451
|
Affiliation(s)
- Takashi Hamazaki
- Department of Pathology, University of Florida, College of Medicine, P.O. Box 100275, Gainesville, Florida 32610 0275, USA
| | | |
Collapse
|
452
|
Kania G, Blyszczuk P, Czyz J, Navarrete-Santos A, Wobus AM. Differentiation of mouse embryonic stem cells into pancreatic and hepatic cells. Methods Enzymol 2003; 365:287-303. [PMID: 14696354 DOI: 10.1016/s0076-6879(03)65021-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Here, we present efficient strategies to differentiate ES cells either into pancreatic or into hepatic cell types. We recommend a strategy to select nestin+ cells, an early progenitor cell type with high developmental plasticity, followed by differentiation induction with specific growth and extracellular matrix factors into pancreatic and hepatic cell types. Cells differentiating via nestin+ cells into the pancreatic and hepatic lineage expressed tissue-specific genes. Proteins characteristic for mature endocrine pancreatic or hepatic cells were synthesized and released. Further, a histotypic "spinner" culture system was introduced to generate mature insulin- and albumin-producing cells at high efficiency.
Collapse
Affiliation(s)
- Gabriela Kania
- In Vitro Differentiation Group, Institute of Plant Genetics and Crop Plant Research, Corrensstr. 3, Gatersleben, D-06466, Germany
| | | | | | | | | |
Collapse
|
453
|
Abstract
Transdifferentiation is the name used to describe the direct conversion of one differentiated cell type into another. Cells which have the potential to interconvert by transdifferentiation generally arise from adjacent regions in the developing embryo. For example, the liver and pancreas arise from the same region of the endoderm. The transdifferentiation of pancreas to liver (and vice versa) has been observed in animal experiments and in certain human pathologies. Understanding transdifferentiation is important to developmental biologists because it will help elucidate the cellular and molecular differences that distinguish neighbouring regions of the embryo. While the in vivo models for the transdifferentiation of liver to pancreas have been valuable, it is more difficult to extrapolate from these studies to individual changes at the cellular or molecular levels. The recent development of two in vitro systems (AR42J cells and embryonic pancreatic cultures) for the transdifferentiation of pancreas to liver has shown that an environmental change in the form of an exogenous glucocorticoid can cause the conversion of pancreatic exocrine cells into hepatocytes. The AR42J cell system has been used to elucidate the cell lineage and the molecular basis of transdifferentiation of pancreas to liver.
Collapse
Affiliation(s)
- Chia Ning Shen
- Developmental Biology Programme, Department of Biology and Biochemistry, University of Bath, BA2 7AY Bath, UK
| | | | | | | |
Collapse
|
454
|
Abstract
Liver and pancreas initially develop by budding from the embryonic endoderm. The formation of these organs coincides with the appearance of endothelial cells (ECs) adjacent to the endoderm. ECs either develop in situ in organs, or are recruited by organs and are induced to form blood vessels. Recent reports on liver and pancreas have now shown that ECs also induce essential steps in organ formation such as morphogenesis and cell differentiation. This review summarizes reports on EC signaling during organogenesis and cell differentiation.
Collapse
Affiliation(s)
- Eckhard Lammert
- Department of Molecular and Cellular Biology, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138, USA.
| | | | | |
Collapse
|
455
|
Abstract
Over the last decade significant advances have been made in our understanding of the molecular mechanisms that control early aspects of mammalian liver development. Studies using tissue explant cultures and molecular biology techniques as well as the analysis of transgenic and knockout mice have identified signaling molecules and transcription factors that are necessary for the onset of hepatogenesis. This review presents an overview of these studies and discusses the role of individual factors during hepatic development.
Collapse
Affiliation(s)
- Stephen A Duncan
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| |
Collapse
|
456
|
Abstract
Several extracorporeal bioartificial liver (BAL) devices are currently being evaluated as an alternative or adjunct therapy for liver disease. While these hybrid systems show promise, in order to become a clinical reality, BAL devices must clearly demonstrate efficacy in improving patient outcomes. Here, we present aspects of BAL devices that could benefit from fundamental advances in cell and developmental biology. In particular, we examine the development of human hepatocyte cell lines, strategies to stabilize the hepatocyte phenotype in vitro, and emphasize the importance of the cellular microenvironment in bioreactor design. Consideration of these key components of BAL systems will greatly improve next generation devices.
Collapse
Affiliation(s)
- Jared W Allen
- Microscale Tissue Engineering Laboratory, Department of Bioengineering, University of California at San Diego, La Jolla, CA 92093-0412, USA
| | | |
Collapse
|
457
|
Abstract
Liver development is a sequential array of distinct biological events. Each step of differentiation is regulated by intrinsically programmed mechanisms as well as by extracellular signals. The establishment of cell culture systems that recapitulate each stage of liver development has led to the identification of several extracellular signals that affect hepatocytic differentiation. Furthermore, studies on genetically engineered animals, especially knockout and transgenic mice, have highlighted a number of molecules essential for liver development. By applying primary culture techniques to analyses of mutant mice, it is now possible to link extracellular signals to intracellular pathways that provoke cellular responses of differentiation. Improvement in gene transfer technology utilizing viral vectors has further expanded the molecular analysis of liver development. In this review article, we summarize recent advances and attempt to describe the molecular basis of liver development from beginning to end as a sequential event.
Collapse
Affiliation(s)
- Taisei Kinoshita
- Institute of Molecular and Cellular Biosciences, University of Tokyo, Bunkyo, Japan
| | | |
Collapse
|
458
|
Galun E, Axelrod JH. The role of cytokines in liver failure and regeneration: potential new molecular therapies. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1592:345-58. [PMID: 12421677 DOI: 10.1016/s0167-4889(02)00326-9] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The liver is a unique organ, and first in line, the hepatocytes encounter the potential to proliferate during cell mass loss. This phenomenon is tightly controlled and resembles in some way the embryonal co-inhabitant cell lineage of the liver, the embryonic hematopoietic system. Interestingly, both the liver and hematopoietic cell proliferation and growth are controlled by various growth factors and cytokines. IL-6 and its signaling cascade inside the cells through STAT3 are both significantly important for liver regeneration as well as for hematopoietic cell proliferation. The process of liver regeneration is very complex and is dependent on the etiology and extent of liver damage and the genetic background. In this review we will initially describe the clinical relevant condition, portraying a number of available animal models with an emphasis on the relevance of each one to the human condition of fulminant hepatic failure (FHF). The discussion will then be focused on the role of cytokines in liver failure and regeneration, and suggest potential new therapeutic modalities for FHF. The recent findings on the role of IL-6 in liver regeneration and the activity of the designer IL-6/sIL-6R fusion protein, hyper-IL-6, in particular, suggest that this molecule could significantly enhance liver regeneration in humans, and as such could be a useful treatment for FHF in patients.
Collapse
Affiliation(s)
- Eithan Galun
- The Goldyne Savad Institute for Gene Therapy, Hadassah Hebrew University Hospital, Ein Kerem, Jerusalem, Israel.
| | | |
Collapse
|
459
|
Zimmermann A. Pediatric liver tumors and hepatic ontogenesis: common and distinctive pathways. MEDICAL AND PEDIATRIC ONCOLOGY 2002; 39:492-503. [PMID: 12228906 DOI: 10.1002/mpo.10174] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Several types of pediatric liver tumors exhibit structural features apparently reflecting processes which normally occur during hepatic ontogenesis: some hepatoblastomas mimic distinct phases of hepatogenesis, including the formation of mesenchymal structures closely associated with immature epithelia, and there are tumors almost exclusively consisting of complex mesenchymal patterns. Current classifications of hepatoblastomas refer to the identification of more or less mature (differentiated) single or mixed components seen in histologic preparations. These do not, however, attempt to integrate ontogenic pathways, in contrast for example, to nephroblastoma and associated lesions, where such a view has proved to be highly fruitful. Based on the fact that an enormous amount of knowledge has recently been accumulated regarding hepatic ontogenesis, time may have come to look at these tumors with a new eye. In what follows, we aim at trying to analyze distinct features of pediatric hepatic tumors (except vascular tumors) within the background of ontogenesis. Some key steps of hepatogenesis and the regulatory factors involved may, in the future, deliver an armamentarium to search for novel molecular mechanisms involved in tumorigenic pathways.
