501
|
Basavarajappa BS, Hungund BL. Neuromodulatory role of the endocannabinoid signaling system in alcoholism: an overview. Prostaglandins Leukot Essent Fatty Acids 2002; 66:287-99. [PMID: 12052043 DOI: 10.1054/plef.2001.0352] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The current review evaluates the evidence that some of the pharmacological and behavioral effects of ethanol (EtOH), including EtOH-preferring behavior, may be mediated through the endocannabinoid signaling system. The recent advances in the understanding of the neurobiological basis of alcoholism suggest that the pharmacological and behavioral effects of EtOH are mediated through its action on neuronal signal transduction pathways and ligand-gated ion channels, receptor systems, and receptors that are coupled to G-proteins. The identification of a G-protein-coupled receptor, namely, the cannabinoid receptor (CB1 receptor) that was activated by Delta(9)-tetrahydrocannabinol (Delta(9)-THC), the major psychoactive component of marijuana, led to the discovery of endogenous cannabinoid agonists. To date, two fatty acid derivatives identified to be arachidonylethanolamide (AEA) and 2-arachidonylglycerol (2-AG) have been isolated from both nervous and peripheral tissues. Both these compounds have been shown to mimic the pharmacological and behavioral effects of Delta(9)-THC. The involvement of the endocannabinoid signaling system in the development of tolerance to the drugs of abuse including EtOH has not been known until recently. Recent studies from our laboratory have demonstrated for the first time the down-regulation of CB1 receptor function and its signal transduction by chronic EtOH. The observed down-regulation of CB1 receptor binding and its signal transduction results from the persistent stimulation of the receptors by the endogenous CB1 receptor agonists, AEA and 2-AG, the synthesis of which has been found to be increased by chronic EtOH treatment. This enhanced formation of endocannabinoids may subsequently influence the release of neurotransmitters. It was found that the DBA/2 mice, known to avoid EtOH intake, have significantly reduced brain-CB1-receptor function consistent with other studies, where the CB1 receptor antagonist SR141716A has been shown to block voluntary EtOH intake in rodents. Similarly, activation of the CB1 receptor system promoted alcohol craving, suggesting a role for the CB1 receptor gene in excessive EtOH drinking behavior and development of alcoholism. Ongoing investigations may lead to the development of potential therapeutic strategies for the treatment of alcoholism.
Collapse
Affiliation(s)
- B S Basavarajappa
- Division of Analytical Psychopharmacology, New York State Psychiatric Institute, New York, NY, USA.
| | | |
Collapse
|
502
|
Sugiura T, Kobayashi Y, Oka S, Waku K. Biosynthesis and degradation of anandamide and 2-arachidonoylglycerol and their possible physiological significance. Prostaglandins Leukot Essent Fatty Acids 2002; 66:173-92. [PMID: 12052034 DOI: 10.1054/plef.2001.0356] [Citation(s) in RCA: 246] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
N -arachidonoylethanolamine (anandamide) was the first endogenous cannabinoid receptor ligand to be discovered. Dual synthetic pathways for anandamide have been proposed. One is the formation from free arachidonic acid and ethanolamine, and the other is the formation from N -arachidonoyl phosphatidylethanolamine (PE) through the action of a phosphodiesterase. These pathways, however, do not appear to be able to generate a large amount of anandamide, at least under physiological conditions. The generation of anandamide from free arachidonic acid and ethanolamine is catalyzed by a degrading enzyme anandamide amidohydrolase/fatty acid amide hydrolase operating in reverse and requires large amounts of substrates. As for the second pathway, arachidonic acids esterified at the 1-position of glycerophospholipids, which are mostly esterified at the 2-position, are utilized for the formation of N -arachidonoyl PE, a stored precursor form of anandamide. In fact, the actual levels of anandamide in various tissues are generally low except in a few cases. 2-Arachidonoylglycerol (2-AG) was the second endogenous cannabinoid receptor ligand to be discovered. 2-AG is a degradation product of arachidonic acid-containing glycerophospholipids such as inositol phospholipids. Several investigators have demonstrated that 2-AG is produced in a variety of tissues and cells upon stimulation. 2-AG acts as a full agonist at the cannabinoid receptors (CB1 and CB2). Evidence is gradually accumulating and indicates that 2-AG is the most efficacious endogenous natural ligand for the cannabinoid receptors. In this review, we summarize the tissue levels, biosynthesis, degradation and possible physiological significance of two endogenous cannabimimetic molecules, anandamide and 2-AG.
Collapse
Affiliation(s)
- T Sugiura
- Faculty of Pharmaceutical Sciences, Teikyo University, Sagamiko, Tsukui-gun, Kanagawa 199-0195, Japan.
| | | | | | | |
Collapse
|
503
|
Abstract
Many aspects of the physiology and pharmacology of anandamide (arachidonoyl ethanol amide), the first endogenous cannabinoid ligand ("endocannabinoid") isolated from pig brain, have been studied since its discovery in 1992. Ethanol amides from other fatty acids have also been identified as endocannabinoids with similar in vivo and in vitro pharmacological properties. 2-Arachidonoyl glycerol and noladin ether (2-arachidonyl glyceryl ether), isolated in 1995 and 2001, respectively, so far, display pharmacological properties in the central nervous system, similar to those of anandamide. The endocannabinoids are widely distributed in brain, they are synthesized and released upon neuronal stimulation, undergo reuptake and are hydrolyzed intracellularly by fatty acid amide hydrolase (FAAH). For therapeutic purposes, inhibitors of FAAH may provide more specific cannabinoid activities than direct agonists, and several such molecules have already been developed. Pharmacological effects of the endocannabinoids are very similar, yet not identical, to those of the plant-derived and synthetic cannabinoid receptor ligands. In addition to pharmacokinetic explanations, direct or indirect interactions with other receptors have been considered to explain some of these differences, including activities at serotonin and GABA receptors. Binding affinities for other receptors such as the vanilloid receptor, have to be taken into account in order to fully understand endocannabinoid physiology. Moreover, possible interactions with receptors for the lysophosphatidic acids deserve attention in future studies. Endocannabinoids have been implicated in a variety of physiological functions. The areas of central activities include pain reduction, motor regulation, learning/memory, and reward. Finally, the role of the endocannabinoid system in appetite stimulation in the adult organism, and perhaps more importantly, its critical involvement in milk ingestion and survival of the newborn, may not only further our understanding of the physiology of food intake and growth, but may also find therapeutic applications in wasting disease and infant's "failure to thrive".
Collapse
Affiliation(s)
- E Fride
- Department of Behavioral Sciences, College of Judea and Samaria, Ariel, 44837 Israel.
| |
Collapse
|
504
|
Leroy S, Griffon N, Bourdel MC, Olié JP, Poirier MF, Krebs MO. Schizophrenia and the cannabinoid receptor type 1 (CB1): association study using a single-base polymorphism in coding exon 1. AMERICAN JOURNAL OF MEDICAL GENETICS 2001; 105:749-52. [PMID: 11803524 DOI: 10.1002/ajmg.10038] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Abuse of cannabis is frequent among the young and is suspected to precipitate schizophrenia in vulnerable subjects. Cannabinoid receptor (CB1) is particularly concentrated in dopamine-modulated areas of the nervous system. An association between an AAT polymorphism of the CB1 gene and intravenous drug abuse has been previously reported, but not with schizophrenia. In a French Caucasian population, we compared the distribution of a single-base polymorphism revealed by MspI within the first exon of the CB1 gene in patients with schizophrenia (n = 102) and ethnic- and gender-matched controls (n = 63). No significant difference was seen in the allele or genotype distribution between the whole sample of schizophrenic patients and controls. However, we found a borderline lack of allele g and a significant lack of gg genotype in the non-substance-abusing patients compared to substance-abusing patients, the latter being similar to the controls. These results are the first report of an significant association between CB1 receptor and a subtype of schizophrenia. Studies are needed to confirm and further explore the precise role of the cannabinoid system in schizophrenia.
Collapse
Affiliation(s)
- S Leroy
- INSERM E 0117-Université Paris V, Service Hospitalo-Universitaire de Santé Mentale et Thérapeutique, Hôpital Sainte-Anne, Paris, France
| | | | | | | | | | | |
Collapse
|
505
|
Abstract
The endocannabinoid anandamide [N-arachidonoylethanolamine (AEA)] is thought to function as an endogenous protective factor of the brain against acute neuronal damage. However, this has never been tested in an in vivo model of acute brain injury. Here, we show in a longitudinal pharmacological magnetic resonance imaging study that exogenously administered AEA dose-dependently reduced neuronal damage in neonatal rats injected intracerebrally with the Na(+)/K(+)-ATPase inhibitor ouabain. At 15 min after injury, AEA (10 mg/kg) administered 30 min before ouabain injection reduced the volume of cytotoxic edema by 43 +/- 15% in a manner insensitive to the cannabinoid CB(1) receptor antagonist SR141716A. At 7 d after ouabain treatment, 64 +/- 24% less neuronal damage was observed in AEA-treated (10 mg/kg) rats compared with control animals. Coadministration of SR141716A prevented the neuroprotective actions of AEA at this end point. In addition, (1) no increase in AEA and 2-arachidonoylglycerol levels was detected at 2, 8, or 24 hr after ouabain injection; (2) application of SR141716A alone did not increase the lesion volume at days 0 and 7; and (3) the AEA-uptake inhibitor, VDM11, did not affect the lesion volume. These data indicate that there was no endogenous endocannabinoid tone controlling the acute neuronal damage induced by ouabain. Although our data seem to question a possible role of the endogenous cannabinoid system in establishing a brain defense system in our model, AEA may be used as a structural template to develop neuroprotective agents.
