colleaux L, Roth P, Ville Y, Vekemans M, Encha-Razavi F, Attié-Bitach T, Thomas S. Novel de novo ZBTB20 mutations in three cases with Primrose syndrome and constant corpus callosum anomalies. Am J Med Genet A 2019; 176:1091-1098. [PMID: 29681083 DOI: 10.1002/ajmg.a.38684] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 02/16/2018] [Accepted: 02/25/2018] [Indexed: 11/06/2022]
Abstract
Corpus callosum (CC) is the major brain commissure connecting homologous areas of cerebral hemispheres. CC anomalies (CCAs) are the most frequent brain anomalies leading to variable neurodevelopmental outcomes making genetic counseling difficult in the absence of a known etiology that might inform the prognosis. Here, we used whole exome sequencing, and a targeted capture panel of syndromic CCA known causal and candidate genes to screen a cohort of 64 fetuses with CCA observed upon autopsy, and 34 children with CCA and intellectual disability. In one fetus and two patients, we identified three novel de novo mutations in ZBTB20, which was previously shown to be causal in Primrose syndrome. In addition to CCA, all cases presented with additional features of Primrose syndrome including facial dysmorphism and macrocephaly or megalencephaly. All three variations occurred within two out of the five zinc finger domains of the transcriptional repressor ZBTB20. Through homology modeling, these variants are predicted to result in local destabilization of each zinc finger domain suggesting subsequent abnormal repression of ZBTB20 target genes. Neurohistopathological analysis of the fetal case showed abnormal regionalization of the hippocampal formation as well as a reduced density of cortical upper layers where originate most callosal projections. Here, we report novel de novo ZBTB20 mutations in three independent cases with characteristic features of Primrose syndrome including constant CCA. Neurohistopathological findings in fetal case corroborate the observed key role of ZBTB20 during hippocampal and neocortical development. Finally, this study highlights the crucial role of ZBTB20 in CC development in human.
Collapse
Affiliation(s)
- Caroline Alby
- Laboratory of Embryology and Genetics of Congenital Malformations, INSERM UMR1163 Institut Imagine, Paris, France.,Paris Descartes Sorbonne Paris Cité, Paris, France.,Department of genetics, Hospital Necker-Enfants Malades Assistance Publique Hôpitaux de Paris (AP-HP), Paris, France
| | - Lucile Boutaud
- Laboratory of Embryology and Genetics of Congenital Malformations, INSERM UMR1163 Institut Imagine, Paris, France.,Paris Descartes Sorbonne Paris Cité, Paris, France.,Department of genetics, Hospital Necker-Enfants Malades Assistance Publique Hôpitaux de Paris (AP-HP), Paris, France
| | - Bettina Bessières
- Department of genetics, Hospital Necker-Enfants Malades Assistance Publique Hôpitaux de Paris (AP-HP), Paris, France
| | - Valérie Serre
- UMR7592 CNRS Jacques Monod Institute Paris Diderot University, Paris, France
| | - Marlene Rio
- Department of genetics, Hospital Necker-Enfants Malades Assistance Publique Hôpitaux de Paris (AP-HP), Paris, France
| | - Valerie Cormier-Daire
- Paris Descartes Sorbonne Paris Cité, Paris, France.,Department of genetics, Hospital Necker-Enfants Malades Assistance Publique Hôpitaux de Paris (AP-HP), Paris, France.,Laboratory of Molecular and Physiopathological Bases of Osteochondrodysplasia, INSERM UMR1163 Institut Imagine, Paris, France
| | - Judith de Oliveira
- Laboratory of Embryology and Genetics of Congenital Malformations, INSERM UMR1163 Institut Imagine, Paris, France.,Department of genetics, Hospital Necker-Enfants Malades Assistance Publique Hôpitaux de Paris (AP-HP), Paris, France
| | - Amale Ichkou
- Department of genetics, Hospital Necker-Enfants Malades Assistance Publique Hôpitaux de Paris (AP-HP), Paris, France
| | - Linda Mouthon
- Department of genetics, Hospital Necker-Enfants Malades Assistance Publique Hôpitaux de Paris (AP-HP), Paris, France
| | - Christopher T Gordon
- Laboratory of Embryology and Genetics of Congenital Malformations, INSERM UMR1163 Institut Imagine, Paris, France.,Paris Descartes Sorbonne Paris Cité, Paris, France.,Department of genetics, Hospital Necker-Enfants Malades Assistance Publique Hôpitaux de Paris (AP-HP), Paris, France
| | - Maryse Bonnière
- Department of genetics, Hospital Necker-Enfants Malades Assistance Publique Hôpitaux de Paris (AP-HP), Paris, France
| | - Charlotte Mechler