Collapse
|
460
|
Nitou M, Sugiyama Y, Ishikawa K, Shiojiri N. Purification of fetal mouse hepatoblasts by magnetic beads coated with monoclonal anti-e-cadherin antibodies and their in vitro culture. Exp Cell Res 2002; 279:330-43. [PMID: 12243758 DOI: 10.1006/excr.2002.5615] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A simple, rapid, and reproducible method of fetal hepatoblast purification was established to investigate mechanisms controlling interactions between hepatoblasts and nonparenchymal cells during liver development. Because E-cadherin is exclusively expressed on the cell membrane of hepatoblasts, magnetic beads coated with monoclonal antibodies to an extracellular epitope of its molecule were used to purify hepatoblasts from a cell suspension prepared from 12.5-day fetal mouse livers. The purity and yield in the hepatoblast fraction prepared in our protocol were more than 90% and approximately 30%, respectively. The nonparenchymal fraction rarely contained hepatoblasts; the rate of hepatoblast contamination in this fraction was less than 1%. Separate cultures of these two fractions were compared with cocultures of both fractions. In culture of the hepatoblast fraction, hepatoblasts formed aggregates similar to a bunch of grapes via their loose adhesion, floating in the medium after 24 h, and dissociated into single cells from the aggregates after 120 h of culture. By contrast, in the mixed culture, the majority of hepatoblasts formed multicellular spheroids after 24 h, and these spheroids changed into monolayer cell sheets after 120 h of culture. The cells comprising these monolayer sheets abundantly expressed albumin and carbamoylphosphate synthase I. In the mixed culture, fibroblastic cells also proliferated extensively with spreading on glass slides and surrounded the hepatoblast or hepatocyte colonies. On the other hand, fibroblastic cells spreading on glass slides decreased gradually in cultures of the nonparenchymal cell fraction alone. These findings indicated that the coexistence of hepatoblasts and nonparenchymal cells may be essential for their mutual survival, proliferation, differentiation, and morphogenesis. The conditioned medium of fetal liver cell cultures could partially replace the effects of the nonparenchymal cells on hepatoblasts in vitro. Our isolation protocol for fetal mouse hepatoblasts using immunobeads can greatly facilitate studies on mechanisms of cell-cell interactions during liver development.
Collapse
Affiliation(s)
- Miho Nitou
- Department of Biology, Faculty of Science, Shizuoka University, Oya, Shizuoka, 422-8529, Japan
| | | | | | | |
Collapse
|
461
|
SEK1/MKK4-Mediated SAPK/JNK Signaling Participates in Embryonic Hepatoblast Proliferation via a Pathway Different from NF-κB-Induced Anti-Apoptosis. Dev Biol 2002. [DOI: 10.1006/dbio.2002.0781] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
462
|
Burke Z, Oliver G. Prox1 is an early specific marker for the developing liver and pancreas in the mammalian foregut endoderm. Mech Dev 2002; 118:147-55. [PMID: 12351178 DOI: 10.1016/s0925-4773(02)00240-x] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Although important progress has been made recently in the elucidation of the molecular mechanisms that regulate differentiation and morphogenesis of endoderm-derived tissues such as pancreas and liver, less is known about the preliminary steps of early regional specification. Recent evidence supports the proposal that the early endoderm contains a bipotential precursor cell type for pancreas and liver. We have also previously shown that the activity of the homeobox gene Prox1 controls hepatocyte migration during liver morphogenesis. Using detailed comparative analysis of whole embryos and reverse transcriptase polymerase chain reaction of dissected embryonic endoderm, we have now determined that in the early endoderm, Prox1 expression is restricted to regions giving rise to the mammalian pancreas and liver. This finding indicates that Prox1 is one of the earliest specific markers of this commonly fated region of the mammalian endoderm.
Collapse
Affiliation(s)
- Zoë Burke
- Department of Genetics, St. Jude Children's Research Hospital, 332 N. Lauderdale, Memphis, TN 38105, USA
| | | |
Collapse
|
463
|
Zhang W, Yatskievych TA, Cao X, Antin PB. Regulation of Hex gene expression by a Smads-dependent signaling pathway. J Biol Chem 2002; 277:45435-41. [PMID: 12270938 DOI: 10.1074/jbc.m208056200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The homeobox gene Hex is expressed in multiple cell types during embryogenesis and is required for liver and monocyte development. Hex is expressed in the foregut region of late gastrula avian and mammalian embryos in a pattern that overlaps with expression of bone morphogenetic proteins (BMPs). Here we investigate the relationship between BMP signaling and Hex gene expression. We find that Hex expression in avian anterior lateral endoderm is regulated by autocrine BMP signaling. Characterization of the mouse Hex gene promoter identified a 71-nucleotide BMP-responsive element (BRE) that is required for up-regulation of Hex by an activated BMP signaling pathway. The Hex BRE binds Smad4 and Smad1-Smad4 complexes in vitro, and in transfection assays, it is responsive to Smad1 and Smad4 but not to Smad2 and Smad4 or Smad3 and Smad4. The BRE contains two copies of a GCCGnCGC-like motif that in Drosophila is the binding site for Mad and Madea followed by two CAGAG boxes that are similar to sequences required for transforming growth factor-beta/activin responsiveness of several vertebrate genes. Mutation of the GC elements, but not the two CAGAG boxes, abolishes Smads responsiveness in the intact Hex promoter, whereas mutations in both the GC elements and CAGAG boxes show that they act cooperatively to confer Smads responsiveness to the Hex promoter. The Hex BRE can confer Smads responsiveness to a heterologous promoter, and in this context, both the GC-rich elements and the CAGAG boxes are required for Smads-dependent promoter activity. An element almost identical to the Hex BRE is present within the BMP-responsive Nkx2-5 gene promoter, suggesting that the Hex BRE represents a common response element for genes regulated by BMP signaling in the foregut region of the embryo.
Collapse
Affiliation(s)
- Wenjun Zhang
- Department of Cell Biology and Anatomy, University of Arizona, Tucson 85724, USA
| | | | | | | |
Collapse
|
464
|
Ishizaka S, Shiroi A, Kanda S, Yoshikawa M, Tsujinoue H, Kuriyama S, Hasuma T, Nakatani K, Takahashi K. Development of hepatocytes from ES cells after transfection with the HNF-3beta gene. FASEB J 2002; 16:1444-6. [PMID: 12205042 DOI: 10.1096/fj.01-0806fje] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We have attempted to generate embryonic stem (ES) cell-derived hepatocytes expressing liver-specific functional properties by use of ES cell technology. It was found that ES cells are allowed to differentiate into hepatocytes possessing high metabolic activities when hepatocyte nuclear factor (HNF)-3beta-transfected ES cells are cultured in alpha-MEM medium supplemented with 10% fetal bovine serum (FBS) and fibroblast growth factor (FGF)-2 in the three-dimensional cell culture system at 5% CO2. The differentiated cells induced albumin, triacylglycerol, urea, and glycogen synthesis as well as further expression of metabolic proteins and serum factors as markers of hepatocytic differentiation for at least 4 months. The cells differentiated from HNF-3beta-transfected ES cells also had hepatocyte-like ultrastructural characteristics, including several endoplasmic reticula, mitochondrion, and glycogen. Our findings indicate that generation of hepatocytes maintaining high metabolic functions developed from mouse ES cells will facilitate the study of the basic mechanism for hepatogenesis and will certainly provide new opportunities for tissue transplantation.
Collapse
Affiliation(s)
- Shigeaki Ishizaka
- Program in Tissue Engineering and Department of Parasitology, Nara Medical University, Kashihara, Nara, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
465
|
Abstract
The pancreas is a vital gland of exocrine and endocrine function. It is the target of two main affections: diabetes and pancreatic cancer. We describe the tissue interactions, signaling pathways and intracellular targets that are involved in the emergence of the pancreas primordium and its proliferation, morphogenesis and differentiation. It appears that several genes of developmental relevance have an adult function and are involved in pancreas affections. Embryological experimentation in animals contributed to provide candidate genes for human disease and holds promise for future treatments.
