451
|
Olivera A, Rivera J. An emerging role for the lipid mediator sphingosine-1-phosphate in mast cell effector function and allergic disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 716:123-42. [PMID: 21713655 DOI: 10.1007/978-1-4419-9533-9_8] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Sphingosine-1-phosphate (S1P) plays important roles regulating functions of diverse biological systems, including the immune system. S1P affects immune cell function mostly by acting through its receptors at the cell membrane but it can also induce S1P receptor-independent responses in the cells where it is generated. S1P produced in allergically-stimulated mast cells mediates degranulation, cytokine and lipid mediator production and migration of mast cells towards antigen by mechanisms that are both S1P receptor-dependent and independent. Even in the absence of an antigen challenge, the differentiation and responsiveness of mast cells can be affected by chronic exposure to elevated S1P from a nonmast cell source, whichmay occur under pathophysiological conditions, potentially leading to the hyper-responsiveness of mast cells. The role of S1P extends beyond the regulation of the function of mast cells to the regulation of the surrounding or distal environment. S1P is exported out of antigen-stimulated mast cells and into the extracellular space and the resulting S1P gradient within the tissue may influence diverse surrounding tissue cells and several aspects of the allergic disease, such as inflammation or tissue remodeling. Furthermore, recent findings indicate that vasoactive mediators released systemically by mast cells induce the production of S1P in nonhematopoietic compartments, where it plays a role in regulating the vascular tone and reducing the hypotension characteristic of the anaphy lactic shock and thus helping the recovery. The dual actions of S1P, promoting the immediate response of mast cells, while controlling the systemic consequences of mast cell activity will be discussed in detail.
Collapse
Affiliation(s)
- Ana Olivera
- Laboratory of Molecular Immunogenetics, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA.
| | | |
Collapse
|
452
|
Abstract
Mast cells are multifunctional cells that initiate not only IgE-dependent allergic diseases but also play a fundamental role in innate and adaptive immune responses to microbial infection. They are also thought to play a role in angiogenesis, tissue remodeling, wound healing, and tumor repression or growth. The broad scope of these physiologic and pathologic roles illustrates the flexible nature of mast cells, which is enabled in part by their phenotypic adaptability to different tissue microenvironments and their ability to generate and release a diverse array of bioactive mediators in response to multiple types of cell-surface and cytosolic receptors. There is increasing evidence from studies in cell cultures that release of these mediators can be selectively modulated depending on the types or groups of receptors activated. The intent of this review is to foster interest in the interplay among mast cell receptors to help understand the underlying mechanisms for each of the immunological and non-immunological functions attributed to mast cells. The second intent of this review is to assess the pathophysiologic roles of mast cells and their products in health and disease. Although mast cells have a sufficient repertoire of bioactive mediators to mount effective innate and adaptive defense mechanisms against invading microorganisms, these same mediators can adversely affect surrounding tissues in the host, resulting in autoimmune disease as well as allergic disorders.
Collapse
Affiliation(s)
- Alasdair M Gilfillan
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-1881, USA.
| | | |
Collapse
|
453
|
Mast cell biology: introduction and overview. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 716:2-12. [PMID: 21713648 DOI: 10.1007/978-1-4419-9533-9_1] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In recent years, the field of mast cell biology has expanded well beyond the boundaries of atopic disorders and anaphy laxis, on which it has been historically focused. The biochemical and signaling events responsible for the development and regulation of mast cells has been increasingly studied, aided in large part by novel breakthroughs in laboratory techniques used to study these cells. The result of these studies has been a more comprehensive definition of mast cells that includes added insights to their overall biology as well as the various disease states that can now be traced to defects in mast cells. This introductory chapter outlines and highlights the various topics of mast cell biology that will be discussed in further detail in subsequent chapters.
Collapse
|
454
|
Allende ML, Bektas M, Lee BG, Bonifacino E, Kang J, Tuymetova G, Chen W, Saba JD, Proia RL. Sphingosine-1-phosphate lyase deficiency produces a pro-inflammatory response while impairing neutrophil trafficking. J Biol Chem 2010; 286:7348-58. [PMID: 21173151 DOI: 10.1074/jbc.m110.171819] [Citation(s) in RCA: 143] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Sphingosine-1-phosphate (S1P) lyase catalyzes the degradation of S1P, a potent signaling lysosphingolipid. Mice with an inactive S1P lyase gene are impaired in the capacity to degrade S1P, resulting in highly elevated S1P levels. These S1P lyase-deficient mice have low numbers of lymphocytes and high numbers of neutrophils in their blood. We found that the S1P lyase-deficient mice exhibited features of an inflammatory response including elevated levels of pro-inflammatory cytokines and an increased expression of genes in liver associated with an acute-phase response. However, the recruitment of their neutrophils into inflamed tissues was impaired and their neutrophils were defective in migration to chemotactic stimulus. The IL-23/IL-17/granulocyte-colony stimulating factor (G-CSF) cytokine-controlled loop regulating neutrophil homeostasis, which is dependent on neutrophil trafficking to tissues, was disturbed in S1P lyase-deficient mice. Deletion of the S1P4 receptor partially decreased the neutrophilia and inflammation in S1P lyase-deficient mice, implicating S1P receptor signaling in the phenotype. Thus, a genetic block in S1P degradation elicits a pro-inflammatory response but impairs neutrophil migration from blood into tissues.
Collapse
Affiliation(s)
- Maria L Allende
- Genetics of Development and Disease Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
455
|
Jiang Z, Yin X, Jiang Q. Natural forms of vitamin E and 13'-carboxychromanol, a long-chain vitamin E metabolite, inhibit leukotriene generation from stimulated neutrophils by blocking calcium influx and suppressing 5-lipoxygenase activity, respectively. THE JOURNAL OF IMMUNOLOGY 2010; 186:1173-9. [PMID: 21169551 DOI: 10.4049/jimmunol.1002342] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Leukotrienes generated by 5-lipoxygenase (5-LOX)-catalyzed reaction are key regulators of inflammation. In ionophore-stimulated (A23187; 1-2.5 μM) human blood neutrophils or differentiated HL-60 cells, vitamin E forms differentially inhibited leukotriene B(4) (LTB(4)) with an IC(50) of 5-20 μM for γ-tocopherol, δ-tocopherol (δT), and γ-tocotrienol, but a much higher IC(50) for α-tocopherol. 13'-Carboxychromanol, a long-chain metabolite of δT, suppressed neutrophil- and HL-60 cell-generated LTB(4) with an IC(50) of 4-7 μM and potently inhibited human recombinant 5-LOX activity with an IC(50) of 0.5-1 μM. In contrast, vitamin E forms had no effect on human 5-LOX activity but impaired ionophore-induced intracellular calcium increase and calcium influx as well as the subsequent signaling including ERK1/2 phosphorylation and 5-LOX translocation from cytosol to the nucleus, a key event for 5-LOX activation. Further investigation showed that δT suppressed cytosolic Ca(2+) increase and/or LTB(4) formation triggered by ionophores, sphingosine 1-phosphate, and lysophosphatidic acid but not by fMLP or thapsigargin, whereas 13'-carboxychromanol decreased cellular production of LTB(4) regardless of different stimuli, consistent with its strong inhibition of the 5-LOX activity. These observations suggest that δT does not likely affect fMLP receptor-mediated signaling or store depletion-induced calcium entry. Instead, we found that δT prevented ionophore-caused cytoplasmic membrane disruption, which may account for its blocking of calcium influx. These activities by vitamin E forms and long-chain carboxychromanol provide potential molecular bases for the differential anti-inflammatory effects of vitamin E forms in vivo.
Collapse
Affiliation(s)
- Ziying Jiang
- Department of Foods and Nutrition, Interdepartmental Nutrition Program, Purdue University, West Lafayette, IN 47907, USA
| | | | | |
Collapse
|
456
|
Chi H. Sphingosine-1-phosphate and immune regulation: trafficking and beyond. Trends Pharmacol Sci 2010; 32:16-24. [PMID: 21159389 DOI: 10.1016/j.tips.2010.11.002] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Revised: 11/07/2010] [Accepted: 11/08/2010] [Indexed: 10/18/2022]
Abstract
Sphingosine-1-phosphate (S1P) is a bioactive lipid with important functions in the immune system. S1P levels are regulated by the balance between its synthesis through sphingosine kinases and its degradation by S1P lyase. S1P signals through plasma membrane G-protein-coupled receptors (S1PR1-S1PR5) or acts directly on intracellular targets. Although it has long been known that the S1P-S1PR1 axis mediates T cell egress from lymphoid organs, recent studies have revealed intrinsic functions of S1P and its receptors in both innate and adaptive immune systems that are independent of immune cell trafficking. Here I summarize recent advances in understanding of the roles of S1P and S1P receptors in inflammatory and allergic responses and lymphocyte differentiation, which directly contribute to the regulation of inflammatory and autoimmune diseases. I also describe strategies to target S1P and S1P receptors for immune-mediated diseases, particularly the immunosuppressant FTY720 (fingolimod), which has recently become the first oral therapy for relapsing multiple sclerosis.