- Department of genetics, Hospital Necker-Enfants Malades Assistance Publique Hôpitaux de Paris (AP-HP), Paris, France
| | - Patrick Nitschke
- Paris Descartes Sorbonne Paris Cité, Paris, France.,Bioinformatics Core Facility Paris-Descartes Sorbonne Paris Cité University Institut Imagine, Paris, France
| | - Christine Bole
- Paris Descartes Sorbonne Paris Cité, Paris, France.,Genomics Core Facility, Paris Descartes-Sorbonne Paris Cité University Institut Imagine, Paris, France
| | - Stanislas Lyonnet
- Laboratory of Embryology and Genetics of Congenital Malformations, INSERM UMR1163 Institut Imagine, Paris, France.,Paris Descartes Sorbonne Paris Cité, Paris, France.,Department of genetics, Hospital Necker-Enfants Malades Assistance Publique Hôpitaux de Paris (AP-HP), Paris, France
| | - Nadia Bahi-Buisson
- Laboratory of Embryology and Genetics of Congenital Malformations, INSERM UMR1163 Institut Imagine, Paris, France.,Paris Descartes Sorbonne Paris Cité, Paris, France.,Department of genetics, Hospital Necker-Enfants Malades Assistance Publique Hôpitaux de Paris (AP-HP), Paris, France
| | - Nathalie Boddaert
- Paris Descartes Sorbonne Paris Cité, Paris, France.,Department of genetics, Hospital Necker-Enfants Malades Assistance Publique Hôpitaux de Paris (AP-HP), Paris, France.,Department of Pediatric Radiology, Hospital Necker-Enfants Malades AP-HP, Paris, France
| | - Laurence Colleaux
- Paris Descartes Sorbonne Paris Cité, Paris, France.,Laboratory of Molecular and Pathophysiological Bases of Cognitive Disorders, INSERM UMR1163 Institut Imagine, Paris, France
| | - Philippe Roth
- Department of Obstetrics and Fetal Medicine, Hospital Necker-Enfants-Malade APHP, Paris, France
| | - Yves Ville
- Department of Obstetrics and Fetal Medicine, Hospital Necker-Enfants-Malade APHP, Paris, France
| | - Michel Vekemans
- Laboratory of Embryology and Genetics of Congenital Malformations, INSERM UMR1163 Institut Imagine, Paris, France.,Paris Descartes Sorbonne Paris Cité, Paris, France.,Department of genetics, Hospital Necker-Enfants Malades Assistance Publique Hôpitaux de Paris (AP-HP), Paris, France
| | - Féréchté Encha-Razavi
- Laboratory of Embryology and Genetics of Congenital Malformations, INSERM UMR1163 Institut Imagine, Paris, France.,Paris Descartes Sorbonne Paris Cité, Paris, France.,Department of genetics, Hospital Necker-Enfants Malades Assistance Publique Hôpitaux de Paris (AP-HP), Paris, France
| | - Tania Attié-Bitach
- Laboratory of Embryology and Genetics of Congenital Malformations, INSERM UMR1163 Institut Imagine, Paris, France.,Paris Descartes Sorbonne Paris Cité, Paris, France.,Department of genetics, Hospital Necker-Enfants Malades Assistance Publique Hôpitaux de Paris (AP-HP), Paris, France
| | - Sophie Thomas
- Laboratory of Embryology and Genetics of Congenital Malformations, INSERM UMR1163 Institut Imagine, Paris, France.,Paris Descartes Sorbonne Paris Cité, Paris, France
| |
Collapse
|
497
|
Creson TK, Rojas C, Hwaun E, Vaissiere T, Kilinc M, Jimenez-Gomez A, Holder JL, Tang J, Colgin LL, Miller CA, Rumbaugh G. Re-expression of SynGAP protein in adulthood improves translatable measures of brain function and behavior. eLife 2019; 8:46752. [PMID: 31025938 PMCID: PMC6504227 DOI: 10.7554/elife.46752] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 04/15/2019] [Indexed: 12/13/2022] Open
Abstract
It remains unclear to what extent neurodevelopmental disorder (NDD) risk genes retain functions into adulthood and how they may influence disease phenotypes. SYNGAP1 haploinsufficiency causes a severe NDD defined by autistic traits, cognitive impairment, and epilepsy. To determine if this gene retains therapeutically-relevant biological functions into adulthood, we performed a gene restoration technique in a mouse model for SYNGAP1 haploinsufficiency. Adult restoration of SynGAP protein improved behavioral and electrophysiological measures of memory and seizure. This included the elimination of interictal events that worsened during sleep. These events may be a biomarker for generalized cortical dysfunction in SYNGAP1 disorders because they also worsened during sleep in the human patient population. We conclude that SynGAP protein retains biological functions throughout adulthood and that non-developmental functions may contribute to disease phenotypes. Thus, treatments that target debilitating aspects of severe NDDs, such as medically-refractory seizures and cognitive impairment, may be effective in adult patients.