Collapse
Affiliation(s)
- K A Johansson
- Swiss Institute for Experimental Cancer research (ISREC), Chemin des Boveresses 155, Case Postale CH-1066, Epalinges, s/Lausanne, Switzerland
| | | |
Collapse
|
466
|
Chinzei R, Tanaka Y, Shimizu-Saito K, Hara Y, Kakinuma S, Watanabe M, Teramoto K, Arii S, Takase K, Sato C, Terada N, Teraoka H. Embryoid-body cells derived from a mouse embryonic stem cell line show differentiation into functional hepatocytes. Hepatology 2002; 36:22-9. [PMID: 12085345 DOI: 10.1053/jhep.2002.34136] [Citation(s) in RCA: 194] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Embryonic stem (ES) cells have a potential to differentiate into various progenitor cells. Here we investigated the differentiation capacity of mouse ES cells into hepatocytes both in vitro and in vivo. During the culture of embryoid bodies (EBs) derived from ES cells, albumin (ALB) messenger RNA (mRNA) was expressed within 12 days after removal of leukemia inhibitory factor, and alpha-fetoprotein (AFP) mRNA was observed within 9 days without additional exogenous growth factors. In ES cells and early EBs, by contrast, neither ALB mRNA nor AFP mRNA was observed. ALB protein was first detected at day 15 and the level increased with the culture period. The differentiation of EBs facilitated the synthesis of urea with the culture period, whereas early EBs and ES cells produced no urea. These results suggest that cultured EBs contain hepatocytes capable of producing ALB and urea. ES cells and the isolated cells from EBs were transplanted through portal vein to the liver after 30% partial hepatectomy of female mice pretreated with 2-acetylaminofluorene. Four weeks after transplantation with isolated cells from day-9 EBs, ES-derived cells containing Y-chromosome in the liver were positive for ALB (0.2% of total liver cells), whereas teratoma was found in mice transplanted with ES cells or EBs up to day 6. The incidence of teratoma was decreased with the culture duration and no teratoma was observed in the liver transplanted with isolated cells from day-9 EBs. In conclusion, our in vitro and in vivo experiments revealed that cultured EBs contain functional hepatocytes or hepatocyte-like cells.
Collapse
Affiliation(s)
- Ryoko Chinzei
- Graduate School of Medicine and Dentistry, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
467
|
Lin X, Jung J, Kang D, Xu B, Zaret KS, Zoghbi H. Prenylcysteine carboxylmethyltransferase is essential for the earliest stages of liver development in mice. Gastroenterology 2002; 123:345-51. [PMID: 12105862 DOI: 10.1053/gast.2002.34279] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND & AIMS Liver development, regeneration, and oncogenesis involve signaling events mediated by a number of proteins, such as ras and the related small guanosine triphosphatases. Many of these signaling proteins carry unique CAAX motifs, which are processed by prenylcysteine carboxylmethyltransferase (PCCMT), among several other enzymes. We investigated the function of Pccmt during mouse liver development to better understand the embryonic lethality of the null mutation. METHODS Generation of Pccmt-null mice by embryonic stem cell technology, molecular and histologic analysis of Pccmt-null embryos, and foregut endoderm cultures. RESULTS Pccmt-null embryos die in utero with severe anemia and extensive apoptosis at embryonic day 10.5. We show that deletion of Pccmt leads to a dramatic delay in albumin induction, an early and definitive marker for hepatocyte development. In tissue explant cultures supplemented with fibroblast growth factor (FGF), albumin induction remained impaired. We found that hepatocyte precursors in Pccmt-null embryos failed to invade the septum transversum, resulting in liver agenesis. CONCLUSIONS PCCMT is essential for several stages of hepatic induction, consistent with its role in modifying proteins required to transduce signals, such as FGF, that have been shown to promote liver specification and early growth.
Collapse
Affiliation(s)
- Xi Lin
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | |
Collapse
|
468
|
Abstract
Genetic analysis, embryonic tissue explantation and in vivo chromatin studies have together identified the distinct regulatory steps that are necessary for the development of endoderm into a bud of liver tissue and, subsequently, into an organ. In this review, I discuss the acquisition of competence to express liver-specific genes by the endoderm, the control of early hepatic growth, the coordination of hepatic and vascular development and the cell differentiation that is necessary to generate a functioning liver. The regulatory mechanisms that underlie these phases are common to the development of many organ systems and might be recapitulated or disrupted during stem-cell differentiation and adult tissue pathogenesis.
Collapse
Affiliation(s)
- Kenneth S Zaret
- Cell and Developmental Biology Program, Fox Chase Cancer Center, 7701 Burholme Avenue, Philadelphia, Pennsylvania 19111, USA.
| |
Collapse
|
469
|
Yamada T, Yoshikawa M, Kanda S, Kato Y, Nakajima Y, Ishizaka S, Tsunoda Y. In vitro differentiation of embryonic stem cells into hepatocyte-like cells identified by cellular uptake of indocyanine green. Stem Cells 2002; 20:146-54. [PMID: 11897871 DOI: 10.1634/stemcells.20-2-146] [Citation(s) in RCA: 211] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND AND AIMS Embryonic stem (ES) cells have a pluripotent ability to differentiate into a variety of cell lineages in vitro. We have recently found the emergence of cell clusters that show the cellular uptake of indocyanine green (ICG) in the culture of differentiated ES cells. ICG is clinically used as a test substance to evaluate liver function because it is eliminated exclusively by hepatocytes. The aim of the present study was to investigate the hepatic characteristics of ICG-stained cells. METHODS Embryoid bodies (EBs), formed by a 5-day hanging drop culture of ES cells, were allowed to outgrow in the placed culture. Gene expression of hepatocyte markers was analyzed by reverse transcriptase-polymerase chain reaction, and albumin production was examined immunohistochemically. Morphology and cellular components were investigated by electron microscopy. ICG-stained cells were further transplanted into the portal vein of mice. RESULTS ICG-stained cells appeared around 14 days of the EB culture and formed distinct three-dimensional structures. They were immunoreactive to albumin and expressed mRNAs such as albumin, alpha-fetoprotein, transthyretin, hepatocyte nuclear factor 3 beta, alpha-1-antitrypsin, tryptophan-2,3-dioxygenase, urea cycle enzyme, gluconeogenic enzyme, and liver-specific organic anion transporter-1. An ultrastructural analysis revealed a well-developed system of organelles such as mitochondria, lysosomes, Golgi apparatus, and rough and smooth endoplasmic reticulum. The transplantation of ICG-positive cells into the portal vein resulted in the incorporation into mice livers, where they were morphologically indistinguishable from neighboring hepatocytes. CONCLUSIONS ES cell-derived ICG-positive cells possess characteristics of hepatocytes, and ICG-staining is a useful marker to identify differentiated hepatocytes from EBs in vitro.
Collapse
Affiliation(s)
- Takatsugu Yamada
- Division of Developmental Biology, Department of Parasitology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan.
| | | | | | | | | | | | | |
Collapse
|
470
|
Asahina K, Sato H, Yamasaki C, Kataoka M, Shiokawa M, Katayama S, Tateno C, Yoshizato K. Pleiotrophin/heparin-binding growth-associated molecule as a mitogen of rat hepatocytes and its role in regeneration and development of liver. THE AMERICAN JOURNAL OF PATHOLOGY 2002; 160:2191-205. [PMID: 12057922 PMCID: PMC1850835 DOI: 10.1016/s0002-9440(10)61167-4] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Previously pleiotrophin (PTN) was identified among proteins secreted by Swiss 3T3 cells as a mitogen for cultured adult rat hepatocytes. The present study showed that the growth of rat hepatocytes was enhanced when cultured with rat hepatic stellate cells (HSCs). HSCs expressed PTN mRNA and secreted its protein in the co-cultures. Recombinant PTN enhanced the growth of hepatocytes in culture, suggesting that HSCs stimulate the growth of hepatocytes through the action of PTN. To know the biological role of PTN in the growth of hepatocytes in vivo, we examined the expression of PTN in four regeneration models of adult liver and embryonic liver of rat. The expression of PTN mRNA in the liver was markedly up-regulated by the treatment with D-galactosamine (GalN) or with acetylaminofluorene followed by partial hepatectomy. HSCs expressed PTN mRNA in response to GalN treatment and its protein was found on hepatocytes. The mRNA expression of N-syndecan, a PTN receptor, was up-regulated in GalN-treated hepatocytes. The mesenchymal cells in the septum transversum enclosing the embryonic liver, but not embryonic HSCs, expressed PTN mRNA. We suggest that PTN is secreted from activated adult HSCs and embryonic mesenchymal cells as a mitogen of parenchymal cells in adult and embryonic liver, respectively.