Collapse
Affiliation(s)
- Hongbo Chi
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
457
|
Breslow DK, Weissman JS. Membranes in balance: mechanisms of sphingolipid homeostasis. Mol Cell 2010; 40:267-79. [PMID: 20965421 DOI: 10.1016/j.molcel.2010.10.005] [Citation(s) in RCA: 362] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Revised: 10/05/2010] [Accepted: 10/05/2010] [Indexed: 11/17/2022]
Abstract
Sphingolipids and their metabolites play key cellular roles both as structural components of membranes and as signaling molecules that mediate responses to physiologic cues and stresses. Despite progress during the last two decades in defining the enzymatic machinery responsible for synthesizing and degrading sphingolipids, comparatively little is known about how these enzymes are regulated to ensure sphingolipid homeostasis. Here, we review new insights into how cells sense and control sphingolipid biosynthesis and transport. We also discuss emerging evidence that sphingolipid metabolism is closely coordinated with that of sterols and glycerolipids and with other processes that occur in the secretory pathway. An improved understanding of sphingolipid homeostasis promises to shed light on basic processes in cell biology and disease, including how cells establish and maintain the complex membrane composition and architecture that is a defining feature of eukaryotic cell biology.
Collapse
Affiliation(s)
- David K Breslow
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, 1700 4(th) Street, San Francisco, CA 94158, USA
| | | |
Collapse
|
458
|
Chun J, Hla T, Lynch KR, Spiegel S, Moolenaar WH. International Union of Basic and Clinical Pharmacology. LXXVIII. Lysophospholipid receptor nomenclature. Pharmacol Rev 2010; 62:579-87. [PMID: 21079037 PMCID: PMC2993255 DOI: 10.1124/pr.110.003111] [Citation(s) in RCA: 246] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Lysophospholipids are cell membrane-derived lipids that include both glycerophospholipids such as lysophosphatidic acid (LPA) and sphingoid lipids such as sphingosine 1-phosphate (S1P). These and related molecules can function in vertebrates as extracellular signals by binding and activating G protein-coupled receptors. There are currently five LPA receptors, along with a proposed sixth (LPA₁-LPA₆), and five S1P receptors (S1P₁-S1P₅). A remarkably diverse biology and pathophysiology has emerged since the last review, driven by cloned receptors and targeted gene deletion ("knockout") studies in mice, which implicate receptor-mediated lysophospholipid signaling in most organ systems and multiple disease processes. The entry of various lysophospholipid receptor modulatory compounds into humans through clinical trials is ongoing and may lead to new medicines that are based on this signaling system. This review incorporates IUPHAR Nomenclature Committee guidelines in updating the nomenclature for lysophospholipid receptors ( http://www.iuphar-db.org/DATABASE/FamilyMenuForward?familyId=36).
Collapse
Affiliation(s)
- Jerold Chun
- Department of Molecular Biology, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA 92037, USA.
| | | | | | | | | |
Collapse
|
459
|
Bourquin F, Riezman H, Capitani G, Grütter MG. Structure and function of sphingosine-1-phosphate lyase, a key enzyme of sphingolipid metabolism. Structure 2010; 18:1054-65. [PMID: 20696404 DOI: 10.1016/j.str.2010.05.011] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Revised: 04/01/2010] [Accepted: 05/09/2010] [Indexed: 12/13/2022]
Abstract
Sphingosine-1-phosphate lyase (SPL), a key enzyme of sphingolipid metabolism, catalyzes the irreversible degradation of sphingoid base phosphates. Its main substrate sphingosine-1-phosphate (S1P) acts both extracellularly, by binding G protein-coupled receptors of the lysophospholipid receptor family, and inside the cell, as a second messenger. There, S1P takes part in regulating various cellular processes and its levels are tightly regulated. SPL is a pivotal enzyme regulating S1P intracellular concentrations and a promising drug target for the design of immunosuppressants. We structurally and functionally characterized yeast SPL (Dpl1p) and its first prokaryotic homolog, from Symbiobacterium thermophilum. The Dpl1p structure served as a basis for a very reliable model of Homo sapiens SPL. The above results, together with in vitro and in vivo studies of SPL mutants, reveal which residues are involved in activity and substrate binding and pave the way to studies aimed at controlling the activity of this pivotal enzyme.
Collapse
Affiliation(s)
- Florence Bourquin
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | | | | | | |
Collapse
|
460
|
Bagdanoff JT, Donoviel MS, Nouraldeen A, Carlsen M, Jessop TC, Tarver J, Aleem S, Dong L, Zhang H, Boteju L, Hazelwood J, Yan J, Bednarz M, Layek S, Owusu IB, Gopinathan S, Moran L, Lai Z, Kramer J, Kimball SD, Yalamanchili P, Heydorn WE, Frazier KS, Brooks B, Brown P, Wilson A, Sonnenburg WK, Main A, Carson KG, Oravecz T, Augeri DJ. Inhibition of sphingosine 1-phosphate lyase for the treatment of rheumatoid arthritis: discovery of (E)-1-(4-((1R,2S,3R)-1,2,3,4-tetrahydroxybutyl)-1H-imidazol-2-yl)ethanone oxime (LX2931) and (1R,2S,3R)-1-(2-(isoxazol-3-yl)-1H-imidazol-4-yl)butane-1,2,3,4-tetraol (LX2932). J Med Chem 2010; 53:8650-62. [PMID: 21090716 DOI: 10.1021/jm101183p] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Sphingosine 1-phosphate lyase (S1PL) has been characterized as a novel target for the treatment of autoimmune disorders using genetic and pharmacological methods. Medicinal chemistry efforts targeting S1PL by direct in vivo evaluation of synthetic analogues of 2-acetyl-4(5)-(1(R),2(S),3(R),4-tetrahydroxybutyl)-imidazole (THI, 1) led to the discovery of 2 (LX2931) and 4 (LX2932). The immunological phenotypes observed in S1PL deficient mice were recapitulated by oral administration of 2 or 4. Oral dosing of 2 or 4 yielded a dose-dependent decrease in circulating lymphocyte numbers in multiple species and showed a therapeutic effect in rodent models of rheumatoid arthritis (RA). Phase I clinical trials indicated that 2, the first clinically studied inhibitor of S1PL, produced a dose-dependent and reversible reduction of circulating lymphocytes and was well tolerated at dose levels of up to 180 mg daily. Phase II evaluation of 2 in patients with active rheumatoid arthritis is currently underway.
Collapse
|
461
|
STAT3-induced S1PR1 expression is crucial for persistent STAT3 activation in tumors. Nat Med 2010; 16:1421-8. [PMID: 21102457 PMCID: PMC3088498 DOI: 10.1038/nm.2250] [Citation(s) in RCA: 322] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Accepted: 09/29/2010] [Indexed: 02/07/2023]
Abstract
Interleukin-6 (IL-6)-Janus kinase (JAK) signaling is viewed as crucial for persistent signal transducer and activator of transcription-3 (STAT3) activation in cancer. However, IL-6-induced STAT3 activation is normally transient. Here we identify a key mechanism for persistent STAT3 activation in tumor cells and the tumor microenvironment. We show that expression of sphingosine-1-phosphate receptor-1 (S1PR1), a G protein-coupled receptor for the lysophospholipid sphingosine-1-phosphate (S1P), is elevated in STAT3-positive tumors. STAT3 is a transcription factor for the S1pr1 gene. Reciprocally, enhanced S1pr1 expression activates STAT3 and upregulates Il6 gene expression, thereby accelerating tumor growth and metastasis in a STAT3-dependent manner. Silencing S1pr1 in tumor cells or immune cells inhibits tumor STAT3 activity, tumor growth and metastasis. S1P-S1PR1-induced STAT3 activation is persistent, in contrast to transient STAT3 activation by IL-6. S1PR1 activates STAT3 in part by upregulating JAK2 tyrosine kinase activity. We show that STAT3-induced S1PR1 expression, as well as the S1P-S1PR1 pathway reciprocal regulation of STAT3 activity, is a major positive feedback loop for persistent STAT3 activation in cancer cells and the tumor microenvironment and for malignant progression.
Collapse
|
462
|
Xia P, Wadham C. Sphingosine 1-phosphate, a key mediator of the cytokine network: juxtacrine signaling. Cytokine Growth Factor Rev 2010; 22:45-53. [PMID: 21051273 DOI: 10.1016/j.cytogfr.2010.09.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Accepted: 09/21/2010] [Indexed: 01/21/2023]
Abstract
Sphingosine 1-phosphate (S1P) is a sphingolipid metabolite, which has emerged as an important signaling mediator participating in the regulation of multiple cellular processes. The discovery of a family of S1P receptors, together with the more recently identified intracellular targets, has provided fundamental understanding of the multi-faceted actions of S1P. Evidence from both in vitro and in vivo studies has implicated the S1P signaling system in the control of immunity, inflammation and many associated diseases. Enigmatically, S1P appears to have both pro- and anti-inflammatory effects depending on the cell context. Here, we review this emerging area and argue for a pivotal role for S1P, as a key mediator of the cytokine network, acting through juxtacrine signaling in the immune system.