Collapse
|
506
|
Lastres-Becker I, Cebeira M, de Ceballos ML, Zeng BY, Jenner P, Ramos JA, Fernández-Ruiz JJ. Increased cannabinoid CB1 receptor binding and activation of GTP-binding proteins in the basal ganglia of patients with Parkinson's syndrome and of MPTP-treated marmosets. Eur J Neurosci 2001; 14:1827-32. [PMID: 11860478 DOI: 10.1046/j.0953-816x.2001.01812.x] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Recent evidence obtained in rat models of Parkinson's disease showed that the density of cannabinoid CB1 receptors and their endogenous ligands increase in basal ganglia. However, no data exists from post-mortem brain of humans affected by Parkinson's disease or from primate models of the disorder. In the present study, we examined CB1 receptor binding and the magnitude of the stimulation by WIN55,212-2, a specific CB1 receptor agonist, of [35S]GTPgammaS binding to membrane fractions from the basal ganglia of patients affected by Parkinson's disease. In Parkinson's disease, WIN55,212-2-stimulated [35S]GTPgammaS binding in the caudate nucleus, putamen, lateral globus pallidus and substantia nigra was increased, thus indicating a more effective activation of GTP-binding protein-coupled signalling mechanisms via CB1 receptors. This was accompanied by an increase in CB1 receptor binding in the caudate nucleus and the putamen, although no changes were observed in the lateral globus pallidus and the substantia nigra. Because Parkinson's disease patients had been chronically treated with l-DOPA, brains were studied from normal common marmosets and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated animals with and without chronic L-DOPA treatment. MPTP-lesioned marmosets had increased CB1 receptor binding in the caudate nucleus and the putamen compared to control marmosets, as well as increased stimulation of [35S]GTPgammaS binding by WIN55,212-2. However, following l-DOPA treatment these parameters returned towards control values. The results indicate that a nigro-striatal lesion is associated with an increase in CB1 receptors in the basal ganglia in humans and nonhuman primates and that this increase could be reversed by chronic l-DOPA therapy. The data suggest that CB1 receptor blockade might be useful as an adjuvant for the treatment of parkinsonian motor symptoms.
Collapse
Affiliation(s)
- I Lastres-Becker
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Complutense University, 28040 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
507
|
Rodríguez de Fonseca F, Navarro M, Gómez R, Escuredo L, Nava F, Fu J, Murillo-Rodríguez E, Giuffrida A, LoVerme J, Gaetani S, Kathuria S, Gall C, Piomelli D. An anorexic lipid mediator regulated by feeding. Nature 2001; 414:209-12. [PMID: 11700558 DOI: 10.1038/35102582] [Citation(s) in RCA: 564] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Oleylethanolamide (OEA) is a natural analogue of the endogenous cannabinoid anandamide. Like anandamide, OEA is produced in cells in a stimulus-dependent manner and is rapidly eliminated by enzymatic hydrolysis, suggesting a function in cellular signalling. However, OEA does not activate cannabinoid receptors and its biological functions are still unknown. Here we show that, in rats, food deprivation markedly reduces OEA biosynthesis in the small intestine. Administration of OEA causes a potent and persistent decrease in food intake and gain in body mass. This anorexic effect is behaviourally selective and is associated with the discrete activation of brain regions (the paraventricular hypothalamic nucleus and the nucleus of the solitary tract) involved in the control of satiety. OEA does not affect food intake when injected into the brain ventricles, and its anorexic actions are prevented when peripheral sensory fibres are removed by treatment with capsaicin. These results indicate that OEA is a lipid mediator involved in the peripheral regulation of feeding.
Collapse
|
508
|
Herreros de Tejada P, Muñoz Tedó C. The decade 1989-1998 in Spanish psychology: an analysis of research in psychobiology. THE SPANISH JOURNAL OF PSYCHOLOGY 2001; 4:219-36. [PMID: 11723643 DOI: 10.1017/s113874160000576x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In this paper, we present an analysis of the research published during the 1989-1998 decade by tenured Spanish faculty members from the area of psychobiology. Database search and direct correspondence with the 110 faculty members rendered a list of 904 psychobiological papers. Classification and analysis of these papers led to the definition of at least 70 different research trends. Topics are grouped into several specific research areas: Learning and Memory; Development and Neural Plasticity; Emotion and Stress; Ethology; Neuropsychology; Sensory Processing; and Psychopharmacology. The international dissemination of this research, published in journals of high impact index, and the increasing number of papers are two noteworthy features.
Collapse
|
509
|
Derkinderen P, Toutant M, Kadaré G, Ledent C, Parmentier M, Girault JA. Dual role of Fyn in the regulation of FAK+6,7 by cannabinoids in hippocampus. J Biol Chem 2001; 276:38289-96. [PMID: 11468287 DOI: 10.1074/jbc.m105630200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In hippocampus endocannabinoids modulate synaptic function and plasticity and increase tyrosine phosphorylation of several proteins, including focal adhesion kinase (FAK). Autophosphorylation of FAK on Tyr-397 is generally a critical step for its activation, allowing the recruitment of Src family kinases, and phosphorylation of FAK and associated proteins. We have examined the mechanisms of the regulation of FAK by cannabinoids in rat and mouse hippocampal slices. Anandamide and 2-arachidonoylglycerol, two endocannabinoids, and Delta9-tetrahydrocannabinol, stimulated tyrosine phosphorylation of FAK+6,7, a neuronal splice isoform of FAK, on several residues including Tyr-397. Cannabinoids increased phosphorylation of p130-Cas, a protein associated with FAK, but had no effect on PYK2, a tyrosine kinase related to FAK and enriched in hippocampus. Pharmacological experiments and the use of knockout mice demonstrated that the effects of cannabinoids were mediated through CB1 receptors. These effects were sensitive to manipulation of cAMP-dependent protein kinase, suggesting that they were mediated by inhibition of a cAMP pathway. PP2, an Src family kinase inhibitor, prevented the effects of cannabinoids on p130-Cas and on FAK+6,7 tyrosines 577 and 925, but not 397, indicating that FAK autophosphorylation was upstream of Src family kinases in response to CB1-R stimulation. Endocannabinoids increased the association of Fyn, but not Src, with FAK+6,7. In hippocampal slices from Fyn -/- mice, the levels of p130-Cas were increased, and the effects of endocannabinoids on tyrosine phosphorylation, including of Tyr-397, were completely abolished. These results demonstrate the specific functional association of Fyn with FAK+6,7 in a pathway regulated by endocannabinoids, in which Fyn may play roles dependent and independent of its catalytic activity.
Collapse
Affiliation(s)
- P Derkinderen
- INSERM U536, Institut du Fer à Moulin, 17 Rue du Fer à Moulin, 75005 Paris, France
| | | | | | | | | | | |
Collapse
|
510
|
Reversibility of n-3 fatty acid deficiency-induced alterations of learning behavior in the rat: level of n-6 fatty acids as another critical factor. J Lipid Res 2001. [DOI: 10.1016/s0022-2275(20)32220-3] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
511
|
|
512
|
De Vries TJ, Shaham Y, Homberg JR, Crombag H, Schuurman K, Dieben J, Vanderschuren LJ, Schoffelmeer AN. A cannabinoid mechanism in relapse to cocaine seeking. Nat Med 2001; 7:1151-4. [PMID: 11590440 DOI: 10.1038/nm1001-1151] [Citation(s) in RCA: 319] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Treatment of cocaine addiction is hampered by high rates of relapse even after prolonged drug abstinence. This relapse to compulsive cocaine use can be triggered by re-exposure to cocaine, by re-exposure to stimuli previously associated with cocaine or by exposure to stress. In laboratory rats, similar events reinstate cocaine seeking after prolonged withdrawal periods, thus providing a model to study neuronal mechanisms underlying the relapse to cocaine. The endocannabinoid system has been implicated in a number of neuropsychiatric conditions, including drug addiction. The active ingredient of marijuana, Delta9-tetrahydrocannabinol, activates the mesolimbic dopamine (DA) reward system and has rewarding effects in preclinical models of drug abuse. We report here that the synthetic cannabinoid agonist, HU210 (ref. 13), provokes relapse to cocaine seeking after prolonged withdrawal periods. Furthermore, the selective CB1 receptor antagonist, SR141716A (ref. 14), attenuates relapse induced by re-exposure to cocaine-associated cues or cocaine itself, but not relapse induced by exposure to stress. These data reveal an important role of the cannabinoid system in the neuronal processes underlying relapse to cocaine seeking, and provide a rationale for the use of cannabinoid receptor antagonists for the prevention of relapse to cocaine use.
Collapse
Affiliation(s)
- T J De Vries
- Research Institute Neurosciences Vrije Universiteit, Department of Medical Pharmacology, VU Medical Center, Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
513
|
Covault J, Gelernter J, Kranzler H. Association study of cannabinoid receptor gene (CNR1) alleles and drug dependence. Mol Psychiatry 2001; 6:501-2. [PMID: 11526463 DOI: 10.1038/sj.mp.4000925] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
514
|
Abstract
We investigated the transduction mechanisms mediating formation of the endogenous cannabinoid (endocannabinoid) lipids, anandamide (arachidonylethanolamide) and 2-arachidonylglycerol, in primary cultures of rat cortical neurons. Unstimulated neurons contained 0.3 +/- 0.1 pmol of anandamide and 16.5 +/- 3.3 pmol of 2-arachidonylglycerol per mg of protein, as determined by gas chromatography/mass spectrometry. Ca(2+) entry into the neurons via activated glutamate N-methyl-D-aspartate (NMDA) receptors increased 2-arachidonylglycerol levels approximately three times, but had no effect on anandamide levels. By contrast, anandamide formation was stimulated five times by simultaneous activation of NMDA and acetylcholine receptors. Alone, acetylcholine receptor activation had no effect on anandamide or 2-arachidonylglycerol levels. The formation of fatty acid ethanolamides that do not activate cannabinoid receptors, including palmitylethanolamide and oleylethanolamide, was stimulated by coactivation of NMDA and acetylcholine receptors. Pharmacological experiments suggest that the cholinergic contribution to anandamide formation was mediated by alpha7 nicotinic receptors (antagonized by methyllycaconitine), whereas the contribution to palmitylethanolamide and oleylethanolamide formation was mediated by muscarinic receptors (antagonized by atropine). These findings indicate that cortical neurons produce anandamide and 2-arachidonylglycerol in a receptor-dependent manner, and that brain neurons may generate different endocannabinoid lipids depending on their complement of neurotransmitter receptors.