Collapse
Affiliation(s)
- Kinji Asahina
- Hiroshima Tissue Regeneration Project, Hiroshima Prefecture Collaboration of Regional Entities for the Advancement of Technological Excellence, Japan Science and Technology Corporation, Hiroshima Prefectural Institute of Industrial Science and Technology
| | | | | | | | | | | | | | | |
Collapse
|
471
|
Kamiya A, Kojima N, Kinoshita T, Sakai Y, Miyaijma A. Maturation of fetal hepatocytes in vitro by extracellular matrices and oncostatin M: induction of tryptophan oxygenase. Hepatology 2002; 35:1351-9. [PMID: 12029620 DOI: 10.1053/jhep.2002.33331] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Previously, we described that embryonic day 14.5 (E14.5) mouse fetal hepatocytes differentiate to express tyrosine amino transferase (TAT) and glucose-6-phosphatase, which are expressed in the perinatal liver, in response to oncostatin M (OSM) or in high-cell-density culture. However, under such conditions, fetal hepatic cells failed to express genes for adult liver-specific enzymes, such as tryptophan oxygenase (TO). Although phenobarbital (PB) and dimethylsulfoxide (DMSO) have been known to maintain the functions of adult hepatocytes in vitro, they failed to induce TO expression in fetal hepatic cells. Thus far, no system has been developed that reproduces terminal differentiation of fetal hepatocytes in vitro. Here, we describe that extracellular matrices derived from Engelbreth-Holm-Swarm sarcoma (EHS) in combination with OSM or high-cell-density culture induced expression of TO as well as cytochrome P450 genes that are involved in detoxification. However, EHS alone was insufficient to induce expression of TO, although it induced TAT expression in fetal hepatocytes. In addition, high-density culture further augmented differentiation. In conclusion, the combination of signals by cytokines, cell-cell contact, and cell-matrix interaction is required for induction of adult liver functions in fetal hepatocytes in vitro. This primary culture system will be useful for studying the mechanism of liver development.
Collapse
Affiliation(s)
- Akihide Kamiya
- Stem Cell Regulation Project, Kanagawa Academy of Science and Technology, Miyamae-ku, Kawasaki, Kanagawa, Japan
| | | | | | | | | |
Collapse
|
472
|
Dickinson RJ, Williams DJ, Slack DN, Williamson J, Seternes OM, Keyse SM. Characterization of a murine gene encoding a developmentally regulated cytoplasmic dual-specificity mitogen-activated protein kinase phosphatase. Biochem J 2002; 364:145-55. [PMID: 11988087 PMCID: PMC1222556 DOI: 10.1042/bj3640145] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Mitogen-activated protein kinases (MAPKs) play a vital role in cellular growth control, but far less is known about these signalling pathways in the context of embryonic development. Duration and magnitude of MAPK activation are crucial factors in cell fate decisions, and reflect a balance between the activities of upstream activators and specific MAPK phosphatases (MKPs). Here, we report the isolation and characterization of the murine Pyst3 gene, which encodes a cytosolic dual-specificity MKP. This enzyme selectively interacts with, and is catalytically activated by, the 'classical' extracellular signal-regulated kinases (ERKs) 1 and 2 and, to a lesser extent, the stress-activated MAPK p38alpha. These properties define the ability of this enzyme to dephosphorylate and inactivate ERK1/2 and p38alpha, but not JNK (c-Jun N-terminal kinase) in vivo. When expressed in mammalian cells, the Pyst3 protein is predominantly cytoplasmic. Furthermore, leptomycin B causes a complete redistribution of the protein to the nucleus, implicating a CRM (chromosomal region maintenance)1/exportin 1-dependent nuclear export signal in determining the subcellular localization of this enzyme. Finally, whole-mount in situ hybridization studies in mouse embryos reveal that the Pyst3 gene is expressed specifically in the placenta, developing liver and in migratory muscle cells. Our results suggest that this enzyme may have a critical role in regulating the activity of MAPK signalling during early development and organogenesis.
Collapse
Affiliation(s)
- Robin J Dickinson
- Cancer Research UK, Molecular Pharmacology Unit, Biomedical Research Centre, Ninewells Hospital, Dundee DD1 9SY, Scotland, U.K
| | | | | | | | | | | |
Collapse
|
473
|
Abstract
The avian heart develops from paired primordia located in the anterior lateral mesoderm of the early embryo. Previous studies have found that the endoderm adjacent to the cardiac primordia plays an important role in heart specification. The current study provides evidence that fibroblast growth factor (Fgf) signaling contributes to the heart-inducing properties of the endoderm. Fgf8 is expressed in the endoderm adjacent to the precardiac mesoderm. Removal of endoderm results in a rapid downregulation of a subset of cardiac markers, including Nkx2.5 and Mef2c. Expression of these markers can be rescued by supplying exogenous Fgf8. In addition, application of ectopic Fgf8 results in ectopic expression of cardiac markers. Expression of cardiac markers is expanded only in regions where bone morphogenetic protein (Bmp) signaling is also present, suggesting that cardiogenesis occurs in regions exposed to both Fgf and Bmp signaling. Finally, evidence is presented that Fgf8 expression is regulated by particular levels of Bmp signaling. Application of low concentrations of Bmp2 results in ectopic expression of Fgf8, while application of higher concentrations of Bmp2 result in repression of Fgf8 expression. Together, these data indicate that Fgf signaling cooperates with Bmp signaling to regulate early cardiogenesis.
Collapse
Affiliation(s)
- Burak H Alsan
- Molecular Medicine Unit, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | | |
Collapse
|
474
|
Zammit C, Coope R, Gomm JJ, Shousha S, Johnston CL, Coombes RC. Fibroblast growth factor 8 is expressed at higher levels in lactating human breast and in breast cancer. Br J Cancer 2002; 86:1097-103. [PMID: 11953856 PMCID: PMC2364190 DOI: 10.1038/sj.bjc.6600213] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2001] [Revised: 01/22/2002] [Accepted: 01/24/2002] [Indexed: 12/31/2022] Open
Abstract
Fibroblast growth factor 8 can transform NIH3T3 cells and its expression has been found to be associated with breast and prostate cancer. Following our finding that fibroblast growth factor 8 mRNA expression is increased in breast cancer, we have undertaken an immunohistochemistry study of fibroblast growth factor 8 expression in a series of human breast tissues and other normal tissues. Our findings confirm increased expression of fibroblast growth factor 8 in malignant breast tissue but also show significant fibroblast growth factor 8 expression in non-malignant breast epithelial cells. No significant difference in fibroblast growth factor 8 expression was found between different grades of ductal carcinoma, lobular carcinoma and ductal carcinoma in-situ or cancer of different oestrogen receptor, progesterone receptor or nodal status. The highest levels of fibroblast growth factor 8 expression were found in lactating breast tissues and fibroblast growth factor 8 was also detected in human milk. A survey of other normal tissues showed that fibroblast growth factor 8 is expressed in the proliferative cells of the dermis and epithelial cells in colon, ovary fallopian tube and uterus. Fibroblast growth factor 8 appears to be expressed in several organs in man and appears to have an importance in lactation.
Collapse
Affiliation(s)
- C Zammit
- Cancer Research (UK) Laboratories, Department of Cancer Medicine, Imperial College, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
| | | | | | | | | | | |
Collapse
|
475
|
Kalinichenko VV, Zhou Y, Bhattacharyya D, Kim W, Shin B, Bambal K, Costa RH. Haploinsufficiency of the mouse Forkhead Box f1 gene causes defects in gall bladder development. J Biol Chem 2002; 277:12369-74. [PMID: 11809759 DOI: 10.1074/jbc.m112162200] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The forkhead box f1 (Foxf1) transcription factor is expressed in the visceral (splanchnic) mesoderm, which is involved in mesenchymal-epithelial signaling required for development of organs derived from foregut endoderm such as lung, liver, gall bladder, and pancreas. Our previous studies demonstrated that haploinsufficiency of the Foxf1 gene caused pulmonary abnormalities with perinatal lethality from lung hemorrhage in a subset of Foxf1+/- newborn mice. During mouse embryonic development, the liver and biliary primordium emerges from the foregut endoderm, invades the septum transversum mesenchyme, and receives inductive signaling originating from both the septum transversum and cardiac mesenchyme. In this study, we show that Foxf1 is expressed in embryonic septum transversum and gall bladder mesenchyme. Foxf1+/- gall bladders were significantly smaller and had severe structural abnormalities characterized by a deficient external smooth muscle cell layer, reduction in mesenchymal cell number, and in some cases, lack of a discernible biliary epithelial cell layer. This Foxf1+/- phenotype correlates with decreased expression of vascular cell adhesion molecule-1 (VCAM-1), alpha(5) integrin, platelet-derived growth factor receptor alpha (PDGFRalpha) and hepatocyte growth factor (HGF) genes, all of which are critical for cell adhesion, migration, and mesenchymal cell differentiation.