Collapse
Affiliation(s)
- Pu Xia
- Signal Transduction Program, Centenary Institute and Sydney Medical School University of Sydney, Australia.
| | | |
Collapse
|
463
|
Su SC, Maxwell SA, Bayless KJ. Annexin 2 regulates endothelial morphogenesis by controlling AKT activation and junctional integrity. J Biol Chem 2010; 285:40624-34. [PMID: 20947498 DOI: 10.1074/jbc.m110.157271] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Sprouting angiogenesis is a multistep process that involves endothelial cell activation, basement membrane degradation, proliferation, lumen formation, and stabilization. In this study, we identified annexin 2 as a regulator of endothelial morphogenesis using a three-dimensional in vitro model where sprouting angiogenesis was driven by sphingosine 1-phosphate and angiogenic growth factors. We observed that sphingosine 1-phosphate triggered annexin 2 translocation from the cytosol to the plasma membrane and its association with vascular endothelial (VE)-cadherin. In addition, annexin 2 depletion attenuated Akt activation, which was associated with increased phosphorylation of VE-cadherin and endothelial barrier leakage. Disrupting homotypic VE-cadherin interactions with EGTA, antibodies to the extracellular domain of VE-cadherin, or gene silencing all resulted in decreased Akt (but not Erk1/2) activation. Furthermore, expression of constitutively active Akt restored reduced endothelial sprouting responses observed with annexin 2 and VE-cadherin knockdown. Collectively, we report that annexin 2 regulates endothelial morphogenesis through an adherens junction-mediated pathway upstream of Akt.
Collapse
Affiliation(s)
- Shih-Chi Su
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas 77843-1114, USA
| | | | | |
Collapse
|
464
|
Qu Z, Chaikof EL. Interface between hemostasis and adaptive immunity. Curr Opin Immunol 2010; 22:634-42. [PMID: 20932735 DOI: 10.1016/j.coi.2010.08.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2010] [Accepted: 08/31/2010] [Indexed: 12/15/2022]
Abstract
Stress induced activation or denudation of the endothelium elicits arrest and activation of platelets with attendant triggering of coagulation, culminating in a physical barrier to limit blood loss. Recently, coagulation-activated osteopontin, chemerin, and protease-activated receptor signaling, as well as platelet-derived molecules including platelet factor 4, serotonin, P-selectin, and CD154 (CD40L) have been revealed as new links between hemostasis and adaptive immunity. The initiation of hemostasis establishes a local state of inflammation that serves as an adjuvant system for antigen presentation, consequently influencing the onset and functional characteristics of an evolving adaptive immune response. In this context, the hemostatic system and its associated signaling pathways warrant further study as novel therapeutic targets that may enhance, abrogate, or otherwise selectively direct the adaptive immune response.
Collapse
Affiliation(s)
- Zheng Qu
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | | |
Collapse
|
465
|
The S1P(1)-mTOR axis directs the reciprocal differentiation of T(H)1 and T(reg) cells. Nat Immunol 2010; 11:1047-56. [PMID: 20852647 PMCID: PMC2958252 DOI: 10.1038/ni.1939] [Citation(s) in RCA: 266] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Accepted: 08/23/2010] [Indexed: 12/12/2022]
Abstract
Naïve CD4+ T cells differentiate into diverse effector and regulatory lineages to orchestrate immunity and tolerance. The differentiation of pro-inflammatory TH1 and anti-inflammatory Foxp3+ regulatory T cells (Treg) was reciprocally regulated by S1P1, a receptor for the bioactive lipid sphingosine-1-phosphate. S1P1 inhibited extrathymic and natural Treg generation while driving TH1 cell development in a reciprocal manner and disrupted immune homeostasis. S1P1 signaled through mTOR and antagonized TGF-β function mainly by attenuating sustained Smad3 activity. S1P1 function was dependent upon endogenous sphingosine kinase activity. Remarkably, two seemingly unrelated immunosuppressants FTY720 and rapamycin targeted the same S1P1 and mTOR pathway to regulate the dichotomy between TH1 and Treg cells. Our studies establish an S1P1-mTOR axis that controls T cell lineage specification.
Collapse
|
466
|
Chi XX, Nicol GD. The sphingosine 1-phosphate receptor, S1PR₁, plays a prominent but not exclusive role in enhancing the excitability of sensory neurons. J Neurophysiol 2010; 104:2741-8. [PMID: 20844107 DOI: 10.1152/jn.00709.2010] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Sphingosine 1-phosphate (S1P) through its interaction with a family of G protein-coupled receptors (S1PR) is proving to have a significant impact on the activation of a variety of cell types, most notably those cells mediating the inflammatory response. Previously, we showed that S1P enhanced the excitability of small diameter sensory neurons, and mRNA for S1PR(1-4) was expressed in sensory neurons. These initial findings did not determine which S1PR subtype(s) mediated the increased excitability. Here, we report that exposure to the selective S1PR(1) agonist, SEW2871, produced a significant increase in excitability of some, but not all, sensory neurons. To further examine the role of S1PR(1), neurons were treated with siRNA targeted to S1PR(1). siRNA reduced S1PR(1) protein expression by 75% and blocked the sensitization produced by SEW2871, although some neurons remained responsive to subsequent exposure to S1P. Treatment with scramble siRNA did not alter S1PR(1) expression. Recordings from siRNA- and scramble-treated neurons suggested three distinct populations based on their sensitivities to SEW2871 and S1P. Approximately 50% of the neurons exhibited a significant increase in excitability after exposure to SEW2871 and subsequent S1P produced no additional increase; ∼25% were not affected by SEW2871 but S1P significantly increased excitability; and ∼25% of the neurons were not sensitized by either SEW2871 or S1P. RT-PCR measurements obtained from single neurons showed that 50% of the small diameter neurons expressed the mRNA for S1PR(1). These results indicate that S1PR(1) plays a prominent, although not exclusive, role in mediating the enhancement of excitability produced by S1P.
Collapse
Affiliation(s)
- Xian Xuan Chi
- Department of Pharmacology and Toxicology, School of Medicine, Indiana University, Indianapolis, IN 46202, USA
| | | |
Collapse
|
467
|
Rathinasamy A, Czeloth N, Pabst O, Förster R, Bernhardt G. The origin and maturity of dendritic cells determine the pattern of sphingosine 1-phosphate receptors expressed and required for efficient migration. THE JOURNAL OF IMMUNOLOGY 2010; 185:4072-81. [PMID: 20826749 DOI: 10.4049/jimmunol.1000568] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Dendritic cells (DCs) represent the most potent inducers of adaptive immune responses. Depending on their activation phenotype, DCs drive naive T cells into distinct differentiation pathways. To achieve this, DCs are present in virtually all tissues where they sample Ag and migrate to the T cell areas of lymph nodes (LNs) and spleen. Ample evidence exists demonstrating that sphingosine 1-phosphate (S1P) is an important modulator of these processes, exerting its effects by binding to the S1P receptor S1P(1) and/or S1P(3). However, published data are contradictory, in part. We show in this study that the expression pattern, as well as the regulation of the S1P receptors, differs among in vitro-generated DCs experiencing different kinds and duration of stimuli. Moreover, the influence of S1P(1) and S1P(3) on the in vivo migration of maturing DCs depends on the origin of these cells. Thus, in vitro-generated DCs require S1P(1) and S1P(3) to accomplish this, whereas skin-derived DCs migrate unhindered in the absence of S1P(3) but not when S1P(1) signaling is blocked. Migration of lamina propria DCs to the mesenteric LNs depends on S1P(1) and S1P(3). In contrast, relocation of maturing spleen-resident DCs to the T cell zone is independent of S1P(1) and S1P(3). However, intrasplenic positioning of immature DCs to the bridging channels depends on S1P(1) activity, with no noticeable contribution of S1P(3). These observations reveal a tissue-dependent contribution of S1P(3) to DC migration and suggest a fundamental role for S1P(1) for maturing DCs migrating from periphery to draining LNs.
Collapse
|
468
|
The leukocyte activation antigen CD69 limits allergic asthma and skin contact hypersensitivity. J Allergy Clin Immunol 2010; 126:355-65, 365.e1-3. [PMID: 20621339 DOI: 10.1016/j.jaci.2010.05.010] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Revised: 04/21/2010] [Accepted: 05/10/2010] [Indexed: 11/24/2022]
Abstract
BACKGROUND Allergic diseases have a major health care impact in industrialized countries. The development of these diseases is influenced by exposure to allergen and to immunological and genetic factors. However, the molecular mechanisms underlying the inflammatory response that triggers allergy are not well defined. OBJECTIVE We have investigated the role of the leukocyte activation antigen CD69 in the regulation of two allergic diseases, asthma and contact dermatitis. METHODS Analysis of two models of allergic diseases in CD69 knockout and wild-type mice: ovalbumin-induced allergic airway inflammation (BALB/c genetic background) and contact hypersensitivity to oxazolone (C57BL/6J genetic background). RESULTS CD69 deficiency dramatically enhanced the inflammatory response in the ovalbumin-induced asthma model of antigen-induced airway allergy. CD69 knockout mice showed exacerbated pulmonary eosinophil recruitment, high vascular cell adhesion molecule 1 expression levels in lung vasculature, and enhanced T(H)2 and T(H)17 cytokines in the bronchoalveolar space and lung tissue. In the hapten-induced cutaneous contact hypersensitivity model, both CD69 deficiency and treatment with anti-CD69 mAb increased inflammation. Treatment with contact allergens induced enhanced T(H)1 and T(H)17 responses in CD69 deficient mice, and neutralizing anti-IL-17 antibodies reduced skin inflammation. In both experimental systems, adoptive transfer of lymph node cells from CD69 knockout mice increased the inflammatory response in recipient mice. CONCLUSION These results demonstrate that the early activation receptor CD69 is an intrinsic modulator of immune allergic processes through the negative regulation of allergen-induced T-cell effector responses.