Collapse
Affiliation(s)
- N Stella
- Department of Pharmacology, 360 Med Surge II, University of California, Irvine 92697-4625, USA
| | | |
Collapse
|
515
|
Abstract
The present study was designed to explore the relationship between the cannabinoid and opioid receptors in animal models of opioid-induced reinforcement. The acute administration of SR141716A, a selective central cannabinoid CB1 receptor antagonist, blocked heroin self-administration in rats, as well as morphine-induced place preference and morphine self-administration in mice. Morphine-dependent animals injected with SR141716A exhibited a partial opiate-like withdrawal syndrome that had limited consequences on operant responses for food and induced place aversion. These effects were associated with morphine-induced changes in the expression of CB1 receptor mRNA in specific nuclei of the reward circuit, including dorsal caudate putamen, nucleus accumbens, and septum. Additionally, the opioid antagonist naloxone precipitated a mild cannabinoid-like withdrawal syndrome in cannabinoid-dependent rats and blocked cannabinoid self-administration in mice. Neither SR141716A nor naloxone produced any intrinsic effect on these behavioral models. The present results show the existence of a cross-interaction between opioid and cannabinoid systems in behavioral responses related to addiction and open new strategies for the treatment of opiate dependence.
Collapse
|
516
|
Lamarque S, Taghzouti K, Simon H. Chronic treatment with Delta(9)-tetrahydrocannabinol enhances the locomotor response to amphetamine and heroin. Implications for vulnerability to drug addiction. Neuropharmacology 2001; 41:118-29. [PMID: 11445192 DOI: 10.1016/s0028-3908(01)00039-9] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cannabis sativa preparations are some of the most widely used illicit recreational drugs. In addition to their direct addictive potential, cannabinoids may influence the sensitivity to other drugs. The aim of the present study was to determine if a cross-sensitization between Delta(9)-tetrahydrocannabinol (Delta(9)-THC) and other drugs (amphetamine and heroin) could be demonstrated. We examined the effects of a chronic treatment with Delta(9)-THC (0.6, 3 and 15mg/kg, ip) on the locomotor response to amphetamine (1mg/kg, ip) and heroin (1mg/kg, ip). Chronic treatment with Delta(9)-THC resulted in tolerance to the initial hypothermic and anorexic effects. Pre-treatment with Delta(9)-THC increased the locomotor responses to amphetamine and heroin. This cross-sensitization was time-dependent as it was observed three days after the last injection of Delta(9)-THC for amphetamine, and a relatively long time after the end of chronic treatment (41 days) for heroin. Moreover, the enhanced response to amphetamine or heroin was noted in some individuals only: the high-responder rats (HR). These animals have previously been shown to be vulnerable to drug taking behaviors. It is hypothesised that repeated use of Cannabis derivates may facilitate progression to the consumption of other illicit drugs in vulnerable individuals.
Collapse
Affiliation(s)
- S Lamarque
- Laboratoire de Neuropsychobiologie des Désadaptations, Université Victor Segalen Bordeaux 2, CNRS UMR 5541, BP 31, 146, rue Léo Saignat, 33076 Bordeaux Cedex, France
| | | | | |
Collapse
|
517
|
Goutopoulos A, Fan P, Khanolkar AD, Xie XQ, Lin S, Makriyannis A. Stereochemical selectivity of methanandamides for the CB1 and CB2 cannabinoid receptors and their metabolic stability. Bioorg Med Chem 2001; 9:1673-84. [PMID: 11425567 DOI: 10.1016/s0968-0896(01)00088-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Several chiral, analogues of the endogenous cannabinoid receptor ligand, arachidonylethanolamide (anandamide), methylated at the 2,1' and 2' positions using asymmetric synthesis were evaluated in order to study (a) stereoselectivity of binding to CB1 and CB2 cannabinoid receptors; and (b) metabolic stability with regard to anandamide amidase. Enantiomerically pure 2-methyl arachidonic acids were synthesized through diastereoselective methylation of the respective chiral 2-oxazolidinone enolate derivatives and CB1 and CB2 receptor affinities of the resulting chiral anandamides were evaluated using a standard receptor binding assay. Introduction of a single 2-methyl group increased affinity for CB1, led to limited enantioselectivity and only modestly improved metabolic stability. However, a high degree of enantio- and diastereoselectivity was observed for the 2,1'-dimethyl analogues. (R)-N-(1-methyl-2-hydroxyethyl)-2-(R)-methyl-arachidonamide (4) exhibited the highest CB1 receptor affinity in this series with a K(i) of 7.42 nM, an at least 10-fold improvement on anandamide (K(i)=78.2 nM). The introduction of two methyl groups at the 2-position of anandamide led to no change in affinity for CB1 but somewhat enhanced metabolic stability. Conversely, chiral headgroup methylation in the 2-gem-dimethyl series led to chiral analogues possessing a wide range of CB1 affinities. Of these the (S)-2,2,2'-trimethyl analogue (12) had the highest affinity for CB1 almost equal to that of anandamide. In agreement with our previous anandamide structure-activity relationship work, the analogues in this study showed high selectivity for the CB1 receptor over CB2. The results are evaluated in terms of stereochemical factors affecting the ligand's affinity for CB1 using receptor-essential volume mapping as an aid. Based on the results, a partial CB1 receptor site model is proposed, that bears two hydrophobic pockets capable of accommodating 1'- and 2-methyl groups
Collapse
Affiliation(s)
- A Goutopoulos
- Department of Pharmaceutical Sciences, and Center for Drug Discovery, University of Connecticut, Storrs, CT 06269, USA
| | | | | | | | | | | |
Collapse
|
518
|
Pistis M, Porcu G, Melis M, Diana M, Gessa GL. Effects of cannabinoids on prefrontal neuronal responses to ventral tegmental area stimulation. Eur J Neurosci 2001; 14:96-102. [PMID: 11488953 DOI: 10.1046/j.0953-816x.2001.01612.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cannabinoids activate the firing of mesoprefrontocortical dopamine neurons and release dopamine in the prefrontal cortex. This study was undertaken with the aim of clarifying the interaction between cannabinoids and mesocortical system in the prefrontal cortex. The effect of Delta9-tetrahydrocannabinol (Delta9-THC) and the synthetic CB1 agonist WIN55,212-2 (WIN) was studied by extracellular single unit recordings, in chloral hydrate anaesthetised rats, on the spontaneous activity of pyramidal neurons and on the inhibition produced on these neurons by the electrical stimulation of the ventral tegmental area (VTA). Intravenously administered Delta9-THC and WIN (1.0 and 0.5 mg/kg, respectively), increased the firing rate of pyramidal neurons projecting to the VTA. VTA stimulation produced a phasic inhibition (167 +/- 6 ms) in 79% of prefrontal cortex pyramidal neurons. Delta9-THC and WIN reverted this inhibition in 73% and 100% of the neurons tested, respectively. The subsequent administration of the selective CB1 antagonist SR141716A (1 mg/kg) readily suppressed the effects of both cannabinoids and restored the inhibitory response to VTA stimulation. Moreover, when administered alone, SR141716A prolonged the inhibition in 55.6% of the neurons tested. The results indicate that stimulation of CB1 receptors by cannabinoids results in an enhanced excitability of prefrontal cortex pyramidal neurons as indexed by the suppression of the inhibitory effect of VTA stimulation and by the increase in firing rate of antidromically identified neurons projecting to the VTA. Furthermore, our results support the view that endogenous cannabinoids exert a negative control on dopamine activity in the prefrontal cortex. This study may be relevant in helping to understand the influence of cannabinoids on cognitive processes mediated by the prefrontal cortex.
Collapse
Affiliation(s)
- M Pistis
- B.B. Brodie Department of Neuroscience, University of Cagliari, via Porcell 4, 09124 Cagliari, Italy.
| | | | | | | | | |
Collapse
|
519
|
Patricelli MP, Cravatt BF. Proteins regulating the biosynthesis and inactivation of neuromodulatory fatty acid amides. VITAMINS AND HORMONES 2001; 62:95-131. [PMID: 11345902 DOI: 10.1016/s0083-6729(01)62002-8] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
Fatty acid amides (FAAs) represent a growing family of biologically active lipids implicated in a diverse range of cellular and physiological processes. At present, two general types of fatty acid amides, the N-acylethanolamines (NAEs) and the fatty acid primary amides (FAPAs), have been identified as potential physiological neuromodulators/neurotransmitters in mammals. Representative members of these two subfamilies include the endocannabinoid NAE anandamide and the sleep-inducing FAPA oleamide. In this Chapter, molecular mechanisms proposed for the biosynthesis and inactivation of FAAs are critically evaluated, with an emphasis placed on the biochemical and cell biological properties of proteins thought to mediate these processes.
Collapse
Affiliation(s)
- M P Patricelli
- Skaggs Institute for Chemical Biology and the Department of Cell Biology, Scripps Research Institute, La Jolla, California, USA
| | | |
Collapse
|
520
|
Silverdale MA, McGuire S, McInnes A, Crossman AR, Brotchie JM. Striatal Cannabinoid CB1 Receptor mRNA Expression Is Decreased in the Reserpine-Treated Rat Model of Parkinson's Disease. Exp Neurol 2001; 169:400-6. [PMID: 11358453 DOI: 10.1006/exnr.2001.7649] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
High levels of both endocannabinoids and endocannabinoid receptors are present in the basal ganglia. Attention has recently focused on the role of endocannabinoids in the control of movement and in movement disorders of basal ganglia origin such as Parkinson's disease. We investigated CB1 cannabinoid receptor mRNA expression in the reserpine-treated rat model of Parkinson's disease using in situ hybridization. Reserpine treatment caused a topographically organized reduction in CB1 receptor mRNA expression in the striatum (ranging from 11.6% medially to 53.6% laterally and dorsally). No change in CB1 receptor mRNA expression was observed in the cerebral cortex or septum. This reduction in CB1 receptor mRNA expression may be secondary to increased endocannabinoid stimulation of the receptor as increased basal ganglia endocannabinoid levels have been shown to occur in this model of Parkinson's disease. The data support the idea that cannabinoid receptor antagonists may provide a useful treatment for the symptoms of Parkinson's disease.