Collapse
Affiliation(s)
- Vladimir V Kalinichenko
- Department of Molecular Genetics, University of Illinois at Chicago, College of Medicine, Chicago, Illinois 60607-7170, USA
| | | | | | | | | | | | | |
Collapse
|
476
|
Affiliation(s)
- David A Shafritz
- Marion Bessin Liver Research Center, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA.
| | | |
Collapse
|
477
|
Abstract
Chick embryos are good models for vertebrate development. The principles that underlie chick wing development have been discovered and there is increasing knowledge about the molecules involved. The importance of identifying molecules is that this provides a direct link to understanding the genetic basis of diversity in form. Chick wing development will be compared with limb development in other vertebrates. Possible mechanisms that could lead to variations in form, including limb reductions and limblessness, differences between fore- and hindlimbs, limb proportions, and interdigital webbing can be suggested.
Collapse
Affiliation(s)
- Cheryll Tickle
- Division of Cell & Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK.
| |
Collapse
|
478
|
Yamaoka T, Yoshino K, Yamada T, Yano M, Matsui T, Yamaguchi T, Moritani M, Hata JI, Noji S, Itakura M. Transgenic expression of FGF8 and FGF10 induces transdifferentiation of pancreatic islet cells into hepatocytes and exocrine cells. Biochem Biophys Res Commun 2002; 292:138-43. [PMID: 11890684 DOI: 10.1006/bbrc.2002.6601] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
FGF signaling is essential for normal development of pancreatic islets. To examine the effects of overexpressed FGF8 and FGF10 on pancreatic development, we generated FGF8- and FGF10-transgenic mice (Tg mice) under the control of the glucagon promoter. In FGF8-Tg mice, hepatocyte-like cells were observed in the periphery of pancreatic islets, but areas of alpha and beta cells did not decrease, whereas in FGF10-Tg mice, pancreatic ductal and acinar cells were found in islets, concomitantly with disturbed beta-cell differentiation. These results suggest that FGF8 and FGF10 play important roles in development of hepatocytes and exocrine cells, respectively, and explain the absence of FGF8 expression in normal islets and pancreatic hypoplasia in FGF10-deficient mice.
Collapse
Affiliation(s)
- Takashi Yamaoka
- Division of Genetic Information, Institute for Genome Research, University of Tokushima, Tokushima 770-8503, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
479
|
Yin L, Sun M, Ilic Z, Leffert HL, Sell S. Derivation, characterization, and phenotypic variation of hepatic progenitor cell lines isolated from adult rats. Hepatology 2002; 35:315-24. [PMID: 11826404 DOI: 10.1053/jhep.2002.31355] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Liver progenitor cells (LPCs) cloned from adult rat livers following allyl alcohol injury express hematopoietic stem cell and early hepatic lineage markers when cultured on feeder layers; under these conditions, neither mature hepatocyte nor bile duct, Ito, stellate, Kupffer cell, or macrophage markers are detected. These phenotypes have remained stable without aneuploidy or morphological transformation after more than 100 population doublings. When cultured without feeder layers, the early lineage markers disappear, and mature hepatocyte markers are expressed; mature hepatocytic differentiation and cell size are also augmented by polypeptide and steroidal growth factors. In contrast to hepatocytic potential, duct-like structures and biliary epithelial markers are expressed on Matrigel. Because they were derived without carcinogens or mutagens, these bipotential LPC lines provide novel tools for models of cellular plasticity and hepatocarcinogenesis, as well as lines for use in cellular transplantation, gene therapy, and bioreactor construction.
Collapse
Affiliation(s)
- Li Yin
- Division of Experimental Pathology, Albany Medical College, Albany, NY, USA
| | | | | | | | | |
Collapse
|
480
|
Jones EA, Tosh D, Wilson DI, Lindsay S, Forrester LM. Hepatic differentiation of murine embryonic stem cells. Exp Cell Res 2002; 272:15-22. [PMID: 11740861 DOI: 10.1006/excr.2001.5396] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Murine embryonic stem (ES) cells can replicate indefinitely in culture and can give rise to all tissues, including the germline, when reimplanted into a murine blastocyst. ES cells can also be differentiated in vitro into a wide range of cell types. We have utilized a liver-specific marker to demonstrate that murine ES cells can differentiate into hepatocytes in vitro. We have used ES cells carrying a gene trap vector insertion (I.114) into an ankyrin repeat-containing gene (Gtar) that we have previously shown provides an exclusive beta-galactosidase marker for the early differentiation of hepatocytes in vivo. beta-Galactosidase-positive cells were differentiated from I.114 ES cells in vitro. The identity of these cells was confirmed by the expression of the proteins alpha-fetoprotein, albumin, and transferrin and by the fact that they have an ultrastructural appearance consistent with that of embryonic hepatocytes. We propose that this model system of hepatic differentiation in vitro could be used to define factors that are involved in specification of the hepatocyte lineage. In addition, human ES cells have recently been derived and it has been proposed that they may provide a source of differentiated cell types for cell replacement therapies in the treatment of a variety of diseases.
Collapse
Affiliation(s)
- Elizabeth A Jones
- Institute of Human Genetics, International Centre for Life, Central Parkway, Newcastle upon Tyne, NE1 3BZ, United Kingdom.
| | | | | | | | | |
Collapse
|
481
|
Barlow LA. Specification of pharyngeal endoderm is dependent on early signals from axial mesoderm. Development 2001; 128:4573-83. [PMID: 11714682 DOI: 10.1242/dev.128.22.4573] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The development of taste buds is an autonomous property of the pharyngeal endoderm, and this inherent capacity is acquired by the time gastrulation is complete. These results are surprising, given the general view that taste bud development is nerve dependent, and occurs at the end of embryogenesis. The pharyngeal endoderm sits at the dorsal lip of the blastopore at the onset of gastrulation, and because this taste bud-bearing endoderm is specified to make taste buds by the end of gastrulation, signals that this tissue encounters during gastrulation might be responsible for its specification. To test this idea, tissue contacts during gastrulation were manipulated systematically in axolotl embryos, and the subsequent ability of the pharyngeal endoderm to generate taste buds was assessed. Disruption of both putative planar and vertical signals from neurectoderm failed to prevent the differentiation of taste buds in endoderm. However, manipulations of contact between presumptive pharyngeal endoderm and axial mesoderm during gastrulation indicate that signals from axial mesoderm (the notochord and prechordal mesoderm) specify the pharyngeal endoderm, conferring upon the endoderm the ability to autonomously differentiate taste buds. These findings further emphasize that despite the late differentiation of taste buds, the tissue-intrinsic mechanisms that generate these chemoreceptive organs are set in motion very early in embryonic development.
Collapse
Affiliation(s)
- L A Barlow
- Department of Biological Sciences, University of Denver, Denver, CO 80208, USA.
| |
Collapse
|
482
|
Santiago FS, Lowe HC, Bobryshev YV, Khachigian LM. Induction of the transcriptional repressor Yin Yang-1 by vascular cell injury. Autocrine/paracrine role of endogenous fibroblast growth factor-2. J Biol Chem 2001; 276:41143-9. [PMID: 11487577 DOI: 10.1074/jbc.m104913200] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Yin Yang-1 (YY1) is a multifunctional transcription factor that can repress the expression of many growth factor, hormone, and cytokine genes implicated in atherogenesis. YY1 expression is activated in rat vascular smooth muscle cells shortly after injury. YY1 DNA binding activity paralleled elevated protein levels in the nucleus. Smooth muscle cell injury triggered the rapid extracellular release of immunoreactive fibroblast growth factor-2 (FGF-2). YY1 induction after injury was blocked by neutralizing antibodies directed against FGF-2. This growth factor increased YY1 mRNA and protein expression and stimulated YY1 binding and transcriptional activity. Overexpression of YY1 inhibited smooth muscle cell replication. Immunohistochemical analysis demonstrated YY1 staining in medial smooth muscle cells, coincident with FGF-2 expression. Proliferating cell nuclear antigen staining, in contrast, was confined mainly to the atherosclerotic intima. This is the first demonstration that YY1 is induced by either injury or FGF-2, is differentially expressed in normal and diseased human arteries, and that its overexpression inhibits vascular smooth muscle but not endothelial cell replication.