Collapse
|
469
|
Abstract
Brain and eye tissues are subject to a reduced version of immune surveillance, which has evolved to protect the particularly sensitive tissues from accidental bystander damage created by regular inflammatory responses. Yet, there are autoimmune diseases in both organs. This review discusses the nature of immune reactivity in the healthy eye and brain tissues, and mechanisms that can overcome the protective barriers to create tissue specific disease.
Collapse
|
470
|
Sugita K, Kabashima K, Sakabe JI, Yoshiki R, Tanizaki H, Tokura Y. FTY720 regulates bone marrow egress of eosinophils and modulates late-phase skin reaction in mice. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:1881-7. [PMID: 20802177 DOI: 10.2353/ajpath.2010.100119] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Eosinophilia in the blood and skin is frequently observed in patients with certain inflammatory skin diseases, such as atopic dermatitis. However, the mechanism underlying eosinophil circulation and the role of eosinophils in cutaneous immune responses remain unclear. In repeated hapten application-induced cutaneous responses in BALB/c mice, the administration of FTY720 before the last challenge decreased the number of skin-infiltrating eosinophils and reduced the late-phase reaction. A similar reduction of the late-phase reaction was observed by a sphingosine-1-phosphate G protein-coupled receptor (S1P1)-selective agonist, SEW2871. We monitored numerous alterations of eosinophils in the blood, spleen, bone marrow, and lymph nodes of interleukin-5 transgenic mice, used as an eosinophilia model, following FTY720 administration. The number of circulating eosinophils was significantly decreased after treatment with FTY720, and eosinophils accumulated in the bone marrow. In addition, eosinophils expressed S1P1, S1P3, and S1P4 mRNAs, and their chemotactic response to S1P was abolished by FTY720 as well as by SEW2871. These findings suggest that FTY720 affects the number of eosinophils in both the blood and skin by inhibiting the egress of eosinophils from the bone marrow and thus downmodulating the late-phase reaction.
Collapse
Affiliation(s)
- Kazunari Sugita
- Department of Dermatology, University of Occupational and Environmental Health, Kitakyushu, Japan.
| | | | | | | | | | | |
Collapse
|
471
|
Ishii T, Kikuta J, Kubo A, Ishii M. Control of osteoclast precursor migration: A novel point of control for osteoclastogenesis and bone homeostasis. ACTA ACUST UNITED AC 2010. [DOI: 10.1138/20100459] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
472
|
Abstract
Sphingolipids comprise a complex family of naturally occurring molecules that are enriched in lipid rafts and contribute to their unique biochemical properties. Membrane sphingolipids also serve as a reservoir for bioactive metabolites including sphingosine, ceramide, sphingosine-1-phosphate and ceramide-1-phosphate. Among these, sphingosine-1-phosphate has emerged as a central regulator of mammalian biology. Sphingosine-1-phosphate is essential for mammalian brain and cardiac development and for maturation of the systemic circulatory system and lymphatics. In addition, sphingosine-1-phosphate contributes to trafficking and effector functions of lymphocytes and other hematopoietic cells and protects against various forms of tissue injury. However, sphingosine-1-phosphate is also an oncogenic lipid that promotes tumor growth and progression. Recent preclinical and clinical investigations using pharmacological agents that target sphingosine-1-phosphate, its receptors and the enzymes required for its biosynthesis and degradation demonstrate the promise and potential risks of modulating sphingosine-1-phosphate signaling in treatment strategies for autoimmunity, cancer, cardiovascular disease and other pathological conditions.
Collapse
|
473
|
Sun X, Ma SF, Wade MS, Flores C, Pino-Yanes M, Moitra J, Ober C, Kittles R, Husain AN, Ford JG, Garcia JGN. Functional variants of the sphingosine-1-phosphate receptor 1 gene associate with asthma susceptibility. J Allergy Clin Immunol 2010; 126:241-9, 249.e1-3. [PMID: 20624651 DOI: 10.1016/j.jaci.2010.04.036] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Revised: 03/15/2010] [Accepted: 04/23/2010] [Indexed: 01/16/2023]
Abstract
BACKGROUND The genetic mechanisms underlying asthma remain unclear. Increased permeability of the microvasculature is a feature of asthma, and the sphingosine-1-phosphate receptor (S1PR1) is an essential participant regulating lung vascular integrity and responses to lung inflammation. OBJECTIVE We explored the contribution of polymorphisms in the S1PR1 gene to asthma susceptibility. METHODS A combination of gene resequencing for single nucleotide polymorphism (SNP) discovery, case-control association, functional evaluation of associated SNPs, and protein immunochemistry studies was used. RESULTS Immunohistochemistry studies demonstrated significantly decreased S1PR1 protein expression in pulmonary vessels in lungs of asthmatic patients compared with those of nonasthmatic subjects (P < .05). Direct DNA sequencing of 27 multiethnic samples identified 39 S1PR1 variants (18 novel SNPs). Association studies were performed based on genotyping results from cosmopolitan tagging SNPs in 3 case-control cohorts from Chicago and New York totaling 1,061 subjects (502 cases and 559 control subjects). The promoter SNP rs2038366 (-1557G/T) was found to be associated with asthma (P = .03) in European Americans. In African Americans an association was found for both asthma and severe asthma for intronic SNP rs3753194 (c.-164+170A/G; P = .006 and P = .040, respectively) and for promoter SNP rs59317557 (-532C/G) with severe asthma (P = .028). Consistent with predicted in silico functionality, alleles of the promoter SNPs rs2038366 (-1557G/T) and rs59317557 (-532C/G) influenced the activity of a luciferase S1PR1 reporter vector in transfected endothelial cells exposed to growth factors (epidermal growth factor, platelet-derived growth factor, and vascular endothelial growth factor) known to be increased in asthmatic airways. CONCLUSION These data provide strong support for a role for S1PR1 gene variants in asthma susceptibility and severity.
Collapse
Affiliation(s)
- Xiaoguang Sun
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, Ill, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
474
|
Thangada S, Khanna KM, Blaho VA, Oo ML, Im DS, Guo C, Lefrancois L, Hla T. Cell-surface residence of sphingosine 1-phosphate receptor 1 on lymphocytes determines lymphocyte egress kinetics. ACTA ACUST UNITED AC 2010; 207:1475-83. [PMID: 20584883 PMCID: PMC2901064 DOI: 10.1084/jem.20091343] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The sphingosine 1-phosphate receptor 1 (S1P1) promotes lymphocyte egress from lymphoid organs. Previous work showed that agonist-induced internalization of this G protein–coupled receptor correlates with inhibition of lymphocyte egress and results in lymphopenia. However, it is unclear if S1P1 internalization is necessary for this effect. We characterize a knockin mouse (S1p1rS5A/S5A) in which the C-terminal serine-rich S1P1 motif, which is important for S1P1 internalization but dispensable for S1P1 signaling, is mutated. T cells expressing the mutant S1P1 showed delayed S1P1 internalization and defective desensitization after agonist stimulation. Mutant mice exhibited significantly delayed lymphopenia after S1P1 agonist administration or disruption of the vascular S1P gradient. Adoptive transfer experiments demonstrated that mutant S1P1 expression in lymphocytes, rather than endothelial cells, facilitated this delay in lymphopenia. Thus, cell-surface residency of S1P1 on T cells is a primary determinant of lymphocyte egress kinetics in vivo.
Collapse
Affiliation(s)
- Shobha Thangada
- Center for Vascular Biology, Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, Cornell University, New York, NY 10065, USA
| | | | | | | | | | | | | | | |
Collapse
|
475
|
Aktas O, Küry P, Kieseier B, Hartung HP. Fingolimod is a potential novel therapy for multiple sclerosis. Nat Rev Neurol 2010; 6:373-82. [PMID: 20551946 DOI: 10.1038/nrneurol.2010.76] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Fingolimod (also known as FTY720) is an orally available sphingosine-1-phosphate (S1P) receptor modulator that has unique and potent immunoregulatory properties. Mechanistic studies indicate that on phosphorylation fingolimod can bind with high affinity to S1P(1) receptors. Persistent modulation of lymphocyte S1P(1) receptors by fingolimod and the subsequent internalization of these receptors inhibits lymphocyte egress from the lymph nodes, and prevents these cells from infiltrating inflammatory lesions in the CNS. Results of two phase III studies--FREEDOMS and TRANSFORMS--support previous phase II trial observations indicating that fingolimod exerts powerful anti-inflammatory effects in relapsing-remitting multiple sclerosis (MS). Fingolimod might, therefore, be one of the first orally active drug therapies available for the treatment of relapsing-remitting MS. Moreover, results from preclinical studies suggest that fingolimod might promote neural repair in vivo. In this article, we review the background to these findings, present the proposed immunological and neurobiological profile of fingolimod, discuss the data from the FREEDOMS and TRANSFORMS trials, and provide an expert opinion regarding the future of next-generation S1P receptor modulators for MS therapy.