Collapse
Affiliation(s)
- M A Silverdale
- Division of Neuroscience, University of Manchester, Manchester M13 9PT, United Kingdom
| | | | | | | | | |
Collapse
|
521
|
Marzo VD, Bisogno T, De Petrocellis L. Endocannabinoids Part II: pathological CNS conditions involving the endocannabinoid system and their possible treatment with endocannabinoid-based drugs. Expert Opin Ther Targets 2001; 5:349-362. [PMID: 12540270 DOI: 10.1517/14728222.5.3.349] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Changes in the levels of either the cannabinoid CB(1) receptors or of their endogenous ligands, anandamide and 2-arachidonoylglycerol, appear to be casual or consequential in many neurological disorders. Several examples of how such diseases may be treated by substances capable of selectively manipulating endocannabinoid levels and action are presented, using animal models of neuropathological conditions, such as motor disorders, multiple sclerosis, neuronal damage, chronic and inflammatory pain, anorexia, cachexia and motivational disturbances. These examples indicate that new therapeutic agents, lacking the undesirable psychotropic side effects of Cannabis, may be developed from current studies on the endocannabinoid system.
Collapse
Affiliation(s)
- Vincenzo Di Marzo
- Istituto per la Chimica di Molecole di Interesse Biologico, Via Toiano 6, 80072, Arco Felice (NA), Italy
| | | | | |
Collapse
|
522
|
Di Marzo V, Lastres-Becker I, Bisogno T, De Petrocellis L, Milone A, Davis JB, Fernandez-Ruiz JJ. Hypolocomotor effects in rats of capsaicin and two long chain capsaicin homologues. Eur J Pharmacol 2001; 420:123-31. [PMID: 11408034 DOI: 10.1016/s0014-2999(01)01012-3] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Capsaicin and its analogue N-arachidonoyl-vanillyl-amine (arvanil) are agonists of vanilloid VR1 receptors, and suppress spontaneous activity in mice through an unknown mechanism. Here, we tested in rats the effect on motor behavior of: (1) capsaicin; (2) N-linoleoyl-vanillyl-amine (livanil) and N-alpha-linolenoyl-vanillyl-amine (linvanil), which, unlike arvanil, have very little affinity for cannabinoid CB1 receptors; and (3) the endocannabinoid anandamide (N-arachidonoyl-ethanolamine), which is a full agonist at both cannabinoid CB1 and vanilloid VR1 receptors. All compounds, administered i.p., dose-dependently (0.1-10 mg/kg) inhibited ambulation and stereotypic behavior and increased inactivity in the open field test. The rank of potency observed in vivo (livanil>capsaicin>linvanil>anandamide) bore little resemblance with the relative potencies in a functional assay for rat vanilloid VR1 receptors (livanil=linvanil>capsaicin>anandamide) and even less with the relative affinities in rat CB1 receptor binding assays (anandamide>livanil>linvanil>capsaicin). The vanilloid VR1 receptor antagonist capsazepine (10 mg/kg, i.p.) blocked the effect of capsaicin but not of livanil or anandamide, whereas the CB1 receptor antagonist (N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide.HCl (SR141716A, 3 mg/kg, i.p.) antagonized the actions of the CB1 receptor agonist Delta9-tetrahydrocannabinol, but not of livanil, anandamide or capsaicin. Anandamide occluded the effects of livanil on locomotion, possibly suggestive of a common mechanism of action for the two compounds. Finally, stimulation with capsaicin of cells expressing rat vanilloid VR1 receptors led to anandamide formation. These data suggest that motor behavior can be suppressed by the activation of: (1) vanilloid receptors, possibly via the intermediacy of anandamide; or (2) capsazepine- and SR141716A-insensitive sites of action for anandamide, livanil and linvanil, possibly the same that were previously suggested to mediate arvanil hypokinetic effects in mice.
Collapse
Affiliation(s)
- V Di Marzo
- Endocannabinoid Research Group, Istituto per la Chimica di Molecole di Interesse Biologico, C.N.R., Via Toiano 6, 80072, Arco Felice, Naples, Italy.
| | | | | | | | | | | | | |
Collapse
|
523
|
Calignano A, La Rana G, Piomelli D. Antinociceptive activity of the endogenous fatty acid amide, palmitylethanolamide. Eur J Pharmacol 2001; 419:191-8. [PMID: 11426841 DOI: 10.1016/s0014-2999(01)00988-8] [Citation(s) in RCA: 188] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The endogenous fatty acid ethanolamide, palmitylethanolamide, alleviated, in a dose-dependent manner, pain behaviors elicited in mice by injections of formalin (5%, intraplantar), acetic acid (0.6%, 0.5 ml per animal, intraperitoneal, i.p.), kaolin (2.5 mg per animal, i.p.), and magnesium sulfate (120 mg per kg, i.p.). The antinociceptive effects of palmitylethanolamide were prevented by the cannabinoid CB2 receptor antagonist SR144528 [N-([1s]-endo-1.3.3-trimethylbicyclo[2.3.1]heptan-2-yl)-5-(4-chloro-3-methylphenyl)-1-(4-methylbenzyl)-pyrazole-3-carboxamide], not by the cannabinoid CB1 receptor antagonist SR141716A [N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide x HCl]. By contrast, palmitylethanolamide had no effect on capsaicin-evoked pain behavior or thermal nociception. The endogenous cannabinoid, anandamide (arachidonylethanolamide), alleviated nociception in all tests (formalin, acetic acid, kaolin, magnesium sulfate, capsaicin and hot plate). These effects were prevented by the cannabinoid CB1 receptor antagonist SR141716A, not the cannabinoid CB2 receptor antagonist SR141716A. Additional fatty acid ethanolamides (oleylethanolamide, myristylethanolamide, palmitoleylethanolamide, palmitelaidylethanolamide) had little or no effect on formalin-evoked pain behavior, and were not investigated in other pain models. These results support the hypothesis that endogenous palmitylethanolamide participates in the intrinsic control of pain initiation. They also suggest that the putative receptor site activated by palmitylethanolamide may provide a novel target for peripherally acting analgesic drugs.
Collapse
Affiliation(s)
- A Calignano
- Department of Experimental Pharmacology, University of Naples, Italy
| | | | | |
Collapse
|
524
|
Abstract
An understanding of the actions of Cannabis (Marijuana) has evolved from folklore to science over the previous hundred years. This progression was spurred by the discovery of an endogenous cannabinoid system consisting of two receptors and two endogenous ligands. This system appears to be intricately involved in normal physiology, specifically in the control of movement, formation of memories and appetite control. As we are developing an increased understanding of the physiological role of endocannabinoids it is becoming clear that they may be involved in the pathology of several neurological diseases. Furthermore an array of potential therapeutic targets is being determined--including specific cannabinoid agonists and antagonists as well as compounds that interrupt the synthesis, uptake or metabolism of the endocannabinoids. This article reviews the recent progress in understanding the contribution of endocannabinoids to the pathology and therapy of Huntington's disease. Parkinson's disease, schizophrenia and tremor.
Collapse
Affiliation(s)
- M Glass
- Department of Pharmacology, University of Auckland, New Zealand
| |
Collapse
|
525
|
Porter AC, Felder CC. The endocannabinoid nervous system: unique opportunities for therapeutic intervention. Pharmacol Ther 2001; 90:45-60. [PMID: 11448725 DOI: 10.1016/s0163-7258(01)00130-9] [Citation(s) in RCA: 163] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The active principle in marijuana, Delta(9)-tetrahydrocannabinol (THC), has been shown to have wide therapeutic application for a number of important medical conditions, including pain, anxiety, glaucoma, nausea, emesis, muscle spasms, and wasting diseases. Delta(9)-THC binds to and activates two known cannabinoid receptors found in mammalian tissue, CB1 and CB2. The development of cannabinoid-based therapeutics has focused predominantly on the CB1 receptor, based on its predominant and abundant localization in the CNS. Like most of the known cannabinoid agonists, Delta(9)-THC is lipophilic and relatively nonselective for both receptor subtypes. Clinical studies show that nonselective cannabinoid agonists are relatively safe and provide therapeutic efficacy, but that they also induce psychotropic side effects. Recent studies of the biosynthesis, release, transport, and disposition of anandamide are beginning to provide an understanding of the role of lipid transmitters in the CNS. This review attempts to link current understanding of the basic biology of the endocannabinoid nervous system to novel opportunities for therapeutic intervention. This new knowledge may facilitate the development of cannabinoid receptor-targeted therapeutics with improved safety and efficacy profiles.
Collapse
Affiliation(s)
- A C Porter
- Neuroscience Division, Drop 0510, Lilly Research Laboratories, Indianapolis, IN 46285, USA
| | | |
Collapse
|
526
|
Elphick MR, Egertová M. The neurobiology and evolution of cannabinoid signalling. Philos Trans R Soc Lond B Biol Sci 2001; 356:381-408. [PMID: 11316486 PMCID: PMC1088434 DOI: 10.1098/rstb.2000.0787] [Citation(s) in RCA: 265] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The plant Cannabis sativa has been used by humans for thousands of years because of its psychoactivity. The major psychoactive ingredient of cannabis is Delta(9)-tetrahydrocannabinol, which exerts effects in the brain by binding to a G-protein-coupled receptor known as the CB1 cannabinoid receptor. The discovery of this receptor indicated that endogenous cannabinoids may occur in the brain, which act as physiological ligands for CB1. Two putative endocannabinoid ligands, arachidonylethanolamide ('anandamide') and 2-arachidonylglycerol, have been identified, giving rise to the concept of a cannabinoid signalling system. Little is known about how or where these compounds are synthesized in the brain and how this relates to CB1 expression. However, detailed neuroanatomical and electrophysiological analysis of mammalian nervous systems has revealed that the CB1 receptor is targeted to the presynaptic terminals of neurons where it acts to inhibit release of 'classical' neurotransmitters. Moreover, an enzyme that inactivates endocannabinoids, fatty acid amide hydrolase, appears to be preferentially targeted to the somatodendritic compartment of neurons that are postsynaptic to CB1-expressing axon terminals. Based on these findings, we present here a model of cannabinoid signalling in which anandamide is synthesized by postsynaptic cells and acts as a retrograde messenger molecule to modulate neurotransmitter release from presynaptic terminals. Using this model as a framework, we discuss the role of cannabinoid signalling in different regions of the nervous system in relation to the characteristic physiological actions of cannabinoids in mammals, which include effects on movement, memory, pain and smooth muscle contractility. The discovery of the cannabinoid signalling system in mammals has prompted investigation of the occurrence of this pathway in non-mammalian animals. Here we review the evidence for the existence of cannabinoid receptors in non-mammalian vertebrates and invertebrates and discuss the evolution of the cannabinoid signalling system. Genes encoding orthologues of the mammalian CB1 receptor have been identified in a fish, an amphibian and a bird, indicating that CB1 receptors may occur throughout the vertebrates. Pharmacological actions of cannabinoids and specific binding sites for cannabinoids have been reported in several invertebrate species, but the molecular basis for these effects is not known. Importantly, however, the genomes of the protostomian invertebrates Drosophila melanogaster and Caenorhabditis elegans do not contain CB1 orthologues, indicating that CB1-like cannabinoid receptors may have evolved after the divergence of deuterostomes (e.g. vertebrates and echinoderms) and protostomes. Phylogenetic analysis of the relationship of vertebrate CB1 receptors with other G-protein-coupled receptors reveals that the paralogues that appear to share the most recent common evolutionary origin with CB1 are lysophospholipid receptors, melanocortin receptors and adenosine receptors. Interestingly, as with CB1, each of these receptor types does not appear to have Drosophila orthologues, indicating that this group of receptors may not occur in protostomian invertebrates. We conclude that the cannabinoid signalling system may be quite restricted in its phylogenetic distribution, probably occurring only in the deuterostomian clade of the animal kingdom and possibly only in vertebrates.