Collapse
Affiliation(s)
- F S Santiago
- Center for Thrombosis and Vascular Research, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | | | | | | |
Collapse
|
483
|
Matsumoto K, Yoshitomi H, Rossant J, Zaret KS. Liver organogenesis promoted by endothelial cells prior to vascular function. Science 2001; 294:559-63. [PMID: 11577199 DOI: 10.1126/science.1063889] [Citation(s) in RCA: 624] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The embryonic role of endothelial cells and nascent vessels in promoting organogenesis, prior to vascular function, is unclear. We find that early endothelial cells in mouse embryos surround newly specified hepatic endoderm and delimit the mesenchymal domain into which the liver bud grows. In flk-1 mutant embryos, which lack endothelial cells, hepatic specification occurs, but liver morphogenesis fails prior to mesenchyme invasion. We developed an embryo tissue explant system that permits liver bud vasculogenesis and show that in the absence of endothelial cells, or when the latter are inhibited, there is a selective defect in hepatic outgrowth. We conclude that vasculogenic endothelial cells and nascent vessels are critical for the earliest stages of organogenesis, prior to blood vessel function.
Collapse
Affiliation(s)
- K Matsumoto
- Cell and Developmental Biology Program, Fox Chase Cancer Center, 7701 Burholme Avenue, Philadelphia, PA 19111, USA
| | | | | | | |
Collapse
|
484
|
Plescia C, Rogler C, Rogler L. Genomic expression analysis implicates Wnt signaling pathway and extracellular matrix alterations in hepatic specification and differentiation of murine hepatic stem cells. Differentiation 2001; 68:254-69. [PMID: 11776478 DOI: 10.1046/j.1432-0436.2001.680413.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
HBC-3 hepatic stem cells maintained in the undifferentiated state can be induced to differentiate along the hepatocyte lineage in response to DMSO (Rogler, 1997). In order to understand the complex transcriptional regulatory mechanisms associated with the differentiation of these somatic stem cells and to identify novel candidate stem cell and differentiation associated genes, we have begun to characterize the transcriptome of HBC-3 cells during a 7-day differentiation protocol. This analysis showed that differentiating HBC-3 cells undergo biphasic bursts of gene regulation peaking at 3 hours and 120 hours of DMSO treatment. In the undifferentiated state, HBC-3 cells express muscle, neuron, myeloid, and lymphoid specific genes that are rapidly downregulated during hepatocytic differentiation. Cluster analysis has revealed large groups of genes with different temporal regulation profiles demonstrating complex and widespread transcriptional changes. Specifically, we discovered a multifaceted downregulation of the Wnt/beta-catenin pathway accompanied by the repression of TCF target genes during HBC-3 differentiation. In addition, there is downregulation of cellular receptors for fibronectin and laminin and other extracellular matrix molecules indicative of widespread cell surface alterations. DMSO induces cell cycle arrest, and this is reflected in upregulation of growth inhibitory proteins such as cyclin I and p18 and downregulation of cyclins B1 and D. Genes needed for hepatocytic functions, such as apolipoprotein C-IV, phosphoenolpyruvate carboxykinase, alcohol dehydrogenase, and asialoglycoprotein receptor were upregulated. Finally, transcriptional regulators including Twist, Snail, HNF1a, and GATA6 were upregulated during differentiation of HBC-3 cells. The significance of these findings is that our genome-based approach has allowed the parallel identification of multiple regulatory pathways that is needed to begin to fully understand the complex differentiation process.
Collapse
Affiliation(s)
- C Plescia
- Marion Bessin Liver Research Center, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | |
Collapse
|
485
|
Abstract
Hepatocytes differentiate from the endoderm during embryonic development. Recent studies show, however, that hepatocytes can also be derived from rare cells that reside in the pancreas, bone marrow, and brain. Indeed, the latest discoveries indicate that embryonic hepatocytes normally arise by diversion of an endodermal cell population that would otherwise default to a pancreatic fate. Convergent FGF and BMP signals from distinct mesodermal cell types control this transition. Molecular signals that govern the differentiation of hepatocytes from non-endodermal cells and the role of such cells in normal liver physiology remain to be discovered.
Collapse
Affiliation(s)
- K S Zaret
- Cell and Developmental Biology Program, Fox Chase Cancer Center, 7701 Burholme Avenue, Philadelphia, PA 19111, USA.
| |
Collapse
|
486
|
Muñoz-Sanjuán I, H-Brivanlou A. Early posterior/ventral fate specification in the vertebrate embryo. Dev Biol 2001; 237:1-17. [PMID: 11518501 DOI: 10.1006/dbio.2001.0350] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
One of the central questions in developmental biology is that of how one cell can give rise to all specialized cell types and organs in the organism. Within the embryo, all tissues are composed of cells derived from one or more of the three germ layers, the ectoderm, the mesoderm, and the endoderm. Understanding the molecular events that underlie both the specification and patterning of the germ layers has been a long-standing interest for developmental biologists. Recent years have seen a rapid advancement in the elucidation of the molecular players implicated in patterning the vertebrate embryo. In this review, we will focus solely on the ventral and posterior fate acquisition in the ventral-lateral domains of the pregastrula embryo. We will address the embryonic origins of various tissues and will present embryological and experimental evidence to illustrate how "classically defined" ventral and posterior structures develop in all three germ layers. We will discuss the status of our current knowledge by focusing on the African frog Xenopus laevis, although we will also gather evidence from other vertebrates, where available. In particular, genetic studies in the zebrafish and mouse have been very informative in addressing the requirement for individual genes in these processes. The amphibian system has enjoyed great interest since the early days of experimental embryology, and constitutes the best understood system in terms of early patterning signals and axis specification. We want to draw interest to the embryological origins of cells that will develop into what we have collectively termed "posterior" and "ventral" cells/tissues, and we will address the involvement of the major signaling pathways implicated in posterior/ventral fate specification. Particular emphasis is given as to how these signaling pathways are integrated during early development for the specification of posterior and ventral fates.
Collapse
Affiliation(s)
- I Muñoz-Sanjuán
- Laboratory of Vertebrate Embryology, The Rockefeller University, New York, New York 10021, USA
| | | |
Collapse
|
487
|
Rossi JM, Dunn NR, Hogan BL, Zaret KS. Distinct mesodermal signals, including BMPs from the septum transversum mesenchyme, are required in combination for hepatogenesis from the endoderm. Genes Dev 2001; 15:1998-2009. [PMID: 11485993 PMCID: PMC312750 DOI: 10.1101/gad.904601] [Citation(s) in RCA: 469] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Mesodermal signaling is critical for patterning the embryonic endoderm into different tissue domains. Classical tissue transplant experiments in the chick and recent studies in the mouse indicated that interactions with the cardiogenic mesoderm are necessary and sufficient to induce the liver in the ventral foregut endoderm. Using molecular markers and functional assays, we now show that septum transversum mesenchyme cells, a distinct mesoderm cell type, are closely apposed to the ventral endoderm and contribute to hepatic induction. Specifically, using a mouse Bmp4 null mutation and an inhibitor of BMPs, we find that BMP signaling from the septum transversum mesenchyme is necessary to induce liver genes in the endoderm and to exclude a pancreatic fate. BMPs apparently function, in part, by affecting the levels of the GATA4 transcription factor, and work in parallel to FGF signaling from the cardiac mesoderm. BMP signaling also appears critical for morphogenetic growth of the hepatic endoderm into a liver bud. Thus, the endodermal domain for the liver is specified by simultaneous signaling from distinct mesodermal sources.