Collapse
Affiliation(s)
- Orhan Aktas
- Department of Neurology, Heinrich-Heine-University of Düsseldorf, 40225 Düsseldorf, Germany
| | | | | | | |
Collapse
|
476
|
Oo YH, Hubscher SG, Adams DH. Autoimmune hepatitis: new paradigms in the pathogenesis, diagnosis, and management. Hepatol Int 2010; 4:475-93. [PMID: 20827405 DOI: 10.1007/s12072-010-9183-5] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Accepted: 03/13/2010] [Indexed: 02/06/2023]
Abstract
Autoimmune hepatitis (AIH), primary biliary cirrhosis, and primary sclerosing cholangitis are the three major autoimmune diseases affecting the liver, and of these three, AIH is the most typical autoimmune disease being characterized by a T-cell-rich infiltrate, raised circulating γ-globulins, autoantibodies, HLA associations, and links with other autoimmune diseases. It is the only one, of the three diseases, that responds well to immunosuppressive therapy. AIH is caused by dysregulation of immunoregulatory networks and the consequent emergence of autoreactive T cells that orchestrate a progressive destruction of hepatocytes leading untreated to liver failure. T cells play a major role in the immunopathogenesis, and both CD4(+) and CD8(+) T cells are involved together with effector responses mediated by NK cells, γδ T cells, and macrophages. A number of triggering factors have been proposed including viruses, xenobiotics, and drugs, but none have been conclusively shown to be involved in pathogenesis.
Collapse
|
477
|
Zachariah MA, Cyster JG. Neural crest-derived pericytes promote egress of mature thymocytes at the corticomedullary junction. Science 2010; 328:1129-35. [PMID: 20413455 DOI: 10.1126/science.1188222] [Citation(s) in RCA: 158] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
T cell egress from the thymus is essential for adaptive immunity, yet the requirements for and sites of egress are incompletely understood. We have shown that transgenic expression of sphingosine-1-phosphate receptor-1 (S1P1) in immature thymocytes leads to their perivascular accumulation and premature release into circulation. Using an intravascular procedure to label emigrating cells, we found that mature thymocytes exit via blood vessels at the corticomedullary junction. By deleting sphingosine kinases in neural crest-derived pericytes, we provide evidence that these specialized vessel-ensheathing cells contribute to the S1P that promotes thymic egress. Lymphatic endothelial cell-derived S1P was not required. These studies identify the major thymic egress route and suggest a role for pericytes in promoting reverse transmigration of cells across blood vessel endothelium.
Collapse
Affiliation(s)
- Marcus A Zachariah
- Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California San Francisco, 513 Parnassus Avenue, HSE1001, San Francisco, CA 94143, USA
| | | |
Collapse
|
478
|
Allende ML, Tuymetova G, Lee BG, Bonifacino E, Wu YP, Proia RL. S1P1 receptor directs the release of immature B cells from bone marrow into blood. ACTA ACUST UNITED AC 2010; 207:1113-24. [PMID: 20404103 PMCID: PMC2867276 DOI: 10.1084/jem.20092210] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
S1P1 receptor expression is required for the egress of newly formed T cells from the thymus and exit of mature T and B cells from secondary lymphoid organs. In this study, we deleted the expression of the S1P1 receptor gene (S1pr1) in developing B cells in the bone marrow. Although B cell maturation within the bone marrow was largely normal in the B cell–specific S1pr1 knockout (B-S1pr1KO) mice, their newly generated immature B cells appeared in the blood at abnormally low numbers as compared with control mice. In the bone marrow of B-S1pr1KO mice, immature B cells in contact with the vascular compartment displayed increased apoptosis as compared with control mice. Forced expression of CD69, a negative regulator of S1P1 receptor expression, in developing bone marrow B cells also reduced the number of immature B cells in the blood. Attenuation of CXCR4 signaling, which is required for the proper retention of developing B cells in bone marrow, did not release immature B cells into the blood of B-S1pr1KO mice as effectively as in control mice. Our results indicate that the S1P1 receptor provides a signal necessary for the efficient transfer of newly generated immature B cells from the bone marrow to the blood.
Collapse
Affiliation(s)
- Maria L Allende
- Genetics of Development and Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
479
|
Olivera A, Eisner C, Kitamura Y, Dillahunt S, Allende L, Tuymetova G, Watford W, Meylan F, Diesner SC, Li L, Schnermann J, Proia RL, Rivera J. Sphingosine kinase 1 and sphingosine-1-phosphate receptor 2 are vital to recovery from anaphylactic shock in mice. J Clin Invest 2010; 120:1429-40. [PMID: 20407207 DOI: 10.1172/jci40659] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Accepted: 02/17/2010] [Indexed: 01/27/2023] Open
Abstract
Sphingosine kinase 1 (SphK1) and SphK2 are ubiquitous enzymes that generate sphingosine-1-phosphate (S1P), a ligand for a family of G protein-coupled receptors (S1PR1-S1PR5) with important functions in the vascular and immune systems. Here we explore the role of these kinases and receptors in recovery from anaphylaxis in mice. We found that Sphk2-/- mice had a rapid recovery from anaphylaxis. In contrast, Sphk1-/- mice showed poor recovery from anaphylaxis and delayed histamine clearance. Injection of S1P into Sphk1-/- mice increased histamine clearance and promoted recovery from anaphylaxis. Adoptive cell transfer experiments demonstrated that SphK1 activity was required in both the hematopoietic and nonhematopoietic compartments for recovery from anaphylaxis. Mice lacking the S1P receptor S1PR2 also showed a delay in plasma histamine clearance and a poor recovery from anaphylaxis. However, S1P did not promote the recovery of S1pr2-/- mice from anaphylaxis, whereas S1pr2+/- mice showed partial recovery. Unlike Sphk2-/- mice, Sphk1-/- and S1pr2-/- mice had severe hypotension during anaphylaxis. Thus, SphK1-produced S1P regulates blood pressure, histamine clearance, and recovery from anaphylaxis in a manner that involves S1PR2. This suggests that specific S1PR2 agonists may serve to counteract the vasodilation associated with anaphylactic shock.
Collapse
Affiliation(s)
- Ana Olivera
- Laboratory of Molecular Immunogenetics, National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
480
|
Donovan EE, Pelanda R, Torres RM. S1P3 confers differential S1P-induced migration by autoreactive and non-autoreactive immature B cells and is required for normal B-cell development. Eur J Immunol 2010; 40:688-98. [PMID: 20039302 DOI: 10.1002/eji.200939858] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
During B-cell development, immature B-cell fate is determined by whether the BCR is engaged in the bone marrow. Immature B cells that are non-autoreactive continue maturation and emigrate from the marrow, whereas autoreactive immature B cells remain and are tolerized. However, the microenvironment where these events occur and the chemoattractants responsible for immature B-cell trafficking within and out of the bone marrow remain largely undefined. Sphingosine 1-phosphate (S1P) is a chemoattractant that directs lymphocyte trafficking and thymocyte egress and in this study we investigated whether S1P contributes to B-cell development, egress and positioning within the bone marrow. Our findings show that immature B cells are chemotactic toward S1P but that this response is dependent on Ag receptor specificity: non-autoreactive, but not autoreactive, immature B cells migrate toward S1P and are shown to require S1P3 receptor for this response. Despite this response, S1P3 is shown not to facilitate immature B-cell egress but is required for normal B-cell development including the positioning of transitional B cells within bone marrow sinusoids. These data indicate that S1P3 signaling directs immature B cells to a bone marrow microenvironment important for both tolerance induction and maturation.
Collapse
Affiliation(s)
- Erin E Donovan
- Integrated Department of Immunology, National Jewish Health, University of Colorado Denver, Denver, CO, USA
| | | | | |
Collapse
|
481
|
Haghikia A, Gold R. The impact of fingolimod (FTY720) in neuroimmunologic diseases: mechanisms beyond immunomodulation. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 176:2599-601. [PMID: 20395429 DOI: 10.2353/ajpath.2010.100200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
This commentary discusses the non-immune effects of fingolimod on neuroimmunological diseases.
Collapse
Affiliation(s)
- Aiden Haghikia
- Department of Neurology, Ruhr-University Bochum, St. Josef-Hospital, Gudrunstrasse 56, D-44791 Bochum, Germany
| | | |
Collapse
|
482
|
Novel insight into stem cell mobilization-plasma sphingosine-1-phosphate is a major chemoattractant that directs the egress of hematopoietic stem progenitor cells from the bone marrow and its level in peripheral blood increases during mobilization due to activation of complement cascade/membrane attack complex. Leukemia 2010; 24:976-85. [PMID: 20357827 PMCID: PMC2946378 DOI: 10.1038/leu.2010.53] [Citation(s) in RCA: 205] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Complement cascade (CC) becomes activated and its cleavage fragments play a crucial role in the mobilization of hematopoietic stem/progenitor cells (HSPCs). Here, we sought to determine which major chemottractant present in peripheral blood (PB) is responsible for the egress of HSPCs from the BM. We noticed that normal and mobilized plasma strongly chemoattracts HSPCs in a stromal derived factor-1 (SDF-1)-independent manner because i) plasma SDF-1 level does not correlate with mobilization efficiency, ii) the chemotactic plasma gradient is not affected in the presence of AMD3100, and iii) it is resistant to denaturation by heat. Surprisingly, the observed loss of plasma chemotactic activity after charcoal stripping suggested involvement of bioactive lipids and we focused on sphingosine-1 phosphate (S1P), a known chemoattracant of HSPCs. We found that S1P i) creates in plasma a continuously present gradient for BM-residing HSPCs, ii) is at physiologically relevant concentrations a chemoattractant several magnitudes stronger than SDF-1, and iii) its plasma level increases during mobilization due to CC activation and the interaction of membrane attack complex (MAC) with erythrocytes that are a major reservoir of S1P. We conclude and propose a new paradigm that S1P is a crucial chemoattractant for BM-residing HSPCs and that CC via MAC induces release of S1P from erythrocytes for optimal egress/mobilization of HSPCs.