Collapse
Affiliation(s)
- M R Elphick
- School of Biological Sciences, Queen Mary, University of London, London E1 4NS, UK. m.r.elphick@@qmw.ac.uk
| | | |
Collapse
|
527
|
Abstract
While most neurochemical research into the pathogenesis of schizophrenia (SZ) has focused on the dopaminergic, glutamatergic, and serotonergic systems, the exact nature and cause of this disorder have proven intractable. Given the recent discovery and elucidation of the endogenous cannabinioid system, a re-examination of the cannabis-induced exacerbation hypothesis of SZ is warranted. The purpose of the present study was to assess whether current cannabis users exhibit personality correlates and neurocognitive deficits similar to those observed in SZ patients. 15 current cannabis users, 15 drug-free controls, and 10 past cannabis users were assessed on tasks which assess attentional inhibition, spatial working memory, olfactory identification, and schizotypal personality. Current cannabis users demonstrated deficits in attentional inhibition, decreased reaction time, and significantly higher scores on the schizotypal personality questionnaire (SPQ) compared with the non-using and past cannabis using groups. No group differences were found on the working memory or olfactory identification tasks. These results suggest that cannabis use can mimic attentional deficits seen in acute schizophrenia and is associated with schizotypal personality, thus setting the stage for a possible cannabinoid model of SZ.
Collapse
Affiliation(s)
- P D Skosnik
- Department of Psychology, Northwestern University, Evanston, IL 60208, USA
| | | | | |
Collapse
|
528
|
Ohno-Shosaku T, Maejima T, Kano M. Endogenous cannabinoids mediate retrograde signals from depolarized postsynaptic neurons to presynaptic terminals. Neuron 2001; 29:729-38. [PMID: 11301031 DOI: 10.1016/s0896-6273(01)00247-1] [Citation(s) in RCA: 625] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Endogenous cannabinoids are considered to function as diffusible and short-lived modulators that may transmit signals retrogradely from postsynaptic to presynaptic neurons. To evaluate this possibility, we have made a paired whole-cell recording from cultured hippocampal neurons with inhibitory synaptic connections. In about 60% of pairs, a cannabinoid agonist greatly reduced the release of the inhibitory neurotransmitter GABA from presynaptic terminals. In most of such pairs but not in those insensitive to the agonist, depolarization of postsynaptic neurons and the resultant elevation of intracellular Ca2+ concentration caused transient suppression of inhibitory synaptic currents, which is mainly due to reduction of GABA release. This depolarization-induced suppression was completely blocked by selective cannabinoid antagonists. Our results reveal that endogenous cannabinoids mediate retrograde signals from depolarized postsynaptic neurons to presynaptic terminals to cause the reduction of transmitter release.
Collapse
Affiliation(s)
- T Ohno-Shosaku
- Department of Physiology, Kanazawa University School of Medicine, 920-8640, Kanazawa, Japan
| | | | | |
Collapse
|
529
|
Calignano A, La Rana G, Loubet-Lescoulié P, Piomelli D. A role for the endogenous cannabinoid system in the peripheral control of pain initiation. PROGRESS IN BRAIN RESEARCH 2001; 129:471-82. [PMID: 11098711 DOI: 10.1016/s0079-6123(00)29034-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- A Calignano
- Department of Pharmacology, University of Naples, Italy
| | | | | | | |
Collapse
|
530
|
Abstract
The functional interactions between the endogenous cannabinoid and opioid systems were evaluated in pre-proenkephalin-deficient mice. Antinociception induced in the tail-immersion test by acute Delta9-tetrahydrocannabinol was reduced in mutant mice, whereas no difference between genotypes was observed in the effects induced on body temperature, locomotion, or ring catalepsy. During a chronic treatment with Delta9-tetrahydrocannabinol, the development of tolerance to the analgesic responses induced by this compound was slower in mice lacking enkephalin. In addition, cannabinoid withdrawal syndrome, precipitated in Delta9-tetrahydrocannabinol-dependent mice by the injection of SR141716A, was significantly attenuated in mutant mice. These results indicate that the endogenous enkephalinergic system is involved in the antinociceptive responses of Delta9-tetrahydrocannabinol and participates in the expression of cannabinoid abstinence.
Collapse
|
531
|
MacCarrone M, Bari M, Menichelli A, Giuliani E, Del Principe D, Finazzi-Agrò A. Human platelets bind and degrade 2-arachidonoylglycerol, which activates these cells through a cannabinoid receptor. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:819-25. [PMID: 11168423 DOI: 10.1046/j.1432-1327.2001.01942.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The endocannabinoid 2-arachidonoylglycerol (2-Delta(4)Ach-Gro) activates human platelets in platelet-rich plasma at physiological concentrations. The activation was inhibited by selective antagonists of CB(1) and CB(2) cannabinoid receptors, but not by acetylsalicylic acid. Human platelets can metabolize 2-Delta(4)Ach-Gro by internalization through a high affinity transporter (K(m) = 300 +/- 30 nM, V(max) = 10 +/- 1 pmol.min(-1).mg protein(-1)), followed by hydrolysis by a fatty acid amide hydrolase (K(m) = 8 +/- 1 microM, V(max) = 400 +/- 50 pmol.min(-1).mg protein(-1)). The anandamide transport inhibitor AM404, and anandamide itself, were ineffective on 2-Delta(4)Ach-Gro uptake by platelets, whereas anandamide competitively inhibited 2-Delta(4)Ach-Gro hydrolysis (inhibition constant = 10 +/- 1 microM). Platelet activation by 2-Delta(4)Ach-Gro was paralleled by an increase of intracellular calcium and inositol-1,4,5-trisphosphate, and by a decrease of cyclic AMP. Moreover, treatment of preloaded platelet-rich plasma with 2-Delta(4)Ach-Gro induced an approximately threefold increase in [(3)H]2-Delta(4)Ach-Gro release, according to a CB receptor-dependent mechanism. On the other hand, ADP and collagen counteracted the activation of platelets by 2-Delta(4)Ach-Gro, whereas 5-hydroxytryptamine (serotonin) enhanced and extended its effects. Remarkably, ADP and collagen also reduced [(3)H]2-Delta(4)Ach-Gro release from 2-Delta(4)Ach-Gro-activated platelets, whereas 5-hydroxytryptamine further increased it. These findings suggest a so far unnoticed interplay between the peripheral endocannabinoid system and physiological platelet agonists.
Collapse
Affiliation(s)
- M MacCarrone
- Department of Experimental Medicine and Biochemical Sciences, University of Rome Tor Vergata, Italy
| | | | | | | | | | | |
Collapse
|
532
|
Baker D, Pryce G, Croxford JL, Brown P, Pertwee RG, Makriyannis A, Khanolkar A, Layward L, Fezza F, Bisogno T, Di Marzo V. Endocannabinoids control spasticity in a multiple sclerosis model. FASEB J 2001; 15:300-2. [PMID: 11156943 DOI: 10.1096/fj.00-0399fje] [Citation(s) in RCA: 284] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Spasticity is a complicating sign in multiple sclerosis that also develops in a model of chronic relapsing experimental autoimmune encephalomyelitis (CREAE) in mice. In areas associated with nerve damage, increased levels of the endocannabinoids, anandamide (arachidonoylethanolamide, AEA) and 2-arachidonoyl glycerol (2-AG), and of the AEA congener, palmitoylethanolamide (PEA), were detected here, whereas comparable levels of these compounds were found in normal and non-spastic CREAE mice. While exogenously administered endocannabinoids and PEA ameliorate spasticity, selective inhibitors of endocannabinoid re-uptake and hydrolysis-probably through the enhancement of endogenous levels of AEA, and, possibly, 2-arachidonoyl glycerol-significantly ameliorated spasticity to an extent comparable with that observed previously with potent cannabinoid receptor agonists. These studies provide definitive evidence for the tonic control of spasticity by the endocannabinoid system and open new horizons to therapy of multiple sclerosis, and other neuromuscular diseases, based on agents modulating endocannabinoid levels and action, which exhibit little psychotropic activity.
Collapse
Affiliation(s)
- D Baker
- Neuroinflammation Group, Institute of Neurology, University College London, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
533
|
Sugiura T, Yoshinaga N, Waku K. Rapid generation of 2-arachidonoylglycerol, an endogenous cannabinoid receptor ligand, in rat brain after decapitation. Neurosci Lett 2001; 297:175-8. [PMID: 11137756 DOI: 10.1016/s0304-3940(00)01691-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Rat brain, frozen in liquid nitrogen immediately after decapitation, contains a substantial amount of 2-arachidonoylglycerol (0.34 nmol/g tissue), an endogenous cannabinoid receptor ligand. The level of 2-arachidonoylglycerol in the brain was rapidly augmented after decapitation, the peak being noted 30 s after decapitation (1.54 nmol/g tissue). Noticeably, there are two phases during the increase in the levels of 2-arachidonoylglycerol: a rapid transient increase and a subsequent gradual sustained increase, suggesting that at least two separate mechanisms are involved in the generation of 2-arachidonoylglycerol in the decapitated brain. Gradual sustained formation was also observed for other monoacylglycerols, (e.g. 2-palmitoylglycerol plus 2-oleoylglycerol and 2-cis-vaccenoylglycerol). Thus, it is important to minimize post-mortem changes to estimate the exact tissue levels of 2-arachidonoylglycerol as well as other monoacylglycerols in the brain.