Collapse
Affiliation(s)
- Thomas K Creson
- Department of Neuroscience, The Scripps Research Institute, Jupiter, United States.,Department of Molecular Medicine, The Scripps Research Institute, Jupiter, United States
| | - Camilo Rojas
- Department of Neuroscience, The Scripps Research Institute, Jupiter, United States.,Department of Molecular Medicine, The Scripps Research Institute, Jupiter, United States
| | - Ernie Hwaun
- Department of Neuroscience, Institute for Neuroscience, Center for Learning and Memory, University of Texas at Austin, Austin, United States
| | - Thomas Vaissiere
- Department of Neuroscience, The Scripps Research Institute, Jupiter, United States.,Department of Molecular Medicine, The Scripps Research Institute, Jupiter, United States
| | - Murat Kilinc
- Department of Neuroscience, The Scripps Research Institute, Jupiter, United States.,Department of Molecular Medicine, The Scripps Research Institute, Jupiter, United States
| | - Andres Jimenez-Gomez
- Jan and Dan Duncan Neurological Research Institute, Baylor College of Medicine, Houston, United States.,Department of Pediatrics, Baylor College of Medicine, Houston, United States
| | - Jimmy Lloyd Holder
- Jan and Dan Duncan Neurological Research Institute, Baylor College of Medicine, Houston, United States.,Department of Pediatrics, Baylor College of Medicine, Houston, United States
| | - Jianrong Tang
- Jan and Dan Duncan Neurological Research Institute, Baylor College of Medicine, Houston, United States.,Department of Pediatrics, Baylor College of Medicine, Houston, United States
| | - Laura L Colgin
- Department of Neuroscience, Institute for Neuroscience, Center for Learning and Memory, University of Texas at Austin, Austin, United States
| | - Courtney A Miller
- Department of Neuroscience, The Scripps Research Institute, Jupiter, United States.,Department of Molecular Medicine, The Scripps Research Institute, Jupiter, United States
| | - Gavin Rumbaugh
- Department of Neuroscience, The Scripps Research Institute, Jupiter, United States.,Department of Molecular Medicine, The Scripps Research Institute, Jupiter, United States
| |
Collapse
|
498
|
Hong S, Wang L, Zhao D, Zhang Y, Chen Y, Tan J, Liang L, Zhu T. Clinical utility in infants with suspected monogenic conditions through next-generation sequencing. Mol Genet Genomic Med 2019; 7:e684. [PMID: 30968598 PMCID: PMC6565546 DOI: 10.1002/mgg3.684] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 02/06/2019] [Accepted: 03/04/2019] [Indexed: 12/14/2022] Open
Abstract
Background Rare diseases are complex disorders with huge variability in clinical manifestations. Decreasing cost of next‐generation sequencing (NGS) tests in recent years made it affordable. We witnessed the diagnostic yield and clinical use of different NGS strategies on a myriad of monogenic disorders in a pediatric setting. Methods Next‐generation sequencing tests are performed for 98 unrelated Chinese patients within their first year of life, who were admitted to Xin Hua Hospital, affiliated with Shanghai Jiao Tong University School of Medicine, during a 2‐year period. Results Clinical indications for NGS tests included a range of medical concerns. The mean age was 4.4 ± 4.2 months of age for infants undergoing targeting specific (known) disease‐causing genes (TRS) analysis, and 4.4 ± 4.3 months of age for whole‐exome sequencing (WES) (p > 0.05). A molecular diagnosis is done in 72 infants (73.47%), which finds a relatively high yield with phenotypes of metabolism/homeostasis abnormality (HP: 0001939) (odds ratio, 1.83; 95% CI, 0.56–6.04; p = 0.32) and a significantly low yield with atypical symptoms (without a definite HPO term) (odds ratio, 0.08; 95% CI, 0.01–0.73; p = 0.03). TRS analysis provides molecular yields higher than WES (p = 0.01). Ninety‐eight different mutations are discovered in 72 patients. Twenty‐seven of them have not been reported previously. Nearly half (43.06%, 31/72) of the patients are found to carry 11 common disorders, mostly being inborn errors of metabolism (IEM) and neurogenetic disorders and all of them are observed through TRS analysis. Eight positive cases are identified through WES, and all of them are sporadic, of highly variable phenotypes and severity. There are 26 patients with negative findings in this study. Conclusion This study provides evidence that NGS can yield high success rates in a tertiary pediatric setting, but suggests that the scope of known Mendelian conditions may be considerably broader than currently recognized.