Collapse
|
483
|
Novel insight into stem cell mobilization-plasma sphingosine-1-phosphate is a major chemoattractant that directs the egress of hematopoietic stem progenitor cells from the bone marrow and its level in peripheral blood increases during mobilization due to activation of complement cascade/membrane attack complex. Leukemia 2010; 24:573-82. [PMID: 20033053 PMCID: PMC2838235 DOI: 10.1038/leu.2009.271] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We reported that complement cascade (CC) becomes activated in bone marrow (BM) during mobilization of hematopoietic stem/progenitor cells (HSPCs) induced by granulocyte-colony stimulating factor (G-CSF) and C5 cleavage plays an important role in optimal egress of HSPCs. In the current work, we explored whether CC is involved in mobilization of HSPCs induced by the CXCR4 antagonist, AMD3100. To address this question, we performed mobilization studies in mice that display a defect in the activation of the proximal steps of CC (Rag−/−, SCID, C2.Cfb−/−) as well as in mice that do not activate the distal steps of CC (C5−/−). We noticed that proximal CC activation-deficient mice (above C5 level), in contrast to distal step CC activation-deficient C5−/− ones mobilize normally in response to AMD3100 administration. We hypothesized that this discrepancy in mobilization could be explained by AMD3100 activating C5 in Rag−/−, SCID, C2.Cfb−/− animals in a non-canonical mechanism involving activated granulocytes. To support this granulocytes i) as first egress from BM and ii) secrete several proteases that cleave/activate C5 in response to AMD3100. We conclude that AMD3100-directed mobilization of HSPCs, similarly to G-CSF-induced mobilization, depends on activation of CC; however, in contrast to G-CSF, AMD3100 activates the distal steps of CC directly at the C5 level. Overall, these data support that C5 cleavage fragments and distal steps of CC activation are required for optimal mobilization of HSPCs.
Collapse
|
484
|
Abstract
Execution of physiologic cell death known as apoptosis is tightly regulated and transfers immunologically relevant information. This ensures efficient clearance of dying cells and shapes the phenotype of their "captors" toward anti-inflammatory. Here, we identify a mechanism of sphingosine-1-phosphate production by apoptotic cells. During cell death, sphingosine kinase 2 (SphK2) is cleaved at its N-terminus in a caspase-1-dependent manner. Thereupon, a truncated but enzymatically active fragment of SphK2 is released from cells. This step is coupled to phosphatidylserine exposure, which is a hallmark of apoptosis and a crucial signal for phagocyte/apoptotic cell interaction. Our data link signaling events during apoptosis to the extracellular production of a lipid mediator that affects immune cell attraction and activation.
Collapse
|
485
|
Oskeritzian CA, Price MM, Hait NC, Kapitonov D, Falanga YT, Morales JK, Ryan JJ, Milstien S, Spiegel S. Essential roles of sphingosine-1-phosphate receptor 2 in human mast cell activation, anaphylaxis, and pulmonary edema. ACTA ACUST UNITED AC 2010; 207:465-74. [PMID: 20194630 PMCID: PMC2839150 DOI: 10.1084/jem.20091513] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Systemic exacerbation of allergic responses, in which mast cells play a critical role, results in life-threatening anaphylactic shock. Sphingosine-1–phosphate (S1P), a ligand for a family of G protein–coupled receptors, is a new addition to the repertoire of bioactive lipids secreted by activated mast cells. Yet little is known of its role in human mast cell functions and in anaphylaxis. We show that S1P2 receptors play a critical role in regulating human mast cell functions, including degranulation and cytokine and chemokine release. Immunoglobulin E–triggered anaphylactic responses, including elevation of circulating histamine and associated pulmonary edema in mice, were significantly attenuated by the S1P2 antagonist JTE-013 and in S1P2-deficient mice, in contrast to anaphylaxis induced by administration of histamine or platelet-activating factor. Hence, S1P and S1P2 on mast cells are determinants of systemic anaphylaxis and associated pulmonary edema and might be beneficial targets for anaphylaxis attenuation and prophylaxis.
Collapse
Affiliation(s)
- Carole A Oskeritzian
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
486
|
Gangoiti P, Camacho L, Arana L, Ouro A, Granado MH, Brizuela L, Casas J, Fabriás G, Abad JL, Delgado A, Gómez-Muñoz A. Control of metabolism and signaling of simple bioactive sphingolipids: Implications in disease. Prog Lipid Res 2010; 49:316-34. [PMID: 20193711 DOI: 10.1016/j.plipres.2010.02.004] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Revised: 02/18/2010] [Accepted: 02/22/2010] [Indexed: 01/05/2023]
Abstract
Simple bioactive sphingolipids include ceramide, sphingosine and their phosphorylated forms sphingosine 1-phosphate and ceramide 1-phosphate. These molecules are crucial regulators of cell functions. In particular, they play important roles in the regulation of angiogenesis, apoptosis, cell proliferation, differentiation, migration, and inflammation. Decoding the mechanisms by which these cellular functions are regulated requires detailed understanding of the signaling pathways that are implicated in these processes. Most importantly, the development of inhibitors of the enzymes involved in their metabolism may be crucial for establishing new therapeutic strategies for treatment of disease.
Collapse
Affiliation(s)
- Patricia Gangoiti
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
487
|
Verzijl D, Peters SLM, Alewijnse AE. Sphingosine-1-phosphate receptors: zooming in on ligand-induced intracellular trafficking and its functional implications. Mol Cells 2010; 29:99-104. [PMID: 20127285 DOI: 10.1007/s10059-010-0041-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2009] [Accepted: 12/27/2009] [Indexed: 01/10/2023] Open
Abstract
Regulatory processes including receptor phosphorylation and intracellular trafficking, also referred to as receptor internalization, are important processes to terminate G protein-coupled receptor (GPCR) signaling. Compelling evidence now indicates that internalization of a receptor is not necessarily the endpoint of signaling, but can also be the beginning of the activation of intracellular signaling pathways. Sphingosine-1-phosphate (S1P) receptors, which are activated by the endogenous phospholipid S1P, belong to the family of GPCRs. Interestingly, there is evidence indicating differential intracellular trafficking of one of the S1P receptor subtypes, the S1P1 receptor, upon agonist activation by either S1P or the synthetic agonist FTY720-P. Moreover, the differential effect of FTY720-P on S1P1 receptor regulation has been suggested to be the mechanism of action of this drug, which is now in Phase III clinical trials for the treatment of multiple sclerosis. It is thus of importance to get a good insight into the regulation of S1P receptors. This review therefore gives a detailed overview about the current state of knowledge on S1P receptor internalization and its functional implications, including some data on nuclear signaling of S1P receptors.
Collapse
Affiliation(s)
- Dennis Verzijl
- Department Pharmacology and Pharmacotherapy, Academic Medical Center, Amsterdam, the Netherlands
| | | | | |
Collapse
|
488
|
Breslow DK, Collins SR, Bodenmiller B, Aebersold R, Simons K, Shevchenko A, Ejsing CS, Weissman JS. Orm family proteins mediate sphingolipid homeostasis. Nature 2010; 463:1048-53. [PMID: 20182505 PMCID: PMC2877384 DOI: 10.1038/nature08787] [Citation(s) in RCA: 635] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2009] [Accepted: 12/17/2009] [Indexed: 12/03/2022]
Abstract
Despite the essential roles of sphingolipids both as structural components of membranes and critical signalling molecules, we have a limited understanding of how cells sense and regulate their levels. Here we reveal the function in sphingolipid metabolism of the ORM genes (known as ORMDL genes in humans)-a conserved gene family that includes ORMDL3, which has recently been identified as a potential risk factor for childhood asthma. Starting from an unbiased functional genomic approach in Saccharomyces cerevisiae, we identify Orm proteins as negative regulators of sphingolipid synthesis that form a conserved complex with serine palmitoyltransferase, the first and rate-limiting enzyme in sphingolipid production. We also define a regulatory pathway in which phosphorylation of Orm proteins relieves their inhibitory activity when sphingolipid production is disrupted. Changes in ORM gene expression or mutations to their phosphorylation sites cause dysregulation of sphingolipid metabolism. Our work identifies the Orm proteins as critical mediators of sphingolipid homeostasis and raises the possibility that sphingolipid misregulation contributes to the development of childhood asthma.