Collapse
Affiliation(s)
- T Sugiura
- Faculty of Pharmaceutical Sciences, Teikyo University, Sagamiko, Tsukui-gun, 199-0195, Kanagawa, Japan.
| | | | | |
Collapse
|
534
|
Maingret F, Patel AJ, Lazdunski M, Honoré E. The endocannabinoid anandamide is a direct and selective blocker of the background K(+) channel TASK-1. EMBO J 2001; 20:47-54. [PMID: 11226154 PMCID: PMC140203 DOI: 10.1093/emboj/20.1.47] [Citation(s) in RCA: 235] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
TASK-1 encodes an acid- and anaesthetic-sensitive background K(+) current, which sets the resting membrane potential of both cerebellar granule neurons and somatic motoneurons. We demonstrate that TASK-1, unlike the other two pore (2P) domain K(+) channels, is directly blocked by submicromolar concentrations of the endocannabinoid anandamide, independently of the CB1 and CB2 receptors. In cerebellar granule neurons, anandamide also blocks the TASK-1 standing-outward K(+) current, IKso, and induces depolarization. Anandamide-induced neurobehavioural effects are only partly reversed by antagonists of the cannabinoid receptors, suggesting the involvement of alternative pathways. TASK-1 constitutes a novel sensitive molecular target for this endocannabinoid.
Collapse
Affiliation(s)
| | | | | | - Eric Honoré
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS-UPR 411, 660 route des Lucioles, Sophia Antipolis, 06560 Valbonne, France
Corresponding author e-mail:
| |
Collapse
|
535
|
Rodríguez De Fonseca F, Gorriti MA, Bilbao A, Escuredo L, García-Segura LM, Piomelli D, Navarro M. Role of the endogenous cannabinoid system as a modulator of dopamine transmission: implications for Parkinson's disease and schizophrenia. Neurotox Res 2001; 3:23-35. [PMID: 15111259 DOI: 10.1007/bf03033228] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The endogenous cannabinoid system is a new signaling system composed by the central (CB1) and the peripheral (CB2) receptors, and several lipid transmitters including anandamide and 2-arachidonylglycerol. This system is the target of natural cannabinoids, the psychoactive constituents of Cannabis sativa preparations (marijuana, hashish). Acute and chronic cannabis exposure has been associated with subjective feelings of pleasure and relaxation, but also to the onset of psychiatric syndromes, a decrease of the efficacy of neuroleptics and alterations in the extrapyramidal system regulation of motor activity. These actions point to a tight association of the cannabinoid system with the brain dopaminergic circuits involved in addiction, the clinical manifestation of positive symptoms of schizophrenia and Parkinson's disease. The present work discusses anatomical, biochemical and pharmacological evidences supporting a role for the endogenous cannabinoid system in the modulation of dopaminergic transmission. Cannabinoid CB1 receptors are present in dopamine projecting brain areas. In primates and certain rat strains it is also located in dopamine cells of the A8, A9 and A10 mesencephalic cell groups, as well as in hypothalamic dopaminergic neurons controlling prolactin secretion. CB1 receptors co-localize with dopamine D1/D2 receptors in dopamine projecting fields. Manipulation of dopaminergic transmission is able to alter the synthesis and release of anandamide as well as the expression of CB1 receptors. Additionally, CB1 receptors can switch its transduction mechanism to oppose to the ongoing dopamine signaling. Acute blockade of CB1 receptor potentiates the facilitatory role of dopamine D2 receptor agonists on movement. CB1 stimulation results in sensitization to the motor effects of indirect dopaminergic agonists. The dynamics of these changes indicate that the cannabinoid system is an activity-dependent modulator of dopaminergic transmission, an hypothesis relevant for the design of new therapeutic strategies for dopamine-related diseases such as the psychosis and Parkinson's disease.
Collapse
Affiliation(s)
- F Rodríguez De Fonseca
- Departamento de Psicobiologia, Facultad de Psicologia, Universidad Complutense de Madrid, Spain.
| | | | | | | | | | | | | |
Collapse
|
536
|
|
537
|
Maccarrone M, Attinà M, Cartoni A, Bari M, Finazzi-Agrò A. Gas chromatography-mass spectrometry analysis of endogenous cannabinoids in healthy and tumoral human brain and human cells in culture. J Neurochem 2001; 76:594-601. [PMID: 11208922 DOI: 10.1046/j.1471-4159.2001.00092.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Endocannabinoids are lipid mediators thought to modulate central and peripheral neural functions. We report here gas chromatography-electron impact mass spectrometry analysis of human brain, showing that lipid extracts contain anandamide and 2-arachidonoylglycerol (2-AG), the most active endocannabinoids known to date. Human brain also contained the endocannabinoid-like compounds N-oleoylethanolamine, N-palmitoylethanolamine and N-stearoylethanolamine. Anandamide and 2-AG (0.16 +/- 0.05 and 0.10 +/- 0.05 nmol/mg protein, respectively) represented 7.7% and 4.8% of total endocannabinoid-like compounds, respectively. N-Palmitoyethanolamine was the most abundant (50%), followed by N-oleoyl (23.6%) and N-stearoyl (13.9%) ethanolamines. A similar composition in endocannabinoid-like compounds was found in human neuroblastoma CHP100 and lymphoma U937 cells, and also in rat brain. Remarkably, human meningioma specimens showed an approximately six-fold smaller content of all N-acylethanolamines, but not of 2-AG, and a similar decrease was observed in a human glioblastoma. These ex vivo results fully support the purported roles of endocannabinoids in the nervous system.
Collapse
Affiliation(s)
- M Maccarrone
- Department of Experimental Medicine and Biochemical Sciences, University of Rome Tor Vergata, Italy
| | | | | | | | | |
Collapse
|
538
|
Gerdeman G, Lovinger DM. CB1 cannabinoid receptor inhibits synaptic release of glutamate in rat dorsolateral striatum. J Neurophysiol 2001; 85:468-71. [PMID: 11152748 DOI: 10.1152/jn.2001.85.1.468] [Citation(s) in RCA: 335] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
CB1 cannabinoid receptors in the neostriatum mediate profound motor deficits induced when cannabinoid drugs are administered to rodents. Because the CB1 receptor has been shown to inhibit neurotransmitter release in various brain areas, we investigated the effects of CB1 activation on glutamatergic synaptic transmission in the dorsolateral striatum of the rat where the CB1 receptor is highly expressed. We performed whole cell voltage-clamp experiments in striatal brain slices and applied the CB1 agonists HU-210 or WIN 55,212-2 during measurement of synaptic transmission. Excitatory postsynaptic currents (EPSCs), evoked by electrical stimulation of afferent fibers, were significantly reduced in a dose-dependent manner by CB1 agonist application. EPSC inhibition was accompanied by an increase in two separate indices of presynaptic release, the paired-pulse response ratio and the coefficient of variation, suggesting a decrease in neurotransmitter release. These effects were prevented by application of the CB1 antagonist SR141716A. When Sr(2+) was substituted for Ca(2+) in the extracellular solution, application of HU-210 (1 microM) significantly reduced the frequency, but not amplitude, of evoked, asynchronous quantal release events. Spontaneous release events were similarly decreased in frequency with no change in amplitude. These findings further support the interpretation that CB1 activation leads to a decrease of glutamate release from afferent terminals in the striatum. These results reveal a novel potential role for cannabinoids in regulating striatal function and thus basal ganglia output and may suggest CB1-targeted drugs as potential therapeutic agents in the treatment of Parkinson's disease and other basal ganglia disorders.
Collapse
Affiliation(s)
- G Gerdeman
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37212-0615, USA
| | | |
Collapse
|
539
|
Basavarajappa BS, Saito M, Cooper TB, Hungund BL. Stimulation of cannabinoid receptor agonist 2-arachidonylglycerol by chronic ethanol and its modulation by specific neuromodulators in cerebellar granule neurons. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1535:78-86. [PMID: 11113634 DOI: 10.1016/s0925-4439(00)00085-5] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In an earlier study, we reported that chronic ethanol (EtOH) stimulates the formation of anandamide in human SK-N-SH cells. In the present study, we investigated the effect of chronic EtOH on the formation of yet another cannabinoid receptor (CB1) agonist, 2-arachidonylglycerol (2-AG), in cerebellar granule neurons (CGNs). The formation of 2-[(3)H]AG without any stimulation was more pronounced in the older cultures than in younger cultures. Exposure of CGNs to EtOH led to a significant increase in the level of 2-[(3)H]AG (P<0.05). Incubation with the anandamidehydrolase inhibitor phenylmethylsulfonyl fluoride and EtOH did result in an additive increase in 2-[(3)H]AG, but did not with E-6-(bromomethylene)tetrahydro-3-(1-naphthelenyl)-2H-pyran-2-one. The formation of 2-[(3)H]AG was enhanced by ionomycin in both the control and EtOH-exposed CGNs, and the ionomycin-stimulated 2-[(3)H]AG synthesis was inhibited by the intracellular chelating agent 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid. Further, glutamate increased the formation of 2-[(3)H]AG only in control CGNs. MK-801 inhibited the EtOH-induced 2-[(3)H]AG synthesis, suggesting the participation of intracellular Ca(2+) in EtOH-induced 2-[(3)H]AG synthesis. The dopamine receptor (D2) agonist did not modify the 2-AG synthesis in either the control or EtOH-exposed CGNs. However, the D2 receptor antagonist inhibited the EtOH-induced formation of 2-[(3)H]AG. The EtOH-induced 2-[(3)H]AG formation was inhibited by SR141716A and pertussis toxin, suggesting the CB1 receptor- and Gi/o-protein-mediated regulation of 2-AG. The observed increase in 2-AG level in CGNs is possibly a mechanism for neuronal adaptation to the continuous presence of EtOH. These findings indicate that some of the pharmacological actions of EtOH may involve alterations in the endocannabinoid signaling system.