Collapse
Affiliation(s)
- J M Rossi
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 02912, USA
| | | | | | | |
Collapse
|
488
|
Affiliation(s)
- S A Duncan
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA.
| | | |
Collapse
|
489
|
Weinstein M, Monga SP, Liu Y, Brodie SG, Tang Y, Li C, Mishra L, Deng CX. Smad proteins and hepatocyte growth factor control parallel regulatory pathways that converge on beta1-integrin to promote normal liver development. Mol Cell Biol 2001; 21:5122-31. [PMID: 11438667 PMCID: PMC87237 DOI: 10.1128/mcb.21.15.5122-5131.2001] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Smads serve as intracellular mediators of transforming growth factor beta (TGF-beta) signaling. After phosphorylation by activated type I TGF-beta receptors, Smad proteins translocate to the nucleus, where they serve as transcription factors and increase or decrease expression of TGF-beta target genes. Mice lacking one copy each of Smad2 and Smad3 suffered midgestation lethality due to liver hypoplasia and anemia, suggesting essential dosage requirements of TGF-beta signal components. This is likely due to abnormal adhesive properties of the mutant hepatocytes, which may result from a decrease in the level of the beta1-integrin and abnormal processing and localization of E-cadherin. Culture of mutant livers in vitro revealed the existence of a parallel developmental pathway mediated by hepatocyte growth factor (HGF), which could rescue the mutant phenotype independent of Smad activation. These pathways merge at the beta1-integrin, the level of which was increased by HGF in the cultured mutant livers. HGF treatment reversed the defects in cell proliferation and hepatic architecture in the Smad2(+/-); Smad3(+/-) livers.
Collapse
Affiliation(s)
- M Weinstein
- Genetics of Development and Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20878, USA
| | | | | | | | | | | | | | | |
Collapse
|
490
|
Abstract
Cytokines comprise a group of small proteins released from cells in order to influence the function of other cells. By binding to highly specific cell-surface receptors, they trigger a vast array of intracellular signalling cascades. Cytokines have been described as interleukins, growth factors, interferons and chemokines. Unlike hormones, which act in a similar way, cytokines are produced by many different types of cell and act on many other types. Most of them are produced only after certain stimuli. The most intense field of cytokine activity is without doubt host defence. The liver resembles a central organ of cytokine activity due to the fact that it hosts hepatocytes, which are highly susceptible to the activity of cytokines in a variety of physiological and pathophysiological processes. Moreover, the non-parenchymal cells of the liver, in particular Kupffer cells (KCs), the resident tissue macrophages of the liver, are able to synthesize a variety of cytokines that may act systemically on any other organ of the body, or in a paracrine manner on hepatocytes and other non-parenchymal liver cells. A classic example of how cytokines act can be observed during the acute phase reaction discussed in this article. The role of cytokines in liver development, acute liver injury, liver regeneration, liver fibrosis and liver metastasis is also discussed.
Collapse
Affiliation(s)
- G Ramadori
- Department of Gastroenterology and Endocrinology, Georg-August-University Göttingen, Göttingen, Germany.
| | | |
Collapse
|
491
|
Abstract
There is increasing evidence suggesting that formation of the tracheobronchial tree and alveoli results from heterogeneity of the epithelial-mesenchymal interactions along the developing respiratory tract. Recent genetic data support this idea and show that this heterogeneity is likely the result of activation of distinct networks of signaling molecules along the proximal-distal axis. Among these signals, fibroblast growth factors, retinoids, Sonic hedgehog, and transforming growth factors appear to play prominent roles. We discuss how these and other pattern regulators may be involved in initiation, branching, and differentiation of the respiratory system.
Collapse
Affiliation(s)
- W V Cardoso
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts 02118, USA.
| |
Collapse
|
492
|
Hamazaki T, Iiboshi Y, Oka M, Papst PJ, Meacham AM, Zon LI, Terada N. Hepatic maturation in differentiating embryonic stem cells in vitro. FEBS Lett 2001; 497:15-9. [PMID: 11376655 DOI: 10.1016/s0014-5793(01)02423-1] [Citation(s) in RCA: 288] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We investigated the potential of mouse embryonic stem (ES) cells to differentiate into hepatocytes in vitro. Differentiating ES cells expressed endodermal-specific genes, such as alpha-fetoprotein, transthyretin, alpha 1-anti-trypsin and albumin, when cultured without additional growth factors and late differential markers of hepatic development, such as tyrosine aminotransferase (TAT) and glucose-6-phosphatase (G6P), when cultured in the presence of growth factors critical for late embryonic liver development. Further, induction of TAT and G6P expression was induced regardless of expression of the functional SEK1 gene, which is thought to provide a survival signal for hepatocytes during an early stage of liver morphogenesis. The data indicate that the in vitro ES differentiation system has a potential to generate mature hepatocytes. The system has also been found useful in analyzing the role of growth factors and intracellular signaling molecules in hepatic development.
Collapse
Affiliation(s)
- T Hamazaki
- Department of Pathology, University of Florida College of Medicine, P.O. Box 100275, Gainesville, FL 32610, USA
| | | | | | | | | | | | | |
Collapse
|
493
|
Abstract
In recent years, significant progress has been made in uncovering the molecular basis of endoderm specification in Xenopus. Much less is understood, however, about endodermal patterning and how endoderm-derived organs such as the liver are formed. Progress has been hampered by the lack of good molecular markers of presumptive liver tissue. Here, we have examined the embryonic expression of a number of marker genes during liver organogenesis, including the transcription factors hex, sox17alpha, and hnf3beta, as well as a number of proteins specific to the adult liver. Interestingly, sox17alpha appears to specifically mark the gall bladder precursors. At 7 days of development expression of the liver differentiation markers albumin, alpha1-microglobulin/bikunin precursor, fibrinogen, transferrin and transthyretin is restricted to the differentiating liver bud. Surprisingly, however, at 3 days of development most of these genes have a more widespread endodermal expression pattern. In addition to expression in the undifferentiated liver bud they were expressed extensively throughout the presumptive intestinal tissue, which may reflect some general feature of how the hepatic gene program is developmentally regulated.
Collapse
Affiliation(s)
- A M Zorn
- Wellcome/CRC Institute of Cancer and Developmental Biology, Tennis Court Road, Cambridge, CB2 1QR, UK.
| | | |
Collapse
|
494
|
Spijkers JA, van den Hoff MJ, Hakvoort TB, Vermeulen JL, Tesink-Taekema S, Lamers WH. Foetal rise in hepatic enzymes follows decline in c-met and hepatocyte growth factor expression. J Hepatol 2001; 34:699-710. [PMID: 11434616 DOI: 10.1016/s0168-8278(01)00012-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
BACKGROUND/AIMS In the embryo, rapidly proliferating hepatocytes migrate from the liver primordium into the surrounding mesenchyme, whereas foetal hepatocytes are mitotically quiescent and accumulate hepatocyte-specific enzymes. We investigated the timing and topography of this behavioural switch. METHODS The expression of the c-met receptor and its ligand, hepatocyte growth factor (HGF), was investigated in prenatal rat liver by in situ hybridization, immunohistochemistry and western-blot analysis. RESULTS c-Met was expressed by hepatocytes and HGF by non-parenchymal liver cells. Their mRNA levels peaked during embryonic day (ED) 11-13. c-Met protein was weakly expressed in the entire liver during ED 11 and 12, but more abundantly at ED 13, when its expression withdrew to the hepatic periphery. Simultaneously, the periportal hepatocellular marker carbamoylphosphate synthetase began to accumulate in the centre of the liver. Although the definitive vascular architecture develops simultaneously, the downstream, pericentral hepatocytes began to express glutamine synthetase only 4 days later, suggesting a requirement for prior periportal hepatocyte maturation. Additionally, c-met protein appeared in the connective tissue surrounding the large veins. The c-met protein/mRNA ratio was substantially higher in non-epithelial cells (hepatic connective tissue, heart) than in endoderm-derived epithelia, including hepatocytes, indicating important post-transcriptional regulation. CONCLUSIONS The decline in c-met expression reflects the end of the embryonic phase and heralds the onset of the fetal, maturational phase of liver development.