Collapse
Affiliation(s)
- David K. Breslow
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, 1700 4 Street, San Francisco, California 94158, USA
- Howard Hughes Medical Institute, University of California, San Francisco, 1700 4 Street, San Francisco, California 94158, USA
- Graduate Program in Chemistry and Chemical Biology, University of California, San Francisco, 1700 4 Street, San Francisco, California 94158, USA
- The California Institute for Quantitative Biomedical Research, University of California, San Francisco, 1700 4 Street, San Francisco, California 94158, USA
| | - Sean R. Collins
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, 1700 4 Street, San Francisco, California 94158, USA
- Howard Hughes Medical Institute, University of California, San Francisco, 1700 4 Street, San Francisco, California 94158, USA
- The California Institute for Quantitative Biomedical Research, University of California, San Francisco, 1700 4 Street, San Francisco, California 94158, USA
| | - Bernd Bodenmiller
- Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Ruedi Aebersold
- Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Kai Simons
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Andrej Shevchenko
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Christer S. Ejsing
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
| | - Jonathan S. Weissman
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, 1700 4 Street, San Francisco, California 94158, USA
- Howard Hughes Medical Institute, University of California, San Francisco, 1700 4 Street, San Francisco, California 94158, USA
- The California Institute for Quantitative Biomedical Research, University of California, San Francisco, 1700 4 Street, San Francisco, California 94158, USA
| |
Collapse
|
489
|
Ishimaru N, Nitta T, Arakaki R, Yamada A, Lipp M, Takahama Y, Hayashi Y. In situ patrolling of regulatory T cells is essential for protecting autoimmune exocrinopathy. PLoS One 2010; 5:e8588. [PMID: 20052419 PMCID: PMC2798967 DOI: 10.1371/journal.pone.0008588] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2009] [Accepted: 12/11/2009] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Migration of T cells, including regulatory T (Treg) cells, into the secondary lymph organs is critically controlled by chemokines and adhesion molecules. However, the mechanisms by which Treg cells regulate organ-specific autoimmunity via these molecules remain unclear. Although we previously reported autoimmune exocrinopathy resembling Sjögren's syndrome (SS) in the lacrimal and salivary glands from C-C chemokine receptor 7 (CCR7)-deficient mice, it is still unclear whether CCR7 signaling might specifically affect the dynamics and functions of Treg cells in vivo. We therefore investigated the cellular mechanism for suppressive function of Treg cells via CCR7 in autoimmunity using mouse models and human samples. METHODS AND FINDINGS Patrolling Treg cells were detected in the exocrine organs such as lacrimal and salivary glands from normal mice that tend to be targets for autoimmunity while the Treg cells were almost undetectable in the exocrine glands of CCR7(-/-) mice. In addition, we found the significantly increased retention of CD4(+)CD25(+)Foxp3(+) Treg cells in the lymph nodes of CCR7(-/-) mice with aging. Although Treg cell egress requires sphingosine 1-phosphate (S1P), chemotactic function to S1P of CCR7-/- Treg cells was impaired compared with that of WT Treg cells. Moreover, the in vivo suppression activity was remarkably diminished in CCR7(-/-) Treg cells in the model where Treg cells were co-transferred with CCR7(-/-) CD25(-)CD4(+) T cells into Rag2(-/-) mice. Finally, confocal analysis showed that CCR7(+)Treg cells were detectable in normal salivary glands while the number of CCR7(+)Treg cells was extremely decreased in the tissues from patients with Sjögren's syndrome. CONCLUSIONS These results indicate that CCR7 essentially governs the patrolling functions of Treg cells by controlling the traffic to the exocrine organs for protecting autoimmunity. Characterization of this cellular mechanism could have clinical implications by supporting development of new diagnosis or treatments for the organ-specific autoimmune diseases such as Sjögren's syndrome and clarifying how the local immune system regulates autoimmunity.
Collapse
Affiliation(s)
- Naozumi Ishimaru
- Department of Oral Molecular Pathology, Institute of Health Biosciences, The University of Tokushima Graduate School, Kuramotocho, Tokushima, Japan
| | - Takeshi Nitta
- Department of Experimental Immunology, Institute for Genome Research, The University of Tokushima Graduate School, Kuramotocho, Tokushima, Japan
| | - Rieko Arakaki
- Department of Oral Molecular Pathology, Institute of Health Biosciences, The University of Tokushima Graduate School, Kuramotocho, Tokushima, Japan
| | - Akiko Yamada
- Department of Oral Molecular Pathology, Institute of Health Biosciences, The University of Tokushima Graduate School, Kuramotocho, Tokushima, Japan
| | - Martin Lipp
- Department of Molecular Tumor Genetics and Immunogenetics, Max-Delbruck Center for Molecular Medicine, Berlin, Germany
| | - Yousuke Takahama
- Department of Experimental Immunology, Institute for Genome Research, The University of Tokushima Graduate School, Kuramotocho, Tokushima, Japan
| | - Yoshio Hayashi
- Department of Oral Molecular Pathology, Institute of Health Biosciences, The University of Tokushima Graduate School, Kuramotocho, Tokushima, Japan
- * E-mail:
| |
Collapse
|
490
|
Sphingosine-1-phosphate and its receptors as a possible therapeutic target in autoimmune diseases of the nervous system. J Neuroimmunol 2010; 218:1-2. [DOI: 10.1016/j.jneuroim.2009.09.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2009] [Revised: 09/24/2009] [Accepted: 09/25/2009] [Indexed: 11/17/2022]
|
491
|
Palker TJ, Dong G, Leitner WW. Mast cells in innate and adaptive immunity to infection. Eur J Immunol 2009; 40:13-8. [DOI: 10.1002/eji.200990325] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
492
|
Abstract
Calcium signals mediate diverse cellular functions in immunological cells. Early studies with mast cells, then a preeminent model for studying Ca2+-dependent exocytosis, revealed several basic features of calcium signaling in non-electrically excitable cells. Subsequent studies in these and other cells further defined the basic processes such as inositol 1,4,5-trisphosphate-mediated release of Ca2+ from Ca2+ stores in the endoplasmic reticulum (ER); coupling of ER store depletion to influx of external Ca2+ through a calcium-release activated calcium (CRAC) channel now attributed to the interaction of the ER Ca2+ sensor, stromal interacting molecule-1 (STIM1), with a unique Ca2+-channel protein, Orai1/CRACM1, and subsequent uptake of excess Ca2+ into ER and mitochondria through ATP-dependent Ca2+ pumps. In addition, transient receptor potential channels and ion exchangers also contribute to the generation of calcium signals that may be global or have dynamic (e.g., waves and oscillations) and spatial resolution for specific functional readouts. This review discusses past and recent developments in this field of research, the pharmacologic agents that have assisted in these endeavors, and the mast cell as an exemplar for sorting out how calcium signals may regulate multiple outputs in a single cell.
Collapse
Affiliation(s)
- Hong-Tao Ma
- Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | | |
Collapse
|
493
|
|
494
|
Bagdanoff JT, Donoviel MS, Nouraldeen A, Tarver J, Fu Q, Carlsen M, Jessop TC, Zhang H, Hazelwood J, Nguyen H, Baugh SDP, Gardyan M, Terranova KM, Barbosa J, Yan J, Bednarz M, Layek S, Courtney LF, Taylor J, Digeorge-Foushee AM, Gopinathan S, Bruce D, Smith T, Moran L, O'Neill E, Kramer J, Lai Z, Kimball SD, Liu Q, Sun W, Yu S, Swaffield J, Wilson A, Main A, Carson KG, Oravecz T, Augeri DJ. Inhibition of sphingosine-1-phosphate lyase for the treatment of autoimmune disorders. J Med Chem 2009; 52:3941-53. [PMID: 19489538 DOI: 10.1021/jm900278w] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
During nearly a decade of research dedicated to the study of sphingosine signaling pathways, we identified sphingosine-1-phosphate lyase (S1PL) as a drug target for the treatment of autoimmune disorders. S1PL catalyzes the irreversible decomposition of sphingosine-1-phosphate (S1P) by a retro-aldol fragmentation that yields hexadecanaldehyde and phosphoethanolamine. Genetic models demonstrated that mice expressing reduced S1PL activity had decreased numbers of circulating lymphocytes due to altered lymphocyte trafficking, which prevented disease development in multiple models of autoimmune disease. Mechanistic studies of lymphoid tissue following oral administration of 2-acetyl-4(5)-(1(R),2(S),3(R),4-tetrahydroxybutyl)-imidazole (THI) 3 showed a clear relationship between reduced lyase activity, elevated S1P levels, and lower levels of circulating lymphocytes. Our internal medicinal chemistry efforts discovered potent analogues of 3 bearing heterocycles as chemical equivalents of the pendant carbonyl present in the parent structure. Reduction of S1PL activity by oral administration of these analogues recapitulated the phenotype of mice with genetically reduced S1PL expression.