Collapse
Affiliation(s)
- B S Basavarajappa
- New York State Psychiatric Institute, Nathan S. Kline Institue for Psychiatric Research, Orangeburg, 10962, USA
| | | | | | | |
Collapse
|
540
|
Giuffrida A, Rodriguez de Fonseca F, Nava F, Loubet-Lescoulié P, Piomelli D. Elevated circulating levels of anandamide after administration of the transport inhibitor, AM404. Eur J Pharmacol 2000; 408:161-8. [PMID: 11080522 DOI: 10.1016/s0014-2999(00)00786-x] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The biological actions of the endogenous cannabinoid anandamide are terminated by carrier-mediated transport into neurons and astrocytes, followed by enzymatic hydrolysis. Anandamide transport is inhibited by the compound N-(4-hydroxyphenyl)arachidonylamide (AM404). AM404 potentiates several responses elicited by administration of exogenous anandamide, suggesting that it may also protect endogenous anandamide from inactivation. To test this hypothesis, we studied the effects of AM404 on the plasma levels of anandamide using high-performance liquid chromatography/mass spectrometry (HPLC/MS). Systemic administration of AM404 (10 mg kg(-1) intraperitoneal, i.p. ) caused a gradual increase of anandamide in rat plasma, which was significantly different from untreated controls at 60 and 120 min after drug injection. In plasma, both AM404 and anandamide were associated with a plasma protein, which we identified as albumin by non-denaturing polyacrylamide gel electrophoresis. AM404 (10 mg kg(-1), i.p.) caused a time-dependent decrease of motor activity, which was reversed by the cannabinoid CB(1) receptor antagonist N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2, 4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide.hydrochloride (SR141716A, 0.5 mg kg(-1), i.p). These results are consistent with the hypothesis that AM404 inhibits anandamide inactivation in vivo.
Collapse
Affiliation(s)
- A Giuffrida
- Department of Pharmacology, University of California, 360 Med Surge II, Irvine, CA 92697-4625, USA.
| | | | | | | | | |
Collapse
|
541
|
Abstract
2-Arachidonoylglycerol (2-AG) is a unique molecular species of monoacylglycerol isolated from rat brain and canine gut as an endogenous cannabinoid receptor ligand (Sugiura, T., Kondo, S., Sukagawa, A., Nakane, S., Shinoda, A., Itoh, K., Yamashita, A., Waku, K., 1995. 2-Arachidonoylglycerol: a possible endogenous cannabinoid receptor ligand in brain. Biochem. Biophys. Res. Commun. 215, 89-97; Mechoulam, R., Ben-Shabat, S., Hanus, L., Ligumsky, M., Kaminski, N. E., Schatz, A.R., Gopher, A., Almog, S., Martin, B.R., Compton, D.R., Pertwee, R.G., Giffin, G., Bayewitch, M., Brag, J., Vogel, Z., 1995. Identification of an endogenous 2-monoglyceride, present in canine gut, that binds to cannabinoid receptors. Biochem. Pharmacol. 50, 83-90). 2-AG binds to the cannabinoid receptors (CB1 and CB2) and exhibits a variety of cannabimimetic activities in vitro and in vivo. Recently, we found that 2-AG induces Ca(2+) transients in NG108-15 cells, which express the CB1 receptor, and in HL-60 cells, which express the CB2 receptor, through a cannabinoid receptor- and Gi/Go-dependent mechanism. Based on the results of structure-activity relationship experiments, we concluded that 2-AG but not anandamide is the natural ligand for both the CB1 and the CB2 receptors and both receptors are primarily 2-AG receptors. Evidences are gradually accumulating that 2-AG is a physiologically essential molecule, although further detailed studies appear to be necessary to determine relative importance of 2-AG and anandamide in various animal tissues. In this review, we described mainly our previous and current experimental results, as well as those of others, concerning the tissue levels, bioactions and metabolism of 2-AG.
Collapse
Affiliation(s)
- T Sugiura
- Faculty of Pharmaceutical Sciences, Teikyo University, Sagamiko, Tsukui-gun, 199-0195, Kanagawa, Japan.
| | | |
Collapse
|
542
|
Giuffrida A, Piomelli D. The endocannabinoid system: a physiological perspective on its role in psychomotor control. Chem Phys Lipids 2000; 108:151-8. [PMID: 11106788 DOI: 10.1016/s0009-3084(00)00193-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The discovery of cannabinoid receptors has led to the identification of two natural activators for these receptors, anandamide and 2-arachidonoylglycerol, and to the elucidation of their biochemical pathways of formation and inactivation. Although the physiological significance of the endogenous cannabinoid system is still poorly understood, important information is becoming available on the possible functional roles of this system in the basal ganglia, a forebrain region that is involved in the control of sensorimotor and motivational aspects of behavior. These discoveries - which are going to enrich the way in which we look at basal ganglia functions - are summarized in this mini-review. The role of the endocannabinoids as modulators of psychomotor behaviors and the potential therapeutic perspectives deriving from the pharmacological manipulation of the endogenous cannabinoid system are also discussed.
Collapse
Affiliation(s)
- A Giuffrida
- Department of Pharmacology, University of California, 360 Med Surge II, Irvine, CA 92697-4625, USA.
| | | |
Collapse
|
543
|
Abstract
The presence of central cannabinoid receptor (CB1), involving the N-terminal 14 amino acid peptide, was demonstrated in the rat brain by immunohistochemistry. Intensely stained neurons were observed in the principal neurons of the hippocampus, striatum, substantia nigra, cerebellar cortex, including the Purkinje cells. Moderate CB1-IR cell bodies and fibers were present in the olfactory bulb, cingulate, entorhinal and piriform cortical areas, amygdala and nucleus accumbens. The perivascular glial fibers have shown moderate to high density CB1-IR in olfactory and limbic structures. Low density was detected in the thalamus and hypothalamus and area postrema. The CB1 receptor was widely distributed in the forebrain and sparsely in the hindbrain. These new data support the view that the endogenous cannabinoids play an important role in different neuronal functions as neuromodulators or neurotransmitters.
Collapse
Affiliation(s)
- G Moldrich
- Department of Human Morphology and Developmental Biology, Faculty of Medicine, Semmelweis University, 1450, Budapest, Hungary
| | | |
Collapse
|
544
|
Hansen HS, Moesgaard B, Hansen HH, Petersen G. N-Acylethanolamines and precursor phospholipids - relation to cell injury. Chem Phys Lipids 2000; 108:135-50. [PMID: 11106787 DOI: 10.1016/s0009-3084(00)00192-4] [Citation(s) in RCA: 169] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The present review focuses on the relationship between formation of N-acylethanolamine phospholipids (NAPEs) and N-acyletransferase (NAEs) catalyzed by N-acyltranferase and NAPE-hydrolyzing phospholipase D, respectively, and cell injury in tissues like brain, heart, and testis. A number of mechanisms are proposed by which these two groups of lipids may have cytoprotective properties. The mechanisms may involve activation of cannabinoid receptors, as well as non-receptor-mediated effects such as stabilization of membrane bilayers, antioxidant mechanisms, inhibition of calcium leakage from mitochondria, and direct inhibition of ceramidase. Anandamide (20:4-NAE) is formed as a minor component along with other NAEs during cell injury. Whether 20:4-NAE has a separate physiological role is at present not known, but some data suggest that 20:4-NAE may be formed, e.g. in the uterus, by a more selective mechanism without being accompanied by a vast majority of saturated and monounsaturated NAEs.
Collapse
Affiliation(s)
- H S Hansen
- Department of Pharmacology, The Royal Danish School of Pharmacy, Universitetsparken 2, DK-2100, Copenhagen, Denmark.
| | | | | | | |
Collapse
|
545
|
Denovan-Wright EM, Robertson HA. Cannabinoid receptor messenger RNA levels decrease in a subset of neurons of the lateral striatum, cortex and hippocampus of transgenic Huntington's disease mice. Neuroscience 2000; 98:705-13. [PMID: 10891614 DOI: 10.1016/s0306-4522(00)00157-3] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
One of the earliest changes, at the molecular level, that occurs in human Huntington's disease patients is reduction in cannabinoid receptor ligand binding in the substantia nigra pars reticulata compared to neurologically normal controls. The loss of cannabinoid receptor binding is thought to occur early in or prior to the development of Huntington's disease neuropathology. We wish to determine whether cannabinoid receptor messenger RNA levels were altered in a mouse model of Huntington's disease. Transgenic mice hemizygous for the promoter sequence and exon 1 of the human Huntington's disease gene exhibit a progressive neurological phenotype with many of the features of Huntington's disease. This neurological phenotype develops in the absence of neural degeneration making these mice a model system to dissociate changes related to cell dysfunction from changes related to cell loss. We examine the steady-state levels and cellular distribution of the brain-specific cannabinoid receptor messenger RNA by northern blot and in situ hybridization. The cannabinoid receptor messenger RNA was expressed throughout the striatum, cortex and hippocampus of wild-type mice. At four and five weeks of age, there was no difference in the distribution of the cannabinoid receptor messenger RNA between the wild-type and transgenic Huntington's disease mice. At six, seven, eight and 10 weeks of age, however, the Huntington's disease mice exhibit reduced levels of cannabinoid receptor messenger RNA in the lateral striatum compared to age-matched controls. The Huntington's disease mice also showed a loss of cannabinoid receptor messenger RNA within a subset of neurons in the cortex and hippocampus. We did not observe any difference in the expression of cannabinoid receptor between the wild-type and Huntington's disease mice throughout Ammon's horn of the hippocampus or in the medial striatum. The decrease in cannabinoid receptor messenger RNA levels preceded the development of the Huntington's disease phenotype and neuronal degeneration and, therefore, these transgenic mice model early cellular changes observed in human patients. Our results demonstrate that the single copy cannabinoid receptor gene is subjected to cell-specific and time-dependent regulation of the steady-state level of its gene product as a result of the expression of the Huntington's disease gene. As the endogenous cannabinoid receptor agonist, anandimide, has been shown to modulate dopamine neurotransmission within the basal ganglia, the loss of cannabinoid receptors may contribute to the development of motor symptoms or cognitive decline or both seen in Huntington's disease patients.