Collapse
Affiliation(s)
- Sha Hong
- Department of Neonatal Medicine, Xin-Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Wang
- Department of Neonatal Medicine, Xin-Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dongying Zhao
- Department of Neonatal Medicine, Xin-Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yonghong Zhang
- Department of Neonatal Medicine, Xin-Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Chen
- Department of Neonatal Medicine, Xin-Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jintong Tan
- Department of Neonatal Medicine, Xin-Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lili Liang
- Department of Endocrinology and Genetic Metabolism, Xin-Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianwen Zhu
- Department of Neonatal Medicine, Xin-Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
499
|
Xue H, Peng J, Shang X. Predicting disease-related phenotypes using an integrated phenotype similarity measurement based on HPO. BMC SYSTEMS BIOLOGY 2019; 13:34. [PMID: 30953559 PMCID: PMC6449884 DOI: 10.1186/s12918-019-0697-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Background Improving efficiency of disease diagnosis based on phenotype ontology is a critical yet challenging research area. Recently, Human Phenotype Ontology (HPO)-based semantic similarity has been affectively and widely used to identify causative genes and diseases. However, current phenotype similarity measurements just consider the annotations and hierarchy structure of HPO, neglecting the definition description of phenotype terms. Results In this paper, we propose a novel phenotype similarity measurement, termed as DisPheno, which adequately incorporates the definition of phenotype terms in addition to HPO structure and annotations to measure the similarity between phenotype terms. DisPheno also integrates phenotype term associations into phenotype-set similarity measurement using gene and disease annotations of phenotype terms. Conclusions Compared with five existing state-of-the-art methods, DisPheno shows great performance in HPO-based phenotype semantic similarity measurement and improves the efficiency of disease identification, especially on noisy patients dataset.
Collapse
Affiliation(s)
- Hansheng Xue
- School of Computer Science, Northwestern Polytechnical University, Xi'an, China.,School of Computer Science and Technology, Harbin Institute of Technology, Shenzhen, China
| | - Jiajie Peng
- School of Computer Science, Northwestern Polytechnical University, Xi'an, China.
| | - Xuequn Shang
- School of Computer Science, Northwestern Polytechnical University, Xi'an, China.
| |
Collapse
|
500
|
Maroilley T, Tarailo-Graovac M. Uncovering Missing Heritability in Rare Diseases. Genes (Basel) 2019; 10:E275. [PMID: 30987386 PMCID: PMC6523881 DOI: 10.3390/genes10040275] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 03/29/2019] [Accepted: 04/01/2019] [Indexed: 12/14/2022] Open
Abstract
The problem of 'missing heritability' affects both common and rare diseases hindering: discovery, diagnosis, and patient care. The 'missing heritability' concept has been mainly associated with common and complex diseases where promising modern technological advances, like genome-wide association studies (GWAS), were unable to uncover the complete genetic mechanism of the disease/trait. Although rare diseases (RDs) have low prevalence individually, collectively they are common. Furthermore, multi-level genetic and phenotypic complexity when combined with the individual rarity of these conditions poses an important challenge in the quest to identify causative genetic changes in RD patients. In recent years, high throughput sequencing has accelerated discovery and diagnosis in RDs. However, despite the several-fold increase (from ~10% using traditional to ~40% using genome-wide genetic testing) in finding genetic causes of these diseases in RD patients, as is the case in common diseases-the majority of RDs are also facing the 'missing heritability' problem. This review outlines the key role of high throughput sequencing in uncovering genetics behind RDs, with a particular focus on genome sequencing. We review current advances and challenges of sequencing technologies, bioinformatics approaches, and resources.
Collapse
Affiliation(s)
- Tatiana Maroilley
- Departments of Biochemistry, Molecular Biology and Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada.
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada.
| | - Maja Tarailo-Graovac
- Departments of Biochemistry, Molecular Biology and Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada.
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada.
| |
Collapse
|