Collapse
|
495
|
Haberberger RV, Tabeling C, Runciman S, Gutbier B, König P, Andratsch M, Schütte H, Suttorp N, Gibbins I, Witzenrath M. Role of sphingosine kinase 1 in allergen-induced pulmonary vascular remodeling and hyperresponsiveness. J Allergy Clin Immunol 2009; 124:933-41.e1-9. [PMID: 19665772 DOI: 10.1016/j.jaci.2009.06.034] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2008] [Revised: 06/13/2009] [Accepted: 06/16/2009] [Indexed: 12/25/2022]
Abstract
BACKGROUND Immunologic processes might contribute to the pathogenesis of pulmonary arterial hypertension (PAH), a fatal condition characterized by progressive pulmonary arterial remodeling, increased pulmonary vascular resistance, and right ventricular failure. Experimental allergen-driven lung inflammation evoked morphologic and functional vascular changes that resembled those observed in patients with PAH. Sphingosine kinase 1 (SphK1) is the main pulmonary contributor to sphingosine-1-phosphate (S1P) synthesis, a modulator of immune and vascular functions. OBJECTIVE We sought to investigate the role of SphK1 in allergen-induced lung inflammation. METHODS SphK1-deficient mice and C57Bl/6 littermates (wild-type [WT] animals) were subjected to acute or chronic allergen exposure. RESULTS After 4 weeks of systemic ovalbumin sensitization and local airway challenge, airway responsiveness increased less in SphK1(-/-) compared with WT mice, whereas pulmonary vascular responsiveness was greatly increased and did not differ between strains. Acute lung inflammation led to an increase in eosinophils and mRNA expression for S1P phosphatase 2 and S1P lyase in lungs of WT but not SphK1(-/-) mice. After repetitive allergen exposure for 8 weeks, airway responsiveness was not augmented in SphK1(-/-) or WT mice, but pulmonary vascular responsiveness was increased in both strains, with significantly higher vascular responsiveness in SphK1(-/-) mice compared with that seen in WT mice. Increased vascular responsiveness was accompanied by remodeling of the small and intra-acinar arteries. CONCLUSION : The data support a role for SphK1 and S1P in allergen-induced airway inflammation. However, SphK1 deficiency increased pulmonary vascular hyperresponsiveness, which is a component of PAH pathobiology. Moreover, we show for the first time the dissociation between inflammation-induced remodeling of the airways and pulmonary vasculature.
Collapse
|
496
|
Abstract
BACKGROUND Sphingosine 1-phosphate (S1P) is a bioactive lipid that regulates cell proliferation, survival and migration and plays an essential role in angiogenesis and lymphocyte trafficking. S1P levels in the circulation and tissues are tightly regulated for proper cell functioning, and dysregulation of this system may contribute to the pathophysiology of certain human diseases. Sphingosine phosphate lyase (SPL) irreversibly degrades S1P and thereby acts as a gatekeeper that regulates S1P signaling by modulating intracellular S1P levels and the chemical S1P gradient that exists between lymphoid organs and circulating blood and lymph. However, SPL also generates biochemical products that may be relevant in human disease. SPL has been directly implicated in various physiological and pathological processes, including cell stress responses, cancer, immunity, hematopoietic function, muscle homeostasis, inflammation and development. OBJECTIVE/METHODS This review summarizes the current know-ledge of SPL structure, function and regulation, its involvement in various disease states and currently available small molecules known to modulate SPL activity. RESULTS/CONCLUSION This review provides evidence that SPL is a potential target for pharmacological manipulation for the treatment of malignant, autoimmune, inflammatory and other diseases.
Collapse
Affiliation(s)
- Ashok Kumar
- Children’s Hospital Oakland Research Institute Oakland, CA 94609
| | - Julie D. Saba
- Children’s Hospital Oakland Research Institute Oakland, CA 94609
| |
Collapse
|
497
|
Weigert A, Weis N, Brüne B. Regulation of macrophage function by sphingosine-1-phosphate. Immunobiology 2009; 214:748-60. [PMID: 19625101 DOI: 10.1016/j.imbio.2009.06.003] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The bioactive lipid sphingosine-1-phosphate (S1P) fulfils manifold tasks in the immune system acting in auto- and/or paracrine fashion. This includes regulation of apoptosis, migration and proliferation. Upon its generation by sphingosine kinases from plasma membrane sphingolipids, S1P can either act as a second messenger within cells or can be released from cells to occupy a family of specific G-protein-coupled receptors (S1P1-5). This diversity is reflected by the impact of S1P on macrophage biology and function. Over the last years it became apparent that the sphingosine kinase/S1P/S1P-receptor signalling axis in macrophages might play a central role in the pathogenesis of inflammatory diseases such as atherosclerosis, asthma, rheumatoid arthritis and cancer. Here, we summarize the current knowledge of the function of S1P in macrophage biology and discuss potential implications for pathology.
Collapse
Affiliation(s)
- Andreas Weigert
- Institute of Biochemistry I/ZAFES, Goethe-University Frankfurt am Main, Germany
| | | | | |
Collapse
|
498
|
Weigert A, Schiffmann S, Sekar D, Ley S, Menrad H, Werno C, Grosch S, Geisslinger G, Brüne B. Sphingosine kinase 2 deficient tumor xenografts show impaired growth and fail to polarize macrophages towards an anti‐inflammatory phenotype. Int J Cancer 2009; 125:2114-21. [DOI: 10.1002/ijc.24594] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Andreas Weigert
- Institute of Biochemistry I/ZAFES, Goethe‐University, Theodor‐Stern‐Kai 7, Frankfurt, Germany
| | - Susanne Schiffmann
- Institute of Clinical Pharmacology/ZAFES, Goethe‐University, Theodor‐Stern‐Kai 7, Frankfurt, Germany
| | - Divya Sekar
- Institute of Biochemistry I/ZAFES, Goethe‐University, Theodor‐Stern‐Kai 7, Frankfurt, Germany
| | - Stephanie Ley
- Institute of Biochemistry I/ZAFES, Goethe‐University, Theodor‐Stern‐Kai 7, Frankfurt, Germany
| | - Heidi Menrad
- Institute of Biochemistry I/ZAFES, Goethe‐University, Theodor‐Stern‐Kai 7, Frankfurt, Germany
| | - Christian Werno
- Institute of Biochemistry I/ZAFES, Goethe‐University, Theodor‐Stern‐Kai 7, Frankfurt, Germany
| | - Sabine Grosch
- Institute of Clinical Pharmacology/ZAFES, Goethe‐University, Theodor‐Stern‐Kai 7, Frankfurt, Germany
| | - Gerd Geisslinger
- Institute of Clinical Pharmacology/ZAFES, Goethe‐University, Theodor‐Stern‐Kai 7, Frankfurt, Germany
| | - Bernhard Brüne
- Institute of Biochemistry I/ZAFES, Goethe‐University, Theodor‐Stern‐Kai 7, Frankfurt, Germany
| |
Collapse
|
499
|
Lai WQ, Irwan AW, Goh HH, Melendez AJ, McInnes IB, Leung BP. Distinct roles of sphingosine kinase 1 and 2 in murine collagen-induced arthritis. THE JOURNAL OF IMMUNOLOGY 2009; 183:2097-103. [PMID: 19596980 DOI: 10.4049/jimmunol.0804376] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Sphingosine kinase (SphK) phosphorylates sphingosine into sphingosine-1-phosphate (S1P). S1P plays a critical role in angiogenesis, inflammation, and various pathologic conditions. To date, two mammalian isoenzymes, SphK1 and SphK2, have been identified. Although both SphK1 and SphK2 share overall homology and produce the common product, S1P, it has been proposed they display different unique and separate functions. In this study, we examined the role of SphK1 and SphK2 in a murine collagen-induced arthritis model by down-regulating each isoenzyme via specific small interfering RNA (siRNA). Prophylactic i.p. administration of SphK1 siRNA significantly reduced the incidence, disease severity, and articular inflammation compared with control siRNA recipients. Treatment of SphK1 siRNA also down-regulated serum levels of S1P, IL-6, TNF-alpha, IFN-gamma, and IgG2a anti-collagen Ab. Ex vivo analysis demonstrated significant suppression of collagen-specific proinflammatory/Th1 cytokine (IL-6, TNF-alpha, IFN-gamma) release in SphK siRNA-treated mice. Interestingly, mice received with SphK2 siRNA develop more aggressive disease; higher serum levels of IL-6, TNF-alpha, and IFN-gamma; and proinflammatory cytokine production to collagen in vitro when compared with control siRNA recipients. Together, these results demonstrate the distinct immunomodulatory roles of SphK1 and SphK2 in the development of inflammatory arthritis by regulating the release of proinflammatory cytokines and T cell responses. These findings raise the possibility that drugs which specifically target SphK1 activity may play a beneficial role in the treatment of inflammatory arthritis.
Collapse
Affiliation(s)
- Wen-Qi Lai
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | | | | | | | | |
Collapse
|
500
|
Daum G, Grabski A, Reidy MA. Sphingosine 1-phosphate: a regulator of arterial lesions. Arterioscler Thromb Vasc Biol 2009; 29:1439-43. [PMID: 19592471 DOI: 10.1161/atvbaha.108.175240] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Sphingosine-1 phosphate (S1P) is a bioactive sphingolipid that is critical in the development of blood vessels, and in the adult regulates vascular functions including vascular tone, endothelial integrity, and angiogenesis. Further, S1P may regulate arterial lesions in disease and after injury by controlling leukocyte recruitment and smooth muscle cell functions.
Collapse
Affiliation(s)
- G Daum
- Department of Surgery, University of Washington, Seattle, WA, USA
| | | | | |
Collapse
|