Collapse
Affiliation(s)
- E M Denovan-Wright
- Laboratory of Molecular Neurobiology, Department of Pharmacology, Dalhousie University, Nova Scotia, B3H 4H7, Halifax, Canada
| | | |
Collapse
|
546
|
Glass M, Dragunow M, Faull RL. The pattern of neurodegeneration in Huntington's disease: a comparative study of cannabinoid, dopamine, adenosine and GABA(A) receptor alterations in the human basal ganglia in Huntington's disease. Neuroscience 2000; 97:505-19. [PMID: 10828533 DOI: 10.1016/s0306-4522(00)00008-7] [Citation(s) in RCA: 406] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In order to investigate the sequence and pattern of neurodegeneration in Huntington's disease, the distribution and density of cannabinoid CB(1), dopamine D(1) and D(2), adenosine A(2a) and GABA(A) receptor changes were studied in the basal ganglia in early (grade 0), intermediate (grades 1, 2) and advanced (grade 3) neuropathological grades of Huntington's disease. The results showed a sequential pattern of receptor changes in the basal ganglia with increasing neuropathological grades of Huntington's disease. First, the very early stages of the disease (grade 0) were characterized by a major loss of cannabinoid CB(1), dopamine D(2) and adenosine A(2a) receptor binding in the caudate nucleus, putamen and globus pallidus externus and an increase in GABA(A) receptor binding in the globus pallidus externus. Second, intermediate neuropathological grades (grades 1, 2) showed a further marked decrease of CB(1) receptor binding in the caudate nucleus and putamen; this was associated with a loss of D(1) receptors in the caudate nucleus and putamen and a loss of both CB(1) and D(1) receptors in the substantia nigra. Finally, advanced grades of Huntington's disease showed an almost total loss of CB(1) receptors and the further depletion of D(1) receptors in the caudate nucleus, putamen and globus pallidus internus, and an increase in GABA(A) receptor binding in the globus pallidus internus. These findings suggest that there is a sequential but overlapping pattern of neurodegeneration of GABAergic striatal efferent projection neurons in increasing neuropathological grades of Huntington's disease. First, GABA/enkephalin striatopallidal neurons projecting to the globus pallidus externus are affected in the very early grades of the disease. Second, GABA/substance P striatonigral neurons projecting to the substantia nigra are involved at intermediate neuropathological grades. Finally, GABA/substance P striatopallidal neurons projecting to the globus pallidus internus are affected in the late grades of the disease. In addition, the finding that cannabinoid receptors are dramatically reduced in all regions of the basal ganglia in advance of other receptor changes in Huntington's disease suggests a possible role for cannabinoids in the progression of neurodegeneration in Huntington's disease.
Collapse
Affiliation(s)
- M Glass
- Departments of Anatomy with Radiology, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | | | | |
Collapse
|
547
|
Mclaughlin PJ, Delevan CE, Carnicom S, Robinson JK, Brener J. Fine motor control in rats is disrupted by delta-9-tetrahydrocannabinol. Pharmacol Biochem Behav 2000; 66:803-9. [PMID: 10973519 DOI: 10.1016/s0091-3057(00)00281-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Evidence has suggested that cannabinoids such as THC, the active ingredient in marijuana, cause deficits in motor control and the production of movement. However, the specific components of motor control that are affected by cannabinoids have yet to be identified. The present study used an operant beam-press paradigm with a force criterion to determine the effects of THC on different parts of the force-time trajectory. Seven rats were trained to press a beam with at least 50 g of force to receive a sugar solution. THC was injected, as was apomorphine (APO), a selective dopamine D(2)/D(1) receptor agonist that acts as an antagonist at low doses. Low doses of APO, which have been found to cause deficits in motor execution, were used as a control for the effects of THC. Average peak force of a given press, as well as rate of rise of force, were significantly lowered by THC, as well as by apomorphine. Past research suggests that deficits in the rate of rise of force that can be attributed to depletions of dopamine in the nigrostriatal pathway, as in the case of low doses of APO, reflect failures of motor unit recruitment rather than of motor memory. Similarities in the motor effects of THC and APO suggest that THC plays a role in recruitment and synchronization of motor neurons appropriate for a given task.
Collapse
Affiliation(s)
- P J Mclaughlin
- Department of Psychology, State University of New York at Stony Brook, 11794-2500, USA
| | | | | | | | | |
Collapse
|
548
|
Hansen HH, Hansen SH, Schousboe A, Hansen HS. Determination of the phospholipid precursor of anandamide and other N-acylethanolamine phospholipids before and after sodium azide-induced toxicity in cultured neocortical neurons. J Neurochem 2000; 75:861-71. [PMID: 10899965 DOI: 10.1046/j.1471-4159.2000.0750861.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Phospholipase D-mediated hydrolysis of N-acylethanolamine phospholipids (NAPEs) releases anandamide and other N-acylethanolamines, resulting in different actions at cellular targets in the CNS. Recently, we have demonstrated that these N-acyl lipids accumulate in cultured neocortical neurons subjected to sodium azide-induced cell injury. We here extend the information on the NAPE response, reporting on the composition of N-acylspecies of NAPE, employing a new methodological approach of HPLC-coupled electrospray ionization mass spectrometry. Exposure to sodium azide (5 mM) increased the total amount of NAPE threefold over control levels; however, no alteration of the relative composition of NAPE species was detected. The anandamide precursor (20 : 4-NAPE) constituted only 0.1% of all NAPEs detected in the neurons. Total NAPE species in control cells amounted to 956-1,060 pmol/10(7) cells. Moreover, we detected the presence of an unknown NAPE species with molecular weight identical to 20 : 4-NAPE. This may suggest the presence of a putative stereoisomer of the anandamide precursor with at least one trans-configured double bond in the N-arachidonoyl moiety. These results show that with the present method, neuronal NAPE species can be identified and quantified with respect to N-acyl composition, including a trans-isomer of the anandamide precursor. The anandamide precursor is up-regulated to the same extent as other NAPEs upon neuronal injury.
Collapse
Affiliation(s)
- H H Hansen
- Department of Pharmacology, Royal Danish School of Pharmacy, Copenhagen, Denmark.
| | | | | | | |
Collapse
|
549
|
Anderson BJ, Gatley SJ, Rapp DN, Coburn-Litvak PS, Volkow ND. The ratio of striatal D1 to muscarinic receptors changes in aging rats housed in an enriched environment. Brain Res 2000; 872:262-5. [PMID: 10924706 DOI: 10.1016/s0006-8993(00)02507-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The enriched environment (EC) causes morphological plasticity in striatal cells that express D1 and D2 receptors. We used radioligand binding assays to examine whether EC produces plasticity in striatal receptor density and receptor density ratios. After 30 days of EC, 2-year-old rats had a higher ratio of D1 to muscarinic receptors in striatum relative to singly housed rats. Assays also showed trends for a greater ratio of D1 to cannabinoid receptors and a greater density of D1 receptors in striatum after EC. D2 receptor density was unaffected by the EC condition.
Collapse
MESH Headings
- Aging/metabolism
- Analysis of Variance
- Animals
- Brain Chemistry/physiology
- Corpus Striatum/chemistry
- Corpus Striatum/metabolism
- Environment
- Male
- Radioligand Assay
- Rats
- Rats, Inbred F344
- Receptors, Cannabinoid
- Receptors, Dopamine D1/analysis
- Receptors, Dopamine D1/metabolism
- Receptors, Dopamine D2/analysis
- Receptors, Dopamine D2/metabolism
- Receptors, Drug/analysis
- Receptors, Drug/metabolism
- Receptors, Muscarinic/analysis
- Receptors, Muscarinic/metabolism
Collapse
Affiliation(s)
- B J Anderson
- Department of Psychology, SUNY Stony Brook, Stony Brook, NY 11794-2500, USA.
| | | | | | | | | |
Collapse
|
550
|
Hohmann AG, Herkenham M. Localization of cannabinoid CB(1) receptor mRNA in neuronal subpopulations of rat striatum: a double-label in situ hybridization study. Synapse 2000; 37:71-80. [PMID: 10842353 DOI: 10.1002/(sici)1098-2396(200007)37:1<71::aid-syn8>3.0.co;2-k] [Citation(s) in RCA: 159] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Double-label in situ hybridization was used to identify the phenotypes of striatal neurons that express mRNA for cannabinoid CB(1) receptors. Simultaneous detection of multiple mRNAs was performed by combining a (35)S-labeled ribonucleotide probe for CB(1) mRNA with digoxigenin-labeled riboprobes for striatal projection neurons (preprotachykinin A, prodynorphin, and preproenkephalin mRNAs) and interneurons (vesicular acetylcholine transporter (VAChT), choline acetyltransferase (ChAT), somatostatin, and glutamic acid decarboxylase (Mr 67,000; GAD67) mRNAs). To ascertain whether CB(1) mRNA was a marker for striatal efferents, digoxigenin-labeled probes for mRNA markers of both striatonigral (prodynorphin or preprotachykinin A mRNAs), and striatopallidal (proenkephalin mRNAs) projection neurons were combined with the (35)S-labeled probe for CB(1). A mediolateral gradient in CB(1) mRNA expression was observed at rostral and mid-striatal levels; in the same coronal sections the number of silver grains per cell ranged from below the threshold of detectability at the medial and ventral poles to saturation at the dorsolateral boundary bordered by the corpus callosum. At the caudal level examined, CB(1) mRNA was denser in the ventral sector relative to the dorsal sector. Virtually all neurons expressing mRNA markers for striatal projection neurons colocalized CB(1) mRNA. Combining a (35)S-labeled riboprobe for CB(1) with digoxigenin-labeled riboprobes for both preproenkephalin and prodynorphin confirmed localization of CB(1) mRNA to striatonigral and striatopallidal neurons expressing prodynorphin and preproenkephalin mRNAs, respectively. However, CB(1) mRNA-positive cells that failed to coexpress the other markers were also apparent. CB(1) mRNA was localized to putative GABAergic interneurons that express high levels of GAD67 mRNA. These interneurons enable functional interactions between the direct and indirect striatal output pathways. By contrast, aspiny interneurons that express preprosomatostatin mRNA and cholinergic interneurons that coexpress ChAT and VAChT mRNAs were CB(1) mRNA-negative. The present data provide direct evidence that cannabinoid receptors are synthesized in striatonigral neurons that contain dynorphin and substance P and striatopallidal neurons that contain enkephalin. By contrast, local circuit neurons in striatum that contain somatostatin or acetylcholine do not synthesize cannabinoid receptors. Published 2000 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- A G Hohmann
- Section on Functional Neuroanatomy, National Institute of Mental Health, Bethesda, MD 20892-4070, USA
| | | |
Collapse
|