Collapse
Affiliation(s)
- J A Spijkers
- Department of Anatomy and Embryology, Academic Medical Center, University of Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
495
|
Jones EA, Clement-Jones M, James OF, Wilson DI. Differences between human and mouse alpha-fetoprotein expression during early development. J Anat 2001; 198:555-9. [PMID: 11430694 PMCID: PMC1468244 DOI: 10.1046/j.1469-7580.2001.19850555.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Alpha-fetoprotein (AFP) is the major serum protein during development. AFP is one of the earliest proteins to be synthesised by the embryonic liver. The synthesis of AFP decreases dramatically after birth and only trace amounts are expressed in the adult liver. The tissue distribution of AFP in early human embryogenesis has not been defined. We have studied the expression pattern of AFP mRNA in human and mouse embryos by in situ hybridisation. In humans, AFP is expressed in the hepatic diverticulum at 26 d postovulation as it differentiates from the foregut endoderm (i.e. in the most primitive hepatocytes). It is also expressed in the endoderm of the gastrointestinal tract and in the yolk sac at this age. AFP is subsequently expressed in the mesonephros and transiently in the developing pancreas. In the mouse, no expression of AFP was observed in the mesonephros but other sites of expression were similar. Thus AFP has a distinct temporospatial expression pattern during the embryonic period and this differs between human and mouse species. It is interesting that AFP is expressed by tumours such as primitive gastrointestinal, renal cell and pancreatic tumours as well as those of hepatocyte origin. This distribution reflects the sites of AFP expression during development.
Collapse
Affiliation(s)
- E A Jones
- Institute of Human Genetics, School of Biochemistry and Genetics, University of Newcastle upon Tyne, UK.
| | | | | | | |
Collapse
|
496
|
Pare JF, Roy S, Galarneau L, Belanger L. The mouse fetoprotein transcription factor (FTF) gene promoter is regulated by three GATA elements with tandem E box and Nkx motifs, and FTF in turn activates the Hnf3beta, Hnf4alpha, and Hnf1alpha gene promoters. J Biol Chem 2001; 276:13136-44. [PMID: 11145965 DOI: 10.1074/jbc.m010737200] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Fetoprotein transcription factor (FTF) is an orphan nuclear receptor that activates the alpha(1)-fetoprotein gene during early liver developmental growth. Here we sought to define better the position of FTF in transcriptional cascades leading to hepatic differentiation. The mouse FTF gene was isolated and assigned to chromosome 1 band E4 (one mFTF pseudogene was also found). Exon/intron mapping shows an mFTF gene structure similar to that of its close homologue SF1, with two more N-terminal exons in the mFTF gene; exon mapping also delimits several FTF mRNA 5'- and 3'-splice variants. The mFTF transcription initiation site was located in adult liver at 238 nucleotides from the first translation initiator codon, with six canonical GATA, E box, and Nkx motifs clustered between -50/-140 base pairs (bp) from the cap site; DNA/protein binding assays also pinpointed an HNF4-binding element at +36 bp and an FTF-binding element at -257 bp. Transfection assays and point mutations showed that the mFTF promoter is activated by GATA, HNF4alpha, FTF, Nkx, and basic helix-loop-helix factors, with marked cooperativity between GATA and HNF4alpha. A tandem GATA/E box activatory motif in the proximal mFTF promoter is strikingly similar to a composite motif coactivated by differentiation inducers in the hematopoietic lineage; a tandem GATA-Nkx motif in the distal mFTF promoter is also similar to a composite motif transducing differentiation signals from transforming growth factor-beta-like receptors in the cardiogenic lineage. Three genes encoding transcription factors critical to early hepatic differentiation, Hnf3beta, Hnf4alpha, and Hnf1alpha, each contain dual FTF-binding elements in their proximal promoters, and all three promoters are activated by FTF in transfection assays. Direct DNA binding action and cooperativity was demonstrated between FTF and HNF3beta on the Hnf3beta promoter and between FTF and HNF4alpha on the Hnf1alpha promoter. These combined results suggest that FTF is an early intermediary between endodermal specification signals and downstream genes that establish and amplify the hepatic phenotype.
Collapse
Affiliation(s)
- J F Pare
- Le Centre de Recherche en Cancérologie de l'Université Laval, L'Hôtel-Dieu de Québec, Département de Biologie Médicale, Faculté de Médecine, Québec G1R 2J6, Canada
| | | | | | | |
Collapse
|
497
|
Standley HJ, Zorn AM, Gurdon JB. eFGF and its mode of action in the community effect during Xenopus myogenesis. Development 2001; 128:1347-57. [PMID: 11262235 DOI: 10.1242/dev.128.8.1347] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The community effect is an interaction among a group of many nearby precursor cells, necessary for them to maintain tissue-specific gene expression and differentiate co-ordinately. During Xenopus myogenesis, the muscle precursor cells must be in group contact throughout gastrulation in order to develop into terminally differentiated muscle. The molecular basis of this community interaction has not to date been elucidated. We have developed an assay for testing potential community factors, in which isolated muscle precursor cells are treated with a candidate protein and cultured in dispersion. We have tested a number of candidate factors and we find that only eFGF protein is able to mediate a community effect, stimulating stable muscle-specific gene expression in demonstrably single muscle precursor cells. In contrast, Xwnt8, bFGF, BMP4 and TGF(β)2 do not show this capacity. We show that eFGF is expressed in the muscle precursor cells at the right time to mediate the community effect. Moreover, the time when the muscle precursor cells are sensitive to eFGF corresponds to the period of the endogenous community effect. Finally, we demonstrate that FGF signalling is essential for endogenous community interactions. We conclude that eFGF is likely to mediate the community effect in Xenopus myogenesis.
Collapse
Affiliation(s)
- H J Standley
- Wellcome/CRC Institute, Tennis Court Road, Cambridge, CB2 1QR and Department of Zoology, University of Cambridge, UK
| | | | | |
Collapse
|
498
|
|
499
|
Deutsch G, Jung J, Zheng M, Lóra J, Zaret KS. A bipotential precursor population for pancreas and liver within the embryonic endoderm. Development 2001; 128:871-81. [PMID: 11222142 DOI: 10.1242/dev.128.6.871] [Citation(s) in RCA: 387] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The pancreas emerges independently from dorsal and ventral domains of embryonic gut endoderm. Gene inactivation experiments in mice have identified factors required for dorsal pancreas development, but factors that initiate the ventral pancreas have remained elusive. In this study, we investigated the hypothesis that the emergence of the ventral pancreas is related to the emergence of the liver. We find that the liver and ventral pancreas are specified at the same time and in the same general domain of cells. Using embryo tissue explantation experiments, we find that the default fate of the ventral foregut endoderm is to activate the pancreas gene program. FGF signalling from the cardiac mesoderm diverts this endoderm to express genes for liver instead of those for pancreas. No evidence was found to indicate that the cell type choice for pancreas or liver involves a selection for growth or viability. Cardiac mesoderm or FGF induces the local expression of sonic hedgehog, which in turn is inhibitory to pancreas but not to liver. The bipotential precursor cell population for pancreas and liver in embryonic development and its fate selection by FGF has features that appear to be recapitulated in the adult pancreas and are reflected in the evolution of these organs.
Collapse
Affiliation(s)
- G Deutsch
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI 02912, USA
| | | | | | | | | |
Collapse
|
500
|
Kamiya A, Kinoshita T, Miyajima A. Oncostatin M and hepatocyte growth factor induce hepatic maturation via distinct signaling pathways. FEBS Lett 2001; 492:90-4. [PMID: 11248243 DOI: 10.1016/s0014-5793(01)02140-8] [Citation(s) in RCA: 138] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Liver development is regulated by soluble factors as well as cell-cell contacts. We previously reported that oncostatin M (OSM) induced hepatic maturation in a primary culture of embryonic day 14 liver cells. While OSM expression in the liver starts in mid gestation and decreases in postnatal stages, hepatocyte growth factor (HGF) is mainly expressed in the liver in the first few days after birth. In this study, we compared the effect of OSM and HGF on the differentiation of fetal hepatic cells in vitro. Like OSM, HGF in the presence of dexamethasone induced expression of glucose-6-phosphatase, tyrosine amino transferase and carbamoyl-phosphate synthase, and accumulation of glycogen in fetal hepatic cells, although to a lesser extent than OSM. Interestingly, while both OSM and HGF up-regulated production of albumin, secretion of albumin occurred only in response to OSM. In addition, although hepatic maturation induced by OSM depends on STAT3, HGF failed to activate STAT3 and HGF-induced differentiation was independent of STAT3. These results indicate that OSM and HGF induce hepatic maturation through different signaling pathways.
Collapse
Affiliation(s)
- A Kamiya
- Stem Cell Regulation, Kanagawa Academy of Science and Technology, Teikyo University Biotechnology Research Center 1F, Kawasaki, Japan.
| | | | | |
Collapse
|